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We investigate the critical behavior of a three-dimensional lat{itep; model in the chiral limit. The
model consists of a staggered fermion field, @)Wauge field(with coupling parameteB) and a complex
scalar field(with hopping parametex). Two different methods are used.) fits of the chiral condensate and
the mass of the neutral unconfined composite fermion to an equation of stat@)afidite size scaling
investigations of the Lee-Yang zeros of the partition function in the complex fermion mass plane. For strong
gauge coupling 8<1) the critical exponents for the chiral phase transition are determined. We find strong
indications that the chiral phase transition is in one universality class ingligerval: that of the three-
dimensional Gross-Neveu model with two fermions. Thus the continuum limit gfthé; model defines here
a nonperturbatively renormalizable gauge theory with dynamical mass generation. At weak gauge coupling and
small x, we explore a region in which the mass in the neutral fermion channel is large but the chiral condensate
on finite lattices very small. If it does not vanish in the infinite volume limit, then a continuum limit with a
massive unconfined fermion might be possible in this region, [80556-282(98)06917-3

PACS numbeps): 11.15.Ha, 11.10.Kk, 11.30.Qc, 12.60.Rc

I. INTRODUCTION The same model has also been investigated in two and
four dimensions. In two dimensions it seems to be in the
Strongly coupled gauge theories are interesting candidatagiversality class of the Gross-Neveu mof2] at least for
for new mass generating mechanisms because they tend $trong gauge coupling, thus being renormalizable. Therefore
break chiral symmetry dynamically. However, the fermionsthe shielded gauge-charge mechanism of dynamical mass
which acquire mass through this mechanism usually get corgeneration suggested [iti] works in two dimensions and its
fined. It was pointed oufl] that this can be avoided in a long range behavior is equivalent to the four fermion theory.
class of chiral symmetric strongly coupled gauge theories oin four dimensions there is also a region B (0<pg
the lattice in which the gauge charge of the fermion is<0.64) in which the model behaves in a very similar manner
shielded by a scalar field of the same charge. The question & the corresponding four-fermion theory, the Nambu—Jona-
whether these models are nonperturbatively renormalizableasinio model with a massive fermion whose mass scales at
at strong gauge coupling such that the lattice cutoff can behe critical point[3]. Here both models belong to the same
removed. If so, the resulting theory might be applicable inuniversality class and have the same renormalizability prop-
continuum and constitute a possible alternative to the Higgerties. But for intermediate coupling there evidently exists a
mechanisni1]. special point. It is a tricritical point at which, together with
In this work we investigate such a lattice model in threethe composite fermioffr, scaling of a particular scalar state
dimensions with a vectorlike (@) gauge symmetry, which was found. This composite scalar can be interpreted as a
we call yU ¢3 model. It consists of a staggered fermion field gauge ball mixing with a5'- ¢ state. Thus the gauge degrees
x with a global Ul) chiral symmetry, a gauge fieltd  of freedom play an important dynamical role and the model
e U(1) living on the lattice links of lengtla and a complex belongs to a new universality class of models with dynamical
scalar field¢ with frozen length|¢|=1. It is characterized mass generation, whose renormalizability is of much interest
by the dimensionless gauge coupling paramgedpropor-  [4,5].
tional to the inverse squared coupling conskattite hopping In this paper we investigate the phase diagram and the
parameterx of the scalar field and the bare fermion masscritical behavior of the model in three dimensions. We find
amy. The unconfined fermion is the composite stée that in the chiral limitmy=0 the yU¢; model has three
=¢'y. In a phase with broken chiral symmetry, it has non-regions in theB— « plane with different properties with re-
vanishing mas&mg in the chiral limit my=0. The yU ¢5 spect to the chiral symmetry. They are indicated in Fig. 1.
model can be seen either as a generalization of threeFhe region at strong gauge couplitgmall 8) and smallk is
dimensional compact QED with a charged scalar field addethe Nambu phase where the chiral symmetry is broken and
or as three-dimensional(l) Higgs model with added fermi- the neutral fermiorF is massive. At large chiral symmetry
ons. is restored and the fermioR is massless. This phase is la-
belled the Higgs phase because of its properties in the weak
coupling limit. The third is the X region at large and small
*Part of the UKQCD Collaboration. k. It is conceivable that this region is analytically connected
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L I L L B T via fits to an equation of state and, secondly, via a finite size

r 7 scaling investigation of the Lee-Yang zeros in the complex
- fermion mass plane. The investigation of a phase transition
. via fits to an equation of state is quite reliable because the
i finite size effects we find close to the phase transition are
usually small. Therefore we expect a simple finite size scal-
ing, describe it by an empirical formula and extrapolate ob-
servables to the infinite volume. Then we do a simultaneous

fit to the fermion masamg and the chiral condensatg x).
. As first pointed out by Lee and Yari®,9], the determi-
. 4= nation of the finite size scaling behavior of the complex ze-

1.0

0.8

Higgs—Phase
<xx>=0 —

0.4

0. [ Nambu-Phase ! - ros of a partition function could be a direct method for the

<X>=0 | X . determination of the critical properties of the associated

oo b b S IR R theory. In this paper we investigate these zeros of the canoni-

0.5 1.0 15 2.0 cal partition function in the complex bare fermion mass
g8 plane. These zeros control the fermion condensate and its
associated susceptibiliti¢40,11], physical quantities which
FIG. 1. Phase diagram of theU ¢3 model formo=0. For8  gre often measured directly on the lattice and used, via finite
<1 a clear phase transition betwgen the Nambu and Higgs phasg&e scaling, to determine the critical behavior.
can _be observed. Whether the region X at lgBgnd smallx forms In the region X, where the chiral condensate is very smal,
fﬂh'rd phase or belongs to one of t_he other phases, separate_o! T998th methods fail to provide reliable results. A small conden-
geoenn?’ tt;ybezczrﬁzsngeer; Is discussed in the text. All phase transitiong ;e o, ggests that the Lee-Yang zeros cannot be near to the
: physical region. Nevertheless, it is of interest to investigate if
the closest zeros can be determined with sufficient accuracy
with either the Nambu or Higgs phase but it may well be ato ascertain their finite size scalifgnd hence that of the
separate phase. In this region the mass measured in the f@endensate
mion channel is large, but the chiral condensate is very small The paper is organized as follows. In the next section we
(within our numerical accuracy consistent with 2ero introduce the model in detail, define the observables we use
The main result of our paper is the determination of theand briefly summarize the method of the Lee-Yang zeros. In
critical behavior at strong gauge coupling. We find strongSec. Ill we present evidence for the universality at strong
indications that the chiral phase transition between thegauge coupling. In Sec. IV we present the results obtained at
Nambu and Higgs phases is in one universality class for aveak coupling and discuss their possible interpretations. In
B=1. It is the class of the three-dimensional Gross-Neveuhe last section our results are summarized.
model which is known to bénonperturbativelyrenormaliz-
able[6]. That model is theg=0 limit of the yU ¢35 model Il. THE MODEL

[7]. This universality means that the continuum limit of the ) ] ) ) ]
The yU¢; model is defined on a 3-dimensional cubic

xU ¢z model defines a nonperturbatively renormalizable ' : - S :
gauge theory in which the fermion mass is generated dyl-"?‘tt'ce with periodic boundary conditions except for antipe-

namically by the shielded gauge-charge mechanism. Hovx{;'c_’dicﬂ bpund_ary conditi(_)ns for the fermion field in the

ever, it also means that in th§ region the gauge field is tme"” direction. The action reads

auxiliary and theyU ¢5; model does not represent a new S

class of field theories. X
The chiral properties of the region X are elusive and theinyith

determination would require substantial effort and resources.

This is beyond the scope of the present work and we made 1 _ 3

only an exploratory investigation. But we point out that, pro- S= 2 Z Xx Zl Dux(Us X+

vided the chiral symmetry is broken there, the phase transi- oo

tion between the region X and the Higgs phase gives rise to ‘ _

another possible construction for a continuum theory con- —Ux—M,ﬂXx—ﬂ)Jra'TbE XxXx s

taining an unconfined fermion with dynamically generated X

mass. It could continue to be in the universality class of the

three-dimensional Gross-Neveu model. But experi¢dce Sy=8 2 (1-Re Uy uv)s

with the four-dimensional model in the vicinity of the tric- Xp<v

ritical point suggests that at larg@ the gauge degrees of

freedom are dynamical and a new universality class may be

present. This interesting possibility, and the possible exis-

tence of a tricritical point in three dimensions, deserves fur-

ther study. Here x, are the Kogut-Susskind fermion fields wit),,
Our investigation is mainly based on two methods: first,=(—1)*""""*«-1, Because of doubling our model de-

U¢:SX+SU+S¢H (1)

3
Sy=— Kg 21 (¢5Uy s pHH.C).
=
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scribes two four-component fermiondN{=2). The bare
massamy of the fermion is introduced for technical reasons. amy
We are interested in the chiral limity=0. Thea in front of
m, indicates that we have to distinguish between the chiral J
limit in the continuum (myg=0) and the continuum limit of 0 v
the lattice model, wheramy— 0 can also be achieved by \
a—0 at nonzeram,. Y

U, . represents the compact link variable angd,, , is the
plaquette product of the link variablés, , .

The hopping parametet vanishes, if the square of the 1
bare mass of the scalar field4s=, and is infinite if the bare Ke K
mass squared is-~. The scalar fieldp has frozen length
parameters of the model. Without that, symmetries and di¢ritical point in a planeg=const. The fermion massme scales
mensionality of couplings would allow several other terms inwith exponentiz in the direction tangential to the transition line and
the action. with exponenty in any other direction.

We stress that the charges of the fundamental fields ex-

clude a direct Yukawa coupling between the fundamental We re_fer. o this model as the Gross—_Neveu model. Sqme
fields. caution is in place, however. There is some uncertainty

whether the four-fermion modé€2) is a lattice version of the
ross-Neveu model or of the Thirring model. The four-
ermion action(2) was used in four dimensions for the study
f the Nambu—Jona-Lasinio model e.g. [i24,25, which

The model has some interesting limiting cases. kor
=0 the scalar field decouples and the model is equivalent t
three-dimensional compact QED with fermions. It is known

[12-15 that pure compact QED has no phase transition an Would correspond to the Gross-Neveu model in three dimen-

asB—oo, it is confining via a linear potential with an expo- _. . . . .
nentially decreasing string tension. There is an indicationzzﬁjﬁggﬁsquﬂt'%f’rze?ggea];omge_ltm'rﬂ?] acr::gg?l Igrfgrgi?nilar
that, with fermions, chiral symmetry is broken at large cou-. P 9

pling, but at weak coupling results are inconclusjé]. It interpretation is implied by Kond@28]. For our number of

has been suggested that, in noncompact QED with fermioni)ermlons’ N¢=2, the distinction might be unimportant and

the phase diagram is dependent on the number of flavors a th models rmght actually cp!nude.'l'he Gross—Nevel_J
that, at weak coupling, chiral symmetry is broken only for amodel has a chiral phase transition and is nonperturbatively

small number(less than about 3)5f fermions[17—20. (A renormalizablgsee[6,29] and references thergiriThe prop-

recent description of the status of three-dimensional QE zrge;e; c;fzth':el:lfzf Tfrnrrlng ThOd?rlnaprE[’egtr t? bertS|mf|I3:
can be found if21,22.) It is quite probable that, at weak 0,2 4. FOr our purposes the important property ot the

coupling, both the compact and non-compact formulation%.hr(.ee'd'menSIonal four-fgrmmn model .Obta.'f‘ed m]heo
have quite similar properties. If so, then thesmcertain imit of the xU ¢3 model is its renormalizability, which pre-

features suggest that the chiral symmetry is broken inkthe sumably holds for both interpretations.

=0 limit of the phase X and thus presumably in the whole
A. Observables

phase X.

In the weak gauge coupling limig= o, the fermions are Because we are interested in the chiral properties of the
free with massam,, andS, reduces to the XY model. It model we concentrate on the chiral condensate and the fer-
has a phase transition at=0.27. mion mass.

At amy=c the model reduces to the three-dimensional The chiral condensate is defined by
compact Y1) Higgs model. For its recent investigation with _
numerous references sgzs]. (xx)=(TrM~14 (3)
For 8= 0 the gauge and scalar fields can be integrated out i i i i ,
exactly [7] and one ends up with a lattice version of the whereM is thg fermion matrix. The trace is measured with a
three-dimensional four-fermion model Gaussian estimator. _
The physical fermion of thecU ¢35 model is the gauge
3 invariant composite fermioff = ¢'y. We measure its mass
ame in momentum space with the usual procedure, as de-

Su= _g ,;1 CXoXXt X1 scribed(for the model in 4 dimensionsn [3]. We checked
1 that the results are in good agreement with the fits done in

configuration space. In the three-dimensional model we find
the fits toG*! to be the most stable, so we use them for the
data shown in this paper.

- §7l,u,x(XxXx+,u_Xx+,uXx)

amg —
+T ; XxXx 2

13.J. thanks M. Gekeler, S. J. Hands, and K.-I. Kondo for discus-
the parameter§& andr being related toc [7,1]. sions on these questions. Some of them are exposgt¥jn
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. L v ¥ k3 i
— ® —
Both observables need to be extrapolated to infinite vol- %' [ | | | 1
ume. This procedure is described in Sec. Il A. oo 002 004 006
We remark that the required numerical effort for the study 1/12

of the yU ¢3 model was very high. We needed significantly

more matrix inversions than for the four-dimensional case FIG.5. Dataforam at3=0.80 andamy=0.01 plotted against
[5] at the same volume ar&i,. Their number also depends 1/L2. The dotted lines are a fit with E413) to the data withL
significantly on8: The simulation at3=0 required about =16

0O(1000 conjugate-gradient steps, about 2-5 times more ) _

than at largep values. Surprisingly, the number of required _ Itis also usefl_JI to assume the corresponding scaling equa-
steps scattered in a very broad interval. The maximal stegion for the fermion mass:

number was at least a factor of 2—3 above the average. This _

might be connected with the observation, that the chiral con- amy=(amg)"G((k— ) (ameg) " Y"), G(x)=Ax+B.
densate has a very asymmetric distribution. (5)

B. Equation of state The exponenv is the correlation length critical exponent in

the chiral plane #m,=0). v is an analogous exponent ob-
ained if one approaches the critical point from outside the
chiral plane. The two exponents have to be distinguished. At
efixedﬁ in the chiral plane §my=0) the fermion mass scales
with v amgoc(x— KC)V|am0:0, whereas for all other straight
paths into the critical pointfor examplex= ;) it scales
amy=(xx)°F((k—r){xx) ¥Pr), F(x)=Rx+S. (4  with am, as:amgxamy’|, . am,- This is indicated in Fig.

2 in the planeB=const.
Here(xx) is the infinite volume value of the chiral conden- ~ Figure 2 also illustrates that for<« the chiral conden-
sate for givenamy, « and 8. 8, and & are the exponents sate changes sign and makes a jump if one crosses the line
defined in analogy to a magnetic transition. The ingels ~ amy=0. This means that it is a line of first order phase
added to distinguish the exponent and the coupling. The scalransitions. Fork>«. the line becomes a line of second
ing functionF is used in its linear approximation afland  order phase transitions on which the fermion mass gets criti-
S are free constants. We apply this equation in the region fogal. In between there is a critical poink € «).

which «~ «. and where we might expect the scaling devia-  If hyperscaling holds, only two of the four exponents de-
tions to be small. fined by the equations of state are independent. The corre-
sponding scaling relations are

A standard way to analyze the critical exponents of
chiral phase transition is via the use of an equation of stat
(EOS. Normally data close to the phase transition can b
well described by such an ansatz. In our model for fiyged
this equation reads

1 1
5=d~ 1 andBX=v(d—:>, (6)

v— 14

whered=3 is the space-time dimension.

C. Lee-Yang zeros

The canonical partition function, after integration over the
Grassmann variables and using the irrelevance of overall
multiplicative factors, can be defined as

InL

Sug
FIG. 4. Expected finite size scaling of the zarpwith lattice Z(B,k,amgy) = [dUd¢ detM[amy,U]e

. = = (7)
size. fdUd¢ detM[amy,U]eus
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TABLE I. Results of the fits to the finite size behavior at different couplings and masses o 5243
lattices. The extrapolated infinite volume mass:=amg(c) and they? per degree of freedom for the three
fits are given: with Eq(13) (Fit 1), Eq. (14) (Fit 2) and Eq.(15) (Fit 3).

Fit 1 Fit 2 Fit3
B K amg ame X ame X ame X
0.00 0.95 0.01 0.269) 0.30 0.2567) 0.53 0.2782) 0.01
0.00 1.00 0.01 0.194) 0.22 0.1809) 0.45 0.2022) 0.01
0.00 1.05 0.01 0.138) 0.23 0.11110 0.04 0.1423) 0.62
0.00 0.95 0.02 0.333) 0.41 0.3276) 0.22 0.3481) 2.07
0.80 0.40 0.01 0.448) 0.12 0.4372) 0.15 0.44%3) 0.03
0.80 0.42 0.01 0.278) 0.01 0.24716) 0.08 0.29%4) 0.31
0.80 0.43 0.01 0.215) 0.07 0.1919) 0.01 0.2302) 1.33
0.80 0.45 0.01 0.122) 0.01 0.0871) 0.14 0.1373) 0.36

Here Sy, =Sy+Sy, M is the usual fermionic matrix for for a set ofam in the region where we expect the lowest
Kogut-Susskind fermions anam, is some(arbitrary) “up- zeros to occur. This allowed us to avoid the problems asso-
dating” fermion mass at which the ensemble of gauge fieldsiated with rounding errors in the root-finder. We required

is generated. that a zero be found consistently for the subset ofahg
Since the mass dependenceMfis purely diagonal, the closest to it. These zeros in the bare mass we labg| &s
partition function can be written as the average over the enthe following.
semble of the characteristic polynomialsidf i.e., The errors in the Lee-Yang zeros are estimated by a Jack-
nife method. The coefficients for each lattice size were aver-
Sh20Cal VLB, x]](amp) " aged to produce 6 subsets of averaged coefficients, each tak-
= > (8)  ing into account 5/6 of the measurements. These 6 different
detM[amo, U[B.«11 [ .7 sets of coefficients give 6 different results for the Lee-Yang
zeros from which the variance was calculated.
V2 The critical properties of the system are determined by the
_ E A[ B, k](amg)?". (9) zeros lying closest to the regl axis. The zero with .the sm'aIIest
n=0 imaginary part we labe}, . It is also called edge singularity.
With increasing finite volume it converges to the critical

The coefficientsC, of the characteristic polynomial are ob- point. For a continuous ph.as_e transition the posit_ion of the
tained from the eigenvalues M[0,U] which are imaginary ~Z€ros clpsest to the real axis in the complex plane is ruled by
and appear in complex conjugate pairs. In the simulationé"€ scaling law
described below they were obtained using the Lanczos algo-
fithm. , , Yi(B.k,L) = Yr(B.k, ) = ALY, (1
The Lee-Yang zeros are the zeros of this polynomial rep-
resentation of the partition function. The zeros were found
by using a standard root finding algorithm on the equivalentvhere the Ai’s are complex numbers. The exponesit

Z(B,x,amg) =

sets of polynomials generated as in E8): =5s(8,«) describes the finite size scaling of the correlation
length. For our modey(B, x,2)=0 and we ignore it in the
Vi2 following.
Al (amZ—am?)" 10 It immediately follows that the real and the imaginary
n§=:0 (@M ) (10 parts of the zeros should scale independently with the same

TABLE II. Results of fits at3=0.00 and 0.80 using the equations of state. The upper table shows the
results of the fit ofam: based on Eq(5), the lower table those dfyy) based on Eq(4).

B K¢ v 7/ A B X2
ame: 0.00 0.98733) 0.91(22) 0.438) 1.13) 0.398) 0.72
0.80 0.425%5) 0.7914) 0.4Q(5) 3.6(6) 0.335) 0.82

B K¢ B, S R S X2
(xx): 0.00 0.98812) 0.565) 3.13) 1.32) 1.1(3) 0.84
0.80 0.4297) 0.5610) 3.005) 4.412) 2.413 0.58
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TABLE IlI. Results of fits ofame and (xy) at =0.00 and
0.80, using both equations of state with a commgn

PHYSICAL REVIEW D 58 074507

TABLE IV. Results of our fits using the equations of state at
B£=0.00 and 0.80 with on&. and the scaling relationt) at 8

~0.00 and 0.80.
B ke v 5 B 6 X = -
B Kc v 14 X BX 8
000 0098812 0888 0423 0565 313 0.71
080 04284) 0.7811) 0404) 0475 343 o071 000 09816 0792) 04375 2.2 0564 3.22)
080 04282 0752 04316) 2.3 0514) 3.42)

exponent. In particular, for the zesq closest to the chiral
phase transitiorfat amy=0) Fig. 4 by the dashed lines. For a set of lattice sizes this
defines an effective which smoothly goes through at the
critical point. Such an effective is represented in Fig. 3 by

. - . . . a dashed line.
with a similar scaling behavior for kL) via Ag. In : .
practice the real pa?t of the zero ilzﬁrsﬁch )smalle$ than its Therefore, in order that the critical exponent can be deter-
imaginary part or is identically zero. So EL2) usually mined, we must either know the position of the critical point

provides a more reliable measure of the exponent than th ccuratgly or ha}vg many simulations on large lattices so that
scaling of the real part the scaling deviations can be measured accurately. In prac-

Although the above scaling law was originally establishedt'ce the limited knowledge of the position of the critical point

for the case of a continuous phase transition, it can also bi€ads to the largest uncertainty in the determination afy
extended to that of a first order phase transition. Since ther&is method.

is no divergent correlation length, the exponent is determined
only by the actual dimension of the system. In this case, for
a three-dimensional model we expeet 3.

At the critical point (<= x.) we expecs to be equal ta,
because the fermion correlation length should be the releva
one. In the symmetric phas&$ «.) we expect scaling with
s=1, becaus@amgzxam,. This behavior is indicated in Fig. an
3 by the full lines and the dot.

Im y,(B,x,L)=A L™, (12)

[ll. UNIVERSALITY AT STRONG COUPLING

At strong coupling the chiral phase transition can be seen
clearly and we investigate the scaling behavior and the uni-
r\'/tersality along this line.

We determined the Lee-Yang zeros, the chiral condensate
d the fermion mass for various values«ct 3=0.00 and
SR . . 0.80. In this section we want to investigate how the transition
In practice it is important to understand the scaling deV|a—Changes a@ increases from zero. Therefore we have inves-

tions on a finite lattice. The expected behavior is Showntigated the scaling of the data A0, i.e. the four-fermion

schema’qcally In F_|g. 4 Far away from the_ critical _pomt we model, as a reference and compare it with the scaling found
expect linear scaling in the log-log plot with=1/3 in the at =0.80

broken phase, ans=1 in the symmetric phase. At the criti-
cal point we expect linear scaling and the exponent should be
s=p. These expectations are indicated by the full lines.
Close to the phase transition, we expect a crossover. For Here we determine the critical exponents of the chiral
small lattice sizes the exponent should be close é4md then  phase transition by using the EOS fame and (xx). Al-
change to 1/3 and 1, respectively, if the lattice size is inthough we did simulations on lattices up to*24ur conclu-
creased and the true scaling shows up. This is indicated isions still depend to some extent on our choice of ansatz for

A. Equation of state

.8 I ' .6 ' ' I !
[ £=0.00 - 5=0.00 4

FIG. 6. (a) Fermion mass and
(b) chiral condensate forpB
=0.00. The data are our extrapo-
lation into the infinite volume.
The fit assumes the validity of the
scaling relations and is described
in the text. The parameters are
given in Table IV. The dashed
line shows the extrapolation into
the chiral limit.

<XX>
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8 3=0.80 | L =080 1
1 3R 7
g ] : ]
] 30 [ 3
6 7 L ]
g _ i ]
25 7
L B i ’*‘ T A r 1
% 4 & g 1 Se0 F = FIG. 7. (a) Fermion mass and
L 1V E . (b) chiral condensate forg
3 ﬂ:amo:O\é\ * n 15 ; ? =0.80.
I A:amo:404\\\ E 3
£ | 0:amy=.02 Y 10 r ]
__ B:am,=.01 [ blamy=.01 ! 3
(@) \ ®F® \ ]
0 P R R S R ! [ 0 C L | L | |
40 45 40 45
K K
the extrapolation o&me and(xx) to infinite volume. Figure ~ The data at differenk andamy, extrapolated to the infi-
5 shows, as an example, our data &om: at 3=0.80 and  hite volume, were analyzed by means of the EOS. We in-
amy,=0.01 plotted against lL7. cluded only the data a&my=0.01 andamy=0.02. The cho-
For the extrapolation we tried three approaches: senx range was 0@8. . .1.05 for3=0.00 and 0.8 ...0.47
for 8=0.80.
ame(L)=am (OO)JFAi (13) As a first step we analyzed the data fom- and { yx)
F(L)=almg

L% independently and fitted to their corresponding EGBand
(4). The results are given in Table Il. As can be seen, for
1 both 8's the critical x valuesk are identical within the error
ame(L)=amg(x)+A—, (14) bars.
L As a next step we performed a simultaneous fit with one
commonk, for amg and(xx) (Table Ill). A very good fit to
1 all the data was obtained.
amg(L)=amg() +Aexp(—amg(«)L). Then we checked the scaling relatiof@. Calculatings
(15 and 8 with v and» gives B, =0.54(20) ands=3.8(15) for
B=0.00 andg,=0.39(25) ands=5(3) for 8=0.80. The
Each has two free parametessn:(«) andA. To judge the agreement with the fit is quite good. Note that in E6),
quality of the fits we first compared thg? per degree of dy=23v is close to 1 and hence the statistical errors are in-
freedom using our data on 4620° and 24 lattices. This  creased.
was done at the values @ and « at which we have good We also tried a third fit in which we assumed the validity
statistics. Our results are shown in Table I. It turned out thabf the scaling relation&). The result is shown in Figs. 6 and
the results for these lattice sizes are not conclusive as t@ and summarized in Table IV. As one can see, the quality of
which extrapolation formula should be used, because, fothe fit is still good andy? are reasonable. The figures also
each ansatz, ajf? per degree of freedom are usually below show the prediction of our fit for the fermion mass and chiral
1. condensate amy=0.04 and 0.06. Only small deviations are
However, the fit with Eq(13) is significantly preferred if  visible. We therefore conclude that E) is consistent with
compared with the 2data. We therefore adopted this fit for our data.

our extrapolations, but data from the3liattice was not in- The values of the exponents 7, and B, in Table Il and
cluded. Such an extrapolation is indicated in Fig. 5 by theraple 11l agree with those in Table IV. Thus all three fitting
dotted lines. procedures gave consistent results at e@ch

For the chiral condensate the finite size effects are in gen- pyrthermore, the exponents obtainedgat0.00 andg
eral smaller and with opposite sign. Again, consideration of

We describe in detail the analysis in which we used théation to infinite volume. As in Table IV, the equations of state with
ansatz of Eq(13) to extrapolate all our data faame and ~ €0Mmonk and the scaling relation) are used.

{xx), obtained on 1and larger lattices, to infinite volume. B « B ~ 2 B 5
The error was calculated with theiNos routine from the ¢ v X

MINUIT library. All results presented in the following change 0.00 0.9689) 0.763) 0.4268) 0.89 0.506) 3.6(3)
somewhat quantitatively, but not qualitatively, if a different 0.80 0.4193) 0.664) 0.40910) 0.64 0.376) 4.46)
extrapolation formula is used.
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FIG. 8. Imaginary part of zerg, as function of the lattice size FIG. 10. Ifim(y,)]+1/v In L with 7=0.440 as a function of the
for different x at 8=0.00. The different straight lines should help lattice size for different«’s at 8=0.00. The dashed straight lines
to investigate the linearity and claim only fear=0.975< «. (full are linear extrapolations to the data points at the lowest two values
line) to describe the data well. of L.

=0.80 agree within errors. This is a strong signal that th
chiral phase transition is in one universality class at th#se

and probably also for those in between. The difference in th . " .
exponents of the last fit, which is somewhat larger than th ec. I B and Fig. 4. Close to the critical point we see the

pure statistical errors may for example be the result of smaffxpected crossover: for small lattices the exponent is close to
scaling deviations. v and shifts for increasing lattice size to the exponent 1/3 or

To estimate the uncertainty due to the choice of the exd.
trapolation formula, we repeated the above procedures using At small « the exponens is consistent with a first order
the extrapolatior{14). The results are given in Table V. The phase transitiors= 3. At large « is s<1. Close to the criti-
x?'s are even smaller and the exponents differ by a littlecal point, determined in the previous section and given in
more than one standard deviation. Although the agreemeritable 1V, the data scale linearly on the log-log plot allowing
for the two B's is less good, it is still compatible with uni- determination ofy.
versality if one takes into account that the error bars only o the , points closest tox, we expects=7. At B
reflect the statistical errors and not the uncertainty due tQ_ 4 o9 \we find atc=0.975~ x.=0.981(6) the exponerg

scaling deviations. =0.440(4) in excellent agreement with=0.4375), as de-
termined in the previous section. F@=0.80 we did the
simulations at k=0.43 slightly larger than thex,

The Lee-Yang zeros were found to be purely imaginary at=0.425(2) obtained from the EOS. Not unexpectedly we
all values ofx in the strong coupling region. For smalthey  found s=0.4475), slightly larger thany=0.431(6) from
are equally spaced, consistent with a strong first order tranhe EOS. This shows the great importance of the knowledge
sition in the condensate as the bare masg goes through ¢ i critical point for a precision measurementoMithin

zero. - : .
: L . . hese uncertainties the agreement is very good and again
Figures 8 and 9 show the finite size scaling behavior o} g ya g

She edge singularity at various for 8=0.00 and 0.80, re-
pectively. Our data confirm the expectations presented in

B. The finite size scaling of the Lee-Yang zeros

e e ; = B
£=0.80 20 [ T - #=0.80
1 it sV [ R ,/i// 1 P=0roas
#:6=0.70 F g7 1 v:x=0.60
s= 0.865(17) | 15 [ PPtas a1 :
= Lo ]
v:x=0.60 = e ¥ = S=0.50
] s= 0853(33) o F U U 1
] N [ gomommmmm" IR SR
~ { o050 LSNPS S B R ] J wc=0.47
B s= 0.593(11) T LOp-% N H i ]
= — L % Ef =
g 1 ww=047 N g~ 5 1 D:x=0.45
— 1 s= 0.5396(80) E‘ [ % Tl + 7‘“‘}7-—”_»% _______ ]
| ox=0.45 = 05 [T T 7 2%=0.43
s= 0.5007(58) & L T P ]
| aw=043 F BN Tl 1 *:x=0.40
s= 0.4468(42) r KP‘\‘,\ f Tl B
#:4=0.40 0.0 1 Tl T~ 0=0.30
3= 03741 A R R A N L]
©x=0.30
e ammzs) 14 16 1.8 20 22 24 26
L InL

FIG. 9. Imaginary part of zerg, as function of the lattice size FIG. 11. As in the previous figure but @=0.80 with »
for different « at 8=0.80. =0.501.
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confirms the independence ‘offrom B and hence the uni- different representation by means of auxiliary fields than the
versality. B=0 limit of the yU ¢3 model.

If one analyses these plots without the knowledge of the It is very likely that the chiral phase transition is in the
critical point determined with the EOS, the critical point can same universality class fg@ between 0 and the onset of the
also be determined by looking for linearity ofIm(y;)] as X region around3=1. The universality might be expected at
a function of InL. For this purpose we show in Figs. 10 and small 8 because of the convergence of the strong coupling

11 the quantity Iim(y;)]+ 1/ InL. The addition of the €Xpansion. But our data afeo our knowledggthe first in-
second term makes the plots approximately horizontal and s@ication that this is true for a large interval. _
allows us to enhance the vertical scale making the error bars This result indicates that theU ¢; model is renormaliz-
clearer. In the figures we have usae 0.440 and 0.501 able in this region of3. So it is a nontrivial example in three
respectively. The dashed lines are a linear extrapolation Oqlmensmns for the shielded gauge-charge mechanism of fer-

the data points at the two lowektvalues. They provide a m'(\)/c mnasts ?henteriﬁt[[c;]n propl)i(;seidrE\I/ﬂ. tigation. the chiral con-
guide as to the linearity of the data. € note that, € scaling investigation, the chiral co

Figures 10 and 11 suggest a larger and s(x,) than densate, which is a pure fermionic operator, and the mass of

those obtained from the EOS analysis. For example atpe fermionF, which is a combination of the fermion and the

_ ; _ ; scalar field, have been used. Both seem to scale in a way
$3=0.80, Fig. 11 would suggest=0.45 as the point closest which can be well described by the usual scaling relations.

t0 k¢, with v=s(0.45)=0.50X6). However, the difference  The ynjversality on the other hand also means that, with
between the two methods of analysis is about 10% which iegpect to the three-dimensional Gross-Neveu model, noth-
the same size as the statistical error. ing substantially new happens at small and intermedgte
All'in all, this demonstrates the reliability of the methods 54 1o new physics arises on scales much below the cutoff.
we have used. Bottivery differen) methods agree rather The gcalar field shields the fermigngiving rise to the fer-
well and their combination is very useful. mion F equivalent to the fermion of the four-fermion theory.
_ _ _ We find no indication that composite states consisting only
C. Universality at strong coupling of fundamental scalars or gauge fields, which would not fit
Our data are a good indication that the chiral phase traninto the Gross-Neveu model, scale at the chiral phase transi-
sition of theyU ¢5 model is in the same universality class at ton- o 3
8=0.00 and@=0.80. Assuming this universality we com- ~ The bosonic fields appear to be auxiliary at strong gauge
bine the results for exponents at betivalues and determine coupling, as they are in a rigorous serisg at 5=0. As
the exponents of this chiral phase transiton to be indicated by the results in four dimensiof#5], this may
=0.75(10) and=0.432). Theerrors take into account the change as the gauge coupling gets weaker. We therefore per-
L . ~ formed some studies at larger values®fThe results are
uncertainties discussed above. These valuesarid v cor-

described in the next section.
respond tg3,=0.51(11) ands=3.45(71). We note that the
position of the critical point g8=0, as well as the results for
5 and B are compatibewith those obtained for thdl;=2
case in27][B,=0.57(2) ands=2.75(9)]. In that work the
same action2) has been simulated, though in a somewhat A. Condensate and fermion mass

We should point out again that the compact three-
dimensional QED with fermions is not fully understood at
2We thank S. J. Hands for pointing out to us this compatibility. large 8. It is not clear, at larggs, if there is chiral symmetry

IV. EXPLORATIVE STUDY OF THE WEAK COUPLING
REGION
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breaking and confinement via a linear potential. This uncerable that, in this limit, it is zero g8= 2.0 for all «. It is very
tainty extends also to our model withsmall. A clarification  surprising, however, that, at fixed bare fermion mass and
of these difficult questions would require a substantial efforfattice size, the condensate tends to slightly increase with
far beyond the scope of this paper. Thus our aim is to perincreasingk, quite in contrast from its behavior in the strong
form an explorative study only and to get some insight intocoupling region. Of course, this can change in the infinite
this as yet unexplored region. Also we want to see how fakolume and chiral limit.
the methods applied successfully at strong coupling can be of At the couplingx= ky, where the fermion mass shows a
use also at weaker coupling. The physical interpretation opossible crossover behavior, there is also a peak in the sus-
our results will leave room for several scenarios. ceptibility of the link energy which increases with increasing
Figure 12 shows the fermion mass and condensaie at |5ttice volume. However, a careful finite size scaling analysis

—0.25 as a function op, at three values of the bare fermion |4 he needed to determine if it indicates a phase transi-
mass. The neutral fermion mass decreases for incre#sing ion or a crossover

but then stabi_lizes wittamz>1. So it is clearly nonzero at Figure 14a) confirms the weak dependence of the fer-
all B and again only We_akly dependent on the bare fermlonmion massme on the bare mass. At=0.22 belowiy , the
mass. The condensate is large at sngalthe Nambu phage formi is | d st learl

but rapidly decreases with and becomes very smaltero? ermion mass 1S largeé and stays clearly nonzera .

in the chiral limit for 8> By=1.3. Thus here a new, weakly “\P0V€x, atx=0.34, the fermion mass is too small for the
coupled region is encountered. lattice size used and might vanish in the infinite volume

In order to see how this region is related to the Higgs"m't'

phase at largec, the fermion massand condensate are Figure 14b) shows that, af=2.0 and." Just b_elow or
shown in Fig. 13 at3=2.0 and three values of the bare abovexy, the condensate extrapolates linearlyaim, to a

fermion mass. For nonvanishing bare mass, where the simly—e?;l eraII \;alue ordzero.' As l\"’etsha"t;.ee be.low,bth]s IS dlue
lations have been performed, the mass of the neutral fermioﬁ? | ed' ete- t?ng ethge smlgu arity in this region being rela-
is large fork<<xx=0.27 whereas it is small for larget It is Ively distant tfrom the real axis.

only very weakly dependent on the bare fermion mass and A naive extrapolation to the chiral limit would thus clas-
therefore we expect this behavior to persist in the chiraF'fy the region at smalk (x<«x) and larges (> Bx) as a

limit. For x>k its small nonzero value probably vanishes phase with zero chiral condensate and nonvanishing fermion
in the infinite lattice size limit mass. But the condensate could also remain very small but

The condensate, as expected, does depend strongly on tﬂgnvanishing. Beca}use of this uncerta_linty we label this re-
bare massam, but does show a crossover behaviorkat gion X. lts boundariegy and«x may slightly depend ow

S — and B, respectively.

= fex With (xx)(@Mp) <., <{XX)(@Mo) i - HOWeVeT, at It would be surprising if in the region X the fermion mass

large « we believe that we are in the Higgs phase where theyas different from zero with unbroken chiral symmetry.

condensate is zero in the chiral limit. It is therefore conceiv-There are essentially two scenarios avoiding such a paradox.

(1) Chiral symmetry breaking persists at smalalso for
B>PBx. x is light, because the chiral condensate is very
3We should remark that for largé the agreement of the different Small, though nonzerd: is a bound state o and x. The

fits for the fermion mass is not as good as that at sygalThe ~ binding might be quite loose, presumably by a weak linear

qualitative behavior is not influenced by this. This same feature wagonfining potential, which one expects in purgllin 3D

also observed in the four dimensional model for lagjbut is not  [13—15. F is heavy essentially becausg is heavy. The

understood up to now. transition atB= By is probably a cross-over, but a genuine

074507-10



STRONGLY COUPLED LATTICE GAUGE THEORY WIH. .. PHYSICAL REVIEW D 58 074507

[ % I ! l ] .09 ! ! !
L P i _ i )
20 [ 1 o8 I -
| g=2.00 8%16 1 4 | 6=200 8%16 _
[ amg: 7 Fo<xx>: ES i
15 | 0x=0.22 ] 068 [ D:«=0.22 @ -
L 0:x=0.28 _ r 0«=0.28 ]
N 1 A E Ao - .
g [ ow=034 1 =05 [ 2x=034 = | FIG. 14. (a) Fermion mass and
© L e - ;
1.0 [ 1 Vooar - (b) chiral condensate for different
| 1 " & ] x as function ofam, at 8=2.00
- . 03 [ ® 7 on the &x 16 lattice.
L i L a i
05 [ 7 02| -
i @ o ] -8 1
[ & s a(a) 1 0L (b) |
0.0 | | 1 | | 0 1 | 1 | | | 1
o 01 02 .03 04 0 01 .02 .03 .04
amyg alrlg
phase transition is not excluded. stateF and a two-particle staté+ y looking at theF chan-

In this scenario the region X must be separated by a chiratel only (as we dig. X could be connected to the Higgs
phase transition aty(8) from the Higgs phase. As our data phase, where we expect the same spectrum.
aroundxy do not indicate any metastability, it would be a  Which of these scenarios is true might be investigated in
higher order transition and a continuum limit should be posthe limit casex=0, i.e. in the three-dimensional compact
sible. Thus an interesting continuum limit with massive UN-QED. The results in the noncompact c§&&-20 might be
confined fermion might exist. _ applicable at weak coupling also to the compact one. As the

(2) Chiral symmetry is restored g= By and the chiral n,mper of fermions in our case is below the critical number
condensate thus vanishes identically anid massless in X.  _3 5 of fermions in the noncompact model, the more inter-
TheF channel gets contribution from the two-particle state esting scenarigl) seems to be preferred.
and y. This contribution appears as a massive state because
¢ is heavy. This state presumably cannot be a bound state in
the chiral limit because of the old argument of Banks and
Cashef30]: fermion on a closed orbit must be able to flipits  In an attempt to clarify the situation at weak coupling we
helicity, i.e. existence of the bound state implies chiral sym-have also investigated the Lee-Yang zeros in the region X.
metry breaking. We cannot distinguish between a boundhe edge singularifyy, has a nonzero real part in this re-

B. The Lee-Yang zeros at weak coupling

real part y; f=2.00 «=0.15 imag part y;

3 T I 1009 r — T ]
o:Re(yl) 8t 1
2r s= 0.710(34) 1 7P 1
A= 1.90(24) 6 i
5
i L 2:Im(y2)
10-19 4 s= 0.759(13)
; al 3.86(14) | FIG. 15. (a) Real and (b)
5 6 = imaginary part of the first two Lee
E 5 E ol Yang zeros(sorted by their posi-
4 - tive imaginary pait for 8=2.00,
s x=0.15 as function of lattice size.
2 ] 1071977 o:Im(y1) y
4:Re(yR) st s= 0.715(18) R
s= 0.874(66) 7E A= 4.30(17 b
(a) A= 0.370(64) 6l (b) a %7
- . L ‘ L
10 ‘ 4 5 6 7 8 9 101 ® 4 5 8 7T 8 9 101
L L

“The zeros must appear in conjugate pairs. We define the edge singularity in this region to be the zero with smallest positive imaginary part
and count each pair only once.
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£=0.00 then the region X is presumably a new phase. We have been
| it unable to determine if the chiral symmetry is broken or not
=5.00 in this region.

s= 0.863(12)

%.6=2.30
1 s= 0.720(31)

0:,8=2.00
s= 0.740(17)

V. CONCLUSIONS

Ao We have presented an extensive analysis of the phase
J— structure of the three-dimensional fermion-gauge-scalar
°m 0a4Te) model. The analysis has been made possible by the applica-
sy tion of two different methods(1) fits to an equation of state
Ny of the chiral condensate and the mass of the physical neutral

s= 0.3509(24)

fermion and(2) finite size scaling investigations of the Lee-
Yang zeros of the partition function in the complex fermion

mass plane.
FIG. 16. Imaginary part of zerp, as function of the lattice size  Qur investigations showed that there are three regions in
for different 8 at x=0. the 8-« plane with possibly different critical behavior in the
chiral limit:

gion. The finite size Scaling of the lowest zeros is shown in (a) The region at smallk and Strong gauge Coup”ng,
Fig. 15 for 8=2.00, «=0.15, a point in the middle of the \yhere the chiral symmetry is broken and the neutral physical
region X. The real part of the low lying zeros is clearly formion is massive, called the Nambu phase.
nonvanishing. Then the first two zeros have within the nu- (b) The region at large, where the chiral symmetry is

merical precision identical imaginary part but their real partS;gsiored and the physical fermion is massless, called the
differ by a factor of about 3.5. Higgs phase.

The first two zeros have imaginary parts so close as to be (c) A third region at weak coupling and smat| where
indistinguishable within statistical error. We have assumedne chiral condensate is zero within our numerical accuracy
continuity in the behavior of their real parts as a function ofyy;t the neutral fermion mass is large, called the X region.
lattice size when plotting Fig. 15. _ This region can analytically be connected with either the

_These imaginary parts scale linearly in the log-log plotnampu or Higgs phase but it may well be a separate phase. If
with an exponens=0.73(4) where the error is given by the cpjral symmetry is not broken in this region, then the mass
difference between the two zeros. Their real part has somgspserved in the fermion channel is presumably the energy of
what larger errors but scales within the numerical precisiory two-particle state. Otherwise this region might be an inter-
with the same exponent. This pattern for the edge singularitgsting example of dynamical mass generation of unconfined
is found throughout the region X. Note that this behavior isfermjons. If the continuum limit is taken at the Higgs phase
only observed in the edge singularity. transition, the gauge fields should play an important dynami-

Figure 16 shows the behavior of the imaginary part of theza| role and the model would not fall into the universality
edge as a function of lattice sizesat-0 for variousp. There  ¢lass of the three-dimensional Gross-Neveu model. A further
is a crossover betwegfi=1.25 and3=1.88, i.e. from the jpyestigation of this possibility is highly desirable.

Nambu phase, where the imaginary part of the edge zero is At strong gauge coupling, the chiral phase transition can
small and the transition first order, to a region where theye clearly localized, and there are strong indications that it is
imaginary part is largéwith nonzero real partagain consis- iy one universality class for al3<1: that of the three-

tent with a vanishing condensate. No scaling deviations cagimensional Gross-Neveu model, which is known to be non-
be observed fo3=1.88. In the region X the critical expo- perturbatively renormalizable. This demonstrates that the
nent has a very weak dependence@®and increases only  three-dimensional latticgU ¢, model is a nonperturbatively

very slowly on further increase of. renormalizable quantum field theory and the shielded gauge-

other regions, the most naive expectation would be that thgyree dimensions.

exponents is universal. This is compatible with our data at
B~2 but not atB=>5. Further simulations on larger lattice
are necessary to confirm this difference. ACKNOWLEDGMENTS
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