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We investigate high-energy scattering in spontaneously broken Yang-Mills gauge theorylisgace-time
dimensions and present the exact solution of the leadirsgBIRKL equation. The solution is constructed in
terms of special functions using the earlier results of two diluN.L. and L.S). The analytic properties of the
t-channel partial wave as functions of the angular momentum and momentum transfer have been studied. We
find in the angular momentum platie¢ a Regge pole whose trajectory has an intercept larger than fiiaad
fixed cut with the rightmost singularity located jat 1. The massive Yang-Mills theory can be considered as
a theoretical model for thénonperturbative Pomeron. We study the main structure and property of the
solution including the Pomeron trajectory at momentum transfer different from zero. The relation to the results
of Li and Tan for the massless case is discusg88556-282198)03119-1

PACS numbdps): 12.38.Bx, 11.15.Ex

I. INTRODUCTION ously broken (2-1)-dimensional gauge theory, using previ-
ous results obtained in Refl12]. One can consider this

Recent experimental data from the DES¥ collider theory as a simple model for the soft Pomeron. Indeed we
HERA [1] on deep inelastic scattering at smallnd fixed show that the resulting BFKL Pomeron is a normal moving
Q? and from the Fermilab Tevatron on high-energy diffrac-Regge pole with its interceptp(0)> 1.
tion [2] revived interest in the long standing problem of the  The coupling of this theory has the dimension of mass.
Pomeron structure and of the relation between soft and harfihe interaction is superrenormalizable. This results in the
processes at high energy. absence of scaling violations of structure functions due to

For the hard Regge processes one can use the Balitskiidtraviolet divergences. On the other hand, the infrared sin-
Fadin-Kuraev-LipatoyBFKL) theory[3], but we are lacking gularities in the massless limit are stronger compared to (3
a self-consistent theoretical approach to the soft Pomerort 1)-dimensional QCD. The comparison allows us to dis-
and have to rely merely on general properties of analyticitycuss the influence of the ultraviolet and infrared singularities
causality, and crossing symmetry in developing an extendedn the Pomeron structure.
and successful phenomenology of high-energy soft interac- In QCD (massless gluons in81 dimensionsthe known
tions[4,5,6]. way [13] of solving the BFKL equation relies on conformal

Some theoretical understanding of the Pomeron has beesymmetry. This approach is useless in the case of massive
derived from the study of the leading $rapproximation of gauge bosons. Up to now the solution has not been known
superrenormalizable models such x&® in 3+1 dimen- for the massive case. In the special case 6fl2dimensions,
sions. The main features of the result have been included ihowever, the equation exhibits a simple iterative structure
the parton model of peripheral interactions and they are thevhich allows one to construct a solution. The experience
basis of our understanding of the Pomeron strucfi8]. gained in the (2 1)-dimensional theory will be helpful in
However, such models result in Regge singularities with arsolving the corresponding equation in the physical case.
intercept of around-1 and do not reproduce essential fea- We obtain the exact solution both for the forward and
tures of the Pomeron. Much effort has been applied to shomonforward cases, and calculate the partial wave amplitude
the self-consistency of the Pomeron hypothesis in the framdor the scattering of two massive gauge bosons. We investi-
work of Reggeon field theory or Gribov’'s Reggeon calculusgate the Regge singularities in the complex angular momen-
[9]. A Reggeon field theory approach to QCD has been detum plane and their behavior in dependence of the momen-
veloped in[10]. tum transfer.

On the contrary, for the hard Pomeron we can apply per- The paper is based on an early investigation by two of the
turbative QCD and derive a number of detailed predictionsauthors[12], where the basic idea of the iterative solution
[11]. The BFKL Pomeror3] appearing in the leading | was formulated for the general nonforward case. This inves-
[~In(1/x)] approximation plays a special role. The main fea-tigation was motivated in particular bj15], where the
tures of the BFKL Pomeron, however, look different from BFKL equation with the infrared regularization has been
properties of the soft Pomeron. considered. We discuss the relation of our result with the one

In this paper we study the BFKL Pomeron in spontane-by Li and Tan[14] where the massless {21)-dimensional
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gauge theory has been considered.

4 3-T 4
Il. BFKL EQUATION WITH MASSIVE GLUONS K q-K . Kk,
. . a(q - K%
A. 3+ 1 dimensions K k- v
Let us start with a short reminder of the results obtained K

N
—

_I_

within the leading logarithmic approximatiqihLA) of per-
turbation theory for the amplitudes of the high-energy scat-
tering in the spontaneously broken Yang-Mills the¢8}. f,(kq-k)
We discuss the simplest case of the(3lyauge group with
symmetry breaking by one Higgs doubléindamental rep-
resentation This is the case discussed Bi; we shall follow

the notation of that paper. The generalization to theéNpU
gauge group is straightforward and is done in Sec. Il C.
Notice that the details depend on the type of symmetry
breaking. We consider the case that all gauge bosons become

£, (k,q- k) f,0k,q- k) (k0 - k)

FIG. 1. The graphic form of the BFKL equation.

massive.
The amplitude describing the elastic two-particle scatter- K(k,ky,q)=Ag(q?) + ——5——
ing AB—A’B’ can be decomposed into the amplitudes with (k=kp)*+m
definite isotopic spirT in thet channel, withT=0,1,2: X {(k2+m?)[ (ky— )2+ m?]
ANE =T pan AT g + T ADTL . +T AP FC+mA[(k—q)2+ M (2.6

2.1
@ and the Regge trajectory of the massive gluons:
The constantd’ in Eq. (2.1) depend on the kind of scat- o
tering particles(gauge bosons, fermions, Higgs parti¢les a(k)=j-1
and they are all proportional to the coupling constirtg; 2(k2+m2) d?k,
for their explicit forms seé3]. =— f 5 —s
In what follows we shall concentrate on the singlet part of (2m)° (Kf+m?)[(ky—k)?+m?]’
the amplitude(2.1). A is related to the partial wave 2.7
F.(g%) in the following way ( =1+ w):

As a consequence of the integral equatigrd) it is pos-

o S [o+iw s \ee imo_1q X sible to express the partial wa¥e,(q?) through the solution
Al )(S,Q)IE L , w(—mz Snne Fo(a%), of Eq. (2.5 on the mass shell:
e
22 Fulk k=)= (q-k2--m=F o(@%) +Ag (7). (2.8
= —q s .

B. 2+ 1 dimensions

In Refs. [12,15 it was established that in
(2+1)-dimensional space-time the high-energy scattering

. d?k
el e ey

X f,(k,q—Kk)Ax(q?), (2.3 amplitudes derived in the LLA are given by formulas similar
to the ones from the previous section. The main difference is
5 that the transverse space in this case is one dimensional, and
Ao(g?)=— 2( 9+ Zmz) (2.4 so the substitution
d?k dk
We write here and in the following the scalar products of Wﬂﬂ
transverse momenta in Euclidean notation. The function
f.(k,g—Kk) satisfies the following integral equatiésee Fig. should be made.
1 for notation and a graphic form of the equation Therefore
[0—a(k?)—a((k—q)?)]f,(k.q—k) 1 g dk
Fo(@9)=— 2 2 7 — 2 P
2 2 w (2m) (k*+m9)[(k—q)*+m-]
CAW@)  (2m)° ) (ki+m)[(k—q)2+m?] X f,(k,q—K)Ag(g?), 2.9
XK(k,kq,9)f,(ki,g—Kkq), (2.5  where nowg? carries the dimension of mass.
The Regge trajectory for massive vector bosons in the 2
with the kernel +1 dimensions is given by the simple rational expression
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dk,

2y _
= T (kK2 7]

9%(k?+m?) f
(2m)? (k

B 92 k2+m2

T 2mm K2+ 4m?”

(2.10

For the functionf(k,g—k) we have here the one-
dimensional Bethe-Salpeter-type equation

[0—a(k?) = a((k—q)?)]f ,(k,q— k)

dk,
ki+m?)[ (ky—q)2+m?]
(2.11)

Our aim is to find the analytic solution of this equation. It
is convenient to introduce the dimensionless variables

_ g’
‘A<q2>+<2w>2f<
XK(kvkliq)fw(klaq_kl)'

2 2
2
ag= 9 , €= g :is, k—mk, g—maq.
4m 2TmMw w
(2.12
Then Eq.(2.1]) takes the form
L k2+1+(k—q)2+1 ¢ ek
te k2+4 (k_Q)2+4 w( q— )
Ay f dk; Ay N 2
“h0 T 2n (I D[(ki—q)2+1] | (k—kpZ+d
" K2+1 (k—qg)?+1 Lk » 213
k%"'l (kl_q)2+1 %) 1vq 1/ .
Ao=—(20°+ 3). (2.149

The remaining equations of the previous section are un

changed.

In order to present the main steps of our method for find-

ing the exact solution of Eq2.13 we consider first the
simpler case with vanishing momentum transietO.
Ill. FORWARD SCATTERING AT HIGH ENERGY

In the case with vanishing momentum transfet 0, Eq.
(2.13 takes the simpler form

(1+2€)(k2+\?) .

—zra 0T
B f dk, Ao 4 k2+1f .
~¢) 2n e 2 T kepE i) et

(3.1
where we have introduced the convenient notation

_4+26
T 1426

2

(3.2
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In this case we present the methods of solution both in co-
ordinate and momentum representations. In this way differ-
ent aspects of the problem will be illuminated.

A. Coordinate space analysis

We find that it is convenient to work with the function
¢, (K)=(k?*+1)"f (k). Equation(3.1) is a linear inhomo-
geneous integral equation. We try to solve it in coordinate
space by introducing

b oK)= f dx €%¢,,(x). (3.3

The main advantage of the coordinate space is the fact that
the BFKL kernel in Eq(3.1) looks simple due to the relation

J

Substituting Eq(3.3) and Eq.(3.4) in Eq. (3.1) we obtain

dk eikx
27 K2+1

1
_e_‘x‘_

5 (3.9

2

d
(1+2¢)| — ﬂ”‘z) &, (X)

2

d
Tt

e M, (x)

1
_~ [3e- X
oA 138 2000 +2¢

eAg 3 3
— 4 [3e M+25(x)] f dy ¢ (y)e (35
where §(x) is the Euleré function. We shall analyze Eq.
(3.5 without the inhomogeneous term in order to investigate
the leading eigenvalue.

¢, (x) should be bound for the Fourier transfof®13) to
exist. At large|x| only the left-hand side of Eq(3.5) is
important which leads to the asymptotic solutien*!.
_ Clearly the solution depends ¢x| only because the ker-
nel K(x) is an even function ok. We introduce a new
function

®,(x)=[1+2s(1—e" )], (x) (3.6

and a new variable=e
For the functiond , the equation looks as follows:

d do (2
Zd_zZ dz
®,(2)
® 1+ 2:(1-2)

jld' P ,(2')
X197 Tr2e(1-2)

dd,(2)
+2z o
dz

(z—1)+4d ,(2)

A08
=6 +T[3Z+25(Z_1)]

(3.7
Comparing the coefficients in front of th&functions we

obtain

dod,(2)
dz

®,(2')

_EAO
- 1+2e(1-2")"

dZ
z=1

(3.8
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which will give the equation for the position of the pole in 5e 1 q)f;g
the angular momentum plarithe intercept of the Pomerpn C=- c J dz' 152:(1=2)" (3.12
as will be shown below. The second condition 8+3e JO

The solution of the homogeneous equat{8rll) can be
®,(z)—0 at z—0 (3.9  easily found. We obtain

2e7
2+N,—2+N,1+2A,

follows from the large|x| behavior of ¢,(x) discussed ha, o\ — N A
(Dw (Z) Nz 2Fl 1+ 2¢

above.
The important observation is that a solution of E8.7)
obeying Eq.(3.9) can be found in the form

~[1+2e(1-2)]2
- 1+2¢

®,(2)=CA1+2¢(1—2)]+D"Y(2), (3.10

2e7
where®"9(z) is the solution of the homogeneous equation XoFg| 3+ =1+ NIH2N, o0 ) 313
d dCDL‘,g(z) hg CDE)Q(Z) Here ,F, is the Gauss hypergeometric function and the con-
Tl TAP,(2)=6e 15 2:(1-2)" stantN can be defined from the normalization.
(3.11 To find the value ofe which corresponds to the bound

state we have to solve E@3.8) which using well-known
and C is a constant irg, which, however, depends on the properties of the hypergeometric function can be reduced to

function®, : the form
|
5—2)\2 4—2\% (N2-1)(\—1) —\?
W 2F1 3+)\1_1+)\11+2)\1 3 )\2_4 2F1 3+)\,)\,1+2)\,T
- 2 Fol 24N, — 14N, 142N, —— i T+N, —14+N,1+2) Ao\
1+ B[(1-AB/(A2—a)] 2+ 2T e T N 2N =)

(3.19

We solved this equation numerically and obtained theequation in the intervaé e[ — 1/2¢], wherex?>0. We ob-
value e = e9=4.5934 which leads to the rightmost singular- tain the solution fol >0 first and continue then analytically
ity at w=wo=2ag/eq=0.436xg in accordance with Ref. to the complete complex plane &or w.

[12]. If we omit the right-hand side of Eq.3.1) (the zeroth

The way we have solved the BFKL equation is reminis-iteration, the solution is
cent of the standard procedure of calculating bound states.

The rightmost singularity inw, a pole, corresponds to the O Aot (K*+4)
ground state. In the following subsection we solve &3l fo (k)= (1+26€)(KZ+\?)" (3.16
in a momentum representation.
(k) can be represented as the sum of the constant term

B. Momentum space analysis plus the pole term-1/(k>+\?). In order to find the contri-
bution arising from the next iterationf (= f(+ )+ ..
Fet us substitute Eq(3.16 into the right-hand side of Eq.
(3.1). We use now Eq(3.195 and obtain

We have to solve the linear inhomogeneous integral equ
tion (3.1). It is possible to construct the solution directly by
iterations. We rely on the relation

= dk’ 1 1 N+ 1 Jw 1 dk
- - K(kk1,q=0) 5 =—
Lo 2w (k—k)Z+1k'Z+N\2 2\ K2+ (A +1)7]" e K{+\% 2m
(3.15
~ Ag(A+2) 2(k’+1)[ 1 N A+3 a1
This means that the action of the kernel &€ \?) " can CANN+1)? NKPHA) [N +1 0 K2+ (N+D)?] (3.1

be expressed by the shift of the pole positioas\ + 1.
Let us formally consider the right-hand side of E8.1)  We write the resulting first iteratiofi{”) as a sum of pole
as a perturbation. We will consider first the solution of thisterms ink?. In this expansion there are three terms: the con-
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stant term, the pole term 1/(k?+\?), and as a new term, 6 Ao)\s RV
not encountered in the zeroth iteratiéff’, the pole term 2=~ z=g2 " IV aFaGrin, oY)
~1[k?+(N+1)?]. The same procedure can be applied to
the subsequent iterations. It is easy to see that the expansion 4 NaAg -1
for the nth iteration will be given by the sum of the constant + m aF2(53F1x ly)
term plus the pole term&\/(k?+\2), Ne=A+k—1, k
=1,... n+1. Therefore it is natural to look for the solution n 2\, = ()\4,)\3,)\71,1|
of Eq. (3.1) in the form[12] N2A+1) 4 Bat2n,2 y),
Ay 2(2\%*-5
fw(k) 0+ 21 k2+)\2, Ap=At+tn—1. (318) 3.21=ZO+§)\T4)),
Let us substitute this ansatz in E®§.1). Comparing co- Aohs NIV 2
efficients of the pole terms on both sides we find the condi-  az,= Dl 4 oo Ia, gl Y) T o, FaGrMly).
tion (3.23
An = 26 (AFM(A+n+l) (3.19 Using well-known relations among the hypergeometric
Ap-1 1+2e (n=1)(2a+n+1) ' functions[16] it is possible to express all higher hypergeo-

) ] ] . metric functions through the two basj¢-, functions
This recurrence relation has the following solution:

2 fa=oF1(2701y),

1+2¢

PN 2) 1N+ 3) 0o

A=Ay (—D)!(2x+ Dy

. (3.20

fo=oF 133 4lY). (3.29

where @),=a(a+1)(a+2)---(a+n—1). In this way we
arrive at  generalized hypergeometric  functions

p+1|:p(“1 “P+1|y) [16]. In particular, the ansai8.18 leads

VR VBN B
to 4F3(2§+i)\3,;\23|)/)_fa

We quote here only one of these relations:

(7\2—4) » )%
A=DAA5 P12
(3.2

0= ot iy PGt N ), (3.20)
kKe+\ AT HGAZT The solution of the systelB8.1) expressed in terms of the
functionsf, andf, has the form

with A\p,=A+n—1, A=\, andy=2¢/(1+2¢).

There are still two coefficientl, andA; undetermined in ANZ(N—2)[Ao[  (13\2-16)
our solution(3.21). The information contained in Eq3.1) Aj=— B o Z( aTleSfb)
which has not been used yet can be expressed in terms of two 0€
conditions. The first condition appears as a result of the com- (34\2—64)(\2—1) 48\%—84]"1
parison of residua of the pole term1/(k?+ \?) [the pole at +1y N —2)\s + b\ — 2))\3} )

k?>—-\2 has to be considered separately from other pole
terms~ 1/(k?+\2), n#1]. The second condition appears as

4
a result of the comparison of the constant terms appearing in ¢ — 3A1 (f )\(1+2)\2)+fbﬂ
the expansion or, in other words, considering the left- and (A=1)(A=2)N\3\3 (N=D)Np)
right-hand sides of Eq3.1) at k—oc. (3.26
Therefore the coefficient§,,A; are the solution of the
following inhomogeneous system of linear equations: These formulas together with E(.21) represent the so-

lution of the integral equatiofB.1).
1 It should be noted that in Ref12] instead of the first
———="fg-a;;TA;-a;,, equation of the systei8.22) [resulting from the comparison

Ao€ of the residua of the pole terms kf(+\?) appearing on
1 both sides of Eq.3.1)] another boundary condition was
_ A_Oezfo'asz A;-ay, (3.22 used, the absence of the normal thresholds:
f (KP——4)=2f (k- —1). (3.27
with
) This condition can be derived from E(8.1) if one requires
a =ﬁ+ 4(\°—1) that f ,(k) be a regular function in the neighborhood ot
74 " (\N°-4)" =—4. In terms of our ansatz this condition reads
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1 N Aa A2 Analyzing the condition(3.31) numerically outside the
fo=Auls2— sFaoy i in 1 1Y) interval e e [ —, —1/2], where the cut is located, we have
checked that there is only one Regge pole in the vicinity of

2 Mg No A1 the real axis located in
—yz=7 sFaaniin Y- (3.28
2
o 9
The iterative solution of Eq(3.1), f,(k), as described €= €=4.5934, @0 o rmey (3.32

above, is a function which is by construction regular in the

pointsk?= —n?. Therefore, the conditiof3.28 should not  The result coincides of course with the one obtained in the
give an additional restriction on the functig®.21) as com- coordinate representation. Therefore we can conclude that at
pared with the conditions given by the systé22). Indeed, =0 the partial waver, has the following singularities on
expressing the hypergeometric functions in E8.28 in  the physical sheet of the complexplane. There is a finite
terms of the function$, andf, it can be checked directly cut on the negative part of the real axes covering the interval
that the difference of the two equations in EB22 andthe we[w,,w;], wWith w,=—g%7m, »;=0. And there is a

condition (3.28 are equivalent. single pole in the positive part of the real axisuat wg, EQ.
(3.32.
C. Regge singularities of the forward partial wave Let us discuss the nature of the singularities at the branch

points. Near the right end point of the cub=w,=0 we

We discuss now the implications of the obtained SOIUtlonhavee—>+OO, A—1,y—1, and

f,(k) for the partial wave of the scattering amplitulie .
The partial wave-,, can be calculated either by E@.9) or

by the mass-shell relatiof2.8). We have checked that both f,= —2( 1+log 20-1) +O((N—1)log(\—1)),
methods lead to the same result: 3
F.(q=0)= . jf, (3.29 fpb=2+0((N—1)log(A—1)). (3.33
0
Therefore the partial wave behaves like
where
F,——Ay1+16A,%/log(A—1). (3.39
4  [(34\°—64)(N\>—1) )
f= N2—4 ( Y fat fp(480"—84) Near the left end point of the culy= w,, we havee—
B —1/2, A\ — + o, yN_)\2/3—>—00, and
(13\?-16) 1
X (Tfa"‘ 18f}, (330 eh(log 12-210g\)
fop=————[1+0(1IN)], (3.3
Let us discuss the singularities &f, considered as a NN
function of the complex variables. The hypergeometric
functions are defined in terms of the hypergeometric series eM10g 12=210g M)\ '1og \
which are convergent inside a circle of unit radius in the fp= N [1+O(IN)]. (3.36

variable y=2¢/(1+2€). The continued hypergeometric
functions are analytic in the complex plane of their argument
y, with a cut fromy=1 toy=<. In the € plane this corre-
sponds to the cut appearing on the intervak| —oo,

Therefore the partial wave behaves like

~1/2). o L
As a function of their parametersyy,...,ap;1, Agt+24/3 T2(Ag+24/3)log A
B, - . ..Bp the hypergeometric functions have only simple
poles if one of the lower parametess, . . . .5, approaches Note that the solution of the corresponding homogeneous

a nonpositive integer value We see from Eqg3.2), (3.24  equation can be obtained from the solution of the inhomoge-
that both f, and f, have poles of this origin at\ neous equatioft , which we have just found. The spectrum
=\(4+2€)/(1+2€)— —(1+n)/2. Therefore these poles consists of one discrete level= w, and the continuous part
lie on the secondunphysical sheet of the square root. wel[w,,w1]. The corresponding eigenfunctions can be
Further singularities of , and, consequently, df, ap- found as follows: the residue d%, of the pole atw=w,
pear at points, where the determinant of the system of lineagives(up to the normalization constarthe wave function of
equationg3.22 vanishes, i.e., at the zeros of the denomina-the discrete level and by calculating the discontinuityFgf

tor in EqQ.(3.29: on the cut it is possible to find the eigenfunctions belonging
to the continuous spectrum.
Ao+ f=0. (3.3) We would like to add a comment on how the results de-
pend on the number of colorbl. In the case of arbitrarid
This results in poles ifw. we have to substitute, in the above equatif8is
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, N , N2+1 N x=k—q/2,
g°—0°5, Ap— 2|0+ — M|, e—e.
2 N 2
(3.38 0 , A+5e€ q2+ \/962—q2(4+56)(1+26)
As in the casé\ =2 there is a leading Regge pole at arbitrary C1+2e 47 (1+2¢)°
N located atw{V : 4.2
2 N1 Now, in analogy with the iterative way of finding the
(N) g . . .
W0 5 2 N (3.39  solution for =0, we see that the zeroth iteration can be
0

expanded into a sum of the constant term and two pole
terms: ~1[ x>+ (X )?] and ~1[x?+ (X ")?]. It should be
noted that the zeroth iteration foy,(k,q—k) depends on the
specific combination of the momerkaandqg—k; i.e., itis a
function of the variablex?=(k—q/2)?>. The notationx
should not be confused with the position. Calculating the
IV. NONFORWARD SCATTERING next iterations it can be seen that this feature remains true
and the solution can be represented in the following form
The main steps which have been made in Sec. IlI B to[lz]'
derive the solution of the forward equation can be general- i At i A~
ized to find the solution of the nonforward equati¢h13. f )=t >, —amtD s,
The expression appearing on the left-hand side of(Ed4.3 =1 X5 (Ag)T =1 XS+ (Ny)
in the square brackefs--] can be rewritten in the form

e is calculated in analogy te, above. We find thae{"
decreases slowly witiN approaching a limite{”: €
=4.5934,e)=3.8000, {=3.5693, ) = 3.3025.

A. Solution of the equation

Ay =A"+n—1. 4.3
(1+26)XP+ (N ")?][x*+(N7)?]
[-1= [(x—0/2)2+4][(x+q/2)%+ 4] (4.2) Substituting this ansatz into E(2.13 we find two recur-
' rence relations similar to the one for the case0. Their
where solutions can be written in the form

=+

AI"I
AL

n—1 1
(n—1)!

2¢
1+2€

()\éj)nfl()\f+iq/z)nfl()\f_iq/z)n—l()\t_di)nfl()\i_dt)nfl()\t_dl)nfl()\i_d:)nfl

+ + + x + x + . + . 1 (44)
A -1+ 1) aN N+ 1) (N =N+ 1) 1(N 5 +i0/2)n -1 (N5 —19/2) 4
with
b 1 1 2 2

da=—§+a§\/5—q +2b\4—30%, ab==. (4.5

It is possible to rewrite our ansatz, E@.3), in terms of the generalized hypergeometric functions

+ oyt +_ . gt gt vt d vt —d Nt i N i

2 + Ny Ny FiaQ/2N, —ig2NT —d AT —d_ N7 —d N —do AT HiX AT —ix

fu(X)=To+ Ay X2+ (N )2 9F3(>\+,2x++1,x++>r+1,>\+—r+1,x2++iq/2,x2+—iq/z,x;ﬂx,x;—ix 1Y)

Al ! Fg(A "N\~ 4.6
+1m98( <\7|y). (4.9

The conditions which determine the coefficiefigs A; , A] are also analogous to the ones used in the casg=dr.
The condition obtained by taking the limit—o, or k—o, has the form

N
1 _ Ay Jr26—1 At Aok F %I,xz+iq/2,x1—iq/2,x+—di,x*—df,x*—d;,x*—d:| )
Ajge 9 g°+4 1 AT (2+4)[(N)2+q%/4] 7 6()\;,2>\++1,)\++)\’+1,)\+—>\’+1,)\;’+iq/2,)\§'—iq/2 y

2\, AN g2 —ig2at—dt At —dt At —dT At —d”
3 oha TIASA THAIEA T TR T Ty [ F ATV N (4.7)

+ ML(NS )2+ 02%/4] 7F6(x2+ 2T HINT AT HINT AT 1IN +ig2A ] —ig/2

We have found that it is convenient to use as the last two conditions the absence of normal thfsskdliscussion at the
end of Sec. Il B:
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2 2
3 (EREY ) IR (EReT 8
The condition corresponding to the lower signs is
fo AT 1 Ny s Higl2h; —ig2nt —2-igl2A T —dT At —dt At -d] Y

—d_
LIINT)?2=(2+ig/2)?] 8 7()\+,2)\++1,)\++)\’+1,)\+—)\’+1,)\;'+iq/2,)\;—iq/2,)\+—1—iq/2 )

B 2 F (AZ*,x;+iq/2,x;—iq/2,x+—1—iq/2,ﬁ—dj,x*—di,x*—d; AT
[(NT)2—(1+00/2)7] & Tt ar #1040+ 10 A~ + 1] +ial2AS —iql2* —iq/2

"y AN oNT] 49

The other equation is obtained from the above one by the substitgtion q.
The difference of these two conditions can be written in the logit0 as

Af(_iiq+0(1) +A[{-iCg+0(g?}=0. (4.10

Therefore
A7 =A;[Cq?+0O(g¥)], (4.1))

whereC is some constant.

We see that atj—0 the series of poles- A /[x*+ (\)?] decouples from the solution in accordance with our previous
considerations fog=0.

In this way we have solved E@2.11) for arbitrary momentum transfey. The solutionf , is given by Eq.(4.6) with the
coefficientsfy, A, andA; determined from linear system of equatidds?), (4.9, (4.9.

B. Properties of the partial wave
We investigate the partial wave,(q?) obtained from the solution by E¢2.9):
1\ . (xj{,>\2+iq/2,xj—iq/2,>\+—di,x*—df,v—d;,x+—dj| )
)\+[()\;)2+q2/4] TUONE NS Hig2N] —ig22 I T AT LN oA+ y

€Ao
Fw(qz): q2+4 f0+

N Ar Nz F Ny A Hia2hg —igl2a T —dt AT —d” ,r—d;,x*—djl 4.12
N T(N,)2+0%4] 7 G(Ag,)\;+iq/2|>\;7iq/2,2)\‘+1,>\++)\‘+1,)\‘7)\++1 Y- '

First of all it should be noted that all equations above are We would like to mention that the Pomeron trajectory has
written under the assumption that we choose the conventioabout the same slogerp(0)] as the gluon trajectory. More
for the square root expression fr- with the real parts of interesting would be, within the same approach, to compare
A" being positive for smally and reale>—3. _ the Pomeron trajectory with the Reggeon trajectory. In order

If 9*=15, \* are complex conjugate numberséfbe- 1o do so one has to calculate the Reggeon trajectory in 2
longs _to the interval [e;,], where €,=(13q +1 QCD using the techniques developed in R21]. It will
—300*+16)/2(9-109%). Since —1/2<\;<0, for any  pe a challenging problem for the future.
positive w and therefore for any positive \ = are complex At larger|t| the trajectory deviates strongly from the lin-
conjugate. Let us choose by the definition\of the expres- g4 pehavior. It goes to infinity fdrapproaching the thresh-

sion which has a negative imaginary pedr q>0). old t=4 and returns from- above the threshold. The be-
In the fOHOW'an we study the Regg‘? singularities a!"d thehavior of the Pomeron trajectory nea+ 4 has been obtained
?higz\ﬁg:jtaizq =t——c and at positivet up to the first 5, by solving Eq(2.13) in the asymptotics of large and

Since the solution behaves smoothgat 0, we conclude t—4 with the result

that at smallg the structure of the Regge singularities is 2 A

similar to what we have found far=0. The position of the wo(t)]; 4=g_ -0 (4.13
leading Regge pole depends ts —q2. The result of the 7T 2mm 4t

numerical calculations is plotted in Fig. 2 for values tof

from — 4 up to the vicinity of the first threshold &t 4. The  This confirms the numerical result of Fig. 2.

trajectory is almost linear in the vicinity af=0 with the The branch pointss; =0, w,=—g? 7m do not depend
approximate slope 0.34/m? as shown in Fig. 3. on t. However, the singularities located at the unphysical
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FIG. 2. The trajectory of the Pomeron pole in unitsgdf2mm.
The momentum transfer is given in units mf.

sheet can come up to the physical shedtiasreases. Indeed
both the poles arising from the lower coefficiefisin the

hypergeometric functions and the poles at the vanishing de-

terminant depend og. There are also branch points arising
from the square roots in the expressions.ofin terms ofw,
Eq. (4.2), the position of which depend an The numerical

investigation of the solution shows that besides of the pole,
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which was originally the leading one, another pole emerges

from the unphysical sheet ifcrosses the threshold value.
Now we investigate the behavior tt> —c0. In the limit

of largeq we have

£t k_iq o 1 K 4+5¢€
“kFZ oLl k= Vi

and
q , avi—1
dg=a3+ 7@ b), &= .

Inserting these relations into the linear system we have
found that, asymptotically i,

¢ 1
0= 57
Al=—-AT,
21 2, f1 _ f5 |7
=lafo T Mo kv 2 k2]
where
) ey ),
fr=aFa(5s ™ Ay,
'T( ) 'T
fo=aFa(biinnis k+3|Y)
T L) _
fa= 4F3(§;+1k+kfk Ly,
. L) _
fa= 4F3(|§;+1k+kfk K3k,

As a result we obtain from Ed4.12) the asymptotics of
the partial wave:

2 _)i _ 2f2 2f2 2f4
Fu(a*)]g2 o2 {1 kr1/ \kv1 k=1
fy f3
Ck+2 k=2/|

The behavior ofF, near the right branch point=0 is
F .| g2~ consth. This is to be compared with the behavior
at the same point foq=0, Fw|qz=0~const. The numerical
calculation of the Pomeron trajectofsee Fig. 2 shows that
the pole is moving towards the right branch point with de-
creasingt. From both observations we conclude that the
Pomeron pole moving with reaches the right branch point
w=0 asymptotically fot=—qg?— — .

V. COMPARISON WITH THE MASSLESS CASE

Li and Tan[14] investigated (2-1)-dimensional QCD
without symmetry breaking, i.e., for massless gluons, and
obtained just a fixed cut starting g1 as the leading sin-

FIG. 3. The behavior of the Pomeron trajectory in the vicinity of gularity in the vacuum exchange channel. We try to under-

t=0.

stand the relation of their result to ours, in particular whether
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the Pomeron pole is absent in the massless case and howwith a being some numerical constant. The contribution of
disappears ain—0. the Pomeron pole to the scattering of two colorless dipoles
The infrared singularities in-2 1 dimensions are stronger with sizesx;yandx,q is given at smalm by the partial wave
compared to 31 dimensions. The limim—O0 has to be
performed carefully. Clearly, the scattering amplitude of vec-

tor bosons has no finite limit ah— 0. We consider the scat- FO~ bg* . 5
tering of two color dipoles of transverse sizesx,, which o g7 1 MXoXzo- 5.7
is the case studied ifil4]. The partial wave of the dipole- ey 2meq

dipole forward scattering is given by the convolution of two
dipole impact factor$14] (herex, is the size of the dipo)e

Here b is some number. This leading contribution to the

Po(x,k)=A i kx, . forward scattering of dipoles does not behave smoothly at
with the Reggeon Green function m—0. The pole goes to plus infinity, resulting in a divergent
contribution. Expanding irg?> we observe that the diver-
b dkdks; ®p(Xq0,Kq) gence starts at thg* term, corresponding to as-channel
Fo(X10,X20) = 2m?2  Krm? intermediate state with two additional gluons.
' This observation is confirmed by calculatiy, (k4 ,Kk»)
D (X99,K2) iteratively and evaluating the corresponding contribution to
XGy(Kykz) TK+m?2 (52 the dipole scattering partial wave, E®.2), in the following
2

way. We have to iterate E¢2.13 with the inhomogeneous
The Reggeon Green function is the particular solution of théerm replaced by(k; —k,), which is the zeroth approxima-
BFKL equation withé functions as inhomogeneous term. It tion of G, . Unlike above in Secs. lll B and IV A the itera-
is related to our solutiofi, (k) which is more closely related tion now proceeds order by ordergs or e. ReplacingG,, in
to the vector boson scattering as follows: Eq. (5.2 by 8(k;—k,) we obtain that the region df; ,k,
~m gives a negligible contribution fom— 0. Taking the
0 f(k)= J” G (K.ky) dk, 5.3 first order approximation ir for G, leads to a finite contri-
w(K+m?) ' Leoenht k12+ m?’ ' bution of that smalk region. With theO(e?) approximation
for G, we obtain a contribution divergent like i/ Starting

Near the Pomeron pole we have from this order of perturbative expansion the amplitude of
) forward dipole-dipole scattering does not exist in the mass-
o(Ky) Pho(ka) g 1 less limit.
G,k ko)~ ————, wo=— , (5.9 . : .
w—wq m 2meg Consider now the scattering at nonvanishing momentum

) i transfer. Let us fix the valug,,,s in physical units (Ge¥)
where (k) is the wave function of the two-boson bound 4,4 |00k at the relation to our dimensionless variabte
state corresponding to the Pomeron. It is normalized to 1 and 2 (in units of m?):

can be obtained frorfi,, by studying Eq(5.3) nearwg. €qis
the number quoted in E¢3.32.

Restoring the mass dependence we obtain, from the solu- tphyszth_ (5.8
tion (3.21),
2
; (k):_12¢(g_ 1 5) (5.5 Providedt,p, <0, the corresponding value ¢fapproaches
© m m 27w’ m —o atm—0. Thus the Pomeron pole approaches the branch
. , ) point atj=1.
The solution dgpends smoofchly @&nand the integral with a The singular contribution(5.7) appearing only atypys
bounded functionbp(x,k) exists. Therefore alsgo(k) has  _q ig apsent in the infrared finite dipole scattering amplitude
these features constructed irf14].
K Let us now study the massless limit directly in the equa-
do(K) = @ 3 _), (5.6) tion. We restore the masses in Eg.13 and do the shifk
Ym Tim —k—q/2 as in Eq.(4.):
(k—q/2)%2+m?  (k+q/2)?+m?
1+€((k—q/2)2+4m2+(k+q/2)2+4m2 fo(kq)
- J dk, Ao 2 (k+0a/2)?+m?  (k—q/2)2+m?
Aot em | o Tkt 9202+ B[ (k= 722+ 7] (k—kp) 2+ mZ| (kit q/2)2+ M2 (k;— q/2) 2+ m2
Xf,(K1,0). (5.9

074010-10



BFKL POMERON IN (2+1)-DIMENSIONAL QCD PHYSICAL REVIEW D 58 074010
We perform the Fourier transformation with respeckfo
fo(X q)=f %e’”‘xf (k,q) (5.10
w 1 277_ w H 1 .
and obtain

3
(1+2e—2ee” ™, (x,q)— 5 em f dyfw<y,q>cosg(y—x)e-zmlx-v‘

=i5(x)+ 8(X) L-f—Z fd f( )e—mly\ COSE +M dy f( )e_mly‘sing| |
AO € q2+4m2 VAP 2y q(q2+4m2) VAP 2 y
—eme " f dyfw<y,q>cosg<y—x)e*m‘X*y'[zsgr(x)sgrrx—y>+1]. (5.1
|

It should be stressed that E(p.11) is the general BFKL q q
equation for 2+1 QCD in coordinate space at any value of +Asin §X+ B COSEX,
the momentum transfer= —qg?2.

As discussed above the behaviomat 0 is different for (5.19

forward and nonforward cases. Indeed the coefficient of sec- hereA B bit tant

ond term on the right-hand sidRHS) e(A,/(q?+4m?) ~ WNErEA,B are some arbitrary constants. .
+2), vanishes am—0 for q#0 but behaves like i if we The original functionf ,(x,q) can be calculated readily.
put q=0 before taking the limitn— 0. We discuss in the \/& Write here only part of the result with=B=0, which

following the massless limit in the nonforward case. We ap_corresponds to certain boundary conditions:

proximate Eq.(5.11) at m—0, expanding in particular 1 S8(x) 2em cogq/2)|X]
e~ "X keeping termem (becauses=g%/27m). In this way f,(X,0q)=— - >
we obtain Ap|1+2em|x|  (1+2em|x|)

8(em)2sin(q/2)|x|
q(1+2em|x|)®

(5.1

1
(L+2emx)) 1, 0x,0) — 5 em [ dy f,(y.q)c053 (x-y)
This result has similarities to the expression for the dipole
_ €m . q densityn,(xg,x,q) derived by Li and TariEq. (3.4) in the
_A_Oé(x)_45(X)F f dyfw(y,q)sm§|y| second paper of Refl14]]. Our f_(x,q) is not the dipole
density and our equation does not know about the dipole size
on whichn,(Xq,x,q) depends essentially. However, intro-
ducing the dipole sizex,>0 by replacing the RHS of Eq.
(5.14 by —8(xo—|x|) and restricting the range i to |x|

— 2em sgr(x) f dy f,(y,4)c0s5 (x—Y)Sgx—y).

(512 #0, we obtain
In terms of the functiorf ,(x,q) defined as N 2
2 q2
fw(xrq) (dx2+ 4 fw(X-Q)a (513) Xs|n§(xo_|x|)
Eq. (5.12 has the following simple form: _ 8(Xo— |x]) _
1+26m|X|+0(X0 1)
d> g ~ 8(x) 16(em)2sin(q/2) (xo— |X|)
—+ —|[(1+2em|x])T ,(x,q)]= — —. (5.14 91){Xo
(dx2 z |t 2emxDT o)== T q(L+ 2Zemx))?

4em cogq/2)(xe—|x])

The solution has the form
(1+2em|x|)?

(5.17

We denote byG,(X,Xp;q) the analogon off ,(x,q), Eq.

~ 1 . q
(1+2em{xf,(x,0)= - o5 sm§|x| (5.13, of the modified equation. This particular solution of

qAg
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the modified equatiort5.14) reproduces the dipole density that the constant term in the high-energy asymptotics, which

n,(Xg,X,q) of Ref.[14] up to terms proportional t&(x). corresponds to the cut contribution, has been used to de-
scribe the experimental data on the high-energy behavior of
VI. SUMMARY total cross sectiongl7], inclusive spectr@l8], and diffrac-
tive dissociatior{19].
The reduction of the dimensionality tot2l simplifies the The divergence of the trajectory &t>4m? seems to ex-

high-energy scattering amplitudes and in particular theyibit an infinite series of bound states of two massive gluons.
BFKL equation. The equation can be solved analyticallyThis would differ clearly from the features of the hadronic
even in the case with masses introduced by spontaneoygajity. We understand that this is an artifact of the leading
symmetry breaking. ) _ In s approximation, since a potential of finite range created
In the forward case we have discussed the solution both iRy massive boson exchange cannot have an infinity of bound
coordinate and momentum space. In coordinate space thgates.
similarity of the Pomeron pole to a two-gauge-boson bound  The simplicity of the model makes it useful for further
state has been emphasized, whereas in the momentum repfigzestigations. Including fermions the amplitudes with quan-
sentation the iterative structure becomes transparent, whigim number exchange could be constructed. There will be no
has been used further to solve the equation in the nonforwargirect analogy either to the Dokshitzer-Gribov-Lipatov-
case. _ ) . ) Altarelli-Parisi (DGLAP) [20] equation or to the nonlinear
We obtain the partial wave for the scattering amplitude ofyoyple-logarithmic equatiof21]. More interesting could be
vector bosons in an analytic form. This allows us to study thehe study of amplitudes with multiple exchange of Reggeized
leading and nonleading Regge singularities and their deper@uons, in particular with the exchange of negative charge
dence on the momentum transfer both for negative and POSkarity (odderon.
tive t. _ . The model can serve as a testing ground for the nonper-
At small momentum transfer we find a leading Reggeyrpative treatment of diffractive proces§@?,23, and the
pole, the Pomeron, with an intercept abgvel and a tra-  hjgh-parton-density effective actid@4]. Also, the effective
jectory approximately linear for smatl. Beside this pole action of high-energy scatterifg@5] and Gribov’s Reggeon

there is a branch cut whose right end is located afl,  field theory[9] can be studied in the simpler situation of 2
independent of. The Pomeron pole approaches the cut for+ 1 dimensions.

large negative.
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