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Strongly coupled lattice gauge theory with dynamical fermion mass generation
in three dimensions
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We investigate the critical behavior of a three-dimensional latticexUf3 model in the chiral limit. The
model consists of a staggered fermion field, a U~1! gauge field~with coupling parameterb! and a complex
scalar field~with hopping parameterk!. Two different methods are used:~1! fits of the chiral condensate and
the mass of the neutral unconfined composite fermion to an equation of state and~2! finite size scaling
investigations of the Lee-Yang zeros of the partition function in the complex fermion mass plane. For strong
gauge coupling (b,1) the critical exponents for the chiral phase transition are determined. We find strong
indications that the chiral phase transition is in one universality class in thisb interval: that of the three-
dimensional Gross-Neveu model with two fermions. Thus the continuum limit of thexUf3 model defines here
a nonperturbatively renormalizable gauge theory with dynamical mass generation. At weak gauge coupling and
smallk, we explore a region in which the mass in the neutral fermion channel is large but the chiral condensate
on finite lattices very small. If it does not vanish in the infinite volume limit, then a continuum limit with a
massive unconfined fermion might be possible in this region, too.@S0556-2821~98!06917-3#

PACS number~s!: 11.15.Ha, 11.10.Kk, 11.30.Qc, 12.60.Rc
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I. INTRODUCTION

Strongly coupled gauge theories are interesting candid
for new mass generating mechanisms because they ten
break chiral symmetry dynamically. However, the fermio
which acquire mass through this mechanism usually get c
fined. It was pointed out@1# that this can be avoided in
class of chiral symmetric strongly coupled gauge theories
the lattice in which the gauge charge of the fermion
shielded by a scalar field of the same charge. The questio
whether these models are nonperturbatively renormaliz
at strong gauge coupling such that the lattice cutoff can
removed. If so, the resulting theory might be applicable
continuum and constitute a possible alternative to the Hi
mechanism@1#.

In this work we investigate such a lattice model in thr
dimensions with a vectorlike U~1! gauge symmetry, which
we callxUf3 model. It consists of a staggered fermion fie
x with a global U~1! chiral symmetry, a gauge fieldU
PU(1) living on the lattice links of lengtha and a complex
scalar fieldf with frozen lengthufu51. It is characterized
by the dimensionless gauge coupling parameterb ~propor-
tional to the inverse squared coupling constant!, the hopping
parameterk of the scalar field and the bare fermion ma
am0 . The unconfined fermion is the composite stateF
5f†x. In a phase with broken chiral symmetry, it has no
vanishing massamF in the chiral limit m050. The xUf3
model can be seen either as a generalization of th
dimensional compact QED with a charged scalar field ad
or as three-dimensional U~1! Higgs model with added fermi
ons.

*Part of the UKQCD Collaboration.
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The same model has also been investigated in two
four dimensions. In two dimensions it seems to be in
universality class of the Gross-Neveu model@2# at least for
strong gauge coupling, thus being renormalizable. There
the shielded gauge-charge mechanism of dynamical m
generation suggested in@1# works in two dimensions and its
long range behavior is equivalent to the four fermion theo
In four dimensions there is also a region inb (0<b
,0.64) in which the model behaves in a very similar mann
to the corresponding four-fermion theory, the Nambu–Jo
Lasinio model with a massive fermion whose mass scale
the critical point@3#. Here both models belong to the sam
universality class and have the same renormalizability pr
erties. But for intermediate coupling there evidently exist
special point. It is a tricritical point at which, together wit
the composite fermionF, scaling of a particular scalar stat
was found. This composite scalar can be interpreted a
gauge ball mixing with af†-f state. Thus the gauge degre
of freedom play an important dynamical role and the mo
belongs to a new universality class of models with dynami
mass generation, whose renormalizability is of much inter
@4,5#.

In this paper we investigate the phase diagram and
critical behavior of the model in three dimensions. We fi
that in the chiral limitm050 the xUf3 model has three
regions in theb2k plane with different properties with re
spect to the chiral symmetry. They are indicated in Fig.
The region at strong gauge coupling~smallb! and smallk is
the Nambu phase where the chiral symmetry is broken
the neutral fermionF is massive. At largek chiral symmetry
is restored and the fermionF is massless. This phase is la
belled the Higgs phase because of its properties in the w
coupling limit. The third is the X region at largeb and small
k. It is conceivable that this region is analytically connect
© 1998 The American Physical Society07-1
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I. M. BARBOUR et al. PHYSICAL REVIEW D 58 074507
with either the Nambu or Higgs phase but it may well be
separate phase. In this region the mass measured in the
mion channel is large, but the chiral condensate is very sm
~within our numerical accuracy consistent with zero!.

The main result of our paper is the determination of
critical behavior at strong gauge coupling. We find stro
indications that the chiral phase transition between
Nambu and Higgs phases is in one universality class for
b&1. It is the class of the three-dimensional Gross-Nev
model which is known to be~nonperturbatively! renormaliz-
able @6#. That model is theb50 limit of the xUf3 model
@7#. This universality means that the continuum limit of th
xUf3 model defines a nonperturbatively renormaliza
gauge theory in which the fermion mass is generated
namically by the shielded gauge-charge mechanism. H
ever, it also means that in thisb region the gauge field is
auxiliary and thexUf3 model does not represent a ne
class of field theories.

The chiral properties of the region X are elusive and th
determination would require substantial effort and resourc
This is beyond the scope of the present work and we m
only an exploratory investigation. But we point out that, pr
vided the chiral symmetry is broken there, the phase tra
tion between the region X and the Higgs phase gives ris
another possible construction for a continuum theory c
taining an unconfined fermion with dynamically generat
mass. It could continue to be in the universality class of
three-dimensional Gross-Neveu model. But experience@4,5#
with the four-dimensional model in the vicinity of the tric
ritical point suggests that at largerb the gauge degrees o
freedom are dynamical and a new universality class may
present. This interesting possibility, and the possible e
tence of a tricritical point in three dimensions, deserves f
ther study.

Our investigation is mainly based on two methods: fir

FIG. 1. Phase diagram of thexUf3 model for m050. For b
,1 a clear phase transition between the Nambu and Higgs ph
can be observed. Whether the region X at largeb and smallk forms
a third phase or belongs to one of the other phases, separated
it only by a crossover, is discussed in the text. All phase transiti
seem to be 2nd order.
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via fits to an equation of state and, secondly, via a finite s
scaling investigation of the Lee-Yang zeros in the comp
fermion mass plane. The investigation of a phase transi
via fits to an equation of state is quite reliable because
finite size effects we find close to the phase transition
usually small. Therefore we expect a simple finite size sc
ing, describe it by an empirical formula and extrapolate o
servables to the infinite volume. Then we do a simultane
fit to the fermion massamF and the chiral condensate^x̄x&.

As first pointed out by Lee and Yang@8,9#, the determi-
nation of the finite size scaling behavior of the complex z
ros of a partition function could be a direct method for t
determination of the critical properties of the associa
theory. In this paper we investigate these zeros of the can
cal partition function in the complex bare fermion ma
plane. These zeros control the fermion condensate and
associated susceptibilities@10,11#, physical quantities which
are often measured directly on the lattice and used, via fi
size scaling, to determine the critical behavior.

In the region X, where the chiral condensate is very sm
both methods fail to provide reliable results. A small conde
sate suggests that the Lee-Yang zeros cannot be near t
physical region. Nevertheless, it is of interest to investigat
the closest zeros can be determined with sufficient accu
to ascertain their finite size scaling~and hence that of the
condensate!.

The paper is organized as follows. In the next section
introduce the model in detail, define the observables we
and briefly summarize the method of the Lee-Yang zeros
Sec. III we present evidence for the universality at stro
gauge coupling. In Sec. IV we present the results obtaine
weak coupling and discuss their possible interpretations
the last section our results are summarized.

II. THE MODEL

The xUf3 model is defined on a 3-dimensional cub
lattice with periodic boundary conditions except for antip
riodic boundary conditions for the fermion field in th
‘‘time’’ direction. The action reads

SxUf5Sx1SU1Sf , ~1!

with

Sx5
1

2 (
x

x̄x (
m51

3

hmx~Ux,mxx1m

2Ux2m,m
† xx2m!1am0(

x
x̄xxx ,

SU5b (
x,m,n

~12Re Ux,mn!,

Sf52k(
x

(
m51

3

~fx
†Ux,mfx1m1H.c.!.

Herexx are the Kogut-Susskind fermion fields withhmx
5(21)x11¯1xm21. Because of doubling our model de

es

om
s
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STRONGLY COUPLED LATTICE GAUGE THEORY WITH . . . PHYSICAL REVIEW D 58 074507
scribes two four-component fermions (Nf52). The bare
massam0 of the fermion is introduced for technical reason
We are interested in the chiral limitm050. Thea in front of
m0 indicates that we have to distinguish between the ch
limit in the continuum (m050) and the continuum limit of
the lattice model, wheream0→0 can also be achieved b
a→0 at nonzerom0 .

Ux,m represents the compact link variable andUx,mn is the
plaquette product of the link variablesUx,m .

The hopping parameterk vanishes, if the square of th
bare mass of the scalar field is1`, and is infinite if the bare
mass squared is2`. The scalar fieldf has frozen length
ufu51. This choice is made in order to restrict the number
parameters of the model. Without that, symmetries and
mensionality of couplings would allow several other terms
the action.

We stress that the charges of the fundamental fields
clude a direct Yukawa coupling between the fundamen
fields.

The model has some interesting limiting cases. Fok
50 the scalar field decouples and the model is equivalen
three-dimensional compact QED with fermions. It is know
@12–15# that pure compact QED has no phase transition a
asb→`, it is confining via a linear potential with an expo
nentially decreasing string tension. There is an indicat
that, with fermions, chiral symmetry is broken at large co
pling, but at weak coupling results are inconclusive@16#. It
has been suggested that, in noncompact QED with fermi
the phase diagram is dependent on the number of flavors
that, at weak coupling, chiral symmetry is broken only fo
small number~less than about 3.5! of fermions@17–20#. ~A
recent description of the status of three-dimensional Q
can be found in@21,22#.! It is quite probable that, at wea
coupling, both the compact and non-compact formulatio
have quite similar properties. If so, then these~uncertain!
features suggest that the chiral symmetry is broken in thk
50 limit of the phase X and thus presumably in the who
phase X.

In the weak gauge coupling limit,b5`, the fermions are
free with massam0 , andSf reduces to the XY3 model. It
has a phase transition atk'0.27.

At am05` the model reduces to the three-dimensio
compact U~1! Higgs model. For its recent investigation wit
numerous references see@23#.

For b50 the gauge and scalar fields can be integrated
exactly @7# and one ends up with a lattice version of t
three-dimensional four-fermion model

S4 f52(
x

(
m51

3 FGx̄xxxx̄x1mxx1m

2
1

2
hmx~ x̄xxx1m2x̄x1mxx!G

1
am0

r (
x

x̄xxx , ~2!

the parametersG and r being related tok @7,1#.
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We refer to this model as the Gross-Neveu model. So
caution is in place, however. There is some uncertai
whether the four-fermion model~2! is a lattice version of the
Gross-Neveu model or of the Thirring model. The fou
fermion action~2! was used in four dimensions for the stud
of the Nambu–Jona-Lasinio model e.g. in@24,25#, which
would correspond to the Gross-Neveu model in three dim
sions. Recently in@26,27# the four-fermion action~2! in three
dimensions is interpreted as the Thirring model and sim
interpretation is implied by Kondo@28#. For our number of
fermions,Nf52, the distinction might be unimportant an
both models might actually coincide.1 The Gross-Neveu
model has a chiral phase transition and is nonperturbativ
renormalizable~see@6,29# and references therein!. The prop-
erties of theNf52 Thirring model appear to be simila
@28,26,27#. For our purposes the important property of t
three-dimensional four-fermion model obtained in theb50
limit of the xUf3 model is its renormalizability, which pre
sumably holds for both interpretations.

A. Observables

Because we are interested in the chiral properties of
model we concentrate on the chiral condensate and the
mion mass.

The chiral condensate is defined by

^x̄x&5^Tr M 21& ~3!

whereM is the fermion matrix. The trace is measured with
Gaussian estimator.

The physical fermion of thexUf3 model is the gauge
invariant composite fermionF5f†x. We measure its mas
amF in momentum space with the usual procedure, as
scribed~for the model in 4 dimensions! in @3#. We checked
that the results are in good agreement with the fits done
configuration space. In the three-dimensional model we fi
the fits toG11 to be the most stable, so we use them for t
data shown in this paper.

1J.J. thanks M. Go¨ckeler, S. J. Hands, and K.-I. Kondo for discu
sions on these questions. Some of them are exposed in@27#.

FIG. 2. First order chiral phase transition line~bold line! and the
critical point in a planeb5const. The fermion massamF scales
with exponentn in the direction tangential to the transition line an

with exponentñ in any other direction.
7-3
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I. M. BARBOUR et al. PHYSICAL REVIEW D 58 074507
Both observables need to be extrapolated to infinite v
ume. This procedure is described in Sec. III A.

We remark that the required numerical effort for the stu
of the xUf3 model was very high. We needed significan
more matrix inversions than for the four-dimensional ca
@5# at the same volume andam0 . Their number also depend
significantly onb: The simulation atb50 required about
O~1000! conjugate-gradient steps, about 2–5 times m
than at largerb values. Surprisingly, the number of require
steps scattered in a very broad interval. The maximal s
number was at least a factor of 2–3 above the average.
might be connected with the observation, that the chiral c
densate has a very asymmetric distribution.

B. Equation of state

A standard way to analyze the critical exponents o
chiral phase transition is via the use of an equation of s
~EOS!. Normally data close to the phase transition can
well described by such an ansatz. In our model for fixedb
this equation reads

am05^x̄x&dF„~k2kc!^x̄x&21/bx
…, F~x!5Rx1S. ~4!

Here^x̄x& is the infinite volume value of the chiral conde
sate for givenam0 , k and b. bx and d are the exponents
defined in analogy to a magnetic transition. The indexx is
added to distinguish the exponent and the coupling. The s
ing functionF is used in its linear approximation andR and
S are free constants. We apply this equation in the region
which k'kc and where we might expect the scaling dev
tions to be small.

FIG. 3. Schematic plot of the exponents in infinite volume~full
lines and dot! and the effectives in finite volume~dashed line!.

FIG. 4. Expected finite size scaling of the zeroy1 with lattice
size.
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It is also useful to assume the corresponding scaling eq
tion for the fermion mass:

am05~amF!1/ñG„~k2kc!~amF!21/n
…, G~x!5Ax1B.

~5!

The exponentn is the correlation length critical exponent i
the chiral plane (am050). ñ is an analogous exponent ob
tained if one approaches the critical point from outside
chiral plane. The two exponents have to be distinguished
fixed b in the chiral plane (am050) the fermion mass scale
with n: amF}(k2kc)

nuam050 , whereas for all other straigh

paths into the critical point~for examplek5kc) it scales
with am0 as:amF}am0

ñuk2kc}am0
. This is indicated in Fig.

2 in the planeb5const.
Figure 2 also illustrates that fork,kc the chiral conden-

sate changes sign and makes a jump if one crosses the
am050. This means that it is a line of first order pha
transitions. Fork.kc the line becomes a line of secon
order phase transitions on which the fermion mass gets c
cal. In between there is a critical point (k5kc).

If hyperscaling holds, only two of the four exponents d
fined by the equations of state are independent. The co
sponding scaling relations are

d5
1

dñ21
and bx5nS d2

1

ñ
D , ~6!

whered53 is the space-time dimension.

C. Lee-Yang zeros

The canonical partition function, after integration over t
Grassmann variables and using the irrelevance of ove
multiplicative factors, can be defined as

Z~b,k,am0!5
*dUdf det M @am0 ,U#eSUf

*dUdf det M @am̂0 ,U#eSUf
. ~7!

FIG. 5. Data foramF at b50.80 andam050.01 plotted against
1/L2. The dotted lines are a fit with Eq.~13! to the data withL
>16.
7-4
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TABLE I. Results of the fits to the finite size behavior at different couplings and masses on 163, 203, 243

lattices. The extrapolated infinite volume massamF5amF(`) and thex2 per degree of freedom for the thre
fits are given: with Eq.~13! ~Fit 1!, Eq. ~14! ~Fit 2! and Eq.~15! ~Fit 3!.

Fit 1 Fit 2 Fit3
b k am0 amF x2 amF x2 amF x2

0.00 0.95 0.01 0.269~3! 0.30 0.256~7! 0.53 0.278~2! 0.01
0.00 1.00 0.01 0.194~4! 0.22 0.180~9! 0.45 0.202~2! 0.01
0.00 1.05 0.01 0.132~5! 0.23 0.111~10! 0.04 0.142~3! 0.62
0.00 0.95 0.02 0.337~3! 0.41 0.327~6! 0.22 0.343~1! 2.07
0.80 0.40 0.01 0.441~8! 0.12 0.437~2! 0.15 0.445~3! 0.03
0.80 0.42 0.01 0.276~8! 0.01 0.247~16! 0.08 0.295~4! 0.31
0.80 0.43 0.01 0.215~5! 0.07 0.191~9! 0.01 0.230~2! 1.33
0.80 0.45 0.01 0.122~2! 0.01 0.087~1! 0.14 0.137~3! 0.36
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Here SUf5SU1Sf , M is the usual fermionic matrix for
Kogut-Susskind fermions andam̂0 is some~arbitrary! ‘‘up-
dating’’ fermion mass at which the ensemble of gauge fie
is generated.

Since the mass dependence ofM is purely diagonal, the
partition function can be written as the average over the
semble of the characteristic polynomials ofM , i.e.,

Z~b,k,am0!5K (n50
V/2 Cn@U@b,k##~am0!2n

det M @am̂0 ,U@b,k##
L

am̂0

~8!

5 (
n50

V/2

An@b,k#~am0!2n. ~9!

The coefficientsCn of the characteristic polynomial are ob
tained from the eigenvalues ofM @0,U# which are imaginary
and appear in complex conjugate pairs. In the simulati
described below they were obtained using the Lanczos a
rithm.

The Lee-Yang zeros are the zeros of this polynomial r
resentation of the partition function. The zeros were fou
by using a standard root finding algorithm on the equival
sets of polynomials generated as in Eq.~8!:

(
n50

V/2

An
i ~am0

22am̄i
2!n ~10!
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for a set ofam̄i in the region where we expect the lowe
zeros to occur. This allowed us to avoid the problems as
ciated with rounding errors in the root-finder. We requir
that a zero be found consistently for the subset of theam̄i
closest to it. These zeros in the bare mass we label asyi in
the following.

The errors in the Lee-Yang zeros are estimated by a J
nife method. The coefficients for each lattice size were av
aged to produce 6 subsets of averaged coefficients, each
ing into account 5/6 of the measurements. These 6 diffe
sets of coefficients give 6 different results for the Lee-Ya
zeros from which the variance was calculated.

The critical properties of the system are determined by
zeros lying closest to the real axis. The zero with the smal
imaginary part we labely1 . It is also called edge singularity
With increasing finite volume it converges to the critic
point. For a continuous phase transition the position of
zeros closest to the real axis in the complex plane is ruled
the scaling law

yi~b,k,L !2yR~b,k,`!5AiL
21/s, ~11!

where the Ai ’s are complex numbers. The exponents
5s(b,k) describes the finite size scaling of the correlati
length. For our modelyR(b,k,`)50 and we ignore it in the
following.

It immediately follows that the real and the imagina
parts of the zeros should scale independently with the s
s the
TABLE II. Results of fits atb50.00 and 0.80 using the equations of state. The upper table show

results of the fit ofamF based on Eq.~5!, the lower table those of̂x̄x& based on Eq.~4!.

b kc n ñ A B x2

amF : 0.00 0.987~33! 0.91~22! 0.43~8! 1.1~3! 0.38~8! 0.72
0.80 0.425~5! 0.78~14! 0.40~5! 3.6~6! 0.33~5! 0.82

b kc bx d R S x2

^x̄x&: 0.00 0.983~12! 0.56~5! 3.1~3! 1.3~2! 1.1~3! 0.84

0.80 0.429~7! 0.56~10! 3.0~5! 4.4~12! 2.4~13! 0.58
7-5
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I. M. BARBOUR et al. PHYSICAL REVIEW D 58 074507
exponent. In particular, for the zeroy1 closest to the chira
phase transition~at am050)

Im y1~b,k,L !5AIL
21/s, ~12!

with a similar scaling behavior for Rey1(b,k,L) via AR . In
practice the real part of the zero is much smaller than
imaginary part or is identically zero. So Eq.~12! usually
provides a more reliable measure of the exponent than
scaling of the real part.

Although the above scaling law was originally establish
for the case of a continuous phase transition, it can also
extended to that of a first order phase transition. Since th
is no divergent correlation length, the exponent is determi
only by the actual dimension of the system. In this case,
a three-dimensional model we expects5 1

3 .
At the critical point (k5kc) we expects to be equal toñ,

because the fermion correlation length should be the rele
one. In the symmetric phase (k.kc) we expect scaling with
s51, becauseamF}am0 . This behavior is indicated in Fig
3 by the full lines and the dot.

In practice it is important to understand the scaling dev
tions on a finite lattice. The expected behavior is sho
schematically in Fig. 4. Far away from the critical point w
expect linear scaling in the log-log plot withs51/3 in the
broken phase, ands51 in the symmetric phase. At the crit
cal point we expect linear scaling and the exponent should
s5 ñ. These expectations are indicated by the full lin
Close to the phase transition, we expect a crossover.
small lattice sizes the exponent should be close toñ and then
change to 1/3 and 1, respectively, if the lattice size is
creased and the true scaling shows up. This is indicate

TABLE III. Results of fits of amF and ^x̄x& at b50.00 and
0.80, using both equations of state with a commonkc .

b kc n ñ bx d x2

0.00 0.983~12! 0.88~8! 0.42~3! 0.56~5! 3.1~3! 0.71

0.80 0.425~4! 0.78~11! 0.40~4! 0.47~5! 3.4~3! 0.71
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Fig. 4 by the dashed lines. For a set of lattice sizes
defines an effectives which smoothly goes throughñ at the
critical point. Such an effectives is represented in Fig. 3 by
a dashed line.

Therefore, in order that the critical exponent can be de
mined, we must either know the position of the critical po
accurately or have many simulations on large lattices so
the scaling deviations can be measured accurately. In p
tice the limited knowledge of the position of the critical poi
leads to the largest uncertainty in the determination ofñ by
this method.

III. UNIVERSALITY AT STRONG COUPLING

At strong coupling the chiral phase transition can be s
clearly and we investigate the scaling behavior and the u
versality along this line.

We determined the Lee-Yang zeros, the chiral conden
and the fermion mass for various values ofk at b50.00 and
0.80. In this section we want to investigate how the transit
changes asb increases from zero. Therefore we have inve
tigated the scaling of the data atb50, i.e. the four-fermion
model, as a reference and compare it with the scaling fo
at b50.80.

A. Equation of state

Here we determine the critical exponents of the chi
phase transition by using the EOS foramF and ^x̄x&. Al-
though we did simulations on lattices up to 243, our conclu-
sions still depend to some extent on our choice of ansatz

TABLE IV. Results of our fits using the equations of state
b50.00 and 0.80 with onekc and the scaling relations~6! at b
50.00 and 0.80.

b kc n ñ x2 bx d

0.00 0.981~6! 0.79~2! 0.437~5! 2.2 0.56~4! 3.2~2!

0.80 0.425~2! 0.75~2! 0.431~6! 2.3 0.51~4! 3.4~2!
-

d
e

FIG. 6. ~a! Fermion mass and
~b! chiral condensate for b
50.00. The data are our extrapo
lation into the infinite volume.
The fit assumes the validity of the
scaling relations and is describe
in the text. The parameters ar
given in Table IV. The dashed
line shows the extrapolation into
the chiral limit.
7-6
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FIG. 7. ~a! Fermion mass and
~b! chiral condensate for b
50.80.
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the extrapolation ofamF and^x̄x& to infinite volume. Figure
5 shows, as an example, our data foramF at b50.80 and
am050.01 plotted against 1/L2.

For the extrapolation we tried three approaches:

amF~L !5amF~`!1A
1

L2 , ~13!

amF~L !5amF~`!1A
1

L
, ~14!

amF~L !5amF~`!1A
1

L
exp„2amF~`!L….

~15!

Each has two free parameters:amF(`) andA. To judge the
quality of the fits we first compared thex2 per degree of
freedom using our data on 163, 203 and 243 lattices. This
was done at the values ofb and k at which we have good
statistics. Our results are shown in Table I. It turned out t
the results for these lattice sizes are not conclusive a
which extrapolation formula should be used, because,
each ansatz, allx2 per degree of freedom are usually belo
1.

However, the fit with Eq.~13! is significantly preferred if
compared with the 123 data. We therefore adopted this fit fo
our extrapolations, but data from the 123 lattice was not in-
cluded. Such an extrapolation is indicated in Fig. 5 by
dotted lines.

For the chiral condensate the finite size effects are in g
eral smaller and with opposite sign. Again, consideration
the 123 lattices favored a fit ansatz analogous to Eq.~13!.

We describe in detail the analysis in which we used
ansatz of Eq.~13! to extrapolate all our data foramF and

^x̄x&, obtained on 163 and larger lattices, to infinite volume
The error was calculated with theMINOS routine from the
MINUIT library. All results presented in the following chang
somewhat quantitatively, but not qualitatively, if a differe
extrapolation formula is used.
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The data at differentk andam0 , extrapolated to the infi-
nite volume, were analyzed by means of the EOS. We
cluded only the data atam050.01 andam050.02. The cho-
senk range was 0.80 . . .1.05 forb50.00 and 0.38 . . .0.47
for b50.80.

As a first step we analyzed the data foramF and ^x̄x&
independently and fitted to their corresponding EOS~5! and
~4!. The results are given in Table II. As can be seen,
bothb’s the criticalk valueskc are identical within the error
bars.

As a next step we performed a simultaneous fit with o
commonkc for amF and^x̄x& ~Table III!. A very good fit to
all the data was obtained.

Then we checked the scaling relations~6!. Calculatingb

andd with n and ñ givesbx50.54(20) andd53.8(15) for
b50.00 andbx50.39(25) andd55(3) for b50.80. The
agreement with the fit is quite good. Note that in Eq.~6!,
dñ53ñ is close to 1 and hence the statistical errors are
creased.

We also tried a third fit in which we assumed the valid
of the scaling relations~6!. The result is shown in Figs. 6 an
7 and summarized in Table IV. As one can see, the quality
the fit is still good andx2 are reasonable. The figures als
show the prediction of our fit for the fermion mass and chi
condensate atam050.04 and 0.06. Only small deviations a
visible. We therefore conclude that Eq.~6! is consistent with
our data.

The values of the exponentsn, ñ, andbx in Table II and
Table III agree with those in Table IV. Thus all three fittin
procedures gave consistent results at eachb.

Furthermore, the exponents obtained atb50.00 andb

TABLE V. Results of fits, when we use Eq.~14! for the extrapo-
lation to infinite volume. As in Table IV, the equations of state w
commonkc and the scaling relations~6! are used.

b kc n ñ x2 bx d

0.00 0.968~9! 0.76~3! 0.426~8! 0.89 0.50~6! 3.6~3!

0.80 0.419~3! 0.66~4! 0.409~10! 0.64 0.37~6! 4.4~6!
7-7
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50.80 agree within errors. This is a strong signal that
chiral phase transition is in one universality class at theseb’s
and probably also for those in between. The difference in
exponents of the last fit, which is somewhat larger than
pure statistical errors may for example be the result of sm
scaling deviations.

To estimate the uncertainty due to the choice of the
trapolation formula, we repeated the above procedures u
the extrapolation~14!. The results are given in Table V. Th
x2’s are even smaller and the exponents differ by a li
more than one standard deviation. Although the agreem
for the two b’s is less good, it is still compatible with uni
versality if one takes into account that the error bars o
reflect the statistical errors and not the uncertainty due
scaling deviations.

B. The finite size scaling of the Lee-Yang zeros

The Lee-Yang zeros were found to be purely imaginary
all values ofk in the strong coupling region. For smallk they
are equally spaced, consistent with a strong first order t
sition in the condensate as the bare massam0 goes through
zero.

Figures 8 and 9 show the finite size scaling behavior

FIG. 8. Imaginary part of zeroy1 as function of the lattice size
for different k at b50.00. The different straight lines should he
to investigate the linearity and claim only fork50.975'kc ~full
line! to describe the data well.

FIG. 9. Imaginary part of zeroy1 as function of the lattice size
for different k at b50.80.
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the edge singularity at variousk for b50.00 and 0.80, re-
spectively. Our data confirm the expectations presented
Sec. II B and Fig. 4. Close to the critical point we see t
expected crossover: for small lattices the exponent is clos

ñ and shifts for increasing lattice size to the exponent 1/3
1.

At small k the exponents is consistent with a first orde
phase transition,s* 1

3 . At largek is s&1. Close to the criti-
cal point, determined in the previous section and given
Table IV, the data scale linearly on the log-log plot allowin
determination ofñ.

At the k points closest tokc we expects. ñ. At b
50.00 we find atk50.975.kc50.981(6) the exponents
50.440(4) in excellent agreement withñ50.437(5), as de-
termined in the previous section. Forb50.80 we did the
simulations at k50.43 slightly larger than thekc
50.425(2) obtained from the EOS. Not unexpectedly
found s50.447(5), slightly larger thanñ50.431(6) from
the EOS. This shows the great importance of the knowle
of the critical point for a precision measurement ofñ. Within
these uncertainties the agreement is very good and a

FIG. 10. ln@Im(y1)#11/ñ ln L with ñ50.440 as a function of the
lattice size for differentk’s at b50.00. The dashed straight line
are linear extrapolations to the data points at the lowest two va
of L.

FIG. 11. As in the previous figure but atb50.80 with ñ
50.501.
7-8
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FIG. 12. ~a! Fermion mass and
~b! chiral condensate for differen
small am0 as function ofb at k
50.25 on the 82316 lattice.
-

th
an

d

d
ba

,
t

h

s
r

a
at
-

e

r

ha

the

e
e
at
ling

fer-

n-
s of
e
way
s.
ith

oth-
e
toff.

y.
nly
fit
nsi-

uge

per-

e-
at

.

confirms the independence ofñ from b and hence the uni
versality.

If one analyses these plots without the knowledge of
critical point determined with the EOS, the critical point c
also be determined by looking for linearity of ln@Im(y1)# as
a function of lnL. For this purpose we show in Figs. 10 an
11 the quantity ln@Im(y1)#11/ñ ln L. The addition of the
second term makes the plots approximately horizontal an
allows us to enhance the vertical scale making the error
clearer. In the figures we have usedñ50.440 and 0.501,
respectively. The dashed lines are a linear extrapolation
the data points at the two lowestL-values. They provide a
guide as to the linearity of the data.

Figures 10 and 11 suggest a largerkc and s(kc) than
those obtained from the EOS analysis. For example
b50.80, Fig. 11 would suggestk50.45 as the point closes
to kc , with ñ.s(0.45)50.501(6). However, the difference
between the two methods of analysis is about 10% whic
the same size as the statistical error.

All in all, this demonstrates the reliability of the method
we have used. Both~very different! methods agree rathe
well and their combination is very useful.

C. Universality at strong coupling

Our data are a good indication that the chiral phase tr
sition of thexUf3 model is in the same universality class
b50.00 andb50.80. Assuming this universality we com
bine the results for exponents at bothb values and determine
the exponents of this chiral phase transition to ben

50.75(10) andñ50.43(2). Theerrors take into account th
uncertainties discussed above. These values ofn and ñ cor-
respond tobx50.51(11) andd53.45(71). We note that the
position of the critical point atb50, as well as the results fo
d and b are compatible2 with those obtained for theNf52
case in@27# @bx50.57(2) andd52.75(9)#. In that work the
same action~2! has been simulated, though in a somew

2We thank S. J. Hands for pointing out to us this compatibility
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different representation by means of auxiliary fields than
b50 limit of the xUf3 model.

It is very likely that the chiral phase transition is in th
same universality class forb between 0 and the onset of th
X region aroundb.1. The universality might be expected
small b because of the convergence of the strong coup
expansion. But our data are~to our knowledge! the first in-
dication that this is true for a largeb interval.

This result indicates that thexUf3 model is renormaliz-
able in this region ofb. So it is a nontrivial example in three
dimensions for the shielded gauge-charge mechanism of
mion mass generation proposed in@1#.

We note that, in the scaling investigation, the chiral co
densate, which is a pure fermionic operator, and the mas
the fermionF, which is a combination of the fermion and th
scalar field, have been used. Both seem to scale in a
which can be well described by the usual scaling relation

The universality on the other hand also means that, w
respect to the three-dimensional Gross-Neveu model, n
ing substantially new happens at small and intermediatb
and no new physics arises on scales much below the cu
The scalar field shields the fermionx giving rise to the fer-
mion F equivalent to the fermion of the four-fermion theor
We find no indication that composite states consisting o
of fundamental scalars or gauge fields, which would not
into the Gross-Neveu model, scale at the chiral phase tra
tion.

The bosonic fields appear to be auxiliary at strong ga
coupling, as they are in a rigorous sense@7# at b50. As
indicated by the results in four dimensions@4,5#, this may
change as the gauge coupling gets weaker. We therefore
formed some studies at larger values ofb. The results are
described in the next section.

IV. EXPLORATIVE STUDY OF THE WEAK COUPLING
REGION

A. Condensate and fermion mass

We should point out again that the compact thre
dimensional QED with fermions is not fully understood
largeb. It is not clear, at largeb, if there is chiral symmetry
7-9
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FIG. 13. ~a! Fermion mass and
~b! chiral condensate for differen
small am0 as function ofk at b
52.00 on the 82316 lattice.
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breaking and confinement via a linear potential. This unc
tainty extends also to our model withk small. A clarification
of these difficult questions would require a substantial eff
far beyond the scope of this paper. Thus our aim is to p
form an explorative study only and to get some insight in
this as yet unexplored region. Also we want to see how
the methods applied successfully at strong coupling can b
use also at weaker coupling. The physical interpretation
our results will leave room for several scenarios.

Figure 12 shows the fermion mass and condensatek
50.25 as a function ofb, at three values of the bare fermio
mass. The neutral fermion mass decreases for increasib
but then stabilizes withamF.1. So it is clearly nonzero a
all b and again only weakly dependent on the bare ferm
mass. The condensate is large at smallb ~the Nambu phase!
but rapidly decreases withb and becomes very small~zero?!
in the chiral limit forb.bX.1.3. Thus here a new, weakl
coupled region is encountered.

In order to see how this region is related to the Hig
phase at largek, the fermion mass3 and condensate ar
shown in Fig. 13 atb52.0 and three values of the ba
fermion mass. For nonvanishing bare mass, where the s
lations have been performed, the mass of the neutral ferm
is large fork,kX.0.27 whereas it is small for largerk. It is
only very weakly dependent on the bare fermion mass
therefore we expect this behavior to persist in the ch
limit. For k.kX its small nonzero value probably vanish
in the infinite lattice size limit.

The condensate, as expected, does depend strongly o
bare massam0 but does show a crossover behavior atk

5kX with ^x̄x&(am0)k,kX
,^x̄x&(am0)k.kX

. However, at
largek we believe that we are in the Higgs phase where
condensate is zero in the chiral limit. It is therefore conce

3We should remark that for largeb the agreement of the differen
fits for the fermion mass is not as good as that at smallb. The
qualitative behavior is not influenced by this. This same feature
also observed in the four dimensional model for largeb but is not
understood up to now.
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able that, in this limit, it is zero atb52.0 for all k. It is very
surprising, however, that, at fixed bare fermion mass a
lattice size, the condensate tends to slightly increase w
increasingk, quite in contrast from its behavior in the stron
coupling region. Of course, this can change in the infin
volume and chiral limit.

At the couplingk5kX , where the fermion mass shows
possible crossover behavior, there is also a peak in the
ceptibility of the link energy which increases with increasi
lattice volume. However, a careful finite size scaling analy
would be needed to determine if it indicates a phase tra
tion or a crossover.

Figure 14~a! confirms the weak dependence of the fe
mion massamF on the bare mass. Atk50.22 belowkX , the
fermion mass is large and stays clearly nonzero atam0 .
AbovekX , at k50.34, the fermion mass is too small for th
lattice size used and might vanish in the infinite volum
limit.

Figure 14~b! shows that, atb52.0 andk just below or
abovekX , the condensate extrapolates linearly inam0 to a
very small value or zero. As we shall see below, this is d
to the Lee-Yang edge singularity in this region being re
tively distant from the real axis.

A naive extrapolation to the chiral limit would thus cla
sify the region at smallk (k,kX) and largeb (b.bX) as a
phase with zero chiral condensate and nonvanishing ferm
mass. But the condensate could also remain very small
nonvanishing. Because of this uncertainty we label this
gion X. Its boundariesbX andkX may slightly depend onk
andb, respectively.

It would be surprising if in the region X the fermion mas
was different from zero with unbroken chiral symmetr
There are essentially two scenarios avoiding such a para

~1! Chiral symmetry breaking persists at smallk also for
b.bX . x is light, because the chiral condensate is ve
small, though nonzero.F is a bound state off and x. The
binding might be quite loose, presumably by a weak line
confining potential, which one expects in pure U~1! in 3D
@13–15#. F is heavy essentially becausef is heavy. The
transition atb5bX is probably a cross-over, but a genuin

s
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FIG. 14. ~a! Fermion mass and
~b! chiral condensate for differen
k as function ofam0 at b52.00
on the 82316 lattice.
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phase transition is not excluded.
In this scenario the region X must be separated by a ch

phase transition atkX(b) from the Higgs phase. As our dat
aroundkX do not indicate any metastability, it would be
higher order transition and a continuum limit should be p
sible. Thus an interesting continuum limit with massive u
confined fermion might exist.

~2! Chiral symmetry is restored atb5bX and the chiral
condensate thus vanishes identically andx is massless in X.
TheF channel gets contribution from the two-particle statef
andx. This contribution appears as a massive state bec
f is heavy. This state presumably cannot be a bound sta
the chiral limit because of the old argument of Banks a
Casher@30#: fermion on a closed orbit must be able to flip i
helicity, i.e. existence of the bound state implies chiral sy
metry breaking. We cannot distinguish between a bou
07450
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stateF and a two-particle statef1x looking at theF chan-
nel only ~as we did!. X could be connected to the Higg
phase, where we expect the same spectrum.

Which of these scenarios is true might be investigated
the limit casek50, i.e. in the three-dimensional compa
QED. The results in the noncompact case@17–20# might be
applicable at weak coupling also to the compact one. As
number of fermions in our case is below the critical numb
.3.5 of fermions in the noncompact model, the more int
esting scenario~1! seems to be preferred.

B. The Lee-Yang zeros at weak coupling

In an attempt to clarify the situation at weak coupling w
have also investigated the Lee-Yang zeros in the region
The edge singularity4 y1 has a nonzero real part in this re
.

inary part
FIG. 15. ~a! Real and ~b!
imaginary part of the first two Lee
Yang zeros~sorted by their posi-
tive imaginary part! for b52.00,
k50.15 as function of lattice size

4The zeros must appear in conjugate pairs. We define the edge singularity in this region to be the zero with smallest positive imag
and count each pair only once.
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gion. The finite size scaling of the lowest zeros is shown
Fig. 15 for b52.00, k50.15, a point in the middle of the
region X. The real part of the low lying zeros is clear
nonvanishing. Then the first two zeros have within the n
merical precision identical imaginary part but their real pa
differ by a factor of about 3.5.

The first two zeros have imaginary parts so close as to
indistinguishable within statistical error. We have assum
continuity in the behavior of their real parts as a function
lattice size when plotting Fig. 15.

These imaginary parts scale linearly in the log-log p
with an exponents50.73(4) where the error is given by th
difference between the two zeros. Their real part has so
what larger errors but scales within the numerical precis
with the same exponent. This pattern for the edge singula
is found throughout the region X. Note that this behavior
only observed in the edge singularity.

Figure 16 shows the behavior of the imaginary part of
edge as a function of lattice size atk50 for variousb. There
is a crossover betweenb51.25 andb51.88, i.e. from the
Nambu phase, where the imaginary part of the edge zer
small and the transition first order, to a region where
imaginary part is large~with nonzero real part! again consis-
tent with a vanishing condensate. No scaling deviations
be observed forb>1.88. In the region X the critical expo
nent has a very weak dependence onb and increases only
very slowly on further increase ofk.

If the scaling in the region X is different from that in th
other regions, the most naive expectation would be that
exponents is universal. This is compatible with our data
b'2 but not atb55. Further simulations on larger lattic
are necessary to confirm this difference.

It is to our knowledge the first model in which scaling
the real part of the edge singularity to zero has been
served. We do not understand the implications of this beh
ior. It may well be a key point in understanding the critic
nature of region X.

Summarizing, the region X can be distinguished from
Nambu and Higgs phase by the edge singularity havin
real part~on a finite lattice! and a scaling which cannot b
described by either an exponents51/3 or s51. If the expo-
nent s is different from those in Nambu and Higgs phas

FIG. 16. Imaginary part of zeroy1 as function of the lattice size
for different b at k50.
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then the region X is presumably a new phase. We have b
unable to determine if the chiral symmetry is broken or n
in this region.

V. CONCLUSIONS

We have presented an extensive analysis of the ph
structure of the three-dimensional fermion-gauge-sca
model. The analysis has been made possible by the app
tion of two different methods:~1! fits to an equation of state
of the chiral condensate and the mass of the physical ne
fermion and~2! finite size scaling investigations of the Lee
Yang zeros of the partition function in the complex fermio
mass plane.

Our investigations showed that there are three region
the b-k plane with possibly different critical behavior in th
chiral limit:

~a! The region at smallk and strong gauge coupling
where the chiral symmetry is broken and the neutral phys
fermion is massive, called the Nambu phase.

~b! The region at largek, where the chiral symmetry is
restored and the physical fermion is massless, called
Higgs phase.

~c! A third region at weak coupling and smallk, where
the chiral condensate is zero within our numerical accur
but the neutral fermion mass is large, called the X regi
This region can analytically be connected with either t
Nambu or Higgs phase but it may well be a separate phas
chiral symmetry is not broken in this region, then the ma
observed in the fermion channel is presumably the energ
a two-particle state. Otherwise this region might be an int
esting example of dynamical mass generation of unconfi
fermions. If the continuum limit is taken at the Higgs pha
transition, the gauge fields should play an important dyna
cal role and the model would not fall into the universali
class of the three-dimensional Gross-Neveu model. A furt
investigation of this possibility is highly desirable.

At strong gauge coupling, the chiral phase transition c
be clearly localized, and there are strong indications that
in one universality class for allb,1: that of the three-
dimensional Gross-Neveu model, which is known to be n
perturbatively renormalizable. This demonstrates that
three-dimensional latticexUf3 model is a nonperturbatively
renormalizable quantum field theory and the shielded gau
charge mechanism of fermion mass generation@1# works in
three dimensions.
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