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We investigate high-energy scattering in spontaneously broken Yang-Mills gauge theory in 211 space-time
dimensions and present the exact solution of the leading lns BFKL equation. The solution is constructed in
terms of special functions using the earlier results of two of us~L.N.L. and L.S.!. The analytic properties of the
t-channel partial wave as functions of the angular momentum and momentum transfer have been studied. We
find in the angular momentum plane~i! a Regge pole whose trajectory has an intercept larger than 1 and~ii ! a
fixed cut with the rightmost singularity located atj 51. The massive Yang-Mills theory can be considered as
a theoretical model for the~nonperturbative! Pomeron. We study the main structure and property of the
solution including the Pomeron trajectory at momentum transfer different from zero. The relation to the results
of Li and Tan for the massless case is discussed.@S0556-2821~98!03119-1#

PACS number~s!: 12.38.Bx, 11.15.Ex
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I. INTRODUCTION

Recent experimental data from the DESYep collider
HERA @1# on deep inelastic scattering at smallx and fixed
Q2 and from the Fermilab Tevatron on high-energy diffra
tion @2# revived interest in the long standing problem of t
Pomeron structure and of the relation between soft and h
processes at high energy.

For the hard Regge processes one can use the Balit
Fadin-Kuraev-Lipatov~BFKL! theory@3#, but we are lacking
a self-consistent theoretical approach to the soft Pome
and have to rely merely on general properties of analytic
causality, and crossing symmetry in developing an exten
and successful phenomenology of high-energy soft inte
tions @4,5,6#.

Some theoretical understanding of the Pomeron has b
derived from the study of the leading lns approximation of
superrenormalizable models such aslf3 in 311 dimen-
sions. The main features of the result have been include
the parton model of peripheral interactions and they are
basis of our understanding of the Pomeron structure@7,8#.
However, such models result in Regge singularities with
intercept of around21 and do not reproduce essential fe
tures of the Pomeron. Much effort has been applied to sh
the self-consistency of the Pomeron hypothesis in the fra
work of Reggeon field theory or Gribov’s Reggeon calcu
@9#. A Reggeon field theory approach to QCD has been
veloped in@10#.

On the contrary, for the hard Pomeron we can apply p
turbative QCD and derive a number of detailed predictio
@11#. The BFKL Pomeron@3# appearing in the leading lns
@'ln(1/x)# approximation plays a special role. The main fe
tures of the BFKL Pomeron, however, look different fro
properties of the soft Pomeron.

In this paper we study the BFKL Pomeron in spontan
0556-2821/98/58~7!/074010~13!/$15.00 58 0740
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ously broken (211)-dimensional gauge theory, using prev
ous results obtained in Ref.@12#. One can consider this
theory as a simple model for the soft Pomeron. Indeed
show that the resulting BFKL Pomeron is a normal movi
Regge pole with its interceptaP(0).1.

The coupling of this theory has the dimension of ma
The interaction is superrenormalizable. This results in
absence of scaling violations of structure functions due
ultraviolet divergences. On the other hand, the infrared s
gularities in the massless limit are stronger compared to
11)-dimensional QCD. The comparison allows us to d
cuss the influence of the ultraviolet and infrared singularit
on the Pomeron structure.

In QCD ~massless gluons in 311 dimensions! the known
way @13# of solving the BFKL equation relies on conforma
symmetry. This approach is useless in the case of mas
gauge bosons. Up to now the solution has not been kno
for the massive case. In the special case of 211 dimensions,
however, the equation exhibits a simple iterative struct
which allows one to construct a solution. The experien
gained in the (211)-dimensional theory will be helpful in
solving the corresponding equation in the physical case.

We obtain the exact solution both for the forward a
nonforward cases, and calculate the partial wave amplit
for the scattering of two massive gauge bosons. We inve
gate the Regge singularities in the complex angular mom
tum plane and their behavior in dependence of the mom
tum transfer.

The paper is based on an early investigation by two of
authors@12#, where the basic idea of the iterative solutio
was formulated for the general nonforward case. This inv
tigation was motivated in particular by@15#, where the
BFKL equation with the infrared regularization has be
considered. We discuss the relation of our result with the
by Li and Tan@14# where the massless (211)-dimensional
© 1998 The American Physical Society10-1
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gauge theory has been considered.

II. BFKL EQUATION WITH MASSIVE GLUONS

A. 311 dimensions

Let us start with a short reminder of the results obtain
within the leading logarithmic approximation~LLA ! of per-
turbation theory for the amplitudes of the high-energy sc
tering in the spontaneously broken Yang-Mills theory@3#.
We discuss the simplest case of the SU~2! gauge group with
symmetry breaking by one Higgs doublet~fundamental rep-
resentation!. This is the case discussed in@3#; we shall follow
the notation of that paper. The generalization to the SU~N!
gauge group is straightforward and is done in Sec. III
Notice that the details depend on the type of symme
breaking. We consider the case that all gauge bosons bec
massive.

The amplitude describing the elastic two-particle scat
ing AB→A8B8 can be decomposed into the amplitudes w
definite isotopic spinT in the t channel, withT50,1,2:

AAB
A8B85GAA8A

~0!GBB81GAA8
i A~1!GBB8

i
1GAA8

i j A~2!GBB8
i j .

~2.1!

The constantsG in Eq. ~2.1! depend on the kind of scat
tering particles~gauge bosons, fermions, Higgs particle!,
and they are all proportional to the coupling constantG}g;
for their explicit forms see@3#.

In what follows we shall concentrate on the singlet part
the amplitude ~2.1!. A(0) is related to the partial wave
Fv(q2) in the following way (j 511v):

A~0!~s,q!5
s

4i Ed2 i`

d1 i`

dvS s

m2D v e2 ipv21

sin pv
Fv~q2!,

t52q2, ~2.2!

Fv~q2!5
1

v

g2

~2p!3 E d2k

~k21m2!@~k2q!21m2#

3 f v~k,q2k!A0~q2!, ~2.3!

A0~q2!522S q21
5

4
m2D . ~2.4!

We write here and in the following the scalar products
transverse momenta in Euclidean notation. The funct
f v(k,q2k) satisfies the following integral equation~see Fig.
1 for notation and a graphic form of the equation!:

@v2a~k2!2a„~k2q!2
…# f v~k,q2k!

5
v

A~q2!
1

g2

~2p!3 E d2k1

~k1
21m2!@~k12q!21m2#

3K~k,k1 ,q! f v~k1 ,q2k1!, ~2.5!

with the kernel
07401
d
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K~k,k1 ,q!5A0~q2!1
2

~k2k1!21m2

3$~k21m2!@~k12q!21m2#

1~k1
21m2!@~k2q!21m2#% ~2.6!

and the Regge trajectory of the massive gluons:

a~k2!5 j 21

52
g2~k21m2!

~2p!3 E d2k1

~k1
21m2!@~k12k!21m2#

.

~2.7!

As a consequence of the integral equation~2.5! it is pos-
sible to express the partial waveFv(q2) through the solution
of Eq. ~2.5! on the mass shell:

f v~k,k2q!uk25~q2k!252m25Fv~q2!1A0
21~q2!. ~2.8!

B. 211 dimensions

In Refs. @12,15# it was established that in
(211)-dimensional space-time the high-energy scatter
amplitudes derived in the LLA are given by formulas simil
to the ones from the previous section. The main differenc
that the transverse space in this case is one dimensional
so the substitution

d2k

~2p!2→
dk

2p

should be made.
Therefore

Fv~q2!5
1

v

g2

~2p!2 E dk

~k21m2!@~k2q!21m2#

3 f v~k,q2k!A0~q2!, ~2.9!

where nowg2 carries the dimension of mass.
The Regge trajectory for massive vector bosons in th

11 dimensions is given by the simple rational expressio

FIG. 1. The graphic form of the BFKL equation.
0-2
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a~k2!52
g2~k21m2!

~2p!2 E dk1

~k1
21m2!@~k12k!21m2#

52
g2

2pm

k21m2

k214m2 . ~2.10!

For the function f v(k,q2k) we have here the one
dimensional Bethe-Salpeter-type equation

@v2a~k2!2a„~k2q!2
…# f v~k,q2k!

5
v

A~q2!
1

g2

~2p!2 E dk1

~k1
21m2!@~k12q!21m2#

3K~k,k1 ,q! f v~k1 ,q2k1!. ~2.11!

Our aim is to find the analytic solution of this equation.
is convenient to introduce the dimensionless variables

aS5
g2

4pm
, e5

g2

2pmv
5

2aS

v
, k→mk, q→mq.

~2.12!

Then Eq.~2.11! takes the form

F11eS k211

k214
1

~k2q!211

~k2q!214D G f v~k,q2k!

5A0
211eE dk1

2p S A0

~k1
211!@~k12q!211#

1
2

~k2k1!211

3Fk211

k1
211

1
~k2q!211

~k12q!211G D f v~k1 ,q2k1!, ~2.13!

A052~2q21 5
2 !. ~2.14!

The remaining equations of the previous section are
changed.

In order to present the main steps of our method for fi
ing the exact solution of Eq.~2.13! we consider first the
simpler case with vanishing momentum transferq50.

III. FORWARD SCATTERING AT HIGH ENERGY

In the case with vanishing momentum transferq50, Eq.
~2.13! takes the simpler form

~112e!~k21l2!

k214
f v~k!2A0

21

5eE dk1

2p S A0

~k1
211!2 1

4

~k2k1!211

k211

k1
211D f v~k1!,

~3.1!

where we have introduced the convenient notation

l25
412e

112e
. ~3.2!
07401
-

-

In this case we present the methods of solution both in
ordinate and momentum representations. In this way dif
ent aspects of the problem will be illuminated.

A. Coordinate space analysis

We find that it is convenient to work with the functio
fv(k)5(k211)21f v(k). Equation~3.1! is a linear inhomo-
geneous integral equation. We try to solve it in coordin
space by introducing

fv~k!5E dx eikxfv~x!. ~3.3!

The main advantage of the coordinate space is the fact
the BFKL kernel in Eq.~3.1! looks simple due to the relation

E dk

2p

eikx

k211
5

1

2
e2uxu. ~3.4!

Substituting Eq.~3.3! and Eq.~3.4! in Eq. ~3.1! we obtain

~112«!S 2
d2

d2x
1l2Dfv~x!

5
1

2A0
@3e2uxu12d~x!#12«S 2

d2

d2x
14De2uxufv~x!

2
«A0

4
@3e2uxu12d~x!#E dyfv~y!e2uyu, ~3.5!

where d(x) is the Eulerd function. We shall analyze Eq
~3.5! without the inhomogeneous term in order to investig
the leading eigenvalue«.

fv(x) should be bound for the Fourier transform~3.3! to
exist. At large uxu only the left-hand side of Eq.~3.5! is
important which leads to the asymptotic solutione2luxu.

Clearly the solution depends onuxu only because the ker
nel K(x) is an even function ofx. We introduce a new
function

Fv~x!5@112«~12e2uxu!#fv~x! ~3.6!

and a new variablez5e2uxu.
For the functionFv the equation looks as follows:

2z
d

dz
z

dFv~z!

dz
12z

dFv~z!

dz
d~z21!14Fv~z!

56«
Fv~z!

112«~12z!
1

A0«

4
@3z12d~z21!#

3E
0

1

dz8
Fv~z8!

112«~12z8!
. ~3.7!

Comparing the coefficients in front of thed functions we
obtain

dFv~z!

dz U
z51

5
eA0

4 E
0

1

dz8
Fv~z8!

112«~12z8!
, ~3.8!
0-3
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which will give the equation for the position of the pole
the angular momentum plane~the intercept of the Pomeron!
as will be shown below. The second condition

Fv~z!→0 at z→0 ~3.9!

follows from the largeuxu behavior of fv(x) discussed
above.

The important observation is that a solution of Eq.~3.7!
obeying Eq.~3.9! can be found in the form

Fv~z!5Cz@112«~12z!#1Fv
hg~z!, ~3.10!

whereFv
hg(z) is the solution of the homogeneous equatio

2z
d

dz
z

dFv
hg~z!

dz
14Fv

hg~z!56«
Fv

hg~z!

112«~12z!
,

~3.11!

and C is a constant inz, which, however, depends on th
function Fv :
th
r-

.

is
te
e

u
y

is

07401
C52
5«

81 5
2 «

E
0

1

dz8
Fv

hg

112«~12z8!
. ~3.12!

The solution of the homogeneous equation~3.11! can be
easily found. We obtain

Fv
hg~z!5Nzl

2F1S 21l,221l,112l,
2«z

112« D
5N

@112«~12z!#zl

112«

3 2F1S 31l,211l,112l,
2«z

112« D . ~3.13!

Here 2F1 is the Gauss hypergeometric function and the c
stantN can be defined from the normalization.

To find the value of« which corresponds to the boun
state we have to solve Eq.~3.8! which using well-known
properties of the hypergeometric function can be reduce
the form
522l2

42l2 2F1S 31l,211l,112l,
42l2

3 D1
~l221!~l21!

l224 2F1S 31l,l,112l,
42l2

3 D
5

2

11 16
5 @~12l2!/~l224!#

1

21l F 2F1S 21l,211l,112l,
42l2

3 D1
1

11l 2F1S 11l,211l,112l,
42l2

3 D G .
~3.14!
y

erm

.

on-
We solved this equation numerically and obtained
value«5«054.5934 which leads to the rightmost singula
ity at v5v052aS /«050.436aS in accordance with Ref
@12#.

The way we have solved the BFKL equation is remin
cent of the standard procedure of calculating bound sta
The rightmost singularity inv, a pole, corresponds to th
ground state. In the following subsection we solve Eq.~3.1!
in a momentum representation.

B. Momentum space analysis

We have to solve the linear inhomogeneous integral eq
tion ~3.1!. It is possible to construct the solution directly b
iterations. We rely on the relation

E
2`

` dk8

2p

1

~k2k8!211

1

k821l2 5
l11

2l@k21~l11!2#
.

~3.15!

This means that the action of the kernel on (k21l2)21 can
be expressed by the shift of the pole positionl→l11.

Let us formally consider the right-hand side of Eq.~3.1!
as a perturbation. We will consider first the solution of th
e

-
s.

a-

equation in the intervaleP@21/2,̀ #, wherel2.0. We ob-
tain the solution forl.0 first and continue then analyticall
to the complete complex plane ine or v.

If we omit the right-hand side of Eq.~3.1! ~the zeroth
iteration!, the solution is

f v
~0!~k!5

A0
21~k214!

~112e!~k21l2!
. ~3.16!

f v
(0)(k) can be represented as the sum of the constant t

plus the pole term;1/(k21l2). In order to find the contri-
bution arising from the next iteration (f v5 f v

(0)1 f v
(1)1¯)

let us substitute Eq.~3.16! into the right-hand side of Eq
~3.1!. We use now Eq.~3.15! and obtain

E
2`

`

K~k,k1 ,q50!
1

k1
21l2

dk1

2p

5
A0~l12!

4l~l11!2 1
2~k211!

l~k214! F 1

l11
1

l13

k21~l11!2G . ~3.17!

We write the resulting first iterationf v
(1) as a sum of pole

terms ink2. In this expansion there are three terms: the c
0-4
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BFKL POMERON IN (211)-DIMENSIONAL QCD PHYSICAL REVIEW D 58 074010
stant term, the pole term;1/(k21l2), and as a new term
not encountered in the zeroth iterationf v

(0), the pole term
;1/@k21(l11)2#. The same procedure can be applied
the subsequent iterations. It is easy to see that the expan
for thenth iteration will be given by the sum of the consta
term plus the pole termsAk /(k21lk

2), lk5l1k21, k
51, . . . ,n11. Therefore it is natural to look for the solutio
of Eq. ~3.1! in the form @12#

f v~k!5 f 01 (
n51

`
An

k21ln
2 , ln5l1n21. ~3.18!

Let us substitute this ansatz in Eq.~3.1!. Comparing co-
efficients of the pole terms on both sides we find the con
tion

An

An21
5

2«

112«

~l1n!~l1n11!

~n21!~2l1n11!
. ~3.19!

This recurrence relation has the following solution:

An5A1S 2«

112« D n21 ~l112!n21~l113!n21

~n21!! ~2l111!n21
, ~3.20!

where (a)n5a(a11)(a12)¯(a1n21). In this way we
arrive at generalized hypergeometric functio

p11Fp(b1¯bp

a1¯ap11uy) @16#. In particular, the ansatz~3.18! leads

to

f v~k!5 f 01
A1

k21l2 4F3~2l11,l21 ik,l22 ik
l3 ,l4 ,l1 ik,l2 ik uy!, ~3.21!

with ln5l1n21, l5l1 , andy52«/(112«).
There are still two coefficientsf 0 andA1 undetermined in

our solution~3.21!. The information contained in Eq.~3.1!
which has not been used yet can be expressed in terms o
conditions. The first condition appears as a result of the c
parison of residua of the pole term;1/(k21l2) @the pole at
k2→l2 has to be considered separately from other p
terms;1/(k21ln

2), nÞ1#. The second condition appears
a result of the comparison of the constant terms appearin
the expansion or, in other words, considering the left- a
right-hand sides of Eq.~3.1! at k→`.

Therefore the coefficientsf 0 ,A1 are the solution of the
following inhomogeneous system of linear equations:

2
1

A0e
5 f 0•a111A1•a12,

2
1

A0e
5 f 0•a211A1•a22, ~3.22!

with

a115
A0

4
1

4~l221!

~l224!
,

07401
ion

i-

wo
-

e

in
d

a1252
6

~l224!2 1
A0l3

4ll2
2 4F3~2l11,l3 ,l3

l4 ,l4 ,l,l2 uy!

1
4

~l224! 3F2~2l11,l
l4 ,l2 ,l21uy!

1
2l2

l~2l11! 4F3~2l12,l2,2
l4 ,l3 ,l21,1uy!,

a215
A0

4
1

2~2l225!

~l224!
,

a225
A0l3

4ll2
2 4F3~2l11,l3 ,l3

l4 ,l4 ,l,l2 uy!1
2

ll2
2F1~2l11

l4 ,l uy!.

~3.23!

Using well-known relations among the hypergeomet
functions@16# it is possible to express all higher hyperge
metric functions through the two basic2F1 functions

f a52F1~2l11
l2 ,l uy!,

f b52F1~2l11
l,l uy!. ~3.24!

We quote here only one of these relations:

4F3~2l11,l3 ,l3

l4 ,l4 ,l,l2 uy!5 f a

~7l224!

~l21!l2l3
2 1 f b

9l3

~l21!2l2
2l3

2 .

~3.25!

The solution of the system~3.1! expressed in terms of th
functions f a and f b has the form

A152
l2

2l3
2~l22!

A0e FA0

4 S f a

~13l2216!

l
118f bD

1 f a

~34l2264!~l221!

l~l22!l3
1 f b

48l2284

~l22!l3
G21

,

f 05
3A1

~l21!~l22!l3
2l2

3 S f al~112l2!1 f b

3~l412!

~l21!l2
D .

~3.26!

These formulas together with Eq.~3.21! represent the so
lution of the integral equation~3.1!.

It should be noted that in Ref.@12# instead of the first
equation of the system~3.22! @resulting from the comparison
of the residua of the pole terms 1/(k21l2) appearing on
both sides of Eq.~3.1!# another boundary condition wa
used, the absence of the normal thresholds:

f v~k2→24!52 f v~k2→21!. ~3.27!

This condition can be derived from Eq.~3.1! if one requires
that f v(k) be a regular function in the neighborhood ofk2

524. In terms of our ansatz this condition reads
0-5
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f 05A1F 1

l224 3F2~2l11,l21
l3 ,l3 ,l22uy!

2
2

l221 3F2~2l11,l
l4 ,l2 ,l21uy!G . ~3.28!

The iterative solution of Eq.~3.1!, f v(k), as described
above, is a function which is by construction regular in t
pointsk252n2. Therefore, the condition~3.28! should not
give an additional restriction on the function~3.21! as com-
pared with the conditions given by the system~3.22!. Indeed,
expressing the hypergeometric functions in Eq.~3.28! in
terms of the functionsf a and f b it can be checked directly
that the difference of the two equations in Eqs.~3.22! and the
condition ~3.28! are equivalent.

C. Regge singularities of the forward partial wave

We discuss now the implications of the obtained solut
f v(k) for the partial wave of the scattering amplitudeFv .
The partial waveFv can be calculated either by Eq.~2.9! or
by the mass-shell relation~2.8!. We have checked that bot
methods lead to the same result:

Fv~q50!5
21

A01 f
, ~3.29!

where

f 5
4

l224 S ~34l2264!~l221!

l
f a1 f b~48l2284! D

3S ~13l2216!

l
f a118f bD 21

. ~3.30!

Let us discuss the singularities ofFv considered as a
function of the complex variablev. The hypergeometric
functions are defined in terms of the hypergeometric se
which are convergent inside a circle of unit radius in t
variable y52e/(112e). The continued hypergeometri
functions are analytic in the complex plane of their argum
y, with a cut fromy51 to y5`. In the e plane this corre-
sponds to the cut appearing on the intervaleP@2`,
21/2#.

As a function of their parametersa1 , . . . ,ap11 ,
b1 , . . . ,bp the hypergeometric functions have only simp
poles if one of the lower parametersb1 , . . . ,bp approaches
a nonpositive integer valuen. We see from Eqs.~3.2!, ~3.24!
that both f a and f b have poles of this origin atl
5A(412e)/(112e)→2(11n)/2. Therefore these pole
lie on the second~unphysical! sheet of the square root.

Further singularities off v and, consequently, ofFv ap-
pear at points, where the determinant of the system of lin
equations~3.22! vanishes, i.e., at the zeros of the denomin
tor in Eq. ~3.29!:

A01 f 50. ~3.31!

This results in poles inv.
07401
n

s

t

ar
-

Analyzing the condition~3.31! numerically outside the
interval eP@2`,21/2#, where the cut is located, we hav
checked that there is only one Regge pole in the vicinity
the real axis located in

e5e054.5934, v5v05
g2

2pme0
. ~3.32!

The result coincides of course with the one obtained in
coordinate representation. Therefore we can conclude th
q50 the partial waveFv has the following singularities on
the physical sheet of the complexv plane. There is a finite
cut on the negative part of the real axes covering the inte
vP@v2 ,v1#, with v252g2/pm, v150. And there is a
single pole in the positive part of the real axis atv5v0 , Eq.
~3.32!.

Let us discuss the nature of the singularities at the bra
points. Near the right end point of the cut,v5v150 we
havee→1`, l→1, y→1, and

f a522S 11 log
2~l21!

3 D1O„~l21!log~l21!…,

f b521O„~l21!log~l21!…. ~3.33!

Therefore the partial wave behaves like

Fv→2A0
21116A0

22/log~l21!. ~3.34!

Near the left end point of the cut,v5v2 , we havee→
21/2, l→1`, y;2l2/3→2`, and

f a5
el~ log 1222 log l!

Apl
@11O~1/l!#, ~3.35!

f b5
el~ log 1222 log l!l log l

Apl
@11O~1/l!#. ~3.36!

Therefore the partial wave behaves like

Fv→2
1

A0124/3
2

1

72~A0124/3!2log l
. ~3.37!

Note that the solution of the corresponding homogene
equation can be obtained from the solution of the inhomo
neous equationFv which we have just found. The spectru
consists of one discrete levelv5v0 and the continuous par
vP@v2 ,v1#. The corresponding eigenfunctions can
found as follows: the residue ofFv of the pole atv5v0
gives~up to the normalization constant! the wave function of
the discrete level and by calculating the discontinuity ofFv

on the cut it is possible to find the eigenfunctions belong
to the continuous spectrum.

We would like to add a comment on how the results d
pend on the number of colors,N. In the case of arbitraryN
we have to substitute, in the above equations@3#,
0-6
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g2→g2
N

2
, A0→22S q21

N211

N2 m2D , e→e
N

2
.

~3.38!

As in the caseN52 there is a leading Regge pole at arbitra
N located atv0

(N) :

v0
~N!5

g2

2pm

N

2

1

e0
~N! . ~3.39!

e0
(N) is calculated in analogy toe0 above. We find thate0

(N)

decreases slowly withN approaching a limite0
(`) : e0

(2)

54.5934,e0
(3)53.8000,e0

(4)53.5693,e0
(`)53.3025.

IV. NONFORWARD SCATTERING

A. Solution of the equation

The main steps which have been made in Sec. III B
derive the solution of the forward equation can be gene
ized to find the solution of the nonforward equation~2.13!.
The expression appearing on the left-hand side of Eq.~2.13!
in the square brackets@¯# can be rewritten in the form

@¯#5
~112e!@x21~l1!2#@x21~l2!2#

@~x2q/2!214#@~x1q/2!214#,
~4.1!

where
07401
o
l-

x5k2q/2,

~l6!25
415e

112e
2

q2

4
6A9e22q2~415e!~112e!

~112e!2 .

~4.2!

Now, in analogy with the iterative way of finding th
solution for q50, we see that the zeroth iteration can
expanded into a sum of the constant term and two p
terms:;1/@x21(l1)2# and ;1/@x21(l2)2#. It should be
noted that the zeroth iteration forf v(k,q2k) depends on the
specific combination of the momentak andq2k; i.e., it is a
function of the variablex25(k2q/2)2. The notation x
should not be confused with the position. Calculating t
next iterations it can be seen that this feature remains
and the solution can be represented in the following fo
@12#:

f v~x2!5 f 01 (
n51

` An
1

x21~ln
1!2 1 (

n51

` An
2

x21~ln
2!2 ,

ln
65l61n21. ~4.3!

Substituting this ansatz into Eq.~2.13! we find two recur-
rence relations similar to the one for the caseq50. Their
solutions can be written in the form
e

An
6

A1
6 5S 2e

112e D n21 1

~n21!!

3
~l2

6!n21~l4
61 iq/2!n21~l4

62 iq/2!n21~l62d1
1!n21~l62d2

1!n21~l62d1
2!n21~l62d2

2!n21

~l6!n21~2l611!n21~l61l711!n21~l62l711!n21~l2
61 iq/2!n21~l2

62 iq/2!n21
, ~4.4!

with

da
b52

1

2
1a

1

2
A52q212bA423q2, a,b56. ~4.5!

It is possible to rewrite our ansatz, Eq.~4.3!, in terms of the generalized hypergeometric functions

f v~x2!5 f 01A1
1

1

x21~l1!2 9F8~
l1,2l111,l11l211,l12l211,l

2
11 iq/2,l

2
12 iq/2,l

2
11 ix,l

2
12 ix

l2
1 ,l4

1
1 iq/2,l4

1
2 iq/2,l12d1

1 ,l12d2
1 ,l12d1

2 ,l12d2
2 ,l11 ix,l12 ix

uy!

1A1
2

1

x21~l2!2 9F8~l1↔l2uy!. ~4.6!

The conditions which determine the coefficientsf 0 , A1
1 , A1

2 are also analogous to the ones used in the case ofq50.
The condition obtained by taking the limitx→`, or k→`, has the form

2
1

A0e
5 f 0F A0

q214
1

2e21

e G1A1
1F A0l3

1

l1~q214!@~l2
1!21q2/4# 7F6~

l
3
1 ,2l111,l11l211,l12l211,l

3
11 iq/2,l

3
12 iq/2

l4
1 ,l4

1
1 iq/2,l4

1
2 iq/2,l12d1

1 ,l12d2
1 ,l12d1

2 ,l12d2
2

uy!

1
2l2

1

l1@~l2
1!21q2/4# 7F6~

l
2
1 ,2l111,l11l211,l12l211,l

3
11 iq/2,l

3
12 iq/2

l3
1 ,l4

1
1 iq/2,l4

1
2 iq/2,l12d1

1 ,l12d2
1 ,l12d1

2 ,l12d2
2

uy!G1A1
2@l1↔l2#. ~4.7!

We have found that it is convenient to use as the last two conditions the absence of normal thresholds~see discussion at th
end of Sec. III B!:
0-7
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f vXS q

2
62i D 2C52 f vXS q

2
6 i D 2C. ~4.8!

The condition corresponding to the lower signs is

f 05A1
1F 1

@~l1!22~21 iq/2!2# 8F7~
l1,2l111,l11l211,l12l211,l

2
11 iq/2,l

2
12 iq/2,l1212 iq/2

l2
1 ,l3

1
1 iq/2,l4

1
2 iq/2,l1222 iq/2,l12d1

1 ,l12d2
1 ,l12d1

2 ,l12d2
2

uy!

2
2

@~l1!22~11 iq/2!2# 8F7~
l1,2l111,l11l211,l12l211,l

3
11 iq/2,l

2
12 iq/2,l12 iq/2

l2
1 ,l4

1
1 iq/2,l4

1
2 iq/2,l1212 iq/2,l12d1

1 ,l12d2
1 ,l12d1

2 ,l12d2
2

uy!G1A1
2@l1↔l2#. ~4.9!

The other equation is obtained from the above one by the substitutionq↔2q.
The difference of these two conditions can be written in the limitq→0 as

A1
1H 1

2 iq
1O~1!J 1A1

2$2 iCq1O~q2!%50. ~4.10!

Therefore

A1
15A1

2@Cq21O~q3!#, ~4.11!

whereC is some constant.
We see that atq→0 the series of poles;An

1/@x21(ln
1)2# decouples from the solution in accordance with our previo

considerations forq50.
In this way we have solved Eq.~2.11! for arbitrary momentum transferq. The solutionf v is given by Eq.~4.6! with the

coefficientsf 0 , A1
1 , andA1

2 determined from linear system of equations~4.7!, ~4.8!, ~4.9!.

B. Properties of the partial wave

We investigate the partial waveFv(q2) obtained from the solution by Eq.~2.9!:

Fv~q2!5
eA0

q214 F f 01
A1

1l3
1

l1@~l2
1!21q2/4# 7F6~

l
3
1 ,l

3
11 iq/2,l

3
12 iq/2,2l111,l11l211,l12l211

l4
1 ,l4

1
1 iq/2,l4

1
2 iq/2,l12d1

1 ,l12d2
1 ,l12d1

2 ,l12d2
2

uy!

1
A1

2l3
2

l2@~l2
2!21q2/4# 7F6~

l
3
2 ,l

3
21 iq/2,l

3
22 iq/2,2l211,l11l211,l22l111

l4
2 ,l4

2
1 iq/2,l4

2
2 iq/2,l22d1

1 ,l22d2
1 ,l22d1

2 ,l22d2
2

uy!G . ~4.12!
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First of all it should be noted that all equations above
written under the assumption that we choose the conven
for the square root expression forl6 with the real parts of
l6 being positive for smallq and reale.2 1

2 .
If q2> 9

10 , l6 are complex conjugate numbers ife be-
longs to the interval @e1 ,`#, where e15(13q2

23qAq2116)/2(9210q2). Since 21/2,l1,0, for any
positivev and therefore for any positivee, l6 are complex
conjugate. Let us choose by the definition ofl1 the expres-
sion which has a negative imaginary part~for q.0!.

In the following we study the Regge singularities and t
behavior at2q25t→2` and at positivet up to the first
thresholdt54.

Since the solution behaves smooth atq→0, we conclude
that at smallq the structure of the Regge singularities
similar to what we have found forq50. The position of the
leading Regge pole depends ont52q2. The result of the
numerical calculations is plotted in Fig. 2 for values oft
from 24 up to the vicinity of the first threshold att54. The
trajectory is almost linear in the vicinity oft50 with the
approximate slope 0.34aS /m2 as shown in Fig. 3.
07401
e
n

We would like to mention that the Pomeron trajectory h
about the same slope@aP8 (0)# as the gluon trajectory. More
interesting would be, within the same approach, to comp
the Pomeron trajectory with the Reggeon trajectory. In or
to do so one has to calculate the Reggeon trajectory i
11 QCD using the techniques developed in Ref.@21#. It will
be a challenging problem for the future.

At larger utu the trajectory deviates strongly from the lin
ear behavior. It goes to infinity fort approaching the thresh
old t54 and returns from2` above the threshold. The be
havior of the Pomeron trajectory neart54 has been obtained
also by solving Eq.~2.13! in the asymptotics of largev and
t→4 with the result

v0~ t !u t→45
g2

2pm

A0

42t
. ~4.13!

This confirms the numerical result of Fig. 2.
The branch pointsv150, v252g2/pm do not depend

on t. However, the singularities located at the unphysi
0-8
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sheet can come up to the physical sheet ast increases. Indeed
both the poles arising from the lower coefficientsb i in the
hypergeometric functions and the poles at the vanishing
terminant depend onq. There are also branch points arisin
from the square roots in the expressions ofl6 in terms ofv,
Eq. ~4.2!, the position of which depend onq. The numerical
investigation of the solution shows that besides of the p

FIG. 2. The trajectory of the Pomeron pole in units ofg2/2pm.
The momentum transfer is given in units ofm2.

FIG. 3. The behavior of the Pomeron trajectory in the vicinity
t50.
07401
e-

e,

which was originally the leading one, another pole emer
from the unphysical sheet ift crosses the threshold value.

Now we investigate the behavior att→2`. In the limit
of largeq we have

l65k7
iq

2
1OS 1

qD , k5A415e

112e
,

and

da
b5a

iq

2
1t~a•b!, t~a!5

a)21

2
.

Inserting these relations into the linear system we h
found that, asymptotically inq,

f 052
1

2q2 ,

A1
152A1

2 ,

A1
15 iq f 0H 2 f 2

k11
1

2 f 4

k21
2

f 1

k12
2

f 3

k22J 21

,

where

f 153F2~2k11,k11
k1t~1 !,k1t~2 !,k12uy!,

f 253F2~2k11,k12
k1t~1 !,k1t~2 !,k13uy!,

f 354F3~2k11,k11,k21
k1t~1 !,k1t~2 !,k13,k22uy!,

f 454F3~2k11,k11,k
k1t~1 !,k1t~2 !,k13,k21uy!.

As a result we obtain from Eq.~4.12! the asymptotics of
the partial wave:

Fv~q2!uq2→`→
e

q2 H 12
2 f 2

k11Y S 2 f 2

k11
1

2 f 4

k21

2
f 1

k12
2

f 3

k22D J .

The behavior ofFv near the right branch pointv50 is
Fvuq2→`;const/v. This is to be compared with the behavio
at the same point forq50, Fvuq250;const. The numerica
calculation of the Pomeron trajectory~see Fig. 2! shows that
the pole is moving towards the right branch point with d
creasingt. From both observations we conclude that t
Pomeron pole moving witht reaches the right branch poin
v50 asymptotically fort52q2→2`.

V. COMPARISON WITH THE MASSLESS CASE

Li and Tan @14# investigated (211)-dimensional QCD
without symmetry breaking, i.e., for massless gluons, a
obtained just a fixed cut starting atj 51 as the leading sin-
gularity in the vacuum exchange channel. We try to und
stand the relation of their result to ours, in particular wheth
0-9



ow

r

ec
-

-
o

th
It

d
an

o

of
les

e
at

nt
-

to

-
-

of
ss-

um

nch

de

a-

D. Yu. IVANOV et al. PHYSICAL REVIEW D 58 074010
the Pomeron pole is absent in the massless case and h
disappears atm→0.

The infrared singularities in 211 dimensions are stronge
compared to 311 dimensions. The limitm→0 has to be
performed carefully. Clearly, the scattering amplitude of v
tor bosons has no finite limit atm→0. We consider the scat
tering of two color dipoles of transverse sizesx1 ,x2 , which
is the case studied in@14#. The partial wave of the dipole
dipole forward scattering is given by the convolution of tw
dipole impact factors@14# ~herex0 is the size of the dipole!

FD~x,k!5A sin2 kx0 , ~5.1!

with the Reggeon Green function

Fv
D~x10,x20!5E dk1dk2

~2p!2

FD~x10,k1!

k1
21m2

3Gv~k1 ,k2!
FD~x20,k2!

k2
21m2 . ~5.2!

The Reggeon Green function is the particular solution of
BFKL equation withd functions as inhomogeneous term.
is related to our solutionf v(k) which is more closely related
to the vector boson scattering as follows:

A0

v~k21m2!
f v~k!5E

2`

`

Gv~k,k1!
dk1

k1
21m2 . ~5.3!

Near the Pomeron pole we have

Gv~k1 ,k2!'
c0~k1!c0~k2!

v2v0
, v05

g2

m

1

2pe0
, ~5.4!

wherec0(k) is the wave function of the two-boson boun
state corresponding to the Pomeron. It is normalized to 1
can be obtained fromf v by studying Eq.~5.3! nearv0 . e0 is
the number quoted in Eq.~3.32!.

Restoring the mass dependence we obtain, from the s
tion ~3.21!,

f v~k!5
1

m2 fS g2

m

1

2pv
,

k

mD . ~5.5!

The solution depends smoothly onk and the integral with a
bounded functionFD(x,k) exists. Therefore alsoc0(k) has
these features

c0~k!5
a

Am
f̃S k

mD , ~5.6!
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with a being some numerical constant. The contribution
the Pomeron pole to the scattering of two colorless dipo
with sizesx10 andx20 is given at smallm by the partial wave

Fv
D'

bg4

v2
g2

m

1

2pe0

mx10
2 x20

2 . ~5.7!

Here b is some number. This leading contribution to th
forward scattering of dipoles does not behave smoothly
m→0. The pole goes to plus infinity, resulting in a diverge
contribution. Expanding ing2 we observe that the diver
gence starts at theg4 term, corresponding to ans-channel
intermediate state with two additional gluons.

This observation is confirmed by calculatingGv(k1 ,k2)
iteratively and evaluating the corresponding contribution
the dipole scattering partial wave, Eq.~5.2!, in the following
way. We have to iterate Eq.~2.13! with the inhomogeneous
term replaced byd(k12k2), which is the zeroth approxima
tion of Gv . Unlike above in Secs. III B and IV A the itera
tion now proceeds order by order ing2 or e. ReplacingGv in
Eq. ~5.2! by d(k12k2) we obtain that the region ofk1 ,k2
;m gives a negligible contribution form→0. Taking the
first order approximation ine for Gv leads to a finite contri-
bution of that small-k region. With theO(e2) approximation
for Gv we obtain a contribution divergent like 1/m. Starting
from this order of perturbative expansion the amplitude
forward dipole-dipole scattering does not exist in the ma
less limit.

Consider now the scattering at nonvanishing moment
transfer. Let us fix the valuetphys in physical units (GeV2)
and look at the relation to our dimensionless variablet5
2q2 ~in units of m2!:

tphys5tm2. ~5.8!

Providedtphys,0, the corresponding value oft approaches
2` at m→0. Thus the Pomeron pole approaches the bra
point at j 51.

The singular contribution~5.7! appearing only attphys
50 is absent in the infrared finite dipole scattering amplitu
constructed in@14#.

Let us now study the massless limit directly in the equ
tion. We restore the masses in Eq.~2.13! and do the shiftk
→k2q/2 as in Eq.~4.1!:
F11eS ~k2q/2!21m2

~k2q/2!214m2 1
~k1q/2!21m2

~k1q/2!214m2D G f v~k,q!

5A0
211emE dk1

2p S A0

@~k11q/2!21m2#@~k12q/2!21m2#
1

2

~k2k1!21m2 F ~k1q/2!21m2

~k11q/2!21m2 1
~k2q/2!21m2

~k12q/2!21m2G D
3 f v~k1 ,q!. ~5.9!
0-10
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We perform the Fourier transformation with respect tok,

f v~x,q!5E dk

2p
e2 ikxf v~k,q!, ~5.10!

and obtain

~112e22ee2muxu! f v~x,q!2
3

2
emE dy fv~y,q!cos

q

2
~y2x!e22mux2yu

5
1

A0
d~x!1ed~x!S A0

q214m2 12D E dy fv~y,q!e2muyu cos
q

2
y1

2A0emd~x!

q~q214m2!
E dy fv~y,q!e2muyusin

q

2
uyu

2eme2muxu E dy fv~y,q!cos
q

2
~y2x!e2mux2yu@2 sgn~x!sgn~x2y!11#. ~5.11!
of

e

p

.

ole

size
-

.

of
It should be stressed that Eq.~5.11! is the general BFKL
equation for 211 QCD in coordinate space at any value
the momentum transfert52q2.

As discussed above the behavior atm50 is different for
forward and nonforward cases. Indeed the coefficient of s
ond term on the right-hand side~RHS! e„A0 /(q214m2)
12…, vanishes atm→0 for qÞ0 but behaves like 1/m if we
put q50 before taking the limitm→0. We discuss in the
following the massless limit in the nonforward case. We a
proximate Eq. ~5.11! at m→0, expanding in particular
e2muxu, keeping termsem ~becausee5g2/2pm!. In this way
we obtain

~112emuxu! f v~x,q!2
1

2
emE dy fv~y,q!cos

q

2
~x2y!

5
1

A0
d~x!24d~x!

em

q E dy fv~y,q!sin
q

2
uyu

22em sgn~x!E dy fv~y,q!cos
q

2
~x2y!sgn~x2y!.

~5.12!

In terms of the functionf̃ v(x,q) defined as

f v~x,q!52S d2

dx2 1
q2

4 D f̃ v~x,q!, ~5.13!

Eq. ~5.12! has the following simple form:

S d2

dx2 1
q2

4 D @~112emuxu! f̃ v~x,q!#52
d~x!

A0
. ~5.14!

The solution has the form

~112emuxu! f̃ v~x,q!52
1

qA0
sin

q

2
uxu
07401
c-

-

1Asin
q

2
x1B cos

q

2
x,

~5.15!

whereA,B are some arbitrary constants.
The original functionf v(x,q) can be calculated readily

We write here only part of the result withA5B50, which
corresponds to certain boundary conditions:

f v~x,q!5
1

A0
F d~x!

112emuxu
2

2em cos~q/2!uxu
~112emuxu!2

1
8~em!2sin~q/2!uxu

q~112emuxu!3 G . ~5.16!

This result has similarities to the expression for the dip
densitynv(x0 ,x,q) derived by Li and Tan@Eq. ~3.4! in the
second paper of Ref.@14##. Our f v(x,q) is not the dipole
density and our equation does not know about the dipole
on which nv(x0 ,x,q) depends essentially. However, intro
ducing the dipole sizex0.0 by replacing the RHS of Eq
~5.14! by 2d(x02uxu) and restricting the range inx to uxu
Þ0, we obtain

Gv~x,x0 ;q!5S d2

dx2 1
q2

4 D 1

@112emuxu#
2

q
u~x02uxu!

3sin
q

2
~x02uxu!

5
d~x02uxu!
112emuxu

1u~x02uxu!

3F16~em!2sin~q/2!~x02uxu!
q~112emuxu!3

1
4em cos~q/2!~x02uxu!

~112emuxu!2 G . ~5.17!

We denote byGv(x,x0 ;q) the analogon off v(x,q), Eq.
~5.13!, of the modified equation. This particular solution
0-11
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the modified equation~5.14! reproduces the dipole densit
nv(x0 ,x,q) of Ref. @14# up to terms proportional tod(x).

VI. SUMMARY

The reduction of the dimensionality to 211 simplifies the
high-energy scattering amplitudes and in particular
BFKL equation. The equation can be solved analytica
even in the case with masses introduced by spontan
symmetry breaking.

In the forward case we have discussed the solution bot
coordinate and momentum space. In coordinate space
similarity of the Pomeron pole to a two-gauge-boson bou
state has been emphasized, whereas in the momentum r
sentation the iterative structure becomes transparent, w
has been used further to solve the equation in the nonforw
case.

We obtain the partial wave for the scattering amplitude
vector bosons in an analytic form. This allows us to study
leading and nonleading Regge singularities and their dep
dence on the momentum transfer both for negative and p
tive t.

At small momentum transfer we find a leading Reg
pole, the Pomeron, with an intercept abovej 51 and a tra-
jectory approximately linear for smallt. Beside this pole
there is a branch cut whose right end is located atj 51,
independent oft. The Pomeron pole approaches the cut
large negativet.

We have compared our result with the one by Li and T
@14# and have discussed the peculiarities of the mass
limit. This limit is different for the forward and nonforward
cases. The massless limit of our result for the nonforw
amplitude is close to the result found by Li and Tan w
used a quite different approach. A modified equation~by
introducing the dipole size as an additional parameter! repro-
duces the result of these authors. However, in the forw
case the Pomeron pole leads to a divergent contribut
which is absent in the amplitude of Ref.@14#.

Although the model resides in unphysical 211 dimen-
sions, some features can be related to the phenomenolo
high-energy scattering. The leading Pomeron pole which
clearly separated from nonleading singularities correspo
to the common idea about the soft~nonperturbative!
Pomeron. Furthermore, a situation with a pole with an int
cept larger than 1 and a fixed cut just at 1 would result i
change of thes dependence witht. It is interesting to note
tt.
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that the constant term in the high-energy asymptotics, wh
corresponds to the cut contribution, has been used to
scribe the experimental data on the high-energy behavio
total cross sections@17#, inclusive spectra@18#, and diffrac-
tive dissociation@19#.

The divergence of the trajectory att→4m2 seems to ex-
hibit an infinite series of bound states of two massive gluo
This would differ clearly from the features of the hadron
reality. We understand that this is an artifact of the lead
ln s approximation, since a potential of finite range crea
by massive boson exchange cannot have an infinity of bo
states.

The simplicity of the model makes it useful for furthe
investigations. Including fermions the amplitudes with qua
tum number exchange could be constructed. There will be
direct analogy either to the Dokshitzer-Gribov-Lipato
Altarelli-Parisi ~DGLAP! @20# equation or to the nonlinea
double-logarithmic equation@21#. More interesting could be
the study of amplitudes with multiple exchange of Reggeiz
gluons, in particular with the exchange of negative cha
parity ~odderon!.

The model can serve as a testing ground for the non
turbative treatment of diffractive processes@22,23#, and the
high-parton-density effective action@24#. Also, the effective
action of high-energy scattering@25# and Gribov’s Reggeon
field theory@9# can be studied in the simpler situation of
11 dimensions.
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