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Spontaneous flavor and parity breaking with Wilson fermions
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We discuss the phase diagram of Wilson fermions in them02g2 plane for two-flavor QCD. We argue that,
as originally suggested by Aoki, there is a phase in which flavor and parity are spontaneously broken. Recent
numerical results on the spectrum of the overlap Hamiltonian have been interpreted as evidence against Aoki’s
conjecture. We show that they are in fact consistent with the presence of a flavor-parity broken ‘‘Aoki phase.’’
We also show how, as the continuum limit is approached, one can study the lattice theory using the continuum
chiral Lagrangian supplemented by additional terms proportional to powers of the lattice spacing. We find that
there are two possible phase structures at non-zero lattice spacing:~1! there is an Aoki phase of widthDm0

;a3 with two massless Goldstone pions;~2! there is no symmetry breaking, and all three pions have an equal
non-vanishing mass of ordera. Present numerical evidence suggests that the former option is realized for
Wilson fermions. Our analysis then predicts the form of the pion masses and the flavor-parity breaking
condensate within the Aoki phase. Our analysis also applies for non-perturbatively improved Wilson fermions.
@S0556-2821~98!06817-9#

PACS number~s!: 11.15.Ha, 11.30.Hv, 11.30.Rd, 12.39.Fe
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I. INTRODUCTION

This paper concerns the phase diagram of Wilson fer
ons~and improved versions thereof! at non-zero lattice spac
ing, and the restoration of chiral symmetry in the continuu
limit. Some time ago, Aoki proposed a phase diagram
which there were regions of spontaneous flavor and pa
breaking~which we refer to as Aoki phases! @1#. This sug-
gestion, sketched in Fig. 1, provides a dynamical explana
for the masslessness of the pion on the lattice. Analytical
numerical support for this proposal has been given in R
@1–5#.

The validity of this picture has, however, been challeng
recently by Bitar, Heller and Narayanan@6#. These authors
argue that flavor and parity violation do not occur at no
zero lattice spacing, and that, by analogy with the mass
continuum theory, one should interpret the Aoki phases
containing massless quarks and exhibiting spontaneous
ral symmetry breaking. Numerical results supporting t
claim are given in Refs.@7,8#.

In this paper we present two arguments supporting Ao
suggestion of spontaneous flavor and parity breaking at n
zero lattice spacing. Our first observation is that the num
cal results of Refs.@7,8# are not only consistent with Aoki’s
picture, but they are inconsistent with the interpretation
Bitar et al. Thus all numerical results to date are consist
with Aoki’s proposed symmetry breaking.

Our second and more important observation is that, cl
to the continuum limit, one can study the pattern of symm
try breaking theoretically, using the chiral Lagrangian. O
must augment the usual continuum chiral Lagrangian w
terms corresponding to the explicit breaking of chiral sy
metry at non-zero lattice spacing. The form of these term
dictated by the symmetries of the lattice theory. Their co
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ficients are, however, undetermined aside from their orde
magnitude. Nevertheless, it turns out that this is suffici
information to determine the pattern of symmetry breaking
small but non-zero lattice spacing, up to a two-fold ambig
ity. If the sign of a particular coefficient is positive, the
there is an Aoki phase with all the expected properties. If
sign is negative, then there is no Aoki-phase, flavor is alw
unbroken, and the pions do not become massless for
value of the bare mass. The present numerical evidence
gests that the first option correctly describes~unimproved!
Wilson fermions. If this is the case, our calculation mak
several predictions that can be tested by numerical sim
tions.

In Aoki’s picture, the flavor-parity violating phases shrin
rapidly to isolated points as one approaches the continu

FIG. 1. The phase diagram proposed by Aoki.g is the gauge
coupling and m0 the dimensionless bare quark-mass. T
continuum-like phases are labeled A, and the flavor and parity b
ken phase B. The phase diagram is symmetric underm0↔2(m0

18). The continuum limit of particular interest is that atm050,
g50.
© 1998 The American Physical Society01-1
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limit ~see Fig. 1!. At these points, the quarks are massle
chiral-symmetry is spontaneously broken, and all pions
massless. Our analysis finds that the width of the Aoki ph
shrinks asDm0}a3, up to logarithmic corrections. Perhap
more importantly, we can see how the flavor-parity break
at non-zero lattice spacing transforms smoothly into ch
symmetry breaking in the continuum limit. In our view, th
interpretation of Bitaret al. applies only in this limit.

Similar observations concerning symmetry breaking h
been made previously by Creutz@9#. He performs a qualita-
tive analysis using the linear sigma-model, and finds
same two possible patterns of symmetry breaking at fi
lattice spacing. Our calculation extends his by providing
firmer theoretical basis for his observations and by mak
quantitative predictions.

The outline of this paper is as follows. In the next secti
we review Aoki’s proposal for the phase diagram, and th
describe the alternative view of Bitaret al. In Sec. III we
explain how the numerical results obtained to date are
consistent with Aoki’s proposal. We then present, in Sec.
our Chiral Lagrangian analysis. Section V contains our c
clusions. We collect technical issues in the Appendices.

II. REVIEW OF PREVIOUS RESULTS

We consider QCD with two degenerate quarks, for wh
the fermionic part of the Euclidean lattice action is

Lf5c̄W~m0!c, ~2.1!

where the flavor indices are implicit, andW(m0) is the
Wilson-Dirac operator with a~dimensionless! bare massm0
common to both flavors. The bare mass is related to the u
hopping parameter bym051/(2k)24. The action is invari-
ant underSU(2) flavor transformations, under parity, an
under the interchangem0→2(m018), but it explicitly
breaks all axial symmetries for any value ofm0 .

We are concerned here with the phase diagram in
m02g2 plane, whereg is the gauge coupling. Based on pe
turbation theory, we expect to be able to take a continu
limit by simultaneously sendingg2→0 andm0→0. One can,
however, obtain different continuum limits by sendingm0 to
any one of the values 0,22, 24, 26, or28, for which there
are respectively 1, 4, 6, 4 and 1 continuum fermions. In
following we will mainly be interested in the standard co
tinuum limit at m050 ~or the equivalent point atm0528).
If this point is approached in such a way that the physi
quark-mass is small compared toLQCD, then we expect the
theory to spontaneously break chiral symmetry and for th
to be a degenerate triplet of light pions. This should be t
whether we approach from above or belowm050, since in
the continuum the sign of the quark mass is irrelevant. Si
lar phenomena should occur at the other continuum poi
except that the symmetry group in the continuum limit w
be larger@SU(8) at m0522 and 26, andSU(12) at m0
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524#, and so there should be correspondingly more pion1

In fact, it may be that the dynamics with these large numb
of flavors is different from them050 and28 cases, since
above a critical number of flavors we expect there to be
chiral symmetry breaking and no confinement@10#.

We are particularly interested in how the phenomena
sociated with chiral symmetry breaking emerge in the c
tinuum limit, given that the lattice theory has no such sy
metry. In particular, if the continuum limit is approached
that the quarks are massless, then the resulting theory sh
contain massless Goldstone pions. The standard view of
the theory accomplishes this is that there is a critical li
mc(g

2), along which the triplet of pions is massless. Th
line runs fromm0522 at g25` to the continuum point at
m050, g250. At non-zerog2, the pions are not Goldston
particles associated with spontaneous chiral symmetry br
ing ~and in particular their interactions are not restricted
chiral symmetry!, but they become so in the continuum lim

A. Aoki’s proposal

Based on a variety of considerations, Aoki proposed t
the vanishing of the pion mass is associated with the sp
taneous breakdown of flavor symmetry@1#. His proposal for
the phase diagram is sketched in Fig. 1. The phases lab
A are ‘‘continuum-like’’ in the sense that theSU(2) flavor
symmetry is unbroken. In phase B, by contrast, flavor sy
metry is spontaneously broken down toU(1), andparity is
also spontaneously broken. There are thus two Goldst
bosons in this phase, which are exactly massless in infi
volume, even though the lattice spacing is non-zero. We
call these the charged pions. The neutral pion which co
pletes the flavor triplet is not a Goldstone particle, and is th
massive within phase B. The transitions between the
phases are continuous, so that as one approaches the b
ary from within phase B, the neutral pion must also beco
massless so as to restore flavor symmetry. This means th
one approaches the boundary from within phase A, the
generate triplet of pions becomes massless. The critical
discussed above is the rightmost phase boundary.

This proposal has been established at strong coupling@1#,
for which there are just two critical lines@related by the
symmetrym0→2(m018)#. At weak coupling, if one is to
reproduce the continuum limits expected from perturbat
theory, then one must introduce the additional regions
phase A shown in the figure.2 In particular, if the continuum
limit at m050 can be approached from positive and negat
mass, then the width of phase B must vanish atg250. Aoki

1At non-zero lattice spacing, however, only aSU(2) subgroup of
the full continuum flavor symmetry is exact, so the full pion mu
tiplet will be broken into representations of this subgroup, with t
lightest pions being in a triplet.

2These new regions of phase A appear below critical values ofg2,
denotedgc1

2 andgc2
2 in the figure. These are conventionally draw

as being equal, but we can see no reason to expect this equality
particular ordering ofgc1

2 andgc2
2 shown in the figure is an arbitrary

choice.
1-2
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SPONTANEOUS FLAVOR AND PARITY BREAKING WITH . . . PHYSICAL REVIEW D 58 074501
argues that, since phase B is not observed in perturba
theory, its width must be a non-perturbative function ofg2,
i.e. have a power law dependence ona. We argue in Sec. IV
that the dependence isDm0}a3 ~up to logarithms!.

To investigate the spontaneous symmetry breaking
phase B, Aoki added to the Lagrangian~2.1! a source term
that explicitly breaks both flavor and parity,

Lsource5 ihc̄g5s3c, ~2.2!

with s3 acting in flavor space. Flavor and parity are spon
neously broken if, in the limit that the source is removed
condensate remains:

lim
h→06

^ i c̄g5s3c&56const. ~2.3!

Flavor rotations in the 1- and 2-directions change the c
densate, while those in the 3-direction do not. The symm
is thus broken fromSU(2)→U(1), with the condensate
inhabiting the coset spaceSU(2)/U(1). The condensate
~2.3! appears to violate theorems by Vafa and Witten wh
state that vector-like theories do not spontaneously break
vor @11# or parity @12#. As explained in Appendix A, how-
ever, these theorems are not applicable to the case at h

Numerical evidence supporting Aoki’s proposal has be
given in Refs.@1–5#. In particular, Ref.@4# studied the pion
mass as a function ofm0 at g251 (b56/g256) in the
quenched approximation, finding evidence for all 10 critic
lines predicted near the continuum limit~although this re-
quired the removal by hand of so called ‘‘exceptional co
figurations’’!. Unquenched simulations in small volume
also found evidence of Aoki phases, although Ref.@5# did
not find them at the smallest couplings studied. This cou
however, be due to the small width of the phases.

B. The proposal of Bitar, Heller and Narayanan

The phase diagram for Wilson fermions has recently b
reconsidered in Refs.@6–8#. In Ref. @6#, Bitar et al. take
issue with Aoki’s proposal. They point out that, in the ma
less limit of the continuum theory, a condensate of the fo
of Eq. ~2.3! is simply an axial rotation of the usual flavo
diagonal condensate, and thus breaks neither flavor nor
ity. In other words, the condensate~2.3! spontaneously
breaks the chiral groupSU(2)L3SU(2)R down to aSU(2)
subgroup, albeit a different subgroup from the usual fla
group ~its generators are vector rotations in the 3-direct
and axial rotations in the 1- and 2-directions!. This unbroken
subgroup can be defined to be the flavor symmetry. Si
larly, the condensate preserves a discrete symmetry, whi
the original parity transformation conjugated by an axial
tation, and this combined symmetry can be taken to be
ity. Based on these observations, they argue that the A
phase should be interpreted as having massless quarks
spontaneous chiral symmetry breaking. The condensat
Eq. ~2.3! should be interpreted as~an axial rotation of! the
usual chiral condensate. Flavor and parity symmetry, t
claim, are not broken at non-zero lattice spacing.
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To study the issue numerically, Refs.@7,8# investigate the
spectrum of the overlap Hamiltonian3 H(2m0)
5g5W(m0). The advantage of this operator over the Wilso
Dirac operator is that it is Hermitian, and so its eigenvalu
are confined to the real axis. This allows one to define
spectral density4 r(l;m0) both on the lattice and in the con
tinuum. As explained in Refs.@7,8#, the central issue is
whether this spectral density, considered as a function ol
for fixed m0 , vanishes for a region aroundl50. In other
words, does the spectrum have a gap? This is important
cause, as we now explain, the absence of a gap is indica
of chiral symmetry breaking in the continuum.

We begin by recalling that the Dirac operator in the co
tinuum, unlike the Wilson-Dirac operator on the lattice, ha
spectrum confined to the imaginary axis. Thus one can de
a spectral densityr̃(l) for the operator2 iD” . As first noted
by Banks and Casher@13#, chiral symmetry breaking occur
if r̃(l) does not vanish atl50. In the continuum, the spec
trum of the overlap Hamiltonian, which is justg5(D”1m), is
related to that of2 iD” by

r~l;m!5H ulu

Al22m2
r̃~Al22m2! ulu.umu,

0 ulu<umu.

~2.4!

We see that at non-zero quark-mass,r(l;m) has a gap be-
tweenl52umu andumu. As the quark massm→0, note that
r(l;m) converges tor̃(l), albeit non-uniformly. Thus the
gap closes in the chiral limit andr(l;0)5 r̃(ulu). Based on
this continuum result, Ref.@6# argues that, if the spectrum o
g5W(m0) has no gap, then one should interpret the latt
theory as having massless quarks and chiral symmetry br
ing.

As noted in Ref.@6#, the spectral density at zero eige
value is related to the condensate~2.3! proposed by Aoki,

lim
h→06

^ i c̄g5s3c&572pr~0;m0!. ~2.5!

Thus Bitaret al. do expect that the Aoki phases should
characterized by a condensate, as well as vanishing
masses.

References @7,8# study the low-lying spectrum o
g5W(m0) for the mass range22<m0<0. They have results
on a variety of gauge field ensembles~quenched with and
without improvement, and partially quenched! all with g2

3The sign choice ofm0 is the convention introduced in Refs.@17#
and adopted also in Refs.@6–8#.

4Spectral densities can be defined on a given gauge configura
by taking the infinite volume limit. We refer to these asrA(l;m0)
in the continuum, andrU(l;m0) on the lattice, with the proviso tha
on the lattice we average over a configuration and its parity co
gate. The quantity of interest here,r(l;m0), is obtained by aver-
aging over all configurations, with the appropriate weights. For f
ther discussion see Appendix B.
1-3
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STEPHEN SHARPE AND ROBERT SINGLETON, JR. PHYSICAL REVIEW D58 074501
'1. They find that in all cases the gap in the spectrum clo
for bare masses below a critical line,i.e. for m0,m1(g2).
This lies very close to the critical curvemc(g

2) determined
from the vanishing of the extrapolated pion mass. We foll
Ref. @8# and assume that the curves would coincide were
to extrapolate including the effects of quenched chiral lo
rithms. What is perhaps unexpected, however, is that the
does not open up before they reachm0522. This is incon-
sistent with the results of Ref.@4#, who find that the Aoki
phase has a width ofDm0'0.1.

III. CONSISTENCY

In this section we address the conflict between the in
pretations of Bitaret al. and Aoki. We begin with points of
agreement. Both contend that there are two phases, and
phase B is characterized by a condensate of the form~2.3!.
They also agree that the masses of all three pions va
along the boundaries between phases. The conflict conc
the number of massless pions within phase B and the in
pretation of the condensate.

We think that Aoki’s proposal is a correct description
what happens at any non-zero lattice spacing, while the
terpretation of Bitaret al. is an approximate description tha
becomes valid in the continuum limit. In this section w
elaborate on the former point, while in the next we presen
framework within which to understand the latter.

The essential point has already been made by Aoki@1#.
The only exact symmetry of the lattice theory is theSU(2)
flavor symmetry, and the condensate~2.3! spontaneously
breaks this symmetry down toU(1). Thus Goldstone’s theo
rem implies that there are only two massless pions in
broken phase.

It is worthwhile discussing the symmetry breaking
more detail, so as to emphasize the differences between
massless continuum theory and the lattice in phase B.
study spontaneous symmetry breaking, one adds a so
term that explicitly breaks the symmetry, calculates the or
parameter~here the condensate!, and then takes the limit o
vanishing source strength. If the symmetry is spontaneo
broken from G→H, the resulting condensate lives in th
coset spaceG/H. One can thus explore the coset space
examining the condensate for sources that effect breakin
different H-subgroups ofG. This leads us to consider, bot
on the lattice and in the continuum, the following source

Lsource~u,h!5hc̄ exp@ i u•sg5#c, ~3.1!

wheres is a three-vector of Pauli matrices that acts only
flavor space. This source is obtained by applying a gen
chiral transformation to the mass termhc̄c. We will denote
the norm ofu by u, while û will represent a unit vector in the
direction ofu. Without loss of generality we can takeh.0
and 0<u,p ~so that sinu>0). In the massless continuum
theory, standard arguments presented in Appendix B lea

lim
h→01

^c̄bca&52pr̃~0!cosudab ~3.2a!
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lim
h→01

^c̄big5ca&52pr̃~0!sin u@ û•s#ab .

~3.2b!

wherea andb are flavor indices, andr̃(l)5r(l;m50) is
the spectral density of the Dirac operator introduced abo
If chiral symmetry is broken down to anSU(2) subgroup,
then the condensates live inSU(2)L3SU(2)R /SU(2), and
should be described by three parameters. This is indeed w
we find.

The calculation in the lattice theory is somewhat differe
and is explained in Appendix B. Only the pseudoscalar c
densate is proportional to the spectral density, and we fi

lim
h→01

^c̄big5ca&5H 2pr~0;m0!@ û•s#ab u.0,

0 u50.
~3.3!

Equation~2.5! is a particular case of this general result. T
essential difference between Eq.~3.3! and the corresponding
continuum result~3.2b! is the absence of the factor sinu.
This means that the lattice condensate is of fixed magnitu
and varies in direction according to the applied source
depends on only two parameters, the angles inû, and maps
out the coset spaceSU(2)/U(1). This clearly represents a
different pattern of symmetry breaking than in the massl
continuum theory.

We wish to emphasize that these two different modes
spontaneous symmetry breaking may be differentiated
simply enumerating the number of massless pions: in
massless continuum theory, there are three massless p
while on the lattice in phase B there are only two. To te
this, one needs to know which interpolating fields couple
the different pions. For definiteness we consider a sou
with u5p/2 in the 3-direction, i.e.u5(p/2)ẑ, which leads
to the condensatêc̄ ig5s3c&Þ0. This is the choice used in
the numerical work described in the previous section. Int
polating fields for the Goldstone pions are obtained by do
a spatially dependent infinitesimalG/H transformation on
the condensate. In the massless continuum theory, t
transformations are the vector transformations in the 1-
2-directions, c(x)→exp„2 ia(x)s1,2…c(x) and the axial
transformation in the 3-direction, c(x)→
exp„2 ia(x)s3g5…c(x). These yield the pion fields

p1~x!5 i c̄~x!s2g5c~x!,

p2~x!52 i c̄~x!s1g5c~x!, p3~x!5c̄~x!c~x!.
~3.4!

On the lattice axial transformations are not a symmetry, a
only the first two interpolating fields correspond to Gol
stone modes. We see that the charged pions are create
the familiar pseudoscalar flavor non-singlet operators,
though with the flavor indices 1 and 2 interchanged. T
two-point functions of such operators have no disconnec
1-4
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SPONTANEOUS FLAVOR AND PARITY BREAKING WITH . . . PHYSICAL REVIEW D 58 074501
contributions, even in the presence of the source term. Th
are the pions whose masses have been calculated in nu
cal simulations.

The neutral pion, on the other hand, is created by an
erator that appears to be a scalar and a flavor singlet. Th
because the condensate itself points in a flavor and pa
violating direction. Indeed, when calculating the neutral p
correlator it is crucial to do so with the source turned on,
as to pick out the vacuum state, and then to take the limi
vanishing source strength. The correlator for this opera
has not been studied numerically. We expect such a calc
tion will be difficult, because it contains both disconnect
and connected contractions,

^p3~x!p3~y!&U5Tr SU~x;x!Tr SU~y;y!

2Tr$SU~x;y!SU~y;x!%. ~3.5!

Here SU(x;y) is the fermion propagator in the presence
the source. While in the continuum, the disconnected con
butions can be shown to vanish because of ch
symmetry—this must be so since the three pions
degenerate—this is not so at non-zero lattice spacing.
might hope, however, that their contribution will be sm
close to the continuum limit, and so it would be interesting
calculate the connected contribution alone. In the next s
tion we give a prediction for the mass of this particle in t
Aoki phase.

IV. CHIRAL LAGRANGIAN ANALYSIS

In this section we study the extent to which the sponta
ous breaking of flavor and parity at non-zero lattice spac
can be viewed as an approximation to the spontaneous br
ing of chiral symmetry in the continuum limit. We do so b
first determining the effective continuum Lagrangian whi
describes the lattice theory at non-zero lattice spacing,
then extracting the effective chiral Lagrangian which d
scribes the long distance behavior of this effective c
tinuum theory. The analysis relies solely on symmetries
the assumption that dimensionful quantities have a size
termined byLQCD to the appropriate power. In the followin
we shall, for the sake of brevity, drop the subscript onLQCD.

Close to the continuum limit, the lattice theory can
described by an effective continuum Lagrangian in which
usual terms have been supplemented by contributions
portional to powers of the lattice spacing@14#. These addi-
tional pieces are constrained by the symmetries of the la
action, which in the present case means that they need
respect chiral symmetry. The enumeration of operators
identical to that carried out as part of the improvement p
gram @15#, and the result is

Leff;Lg1c̄S D”1
m0

a Dc2
m̃c

a
c̄c1b1ac̄ ismnFmnc

1b2ac̄~D”1m!2c1b3amc̄~D”1m!c1b4amLg

1b5am2c̄c1O~a2!, ~4.1!
07450
se
eri-

p-
is

ity

o
f
r

la-

f
i-
l
e
ne

c-

-
g
ak-

nd
-
-
d
e-

e
o-

e
ot

is
-

whereLg is the gluon Lagrangian, andm is a physical mass
defined below. The symbol; indicates that we are not at
tempting to control factors of order unity. For example, t
dimensionless lattice bare massm0 appears inLeff multiplied
by a factorZm(g2,ln a)'1, which we ignore. The dimen
sionless constantsm̃c andbi are functions ofg(a)2, and in
general, also of lna. We work at a fixeda and thus suppres
this dependence.

The first two terms in Eq.~4.1! are the naive continuum
limit of the lattice Lagrangian, while subsequent contrib
tions result from the fact that the lattice action breaks ch
symmetry. The dominant correction at smalla is the additive
mass renormalization proportional tom̃c , which is linearly
divergent asa→0. We can combine the two mass terms
the usual way by introducing the physical massm5(m0

2m̃c)/a ~again ignoringZ-factors with logarithmic depen
dence ona). As we will see,m̃c is very close to, but slightly
different from, the critical massmc(g

2) at which the pion
masses vanish.

The Lagrangian can be further simplified as follows. B
changing quark variables, one can remove terms that va
by the leading order equations of motion@16#, which in this
case are those proportional tob2 and b3 . Note that the
b4-term renders the effective continuum coupling const
dependent upon the bare quark-mass, and theb5-term causes
the physical mass to have a quadratic dependence on the
quark-mass. While these two contributions cannot be
moved, they can be ignored. As will become clear shor
we focus on the region in whicham;(aL)2, i.e. physical
quark-masses ofO(a). In this region, corrections propor
tional to am are suppressed byaL!1 relative to the terms
we keep. With these simplifications, the effective Lagrang
becomes

Leff;Lg1c̄~D”1m!c1b1ac̄ ismnFmnc1O~a2!,
~4.2!

i.e. QCD with a Pauli term.
The next step is to write a generalization of the continu

chiral Lagrangian that includes the effects of the Pauli te
Without either the mass term or the Pauli term, the theor
invariant underSU(2)L3SU(2)R chiral rotations, and its
low momentum dynamics is described by the chiral Lagra
ian

Lx5
f p

2

4
Tr~]mS†]mS!. ~4.3!

HereS is aSU(2) matrix-valued field that transforms unde
the chiral group as

S→LSR†, ~4.4!

with L areR being independentSU(2) rotations. Its vacuum
expectation value,S05^S&, breaks the chiral symmetry
down to aSU(2) subgroup. The fluctuations aroundS0 cor-
respond to the Goldstone bosons:
1-5
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S5S0 expH i (
a51

3

pasa / f pJ . ~4.5!

Adding the mass term to the underlying Lagrangian exp
itly breaks chiral symmetry, and its contributions toLx can
be determined using a standard spurion analysis. Since
are only interested in determining the vacuum state, we
not consider derivative interactions. Working to second or
in m, the potential energy is

Vx52
c1

4
Tr~S1S†!1

c2

16
$Tr~S1S†!%2, ~4.6!

with c1;mL3 and c2;m2L2. We have used the propert
that any term invariant under the vector symmetry can
written as a function of Tr(S1S†).

We now include the Pauli term. This is straightforwa
since it transforms under chiral rotations exactly as does
mass term. Thus its effects can be included~along with those
of the mass term! by making the substitutionm→m1aL2.
The factors ofL are required by dimensional analysis, a
we recall that we are dropping dimensionless coefficients
order unity. Thus the potential is given by Eq.~4.6!, with
coefficients

c1;mL31aL5, c2;m2L21maL41a2L6. ~4.7!

Note that choosingam;(aL)2 makes the contributions o
the quark mass term and the Pauli term comparable. Th
as we would expect: if the physical mass is ofO(a), then the
strength of chiral symmetry breaking due to the mass te
should be comparable to that due to discretization.

Since we are keeping terms ofO(a2) in c2 , we must also
consider corrections ofO(a2) to the underlying QCD La-
grangian. Fermion bilinears ofO(a2) such asa2c̄D” 3c are
necessarily flavor singlets, and so contribute in the same
as the Pauli term, but suppressed byaL. Four fermion op-
erators such asa2c̄cc̄c can contribute directly to thec2
term, and give an additional contribution proportional
a2L6. Thus the estimates of Eq.~4.7! remain valid. There
are of course subleading contributions to these coefficie
suppressed by powers ofaL.

In the following we determine the properties of the chi
theory, and in particular the pattern of symmetry breaking
a function of the coefficientsc1 andc2 . Since these coeffi-
cients depend onm05m̃c1ma and ona, we can map our
results back onto the phase diagram in them02g(a)2 plane.
We distinguish three regions of quark masses, each suc
sively smaller by a factor ofaL:

~1! Physical masses, i.e.m/L fixed and small. For such
masses, asa→0, c1;mL3 and c2 /c1;m/L. In this case
both the discretization errors and the contribution of thec2
term can be ignored, and the symmetry breaking is as in
continuum.

~2! Generic masses ofO(a), i.e. am;(aL)2. For these,
the contribution of thec2 term is suppressed byaL, but
discretization errors are important inc1 . The value ofm at
which the extrapolated pion mass vanishes is shifted
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;aL2 @corresponding to a shift ofO(a2L2! in m0]. It is
useful to introduce a shifted mass,m85m2aL2, ~where, we
stress, all constants have been set to unity!, defined so thatc1
vanishes whenm850. In terms of this new mass the coeffi
cients are

c1;m8L3, c2;m82L21m8aL41a2L6. ~4.8!

~3! Shifted masses ofO(a2), i.e. am8;(aL)3. For such
masses, the coefficients can be simplified to

c1;m8L3, c2;a2L6. ~4.9!

The crucial point is thatc1;c2 , and so the two terms in
the potential are comparable. As explained below, comp
tion between the two terms can lead to Aoki phases.

It is immediately apparent from this discussion that the wid
of the region in which new phenomena can occur, due
competition between the two terms in the potential, isDm0
;aDm8;(aL)3. This is the result announced in the intro
duction.

One might be concerned that higher order contributions
the potential will become important if the first two terms a
comparable to one another. A simple analysis shows that
coefficients of the next order terms are generically of s
c3;a3L7. Compared to the first two terms, these are s
pressed byaL, and can be ignored, except for the possibil
of a small region of widthDm0;a4 in which all three terms
could cancel. Similarly, ana2L2 contribution toc1 will shift
m8 by O(a2) but will not otherwise change the analysis.

To determine the condensateS0 we must minimize the
potential energy~4.6!. Writing S5A1 iB•s with A21B2

51, the potential becomes

Vx52c1A1c2A2, ~4.10!

where the parameterA is constrained to lie between21 and
11 inclusive. Note that theSU(2)V group action, in which
L5R in Eq. ~4.4!, leavesA invariant and rotatesB by an
orthogonal transformation. Hence, when the vacuum s
S05A01 iB0•s develops a non-zeroB0 , the flavor symme-
try breaks spontaneously to aU(1) subgroup defined by
exp$iuB̂0•s%, with B̂0 being the unit vector in the direction
of B0 . A non-zero value ofB0 can occur only whenuA0u is
strictly less than one.

Based on the discussion above, we treatc2 as a constant
of O(a2), while c1 varies linearly with the bare quark-mas
We do not know the sign ofc2 . It turns out that ifc2 is
positive, we reproduce the properties of the Aoki phase,
so we discuss this case first. The potential is then a para
with its minimum atAm5e, where we have defined the pa
rametere5c1/2c2;m8/(a2L3). If this minimum lies out-
side the range21 to 1, thenA0 is forced to one of the
boundary pointsuA0u51. This corresponds toS0561, and
hence the vector symmetrySU(2)V is not spontaneously
broken. This situation is illustrated in Fig. 2. If instead th
minimum satisfiesuAmu,1, then the vacuum is determine
by A05Am and B0Þ0, as illustrated in Fig. 3. SinceB0
1-6
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Þ0, flavor symmetry is spontaneously broken toU(1), and
the region21,e,1 thus has the properties of the Ao
phase.

Let us examine the spontaneous flavor breaking in m
detail. In the Aoki phase, the direction ofB0 is determined
by the source term. To make contact with the numeri
simulations, we assume a source that alignsB0 in the
3-direction, and adopt the new parametrizationS05cosu0
1i sinu0s3. The angleu0 is determined bye, as explained
above,

cosu05H 21 e<21,

e 21<e<1,

11 1<e.

~4.11!

The vacuum smoothly interpolates between the two flav
symmetric values. To determine the pion masses, we exp
S about the condensate~4.5!, finding

A5cosu02
sin u0

f p
p32

cosu0

2 f p
2 (

a51

3

pa
21O~pa

3!.

~4.12!

The potential becomes

FIG. 2. The potentialVx vs A for c2.0 and uAmu.1. The
vacuum is atA051.

FIG. 3. The potentialVx vs A for c2.0 and uAmu,1. The
vacuum is atA05Am .
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Vx55
c2

f p
2 ~12e2!p3

22c2e21O~pa
3! ueu,1,

c2

f p
2 ~ ueu21!(

a
pa

2 1<ueu,

~4.13!

and hence the pion masses are

m1
25m2

250,
m3

2f p
2

2c2
512e2 for ueu<1

~4.14a!

ma
2f p

2

2c2
5ueu21 for ueu>1.

~4.14b!

The results are shown in Fig. 4. We see that the pionsp1,2
are the Goldstone bosons of the broken flavor symme
within the Aoki phase, and that all three pions are mass
on the phase boundaries.

In summary, we have reproduced the phenomenology
the Aoki phases using the chiral Lagrangian. In addition,
calculation makes three predictions:

~1! As already mentioned above, for small enougha, the
width of the Aoki phase should scale asDm0;a3. This
should hold up to logarithmic corrections, which we ha
ignored throughout.

~2! From Eq.~4.14!, the mass of thep3 meson within the
Aoki phase is predicted in terms of the form outside t
phase. For example, the slope ofm3

2 versus the dimension
less bare massm0 should be a factor of two larger as th
phase boundary is approached from within, compared to
proaching it from without. In both cases,m3;a when e
;O(1).

~3! The form of the spectral density of the overlap Ham
tonian at zero eigenvalue can be determined. To do this
note that

^c̄aig5cb&} i @S02S0
†#ab . ~4.15!

FIG. 4. Pion masses as a function ofe for c2.0. The curves are
labeled by the flavor of the corresponding pion.
1-7
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On the lattice, the left-hand side is proportional
r(0;m0), while we have found that the right-hand side
proportional to sinu0, and therefore

r~0;m0!}A12e2}m3 . ~4.16!

It should be possible to test some of these predictions.
We now return to the possibility that the coefficientc2 is

negative. The potential is then an inverted parabola, and
extremumAm is an absolute maximum. This means that t
vacuum state is always at the edge of the allowed range oA,
with S0511 for c1.0 andS0521 for c1,0. The poten-
tial can be written

Vx5
uc2u
f p

2 ~11ueu! (
a51

3

pa
21c22uc1u1O~pa

3!. ~4.17!

Thus the flavor symmetry is not spontaneously broken
any value ofe, and all three pions have the same non-z
mass,

ma
2f p

2

2uc2u
511ueu. ~4.18!

This situation is illustrated in Fig. 5. Note thatma;a for e
;O(1).

The previous analysis cannot choose between thec2.0
and c2,0 cases—for this we must rely on simulations. A
noted in Sec. III, all numerical observations to date are c
sistent with there being spontaneous flavor and parity bre
ing at non-zero lattice spacing, and hence withc2 being posi-
tive. Thus it appears that an Aoki phase with a width of ord
a3 will persist until the continuum is reached. There a
however, two caveats that we should mention. First, rem
ing the quenched~or partially quenched! approximation
could, in principle, lead to a change in the sign ofc2 . Sec-
ond, it is logically possible that, for the lattice spacings stu
ied to date, terms of higher order ina are important and
conspire with the terms we considered above in such a
that the effective value ofc2 changes sign as the continuu
limit is approached. In this case the Aoki phase would d
appear for small enough lattice spacing.

FIG. 5. Pion masses as a function ofe for c2,0.
07450
he
e

r
o

-
k-

r
,
v-

-

y

-

It is interesting to consider in what way the previo
analysis changes when one uses improved Wilson fermi
The surprising answer is that the analysis is essentially u
tered, even if one removes all errors proportional toa using
non-perturbative improvement conditions. The reason is
the key discretization error is theO(a2) contribution toc2
@see Eq. ~4.7!#, and this remains after improvement. O
course, the sign of the coefficientc2 can change, so we can
not predict whether there will be an Aoki phase. What w
can say is that one or other of the possibilities discus
above will apply.5 This is surprising because in both sc
narios the non-vanishing pion masses are proportional ta
for e;O(1), while one would have naively expected th
masses to be proportional toa2. We see nothing wrong with
this result, however. In particular, for any fixed physic
quark-mass, the discretization errors are ofO(a2) for small
enough lattice spacing.

V. CONCLUSIONS

We have considered the issue of spontaneous flavor
parity symmetry breaking in lattice QCD, and its relation
chiral symmetry breaking in the continuum. Contrary to t
claims of Bitaret al. @6#, we have shown that flavor-parit
breaking can occur at any non-zero lattice spacing. Inde
our chiral Lagrangian analysis shows that such symme
breaking is one of only two options available to the theory
the continuum limit is approached. If this option is chose
as is indicated by present numerical evidence, then our
culation shows how the breaking of flavor and parity at no
zero lattice spacing goes over smoothly into chiral symme
breaking in the continuum limit. This is the sense in whi
we agree with the proposal of Bitaret al. that one can think
of flavor-parity breaking on the lattice as corresponding
chiral symmetry breaking in the continuum.

Based on this proposal, Bitaret al. suggest obtaining the
continuum chiral condensate,C05^ūu&1^d̄d&, in the fol-
lowing way. Calculate the condensate^c̄ ig5s3c& in the in-
finite volume limit at non-zero lattice spacing, average t
result over the Aoki-phase, and then take the continu
limit. Their major point, with which we agree, is that th
lattice condensate is a good order parameter, and in par
lar is free from additive renormalization. It follows from ou
analysis, however, that one should not average over the A
phase, but rather take the maximum value of the lattice c
densate within the Aoki phase, and extrapolate this to
continuum limit. If one were to average over the Aoki pha
then one would find a value for the continuum condens
too small by a factor ofp/4.

To understand this, recall that the condensate takes
form S05cosu01i sinu0s3 in the Aoki phase, and so

^c̄c&5C0TrS S01S0
†

4 D 5C0 cosu0 , ~5.1!

5In fact the numerical evidence of Ref.@8# suggests an Aoki phas
also for non-perturbatively improved fermions.
1-8
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SPONTANEOUS FLAVOR AND PARITY BREAKING WITH . . . PHYSICAL REVIEW D 58 074501
^c̄ ig5s3c&5C0TrS S02S0
†

4i Ds35C0 sin u0 .

~5.2!

Thus at a general position in the Aoki phase, one can ob
continuum condensate from

C0
25^c̄c&21^c̄ ig5s3c&2. ~5.3!

On the lattice, however, one can only measure the secon
these condensates, and this equalsC0 only whene5cosu0
50, i.e. when the lattice condensate takes its maxim
value. In other words, the lattice condensate picks out a
ticular component of the chiral condensate, and only wh
the former is maximal are the two condensates aligned.

One of the predictions of our analysis is that the width
the symmetry-broken phase grows rapidly as the lattice s
ing is increased,Dm0;a3. According to Aoki’s picture,
there is a critical lattice spacing at which the five ‘‘fingers
of the Aoki phase merge into a single phase of widthDm0
;6 ~see Fig. 1!. It is not clear from numerical evidence a
what coupling this occurs. Atg251, in the quenched ap
proximation, Ref. @4# finds evidence for all five fingers
while Ref. @8# finds only a single phase down tom0522.
We stress, however, that either possibility is consistent w
our results. Our prediction is that there is some critical c
pling below which the Aoki phaseB splits into finger-like
regions of decreasing width, surrounded by islands of unb
ken phaseA, as in Fig. 1. Once one has entered this reg
then our other predictions, for the pion masses and the c
densate, apply as well.

As explained in Ref.@8#, practical applications of domain
wall fermions probably require that the Aoki phase has
small width. Our results strongly suggest that this will be t
case for small enough lattice spacing.
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APPENDIX A: THE INAPPLICABILITY
OF THE VAFA-WITTEN THEOREMS

The condensate~2.3! breaks both flavor and parity, in
apparent contradiction with Refs.@11# and@12#, respectively.
In this appendix we give a brief explanation of why the
references do not, in fact, rule out such a condensate.

The argument of Ref.@11# against flavor-breaking in the
continuum does not apply for massless fermions because
spectrum of the Dirac operator has a non-vanishing den
of zero eigenvalues. As has been discussed in Ref.@6#, the
relevant operator on the lattice is the overlap Hamiltoni
g5W(2m0), and the Vafa-Witten argument also does n
apply if this has a non-vanishing density of zero eigenvalu
which it does in the Aoki phase. These failures are dem
strated by the explicit calculations of Appendix B.
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The loophole in the argument against spontaneous pa
breaking is simply that the analysis says nothing about
mionic bilinears. The bulk of Ref.@12# is devoted to proving
that parity-odd bosonic operators do not receive vacuum
pectation values. In footnote 7, however, Vafa and Witt
claim that the theorem can be extended to include fermio
bilinears, since, upon integrating out the fermions, the fer
onic operators can be replaced by bosonic operators, an
these their original argumentation applies. The example t
consider is the flavor-singlet operatorq̄ig5q, which is re-
placed byX5Tr ig5SA(x;x), with SA(x;y) being the fermi-
onic propagator in the backgroundA. This extension of their
argument is not valid, however. The operatorX is either
ill-defined if there are fermionic zero modes, or it simp
vanishes because the eigenvalues ofg5SA(x;y) come in
opposite-sign pairs.

Properly speaking, one must calculate the vacuum exp
tation value by adding a source, and only take the sou
strength to zero at the end. The presence of the source r
lates the corresponding effective bosonic operatorX. How-
ever, for two flavors of quarks, it also invalidates an essen
assumption of Ref.@12#, namely thatX be imaginary in Eu-
clidean space. Indeed, one can explicitly calculate the fo
of X using a spectral decomposition of the correspond
fermion operator. For the condensate of interest, Eq.~2.3!,
for which one adds the source~2.2!, this calculation is done
in Appendix B. We find that the corresponding gluonic o
erator X is purely real, and so the Vafa-Witten argume
does not apply.6 This point has also been noted in Ref.@2#.

It should be noted, however, that Vafa and Witten’s arg
ment does still imply that all parity-odd operators compos
only of gluon fields do not have vacuum expectation valu
This suggests that there exists a modification of parity wh
acts in the same way as parity on the gluon fields, but
ferently on fermions, and which is unbroken by the conde
sate in the Aoki phase. Such a transformation does exist:
the product of parity with a discrete flavor transformation

P85P^ z, z5 is1PSU~2!. ~A1!

The flavor transformation has no effect on the gluon fiel
Note that (P8)2521 when acting on fermion fields, so tha
P8 generates aZ4 group. When acting on the bilinea
c̄ ig5s3c, however, its square is the identity. Note also th

6For the flavor-singlet parity-odd operatorq̄ig5q, on the other
hand, the effective bosonic operatorX in the presence of the sourc

Lsource5hq̄ exp@iug5#q is not pure real, and the loophole in apply
ing Ref. @12# is more subtle. Note that the source can be tra

formed into the mass termhq̄q by an axialU(1) transformation,

which, because of the axial anomaly, introduces auF̃F term. The
source therefore does not have the usual effect of picking a par
lar direction for the condensate, but instead selects a diffe
theory characterized by a parity-violatingu-vacuum. This is true
even for infinitesimal source strength, and thus Ref.@12# does not

imply that the fermionic parity-breaking condensate^q̄ig5q& van-
ishes.
1-9
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other choices ofz are possible, but all are related by tran
formations in the unbrokenU(1) flavor subgroup.

APPENDIX B: CALCULATION OF THE CONDENSATES

In this appendix we compute the condensates^c̄bGca& in
both the continuum and on the infinite-volume lattice w
Wilson fermions. We work in two-flavor QCD with a com
mon bare mass, and we denote the quark field with fla
index a by ca . The quantityG is an appropriately chose
spinor-matrix, which in the continuum can be either the u
matrix 1 or ig5 , while on the lattice we consider onlyG
5 ig5 . As discussed in Sec. III, the condensates are defi
by adding to the Lagrangian the source term

Lsource~u,h!5hc̄ exp@ i u•sg5#c, ~B1!

computing^c̄bGca&h for non-zeroh, and then taking theh
→01 limit. We will let u denote the modulus ofu, while û
will represent a unit vector in the direction ofu. Without loss
of generality we can takeh.0 and 0<u,p ~so that sinu
>0).

1. The continuum theory

We first consider the massless continuum theory with
fermionic LagrangianLf5c̄aD”ca . It will be convenient to
place the system in a finite box of four-volumeV4 , so that
the Euclidean~anti-Hermitian! Dirac-operator D” has discrete
eigenvalues6 iln with ln>0, and at the end of the calcula
ic

p-
e

07450
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tion the infinite-volume limit followed by theh→01 limit
will be taken. For simplicity, let us first work out the flavo
diagonal caseû5 ẑ with arbitrary u. After performing the
fermionic path integrals, the condensates in the presenc
the source can be written

^c̄bGca&h5E DA exp$2Sg@A#%@det~D”1h!#2^c̄bGca&A,h ,

~B2!

with Sg@A# being the pure gluonic Euclidean action, an
where the fixed-background condensates take the form

^c̄bGca&A,h5
1

V4
E d4x^c̄bGca~x!&A,h

52
1

V4
Tr

Gdab

D”1h exp$ iug5s3ab%
. ~B3!

The trace includes a sum over color, spin, and space-ti
and it can be written

Tr
G

D”1h exp$6 iug5%
5 (

ln>0

2h

ln
21h2

3 H cosu
6sin u

for G51,
for G5 ig5 ,

~B4!

where, in computing the fermionic determinant in Eq.~B2!
and the trace~B4!, we have used the fact that
D”1m11 im1g5 has eigenvalues Ln
65m16 iAln

21m1
2 ~B5a!

g5~D”1m11 im1g5! has eigenvalues Ln
65 im16Aln

21m1
2. ~B5b!
use
d

.

Since we are working with two-flavor QCD, the fermion
determinant is real, positive, andu-independent.

In infinite volume, the eigenvalues of the Hermitian o
erator2 iD” become continuous and are described by a sp

tral density per unit four-volumer̃A(l). Since2 iD” andg5

anti-commute, the eigenstates of2 iD” come in pairsfl(x)
and g5fl(x) with eigenvaluesl and 2l respectively.

Therefore,r̃A(l) is symmetric inl and we can write

lim
h→01

lim
V4→`

1

V4
(

n

2h

ln
21h2

5 lim
h→01

E
2`

`

dlr̃A~l!
h

l21h2 5pr̃A~0!, ~B6!

where we have used the relation
c-

lim
h→01

1

l6 ih
57 id~l!1P

1

l
, ~B7!

with P(1/l) denoting the principal part under thel integral.
The principal-part contribution vanishes, however, beca
of the symmetry inl. In the flavor diagonal case we thus fin

lim
h→01

^c̄bGca&A,h52pr̃A~0!3H cosudab for G51

sin us3ab for G5 ig5
.

~B8!

The condensate in the presence of the source~B1! with
an arbitrary flavor orientationû can be obtained from Eq
~B8! by an appropriation spinor-rotation. If we writeû
5(sina cosb,sinasinb,cosa) with Q̂5„sin(a/2)cosb,
sin(a/2)sinb,cos(a/2)…, thenR[ i Q̂•s satisfies
1-10
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Rs3R†5û•s, ~B9!

and we see thatR is a spin-1/2 representation of the
dimensional rotation fromẑ to û. As g5 does not act in the
flavor space and since its square is unity, the matrixR also
transforms the diagonal source withû5 ẑ to the general
source~B1! using the same transformation as Eq.~B9!, i.e.

R exp@ ius3g5#R†5exp@ i u•sg5#. ~B10!

Using Eq. ~B10!, the diagonal condensate~B8! can be ro-
tated to a general orientationû to produce

^c̄bca&A52pr̃A~0!cosudab ~B11a!

^c̄big5ca&A52pr̃A~0!sin u@ û•s#ab .
~B11b!

The condensateŝc̄bGca& can now be obtained with the hel
of Eq. ~B2!, and they take the same form as Eq.~B11!, ex-
cept that one uses the gauge averaged spectral density

r̃~l!5E DA exp$2Sg@A#%@det D” #2r̃A~l!. ~B12!

Equation~3.2! now follows.
It is also interesting to consider the condensates fo

non-zero common massm with fermionic LagrangianLf

5c̄a(D”1m)ca . As with the massless case in Eq.~B6!, a
condensate before theh→01 limit has been taken can b
expressed as a spectral integral of some rational funct
The numerators of the scalar and pseudo-scalar conden
are proportional tom1h cosu and h sinu respectively,
while the denominators of both condensates arel21h2

1m212mh cosu. The non-zero massm renders theh
→01 limit safe for all eigenvaluesl, thereby producing the
u-independent expressions

^c̄bca&A52E
2`

`

dlr̃A~l!
m

l21m2 dab ~B13a!

^c̄big5ca&A50. ~B13b!

Of course, taking them→0 limit first would give Eq.~B11!,
and we see that them→0 andh→01 limits do not com-
mute. Note, however, that~B13a! is consistent with the fac
that flavor is not spontaneously broken for massive qua
@11#, since it implies that̂ c̄s3c&50, while Eq. ~B13b! is
consistent with there being no spontaneous flavor or pa
breaking.

2. The infinite-volume lattice theory

While much of the corresponding calculation on t
infinite-volume lattice with Wilson fermions is similar to th
continuum case, there are some key distinctions which
outline in this section. For one thing, the Wilson-Dirac o
erator W(m0) has complex eigenvalues and therefore d
not possess a spectral density. This suggests that one tr
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relate the condensates to the overlap HamiltonianH(2m0)
5g5W(m0), which is Hermitian and therefore has eigenva
ues constrained to lie along the real axis. For a fixed ba
ground configurationU, we will write the discrete finite-
volume eigenvalues ofg5W(m0) as ln(m0 ;U), while in
infinite volume the corresponding spectral density will
denoted byrU(l;m0). Therefore, the fermionic Lagrangia
for the quarksca with a common bare massm0 can be
written Lf5c̄aW(m0)ca5ca8H(2m0)ca , where we now

considerca and ca85c̄ag5 as the independent Grassma
variables. While the Wilson term explicitly breaks the chir
symmetry, there is nonetheless an exactSU(2) flavor sym-
metry. We should point out that, on the lattice, we only c
culate ^c̄bGca& with G5 ig5 . Unlike the continuum, the
condensate withG51 is not proportional to the spectral den
sity, since the eigenvectors ofg5W(m0) with opposite-sign
eigenvalues are not connected byg5 .

We first consider the flavor diagonal caseû5 ẑ with arbi-
trary u. As in the continuum, we place the system in a fin
box of four-volumeV4 , calculate the condensate with sour
~B1!, and then take the infinite-volume limit followed by th
h→01 limit. The condensatêc̄big5ca&h vanishes whenu
50, and we therefore concentrate onu.0. After performing
the fermionic path integrals overc andc85c̄g5 , we find

^c̄big5ca&h5E DU exp$2Sg@U#%udet@g5W~m0!

1hg5 exp$ iug5%#u2^c̄big5ca&U,h ,

~B14!

with Sg@U# being the Euclidean Wilson action, and whe
the background condensates take the form

^c̄big5ca&U,h52
1

V4
Tr

idab

g5W~m0!1hg5 exp$ iug5s3ab%
,

~B15!

with the trace including a sum over spin, color, and spa
time. Note that in two-flavor QCD, the fermionic determ
nant factors are real and positive, although unlike in the c
tinuum there is explicitu-dependence at non-zeroh. Using
the chiral basis for the gamma-matrices, in whichg5
5diag(1,21), the overlap Hamiltonian takes the gene
form @17#

H~2m0!5g5W~m0!5S B1m0 C

C† 2B2m0
D , ~B16!

where the two-component spinor operatorC is a discretized
chiral Dirac operator, andB arises from the Wilson term
From this expression, the operator appearing in the deno
nator of Eq.~B15! can be written
1-11
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g5W~m0!1hg5 exp$ iug5s3ab%5g5W~M !1 ih sin us3ab

with

M5m01h cosu,
~B17!

and it therefore has eigenvaluesln(M ;U)1 ih sinus3ab .
The infinite-volume limit of the trace thus becomes

lim
V4→`

1

V4
Tr

i

g5W~m0!1hg5 exp$ iug5s3ab%

5E
2`

`

dlrU~l;M !
i

l1 ih sin us3ab
. ~B18!

Recall that in the continuum, the eigenstates of2 iD” with
opposite-sign eigenvalues were connected byg5 , and this
rendered the spectral densityr̃A(l) symmetric. This is not
true on the lattice, and the spectral densityrU(l;m0) is not
symmetric inl. Nonetheless, ifU8 is the parity conjugate o
the configurationU, then rU8(l;m0)5rU(2l;m0) @17#.
We can thus form a symmetric spectral density by averag
over parity conjugated configurations, which we implicit
assume has been done throughout the following.

All that remains now is to take theh→01 limit. At non-
zero lattice spacing, the spectral densityrU(l;m0
1h cosu) uniformly converges torU(l;m0) ash vanishes,
and therefore the limit may be brought inside the integral a
allowed to act separately upon each term in the integra7

As sinu is strictly positive, it may be absorbed into a rede
nition of h in the denominator of Eq.~B18!, and therefore
Eq. ~B7! gives the u-independent result̂ c̄big5ca&U5
2prU(0;m0)s3ab . Remembering that the condensate va

7In the continuum, there is a problem with uniform convergen
for massless quarks, but this will dealt with at the end of this s
tion.
Jr
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ishes whenu50, and upon rotating to an arbitrary flavo
direction specified byû, we therefore find

^c̄big5ca&U5H 2prU~0;m0!@ û•s#ab u.0,

0 u50,
~B19!

with the gauge-averaged condensates^c̄big5ca& taking the
same form, except that one uses the gauge-averaged sp
density

r~l;m0!5E DU exp$2Sg@U#%

3@det g5W~m0!#2rU~l;m0!. ~B20!

Equation~3.3! immediately follows. It can be shown that th
gap closes, thereby renderingrU(0;m0) non-zero, only when
the dimensionless bare massm0 is negative@17#.

While the calculational techniques presented in this s
tion are not the most natural for the continuum, one co
nonetheless follow the same formal steps that led up to
~B18!. If the h→01 limit can be taken inside the integra
then for quarks of physical massm ~and for non-zerou!, one
obtains theu-independent continuum result^c̄big5ca&A5

2prA(0;m)@ û•s#ab , with rA(l;m) being the spectral den
sity for the Hermitian operatorg5(D”1m). Whenm is non-
zero, we see from Eq.~2.4! that rA(0;m)50, and the con-
densate therefore vanishes. This agrees with with
~B13b!, which was obtained using the methods of the pre
ous section. However, ifm vanishes from the start, from Eq
~2.4! it is apparent that even thoughrA(l;h) converges to
rA(l;0) ash→0, it does not do so uniformly. Thus, we ma
not interchange the spectral integral and theh→01 limit in
Eq. ~B18!, and the calculational techniques of this secti
break down. In this case, the methods of the previous sec
must be used and Eq.~B11b! is the correct expression for th
condensate.
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