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Confinement and the supercritical Pomeron in QCD

Alan R. White*
High Energy Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Illinois 60439

~Received 30 January 1998; published 4 September 1998!

Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD Pomeron,
suggesting a single-gluon inner structure rather than that of a perturbative two-gluon bound state. This paper
derives a high-energy, transverse momentum cutoff, confining solution of QCD. The Pomeron, in a first
approximation, is a single Reggeized gluon plus a ‘‘wee-parton’’ component that compensates for the color
and particle properties of the gluon. This solution corresponds to a supercritical phase of Reggeon field theory.
Beginning with the multi-Regge behavior of massive quark and gluon amplitudes, Reggeon unitarity is used to
derive a Reggeon diagram description of a wide class of multi-Regge amplitudes, including those describing
the formation and scattering of bound-state Regge poles. When quark and gluon masses are taken to zero, a
logarithmic divergence is produced by helicity-flip Reggeon interactions containing the infrared quark triangle
anomaly. With the gauge symmetry partially broken, this divergence selects the bound states and amplitudes of
a confining theory. Both the Pomeron and hadrons have an anomalous color-parity wee-parton component. For
the Pomeron the wee-parton component determines that it carries negative color charge parity and that the
leading singularity is an isolated Regge pole.
@S0556-2821~98!01319-8#
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I. INTRODUCTION

This is the first of two articles that will report our rece
progress in ‘‘understanding the Pomeron in QCD.’’ A com
plete understanding of the Pomeron requires no more or
than solving the theory at high energy. While high ener
can be expected to keep the theory as close as possib
perturbation theory, nevertheless the nonperturbative pro
ties of confinement and chiral symmetry breaking m
emerge. Therefore this paper~and that following! necessarily
also reports progress in ‘‘understanding confinement and
ral symmetry breaking.’’

Our formalism is entirely based within the high-energyS
matrix. We start with the multi-Regge behavior of mass
quarks and gluons and arrive at theS matrix for hadrons via
an extended analysis of infrared divergences within mu
Regge amplitudes. Rather than appearing as consequenc
a nonperturbative vacuum, both confinement and chiral s
metry breaking are properties of the bound-state~Regge
pole! spectrum. It is a crucial strength of the multi-Reg
formalism that we can simultaneously study the formation
bound states and their scattering amplitudes. Hadrons,
the Pomeron by which they scatter, emerge together
Regge pole states at spacelike momentum transfer. Ind
there is a close link between confinement, chiral symme
breaking, and the Regge pole property of the Pomeron.

The main purpose of this first paper is to establish
relationship, which we initially suggested over 17 years a
@1#, between a supercritical Pomeron phase of Reggeon
theory @2# ~RFT! and a confining solution of QCD with th
gauge symmetry broken to SU~2! ~‘‘partially broken
QCD’’ !. In this phase the Pomeron is, approximately,
SU~2! singlet Reggeized gluon plus a ‘‘wee-parton’’ comp

*Email address: arw@hep.anl.gov
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nent that compensates for the particle properties of the glu
The restoration of SU~3! gauge symmetry is directly relate
to the critical behavior@3# of the Pomeron. However, in th
RFT formalism, the transverse momentum cutoff is a r
evant parameter at the critical phase transition. This imp
that the supercritical phase can appear with the full ga
symmetry if a physical cutoff is present. Alternatively, th
largeQ2 of deep-inelastic scattering can be viewed as int
ducing a ~local! lower transverse momentum cutoff whic
effectively removes the critical behavior altogether and~lo-
cally! keeps the theory in the supercritical phase as the
gauge symmetry is restored.

We will postpone, until the second paper, almost all d
cussion of the many issues of principle and interpretat
involved in connecting our results to other, more conve
tional, field theory formalisms. However, if our results ca
be interpreted within a field-theoretic framework, it is like
to be that of light-cone quantization. In this formalism it
hoped@4# that the zero-mode~zero-longitudinal-momentum!
component of physical states can reproduce the nontri
vacuum properties of confinement and chiral symme
breaking. At infinite momentum the ‘‘zero modes’’ are sim
ply the ‘‘wee partons,’’ carrying finite momentum. Corre
spondingly, in our solution of partially broken QCD, both th
Pomeron and hadrons have a zero-momentum compo
which we refer to as a ‘‘wee-parton component.’’ This com
ponent, which in the past we have called a ‘‘Reggeon c
densate,’’ is closely related to the fermion anomaly and c
ries ‘‘anomalous’’ color parity~i.e., it contains vectorlike
multigluon combinations carrying positive color parity: c
the three-gluon component of the winding-number curren!

The anomalous color parity of the wee-parton compon
determines that the Pomeron carries negative color ch
parity overall and also that its leading singularity is a Reg
pole with a trajectory that is exchange degenerate with
of a massive, Reggeized, gluon. There is confinement in
© 1998 The American Physical Society08-1
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
the states carry color zero and have a completeness pro
and also there are no massless multigluon states. Note
the Balitskii-Fadin-Kuraev-Lipatov~BFKL! Pomeron@5# ap-
pears in the positive color parity sector. Our analysis imp
that it does not couple to the physical states. As we w
discuss in detail in the second paper, the color parity pr
erty of the wee-parton component also determines the ch
symmetry-breaking nature of the hadron spectrum. In f
without chiral symmetry breaking it would be inconsiste
for a negative color parity Pomeron to describe total cr
sections and the BFKL Pomeron would not decouple. Wh
it may eventually be possible to formulate our solution
terms of a light-cone quantization procedure which leads
rectly to the correct properties of physical states, we wo
like to emphasize that we have been able to understand
physics of the wee-parton component only by determin
the role of the fermion anomaly in the construction of t
fully unitary, high-energy, multiparticleS matrix. This is a
very complicated and intricate problem which it is hard
imagine studying outside of the multi-Regge framework
use.

The discovery of deep-inelastic scaling provided the i
petus for the original development of the parton model a
underlaid the formulation of QCD as the theory of the stro
interaction. Deep-inelastic scaling violations now provi
much of the information on short-distance partonic struct
that is the basis for the application of perturbative QCD t
wide range of hadronic physics. We believe that the obs
vation @6# of diffractive deep-inelastic scattering at th
DESY ep collider HERA will turn out to be almost as sig
nificant in developing an understanding of how QCD d
scribes strong-interaction physics. This is because it tells
how the parton model operates beyond the simplest sh
distance processes and, in doing so, provides vital infor
tion on the wee-parton component of physical states.
Pomeron, which, as we have already implied, is deeply
to the long distance dynamics of confinement and ch
symmetry breaking, is studied experimentally at short d
tances. By analyzing diffractive scaling violations, H1 ha
shown@7# that, in deep-inelastic scattering, the Pomeron
haves like a single gluon~rather than the perturbative two
gluon bound-state BFKL Pomeron@5#!. Within perturbative
QCD, gauge invariance makes this a very difficult prope
to realize. From our perspective, the H1 analysis@7# implies
@8# that at intermediateQ2 values the Pomeron is effectivel
in the supercritical phase. The phenomenon can also be
derstood directly within QCD, once the physics of the we
parton component is incorporated@8#.

We first suggested that the Pomeron could appear
single ~Reggeized! gluon in @1#. The idea that the Pomero
should carry negative color parity and that this is closely t
to chiral symmetry breaking was also present. Although t
long paper was accepted for publication, the journal Edit
insisted it be split in two. After eventually conceding th
point, we then decided that further development was nee
before ‘‘final’’ publication. We first attempted to do this i
@9# by ~partially! recasting theS-matrix language of@1# in the
more field-theoretic language of light-cone quantizatio
However, essentially because of problems with our treatm
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of the fermion anomaly, the results were still unsatisfacto
We then returned to theS-matrix formalism of multi-Regge
theory and, in two lengthy articles@10,11#, laid out what we
hoped could be developed into a complete dynamical un
standing of the Pomeron in QCD. As in our original pap
@1# ~and the present paper!, our aim was to use general mult
Regge theory to carry out a combined infrared and mu
Regge limit analysis, the essential idea being always the
sociation of supercritical RFT with partially broken QC
and the identification of the critical Pomeron phase transit
@3# with the restoration of the full gauge symmetry.

Unfortunately the arguments presented in@11# were still
very incomplete. Even so, they gave a fundamentally diff
ent picture of the Pomeron to what might be called the c
ventional, perturbative, BFKL picture@5#. In addition to the
incompleteness of the arguments, the techniques we w
using were~and still are! unfamiliar to most theorists study
ing QCD. The analysis also depended on our version of
supercritical Pomeron which was the subject of heated c
troversy in the pre-QCD years of RFT@12#. As a result, we
anticipated that the validity of our arguments would ta
many years of theoretical study to resolve. We certainly
not anticipate that experiment could play a role in what
regarded as fundamentally a~deep! theoretical issue.

Remarkably, as we discussed above, it now appears
experiment is providing significant support for our pictur
The experimental results have encouraged us to return to
earlier work and make another major effort to put it on firm
ground and to make it accessible. The outcome is the pre
article ~and its successor!. This time around, we believe w
really have solved the problem. A major reason for the
completeness of our earlier work was ignorance as to how
construct the complicated Reggeon diagrams that are ne
sary to discuss the simultaneous formation and scatterin
bound states. The solution of this problem via Reggeon u
tarity and the realization of the special role played
‘‘helicity-flip vertices’’ is, we believe, a significant achieve
ment of the early sections of this paper. Helicity-flip vertic
only appear as interactions coupling dynamically differe
Reggeon channels. They do not appear as interactions w
the normal Reggeon diagrams that, for example, gene
Pomeron RFT. The other central difficulty in our previo
work was that, although we understood qualitatively that
fermion anomaly should have a crucial infrared dynami
role, we were unable to pin down specifically how this is t
case. The interrelation with ultraviolet regularization seem
inevitably to lead to unresolvable field-theoretic complic
tions. In fact, the solution of the formal Reggeon diagra
problem has led us to the realization that the anomaly en
just in the helicity-flip vertices. In our new development th
anomaly plays a straightforward infrared role~although ul-
traviolet regularization is still involved!. As a result, it is
clear that the infrared divergence phenomenon we have b
searching for is@when the gauge symmetry is broken
SU~2!# a very simple overall ‘‘volume’’ divergence directly
related to confinement. Although the global picture we p
sented in our previous papers reemerges, the details are
ferent in very important ways.

RFT is not a conventional field theory. It is really just
8-2
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CONFINEMENT AND THE SUPERCRITICAL POMERON IN QCD PHYSICAL REVIEW D58 074008
diagrammatic technique set in field-theoretic language@2#.
Since it has a non-Hermitian interaction, it is not appar
that there is any kind of ‘‘vacuum state’’ in the theory. As
result, the physical meaning of a ‘‘vacuum expectati
value’’ for the Pomeron field, together with the consequ
‘‘vacuum production of Pomerons,’’ has always been p
ticularly elusive. This was, at least partially, responsible
the disagreement about the nature of the supercritical p
@12#. The Pomeron field effectively describes the ‘‘we
particle’’ distribution in a scattering hadron. Therefore it
natural that a vacuum expectation value for this field co
be associated with a zero-mode contribution in the light-c
language and so represent nontrivial vacuum propertie
the underlying theory. If this is the case, then the phys
context for our supercritical solution, which does involve
Pomeron vacuum expectation value, is an underlying the
with a nontrivial vacuum. In particular, an understanding
the QCD Pomeron may be essential.~Technically, it is the
presence of helicity-flip vertices containing the anom
which provides a meaning for Reggeon vacuum productio!
Since this was certainly not available at the time of the c
troversy concerning the nature of the supercritical phase
is, perhaps, not surprising that the issue remained u
solved. Conversely, as we will see is indeed the case,
supercritical Pomeron may be a valuable high-energy
malism for describing the role of the vacuum properties
QCD.

In this first paper we will concentrate on the developm
and application of theS-matrix technical machinery that i
the basis for our arguments. As we noted above, we wan
reserve all field-theoretic discussion of the interpretation
significance of our results for the second paper. For the p
poses of this paper, we could even define QCD as the m
less limit of a theory of massive, Reggeized, vector partic
~gluons! with SU~3! quantum numbers, whose interactio
satisfy ~Reggeon! Ward identities as a condition of gaug
invariance and which couple to quarks with the usual vec
interaction. In practice, though, we will use Feynman d
grams as a direct tool to construct the Reggeon interact
we discuss. The infrared problems we consider involve t
ing a subset, or all of, the gluon masses to zero and
taking the quark mass to zero. Since the solution of Regg
unitarity by Reggeon diagrams is an infrared approximati
a ~gauge-invariant! transverse momentum cutoff is alway
implicitly present in our analysis. Consequently, we cou
@1,11# specifically formulate our discussion in terms of t
Higgs mechanism for spontaneous symmetry breaking
appeal to complimentarity@13# to justify using the massles
limit to define QCD. However, for this first paper, we wi
minimize references to specific field-theoretic assumpti
that could be made since, in our experience, this often se
only to confuse the reader as to the issues involved.

For related reasons, we will reserve discussion of a nu
ber of topics for the second paper. These include chiral s
metry breaking, the quark bound-state spectrum, de
inelastic diffractive scaling violations, the implications fo
perturbative QCD and the parton model, the RFT formu
tion of both the supercritical Pomeron and the critic
Pomeron, the restoration of full SU~3! symmetry, and the
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dependence on the quark flavor spectrum. Our aim in
paper is to simply expose the infrared massless quark p
lem related to the anomaly and to show, in a self-contain
manner, that this leads to a confining solution of partia
broken QCD. We will identify all the elements of supercrit
cal Pomeron behavior, but as we just implied, we will n
discuss the RFT formulation in any detail.

II. OUTLINE OF THE ARGUMENTS

If a theory is ‘‘Reggeized,’’ that is, if all the particles lie
on Regge trajectories, it is not unreasonable to expect
the full Smatrix is then determined by the corresponding tr
diagrams. If all the multiparticle amplitudes containing t
poles due to the stable particles of the theory can be fou
Reggeization should imply that there is no subtraction am
guity in constructing the full amplitudes of the theory dispe
sively via unitarity.~In practice, there is no formulation o
such a program, although recent ‘‘unitarity-based’’ calcu
tions @14# of loop amplitudes in QCD and supersymmetr
gauge theories partially illustrate the principle. The loop e
pansion for string theories is perhaps an illustration of
essence of the argument.! Reggeization also implies tha
the tree amplitudes can be found by studying the behavio
all multiparticle amplitudes in multi-Regge limits. The lea
ing Regge pole trajectories in each quantum-numbert chan-
nel are directly associated with a corresponding particle~or
resonance!, and at the particle poles, Regge pole amplitud
give the corresponding particle amplitudes. Since QCD
believed to be a bound-state theory in which all the parti
states lie on Regge trajectories, studying multi-Regge lim
should be a direct way to study the particle spectrum.

In the vacuum quantum-numbert channel, however, the
leading Regge pole is the Pomeron. The Pomeron is e
signature and probably~in our view! has no particles on its
trajectory. The Pomeron determines, in particular, the hi
energy elastic scattering amplitudes of the particles in
theory. In this and the following paper, we will see that w
can extract both the particle spectrum and the high-ene
amplitudes that correspond to the Pomeron by study
multi-Regge limits.

During the period that quantum field theory was out
vogue, very extensive analyticity methods were develop
@10,15# to study multi-Regge behavior and its interrelatio
with unitarity. The analyticity domains for multiparticle am
plitudes derived within the formalisms of ‘‘axiomatic fiel
theory’’ and ‘‘axiomaticS-matrix theory’’ were the basis for
this abstract analysis. All the assumptions made within th
formalisms are expected to be valid perturbatively in a co
pletely massive spontaneously broken gauge theory, an
we discussed in the Introduction, theS matrix of such a
theory can be thought of as the starting point for our analy
of QCD.

The abstract formalism remains little known and so
Sec. III we both summarize and develop the contents of
previous papers@10#. We emphasize those results requir
for the rest of the paper. The most important point, which
do not elaborate on explicitly in this paper, is that there
relatively simple, many-variable, domains of analyticity
the multi-Regge asymptotic regime and corresponding m
8-3
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
tiparticle dispersion relations are valid. Consequently, gen
alized ‘‘Sommerfeld-Watson representations’’ exist whi
imply that all multiparticle asymptotic behavior is strong
constrained by ‘‘cross-channel’’ multiparticle unitarity co
tinued in complex angular momenta and helicity variabl
These constraints are embodied in the general ‘‘Regg
unitarity equations,’’ which hold in every complex angul
momentum and helicity plane and control multi-Regge
changes in all amplitudes. These equations were first
posed in @16#. At the time they were a remarkable ‘‘all
orders’’ generalization of results found in lowest-order fie
theory models of Regge cut behavior. However, the full d
persion theory basis for multi-Regge theory had to be de
oped before the validity and generality of the Reggeon u
tarity equations could be established@10#. Given the
Reggeization of gluons and quarks, the~essentially! factor-
izing nature of the Reggeon unitarity equations implies
very powerful consequence that the multi-Regge behavio
all QCD multiparticle amplitudes is built up from elementa
components, many of which are already known from exist
calculations of elastic scattering production processes.

In Sec. IV we apply the general formalism of Sec. III
the special case of triple-Regge kinematics. For our p
poses, it is important that the conventional ‘‘triple-Regg
limit of the one-particle inclusive cross section is only t
simplest kinematical situation in which triple-Regge beha
ior appears. We show that in the full triple-Regge limit a
also in what we term a helicity-flip helicity-pole limit, new
‘‘helicity-flip vertices’’ appear. These vertices are genera
by amplitudes with distinctive combinations of invaria
cuts. We also formulate the additional limits in terms of lar
light-cone momenta. This is important in Sec. V for buildin
up the very complicated multi-Reggeon diagrams that we
in later sections.

The initial discussion in Sec. V is concerned with t
similarity between RFT Pomeron diagrams and the Regg
diagrams that describe Regge limit calculations in QC
Both sets of diagrams can be regarded as explicit solution
the Reggeon unitarity equations. The remainder of the s
tion is devoted to the task of constructing the Reggeon
grams that in QCD will contain the bound-state hadron a
Pomeron behavior that we are looking for. The essen
point is that in a general class of limits, which we ca
‘‘maximal helicity-pole limits,’’ only a single analytically
continued multiparticle partial-wave amplitude appears,
lated to a leading-helicity particle amplitude. Such parti
wave amplitudes straightforwardly satisfy Reggeon unita
equations in eacht channel and, as a result, have a Regge
diagram description in terms of two-dimensional transve
momentum integrals. We show, however, that when
helicity-flip vertex is involved the reduction to transver
momentum integrals is more subtle. In this case, if a lig
cone description of the limits is formulated, a correlat
lightlike vector is necessarily part of the ‘‘physical transver
plane.’’ This longitudinal component vanishes with the co
responding transverse momentum.

We begin our QCD analysis in Sec. VI. We show fir
how elementary quark-Reggeon couplings are obtained
calculating successive on-shell scatterings of fast quarks.
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then discuss the derivation of Reggeon Ward identities fr
gauge invariance gluon Ward identities. We show that qu
scattering Reggeon diagrams have infrared divergences
trace the related failure of Reggeon Ward identities to
restricted Regge limit kinematics of on-shell elastic scatt
ing. After discussing how the Reggeon Ward identities
satisfied in high-order Reggeon interactions, we note t
there is an ultraviolet divergence problem in the quark loo
contributing to triple-Regge vertices. To obtain the Regge
Ward identities for massive quark loops, it is necessary
introduce Pauli-Villars regulator fermions. These provide
unitarity-violating ultraviolet cutoff in the quark secto
which we ultimately remove only after the massless qu
limit is taken.

In Sec. VII we show how the triangle quark loop diagra
appears in triple-Regge helicity-flip vertices coupling mul
Reggeon states. We show that the presence of the tria
singularity leads to a nonuniformity in the massless and ze
transverse-momentum limits for such vertices. We iden
the momentum and color structure of this ‘‘anomaly.’’ A
we discuss, it is essentially the infrared appearance of
U~1! axial anomaly. Its appearance in Reggeon diagrams
subtle effect, related to the presence of nonlocal infra
axial-like couplings for multi-Reggeon states. We show th
anomalous color parity Reggeon states~with distinct color
parity and signature! must be involved.

The infrared divergence phenomenon producing confi
ment is described in Sec. VIII. We show that in the limit
zero quark mass the triangle anomaly, combined with
Pauli-Villars regularization procedure, leads to the violati
of Reggeon Ward identities in a complicated set of Regg
diagrams. In such diagrams helicity-flip interactions
anomalous Reggeon states accompany the nonflip inte
tions of normal Reggeon states. We argue that the resu
logarithmic divergence cancels in the sum of such diagra
when the gauge symmetry is unbroken. However, when
gauge symmetry of QCD is partially broken to SU~2!, the
divergence does not cancel, but rather selects the ‘‘phys
amplitudes.’’ The physical states we identify contain ma
sive SU~2! singlet Reggeons with a zero-momentum anom
lous odderon component that acts like a background w
parton component or ‘‘Reggeon condensate.’’ We show t
we have a ‘‘confinement phenomenon’’ in that two initi
physical Reggeon states states scatter only into arbit
numbers of the same physical states. We also have con
ment in the sense that, in the gluon sector, we have o
massive Reggeon states composed of elementary Regge
constituents. We postpone discussion of the quark states
chiral symmetry breaking until the next paper.

It is presumably important that because the zero tra
verse momenta in the Reggeon condensate are implicitly
companied by longitudinal zero momenta, the condens
can potentially be understood as a zero-mode effect in lig
cone quantization and as a wee-parton component at infi
momentum. We summarize our confining solution of p
tially broken QCD as containing exchange-degenerate ev
and odd-signature Reggeons together with vacuum prod
tion of multi-Reggeon states. These are the defining cha
teristics of supercritical Pomeron RFT.
8-4
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CONFINEMENT AND THE SUPERCRITICAL POMERON IN QCD PHYSICAL REVIEW D58 074008
III. MULTI-REGGE LIMITS AND REGGEON UNITARITY

In this section we describe the general multi-Regge the
that will underly the analysis and arguments of this paper
many cases a more extensive discussion of the subject
cover can be found in@10# and a very useful backgroun
review is provided by@17#. However, as we noted in th
previous section, we will also need additional elements t
were not adequately described in@10#. We first describe the
general kinematics and partial-wave analyses which are
basis of multi-Regge theory.

A. Toller diagrams and little group variables

To describe the most general Regge behavior of a m
particle amplitude, we first introduce a set of angular va
ables. For a given amplitude, there are many possible s
each associated with a distinct Toller diagram. A Toller d
gram is simply a tree diagram with only three-point vertic

Denoting the external momenta for anN-point amplitude
by Pi , i 51, . . . ,N, we begin by drawing a Toller diagram
and introducing internal momentaQj , j 51, . . . ,N23, for
each internal line of the diagram as illustrated in Fig. 1. T
Qj are defined by imposing momentum conservation at e
vertex. Next, we introduce three standard Lorentz frame
each vertex, in each of which one of the three mome
entering the vertex has a standard form, chosen accordin
some convention. We then denote asgj the Lorentz
transformation—associated with the internal linej—which
transforms between the two standard frames, in whichQj has
the standard form, defined, respectively, at the two verti
to which the linej is attached. SinceQj has the same form
say,Qj

0, in both standard frames,gj necessarily belongs to
the little group ofQj

0, implying that

gjPSO~2,1! if Qj is spacelike,

gjPSO~3! if Qj is timelike. ~3.1!

We also introduce the Lorentz transformationsz jk trans-
forming between the standard frames defined forQj andQk ,
respectively, at the same vertex. Note thatz jk is a function of
t j5Qj

2, tk5Qk
2, and t l5(Qj1Qk)

2 only. We can clearly
combine thegj and z jk ~together withz i j transformations
defined analogously to thez jk , but at external vertices! to
determine any of the external momenta in any of the st

FIG. 1. Toller diagram for theN-point amplitude.
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dard frames associated with the Toller diagram. For anN-
point amplitudeMN , we can therefore write

MN~P1 ,...,PN![MN~ t1 ,...,tN23 ,g1 ,...,gN23!. ~3.2!

If we initially consider all theQj to be timelike, then we
can use the SO~3! parametrization

g5uz~m!ux~u!uz~n!, 0<u,p, 0<n,m<2p,
~3.3!

whereuz andux are, respectively, rotations about thez andx
axes. We can also take all thez jk andz i j to be boostsaz(z)
in thez-t plane. In this case theuz rotations clearly commute
with the az , and as a result, the external invariant variab
depend only on combinationswjk5m j2mk of azimuthal
angles. The net effect is that the angular variables for e
Toller diagram reduce always to the (3N210) independent
variables needed to describe anN-point amplitude. There are
always

~N23! t i variables ~[Qi
2!

~N23! zj variables ~[cosu j !

~N24! ujk variables ~[eiv jk!
J ~3N210! variables.

~3.4!

For each Toller diagram thet j , zj , andujk variables are an
unconstrained Lorentz-invariant set of variables for anN-
point amplitude.

We will also make use of two parametrizations
SO~2,1!. The first corresponds directly to the SO~3! param-
etrization~3.3! ~with cosu→coshb), i.e.,

g5uz~m!ax~b!uz~n!, 2`,b,`, 0<m,n<2p,
~3.5!

where ax is now a boost in thex-t plane. An alternative
parametrization is

g5uz~m!ax~b!ay~g!, 2`,b,g,`, 0<m<2p.
~3.6!

B. Invariants and angular variables

A general multi-Regge limit is defined, via a particul
Toller diagram, as

z1 ,z2 ,...,zN23→`, ;t i ,ujk fixed. ~3.7!

A variety of ‘‘helicity-pole limits’’ in which some combina-
tion of thezj andujk variables is taken as large can also
discussed. The reason for the helicity-pole name will be cl
after we introduce Sommerfeld-Watson representatio
‘‘Maximal helicity-pole limits’’ in which ~in a sense we will
discuss later! the maximum number ofujk variables are
taken large will play an important role in our discussion. T
significance of maximal helicity-pole limits is that they ca
be used to isolate a single, analytically continued, ‘‘helic
amplitude.’’ A multi-Regge limit, in general, has contribu
tions from many different helicity amplitudes.

It is straightforward to calculate the behavior of chann
invariants in terms of the angular variables. An explicit e
8-5
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
ample, the six-point amplitude and the angular variables c
responding to the Toller diagram of Fig. 2, can be found
the Appendix of@15#. The parametrization~3.5! is used and
the specific standard frames are essentially those we
described. We can also list a few of the most important f
tures that appear in general.

~A! If we write zj5
1
2 (v j1v j

21) ~i.e.,v j5eiu j ) and define
ujk as above, then all factors ofi in expressions for invariant
~coming from sinuj and sinvjk) cancel. The relation betwee
all invariants and theu’s andv ’s is real and analytic.

~B! When all thezj ’s are large~or all thev j ’s!, we obtain,
for smn5(pm1pn)2,

smn;sinh zm j1
v j 1

~coshz j 1 j 2
1cosv j 1 j 2

!v j 2
¯v j r 21

3~coshz j r 21 j r
1cosv j r 21 j r

!v j r
sinh z j rn

, ~3.8!

where j 1 , j 2 ,...,j s is the set of internal lines of the tree dia
gram linking the two external momenta. As a result, for a
invariantsmn̄ r5(pm1pn1¯1pr)

2, we obtain

smn̄ r ;
zj→`; j

f ~ t>,v> !zj 1
zj 2

¯zj s
, ~3.9!

where nowj 1 , j 2 ,...,j s denotes the longest path through t
tree diagram linking any two of the external momenta co
tained insmn̄ r .

~C! When all theujk’s are large, we similarly obtain

smn;sinh zm j1
sin u j 1

uj 1 , j 2
~cosu j 2

11!uj 2 , j 3
¯uj r 22 , j r 21

3~cosu j r 21
11!uj r 21 , j r

sin u j r
sinhz j rn

. ~3.10!

Again, the leading behavior of anysmn̄ r is obtained from
the two particles linked by the longest path through the t
diagram.

It is important, although we will make little reference
it, that the singularities of amplitudes as functions of t
invariant variables have a similar asymptotic structure
terms of either thezj variables or theujk variables.

C. Hexagraphs, direct channels, and cross channels

While the Toller diagram is sufficient to introduce angu
variables, there are many analytic and kinematic proper
of amplitudes for which it is very useful to introduce a fu
ther set of related ‘‘tree diagrams’’ called ‘‘hexagraphs
There are many hexagraphs for each Toller diagram.

A hexagraph is necessarily drawn in a plane. It has
same number of vertices as the parent Toller diagram,

FIG. 2. Toller diagram for the six-point amplitude.
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each internal line of the Toller diagram is replaced by a l
containing both horizontal and sloping elements. The co
plete set of hexagraphs corresponding to a Toller diagram
constructed as follows.

We begin by substituting for each of the vertices of t
Toller diagram the sets of vertices shown in Fig. 3, in each
which one of theQi is attached to a horizontal line.~As
illustrated, the number of vertices substituted depends on
number of external lines entering the vertex.! We next join
the available vertices with horizontal lines in all possib
manners, forming projections on the plane. From the se
graphs obtained, we generate further graphs by ‘‘twistin
each graph about each internal horizontal line. Twisting
tates all of that part of the graph attached to one end of
horizontal line by 180° relative to the remainder of th
graph—turning it upside-down in the plane. We contin
‘‘twisting’’ until no new graphs are obtained.

Examples of hexagraphs obtained from the Toller d
gram of Fig. 1 are shown in Fig. 4. One use of a hexagra
is to generalize the elastic scattering concepts of thes-
channel,’’ or ‘‘direct-channel,’’ physical region and the ‘‘t-
channel,’’ or ‘‘cross-channel,’’ physical region. Eac
hexagraph simultaneously describes an ‘‘s-channel’’ physi-
cal region in which all theQi of the Toller diagram are
spacelike and a ‘‘t-channel’’ physical region in which all the
Qi are timelike.~Of course, there are also additional cha
nels in which someQi are timelike and some are spacelik
but we will not discuss them specifically.! The direct chan-
nel is obtained by interpreting the diagram as describ
scattering particles entering from the bottom of the diagr
and exiting at the top. The cross channel is obtained by
terpreting the diagram as describing scattering particles
tering from the left of the diagram and exiting to the righ
~Since we do not consider scattering processes as dis
that differ by an overall CPT transformation, we do not co
sider hexagraphs as distinct that differ only by the compl
vertical, or horizontal, reflection corresponding to a CP
transformation of the corresponding direct channel or cr

FIG. 3. Hexagraph vertices from Toller diagram vertices.

FIG. 4. Examples of hexagraphs obtained from the Toller d
gram of Fig. 1.
8-6
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CONFINEMENT AND THE SUPERCRITICAL POMERON IN QCD PHYSICAL REVIEW D58 074008
channel. As a result, it is irrelevant whether the scatter
particles enter from the bottom or top in the direct channe
whether they enter from the left or right in the cross cha
nel.! Note that the same cross channel is described b
class of distinct direct-channel hexagraphs related by ‘‘tw
ing.’’ As we describe further below, the process of twisting
hexagraph about a horizontal line defines the multipart
generalization of signature.

The angular variables can be straightforwardly introduc
in any physical region by the procedure described in S
III A. In a cross channel,

t j>4m2, 21<zj<1, 21<cosv jk<1. ~3.11!

For a direct channel the situation is more complicated. E
if all the Qj meeting at a vertex are spacelike, the vertex m
lie in either a spacelike or a timelike plane@i.e., l(t i ,t j ,tk)
"0, wherel(t i ,t j ,tk)5t i

21t j
21tk

222t i t j22t j tk22tkt i#. In
that part of a direct channel in which all theQj are spacelike
and all the internal vertices are timelike,

t j,0, zj>1 or <1, 21<cosv jk<1. ~3.12!

In this kinematic configuration, the multi-Regge limit is
physical limit, but a helicity-pole limit is unphysical. Fo
those parts of a direct channel where a vertex is space
the physical region is parametrized by thev jk angles becom-
ing boosts as in Eq.~3.6!. In this case both Regge an
helicity-pole limits are physical region limits.
-

e

es

b
ls
e
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We will use hexagraphs to describe more and more in
mation as we proceed. In particular, we can associate eacu j
and eacht j with the corresponding horizontal line of th
hexagraph, while the independentv jk can always be associ
ated~in an obvious manner! with the internal sloping lines.
~This association can also be made for the conjugateJj , nk ,
and nk8 variables that we introduce below. It will be illus
trated in Fig. 5.! We can then associate a ‘‘twist’’ about
horizontal line of a hexagraph with a change of sign of t
correspondingzj and also, for a sloping line attached direct
to this line ~not via a vertex!, with a change of sign of the
correspondingujk . This is how twisting is used in defining
signature.

D. Partial-wave expansions

In a cross channel all the little groups are SO~3!. For a
general functionf (g) on SO~3!, we can write

f ~g!5 (
J50

`

(
unu,un8u,J

Dnn8
J

~g!aJnn8
, ~3.13!

where theDnn8
J (g) are representation functions. For the p

rametrization~3.3!,

Dnn8
J

~g!5einmdnn8
J

~u!ein8n, ~3.14!

where thednn8
J (u) are well-known special functions. From

Eq. ~3.2! we can write
MN~ t>,g1 ,...,gN23!5 (
J150

`

(
un1u,un18u,J1

¯ (
JN2350

`

(
unN23u,unN238 u,JN23

`

D
n1n

18

J1 ~g1!¯D
nN23 ,n

N238

JN23 ~gN23!

3aJ1 ,n1 ,n
18 ,...,JN23 ,nN23 ,n

N238 ~ t>!. ~3.15!
e

ui-
is-

e
da-
ry.
Since, as we have discussed, eachMN depends only on com
binations of the azimuthal anglesm j and n j , there is a re-
lated constraint on the sums overnj and nj8 in Eq. ~3.15!.
With the particular convention that, at the vertex where lin
j,k,l meet, the Lorentz transformationsgj ,gk ,gl are defined
to transform from this particular vertex to adjacent vertic
this constraint takes the form

nj1nk1nl50. ~3.16!

After this constraint is imposed there are (N24) indepen-
dent n and n8 indices in Eq.~3.15! ~considering spinless
external particles! which are ‘‘conjugate’’ to the (N24) in-
dependent azimuthal anglesv jk introduced above. Thej, n,
and n8 variables can be associated with the lines of
hexagraph as illustrated in Fig. 5.

To use the partial-wave expansion to discuss Regge
havior in Regge and helicity-pole limits in direct channe
we first define continuations of the partial-wave amplitud
aJ
>
,n
>
,n
> 8(t) to complex values of the angular momentaJi
s

,

a

e-
,
s

and the helicitiesni ,ni8 . This will enable us to transform
~some of! the summations in Eq.~3.15! into integrals via the
Sommerfeld-Watson~SW! transformation. For this purpos
it is necessary to break the full amplitudeMN down into
spectral components containing distinct multiple discontin
ties in the invariant variables that are large in the limit d
cussed. This is achieved by writing an~asymptotic! disper-
sion relation in thezj variables. As we noted in Sec. II, th
existence of such dispersion relations is actually the fun
mental core of our development of multi-Regge theo

FIG. 5. Association ofj, n, andn8 indices with the lines of a
hexagraph.
8-7
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
However, since an understanding of their derivation is
necessary for the purposes of this paper, we simply
straight to the result. An extended description of the gen
derivation can be found in@10#, and the particular exampl
corresponding to the Toller diagram of Fig. 2 is discussed
detail in @15#.

E. Asymptotic dispersion relations

A primary purpose of the hexagraph notation is to d
scribe the spectral contributions to the asymptotic dispers
relation, for an amplitudeMN , obtained by simultaneousl
dispersing in all thezj variables of the parent Toller diagram
By introducing the concept of a ‘‘cut’’ through a hexagrap
we can use such cuts to describe invariant channels in w
there is a discontinuity or ‘‘cut.’’ For each hexagraph w
define an ‘‘allowable’’ direct-channel discontinuity to be
any subchannel, defined by a subset of the external parti
such that the minimal ‘‘cut’’ drawn through the graph co
necting all the particles involved enters and exits only
tween a pair of sloping lines. Some allowable cuts of
upper hexagraph in Fig. 4 are shown in Fig. 6.

The asymptotic dispersion relation takes the form

M ~p1 ,...pN!5 (
HPT

MH~p1 ,...,pN!1M0, ~3.17!

where the sum is over all hexagraphsH generated by the
Toller diagramT and M0 contains only nonleading multi
Regge behavior. Each ‘‘hexagraphical component’’MH is
further written as

MH5 (
CPH

MC~p1 ,...,pN!, ~3.18!

where now the sum is over all setsC of (N23) nonoverlap-
ping cuts which are~all! allowable cuts of the hexagraph.~In
the simplest graphs there will be only one setC!. The (N
23) cuts must be ‘‘asymptotically distinct’’ when all thezj
variables are large. If we denote the invariant cuts of a p
ticular setC as (s1 ,...,sN23), then

MC~p1 ,...,pN!

5
1

~2p i !N23E ds18¯dsN238 DC~ t>,w> ,s18 ,s28 ,...,sn238 !

~s182s1!~s282s2!¯~sN238 2sN23!
,

~3.19!

where

FIG. 6. Allowable cuts through the hexagraph of Fig. 3.
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DC~ t>,w> ,s1 ...,sn23!

5(
e

~21!eM ~ t>,w> ,s16 i0,s26 i0, . . . ,sN236 i0!.

~3.20!

The sum overe is over all combinations of1 and2 signs in
Eq. ~3.20! and (21)e is positive when the number of1
signs is even. In writing Eq.~3.19! the asymptotic relation
~3.9! has been used to change variables fromz1 ,...,zN23 to
s1 ,...,sN23 . We note again that an explicit example of a
asymptotic dispersion relation is described in full detail
@15#.

F. Froissart-Gribov continuations and signature

Each hexagraph spectral componentMH has simultaneous
cuts in onlyN23 large invariants. As we will see, the in
variant cuts are reflected directly in the form that mul
Regge behavior takes. Each cut is associated with a par
lar power behavior. Correspondingly, the multi-Reg
behavior of a spectral component is obtained by SW tra
forming only N23 of the angular momentum and helicit
sums in Eq.~3.15!. Indeed, unique Froisart-Gribov~FG! con-
tinuations in the complex plane can only be made for
relevant indices. An important property of the hexagraph
tation is that it classifies together all those sets of cuts
which continuations in the same helicity and angular m
mentum variables can be made. The construction of FG c
tinuations is described in detail in@10#. Here we will simply
give the rules for determining the continuations that exist
a particular hexagraph amplitude.

We first need to defineT, D, and V subgraphs of a
hexagraph as in Fig. 7. It is obvious how hexagraphs, suc
those of Fig. 4, break up into subgraphs of this form. T
continuation rules are that in eachVj we takenj complex
with (Jj2nj ) and (nj2nj8) held fixed at integer values. In
eachD j we takenj complex with (Jj2nj ) held fixed at an
integer value. In eachTj we takeJj complex, independently
of all the nj i

. These rules imply that the helicity label
which are attached to sloping lines of the hexagraph,
always coupled to~that is, differ only by an integer from! the
angular momentum associated with the corresponding h
zontal line of the hexagraph.

An important point for all continuations is that they a
made separately for positive and negative helicities and
for positive and negative helicity differences, that is, fornj

:nj8 for eachVj , for nj:(nj 1
6nj 2

) for eachD j , and for

(nj 1
6nj 2

):(nj 3
6nj 4

) for eachTj . We will use a conven-

tion in which if nj 1
andnj 2

have the same sign, this implie

they have opposite sign helicities in thet j -channel center of

FIG. 7. T, D, andV subgraphs of a hexagraph.
8-8
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CONFINEMENT AND THE SUPERCRITICAL POMERON IN QCD PHYSICAL REVIEW D58 074008
mass.~In a direct channel this would correspond to helic
sign conservation.! Continuations from values ofnj 1

andnj 2

with the opposite sign will be referred to as ‘‘helicity-flip’
continuations and will be crucial in what follows.

As in elementary Regge theory, it is necessary to int
duce signature to obtain well-defined FG continuations.
the analytic procedure we are following, signatured am
tudes are obtained by adding or subtracting the disper
relation spectral components corresponding to those h
graphs differing simply by a twist, about the correspond
horizontal line for a continuation in aJj and about the hori-
zontal line to which the corresponding sloping line is
tached for a continuation innj . This definition also separate
‘‘even’’ and ‘‘odd’’ terms in the relevant series appearing
the partial-wave expansion. As we described above, a si
twist changes the sign of the angular variable~associated
with the line about which the twist is made! whose conjugate
variable (Jj or nj ) is taken to be complex.

We shall also utilize the following, equivalent, ‘‘group
theoretic’’ definition of signature, since in general it is eas
to implement. Beginning with anN-point amplitude in a par-
ticular direct channel, we form the positive~or negative! sig-
natured amplitude, with respect to a particular internal line
a Toller diagram, by adding~or subtracting! the amplitude
obtained by making a complete CPT transformation on
external particles connected~through the diagram! to one
end of the internal line. The fully signatured amplitude
formed by carrying out this procedure for all internal lines
the Toller diagram. In this way signature is introduced at
amplitude level without introducing spectral components
is an operation defined directly on the external states.
though the equivalence of the two definitions has only b
proved in the simplest cases, we have no reason to doubt
the equivalence is true in general, and we will assume thi
be the case. Of course, to understand the implications
signature for phases, etc., it is necessary to utilize the a
lytic formulation.

It is interesting to note that, in the case when noVj ’s are
present in the hexagraph, the total cross-channel angular
mentum is continued to complex values, together with all
helicities of ~cross-channel! subchannels. In no case is th
angular momentum of a subchannel continued separa
from the helicity. WhenVj ’s are present the total angula
momentum of the cross channel is not used as a varia
Instead, the scattering can be regarded as made up of
processes for which the total angular momenta and subc
nel helicities are analytically continued.

G. Sommerfeld-Watson representations, and multi-Regge
and helicity-pole limit amplitudes

The process of first defining a SW transformation on
partial-wave expansion for a hexagraph amplitude and t
studying asymptotic limits is sufficiently complicated that
is difficult to give a general description. We give a gene
idea of the procedure by considering simple examples.
will study further examples in the following section. As w
remarked earlier, we will be particularly interested in ‘‘max
mal helicity-pole limits.’’ For hexagraphs with noV sub-
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graphs, a maximal helicity-pole limit is simply defined b
taking all the azimuthalui j variables to be large. When aV
subgraph is involved, only one combination of the two a
muthal angles associated with the central line of the grap
taken to be large. The maximal number of helicity poles
still involved and a single partial-wave amplitude is isolate

We consider specifically the Toller diagram for the si
point function shown in Fig. 2. This is the Toller diagram f
which the asymptotic dispersion relation is derived in@15#.
There are 4 basic hexagraphs which after twisting give
total of 32 hexagraphs. A full discussion of the SW rep
sentation for all the hexagraphs and their use in
asymptotic limits is given in@10#. Here, for illustration, we
concentrate on two of the basic graphs. Consider first
hexagraph shown in Fig. 8. With theJ and n variables as
illustrated, the partial-wave expansion has the form

AH~z1 ,z2 ,z3 ,u1 ,u2 ,t1 ,t2 ,t3!

5(
J>n>

d0,n1

J1 ~z1!u1
n1dn1 ,n2

J2 ~z2!u2
n2dn2,0

J3 ~z3!aJ
>
n
>

~ t>!.

~3.21!

The hexagraph contains oneT graph and twoD graphs, and
the above rules determine that fromn1 , n2.0 ~signatured!
FG continuations can be made to complexJ1 , n1 , andn2 in
the three complex half-planes:

Re~J12n1!>0, Re~n12n2!>0, Ren2>0,
~3.22!

while J22n1 andJ32n2 are held fixed at integer values. Fo
the present we omit the complications of signature in or
to more simply illustrate other features. The SW transform
that part of Eq.~3.21! satisfying Eq.~3.22! is then

AH5
1

8 E
Cn2

dn2u2
n2

sin pn2
E

Cn1

dn1u1
n1

sin p~n12n2!

3E
CJ1

dJ1d0,n1

J1 ~z1!

sin p~J12n1! (
J22n15N150
J32n25N250

`

dn1 ,n2

J2 ~z2!dn2,0
J3 ~z3!

3aN2N3
~J1 ,n1 ,n2 ,t>!1(

J>n>

;

d0,n1

J1 ~z1!u1
n1dn1 ,n2

J2 ~z2!

3u2
n2dn2,0

J3 ~z3!aJ
>
n
>

~ t>!, ~3.23!

FIG. 8. Hexagraph from the Toller diagram of Fig. 2:~a! J and
n variables and~b! cuts.
8-9
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
whereCn2
, Cn1

, andCJ1
are parallel to the imaginary axis

The sumS̃ is over that part of Eq.~3.21! not satisfying Eq.
~3.22!.

We will show first that the representation~3.23! is suffi-
cient to study the ‘‘maximal helicity-pole limit’’

z1 ,u1 ,u2→`, ~3.24!

with z2 andz3 ~andt1 ,t2 ,t3) kept fixed. The cut structure o
AH is straightforwardly represented asymptotically by t
SW integrals as follows. Asymptotically, the invariant cu
of Fig. 8~b! appear in the angular variables via

s235~p21p3!2;z1 ,

s2345~p21p31p4!2;y12

[@~z1
221!1/2~z2

221!1/2#u1 ,

s165~p11p6!2;y123

[@~z1
221!1/2~z211!~z3

221!1/2#u1u2 . ~3.25!

We can rewrite Eq.~3.23! in the form

AH5E dn2dn1dJ1

sin pn2 sin p~n12n2!sin p~J12n1!

3y123
n2 y12

n12n2PJ12n1~z1!

3 (
N1 ,N250

`

PN1~z2!PN2~z3!aN1N2
~J1 ,n1 ,n2t !

1(
;

, ~3.26!

where

pj 2n~z!5
1

2
~11z!~2n2n8!/2~12z!~n82n!/2dnn8

j
~z!,

n.n8, ~3.27!

is a polynomial for integerj 2n5N. In the form~3.26!, it is
clear that each of the asymptotic cuts ofAH is directly rep-
resented by one of the SW integrals. SinceAH has no singu-
larities in the remaining variables, the sums overN1 andN2
~of polynomials! will be convergent in the asymptotic region

An asymptotic expansion for the limit~3.24! can be ob-
tained by pulling theJ1 , n1 , andn2 contours to the left in
Eq. ~3.26!, provided positive power singularities are encou

tered. The(̃ contribution gives only inverse powers of eith
u1 or u1u2 . ~We will not describe the subtleties of introdu
ing second-type representation functions, etc., that are
essary to obtain a true asymptotic expansion.! It can be
shown @10# from the analytically continued unitarity equa
07400
-

c-

tions that the Regge singularities ofaN1N2
(J1 ,n1 ,n2) occur

at values ofJ1 ,J25n11N1 and J35n21N2 . In particular,
if there are Regge poles atJ15a1 , J25a2 , andJ35a3 , the
leading behavior in the limit~3.24! arises fromN15N250.
A Regge pole atJ15a1 , together with ‘‘helicity poles’’ at
n15J25a2 andn25J35a3 , gives

AH ;
z1→`
u2→`
u3→`

z1
a12a2y12

a22a3y123
a3 b00

a1a2a3

sin pa3sin p~a22a3!sin p~a12a2!
.

~3.28!

Note that this result holds whether or notz2 and/orz3 are
large. The partial-wave amplitude withN15N250 is se-
lected provided only that the limitu1 ,u2→` is taken. The
limit is called a ‘‘helicity-pole limit’’ because it is controlled
~in part! by poles~or more generally singularities! in helicity
planes.

The denominator factors in Eq.~3.28! give singularities in
the t i variables that are determined by the consistency of
asymptotic cut structure ofAH with the Steinmann relations
To see this we use Eq.~3.25! to rewrite Eq.~3.28! in the
form

AH;s23
a12a2s236

a22a3s15
a3

3
b00

a1a2a3

sin pa3sin p~a22a3!sin p~a12a2!
,

~3.29!

which implies that, asymptotically,

disc
S23

AH;sin p~a12a2!AH , ~3.30!

disc
S236

AH;sin p~a22a3!AH , ~3.31!

disc
S15

AH;sin pa3AH . ~3.32!

Consequently, each discontinuity cancels one of the pole
the a j variables, and as a result, the triple discontinuity
AH has no poles in thet j variables. The Steinmann relation
imply this must be the case. The Steinmann relations, wh
should be valid asymptotically, forbid singularities in ove
lapping channels.

To obtain a complete asymptotic expansion in the mu
Regge limit

z1 ,z2 ,z3→` ~3.33!

~with u1 andu2 kept fixed!, we must also SW transform th

sums withn2,0 and/orn12n2,0 in (̃. If we again pull
back theJ1 , n2 , andn1 contours appropriately, we obtain
8-10



AH ;
z1→`

(
N1 ,N250

`
PN1~z2!PN2~z3!

sin pa3sin p~a22a3!sin p~a12a2!
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z2→`
z3→`

3@bN1 ,N2

a1a2a3z1
a1~z2u1!a22Ni~z3u2!a32N21bN1 ,N2

a1~2a2!a3z1
a1~z2u1

21!a22N1~z3u2!a32N2

1bN1 ,N2

a1a22a3z1
a1~z2u1!a22N1~z3u2

21!a32N21bN1 ,N2

a1~2a2!~2a3!z1
a1~z2u1

21!a22N1~z3u2
21!a32N2#

;
z1

a1z2
a2z3

a3

sin pa3sin p~a22a3!sin p~a12a2! (
N15N250

`

@bN1N2

a1a2a3u1
a22N1u2

a32N21bN1N2

a1~2a2!a3u1
2a22N1u2

a32N2

1bN1N2

a1a2~2a3!u1
a22N1u2

2a32N21bN1N2

a1~2a2!~2a3!u1
2a22N1u2

2a32N2#. ~3.34!
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In terms of invariants we have the same result as Eq.~3.28!,
but now the vertex function contains infinite series of~ana-
lytically continued! partial-wave helicity amplitudes. This il
lustrates the close relationship between theuj dependence
and zj dependence of amplitudes in the asymptotic reg
which we referred to earlier. It is, as in this example, simp
a consequence of the presence of only (N23) cuts for
(2N27) variables.

By comparing Eqs.~3.28! and ~3.34!, we see how a
~maximal! helicity-pole limit selects a single FG partia
wave amplitude from the infinite series that appears in
multi-Regge limit. This is important because the unitar
properties of a single FG partial-wave amplitude can
straightforwardly studied. Note that the helicity-pole lim
~3.24! is not a physical region limit, although for the mo
complicated hexagraphs studied in later sections, analog
limits will be physical.

Before we discuss the particle-pole properties of E
~3.28! and ~3.34!, we briefly discuss the SW representati
of a second hexagraph associated with Fig. 2. We cons
the hexagraph shown in Fig. 9.

The partial-wave expansion of Eq.~3.21! is again appro-
priate. The hexagraph now contains oneV graph and twoT
graphs, and the above rules determine that fromn1 ,n2.0
~signatured! FG continuations can be made to complexJ1 ,
J3 , andn1 in the three complex half-planes

Re~J12n1!>0, Re~J32n2!>0, Ren1>0,
~3.35!

with J22n1 andn12n2 held fixed at integer values. The SW
transform of that part of Eq.~3.21! satisfying Eq.~3.35! is
then

FIG. 9. Another hexagraph from the Toller diagram of Fig.
07400
n

e

e
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AH5
1

8 E
Cn1

dn1~u1u2!n1

sin pn1
E

CJ1

dJ1d0,n1

J1 ~z1!

sin p~J12n1!

3E
CJ3

dJ3dn2,0
J3 ~z3!

sin p~J32n2! (
J22n15N150
n12n25N250

`

dn1 ,n2

J2 ~z2!

3u2
n22n1aN2N3

~J1 ,J3 ,n1 ,t !

1(
J>n>

;

d0,n1

J1 ~z1!u1
n1dn1n2

J2 ~z2!u2
n2dn2,0

J3 ~z3!aJ
>
n
>

~ t>!. ~3.36!

We now consider the ‘‘maximal helicity-pole limit’’

z1 ,z3 ,u1u2→`, ~3.37!

with z2 and u1 /u2 fixed. Regge poles atJ15a1 and J3
5a3 contribute straightforwardly. If we takeN15N250,
the Regge pole atJ25a2 appears as a helicity pole atn1
5a2 and we obtain, in analogy with Eq.~3.28!,

AH ;
z1→`
u2→`
u3→`

z1
a12a2z3

a32a2y123
a2 b00

a1a2a3

sin pa2sin p~a12a2!sin p~a32a2!
.

~3.38!

Again, a single FG partial-wave amplitude is isolated. No
that Eq.~3.38! continues to hold ifz2 is taken large.

We can use Eqs.~3.28!, ~3.34!, and ~3.38! to illustrate
some general properties of hexagraph multi-Regge am
tudes. Suppose, for simplicity, that thea i are even-signature
Regge trajectories giving a particle pole ata i50. We note
first that Eq.~3.28! contains a pole only ata350. A pole at
a250 appears if we first seta350. In contrast, Eq.~3.38!
contains directly a pole ata250. As we discussed, the pol
structure in thet i variables relates directly to the analyt
structure in the large invariant variables. Together, E
~3.28! and ~3.38! represent a general situation in very com
plicated hexagraphs. Particle poles occur in association w
8-11
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
aV subgraph or with aD subgraph at the end of a ‘‘cascade
of D subgraphs. Regge pole factorization gives that, in
~3.38!,

b00
a1a2a35b0

a1a2b0
a2a3, ~3.39!

and so, as the hexagraph of Fig. 9 suggests pictorially
a250 the amplitude factorizes into a product of four-po
amplitudes. The factorization property~3.39! holds provided
only that we pick out a Regge pole in thet2 channel. In
general, we obtain full four-point scattering amplitud
rather than just the Regge exchange amplitudes given by
~3.39!. If we continuea2 to a nonzero even integer valu
then the factorization of Eq.~3.39! gives the leading-helicity
four-point amplitudes. Analogously, if we continuea3 to an
even integer value in Eq.~3.28!, we obtain the leading-
helicity amplitude at the particle pole. As illustrated by E
~3.34!, a multi-Regge limit amplitude in general gives a su
over helicity amplitudes at a particle pole.

Finally, we note that we can also obtain leading-helic
amplitudes with opposite signs for thenj involved by taking
corresponding helicity-pole limits, for example, by taking t
limit u1 /u2→` with u1u2 fixed in Eq.~3.36! and by taking
u2→0 instead ofu2→` in Eq. ~3.23!.

H. Reggeon unitarity

The most important property of the FG amplitudes is t
they can effectively be used to analytically continue, in t
complex Jj and nj planes, the cross-channel multipartic
unitarity equations in anyt i channel of any Toller diagram
This leads to a set of ‘‘Reggeon unitarity’’ equations for t
discontinuities across multi-Reggeon branch cuts which
pear in each of the complex angular momentum plan
These equations are crucial in enabling us to build the mu
Regge behavior of QCD amplitudes on the basis of kno
results for elastic and production processes. We will o
give a brief outline of the derivation of the Reggeon unitar
equations here.~Note that in the abstract analysis of th
section and the next section we use ‘‘Reggeon’’ to refer
any Regge pole. In Sec. V we will use this term specifica
for an odd-signature Regge pole with intercept near 1, re
ring to an even-signature pole with intercept near 1 a
Pomeron. From Sec. VI onwards a Reggeon will specifica
be a Reggeized gluon.!

The discontinuity across theM-Reggeon cut~i.e., the
branch cut due to the exchange ofM Regge poles! in any J
plane is derived most simply from the 2M -particle disconti-
nuity formula in the correspondingt channel. Thet-channel
discontinuity is first expressed as a conventional unita
phase-space integral. By using a Toller diagram includ
the internal particles, this phase-space integralI 2M(t) can be
written in the form

I 2M~ t !5 i E dr~ t,t1 ,...,t j ,...!E dgJ)
j

dgj , ~3.40!

where thegj are associated with lines of the Toller diagra
and ~apart from numerical factors!
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E dr~ t,t1 ,...,t j ,...!

5E )
j

dtj

l1/2~ t,t1 ,t2!

t

l1/2~ t1 ,t3 ,t4!

t1
¯

3
l1/2~ t j ,t j 11 ,t j 12!

t j
¯ . ~3.41!

There is al function for each internal vertex, including thos
involving the internal particles~for which the corresponding
‘‘ t j ’’ is the mass2!. The integration region is defined by

l~ t j ,t j 11 ,t j 12!>0 ; j . ~3.42!

It can be shown@10# that the unitarity integral generate
Regge cut behavior only when particular multiple discon
nuities are present in the amplitudes appearing in the i
gral. The necessary discontinuities are present when~and
only when! the amplitudes correspond to hexagraphs hav
a ‘‘cascade’’ structure ofD subgraphs with respect to th
internal phase space, as illustrated in Fig. 10.~The subtleties
in isolating hexagraph product contributions are discusse
@10#; we will not discuss them here.! As a result, for the
purposes of studying Regge cuts, we obtain a form
hexagraph diagonalization of thet-channel 2M -particle uni-
tarity integral

disc AH5 i E drE dg)
j

dgjA
HL~g,...,gj ,...!

3AHR~g21gJ ,...,gj ,...!, ~3.43!

whereHL andHR have the necessary cascade structure.
example, ifH is the hexagraph shown in Fig. 11, the hex
graphsHL andHR have the form illustrated in Fig. 12; i.e
HL andHR are formed fromH by splittingH in two at theJ
line and substituting a product ofD cascades that connect t
the intermediate particle state. Equation~3.43! can then be
diagonalized by partial-wave projection, i.e.~suppressing all
the external hexagraph angular momenta and helicity labe!,

FIG. 10. A ‘‘cascade’’ ofD graphs for 2M particle phase space

FIG. 11. HexagraphH.
8-12
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disc aJ
H5 i E dr(

N> ,n>
aJN

>
n
>

HL aJN
>

n
>

HR . ~3.44!

The summation shown is over all internal helicity labelsn
and angular momentaN5J2n of all the D graphs in the
phase-space part ofHL andHR .

The partial-wave equations~3.44! can be analytically con-
tinued to complex values of the external angular mome
and helicities by converting the internal sums to integr
having the SW form. TheM-Reggeon cut is generated in th
analytically continued equations by a combination ofM
Regge poles, the phase-space boundaries~3.42!, and ‘‘non-
sense poles’’ for each of theD-graph vertices. In the notatio
of Fig. 5, the nonsense poles are at

Jj5unj u5nj 1
1nj 2

21 ~3.45!

whennj 1
andnj 2

are positive or at

Jj5unj u52nj 1
2nj 2

21 ~3.46!

when bothnj 1
and nj 2

are negative. If the Regge poles a
identical, then the relevant boundary of the phase space

At i5At j1Atk ; i , j ,k. ~3.47!

This, combined with all the nonsense conditions, give
trajectory

J5aM~ t !5Ma~ t/M2!2M11. ~3.48!

As we stated earlier, in our notation2nj 2
is the helicity in

the t-channel center-of-mass frame. It is very important
what follows that there is no nonsense pole contribution fr
nj 1

positive andnj 2
negative or fromnj 1

negative andnj 2

positive. ~These are not ‘‘nonsense’’ states.! Therefore
‘‘helicity-flip’’ partial-wave continuations, from opposite
sign nj i

at an internal vertex, do not contribute to the ge
eration of Regge cuts.~We stated earlier that we will refer t
amplitudes which havenj 1

52nj 2
as ‘‘helicity-flip’’ ampli-

tudes. Such amplitudes are ‘‘nonflip’’ in thet-channel center
of mass. However, for massless particles, helicity is rever
in going from thes to the t channel and sot-channel nonflip
amplitudes correspond tos-channel helicity-flip amplitudes
Ultimately, it iss-channel helicity properties that will interes
us.!

Consider now the hexagraphH and consider specifically
theM-Reggeon cut in theJ channel associated with the ce
tral T subgraph of Fig. 11. We denote byaJN

>
n
>

H, t
>
* the signa-

tured FG amplitude associated withH. All the helicities that

FIG. 12. Product of hexagraphs in the discontinuity formula.
07400
ta
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are continued to complex values are now denoted byn> , N>
denotes all theNj5Jj2nj that are kept fixed at integer va
ues, t>5(tJ ,...,tnj

,...) are thesignature labels, withtJ

given by the product of the signatures of the contributingM
Reggeons, and* denotes all the: labels describing the
signs of helicities and helicity differences from which th
continuation is made. The discontinuity formula involves t
product of nonsense–Regge-pole amplitudes extracted f
the FG amplitudes for the hexagraphsHL andHR of Fig. 12.
The discontinuity formula is then

disc J5aM~ t !aJN
>

n
>

H, t
>
,*5jME dr̂ Aa

>

HL,t
>
,*~J1!Aa

>

HR,t
>
,*~J2!

3
d„J212(k51

M ~ak21!…

sin
p

2
~a12t18!¯sin

p

2
~am2tM8 !

, ~3.49!

where*dr̂ has the same form as Eq.~3.41! except that only
Regge-pole energies are integrated over~the integration over
the masses of the pairs of particles has been eliminated
using elastic unitarity!. jM is a ~relatively complicated! sig-
nature factor that we will give simple approximations for
Sec. V t85(t11)/2, and Aa

>

HL,t
>
,*(J1) is a ‘‘nonsense’’

Reggeon scattering amplitude extracted fromaJN
>

n
>

HL,t
>
,* and

evaluated above the Regge cut atJ5aM(t). Here,
Aa

>

HL,t
>
,*(J2) is the same amplitude evaluated below the c

For the introduction of Pomeron and Reggeon diagram
Sec. V, it is important that the phase-space integration*dr̂
in Eq. ~3.49! can be modified by extracting the ‘‘thresho
behavior’’ of the nonsense amplitudes at the phase-sp
boundaries~3.47!, i.e., at the nonsense point (nj2nj 11
2nj 12)521:

Aa
>

HR,t
>
,*~J,t1 ,...,t j ,t j 11 ,t j 12 ,...!

;
l~ t j ,t j 11 ,t j 12!→0

S l~ t j ,t j 11 ,t j 12!

t j
D ~nj 2nj 112nj 12!/2

;S l~ t j ,t j 11 ,t j 12!

t j
D 21/2

. ~3.50!

We can then write

E dr̂~ t,t1 ,...t j ,...!→E )
j

dtjl
21/2~ t,t1 ,t2!

3l21/2~ t1 ,t3 ,t4!¯

3l21/2~ t j ,t j 11 ,t j 12!¯ .

~3.51!

A discontinuity formula, essentially the same as E
~3.49!, also holds in anynj plane foraJN

>
n
>

HL,t
>
,* except that the

hexagraphsHL and HR that are involved are obtained b
inserting into thej line of H the same cascade structure th
appears in Fig. 12. This is illustrated in Fig. 13.
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
Similarly, an analogous discontinuity formula to E
~3.49! holds in any complex angular momentum or helic
plane for any hexagraph FG amplitude. The hexagraphs
volved in the discontinuity formula are simply found by in
troducing the relevant cascade structures as in Figs. 12
13. Before the advent of QCD it was understood th
Reggeon unitarity provides a general, model-independ
basis for a Reggeon field theory description of the Pome
This will be elaborated on in Sec. V. However, only a lim
ited part of the full set of Reggeon unitarity equations w
exploited historically. For the purpose of this paper, the f
set of equations~3.17! has another very important role. Ex
tensive results on the Reggeon diagram structure of ela
scattering have been derived by direct calculation wit
QCD ~at leading logarithmic, next-to-leading logarithmi
etc.@5,18,19#!. As we will discuss, the power of the Reggeo
unitarity formulas is that they can be used to directly exte
these results to the multi-Regge behavior of arbitrarily co
plicated multiparticle scattering amplitudes.

IV. TRIPLE-REGGE VERTICES AND LIMITS

In this section we specialize much of the discussion of
last section to the various ‘‘triple-Regge’’ limits of the six
particle amplitude. It is important that triple-Regge kinem
ics is more general than the well-known case of the la
mass limit of the diffractive inclusive cross section. The
are ‘‘triple-Regge vertices’’ which play a crucial role in ou
study of QCD, but only appear in the more general trip
Regge and helicity-pole limit kinematics that we discuss
low.

A. Hexagraph cuts and limits

We consider the Toller diagram shown in Fig. 14. As
Eq. ~3.2!, we write

M6~P1 ,...,P6![M6~ t1 ,t2 ,t3 ,g1 ,g2 ,g3!. ~4.1!

FIG. 13. Another product of hexagraphs.

FIG. 14. Toller diagram forM6 .
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We initially take all thet i positive so that thegi are elements
of SO~3!. We also define each of thegi to transform from the
central vertex to the external vertex. If, for the moment,
take the external particles to be spinless, the amplitude
be independent of then i , i 51,2,3, and will depend only on
differences of them i . Therefore, if we define

u125ei ~m12m2!, u235ei ~m22m3!, u315ei ~m32m1!,
~4.2!

then

u12u23u3151 ~4.3!

and we can take any two as independent variables. C
bined with t1 ,t2 ,t3 andz1 ,z2 ,z3 , this gives the appropriate
eight independent variables.

The Toller diagram of Fig. 14 generates the set of he
graphs shown in Fig. 15. Each hexagraph shown is one
2323258 related by twisting, where the twists are ma
about the three horizontal lines in the graphs. There are
hexagraphs in total. As we have described in the last sec
each hexagraph corresponds to particular sets of allow
triple discontinuities ~in direct-channel physical region
where thet i are negative!.

For the first hexagraph of Fig. 15, the allowable sets
cuts are as shown in Fig. 16. The cuts of Fig. 16~a! are in the
invariants

C1[s2838 @5~P281P38!
2#,

C2[s13 @5~P11P3!2#,

C3[s1183 @5~P12P181P3!2#. ~4.4!

This set of cuts is well known to be related to the on
particle inclusive cross section. The cuts of Fig. 16~b! are in
the invariants

C1[s2838 , C2[s13, C3[s123. ~4.5!

This second set of cuts is less familiar, but will play a
important role in the following. For larges12 and fixed
s23,s31,

s1235s182838;s12, ~4.6!

FIG. 15. Hexagraphs associated with the Toller diagram of F
14.
8-14
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FIG. 16. Hexagraph cuts.
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and so, asymptotically, thes123 cut can be identified as ans12
cut. The Steinmann relations forbid simultaneous cuts
s2838 , s31, and s12. However, we also haves182;s128;
2s12, and simultaneous cuts ins2838 , s31, ands182 are al-
lowed. In the triple-Regge direct-channel physical regio
that we are interested in, we cannot have all three ofs128 ,
s2838 , and s31 positive. Nevertheless, amplitudes with a
s182 cut, in addition tos2838 ands31 cuts, can be regarded a
having a left-hand cut ins123, even though it is unphysica
and therefore as having the set of cuts~4.5!. This is impor-
tant for the quark loop amplitudes we discuss in Sec. VI

The full triple-Regge limit associated with Fig. 14 is th
multi-Regge limit of the form~3.7!, i.e.,

z1 ,z2 ,z3→`, t1 ,t2 ,t3 ,u31,u23 fixed. ~4.7!

We can also discuss triple-Regge ‘‘maximal helicity-po
limits’’ involving the ui j . Since each hexagraph natural
chooses particular pairs of theui j as independent variables,
is convenient~and dynamically significant! to associate the
helicity-pole limits with particular hexagraphs. For ea
hexagraph there are two distinct helicity-pole limits.

To discuss the limits associated with the first hexagra
of Fig. 15 we first simplify the notation by writingu1
[u31, u2[u23. We can then identify variables with th
lines of the hexagraph as illustrated in Fig. 17. The fi
helicity-pole limit is

z3 ,u1 ,u2→` ~or u1 ,u2→0!. ~4.8!

This is the familiar ‘‘triple-Regge’’ limit of the one-particle
inclusive cross section. The second helicity-pole limit is

z3 ,u1 ,u2
21→` ~or u1u2

21→0!. ~4.9!

For reasons that will soon become apparent, we refer to
first limit as the ‘‘nonflip limit’’ and the second as th
‘‘helicity-flip limit.’’

FIG. 17. Hexagraph notation.
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From ~3B! and ~3C! we can see that the following ap
proximations are ~essentially! uniformly valid in both
helicity-pole limits, as well as the triple-Regge limit~4.7!:

s13;s1838;2s138;2s183;z1z3~u111/u1!, ~4.10!

s23;s2838;2s238;2s283;z2z3~u211/u2!, ~4.11!

s1183;s28238;2s11838;2s2823;z3 , ~4.12!

s2281;s38318;2s22818;2s3831;z1 , ~4.13!

s3382;s18128;2s33828;2s1812;z2 , ~4.14!

s12;s1828;2s128;2s182;z1z2~u1 /u21u2 /u1!.
~4.15!

Note that all invariants are unchanged whenu1→1/u1 , u2
→1/u2 . This is why the limits~4.8! and ~4.9! have two
equivalent definitions.

B. Special light-cone limits

In later sections it will be useful to have particular rea
izations of the limits defined in the previous subsection
terms of specific light-cone limits for the momenta involve

We consider first the triple-Regge limit. Since all three
s12, s23, and s31 are large in this limit,P1 , P2 , and P3
should lie along distinct light cones. In the notation of F
14, we can define a particular version of the the triple-Reg
limit, which we call a ‘‘maximally nonplanar’’ limit, in
which all three momenta are taken to be large and lightlike
orthogonal space directions. We define the following:
L1 ,

P1→P1
15~p1 ,p1,0,0!, p1→`,

Q1→q22q35~0,0,q2 ,2q3!,

P2→P2
15~p2,0,p2,0!, p2→`,

Q2→q32q15~0,2q1,0,q3!,

P3→P3
15~p3,0,0,p3!, p3→`

Q3→q12q25~0,q1 ,2q2,0!. ~4.16!

~We omit the light-cone components of both thePi and Qi
that go to zero asymptotically, but are necessary to put b
initial and final particles on mass shell.! In terms of invari-
ants, this limit gives
8-15
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s125~P11P2!2→2p1p2 ,

s235~P21P3!2→2p2p3 ,

s315~P31P1!2→2p3p1 ,

s12285~P11Q2!2→2p1q1 ,

s23385~P21Q3!2→2p2q2 ,

s31185~P31Q1!2→2p3q3 , ~4.17!

and so can be identified with a triple-Regge limit of the fo
~4.7! in which

p1;z1 , p2;z2 , p3;z3 . ~4.18!

This particular version of the triple-Regge limit illustrate
how the limit makes maximal use of four-dimension
Minkowski space. To obtain exactly the above moment
configuration, we clearly have to choose particular values
the ui and also go to a particular Lorentz frame.

Next, we give some different realizations of the ‘‘helicity
flip’’ helicity-pole limit ~4.9!. The essential feature of thi
limit, compared to the triple limit, is that, becausez1 andz2
remain finite, invariants such ass3381 ands3382 remain finite.
We first define a limitL2 , in which the finiteness ofs3381
ands3382 is very simply achieved. In this limitP1 andP2 lie
in the same plane, but have opposite space momenta,
this plane is orthogonal to the transverse plane in whichQ3 ,
Q2 , andQ1 lie. We define the following:
L2 ,

P1→P1
15~p1 ,p1,0,0!, p1→`,

Q1→q22q35~0,0,q2 ,2q3!,

P2→P2
25~p2 ,2p2,0,0!, p2→`,

Q2→q32q285~0,0,2q28 ,q3!,

P3→P3
15~p3,0,0,p3!, p3→`,

Q3→q282q25~0,0,q282q2,0!. ~4.19!

In terms of invariants, this limit gives

s12→4p1p2 , s23→2p2p3 , s31→2p3p1 ,

s1228→” `, s2338→” `, s3118→2p3q3 . ~4.20!

Comparing with Eqs.~4.9! and ~4.10!–~4.15!, we see that
this limit can be identified with the ‘‘helicity-flip’’ helicity-
pole limit ~4.9!, with

p1;u1 , p2;u2
21, p3;z3 . ~4.21!

Again, special values of the nonasymptotic angular variab
~in this casez1 andz2) are implicitly involved. However, we
will see in the next subsection that, in the leading asympt
behavior, the dependence on these variables is determine
the SW representation, as it was for the helicity-pole lim
07400
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~3.28!. ~For the triple-Regge limit the dependence on t
finite angular variables is expanded in infinite partial-wa
series and therefore is unknown.!

The following alternative realization of the helicity-flip
limit will also be useful. In this case the finiteness ofs2281
ands3382 is more subtle. We define the following:
L28 ,

P1→P1
15~p1 ,p1,0,0!, p1→`,

Q1→q22q35~2q3 ,2q3 ,q2 ,2q3!,

P2→P2
15~p2,0,0,p2 ,!, p2→`,

Q2→q32q285~q3 ,q3 ,2q28 ,q3!,

P3→P3
25~p3 ,2p3,0,0!, p3→`,

Q3→q282q25~0,0,q28212,0!. ~4.22!

The behavior of invariants is essentially identical to Eq
~4.20!. At first sight, the roles ofP2 and P3 are simply in-
terchanged in going fromL2 to L28 . However, the crucial
difference is that in Eqs.~4.22! the ‘‘transverse momenta’
Q1 and Q2 have ‘‘finite lightlike components’’ out of the
‘‘transverse plane,’’ i.e., the 2-3 plane. Most importantly,
the transverse components ofQ1 and Q2 vanish, then the
lightlike component must vanish also. It will become mo
significant in the next section that we always identify t
transverse plane as the 2-3 plane.~Note that the limits for
each ofP1 andP2 can be taken to be any linear combinatio
of P1

1 andP2
1 , and provided they are not parallel, the res

will be the same. Consequently, the roles ofP1 and P2 can
be smoothly interchanged.!

Finally, we give two corresponding realizations of th
‘‘nonflip’’ limit. In this case, if u1;u2 , thens12 ands128 are
also finite. This allowsP1 and P2 to have parallel limiting
values. We first define a limitL3 , in which P3 lies along a
different light cone. We define the following:
L3 ,

P1→P1
15~p1 ,p1,0,0!, p1→`,

Q1→q22q35~0,0,q2 ,2q3!,

P2→P2
15~p2 ,p2,0,,0!, p2→`,

Q2→q32q285~0,0,2q28 ,q3!,

P3→P3
15~p3,0,0,p3!, p3→`,

Q3→q282q25~0,0,q282q2,0!. ~4.23!

The behavior of invariants is now

s12→” `, s23→2p2p3 , s31→2p3p1 ,

s1228→” `, s2338→” `, s3118→22p3q3 . ~4.24!
8-16
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Comparing with Eqs.~4.8! and~4.10!–~4.15!, we see that the
L3 limit is the simple helicity-pole ‘‘nonflip limit’’ ~4.8! with

p1;u1 , p2;u2 , p3;z3 . ~4.25!

We can also takeP3 to be in the same plane asP1 andP2 ,
but with opposite space component. In this caseQ1 andQ2
again acquire finite lightlike components out of the tran
verse plane. We define the following:
L38 ,

P1→P1
15~p1 ,p1,0,0!, p1→`,

Q1→q22q32q3
15~2q3

1 ,2q3
1 ,q2,0!,

P2→P2
15~p2 ,p2,0,0!, p2→`,

Q2→q32q3
12q285~q3

1 ,q3
1 ,2q28 ,q3!,

P3→P3
25~p3 ,2p3,0,0!, p3→`,

Q3→q282q25~0,0,q282q2,0!. ~4.26!

The behavior of invariants is essentially the same as in
~4.24!. However, in contrast toL28 , the lightlike component
q3

1 can be chosen independently ofq3 and so does not hav
to vanish ifq3 vanishes.

From Eqs.~4.19! and ~4.23! we see that the ‘‘helicity-
flip’’ and ‘‘nonflip’’ limits L2 and L3 can, respectively, be
distinguished by whetherp1 andp2 are in opposite directions
or the same direction on one light cone. From Eqs.~4.26! it
is also clear that the nonflip limit is truly a ‘‘planar limit.’
Equation~4.22! differs from Eq.~4.26! in that P2 lies out of
the plane.

C. SW representation and Regge behavior

As we outlined in the previous section, the SW repres
tation is obtained by writing appropriate partial-wave expa
sions for each set of hexagraphs related by twisting. In p
ticular, for the set of all hexagraphs related to Fig. 17
twisting, we write

A6
H~z1 ,z2 ,z3 ,u1 ,u2!5( d

2n1,0
J1 ~z1!d2n2,0

J2 ~z2!

3dn11n2,0
J3 ~z3!u1

n1u2
n2aJ,n .

~4.27!

~As in our discussion of nonsense states in the previous
tion, 2n2 is the t3-channel center-of-mass helicity. Agai
we remark that we choose the present symmetric nota
and language to make direct contact withs-channel helicity
amplitudes.! The SW transform is obtained by convertin
the sums overn1 , n2 , andJ3 to integrals. To illustrate the
general formalism more simply, we again~temporarily! ig-
nore signature. In this case we can write
07400
-

q.

-
-
r-
y

c-

n

A6
H5E

.1,

dn1~u1!n1

sin pn1
E

.1,

dn2~u2!n2

sin pn2

3E dJ3d0,n11n2

J3 ~z3!

sin p~J32n12n2! (
J12un1u50

`

d
2n1,0
J1 ~z1!

3 (
J22un2u50

`

d
2n2,0
J2 ~z2!aJ

>
n
>

H6 ,* , ~4.28!

where the: labels indicate the presence of separate integ
to reproduce the positive and negative helicity sums.

The triple-Regge limits and helicity-pole limits can b
studied by pulling the contours in Eq.~4.28! to the left in the
complex plane.~Again, we do not discuss the subtleties
introducing second-type representation functions, etc.,
are necessary to obtain a true asymptotic expansion.! In the
triple-Regge limit, Regge poles atl 15a1 , l 25a2 , and l 3
5a3 give contributions to each of the terms in the doub
sum in Eq.~4.28! and we obtain a result very similar to Eq
~3.34! ~for simplicity, we omit the denominator sine factors!:

A6
H ;

z1 ,z2 ,
z3 ,→`

z1
a1z2

a2z3
a3 (

N150

`

(
N250

`

@u1
a12N1u2

a22N2ba1 ,a2 ,a3 ,N1 ,N2

1u1
2a11N1u2

a22N2b2a1 ,a2 ,a3 ,N1 ,N2

1u1
a12N1u2

2a21N2ba1 ,2a2 ,a3 ,N1 ,N2
1u1

2a11N1

3u2
2a21N2b2a12a2 ,a3 ,N1 ,N2

#, ~4.29!

whereba1 ,a2 ,a3 ,N1 ,N2
is the Regge-pole residue of the F

~analytically continued! ‘‘nonflip helicity amplitude’’
aJ1 ,J2 ,J3 ,n1 ,n2

H6 ,. . (t1 ,t2 ,t3) at Ji5a i , i 51, 2, 3, andni5Ji

2Ni , i 51, 2, andb2a1 ,a2 ,a3 ,N1 ,N2
is the Regge-pole resi

due of the ‘‘helicity-flip’’ amplitudeaJ1 ,J2 ,J3 ,n1 ,n2

H6 ,., (t1 ,t2 ,t3)

at Ji5a i , i 51, 2, 3, andn152J11N1 , n25J22N2 . The
ui

6a1 contributions come, respectively, from the: integrals
in Eq. ~4.28!. @The symmetry underu1→1/u1 , u2→1/u2 im-
plies that the first and last sums in Eq.~4.29! can be identi-
fied, as can the second and third. When the hexagraph of
16 is part of a larger hexagraph, this symmetry is, in gene
not present.#

To obtain the complete behavior ofM6 in the triple-
Regge limit, we must add contributions corresponding to
additional hexagraphs illustrated in Fig. 2. These contri
tions will have the same general form as Eq.~4.29!, but with
the indices 1, 2, and 3 cyclically rotated. We also add twis
graphs by incorporating signature factors properly.

In analogy with Eq.~3.28!, the helicity-pole limit ~4.8!
picks out the first term of the first sum in Eq.~4.29!, i.e.,

A6 ;
u1 ,u2 ,
z3 ,→`

~z1u1!a1~z2u2!a2z3
a3ba1 ,a2 ,a3,0,0, ~4.30!
8-17
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
while the second limit picks out the first term of the seco
sum, i.e.,

A6 ;
u1,1/u2 ,
z3 ,→`

~z1u1!a1~z2u2
21!a2z1

a3ba1 ,2a2 ,a3,0,0, ~4.31!

and so distinct helicity amplitudes, i.e., nonflip and flip, co
tribute in the distinct helicity-pole limits, while both ampl
tudes contribute in the full triple-Regge limit. This is why w
refer to Eqs.~4.8! and ~4.9!, respectively, as nonflip an
helicity-flip limits. Note that, as we anticipated in the prev
ous subsection, in both limits the dependence on bothz1 and
z2 is determined by theu1 andu2 dependence. This is nec
essary for the amplitudes to be directly expressible in te
of invariants, as is done in the next subsection.

D. Asymptotic analytic structure

Consider how the cuts of Fig. 16 are represented asy
totically. From Eqs.~4.10!–~4.12!, we can write

~z1u1!a1~z2u2!a2z3
a35~z1z3u1!a1~z1z3u2!a2~z3!a32a12a2

;~s13!
a1~s2838!

a2~s1183!a32a12a2,

~4.32!

showing how the hexagraph cuts of Fig. 3~a! are represented
in the limit ~4.8!. Similarly for the limit ~4.9!, we can write

~z1u1!a1~z2u2
21!a2z3

a35~z1z3u1!a1S z2z3

u2
D a2

~z3!~a32a12a2!

;~s13!
a1~s2838!

a2~s1183!a32a12a2,

~4.33!

and so the cuts of Fig. 16~a! contribute similarly to both the
nonflip and helicity-flip limits. However, for the limit~4.9!
we can also write

~z1u1!a1~z2u2
21!a2z3

a3

;~z1z3u1!~a11a32a2!/2

3S z2z3

u2
D ~a21a32a1!/2S z1z2u1

u2
D ~a11a22a3!/2

;~s31!
~a11a32a2!/2~s23!

~a21a32a1!/2~s12!
~a11a22a3!/2,

~4.34!

showing that the cuts of Fig. 16~b! are also present. Both se
of cuts are represented simultaneously by the sa
asymptotic expression, which is equivalent to saying that
ymptotically the two sets of cuts can not be distinguished
is crucial that there is no expression corresponding to
~4.34! for the limit ~4.8!. As a result, we conclude that bot
sets of cuts in Fig. 16 are present in the helicity-flip amp
tude appearing in the limit~4.9!, while only those of Fig.
16~a! appear in the nonflip amplitude. Conversely, we exp
amplitudes with both sets of cuts to appear in the helicity-
amplitude and not in the nonflip amplitude.
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The importance of this last discussion is as follows. T
conventional ‘‘triple-Regge’’ limit of the one-particle inclu
sive cross section has been studied@20# in some detail in
QCD. As we noted above, it is in fact the nonflip helicit
pole limit ~4.8! that is involved. In this limit only triple-
Regge behavior associated with the inclusive cross-sec
discontinuities of Fig. 16~a! appears. The helicity amplitud
that appears is the same amplitude that appears in
Reggeon unitarity formula for the two-Reggeon-cut disco
tinuity. Consequently, the triple-Pomeron vertex that appe
in the inclusive cross section can be identified with the v
tex, discussed in the next section, that appears in elastic
tering Pomeron diagrams and in RFT. However, there
additional ‘‘helicity-flip’’ triple-Regge vertices associate
with the helicity-flip amplitude appearing in the limit~4.9!
and, more generally, with the full set of helicity-flip ampl
tudes appearing in the full triple-Regge limit. These vertic
appear in amplitudes containing both the usual inclus
cross-section cuts and the second set of cuts illustrate
Fig. 16~b!. Such amplitudes have not been discussed wit
QCD. We will discuss some of the simplest contributin
Feynman diagrams in Sec. VII. As we discuss in the n
section, the additional vertices make very important con
butions to the general solution of Reggeon unitarity for m
tiparticle amplitudes and, as a result, will play a crucial ro
in our general construction of hadrons and the Pomeron
QCD.

V. POMERON AND REGGEON DIAGRAM SOLUTIONS
OF REGGEON UNITARITY

In Sec. III, we generically described a Regge pole part
pating in the generation of a Regge cut as a Reggeon
gave the controlling ‘‘Reggeon unitarity’’ equations. In th
section we discuss the solution of these unitarity equation
terms of ‘‘Reggeon diagrams,’’ in analogy with the Feynm
diagram solution of conventional momentum-space unitar
Historically, such diagrams were first introduced@2# to de-
scribe the interactions of an even-signature Pomeron Re
pole. Later, they appeared as describing@5,18# the interac-
tions of Reggeized gluons in leading~and next-to-leading!
logarithmic calculations in massive gauge theories. B
Pomeron and Reggeized gluon diagrams are often referre
generically as ‘‘Reggeon diagrams.’’ In this section, for sim
plicity, we will use ‘‘Reggeon’’ to refer exclusively to an
odd-signature~‘‘Reggeized gluon’’! Regge pole, with inter-
cept close to unity. Therefore ‘‘Reggeon diagrams’’ invol
Reggeized gluons and ‘‘Pomeron diagrams’’ involve Pom
ons. We will also use ‘‘Reggeon unitarity’’ exclusively fo
the unitarity condition on Reggeons and use ‘‘Pomeron u
tarity’’ to describe the unitarity condition for Pomerons. Th
will cause no confusion in this section since we will n
consider diagrams containing both Reggeons and Pomer
A priori they can certainly appear simultaneously in d
grams. Indeed, our ultimate aim is to first construct
Reggeon diagram description of QCD amplitudes and th
via the analysis of infrared divergences and the use
Pomeron ‘‘phase-transition theory,’’ convert to a Pomer
diagram description. At an intermediate stage there will
8-18
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fact be diagrams containing both Reggeons and Pomero
Pomeron and Reggon unitarity equations differ only in

structure of signature factors, and one purpose of this sec
is to describe the diagrams for both cases in the same
malism. The most important new result will be the extens
of the diagram formalism to solve the unitarity equati
~3.49! for a large class of multiparticle FG amplitudes. F
the Reggeon case, there is a vector particle~the gluon! which
becomes massless as the intercept of the Reggeon goes
Massless particle states give rise to infrared divergence
Reggeon interactions which are very important in our la
discussion of QCD. In this section we will consider on
massive Reggeons and will only briefly discuss the spec
form of Reggeon and Pomeron interactions. We begin w
the simplest, and historically oldest, diagrams.

A. Pomeron diagrams for elastic scattering

We emphasize from the outset that we expect to
Pomeron~or Reggeon! diagrams to discuss infrared phenom
ena involving smallt i ’s ~and smallkI ’s! only. We denote the
Pomeron trajectory byj 5aP(t), with aP(0);1. Since the
Pomeron has even signature, all multi-Pomeron cuts are
even signature and so signature factors can effectively
neglected. That is, for small values of all thet i we can take,
in Eq. ~3.49!,

sin
p

2
~a12t18!;¯;sin

p

2
~aM2tM8 !;1. ~5.1!

jM simply gives a factor of21 for each additional Pomero
in the state, and so for anM-Pomeron state,

jM;~21!M21. ~5.2!

We introduce the usual RFT variables, that is, energiesEi
and two-dimensional momentaki , as follows. We write

Ji512Ei and t i5ki
2 ; i , ~5.3!

so that@with Dk512a(tk)#

dS J212 (
k51

M

DkD↔dS E2 (
k51

M

DkD , ~5.4!

which we can regard as ‘‘energy conservation’’ by Pome
intermediate states. We can also write

E dtjdtk
l1/2~ t i ,t j ,tk!

↔2E d2kI jd
2kI kd

2~kI i2kI j2kI k!,

~5.5!

FIG. 18. Multi-Pomeron contribution to elastic scattering.
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which is ‘‘momentum conservation’’ for Pomerons. Th
Pomeron unitarity equation is initially derived for positivet
and the change of variables~5.3! can be made with theki
taken to be two-dimensional Minkowski momenta. Howev
the continuation to negativet is most simply done by rotating
the plane of theki so that they become spacelike and can
straightforwardly identified with the transverse momenta
s-channel Feynman diagram or unitarity calculations. T
full continuation ofJ-plane unitarity from the positivet re-
gion, where it is first derived, is actually quite complicat
@21# and it is nontrivial, and very important, that the on
J-plane singularities that survive at negativet are those due
to Regge cuts. This implies that a solution of Pomeron u
tarity in the small-t region should be sufficient to satisfy fu
multiparticle t-channel unitarity equations.

Note that since the amplitudes involved will be functio
of the t i invariants, the ‘‘transverse plane’’ involved in Eq
~5.5! can be shifted by the addition of an orthogonal lightli
vector without changing the resulting integrals. That is,
relation of the transverse plane to four-dimensional mome
is ambiguous up to an orthogonal lightlike vector. This po
will be important later in the section.

For elastic ~particle! scattering the negativet unitarity
equation~3.49!, with the approximations~5.1! and ~5.2!, is
solved by Pomeron diagrams as follows. The even-signa
FG amplitudea1(J,t) is written in the form

a1~J,t ![F~E,kI 2!5 (
m,n51

`

Fmn~E,kI 2!, ~5.6!

where@omitting all factors of (2p)3#

Fmn~E,kI 2!

5E )
i , j

d2kI id
2kI 8 jd

2FkI 2(
i 51

m

kI i G
3

gmgnAmn~E,kI 1 ,...,kI m ,kI 18 ,...,kI n8!

@E2( i 51
m D~kI i !#@E2( j 51

n D~kI 8 j !#
. ~5.7!

The gm are couplings of Pomerons to the external particl
which, in general, will be functions of the transverse m
menta. In the approximation which gives Eqs.~5.1! and
~5.2!, we should take

gm;~ i !m. ~5.8!

The Amn are Pomeron scattering amplitudes~containing a
momentum conservingd function!. To include the simplest
diagrams~without Pomeron interactions! in Eq. ~5.7!, the
Amn should include disconnected amplitudes, e.g., the co
pletely disconnected amplitude

FIG. 19. Unitarity for Pomeron amplitudes.
8-19
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FIG. 20. Pomeron vertices.
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Amn~E,k> ,k> 8!5dmnd
2S ( kI i2( kI i8 DGm

21~E,kI 1 ,...,kI m!,

~5.9!

whereGm is them-Pomeron propagator:

Gm~E,kI 1 ,...,kI m!5
1

@E2( r 51
m D r~kI r !#

. ~5.10!

Equation~5.7! is illustrated in Fig. 18. The amplitudesAmn
must satisfy the Pomeron unitarity equation

Amn~E1 i e,k> ,k> 8!2Amn~E2 i e,k> ,k> 8!

5(
r

~21!r i E )
s

d2kI s9dFE2(
s51

r

DsG
3Amr~E1 i e,k> ,k> 9!Arn~E2 i e,k> 9,k> 8!. ~5.11!

This equation is illustrated in Fig. 19.
It is straightforward to write a general solution to E

~5.11! in terms of a~nonrelativistic! graphical expansion in
volving arbitrary~nonsingular! vertices and propagators fo
states containing any number of Pomerons.~That interac-
tions are nonsingular is assumed because of the absen
massless particles in the strong interaction.!

In the notation illustrated in Fig. 20, we take, as intera
tion vertices,

G12~5G21* !5 ir 01¯ , G135l01¯ , G225l081¯ ,
~5.12!

etc. The ellipses indicate that we could add transverse
mentum dependence to the interaction vertices, but
would actually be inconsistent with making the approxim
tions ~5.1!, ~5.2!, and ~5.8!. It is important that all of these
approximations are ultimately justified when the critic
Pomeron solution of RFT is formulated@3#. It can be shown
that all the neglected terms correspond to irrelevant opera
in the renormalization group scaling introduced at the criti
point.

A general solution to Eq.~5.11! is then given by the com
plete set of diagrams having the general form illustrated
Fig. 21. These diagrams involve all possible combinations
propagatorsGm , given by Eq.~5.10!, coupled by the inter-

FIG. 21. General form of Pomeron diagrams.
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action verticesGmn given by Eqs.~5.12!. There is an inte-
gration*d2kI for each loop, and momentum conservation
imposed at each vertex. The factor ofi in front of r 0 in Eqs.
~5.12! and all vertices for odd numbers of Pomerons rep
duce the (21)r factor in Eq.~5.11! when the usual graph
cutting rules are applied.

B. Reggeon diagrams for elastic scattering

We consider next the modification of the diagrams of t
last subsection when the Pomeron is replaced by an o
signature Reggeon with trajectoryj 5aR(t) such that
aR(M2)51, whereM2;0. The product signature rule say
that odd-number Reggeon states appear in the odd-sign
amplitude and even-number states appear in the e
signature amplitude. In a~spontaneously broken! gauge
theory, the color quantum numbers break the signatured
plitudes up into subamplitudes.

For small values of all thet i we now take, in Eq.~3.49!,

sin
p

2
~a i2t18!;

p

2
a8~ t i2M2!. ~5.13!

In the same approximationjM gives a factor of11 when
two odd-signature states are combined and a factor of21
when an odd-signature and even-signature state are c
bined or when two even-signature states are combined.
stead of Eq.~5.6!, we write

a6~J,t ![F6~E,kI 2!5 (
n,m5even/odd

`

Fnm
6 ~E,kI 2!, ~5.14!

where even/odd summations are, respectively, associ
with the 1/2 sign and@now omitting, in addition to the
factors of (2p)3, the factors of (p/2)a8, which compensate
for the change in dimensions produced by the particle po#

Fm,n5odd
2 ~E,kI 2!5E )

i , j

d2kI i

~kI i
21M2!

d2kI 8 j

~kI 8 j
21M2!

3d2F kI 2(
i 51

m

kI i G
3

GmGnAmn
2 ~E,kI 1 ,...,kI m,kI 18 ,...,kI n8!

@E2( i 51
m D~kI i !#@E2( j 51

n D~kI 8 j !#
,

~5.15!

The Gm are couplings of Reggeons to external particles a
the Amn

2 are odd-signature Reggeon scattering amplitud
The scattering amplitudesAmn

2 satisfy the Reggeon unitarity
equation
8-20



b
nt
ro

r

is

s

a

it-
th
on
s
in
e
fl

,

a
g

m
tu

c

,

ng

-

not
t of
.

ard
im-
ture
icle
ia-

eon

er-

e

CONFINEMENT AND THE SUPERCRITICAL POMERON IN QCD PHYSICAL REVIEW D58 074008
Amn
2 ~E1 i e,kI !2Amn

2 ~E2 i e,kI !

5 (
r 5odd

~21!~r 21!/2E )
s

d2kI s

~kI s
21M2!

3dFE2(
s51

r

DsGAmr
2 ~E1 i e,kI !Arn

2 ~E2 i e,kI !.

~5.16!

Fmn
1 is similarly defined in terms of amplitudesAmn

1 satisfy-
ing the analogous equation.

The Reggeon unitarity equations can again be solved
Reggeon diagrams. We can introduce general Reggeon i
action vertices in the same way as we did for the Pome
Because of signature conservation, there is noG12 vertex,
only G22 and G13 vertices. For them-Reggeon propagato
Gm , we take

Gm~E,kI 1 ,...,kI m!5
1

P~kI r
21M2!@E2( r 51

m D r~kI r !#
.

~5.17!

It is well known that a Reggeon diagram formalism
exactly what emerges@11,18# from leading and next-to-
leading logarithmic calculations in gauge theories. This i
very nontrivial result. Indeed, as is explicitly shown in@18#,
matching sixth-order calculations with Reggeon diagrams
lows G22 to be extracted. The existing higher-order~eighth-
and tenth-order! results are then predicted completely by
erating the Reggeon interaction. This is consistent with
requirement that, once the form of the Reggeon interacti
is known, the structure of the full set of Reggeon diagram
determined by Reggeon unitarity. However, the Reggeon
teraction obtained is quite complicated, and so in the n
subsection we digress from our general formalism to brie
summarize some of the results obtained in massive~i.e.,
spontaneously broken! gauge theories.

C. Reggeon diagrams in gauge theories

Because of the presence of~close to! massless particles
the Reggeon interaction vertices of a gauge theory~unlike
the Pomeron vertices discussed above! contain transverse
momentum singularities and cannot be approximated
regular. For simplicity we assume in this section that gau
symmetry breaking has provided all gluons with the sa
mass. In Sec. VIII we will consider a more complicated si
ation.

In lowest-order perturbation theory, the trajectory fun
tion is given by

a~q2!511D~q2!

511g2C~q21M2!J1~q2!, ~5.18!

whereC is a color factor that we give below and

J1~q2!;E d2kI 1d2kI 2

~kI 1
21M2!~kI 2

21M2!
d2@qI 2kI 12kI 2#.

~5.19!
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Introducing transverse momentakI 1 , kI 2 , kI 18 , kI 28 that sat-
isfy momentum conservation~i.e., kI 11kI 25kI 181kI 28), we can
write @18#

G22~kI 1 ,kI 2 ,kI 18 ,kI 28!5a~kI 11kI 2!21bM2

2cR22~kI 1 ,kI 2 ,kI 18 ,kI 28!, ~5.20!

wherea, b, andc are color factors, which we discuss below
andR22 has the complicated structure

R22~kI 1 ,kI 2 ,kI 18 ,kI 28!

5
~kI 1

21M2!~kI 2
281M2!1~kI 2

21M2!~kI 1
281M2!

~kI 12kI 18!21M2

1
~kI 1

21M2!~kI 1
281M2!1~kI 2

21M2!~kI 2
281M2!

~kI 12kI 28!21M2 .

~5.21!

The ~massive! BFKL equation@5# is simply the color-zero
Reggeon ‘‘Bethe-Salpeter’’ equation obtained by iterati
the Reggeon interactionG22 in Reggeon diagrams.

In other papers@22# we have outlined a program for con
structing Reggeon interactions by beginning with aG12 ver-
tex which contains a nonsense zero that ensures it does
participate directly as a Reggeon vertex. The singular par
Reggeon interactions@including the massless limit of Eq
~5.21! giving the BFKL kernel# can then be constructed from
t-channel particle discontinuities and the Reggeon W
identities discussed in the next section. This construction
plies that we can simultaneously discuss the color struc
and the singularities of Reggeon interactions due to part
~gluon! poles by introducing the transverse momentum d
gram notation illustrated in Fig. 22.~Transverse momentum
diagrams are essentially Reggeon diagrams without Regg
propagators.!

Amplitudes are obtained by combining vertices and int
mediate states according to the following rules.

~i! For each three-point vertex, illustrated in Fig. 22~a!,
we write a factor

FIG. 22. ~a! Vertices and~b! intermediate states in transvers
momentum diagrams.

FIG. 23. Trajectory function.
8-21
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16p3f i jkd2S ( ki2( ki8 D F S ( ki D 2

1M2G ,
where f i jk is the usual antisymmetric group tensor.

~ii ! For each intermediate state, illustrated in Fig. 22~b!,
we write a factor

~16p3!2nE d2k1¯d2kn

~k1
21M2!¯~kn

21M2!
.

The trajectory function~5.18!, with the color factor in-
cluded, is now given by the simple transverse moment
diagram shown in Fig. 23.

The interaction termcR22 is given by the sum of diagram
in Fig. 24.

We have used a thick line in the above transverse mom
tum diagrams to specifically indicate that color factors
included in the same notation. Note that the interaction
Fig. 24 is not projected on a particular color channel in tht
channel.

The regular part of the Reggeon interactionG22 is more
complicated to include in the diagram formalism. The ze
mass part@i.e., the (kI 11kI 2)2 term# is determined, from the
singular part, by the Reggeon Ward identities that we disc
in the next section. In the color channel with gluon quant
numbers, the mass term can be included diagrammatical
shown in Fig. 25.

We also introduce a diagrammatic notation for color fa
tors only that will be useful in the remainder of the pap
This is illustrated in Fig. 26~since only color factors are
involved we use thinner lines!. We have included the sym
metricd tensor that exists in SU(N) for N>3 and expressed
a number of useful identities, not all of which are indepe
dent, in the same notation.

The Reggeization of the gluon implies that in the glu
quantum-number channel, the leading higher-order inte
tions give only simple Regge-pole exchange. The neces
condition for Reggeization is@5# the ‘‘bootstrap cancella-
tion’’ that is expressed in terms of transverse moment
diagrams in Fig. 27. The momentum part of this equation
trivial, given the structure of the vertices. The color p
follows from Fig. 26~e!. The cancellation of Fig. 27 ensure
that when the Reggeon interactionG22 is included in the
triple-Reggeon interaction, only Fig. 25 survives and t
simply iterates the Reggeization.

It is interesting to note that, because of Fig. 26~f!, the
cancelation of Fig. 27 holds also if the left-hand vertex
each diagram is replaced by a vertex containing ad tensor.
This implies that in QCD there is an additional ‘‘boun

FIG. 24. Reggeon interactionR22.

FIG. 25. Regular interaction in the Reggeon channel.
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state’’ Reggeon@20# ~or colored Pomeron! in the symmetric
octet channel with a trajectory that is exchange degene
with the Reggeized gluon. We will refer frequently to th
feature in later sections.

It is clear from Eqs.~5.18! and~5.21! that both the trajec-
tory function and the Reggeon interaction are singular as
massM→0. We will discuss the significance of this singu
larity structure in detail in Sec. VIII. In the next subsectio
we return to our abstract discussion and consider the ex
sion of the elastic scattering formalism to multiparticle a
plitudes. We continue to illustrate most of our discussi
with Pomeron diagrams because specific examples are
pler to write down. However, we will constantly emphasi
the close similarity of Pomeron and Reggeon diagrams.

D. Helicity amplitude Pomeron diagrams and helicity-flip
vertices

We begin our discussion of multiparticle amplitudes
considering the implications of Pomeron unitarity for th
helicity-pole limits ~4.8! and ~4.9! discussed in the previou
section. In both cases the leading behavior is described
single ~analytically continued! helicity amplitude which sat-
isfies Eq.~3.49! in a straightforward manner.

Pomeron diagrams describing the nonflip limit, which,
we noted, is the usual inclusive cross-section triple-Re
limit, were studied many years ago. The structure of the d
grams was derived directly from Pomeron unitarity@23#, as
we now describe, and also from hybrid Feynman diagr
calculations@24#. The results were the same. For simplicit
we omit signature labels as in Sec. IV and again introdu
Reggeon field theory notation by writing for the nonflip am

FIG. 26. ~a! Color tensors,~b! the Jacobii identity, and~c!–~g!
relations between tensors.

FIG. 27. Bootstrap condition for Reggeization.
8-22
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FIG. 28. Triple-Regge Pomeron diagrams forFmnr
N,F .
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plitude, introduced via Eq.~4.28!, as

AN~E1 ,E2 ,E3 ,q1
2,q2

2,q3
2![aJ1 ,J2 ,J3 ,n1 ,n2

H6 ,. .
~ t1 ,t2 ,t3!,

~5.22!

with n15J1 , n25J2 , Ji512Ei , and t i5qi
2, i 51,2,3. For

the helicity-flip amplitude we similarly write

AF~E1 ,E2 ,E3 ,q1
2,q2

2,q3
2![aJ1 ,J2 ,J3 ,n1 ,n2

H6 ,.,
~ t1 ,t2 ,t3!,

~5.23!

where, in this case,n15J1 , n252J2 .
The crucial property ofAN andAF is that they each sat

isfy a Pomeron unitarity equation in all three of theEi chan-
nels, which is essentially the same as the unitarity equa
for elastic amplitudes. As a result, we can write

Ag~E1 ,E2 ,E3!5 (
m,n,r

Fmnr
g ~E> ,t>!, g5N,F, ~5.24!

whereFmnr
N,F is constructed from Pomeron diagrams as illu

trated in Fig. 28. The notation is the same as in Fig. 18
theAnn8 are again given by Fig. 21. The new element in F
28 is the central vertexTm8n8r 8

N,F coupling the Pomerons in
eachEi channel. The Pomeron unitarity equation forces
diagrams to have the essentially factorized form of Fig.
where, apart from theTN,F, all the couplings and interaction
are identical to those appearing in elastic scattering. Ind
the flip-nonflip distinction between the amplitudes is carr
only by theTN,F vertices.

If the TN,F are connected amplitudes which can, like t
gn , be treated as constants independent of all the Regg
transverse momenta, then the unitarity condition is clea
satisfied. EachEi channel will have a separate transver
momentum plane and will be completely separate dyna
07400
n
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d
.

e
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cally. Also, when the Pomeron intercept is close to unity a
all transverse momenta are small, we have

E1;( D~km8
2

!;E2;( D~kn8
2

!;( D~kr 8
2

!;E3;0,

~5.25!

and soTm8n8r 8
N will coincide with the corresponding elasti

scattering Pomeron vertex, in a first approximation. Ho
ever, as we emphasized in Sec. III, ‘‘helicity-flip vertices
do not appear internally within the Reggeon unitarity equ
tion. It is important for the dynamical role of the anoma
that we discuss in later sections that there are no vert
corresponding to theTm8n8r 8

F in elastic scattering Pomero
diagrams. These vertices appear only in the role of join
scattering channels, as in Fig. 28.

It is not necessary thatTm8n8r 8
N or Tm8n8r 8

F be connected. In
fact, diagrams involving disconnectedTN,F vertices are the
most interesting dynamically since they couple the transve
momentum dependence in the three channels. Such diag
play a crucial role in our analysis. Therefore we want to
sure we fully understand their construction and their dyna
cal origin. As the following discussion shows, there are va
ous subtleties when disconnectedTN,F vertices are involved.
The relative definition of the transverse momentum pla
becomes an issue, as well as the ordering of different disc
nected interactions.

The simplest diagram with a disconnected vertex is t
shown in Fig. 29. This has the disconnected vertex illustra
in Fig. 30, i.e., one disconnected pomeron line, together w
a T21 vertex. We have used a square, and theT21 notation, in
order to emphasize that theT21

F vertex is distinct from theG21

vertex appearing in elastic scattering Pomeron diagrams
The diagram of Fig. 29 is particularly simple since the

is only one transverse momentum integral. The diagram
written explicitly as
F122
g ~E1 ,E2 ,E3 ,Q1

2,Q2
2,Q3

2!5g1g2
2G1~E2!E d2kI G2~E1!G2~E3!T21

g
„~Q11k!2,Q2

2,~Q32k!2
…

5
g1g2

2

@E22D~Q2
2!#

E d2kI T21„~Q11k!2,Q2
2,~Q32k!2

…

@E12D~kI 2!2D„~Q12kI !2
…#@E32D~kI 2!2D„~Q32kI !2

…#
,

~5.26!
8-23
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
whereg5N,F. It is important to have a consistent physic
interpretation of the ‘‘transverse momentum’’ in this di
gram.

As we stated in the previous section, we will always d
fine the ‘‘transverse plane’’ to be the 2-3 plane. An imme
ate question is whether the integration in Eq.~5.26! can be
taken to be in the transverse plane. For the Reggeon cu
Fig. 29 to be generated correctly, bothQ1 andQ3 must ei-
ther lie in thek plane or lie outside of it only by an orthogo
nal lightlike vector. Having in mind the underlying Feynma
diagram origin of Regge behavior, we also expect that
presence of the Pomeron connecting theQ1 andQ3 external
vertices requires the integration to be transverse to la
light-cone momenta at these vertices. In principle, this a
defines the plane for the integration.

At this point it becomes crucial that we are considering
helicity-pole limit, rather than a triple-Regge limit. Th
helicity-flip helicity-pole limit is the more complicated cas
Consider the particular kinematics of the limitL2 defined by
Eqs.~4.19!. In this case the ‘‘transverse plane’’ is indeed t
theQi plane, but it is not orthogonal toP3

1 . However, if we
take the realizationL28 given by Eqs.~4.22!, then the trans-
verse plane is orthogonal to bothP1 andP3 . Also, Q3 lies in
the transverse plane andQ1 is obtained by adding an or
thogonal lightlike vector to a vector in the transverse pla
Therefore, by usingL28 it is clear that the integration in Fig
29 can indeed be taken to be the transverse plane~provided
we utilize the transverse plane ambiguity!.

For the nonflip limit, theL38 description given in Eqs
~4.26! shows immediately that the transverse momentum

FIG. 29. Simplest disconnected triple-Regge Pomeron diagra
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tegral can be defined to be the transverse plane, once
~lightlike vector! ambiguity forQ1 is exploited. There is one
important difference between the contribution of Fig. 29
the flip and nonflip limits, apart from the differentT21 verti-
ces. This is in the implicit lightlike components carried b
the Qi . Using theL28 and L38 limits to justify writing the
diagram as an integral in the transverse plane implies th
there is an infrared divergence asQ1→0, then in the flip
limit this is associated also with a vanishing longitudin
momentum, whereas for the nonflip limit this is not the ca
This is important if infrared divergences of this kind a
ultimately to be interpreted as related to wee partons and
ambiguities of light-cone quantization at zero longitudin
momentum.

Clearly, it is also important that in a helicity-pole limit th
full six-point amplitude becomes dependent on only six
the eight independent variables, i.e., three invariants co
gate toE1 , E2 , and E3 and the threet i . The transverse
integrals we are describing are able to represent the full
plitude only when it is independent of the remaining angl

Consider next the diagram of Fig. 31. As indicated, the
are now two transverse momentum integrals. ThekI 1 integra-
tion should be be orthogonal to the light-cone momenta
the Q1 and Q3 vertices, while thekI 2 plane should be or-
thogonal to the light-cone momenta at theQ2 andQ3 verti-
ces. However, to construct the diagram we can construct
kI 1 loop first using theL28 limit for the helicity-flip limit or the
L38 limit for the nonflip limit. Then, having the invarian
amplitude expressed as an integral in the transverse pl
we can smoothly interchange the form ofP1 and P2 and
similarly construct thekI 2 loop. The conclusion is that both
integrations can be taken to be in the transverse plane.

In the notation illustrated, we can write Fig. 31~as an-
other relatively simple explicit example! in the form

.

FIG. 30. Disconnected vertex ofTD .
Tg~E1 ,E2 ,E3 ,Q1
2,Q2

2,Q3
2!5E d2kI 1d2kI 2g2

2g3G2~E1!G2~E2!G3~E3!T21
g
„~Q11k1!2,~Q22k2!2,~k12k2!2

…

5E d2kI 1d2kI 2

g2
2g3

@E12D~kI 1
2!2D„~Q12kI 1!2

…#@E22D~kI 2
2!2D„~Q22kI 2!2

…#

3
T21

g ~~Q11k1!2,~Q22k2!2,~k12k2!2!

@E32D„~Q12kI 1!2
…2D„~Q22kI 2!2

…2D„~kI 11kI 2!2
…#

. ~5.27!
8-24
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An extension of the above discussion shows that there is
difficulty in constructing transverse momentum integrals
general diagrams of the form of Figs. 28 and 31 in wh
multiple Pomerons are exchanged, provided there is on
single disconnected vertex. It is important to rememb
however, that the ‘‘physical’’ transverse momenta involve
in general, contain lightlike momenta orthogonal to the tra
verse plane that we integrate over. For helicity-flip limits t
presence of the lightlike components has a special infra
significance.

Next, we consider Fig. 32 as an example of a diagram
the form of Fig. 28 in which there are apparently two d
connected central vertices. Diagrams of this kind are part
larly relevant for the arguments of later sections. In this d
gram there are five transverse momentum integrations
four Reggeon propagators. From the above discussion, a
the transverse integrations can be taken to be in the s
plane.A priori it is not clear, however, which of theT21 and
T31 vertices is ‘‘energy nonconserving.’’ By starting at ea
of the external particle couplings and considering the uni
ity condition for each possible cut of the diagram, it
straightforward to show@23# that the diagram must contai
only one unique energy-nonconserving vertex.~The same re-
sult was obtained forAN amplitudes by direct calculation o
hybrid Feynman diagrams@24#.! The vertex occurs where
there is a transition fromE1 andE2 propagators toE3 propa-
gators. In particular, if we insert propagators as shown
Fig. 33, we determine that, as indicated by the notation,
T21 vertex is the energy-nonconserving vertex. Alternative
as illustrated in Fig. 34, we can insert propagators in
same diagram in such a manner that theT31 vertex is non-
conserving. In the inclusive cross section this freedom
choice is the freedom to choose the rapidity ordering of
two vertices. From the present perspective it is the topolo

FIG. 31. Another disconnected triple-Regge Pomeron diagram

FIG. 32. Triple-Regge Pomeron diagram with two central ve
ces.
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cal ambiguity in the insertion of propagators which gives t
freedom of choice.

The most general set of diagrams for bothAN and AF

involves all possible connected and disconnectedTm8n8r 8
N and

Tm8n8r 8
F , respectively. As in the last example, one diagra

topology will often generate a number of distinct diagram
which differ only by which Reggeon propagators are
serted. All such diagrams are considered as distinct.

E. Helicity amplitude Reggeon diagrams

From our discussion of Reggeon and Pomeron diagra
for elastic scattering, it is clear that we can construct helic
amplitude Reggeon diagrams in close parallel with the c
struction of Pomeron diagrams. For Reggeon diagrams
nature plays an important role, and so the new verti
Tm8n8r 8
N,F carry signature labels for eachEi channel. Signature

is not conserved by the new vertices~in addition to energy!,
althoughTm8n8r 8

N will carry a nonsense zero atE32E22E1

50 when signature is not conserved. The signatu
nonconservingTm8n8r 8

F , i.e., the helicity-flip vertices, need
not contain such a factor.

A particularly interesting situation occurs when a no
sense zero appears in one~or more! Reggeon vertices in-
volved in an ordering ambiguity of the kind discussed f
Pomeron vertices in the previous subsection. As discusse
@22#, Reggeon interactions involving nonsense zero verti
can be constructed by simply allowing the zeros to canc
corresponding Reggeon propagator. The logic behind thi
that the zero will not appear in unsignatured amplitudes
that in such amplitudes the corresponding Reggeon diag
can be constructed with the Reggeon propagator pres

-

FIG. 33. Diagram of Fig. 32 with a particular nonconservin
vertex.

FIG. 34. Diagram of Fig. 32 with an alternative nonconservi
vertex.
8-25
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
When the signatured amplitude is formed, the cancelatio
the Reggeon propagator by the nonsense zero will occur.
example, if we consider Fig. 34 to be a Reggeon diagr
then G12 will be a signature-nonconserving, energ
conserving, vertex with a nonsense zero. This nonsense
will effectively cancel theG5(E3) propagator, and so theG12
and T31 vertices should simply be combined to obtain
single disconnected, energy-nonconserving, vertex as i
trated in Fig. 35.

We must determine the newTm8n8r 8
N,F vertices, by direct

calculation in QCD. We will construct important massle
quark components of these new vertices in Sec. VII. Th
play a crucial role in our infrared analysis.

F. Higher-order amplitudes

Consider next the hexagraph amplitudeH8 shown in Fig.
36. We consider both nonflip and helicity-flip limits at bo
vertices. A sufficient description of the behavior of invarian
in both limits is

P1•P2;S u1

u2
1

u2

u1
D , P1•P3;zS u1u31

1

u1u3
D ,

P3•P4;S u3

u4
1

u4

u3
D , P1•Q3;zS u11

1

u1
D ,

Q1•Q3;z, P4•Q1;zS u41
1

m4
D¯ ,

P1•Q,P2•Q,P3•Q,P4•Q finite. ~5.28!

The double nonflip limit is

u1 ,u2 ,u3 ,u4→`, ~5.29!

FIG. 35. Reggeon diagram with a disconnected nonconser
vertex
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while if the left-hand vertex, say, is helicity flip, the limit i

u1 ,u2
21,z,u3 ,u4→`. ~5.30!

If u1;u2 andu3;u4 , then we see from Eqs.~5.28! that in
the double nonflip limit~5.29! both P1•P2 and P3•P4 are
finite, whereas in the limit of Eq.~5.30! P1•P2→`.

Both limits are maximal helicity-pole limits, and so th
SW representation shows that only a single helicity am
tude is involved. We can write the amplitude that appears
the double nonflip limit~5.29! as

ANLNR~E1 ,E2 ,E,E3 ,E4!, ~5.31!

where Ji5ni512Ei , i 51,2,3,4, andJ512E. Similarly,
we can write the flip-nonflip amplitude appearing in the lim
~5.30! as

AFLNR~E1 ,E2 ,E,E3 ,E4!, ~5.32!

where nowJi5ni512Ei , i 51,3,4,J252n2512E2 , and
J512E. We have used an obvious generalization of no
tion in which, for example,FLNR denotes nonflip at the
right vertex and helicity flip at the left vertex.

To understand how two-dimensional transverse mom
tum diagrams describe the limit, we discuss the realization
the limits ~5.29! and ~5.30! in terms of light-cone momenta
as follows. For the double nonflip limit~5.31!, we take, as
external light-cone momenta,

P1→P1
15~p1 ,p1,0,0!,

P2→P2
15~p2 ,p2,0,0!,

P3→P3
25~p3 ,2p3,0,0!,

P4→P4
25~p4 ,2p4,0,0!, pi→` ; i .

~5.33!

It is clear from Eqs.~5.28! that to realize the internalz→`
limit the Qi must also carry light-cone momenta, i.e.,

Q1→q1
11Q1

' , Q2→2q1
11Q2

' ,

Q3→q3
21Q3

' , Q4→2q3
21Q4

' , ~5.34!

where theqi
6 lie in the plane of the light-cone moment

~5.33!. The qi
6 are large, but not as large as thepi . As we

discussed after definingL38 in the previous section, when th
limit is nonflip ~at both vertices!, there is no problem in
choosing the light-cone momenta independently from

g

FIG. 36. A hexagraphH8 for M8 : ~a! momenta and~b! angular variables, angular momenta, and helicities.
8-26
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transverse momenta. TheQi
' are orthogonal to the light-con

momenta and lie in the transverse plane. Momentum con
vation gives

Q5Q1
'1Q2

'5Q3
'1Q4

' . ~5.35!

For the nonflip-flip limit of Eq.~5.32!, one possibility is
to utilize L28 and take

P1→P1
15~p1 ,p1,0,0!,

P2→P2
15~p2,0,0,p2!,

P3→P3
25~p3 ,2p3,0,0!,

P4→P4
25~p4 ,2p4,0,0!, ~5.36!

while for the internal momenta we takeQ3 andQ4 as above
except that now we require specifically that

Q3
'1Q4

'5Q5~0,0,q2,0!, ~5.37!

so thatQ is still orthogonal to all four of thePi ~this condi-
tion determines that we are considering a helicity-pole lim!.
For Q1 andQ2 we take

Q1→q̃1
21Q1

' , Q2→2q̃1
11Q2

' , ~5.38!

whereQ1
' andQ2

' again lie in the transverse plane, butq̃1
1 is

chosen to ensure orthogonality to bothP1 andP2 ; i.e., if

Q1
'5~0,0,q12,q13!, Q2

'5~0,0,q22q12,2q13!,
~5.39!

then

q̃1
15~q13,q13,0,0!. ~5.40!

FIG. 37. Structure of Pomeron and Reggeon diagrams
ANLNR, AFLNR,... .

FIG. 38. Diagram with disconnected components.
07400
r-

Taking a helicity-flip limit at a vertex again requires th
introduction of lightlike components determined by th
spacelike components, for the correspondingQi . To realize
the internalz→` limit, it would suffice to take onlyq3

2

large. We can not takeq̃1
1 large, i.e., takeq13→`, since with

the definitions~5.39! and ~5.40! this would imply Q1
2,Q2

2

→`. To contribute to or to realize thez→` limit with q̃1
1 ,

we must instead apply a Lorentz boost simultaneously toP2

and q̃1
1 that preserves their orthogonality. We write

P2→~p2C,p2S,0,p2!,q̃1
1→„q13~C1S!,q13~C1S!,0,0…,

~5.41!

whereC5coshz andS5sinhz. We can then takez→` as
~all or! part of the limitz→`. We notice that relative toP2 ,
the lightlike component ofq̃1

1 continues to vanish asq13

→0.
The double flip limit

u1 ,u2
21,z,u3 ,u4

21→` ~5.42!

introduces the amplitudeAFLFR(E1 ,E2 ,E,E3 ,E4). To intro-
duce a light-cone realization, we proceed similarly. Ho
ever, we now have the extra subtlety thatq̃ momenta have to
be introduced for both vertices and a Lorentz boostz is es-
sential at one~or both! of the vertices to realize the interna
z→` limit.

It seems that in a general helicity-pole limit we can a
ways find a kinematic representation in which each of
internalQi momenta is out of the transverse plane only by
orthogonal lightlike vector. As the foregoing and followin
discussion shows, this feature underlies the fact that helic
pole limits can be described by helicity amplitudes that s
isfy Pomeron and Reggeon unitarity via transverse mom
tum integrals. We repeat that, for the QCD physics
divergences associated with the anomaly that we discus
later sections, it is important to remember that in helicity-fl
limits the physical ‘‘transverse momenta’’ involve a close
related lightlike longitudinal component.

G. Pomeron and Reggeon diagrams for higher-order
amplitudes

The general form of the diagrams for each of the helic
amplitudes corresponding to Fig. 36 is illustrated in Fig. 3
~For simplicity, we have not explicitly included propaga
tors.! As implied by the notation, theTN,F vertices are the
same as those that appear in theAN,F discussed above—
including disconnected vertices.A priori it is not obvious

r FIG. 39. Higher-order hexagraph.
8-27
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
that the resulting diagrams involving disconnected verti
coupling disconnected interactions actually make sense
see that this is the case, it will be helpful to consider furth
specific examples.

Consider next the diagram of Fig. 38, which involves bo
disconnected vertices and and a disconnected amplitude,
as a contribution toANLNR, then as a contribution toAFLNR.
To make sense within our formalism, it must be possible
write this diagram as a single integral in the transverse pla
According to our previous discussion, thek integration
should be orthogonal to the large momenta at theQ1 andQ3
vertices. Also, for the Regge cuts in each of theQ1 , Q, and
Q3 channels, to have the correct discontinuity each of th
momenta should either lie in the plane or be outside only
a lightlike vector.

To discussANLNR we use the kinematics of Eqs.~5.33!–
~5.35!. It is then clear that all of the requirements we ha
just listed are straightforwardly satisfied if we indeed ta
the k integration to be in the transverse plane.~Note that if
we remove the external vertices, the same Reggeon am
tude appears within elastic scattering Pomeron diagrams
cept that the rapidities of theT21 and T12 vertices are inte-
grated over to produce energy conservation.! To consider
AFLNR we instead use the kinematics of Eqs.~5.36!–~5.40!.
Again, the necessary requirements are satisfied if the inte
tion is in the transverse plane. We conclude that Fig.
gives a well-defined contribution to each ofANLNR, AFLNR,
ANLFR, and AFLFR. As we have emphasized, whether t
amplitude is flip or nonflip at each vertex is determined
whether theT21 and T12 vertices are flip or nonflip. When
helicity-flip vertices are involved, the amplitude has no re
tionship to elastic scattering amplitudes.

As an example with an important new feature, we co
sider contributions to the hexagraph of Fig. 39. We consi
the helicity-pole limit in which all the vertices are nonflip
The general form of Pomeron and Reggeon diagrams c
tributing in this limit is shown in Fig. 40. The internal bo

FIG. 40. Form of Reggeon-Pomeron diagrams for Fig. 38.
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couplings once again indicate eitherTN or TF vertices which
are both connected and disconnected.

We can set up a light-cone kinematic realization of t
full nonflip limit by extending the discussion of the doub
nonflip limit of Fig. 36. We takeP1 ,...,P4 to have the same
form as in Eqs.~5.33! and in addition take

P5→P5
15~p5,0,0,p5!. ~5.43!

We also takeQ,Q1 ,...,Q4 as in Eqs.~5.34! and ~5.37!. In
addition toQ1 andQ2 , Q5 andQ6 must also be orthogona
to P1 andP2 . Q6 must be orthogonal toP5 , while Q2 and
Q5 should not be. We therefore takeQ5 andQ6 to have the
form

Q5→Q5
'1q1

12q̃6
2 ,

Q6→Q6
'1q̃6

2 , ~5.44!

where Q5
' and Q6

' lie in the transverse plane, butq̃6
2 is

chosen to ensure orthogonality ofQ6 to P5* ; i.e., if

Q6
'5~0,0,q62,q63!, ~5.45!

then

Q̃6
25~q63,q63,0,0!. ~5.46!

We see from Eqs.~5.45! and ~5.46! that to realize a suf-
ficiently complicated nonflip limit we have had to introduc
a lightlike component for some of theQi which are corre-
lated with the transverse plane component. Previously,
was only necessary to realize helicity-flip limits. The intern
Regge and helicity-pole limits, associated with theQ andQ2

lines, respectively, can be realized by takingq1
1 andq3

2 to be
large appropriately. Alternatively, a Lorentz boostz could be
applied as in Eqs.~5.41!. To preserve the orthogonality con
ditions the boost has to be applied simultaneously to al
P2 , P5 , Q5 , andQ6 .

Now consider the contribution of the Pomeron diagram
Fig. 41 to the limit under discussion. With the above kin
matics, both thekI andkI 8 integrations can be taken to be
the transverse plane. The internal boxes of Fig. 40 are i
cated as thin-line boxes in Fig. 41. We now observe th
while the overall helicity-pole limit is entirely nonflip, the
T̃21 vertex in Fig. 41 must actually be a helicity-flip verte
Although not directly coupled in the hexagraph of Fig. 3
FIG. 41. Pomeron diagram having the form of Fig. 40.
8-28
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FIG. 42. Pomeron diagram and corresponding hexagraph.
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the
P1 andP5 are in a relative helicity-flip limit. To see this w
simply compare the form we have given forP1 , P5 , andP3

with P1 , P2 , andP3 in theL28 limit ~4.22!. Therefore, if we
introduce an internal vertex coupling, the corresponding
ternal vertices it must be a helicity-flip vertex. Compari
with Fig. 38, we see that the addition of the additionalP5
momentum, in a new plane, has produced a helicity-flip
teraction accompanying a helicity-nonflip interaction~i.e.,
the T21 vertex to the right of theT̃21 vertex in Fig. 41!.

The Pomeron diagram of Fig. 41 and the hexagraph
Fig. 39 have the general form illustrated in Fig. 42. The po
made in our discussion of Fig. 41 extends to general d
grams having the form of Fig. 42. That is, in a nonfl
helicity-pole limit, corresponding to the exposed vertex
the hexagraph of Fig. 42, a helicity-flip vertex can appear
an energy-nonconserving vertex accompanying an ene
conserving nonflip vertex, provided the left-hand exter
couplings have sufficient structure. Since theT̃21 vertex is
the only one enclosed by a box in Fig. 41, this appears
violate our rule that the nonflip nature of the limit is corr
lated with that of the vertex. However, the two vertic
picked out in Fig. 42 have~at first sight! an ordering ambi-
guity and should be thought of as an overall disconnec
vertex. That the vertex is nonflip is then determined by
presence of theT21 vertex.

The ordering ambiguity in the Pomeron diagram of F
42 is of the kind we have discussed earlier. Apparently,
T̃21 vertex can appear to the left or to the right of theT21

vertex. However, the helicity-flip vertexT̃21 must be energy
nonconserving for the diagram to be consistent w
Pomeron unitarity. This is not the case when theT̃21 vertex is
to the right of theT21 vertex. Therefore there is no diagra
corresponding to this possibility. In general, we need
distinguish the ordering of the vertices in Fig. 42 if we sele
specific Pomeron states in each of the hexagraph chan
and regard the combination of disconnected vertices a
single Pomeron interaction. For example, if we consider
two-Pomeron state in each of the channels in Fig. 42, we
regard theT̃21 and T21 vertices as combining to produce
single disconnected vertex coupling the three two-Pome
states. If the Pomerons are replaced by Reggeons, the
we discussed in Sec. V E,T21 contains a nonsense zero, a
the ordering is similarly irrelevant.

FIG. 43. Hexagraph containing fourV subgraphs.
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The importance of our discussion of Figs. 41 and 42 w
become apparent in our QCD analysis when we are look
for bound-state amplitudes in Sec. VIII. We will be lookin
for nonflip amplitudes within Reggeon diagrams which a
have infrared divergences associated with helicity-flip ve
ces. The crucial dynamics will be produced by accompa
ing helicity-flip processes that occur as we have just d
cussed.

In Sec. III G we noted that internal particle poles occ
only in association with internalV subgraphs. The simples
hexagraph that contains an internal scattering amplitude
sociated entirely with internal Regge-pole particle poles
that illustrated in Fig. 43. In this hexagraph we have add
to each of theQi lines of Fig. 36, the same additional vert
ces that we added to theQ2 line to obtain the hexagraph o
Fig. 39. When Regge poles~with trajectories close to particle
poles! are inserted for each of theV lines, the four-particle
amplitude enclosed in the thin-line box can be factorized o
first as a four-Reggeon amplitude and then as a four-par
amplitude as the Reggeons generate particle poles. In
QCD analysis the Regge poles we will be looking for w
~eventually! be those of bound-state hadrons and the am
tude will be that for Pomeron exchange. The general form
Pomeron and Reggeon diagrams for the hexagraph of Fig
is illustrated in Fig. 44. The internal boxes once again c
tain TN andTF vertices.

H. General helicity amplitudes

It should now be clear how our discussion generalizes
any hexagraph. We isolate a single helicity amplitude by
appropriate helicity-pole limit~which in general will involve
a combination of nonflip and flip limits for the relevantui j
variables!. Given the TN and TF vertices, the associate
Pomeron and Reggeon diagrams can then be constructe
relatively simple example of the more complicated grap
that we will discuss in Sec. VIII is shown in Fig. 45. W
again emphasize that while the diagrams are constructe

FIG. 44. Structure of Pomeron and Reggeon diagrams for
hexagraph of Fig. 43.
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
two-dimensional integrals in a single transverse plane, w
a helicity-flip vertex is involved, a correlated lightlike vecto
is implicitly added to this plane to obtain the ‘‘physical
transverse momentum. This is presumably deeply conne
with the relationship between the QCD infrared divergen
results we will obtain and the zero-mode longitudinal m
mentum ambiguities of light-cone quantization.

VI. QUARK-REGGEON COUPLINGS AND REGGEON
WARD IDENTITIES

In this and the following sections, we will be concern
exclusively with QCD. The Reggeons we consider are s
cifically the Reggeized gluons of QCD. In the infrared ana
sis of Sec. VIII, we will discuss setting the gluon mass
zero in some detail. In this section we will simply omit th
mass because we want to discuss some of the simplest i
red divergences that occur when quarks are involved.
particularly focus on the interrelation of such divergenc
with ‘‘Reggeon Ward identities.’’

We begin by constructing the lowest-order ‘‘quar
Reggeon’’ couplings, i.e., the couplings for multi-Regge
exchange in on-shell quark scattering. Since a Reggeon
duces to a gluon atkI 250, multi-Reggeon amplitudes are,
general, necessarily given by corresponding~on-shell! gluon
amplitudes at zero transverse momentum. It follows from
formula for FG amplitudes@10# that the particular~nonsense!
Reggeon amplitudes which provide the couplings for Re
cuts can be expressed as integrals of discontinuities, i.e
terms of on-shells-channel intermediate states. We have n
given this formula here because, for multi-Reggeon c
plings, it is quite cumbersome. Here we will simply utiliz
the outcome. That is, the lowest-order contribution of a p
ticular multi-Reggeon exchange to a scattering amplitud
given by that part of the corresponding high-energy mu
gluon exchange amplitude having the appropriate~Regge
cut! signature and in which all intermediates-channel states
are put on shell; i.e., no logarithms~of the energy! are gen-
erated. This is what we will exploit to calculate Regge
couplings. We will also note the even-signature color oc
case discussed in Sec. V C. In this case there is effectivel
‘‘AFS cancellation’’ and the anticipated two-Reggeon c
contribution is replaced by a new Regge pole.

A. Elementary Reggeon couplings

Consider the couplingG1 of a fast~massive! quark to a
single gluon—temporarily ignoring color factors. The qua
propagator gives

FIG. 45. Relatively simple example of a class of hexagraph
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g•p1m

p22m2 ;
p1→`

g2p11p'1¯

p22m2

[
g21g'•~p' /p1!10~1/p1

2 !

Fp22
p'

2 2m2

p1
G . ~6.1!

For a quark initially and finally on shell, we remove th
(p22m2)21 factor, and so, in lowest-order perturbatio
theory,

G1m;gg2p1gmg2p1;g2p1
2 if gm5g1 . ~6.2!

Choosing the frame in which the initial quark hasp'50, we
haveg2p15m and obtain

G1m;gmp1d2m[G1p1 . ~6.3!

Therefore we anticipate that, in a scattering process, the l
ing power behavior~for p1→`) will be obtained if the spin
of the scattering quark is conserved; that is, there is heli
conservation. In particular, for the scattering via single-glu
exchange of a fast quark with momentump1 off a quark with
momentump2 , we obtain the helicity-conserving amplitud

g2m2p11d2mFgmn

q'
2 Gdn1p22;

g2m2s

q'
2 5G1

2 s

t
. ~6.4!

Lorentz invariance requires, of course, that this result h
independently of whetherp22 is large or not. Ifp22 is not
large, the spin structure for the fast quark simply picks o
via gluon exchange, the relevant spin component of the s
quark.

Next, we look for the lowest-order two-Reggeon coupli
within the amplitude for a fast quark to exchange two gluo
As we described above, we ignore logarithms and place e
intermediate-state propagator on shell~via k2 and k1 inte-
grations!. The denominator is thus removed from Eq.~6.1!
also for intermediate states, and in analogy with Eq.~6.3!,
we obtain

G2m1m2
;g2g2p1gm1

g2p1gm2
g2p1;g2g2p1

if m15m251, ~6.5!

giving the coupling illustrated in Fig. 46~a!.
So the quark spin structure is again preserved and

unsignatured ~helicity-conserving! amplitude for two-
Reggeon exchange has the lowest-order form

.

FIG. 46. Quark-Reggeon couplings.
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A2; iG2
2sE d2kI 1d2kI 2

kI 1
2kI 2

2 d2@qI 2kI 12kI 2#. ~6.6!

@Note that we should not cross the gluon lines in obtain
Eq. ~6.6!—the corresponding Feynman diagram gives onl
real logarithm that we are not interested in.#

In the J plane Eq.~6.6! gives ~writing E512J)

A2~E,q2!;
G2

2

E E d2kI 1d2kI 2

kI 1
2kI 2

2 d2@qI 2kI 12kI 2#. ~6.7!

Higher-order contributions convertE21 to a two-Reggeon
propagator, and Eq.~6.7! takes the usual two-Reggeon for

A2~E,q2!;G2
2E d2kI 1d2kI 2

kI 1
2kI 2

2

d2@qI 2kI 12kI 2#

@E2D~kI 1
2!2D~kI 1

2!#
.

~6.8!

The Reggeon interactions described in Sec. V C~in particu-
lar the full BFKL kernel! also appear as higher-order cont
butions.

Proceeding in the same way, we obtain theN-Reggeon
coupling illustrated in Fig. 46~b!,

GNm1¯mN
;gNg2p1gm1

g2p1¯g2p1gmN
g2p1

;gNg2p1 if m15m25¯5mN51,

~6.9!

and for the unsignaturedN-Reggeon amplitude,

AN;~ i !N21m2GN
2 sE d2kI 1¯d2kI N

3d2@qI 2kI 12kI 2¯2kI N#
1

kI 1
2 ¯

1

kI N
2 , ~6.10!

so that helicity remains conserved. Again, Eq.~6.10! is the
lowest-order component of theE-plane amplitude:

AN~E,q2!;GN
2 E d2kI 1¯d2kI N

kI 1
2
¯kI N

2

d2@qI 2kI 12kI 2¯2kI N#

@E2D~kI 1
2!¯2D~kI N

2 !#
.

~6.11!

Note that, once an overall factor ofm2 is absorbed by the
normalization of the scattering states, the Reggeon coupl
are independent of the quark massm. It is also important for
the discussion in the next section that we need take only
of the scattering quarks to be fast in order to derive
kinematic structure of the lowest-order multi-Reggeon
change diagrams. The kinematic structure of the fast qu
coupling to the exchanged gluons always imposes the s
kinematic structure on the slow quark couplings.

Positive~or negative! signatured amplitudes are obtaine
by adding ~or subtracting! the corresponding CPT twiste
amplitude. That is, we make a CPT transformation on o
vertex or the other to which the multi-Reggeon state
coupled and add~or subtract! the amplitude obtained. For th
two-Reggeon state we replace the fast quark couplingG2 of
07400
g
a

gs

ne
e
-
rk

e

e
s

a quark with a particular helicity by the coupling of a fa
antiquark with the opposite helicity. Helicity conservatio
makes the parity part of the twist trivial since parity cons
vation implies that the vertices for both helicities are equ
Consequently, the only effect of the CPT transformation is
replace the color factor of the quark by that for the antiqua
For an Abelian theory~QED! this simply changes the sign o
the charge. As a result, the exchange of an even~odd! num-
ber of Reggeons contributes to the even~odd! signatured
amplitude. This is the normal signature rule for Regge cu
~Of course, the photon is not actually Reggeized in QE!
When color factors are introduced, the CPT twist also
volves~color! charge conjugation. In this case, provided h
licity is conserved, signature can be identified with co
charge parity.

B. Color factors

We define the color charge conjugation operation on
color matrix of the gluon field by

Aab
i →2Aba

i . ~6.12!

The minus sign indicates an intrinsic odd color parity for t
gluon. Quarks are transformed into antiquarks. We will d
cuss color parity for quarks in more detail in our seco
paper. For the purposes of this paper, it is sufficient t
color charge conjugation simply reverses the order of mu
plication of color matrices in internal quark loops.

For SU~2! color, quark-quark scattering~via two-gluon
exchange and higher! contains twot-channel color represen
tations; i.e., in thet channel,

2^ 2→1% 3. ~6.13!

The singlet representation is symmetric~even color parity!,
while the triplet is antisymmetric~odd color parity!. It is well
known @11,18# that at next-to-leading logarithmic order th
singlet amplitude contains the two-Reggeon cut, while
triplet contains only the Reggeizing gluon. This follows fro
the bootstrap cancellation of Fig. 27. For gluon-gluon sc
tering we can have

3^ 3→1% 3% 5, ~6.14!

and the I 52, symmetric, five-dimensional representati
also gives a two-Reggeon cut. For three-gluon exchange
higher, helicity conservation implies that in quark-qua
scattering, the odd-number Reggeon exchanges appear i
color triplet channel while the even-number exchanges
pear in the color singlet channel.

For SU~3! color, quark-quark scattering contains threet-
channel representations:

3^ 3̄→1%
1

2
~8a% 8s!. ~6.15!

Again ~at next-to-leading logarithmic order!, the symmetric
singlet gives a two-Reggeon cut and the antisymmetric o
gives the Reggeized gluon. However, as we noted in
discussion following Fig. 27, in the symmetric octet chann
8-31
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FIG. 47. Reggeon amplitude extracted from the eight-particle amplitude.
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the kernel is identical with the Reggeizing antisymmet
kernel and there is an ‘‘AFS cancellation.’’ That is, the tw
Reggeon cut is replaced by an even-signature Regge
@20#. The lowest-order amplitude is still Eq.~6.7!, but in
higher orders it is converted to the form

A2~E,q2!;
J1~q2!

E2g2q2J1~q2!
, ~6.16!

whereJ1(q2) is given by Eq.~5.19!. Ultimately, this will be
very important for our construction of the QCD Pomeron
will also be important that, when helicities are not conserv
the TCP twisting process involves both parity and co
charge parity. In general, helicity conservation implies t
even-signature combinations of odd-signature and ev
signature Reggeons will appear in both the singlet ands
channels, while the odd-signature combinations will app
only in the 8a channel.

It is clear from Eqs.~6.6! and ~6.10! that Reggeon dia-
grams involving the scattering of on-shell quarks are infra
divergent with the divergence arising from the integral ov
~gluon! transverse momenta. This divergence is present e
when the Reggeon state carries zero color. It is importan
understand the origin of this divergence and how it relate
gauge invariance. For this purpose we now discuss
‘‘Reggeon Ward identities’’ that, for Reggeon amplitude
are a direct requirement of gauge invariance.

C. Reggeon Ward identities

Reggeon amplitudes can be defined directly in terms
analytically continued partial-wave amplitudes or by the r
evant multi-Regge or helicity pole limit. In terms of mult
particle partial-wave amplitudes, it is straightforward
write

aJ1 ,J2 ,J3 ,J4 ,J5 ,...

——→
Ji→a i , i 51,...,4

)
i 51

4
b i

~ j i2a i !
Aa1 ,a2 ,a3 ,a4

~J5 ,...!

~6.17!

and to defineAa1 ,a2 ,a3 ,a4
( j 5 ,...) as amulti-Reggeon ampli-

tude.~For simplicity, we omit the labelsNi , which give the
differences between angular momenta and helicity label
the FG continuation involved.! Multi-Reggeon scattering
amplitudes can be defined in momentum space by writin
SW representation involving the remainingJi or by simply
taking a multi-Regge limit in which the Regge poles i
volved are exchanged. As we have illustrated in previo
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sections, we can define such limits in terms of invariants a
also in terms of light-cone momenta in a particular Loren
frame.

To make our general discussion specific, we consider
eight-point function, as in Fig. 47, and suppose that
multi-Regge or helicity-pole limit considered involvessi
→`, i 51, . . . ,4,where eachsi is associated with a particu
lar Reggeon as illustrated. Consider the Reggeon assoc
with s1 . We can choose a Lorentz frame in which the lim
si→` is defined byp1→`, k→kI , wherep and k are the
momenta labeled in Fig. 48 andkI is the transverse momen
tum carried by the Reggeon. Since the four-momentumk is
reduced to a transverse momentumkI by the Regge limit, the
further limit kI→0 is equivalent to settingk50. Because of
Reggeization, the Reggeon amplitude must, as illustra
give ak50 gluon amplitude. Since the Reggeon amplitu
is embedded in an on-shellS-matrix amplitude, we obtain the
zero-momentum limit of the amplitude (^Am(k)¯&) for an
off-shell gluon to couple to anS-matrix element.

Gauge invariance implies directly that the gluon amp
tude ^Am(k)¯& satisfies the simple Ward identity@25#

km^Am~k!¯&50. ~6.18!

Differentiating this identity~treating each component ofk as
independent!, we obtain

^Am¯&1F]^An¯&
]km

G
k50

kn50

⇒^Am¯& ——→
km→0

0

if F]^An¯&
]km

G
k50

→`,

~6.19!

implying that the gluon amplitude and also~if there is no
subtlety with the Regge limit! the Reggeon amplitude shoul
vanish at zero transverse momentum. This is what we r

FIG. 48. Reduction of a Reggeon amplitude to a gluon am
tude.
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to as a Reggeon Ward identity. By similarly defining t
additional si→` limits as light-cone limits, the argumen
can~a priori! be extended to an arbitrary number of Regge
transverse momenta vanishing.

In general, therefore,~massless! Reggeon amplitudes van
ish linearly inkI when any transverse momentumkI→0. This
is a direct consequence of gauge invariance. It is straight
ward to check thatG22 defined by Eqs.~5.20! and~5.21! has
this property whenM50. However, if the quark-Reggeo
couplings discussed above had this property, the infrared
vergences of Eqs.~6.6! and~6.11! would not occur. So why
do the quark-Reggeon couplings not satisfy Reggeon W
identities?

D. On-shell quarks

In parallel with our discussion of fast quarks above,
consider the coupling of a gluon to on-shell quarks in
form

Gm~p,p8!5~g•p1m!gm~g•p81m!. ~6.20!

The Ward identity~6.18! is easily shown to hold:

~p2p8!mGm~p,p8!

5~g•p1m!~g•p2m2g•p1m!~g•p81m!

5~p22m2!~g•p81m!2~g•p1m!~p822m2!

50, ~6.21!

after applying the on-shell condition for the initial and fin
quarks.

To compare with the argument of the previous subsect
we should evaluate the Reggeon couplingG1 by calculating
quark-quark scattering in a frame in which one quark h
infinite momentum, but the momentum of the quark we
considering has finite momentum. The fast quark can the
identified with the line carrying momentump in Fig. 48 and
the finite-momentum quark vertex identified with the rema
ing amplitude that satisfies the Reggeon Ward ident
Therefore we identify the quark momentump in Eq. ~6.20!
with p2 in Eq. ~6.9! and take

p[p2 , p8[p21k,

p25~p21 ,p22 ,p22,0!,

k5~0,k2 ,k2 ,k3!. ~6.22!

The remnant of the fast quark Regge limit is thatk2→0. A
priori , since all the momenta involved are finite, Eq.~6.19!
goes through straightforwardly. However, since bothp2 and
p8 are on mass shell,

p2
25m2, ~p21k!25m2→2p21k252p22k21k3

2.
~6.23!

Therefore, if we keepp2 finite, we cannot treatk2 and the
components ofkI as independent variables. In particular,
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F ]k3

]k2
G

k50

;~k2!21/2, ~6.24!

so that

F ]

]k2
G3G

k50

;
]k3

]k2

]

]k3
G3;k2

21/2 ]

]k3
G3 , ~6.25!

implying that

G1[G1;k3

]

]k2
G3;

]

]k3
G3→”

k→0
0. ~6.26!

Since Eq.~6.23! also requiresk2;k2 , the transverse com
ponentG2 similarly satisfies

G2;k3

]

]k2
G3;

]

]k3
G3;G1 . ~6.27!

In the gluon Ward identity the contributions ofG1 and G2
cancel, while the Regge limit picks out justG1 .

Clearly, the mass-shell constraint conflicts with the de
vation of the Reggeon Ward identity. Note that, sinceGN is
given by a sequence of on-shell quark scatterings, this c
pling also need not vanish when any, or all, of thekI i→0. We
conclude that the Reggeon Ward identity does not hold
Reggeons coupling directly to on-shell quarks—even thou
the related gluon Ward identity implied by gauge invarian
still holds. Conversely, when Reggeons couple through
shell quarks or gluons, as is in general the case, the Reg
Ward identities follow directly from gluon Ward identities
~Note that all of the above discussion goes through straig
forwardly when the quark massm is set to zero.!

E. Reggeon Ward identities in Reggeon diagrams

The vanishing of massless Reggeon interactions atkI 50,
as a result of the Reggeon Ward identities, is crucial for
infrared properties of Reggeon diagrams when the gluo
massless. As elaborated in@22#, the infrared finiteness of the
BFKL kernel, as well as next-to-leading order corrections
a direct consequence of this property. Explicit next-
leading order calculations have verified@19# that the
Reggeon Ward identities hold also for the quark product
amplitudes that produce next-to-leading order quark loop
teractions in the BFKL kernel. From the above discussion
is clear, however, that we could expect a violation of t
Reggeon Ward identities~but not the gluon Ward identities!
if there is an infrared divergence within a Reggeon inter
tion due directly to a loop of on-shell quarks. The Regge
interaction would then involve the on-shell quark couplin
discussed above.

Note that a violation of the Reggeon Ward identities ca
not be produced by a loop of on-shell~massless! gluons. This
is because we can uset-channel helicities to describe th
polarizations of the on-shell gluons. Since a Reggeon, at z
kI , is also at-channel gluon, it follows from helicity conser
vation that the Reggeon cannot couple to a pair of on-s
gluons in the loop. Hence the Reggeon must decouple f
8-33
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
the gluon loop atkI 50. Consequently, any divergence due
an internal loop of on-shell quarks cannot be canceled by
internal gluon loop. Not surprisingly perhaps, a quark lo
divergence occurs only in very special situations~related to
the infrared triangle anomaly! and is a subtle phenomenon
isolate. The purpose of the remaining sections is to estab
that such a phenomenon can indeed occur.

We can describe how the Reggeon Ward identities
normally satisfied diagrammatically~for quark-loop interac-
tions of the kind that we are interested in! as follows. It is
well known that to obtain the gluon Ward identity~6.18! for
a multigluon amplitude it is necessary, at the Feynman d
gram level, to sum diagrams in which the gluon involved
attached in all possible ways to the remainder of the diagr
This is illustrated for a class of diagrams containing a qu
loop in Fig. 49.~Diagrams of this kind will be of particula
interest to us in the next section.! If some or all of the gluons
are replaced by Reggeons, then, in general, a similar
over all related Reggeon-Feynman diagrams gives
Reggeon Ward identity. The number of diagrams involved
much smaller if we generalize the argument we gave ab
for putting intermediate-state particles on shell to obt
particle-Reggeon couplings. To obtain a multi-Reggeon c
pling from diagrams such as those of Fig. 49, we first c
sider which hexagraph is involved and then put correspo
ing quark lines on shell to obtain the relevant multip
discontinuity. We will not elaborate the argument for th
procedure—which we follow through in more detail in th
next section—but note only that it is directly due to the fa
that multiparticle FG amplitudes are expressed in terms
the multiple discontinuities of the hexagraph involve
~From the discussion of Secs. III and IV, we have seen h
multi-Regge behavior explicitly reflects the hexagraph
structure of amplitudes.!

As an important example, suppose we replace all the
ons in the first diagram of Fig. 49 by Reggeons and em
the diagram in a six-quark amplitude, as illustrated in F
50. ~We evaluate this diagram explicitly in the next sectio!
If we associate this diagram with the hexagraph of Fig.
the cuts shown as dashed lines in Fig. 50 correspond to
triple discontinuity of Fig. 16~b!. Since some quarks remai
off shell, after the triple discontinuity is taken, Regge
Ward identities should hold after we sum over all relat
diagrams having the same triple discontinuity. The most
rect way to show this is to follow Fadin and Lipatov@19# and
introduce Reggeon-Reggeon-gluon effective vertices in a
tion to the quark-Reggeon couplings we have already in
duced. The results of@19# can then be applied to show tha
provided the quark-loop integration introduces no problem
the diagrams of Fig. 51 combine to give a Reggeon W
identity zero ask→0. ~k is the transverse momentum ca
ried by a single Reggeon.! In the first two diagrams al
Reggeons couple directly to the quark loop. In the third d

FIG. 49. Ward identity diagram sum.
07400
n

sh

re

-

.
k

m
e
s
e

n
-
-
d-

t
f

.
w
t

u-
d
.

,
he

i-

i-
-

s,
d

-

gram there is a gluon line coupling a two-Reggeon–glu
‘‘effective vertex’’ to the quark loop.

F. Pauli-Villars regulator quarks

There is a very important difference between the qua
loop Reggeon interaction vertices appearing in Figs. 50
51 and those appearing in elastic scattering@19#. In both
cases the process of obtaining Reggeon vertices from F
man diagrams involves putting quark lines on shell. Ho
ever, for a quark loop contributing as an elastic scatter
interaction, there is always a sufficient number of discon
nuities taken through the loop to effectively reduce the
mension of the loop integration. In contrast, in the exam
of Fig. 50 the quark lines can be put on shell by using o
the longitudinal momentum integrations for the other loo
involving Reggeized gluons. Consequently, the quark lo
remains as a four-dimensional integration. This feature
associated with the fact that the multi-Regge limit of inter
can be defined with the complete quark loop at rest~as we
will explicitly do in the next section!.

As the quark lines are put on shell, the ultraviolet conv
gence of the quark loop is significantly reduced. In the fi
two diagrams of Fig. 51, there are three quark propaga
remaining off shell, while in the third diagram only tw
quark propagators remain off shell. Therefore in all thr
diagrams the quark loops are power divergent with the th
diagram being particularly badly divergent. Although highe
order diagrams may provide additional convergence, ther
no a priori reason why this should be the case. Because th
is no loss of dimension in the loop integration, in general
can expect that the reduced quark loops~produced by the
multi-Regge kinematics we discuss! are no more convergen
than the quark loops encountered in the original definition
the theory. This implies that a regulator is necessary to de
these loops. While a regulator can straightforwardly be
plied in the definition of the theory, we cannot do this he
In our case, the need for a regulator implies that the mu
Regge behavior of the underlying Feynman diagrams is
correctly given by the reduction to Reggeon diagrams t
we are implicitly assuming.

If the reduction of Feynman diagrams to a Reggeon d
gram gives infinite coefficients involving power-diverge

FIG. 50. Triple discontinuity.
8-34
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FIG. 51. Quark-loop couplings giving a Reggeon Ward identity.
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subdiagrams, then the multi-Regge behavior of the unde
ing diagrams must be larger by a power than that of
Reggeon diagram. This phenomenon provides a real thre
the unitarity boundedness of the theory.~We will return to
the significance of this in our second paper.! As will be-
come clear from our discussion in the next two sections,
the infrared contribution of the triangle diagram which w
eventually dominate the dynamical picture that we devel
However, we would like a starting point in which we hav
both gauge invariance and a finite Reggeon diagram form
ism. This requires a definition of the contribution of qua
loops to Reggeon interactions which, when the quarks
massive, is finite and satisfies the Reggeon Ward identi
To achieve this we introduce large mass Pauli-Villars re
lator ‘‘quarks,’’ in addition to the light quarks that we ulti
mately take to be massless. The regulator quark loops h
the opposite sign to the physical light-quark loops. To ens
there are no Reggeon diagram ultraviolet divergences,
safest procedure is to keep the regulator mass finite. In
following we will make only occasional reference to th
regulator quark massml , which will provide a finite ultra-
violet cutoff in the quark sector. Its presence means tha
the quark sector, the theory is not unitary at this mass sc
We will ultimately removeml after we have extracted infra
red divergences associated with the massless quarks.

With the Pauli-Villars cutoff, the Reggeon Ward identitie
will be satisfied straightforwardly, as illustrated in Fig. 51,
long as the light-quark mass is nonzero. When the quarks
massless, an infrared divergence problem arises, which l
to another important difference between the diagrams of
51. The three off-shell propagators in the first two diagra
will generate a triangle Landau singularity, enhancing ze
transverse-momentum quark threshold singularities. In
first diagram this singularity occurs when
ks
no
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Q1 ,Q2 ,Q3→0. ~6.28!

In the third diagram there is no triangle singularity. In th
next two sections we will see how the presence of the
angle singularity produces a violation of the Reggeon W
identities when the zero-quark-mass limit is taken. We w
also see that the presence of the ultraviolet regulator se
plays an important role in the way the limit is realized.

VII. TRIPLE-REGGE HELICITY-FLIP VERTICES

In this section we study Feynman and Reggeon diagra
of the kind discussed at the end of the last section, all
which involve a quark loop. We will study such diagrams
the variety of triple-Regge limits discussed in Sec. IV. O
aim is to extract parts of the helicity-flip Reggeon vertic
Tm8n8r 8
F discussed in Sec. V which have special~singular!

zero-quark-mass properties with respect to the Regg
Ward identities. As anticipated in the last section, we i
tially consider particular Feynman diagram contributions
volving on-shell quarks and then deduce the structure of c
responding Reggeon couplings. We will build up to diagra
with the complexity of Fig. 50. We begin, however, with th
diagram of Fig. 52 involving single-gluon exchange.

A. Feynman diagram limits

Consider the behavior of Fig. 52 in the limits defined
Sec. IV B. Since each limit is defined in terms of fast ext
nal quarks, we obtain a contribution if we simply apply E
~6.1! to these quarks and leave the quark loop to be evalu
at finite momentum. Initially, we omit color factors and tak
the quark massmÞ0. In this case the quark loop gives~apart
from a normalization factor! the usual vertex function
Gm1m2m3
~q1 ,q2 ,q3 ,m!5 i E d4k Tr$gm1

~q” 31k”1m!gm2
~q” 11k”1m!gm3

~q” 21k”1m!%

@~q11k!22m2#@~q21k!22m2#@~q31k!22m2#
. ~7.1!
~Since we implicitly consider Pauli-Villars regulator quar
to be present as we discussed in the last section, we ig
ultraviolet divergence problems.! Denoting the full ampli-
tude corresponding to Fig. 52 byT111 and using Eq.~6.1!, we
obtain a result analogous to Eq.~6.4! for the limit L1 , i.e.,
re T111→TL1

111;g6
p1p2p3

t1t2t3
G112131~q1 ,q2 ,q3!, ~7.2!

where t15Q1
2, etc., andG112131 is defined byg i 15g0
8-35
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
1gi , i 51,2,3. In this section, for simplicity, we continue t
omit the gluon mass. For the limitL2 we similarly obtain

T111→TL2

111;g6
p1p2p3

t1t2t3
G111231~q28 ,q2 ,q3!, ~7.3!

and for the limitL3

T111→TL2

111;g6
p3

t1t2t3
G111131~q28 ,q2 ,q3!. ~7.4!

Our further discussion of infrared divergences a
Reggeon Ward identities in the next section will center
that part of the vertex functions~7.2!–~7.4! that behaves non
uniformly with respect to the two further limits

~ i! q1;q2;q3;Q→0, ~ ii ! m→0. ~7.5!

We will be studying effects that are closely related to t
infrared triangle anomaly@26#. At first sight it might seem
that we should not encounter such behavior. First, E
~7.2!–~7.4! involve Gm1m2m3

evaluated with~transverse! mo-
menta orthogonal to the appropriate~light-cone! Lorentz in-
dices. Therefore Eqs.~7.2!–~7.4! do not contribute to the
divergence of the triangle graph in which the anomaly
sides. However, as we discussed in Sec. VI D, if on-sh
quarks are involved, transverse and longitudinal compon
of vertex functions are linked by the underlying gluon Wa
identities, even though the Regge limit picks out just t
longitudinal component. Consequently, if the transve
component contains an infrared divergence of the trian
graph, associated with the anomaly, in which the quarks
placed on shell, this will also appear in the longitudinal co
ponent. Even so, since only vector~rather than axial vector!
couplings appear inGm1m2m3

, we again would not expect th
anomaly to appear. In fact, as we build up multi-Regge
interactions in the following, we will consider~originally!
nonlocal couplings to the triangle graph that are ‘‘axial ve
tor like’’ in the Regge limit, infrared, region of interest.

The most singular behavior in the the limit~i! involves all
three denominator poles and the minimum internal mom
tum dependence from the numerator. Since the trace o
odd number ofg matrices vanishes, the onlym dependence
of the numerator ofGm1m2m3

comes from the terms contain

ing a factor ofm2. Denoting this ‘‘m2 part’’ by Gm1m2m3 ,m2,
we have

FIG. 52. Triple-gluon vertex.
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Gm1m2m3 ,m2 →
Q→0

im2E d4k

@k22m2#31O~Q!

3Tr$gm1
~q” 31k” !gm2

gm3

1gm1
gm2

~q” 11k” !gm3

1gm1
gm2

gm3
~q” 21k” !. ~7.6!

In the leading term, the numerator terms that are odd ik
vanish after integration and so

Gm1m2m3 ,m2 →
Q→0

Gm1m2m3,0~q1 ,q2 ,q3!

[ iR Tr$gm1
q” 3gm2

gm3
1gm1

gm2
q” 1gm3

1gm1
gm2

gm3
q” 2%, ~7.7!

where

R5m2E d4k

@k22m2#3 5E d4y

@y221#3 . ~7.8!

Clearly,

Gm1m2m3,0~q1 ,q2 ,q3! ;
Q→0

Q. ~7.9!

If we reverse the order of the limits~i! and ~ii !, we obtain,
instead of Eq.~7.7!,

Gm1m2m3 ,m2 ;
m→0

m2→0. ~7.10!

If we considerT111 as an isolated Feynman diagram, d
fined directly in the massless theory, Eq.~7.7! will not be
present. However, we will shortly consider Reggeon inter
tions containingGm1m2m3 ,m2. In the next section we will see
that the nonuniformity of Eqs.~7.7! and~7.10! implies that if
the Reggeon Ward identities are satisfied formÞ0, then
Gm1m2m3,0 is present in these interactions whenm50. Note

that the presence ofm2 in the numerator ofGm1m2m3 ,m2 indi-
cates two helicity flips of the quarks in the loop. That t
helicity-flip processes do not decouple in the limiting pr
cess, where the limit~i! is taken before the limit~ii !, is
clearly a consequence of the triangle singularity infrared
vergence produced as all three internal quark propagator
on shell. The presence of this divergence is therefore cru

Consider now the contribution of Eq.~7.7! to Eqs.~7.2!–
~7.4!. In Eq. ~7.2! we will have a contribution

TL1,0
111 ;g6

p1p2p3

t1t2t3
G112131,0~q1 ,q2 ,q3!, ~7.11!

where
8-36
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G112131,0;~Tr$g11g21g1g31%q11Tr$g11g21g31g2%q2

1Tr$g11g3g21g31%q3!

;~q11q21q3!. ~7.12!

Similarly, in Eq. ~7.3! we will have a contribution

TL2,0
111 ;

p1p2p3

t1t2t3
G111231,0~q28 ,q2 ,q3!

;
p1p2p3

t1t2t3
Tr$g11g12g2g31%q28

1~Tr$g11g12g31g2%q21Tr$g11g3g12g31%q3!

;
p1p2p3

t1t2t3
q3 , ~7.13!

and in Eq.~7.4! we will have

TL3,0
111 ;G111131,0~q28 ,q2 ,q3!;Tr$g11g11g2g31%q28

1Tr$g11g11g31g2%q21Tr$g11g3g11g31%q3

50. ~7.14!

We conclude from Eq.~7.11! that when the additional limits
~7.5! are taken after the triple-Regge limit, there is a nonz
contribution of the helicity flip process~7.7!. There are three
terms. Equation~7.13! suggests that just one of the thre
terms appearing in the triple-Regge limit appears in
helicity-flip helicity-pole limit. @We will see shortly that this
is the case. It cannot be straightforwardly deduced from E
~7.11! and~7.13! since we redefined the momentum comp
nents of theQi in going from one limit to the other.# The
result of Eq.~7.14! shows that there is no contribution of th
helicity flip process~7.7! in the simple nonflip helicity-pole
limit.

Next, we consider some higher-order Feynman diagra
in order to determine how they contribute to higher-ord
Reggeon couplings. Suppose first that we replace one
more of the gluons in Fig. 52 by two-gluon exchange,
illustrated in Fig. 53. We again evaluate the quark loop
finite momentum. Our interest in two-gluon states is to e
tract two-Reggeon~Regge cut! couplings and so we calculat
the diagram with on-shell intermediate states as illustra
~We can justify this by evaluating the appropriate multip
discontinuity to calculate the relevant FG amplitude or

FIG. 53. Triple couplings involving two-gluon exchange.
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can simply suppose that we have carried out the related
gitudinal integrations.! Denoting now the full amplitude for
Fig. 53~a! by T112, we obtain for the limitL1 , in analogy
with Eq. ~6.6!,

T112→TL1

112; ig8
p1p2p3

t1t2
J1~ t3!G112131~q1 ,q2 ,q3!,

~7.15!

and so again, after the further limits~7.5! are taken, there is
a contribution of the form~7.7!, i.e.,

TLi ,0
112;2 i t 3J1~ t3!TLi ,0

111 , i 51,2,3. ~7.16!

Denoting the full amplitude for Fig. 53~b! by T222, we simi-
larly obtain

T222→TL1

222;~ i !3g12p1p2p3J1~ t1!J1~ t2!J1~ t3!

3G112131~q1 ,q2 ,q3!, ~7.17!

and so

TLi ,0
222;2 i t 1t2t3J1~ t1!J1~ t2!J1~ t3!TLi ,0

111 , i 51,2,3.

~7.18!

We can continue adding gluons~as we did for single-
quark couplings in the last section! and obtain corresponding
results. The diagram of Fig. 54 contains the triple coupl
of three-gluon states which we anticipate will give the fi
multi-Reggeon coupling appearing in Fig. 51. This coupli
will be very important in the following.

In this case we obtain, as above, for the limitL1 ,

T333→TL1

333; i 6g16p1p2p3J2~ t1!J2~ t2!J2~ t3!

3G112131~q1 ,q2 ,q3!, ~7.19!

where~continuing to omit normalization factors!

J2~q2!5E d2k

~k2q!2 J1~k2! ~7.20!

and, in all theLi limits,

TLi ,0
333;2t1t2t3J2~ t1!J2~ t2!J2~ t3!TLi ,0

111 , i 51,2,3.

~7.21!

FIG. 54. Triple vertex for three gluons.
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relates to the general triple-Regge analysis of Sec. IV.

ALAN R. WHITE PHYSICAL REVIEW D 58 074008
Note that in extracting theTLi ,0
333 from the diagram of Fig.

54, we have put on shell~the denominators of! all those
quark propagators that we had not already put on she
converting the multigluon coupling to a multi-Reggeon co
pling. Therefore theTLi ,0

333 couplings actually involve a loop

of on-shell quark propagators and so, from the discussio
the last section, might be anticipated to be associated w
violation of the Reggeon Ward identities. To establish t
such contributions actually appear in multi-Reggeon c
plings, we must first consider the color factors involved.

B. Color factors

In this subsection we discuss the color factors that sho
be added to the diagrams considered in the last subsec
We use the tensor notation introduced in Fig. 26. The qu
relations shown in Fig. 55 are then sufficient to evaluate
color factors for any number of gluons coupling to a sing
quark loop. We can form multigluon~multi-Reggeon! states
with color 1, 8a , and 8s by combiningd, f, and d tensors
appropriately with gluon fields. The color parity of such
state will then be given by a product of factors of~21! for
each gluon field and~21! for eachf tensor.

From the second relation of Fig. 55, the quark loop in F
52 gives a color factor proportional to

di 1i 2i 3
1 i f i 1i 2i 3

, ~7.22!

wherei 1 is the color label for the gluon carrying momentu
Q1 , etc. Consider next the addition of the diagram of Fig.
~which is the only other topologically distinct quark-loo
three-gluon interaction!. The diagram of Fig. 56 differs from
that of Fig. 52 by permutation of the color matrices, whi
~within the trace! is the same as reversal of the direction f
multiplication. The result is complex conjugation of the col
factor. Since the sign of theqi is also reversed, Fig. 56 can
as illustrated, be obtained directly from Fig. 52 by replac
the quark loop by an antiquark loop. For theO(m2) part with
which we are concerned, the two diagrams combine to g

FIG. 55. Color factors for quark-gluon couplings.
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TL1,0
111 ;g6

p1p2p3

t1t2t3
@~di 1i 2i 3

1 i f i 1i 2i 3
!~q11q21q3!

2~di 1i 2i 3
2 i f i 1i 2i 3

!~q11q21q3!#

52g6i f i 1i 2i 3

p1p2p3

t1t2t3
~q11q21q3!. ~7.23!

The color factors for the diagrams of Fig. 53 are,
course, more complicated. The two gluons can form sta
with t-channel color 1, 8a , and 8s . For Fig. 53~a! the color
factor contains each of the color tensors illustrated in Fig.
To extract the full discontinuity giving the Regge cut co
pling, we must also add the contribution obtained by repl
ing the quark loop of Fig. 53~a! with an antiquark loop. The
factor of i associated with the on-shell quark now al
changes sign. As a result, only the real part of the co
factor remains, i.e., the first three diagrams in Fig. 57, wh
contain an even number off tensors. These color factor
describe, successively, the coupling of 1, 8a , and 8s two-
gluon states to the two single gluons.

Moving on to Fig. 53~b!, we again add the correspondin
diagram with an antiquark loop and, because of the facto
( i )3 for each on-shell antiquark, select the color diagra
containing an even number off tensors, i.e., the diagram
shown in Fig. 58. The first diagram in Fig. 58 gives an an
symmetric coupling of three two-Reggeon states, each ca
ing odd color parity. The second gives an antisymmetric c
pling of two even-color-parity states and one odd-col
parity state, and so on.

Finally we consider color factors for the triple coupling
three-gluon states shown in Fig. 54. Now we have an e
number of factors ofi from on-shell quarks and so colo
diagrams with an odd number off vertices survive when we
add the antiquark loop. Three particular color factors that
will be interested in are those of Fig. 59. These are coupli
which contain an odd number off vertices, but provide a
symmetric triple coupling of three-gluon states which ea
carry even color charge parity.

C. Reggeon interaction vertices: Kinematic structure

We discuss now the implications of the results of the l
two subsections for Reggeon interaction vertices. First,
consider how the structure of theTLi ,0

that we have discusse
FIG. 56. Additional quark-loop interaction.
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FIG. 57. Color factors for Fig. 53~a!.
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We can rewrite the above formulas in terms of invaria
either by writing, for example,

p1p2p3q15~p1p3!~p2p3!~p3q3!21q3
2

[~s23!~s31!~s1183!21q3
2, ~7.24!

or we can instead write

p1p2p3q35~p1p3!1/2~p2p3!1/2~p1p2!1/2q3

[~s31!
1/2~s23!

1/2~s12!
1/2q3 . ~7.25!

It then remains to expressq3 directly in terms of invariants.
For the special kinematics of the triple-Regge limitL1 , this
is particularly simple; i.e., we can write

q35@Q1•Q2#1/2. ~7.26!

Comparing with Eqs.~4.33! and~4.34!, we recognize Eqs
~7.24! and~7.25! as having the form appropriate for a triple
Regge helicity-flip amplitude witha15a25a351. The two
expressions~7.24! and~7.25! correspond to the lowest-orde
contribution from the cuts of Figs. 16~a! and 16~b! if we
suppose that thea i can be expanded perturbatively arou
unity ~as is the case for the trajectory of the Reggeized g
on!. Therefore we can potentially associate theq3 term in
TL1,0 @see Eq.~7.4!# with the first of the three hexagraphs

Fig. 15. Similarly, the other twoqi terms could be associate
with the other two hexagraphs. Of course, the Feynman
gram of Fig. 52 has no cuts. The cuts appear only as
gluons Reggeize in higher orders. The higher-order loop
grams of Figs. 53 and 54 do have cuts, and in particular
diagram of Fig. 54~with the quark lines initially uncut!
clearly has all the relevant cuts necessary to contribute to
helicity-flip limit. ~See the discussion in Sec. IV D.! If the
cuts through this diagram generate Regge cut couplings
we are anticipating, then we can directly associate the th
qi terms in Eq.~7.19! with the three hexagraphs of Fig. 15

In the L2 limit we can proceed similarly and again us
Eqs. ~7.24! and ~7.25! to argue thatTL2,0 can be associate
with the first of the three hexagraphs in Fig. 15. So just as
general arguments imply, each of three terms appearin
the triple-Regge limit is separately picked out by the cor
07400
s
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e

a-
e

he
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ee

e
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sponding helicity-flip limit. Again, higher-order contribu
tions can produce Reggeization of the gluons and con
Eqs.~7.24! and~7.25! to the form~4.33! and~4.34!, respec-
tively.

In theL2 limit q3 has a slightly more complicated expre
sion in terms of invariants, i.e.,

q356
@2l~Q1

2,Q2
2,Q3

2!#1/2

2@Q3
2#1/2 . ~7.27!

@We will discuss shortly the significance of the choice
sign in Eq.~7.27!.# Note that Eq.~7.27! satisfies Reggeon
Ward identities in that it vanishes linearly when eith
Q1→0 or when Q2→0. When the Qi are spacelike,
@2l(Q1

2,Q2
2,Q3

2)#1/2 is the area of the triangle formed by th
three momenta and so it vanishes when any one of th
vanishes. The denominator spoils the vanishing forQ3→0.
In fact, if q3Þ0, the numerator of the corresponding qua
propagator in Eq.~7.7! is off shell. This is what allows two
of the Reggeon Ward identities to hold. In contrast, both
the quark propagators which form theQ3 channel are strictly
on shell, and so theQ3→0 limit gives the on-shell result. In
anticipation of the next section, we note that if all thr
reggeon Ward identities hold, we expect the vertex to h
dimension 2 in theQi @as would be obtained, for example, b
simply removing the denominator in Eq.~7.27!#.

D. Reggeon interaction vertices: Signature

The discussion of the previous subsection shows that,
nematically, each of theTL2,0 that we have considered coul
appear in the corresponding lowest-order multi-Regge
helicity-flip amplitude. However, we have not yet discuss
color parity and signature. As we noted in Sec. IV, signat
is defined via a CPT twist that combines color~charge! par-
ity and space parity. Since we are discussing helicity-
amplitudes, we expect that space parity plays a nontri
role. The helicity flip is reflected in the presence of theqi
factors, and indeed the sign ofq3 , as given by Eq.~7.27!, is
changed under the parity transformation associated with
nature. This change takes place for each of the threet i chan-
nels.
FIG. 58. Color factors for the six-gluon vertex.
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
Consider firstTL2,0
111 , with the color factor~7.23! included.

The denominator factors oft i are, of course, the usual gluo
particle poles. We use Eq.~7.25! to extract the~potential!
helicity-flip Reggeon vertex

T111
F,05 i f i 1i 2i 3

q3 , ~7.28!

with q3 given by Eq.~7.27!. We keep the 0 superscript t
indicate both that this is a particular contribution to the ge
eral vertex and that it is defined at zero quark mass. Note
since Eq.~7.25! expresses the triple-Regge behavior in ter
of invariants that have no kinematic singularities in theQi , it
defines the appropriate vertex to extract if we wish to c
sider singular behavior as theQi→0.

By considering signature we implicitly sum over a lar
number of quark loop diagrams, many of which have a mu
more complicated discontinuity structure than the ‘‘plana
loops we have discussed. We introduce signature in tht i
channel by making a CPT transformation of the correspo
ing initial and final scattering states together with the ver
involved. For thet3 channel, therefore, we regard Reggeon
as scattering into Reggeon 2 by exchanging Reggeon 3
terchanging 1 and 2 gives a factor of21 from the color
parity of the f tensor and a further factor of21 from the
parity change of sign ofq3 . Consequently, Reggeon
should be even rather than odd signature ifT111

F,0 is to appear
in the vertex. We conclude thatT111

F,0 cannot contribute to the
triple-Reggeon vertex. Equivalently, when we sum over
the diagrams for quark and antiquark scattering necessa
define signatured amplitudes, the pieces we have extra
are canceled. The combination of external quark and a
quark vertices requires odd signature for the~Reggeized!
gluons to couple while the central vertex requires even
nature.

Consider nextT112
F,0 with the color factor given by the firs

three diagrams of Fig. 57. To give a Reggeon coupling
factor of J1(t3) must be converted to a two-Reggeon prop
gator in higher orders@or for the 8s Regge pole discussed i
the last section,J1(t3) must contribute to Reggeization#. In
the first color diagram, there is no color factor and so
change of sign of the momentum factor is in direct confl
with the required even signature of the two-Reggeon state
the second diagram, onef tensor forms an 8a two-Reggeon
state which then couples to the two single Reggeons v
vertex of the same form as Eq.~7.28!. In this case the color
and momentum factors do combine to give even signatur
the t3 channel. In thet1 ~and t2) channel, the situation is
more complicated. Because the Reggeon states in thet2 and
t3 channels are distinct, there is no simple parity property
their interchange. However, in the next section we will

FIG. 59. Color factors for the triple coupling of three-gluo
states.
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interested in the situation in which all Reggeons in
Reggeon state carry zero transverse momentum and the
itself produces a universal canonical transverse momen
dependence. In this case we need not distinguish betw
distinct Reggeon states when interchanging them to ob
signatured couplings. Consequently, in discussing the sig
ture effects of color factors, we only need consider the sy
metry of the color tensor in the Reggeon vertex and not
tensors involved in forming the Reggeon states. In particu
in the t1 and t2 channels we only need consider the symm
try of the tensor in the vertex~7.28!. Combined with the
negative parity ofq3 , this gives even signature for thet1 and
t2 channels, where odd signature is required. So again t
is no vertex. The third diagram of Fig. 57 replaces thef
tensor of Eq.~7.28! with a d tensor and so gives odd signa
ture for thet3 channel where even signature is required.

E. Reggeon interaction vertices: Anomalous Reggeon states
and the anomalous odderon

Now considerT222
F,0 with the color factors given by the

diagrams of Fig. 58. In this case the vertex color factor ha
provide a change of sign to compensate for the change
sign of the momentum factor, in order to give even signat
in each of the channels. The first diagram of Fig. 58, wh
exists in both SU~2! and SU~3!, achieves this by coupling
three 8a two-Reggeon states with a vertex of the form~7.28!.
Therefore T222

F,0 can appear in a triple coupling of two
Reggeon states that have ‘‘anomalous color parity’’; i.e.,
color parity is not equal to the signature. Normally~i.e., in
next-to-leading logarithmic perturbation theory!, because of
helicity conservation, there is no 8a two-Reggeon state. As
we noted in Sec. VI B, the two-Reggeon state has color p
ity 11 and signature11. We refer to states with anomalou
color parity as ‘‘anomalous Reggeon’’ states. Such Regg
states will will not appear when quarks scatter with th
helicity conserved~as is the case for the leading-order pe
turbative couplings discussed in the last section and mus
the case to all orders when the quarks are massless!. How-
ever, these states will couple betweenT222

F,0 vertices.
The second diagram of Fig. 58 also provides an intere

ing coupling. It does not exist in SU~2!, but in SU~3! it gives
a T222

F,0 vertex of the form~7.28! that couples an anomalou
8a state to two even-signature 8s states that are not anoma
lous. As we discussed in Secs. V C and VI B, the 8s even
signature channel contains a bound-state Reggeon that i
change degenerate with the Reggeized gluon. If we den
an anomalous Reggeon state by ‘‘A’’ and a normal reggeon
state by ‘‘N,’’ the first two diagrams of Fig. 58, respectively
produce

‘‘ AAA’ ’ and ‘‘ ANN’ ’

couplings. This is analogous to the well-known ‘‘AAA
1AVV’’ structure of the triangle anomaly, whereA denotes
an axial vector coupling andV denotes a normal vector cou
pling. All the remaining diagrams in Fig. 58 contain a sym
metric vertex color factor that cannot offset the odd-par
property ofq3 .

Finally, we considerT333
F,0 . Again, this has the kinematic

structure of Eq.~7.29!, but now with color factors such as th
three diagrams shown in Fig. 59. These are the only d
grams giving a triple coupling of anomalous three-Regge
8-40
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CONFINEMENT AND THE SUPERCRITICAL POMERON IN QCD PHYSICAL REVIEW D58 074008
states ~i.e., AAA couplings!. The anomalous color parity
three-Reggeon state will play an important role in the n
section. We refer to it as the ‘‘anomalous odderon’’ state
SU~3! we can form an anomalous odderon either as a c
octet or a color singlet by using the tensors shown in Fig.

The first diagram of Fig. 59 couples three color oc
anomalous odderons. We obtain odd signature for e
three-Reggeon state by combining the even color parity
the centrald tensor with the odd parity of the momentu
factor; i.e., the three-Reggeon states couple with an effec
triple vertex

T333
F,05di 1i 2i 3

q3 , ~7.29!

where, again,q3 is given by Eq.~7.27!. The three-Reggeon
states have even color parity since they are obtained by c
bining an odddf factor with an odd number of gluon
~Reggeons!.

The second diagram of Fig. 59 couples two color oc
anomalous odderons and one color singlet. The third diag
in Fig. 59 couples three color singlet anomalous odder
and simply leads to a vertex

T333
F,05q3 , ~7.30!

with no color factor. Equation~7.30! exists in both SU~2!
and SU~3!. In SU~2! there is only a color singlet anomalou
odderon. However, the SU~3! color octet anomalous oddero
has a component that transforms as an SU~2! singlet with
respect to an SU~2! subgroup. For this component the SU~2!
version of the third diagram of Fig. 59 is obtained from t
first two SU~3! diagrams by projecting onto the SU~2! sub-
group. Since the three-Reggeon states carry anomalous
parity, they also will not couple to single quarks scatteri
with their helicity conserved. Again, these states will cou
betweenT333

F,0 vertices.
The above arguments generalize to any number of glu

coupling via a single-quark loop. It is straightforward
show that there areAAA T223

F,0 vertices of the form~7.29! and
~7.30! that couple anomalous color octet@triplet for SU~2!#
two-Reggeon states to color octet and color singlet ano
lous odderons, respectively. The first possibility exists o
in SU~3!, of course. AT233

F,0 vertex of the form~7.28! exists in
SU~3! with color octet anomalous odderon states. There is
corresponding vertex for color singlet anomalous oddero
Although we have discussed only the lowest-order coupli
explicitly, it is clear that there is a large set of even- a
odd-signature anomalous color parity multi-Reggeon sta
that couple through helicity-flip vertices of the kind that w

FIG. 60. SU~3! color tensors for~a! the octet odderon and~b!
the singlet odderon.
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have isolated. Such vertices can appear in reggeon diag
only within theTm8n8r 8

F vertices discussed in Sec. V.
In addition to theTF,0 AAA vertices, there will also be a

corresponding variety ofANN vertices. In most of our dis-
cussion in the next section, we will specifically consider on
the AAA couplings of anomalous Reggeon states. We w
see that the dynamics is determined by theAAA couplings,
most importantly because theAAA coupling ~7.28! provides
the only TF,0 coupling ~either AAA or ANN! of color-zero
states within SU~2! and ultimately it is SU~2! color singlet
couplings and infrared divergences that will interest us.

F. General couplings of anomalous Reggeon states

Note that while the anomalous Reggeon states do
couple to helicity-conserving elastic scattering states, t
will couple in general multiparticle amplitudes, provide
only that the initial and final states have different par
properties. A general amplitude of this kind is illustrated
Fig. 61. In such amplitudes the anomalous Reggeon c
plings will automatically satisfy the Reggeon Ward iden
ties. The distinctive feature of the helicity-flip couplings w
have discussed in this section is that they are associated
a violation of these identities in the massless quark theo
This is the subject of the next section.

VIII. INFRARED DIVERGENCES AND CONFINEMENT

In the last section we found that anomalous color pa
Reggeon states can couple through the special helicity
vertices that we isolated. These vertices appear in mass
quark Feynman diagrams only when them→0 limit is taken
after a zero-transverse-momentum limit. In this section
describe how, within Reggeon diagrams containing the
evant interactions, imposition of the Reggeon Ward iden
ties with mÞ0 implies that these vertices survive them
→0 limit. We will then indicate how, in the particular cir
cumstances that the SU~3! gauge symmetry of QCD is bro
ken to SU~2!, infrared divergences appear asm→0. These
divergences produce what we call ‘‘a confinement pheno
enon.’’ By ‘‘confinement’’ we mean that a particular set o
color-zero states is selected that contains no massless m
gluon states and has the necessary completeness prope
consistently define anSmatrix. That is, if two or more of this
set of states initially scatter via QCD interactions, the fin
states consist only of arbitrary numbers of the same se

FIG. 61. General amplitude containing the anomalous color p
ity three-Reggeon state—the ‘‘anomalous odderon.’’
8-41
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
states. Our discussion is no more than an outline argum
and certainly is not a rigorous proof that this form of co
finement occurs. Nevertheless, we believe that the argum
is straightforward and that there is no reason to believ
cannot be improved significantly.

A. Properties of massless Reggeon interactions

Before discussing the effects of the helicity-flip qua
loop interactions, we first summarize what is known fro
existing calculations about the general properties of the e
tic scattering Reggeon amplitudesAmn

t discussed in Sec. V
when the gluon massM→0. The best-known example of a
elastic scattering Reggeon amplitude is, of course, the BF
kernel @5#. We first recall the infrared properties of this ke
nel.

Taking the massless limit in Eq.~5.21! and including the
trajectory contribution~5.18! as part of the interaction, we
obtain the leading-order singular part of the color zero k
nel. This can be written in terms of transverse moment
diagrams as in Fig. 62.~The full kernel is obtained by addin
the diagrams with the initial states interchanged.! We have
not shown the regular part of the kernel. As we remark
earlier, the regular part is uniquely determined@22# from the
singular part by the requirement that the full kernel sati
the reggeon Ward identities. Since the notation inclu
momentum-conservingd functions, the diagrams are for
mally scale invariant~even though potentially infrared diver
gent!. The infrared cancelation that provides the finiteness
the kernel is illustrated diagrammatically in Fig. 63. T
dashed line carries zero transverse momentum. This can
lation is present only in the color-zero channel. Wh
higher-order corrections to the kernel are calculated, the
frared finiteness and Reggeon Ward identities persist@19#.
Therefore, for our purposes, it is sufficient to frame our d
cussion in terms of the leading-order diagrams.

As we have emphasized in previous sections, the helic
flip interactions do not appear in elastic scattering Regg
diagrams. As a consequence, whenM→0, gauge invariance
implies that the Reggeon Ward indentities hold for all t
Amn

t . For t5Q2Þ0, the resulting zeros are sufficient to com
pensate for any internal infrared divergences of theAmn due
to the Reggeon propagators@i.e., due to the particle pole
factors of (k̄r

21M2)21 that we have included in Eq.~5.17! as
defining a Reggeon propagator#. Therefore, forQ2Þ0, all
infrared divergences arise only from particle singularit
within the Reggeon interactions.

We anticipate that the above features of the BFKL ker
generalize as follows. When Reggeization effects are

FIG. 62. Singular part of the BFKL kernel.

FIG. 63. Infrared finiteness of the BFKL kernel.
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cluded as part of the interaction, all color-zero interactio
are infrared finite forQ2Þ0. For nonzero color all interac
tions are infrared divergent, even whenQ2Þ0. As discussed
in @11#, Reggeon unitarity implies that these divergenc
necessarily exponentiate amplitudes to zero asM→0. There-
fore only Reggeon states with zerot-channel color survive in
the massless limit. Note that this is not equivalent to confi
ment since the multi-Reggeon states are still present and
duce a branch point atQ250. Most important for our pur-
poses, the infrared finiteness of the interactions implies
the canonical divergence of the multi-Reggeon stateQ2

50; i.e.,

E d2kI 1¯d2kI Nd2~QI 2kI 12kI 22¯2kI N!

3
1

kI 1
2 ¯

1

kI N
2 ;

1

Q2 ~8.1!

persists in the presence of interactions. Normally, this div
gence is eliminated~e.g., in discussions of the BFKL equa
tion! by using gauge-invariant couplings@the external
particle-Reggeon couplingsGm in Eq. ~5.15!# that have
Reggeon Ward identity zeros.

B. Infrared scaling of helicity-flip vertices

We now begin our discussion of an infrared phenomen
involving massless Reggeons and massless quark heli
flip vertices. A focal point for most of the following discus
sion will be the Reggeon diagram shown in Fig. 64 in whi
anomalous odderon Reggeon states containing three m
less Reggeized gluons are coupled by two helicity-flip ve
ces. We suppose that this diagram is embedded in a la
diagram so thatQ, Q1 , andQ2 are each integrated over. Th
Vi boxes represent the remainder of the full diagram~in gen-
eral, they will be indirectly coupled by additional Reggeon!.
An example of such an embedding is the diagram shown
Fig. 65. In this diagram, the thick lines represent the anom
lous odderon Reggeon state, and for the moment, the
lines represent any normal~i.e., nonanomalous! combination
of Reggeons. We take both the thick and thin lines to
color singlets. For our initial discussion the gauge gro
could be either SU~3! or SU~2!. Although we do not show
(Amn) interactions within the Reggeon states, they can
present within both the odderon and normal states with
modifying our discussion. We will discuss later interactio
that link Reggeons in the normal state with those in the
deron state. Figure 65 will correspond to the hexagraph
Fig. 43 and will be of the form illustrated in Fig. 44 provide

FIG. 64. Reggeon diagram involving anomalous odde
Reggeon states.
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CONFINEMENT AND THE SUPERCRITICAL POMERON IN QCD PHYSICAL REVIEW D58 074008
theVi have the necessary structure. Comparing with the
gram of Fig. 41, it is then clear thatTFL ([T333

FL ) and TFR

([T333
FR ) can contribute as helicity-flip vertices.~These ver-

tices must, of course, be energy-nonconserving and co
distinct scattering channels as shown. In all the diagrams
discuss, there will be a combination of a ‘‘regular’’ vertexR
and aTF vertex that appear together as a single disconne
Reggeon interaction. The regular vertex will be a nonfl
energy-conserving vertex that could appear in elastic sca
ing Reggeon diagrams.!

We suppose thatT333
FL and T333

FR contain all the diagrams
analogous to those of Fig. 51, together with the correspo
ing Pauli-Villars regulator diagrams, which are needed
obtain the full range of Reggeon Ward identities when
quark massmÞ0. Both vertices containGm1m2m3 , m2 con-
tributions. We concentrate on the infrared region where
expect the presence of theT333

F,0 vertices to be most signifi
cant; i.e., we consider the region

Q1;Q2;Q→0. ~8.2!

We also consider the internal phase-space region of
Reggeon states where each Reggeon carries transverse
mentumki;Q. In this region, as we discussed above, col
zero Reggeon interactions can be present, but because
are infrared finite, the full Reggeon state scales canonic
as ‘‘1/Q2.’’ Figure 64 then gives

E ¯

d2Q1

Q1
2

d2Q2

Q2
2 V1~ ...,Q1!V2~ ...,Q2Q1!V3~Q2 ,...!

3V4~Q2Q2 ,...!E d2Q

Q2~Q2Q1!2~Q2Q2!2

3T333
FL ~Q1 ,Q!T333

FR ~Q,Q2!

3@Reggeon propagators#. ~8.3!

A vital property of theTF,0 vertices is that they have
dimension 1 with respect to transverse momentum. T
should be contrasted with the dimension 2 of the ela
Reggeon interaction vertices which appear in theAmn , for
example,G22 given by Eqs.~5.20! and ~5.21!. When com-
bined with the momentum-conservingd function,
dimension-2 interactions naturally produce a scale-invar

FIG. 65. Embedding Fig. 64 in a larger diagram.
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massless Reggeon theory in the infrared region. As we
served following Eq.~7.27!, the loss of a dimension is
coupled to the loss of a Reggeon Ward identity. Since t
identity is reinstated by the addition of the extra diagrams
Fig. 51, we expect the fullT333

F to have the normal
dimension-2 infrared behavior. Therefore, whenmÞ0, the
limit ~8.2! will give

T333
F ;Q2, ~8.4!

whereas

T333
F,0;CQ, ~8.5!

whereC is a constant which depends on precisely how
limit ~8.2! is defined in terms of theQi and also contains a
color factor.

Let us first ignore theQ1 and Q2 dependence of theVi
vertices, and consider the behavior of the remainder of
~8.3! in the region~8.2!. If we insert Eq.~8.4! for T333

F , we
obtain

E d2Q

Q2 S E d2Q

Q4 T333
FL ~Q,Q! D S E d2Q

Q4 T333
FR ~Q,Q! D

;E
0

d6Q

Q6 , ~8.6!

which is only logarithmically divergent, and so any pow
convergence provided by theVi will be sufficient to give a
finite integral. Since each of theVi will, in general, satisfy a
Reggeon Ward identity giving

Vi~Q! ;
Q→0

Q @[V~Q!#, ~8.7!

we expect no infrared divergence problem—provided E
~8.4! holds.@We will useV(Q) generically in the following
to indicate a coupling that vanishes linearly inQ.#

If we instead insert the behavior~8.5! for T333
F and now

include theVi , we find that Eq.~8.6! is replaced by

E
0

d6Q

Q8 )
i

Vi~Q!. ~8.8!

In this case at least three of theVi must satisfy Eq.~8.7! to
ensure convergence. If we choose, say,V1 and V2 to not
vanish asQ1 , Q2→0, there will be a logarithmic divergenc
of the form

E d2Q

Q2 S E d2Q

Q4 V~Q!T333
FL,0

~Q,Q! D
3S E d2Q

Q4 V~Q!T333
FR,0

~Q,Q! D
[E d2Q

Q2 K@T333
FL,0

#K@T333
FR,0

#, ~8.9!

where the functional
8-43
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
K@TF#5E d2Q

Q4 V~Q!TF~Q! ~8.10!

will occur again in the following. IfTF(Q) satisfies Eq.
~8.5!, thenK@TF# is logarithmically divergent in the infrared
region.

Consider next a diagram with an additionalTF vertex and
having the structure of Fig. 66. With the vertices approp
ately chosen, this diagram can be associated with
hexagraph of Fig. 45. Again, thick lines represent the ano
lous odderon Reggeon state, thin lines are any nor
Reggeon state, and both can contain interactions. Now
indicated, there are four independent transverse moment
tegrated over. If we again chooseV1 and V2 to be finite
whenQ1 , Q2→0, we obtain, from Fig. 66,

E d2Q

Q2 K3@V,TF#, ~8.11!

and if we insert Eq.~8.5!, the overall logarithmic divergenc
persists.

Before proceeding further we consider how Eqs.~8.4! and
~8.5! are interrelated by the Reggeon Ward identities asm
→0. We discuss this in terms of a simple model that illu
trates the general behavior to be expected.

C. Triangle anomaly and Reggeon Ward identities

We first make the separation

T333
F 5TF,m2

1T̃F, ~8.12!

whereTF,m2
contains the contribution fromGm1m2m3 , m2,

and T̃F does not contain any singular behavior associa
with the quark triangle diagram. If we write, in the regio
~8.2!,

TF,m2
~m2,Q!5TF,0F~Q/m!5CQF~Q/m!, ~8.13!

an oversimplified model forF(x), which nevertheless give
the essential behavior of the triangle graph, is

F~x!5
1

~11x!2 . ~8.14!

FIG. 66. Reggeon diagram containing threeTF vertices.
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The Pauli-Villars quarks inT̃F will give the same singular
behavior, but with the opposite sign and with the light-qua
mass scale replaced by the cutoff scaleml . Therefore we
can take

T̃F~m,Q!52CQS ml
2

~ml1Q!2D 1¯ , ~8.15!

and so for the fullTF we obtain

TF~m,Q!5CQS m2

~Q1m!22
ml

2

~Q1ml!2D 1¯

→
Q→0

CQ2S 2

ml
2

2

mD1¯ . ~8.16!

Now consider

I ~m!5K@VTFG#

[E d2Q

Q3 TF~m,Q!G~m,Q!, ~8.17!

where G(m,Q) is regular atm;Q;0 and represents th
remainder of some Reggeon diagram. Substituting our mo
for TF(m,Q), we obtain

I ~m!5CE
0

d2Q

Q2 S m2

~m1Q!2211
2Q

ml
1¯ DG~m,Q!

52CE
0

d2Q

~m1Q!2 G~m,Q!

2CE
0

d2Q

Q2 S 2Qm

~Q1m!22
2Q

ml
1¯ DG~m,Q!

[I 1~m!1I 2~m!. ~8.18!

I 2(m) is finite asm→0, while I 1(m) gives

I 1~m!→2C ln@m2#G~0,0!. ~8.19!

Therefore we have a logarithmic divergence with the resid
given by the remainder of the Reggeon diagram evaluate
Q50.

In the above model we have

TF~0,Q!;2CQ1O~Q2!, ~8.20!

where the leading term can simply be identified with2TF,0.
The model illustrates simply the general situation. The use
a Pauli-Villars ultraviolet cutoff implies that in the infrare
region, where all transverse momenta are uniformly sm
the Reggeon Ward identities are satisfied by a simple can
lation between the light-quark triangle graph and the cor
sponding regulator graph. However, the nonuniformity in t
neighborhood ofQ;m;0 implies that the limitsQ→0 and
m→0 do not commute for the light-quark graph. Cons
quently, the satisfaction of the Reggeon Ward identit
when mÞ0 implies that they are partially lost in the lim
m→0. However, the offending contribution, i.e.,TF,0, can be
evaluated in terms of a loop of on-shell massless quarks
we discussed in Sec. VI, such a contribution can violate
Reggeon Ward identities while not violating the underlyi
Ward identities that give the gauge invariance of the theo
8-44
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CONFINEMENT AND THE SUPERCRITICAL POMERON IN QCD PHYSICAL REVIEW D58 074008
It is apparent from Eqs.~8.15!–~8.20! that we are seeing
the infrared presence@26# of the anomaly in the triangle
graph reflected in Reggeon interactions involving anomal
parity Reggeon states. This happens for the reasons
cussed in Sec. VII A. Gluon Ward identities relate the lon
tudinal Regge limit interactions to transverse interactio
that can be sensitive to the anomaly. In addition, the ano
lous color parity of, for example, the anomalous odde
three-Reggeon state determines that, effectively, it has
infrared ‘‘axial vector coupling’’ via on-shell quark state
~As we stated would be the case, in this section we h
considered onlyAAAcouplings. We recall from the last sec
tion that, as for the normal anomaly, we also haveANN
couplings.!

We can also view our ultraviolet regularization procedu
using Pauli-Villars regulator fermions, as responsible for
troducing the anomaly in the infrared region. If we consid
all the quark loops implicitly involved in our discussion, it
straightforward to see that for many of them theg-matrix
structure will generate reduced loops containing the conv
tional ultraviolet anomaly. From general arguments we
pect the fermion anomaly to introduce an ambiguous in
play between infrared and ultraviolet behavior in t
massless quark theory. Our manipulations can be viewe
fixing this ambiguity by requiring a finite Reggeon theo
and Reggeon Ward identities for the massive quark the
In fact, as we discuss further in the next paper, this is v
likely to be the only resolution of this ambiguity that gives
unitary solution to the theory.

D. Infrared divergence of diagrams with many helicity-flip
vertices

Consider now an arbitrary reggeon diagram contain
many TF vertices, for example, the diagram shown in F
67. Once again, the thick lines represent the anomalous
deron Reggeon state and the thin lines are any nor
Reggeon state. As illustrated, for every newTF vertex intro-
duced there is inevitably an accompanyingV vertex which,
from normal QCD interactions, will satisfy a Reggeon Wa
identity. Consequently, if we impose thatV1 andV2 are non-
zero when the anomalous Reggeon state carries zero mo

FIG. 67. Reggeon diagram involving many helicity-flip vertice
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tum and considerTF to be the full massless quark vertex,th
diagram will have an overall infrared logarithmic divergen
of the form

E d2Q

Q2 ~K@V,TF# !nT, ~8.21!

wherenT is the number ofTF vertices in the diagram. From
Eq. ~8.18!, it is clear that the residue involves evaluatin
every TF, and therefore every anomalous Reggeon state
zero transverse momentum. As before, including interacti
within the anomalous or the normal Reggeon states does
change the discussion. Recall also that, as we emphasiz
Sec. V, because the divergence involves helicity-flip ve
ces, there is implicitly a zero longitudinal component al
associated with the zero transverse momentum of the ano
lous Reggeon state.

Imposing thatV1 andV2 be nonzero when the anomalou
Reggeon state carries zero momentum is equivalen
choosing two initial Reggeon scattering states that conta
zero-momentum anomalous component. Figure 67 sh
that if these states are allowed to scatter~within QCD! into
general Reggeon states, an overall logarithmic diverge
selects final states having the same property. This is po
tially a completeness property for this class of Regge
states. The crucial question is then whether the infrared
vergence we have found in the class of diagrams we h
studied can be canceled by a similar divergence in so
further class of diagrams. This is the subject of the next t
subsections.

E. Cancellation of infrared divergences

In this subsection we will give an argument suggest
that if all Reggeons are massless, i.e., if SU~3! gauge sym-
metry is fully restored, then the infrared divergence that
have discussed cancels when all diagrams are summed
We formulate the argument by discussing the Reggeon
gram of Fig. 68. This is the lowest-order diagram that is m
obviously of the form we have discussed. All Reggeon lin
represent a single Reggeized~massless! gluon, and since this
is a ‘‘lowest-order diagram,’’ we specifically exclude inte
actions within either the anomalous odderon or the norm
Reggon states. The multi-Reggeon states, for which Regg
propagators are present, are indicated by the thin vert

FIG. 68. Infrared-divergent diagram.
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
line. To avoid the exponentiation of infrared divergences
higher orders, these states must carry color zero. In low
order, the ‘‘regular’’ interactionR between the norma
Reggeon states will actually be disconnected. Figure
clearly has the form illustrated in Fig. 65 once the anomal
odderon three-Reggeon state is identified with the thick li
and the remaining two-Reggeon state is identified with
thin lines. The logarithmic divergence is present~asm→0)
provided only thatV1 andV2 are appropriately chosen.

In the previous discussion of this section, we have
sumed that the anomalous odderon state separately ca
zero color. In this case the two-Reggeon state must also c
zero color. Figure 68 is then the lowest-order diagram c
taining Fig. 64. However, as we discussed in the previ
section, in SU~3! the anomalous odderon can also carry oc
color. We also showed that helicity-flipTF,0 triple-odderon
couplings exist when either all the odderons, or two of
three, carry octet color. In addition, there are anomal
Reggeon states, withTF,0 couplings, that contain only two
Reggeons and carry octet color. In fact, once we all
anomalous Reggeon states that are not color singlets, Fi
68 is not the lowest-order diagram containing them50 di-
vergence. The lowest-order diagrams involve combinati
of normal one- and two-Reggeon states with anomalous t
and three-Reggeon states. Because the lowest-orderR verti-
ces contain only gluon internal interactions, the lowest-or
diagrams involve only Reggeized gluon Reggeons. When
ternal quark interactions are included in theR vertices~or we
consider the scattering of multiquark Reggeon states, as
will do in the next paper!, the symmetric octet bound-sta
Reggeon also appears. In this case a particularly simple
tential cancellation is between the Reggeon states illustr
in Fig. 69. This cancellation will be particularly relevant fo
our discussion of deep-inelastic scattering in the next pa

Since, as we have already said, Fig. 68 is the lowest-o
diagram that fits specifically into our previous discussion,
will concentrate on finding diagrams that cancel the div
gence of this particular diagram. Since theR vertices are
lowest order, they cannot involve internal quark interactio
Consequently, the symmetric octet Reggeon cannot appe
canceling diagrams. Note also that, since color parity is c
served and we have chosen each of the Reggeon chann
Fig. 68 to carry anomalous color parity overall, we do n
need to considerAVV vertices~in addition toAAA vertices!
when looking for cancellations. We proceed by consider
possible alternative couplings for the Reggeons origina
from V1 .

If Reggeons within the anomalous and normal Regg
states interact, additional Reggeon propagators are in
duced and a cancellation with Fig. 68 is not possible. T

FIG. 69. Potential canceling configurations.
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most obvious possibility for a cancellation is that a Regge
participating in the anomalous odderon interaction inste
participates in the regular Reggeon interaction, as illustra
in Fig. 70. To produce a zero-quark-mass divergence ide
cal to that in Fig. 68, the regular Reggeon interaction m
give an infrared divergence involving the indicated dash
lines. Because the anomalous states with just two Regge
must carry octet color, the regular Reggeon interaction a
carries net octet color. A normal Reggeon interaction car
ing nonzero color is necessarily divergent. The simplest
vergence will be produced by a masslessR22 interaction, as
in Fig. 71~a!. Since the anomalous odderon Reggeons
participating in a helicity-flip interaction, it is also possib
for an infrared-divergent interaction to occur as in Fig. 71~b!.
As we discussed in Sec. VI E, similar Reggeon infrare
divergent interactions to those of Fig. 71 are involved
producing the Reggeon Ward identities for theTF vertices,
for example, the third diagram of Fig. 51.

For mÞ0, the complete cancellation of all divergenc
related to those of Fig. 71 will necessarily involve all po
sible interactions between the color-zero five-Reggeon sta
This is achieved if we combine all left- and right-side di
grams of the form of Fig. 70 with the corresponding di
grams forming Fig. 68. In this way we obtain a set of d
grams containing triple anomalous Reggeon vertices, wh
each have them50 divergence and which, whenmÞ0, are
related by the cancellation of divergences of the form of F
70. In the infrared region producing them50 divergence,
the cancellation of divergences related to Fig. 70 is betw
Reggeon interactions having the distinct forms shown in F
72 ~all dashed lines carry zero transverse momentum!.

Each of the interactions in Fig. 72 contains them50
anomalous interaction and scales appropriately to gene
the logarithmic divergence in individual diagrams. Howev
the additional infrared cancellation between the complete
of diagrams should survive them→0 limit and be sufficient
to ensure that there is nom50 divergence. If we go to
higher-order and incorporate Reggeon interactions wit

FIG. 70. Divergences to be produced by the regular Regg
interaction.

FIG. 71. Regular Reggeon interactions producing divergence
8-46
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CONFINEMENT AND THE SUPERCRITICAL POMERON IN QCD PHYSICAL REVIEW D58 074008
and between the normal and anomalous states, we can e
more elaborate cancellations to hold. We can also expec
ANN vertices to play a role. We note that the crucial featu
of the cancellation is the existence of infrared-divergent
teractions between the Reggeons in the anomalous odd
state and the Reggeons in the normal state. This will be
important dynamical element of our further discussion.

F. Symmetry breaking and confinement

Suppose now that the SU~3! gauge symmetry is only par
tially restored to SU~2!. In this case five of the eight SU~3!
gluons remain massive. There is one SU~2! singlet and two
SU~2! doublets. We use the notation of Fig. 73. Thef andd
couplings of the different representations are illustrated
Fig. 74. The resulting trajectory function transverse mom
tum diagrams are shown in Fig. 75.

The SU~2! singlet trajectory function contains no mas
less Reggeon contributions and so is manifestly infrared
nite. Therefore this gluon is a simple massive Regge
which, if color charge parity is carried over from the unbr
ken theory, carries negative color parity. The two SU~2! dou-
blets form SU~2! singlets with both even and odd SU~3!
color parity. The odd-color-parity combination gives th
Reggeization of the color singlet Reggeon shown in Fig.
The even-color-parity doublet forms a separate infrared
nite, even-signature, ‘‘bound-state’’ Reggeon with a traj
tory that is exchange degenerate with the singlet Regge
gluon trajectory. The cancellation of Fig. 76 demonstra
simultaneously the infrared finiteness and the Reggeiza
of this trajectory, provided we omit the contribution of th
massless Reggeons. The reason for this omission will s
become apparent. In the massless limit, i.e., as the full SU~3!
gauge symmetry is restored, this bound-state trajectory
comes the even-signature octet trajectory, which we refe
to in Sec. V C and VI B.

Initially, we consider the complete set of Reggeon d
grams containing both massless and massive ReggeonA
priori the m50 logarithmic divergence we have discuss
will still be present in individual diagrams containing th

FIG. 72. Reggeon interactions producing the infrared cance
tion.

FIG. 73. Notation for the gluon spectrum when the gauge sy
metry is broken.
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relevant configurations of massless SU~2! Reggeons. For ex-
ample, if we consider Fig. 68 to be composed entirely
SU~2! massless Reggeons, then the divergence will
present. However, the Reggeon infrared cancellation of F
70–72 also remains valid. In fact, the necessary infrar
divergent interactions will exist, and so, presumably,
analogous cancellation will take place, provided only th
one of the normal Reggeon states in the diagram cont
massless Reggeons.

An obviously divergent class of diagrams is those of t
form of Fig. 77. This diagram is an SU~2! version of Fig. 68,
except that the normal Reggeon states contain no mas
Reggeons. The Reggeons indicated by the dotted lines
massless and form an SU~2! singlet anomalous oddero
state.@From now on we use the dotted line notation to ind
cate Reggeons that both belong to the massless SU~2! triplet
and carry zero transverse momentum in the overall infra
divergence of the diagram.# All the multi-Reggeon states cu
by a thin vertical line are SU~2! singlets if, in particular, the
additional Reggeon states indicated by a thick unbro
Reggeon line are~some number of! the SU~2! singlet, mas-
sive, Reggeized gluons. We recall from the last section
since we now discuss SU~2! color only, to containTF,0

color-zero interactions theTF’s must beAAA couplings of
anomalous odderons. Since there is no triple coupling for
singlet Reggeon, we cannot take all the normal states to c
tain only a single Reggeon.~It would be sufficient for some
normal states to be a single bound-state Reggeon, but t
states require an internal quark regular interaction in orde
couple. As we shall see shortly, there is also an additio
subtlety involved.!

Figure 77 is obviously of the form of Fig. 65 and s
contains the logarithmic divergence. The anomalous odde
three-Reggeon state once again corresponds to the
lines, while the thin lines are now identified with Regge
states that, in lowest order, consist of massive SU~2! singlet

-

-

FIG. 74. ~a! f couplings and~b! d couplings after symmetry
breaking.

FIG. 75. Trajectory functions for the different representations
8-47
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ALAN R. WHITE PHYSICAL REVIEW D 58 074008
gluons. From Fig. 74~a! it is clear that, at lowest order, th
singlet simply has no coupling to the massless sector. A
result, there are no infrared-divergent interactions analog
to Fig. 71 and no cancellation corresponding to Fig. 72. T
analogue of the interactions of Fig. 71 involves the excha
of a massive SU~2! doublet. That is, the divergent intera
tions that were part of the cancellation with the SU~3! sym-
metry unbroken now contain massive propagators. This
plies that the logarithmic divergence asm→0 is qualitatively
of the form

E
m2

dQ2S 1

Q22
1

Q21M2D; lnS M2

m2 D ~8.22!

and so is clearly a direct consequence of the symm
breaking.

All diagrams having the form of Figs. 66, 67, etc., w
similarly contain an uncanceled overall logarithmic dive
gence~with V1 and V2 appropriately chosen! if the state
represented by the thick lines contains any number of~inter-
acting! massless Reggeons forming a state with the quan
numbers of the anomalous odderon and the thin lines are
combination of~interacting! massive SU~2! singlet Reggeon
states. Interactions between the massless and ma
Reggeons can take place, but since they are infrared fi
they simply produce Reggeon Ward identity zeros that eli
nate the overall infrared divergence. Therefore such inte
tions do not appear in the divergent diagrams. If the ano
lous Reggeon state carries color, interactions within this s
will exponentiate the diagram to zero.

Clearly, the thin lines could also be a multiquark Regge
state, but we will leave a discussion of quark Reggeon st
until the next paper. As preparation for our discussion
chiral symmetry breaking, it will be interesting to discu
here how the bound-state Reggeon avoids an infrared in
action of the form of Fig. 70. At lowest order the bound-sta
Reggeon couples to infrared divergences via the two
grams illustrated in Fig. 78. Because of the antisymmetry
the gauge coupling, if the two massive Reggeons are
completely symmetric state, the two diagrams of Fig. 78 c

FIG. 76. Reggeization of the bound-state Reggeon.

FIG. 77. Diagram containing SU~2! singlet Reggeons.
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cel. Since it is even signature and symmetric with respec
color, this requires that the bound state carry positive pa
~which it does!.

We now take all the amplitudes containing the logari
mic divergence as our physical amplitudes. We remove
divergence as a normalization factor and also factorize off
the V couplings. We are left with a set of multi-Reggeo
diagrams in which every Reggeon state has the form sh
in Fig. 79, where now the wee-parton component, indica
by the four rows of dots, contains arbitrary numbers of ma
less Reggeons with odd signature, color zero, and pos
color parity. Each massless reggeon carries zero transv
momentum. The wavy line is any combination of mass
SU~2! singlet Reggeon states. Note that the odd-signa
nature of the wee-parton component switches the signa
of the massive Reggeon component of states. In particu
the odd-signature elementary Reggeon gives an ev
signature ‘‘Pomeron,’’ while the bound-state Reggeon giv
an odd-signature, exchange-degenerate, partner to
Pomeron. Because of signature factors, the Pomeron will
generate a vector particle, while the odd-signature bou
state Regge pole will give such a particle at the mass of
SU~2! singlet. In effect, while the Reggeized gluon becom
the Pomeron, the unconfined massive single-gluon ve
particle, which in perturbation theory lies on the Reggeiz
gluon trajectory, is replaced by a composite bound state
confined massive gluons.

We have thus demonstrated the ‘‘confinement pheno
enon’’ which we referred to earlier. If we insist that tw
initial scattering Reggeon states have the form of Fig.
then these states scatter into arbitrary numbers of the s
states only. Also, since the wee-parton component of
state acts like a background ‘‘Reggeon condensate,’’ the
namical properties of the Reggeon states are identical to
of the SU~2! singlet Reggeon component of the state. The
fore we also have confinement in the sense that we have
massive Reggeon states composed of elementary Regge
constituents.

As we have emphasized throughout this paper, the z
transverse momenta involved in producing the infrared
vergences and Reggeon condensate are implicitly accom
nied by longitudinal zero momenta. The presence of this l
gitudinal component implies that the condensate c
potentially be understood as a light-cone zero-mode con

FIG. 78. Bound-state coupling to infrared divergences.

FIG. 79. Confinement Reggeon states
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FIG. 80. Diagram with vacuum production of SU~2! singlet Reggeons.
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bution at finite momentum or, in the language of the Int
duction, as a ‘‘wee-parton’’ component at infinite mome
tum.

G. Supercritical Pomeron

Finally, we note that the divergent diagrams will also i
clude those of the form illustrated in Fig. 80 in which th
helicity-flip TF vertices, in addition to coupling the zero
transverse-momentum anomalous odderon mass
Reggeons, produce an additional pair of massive Regge
carrying zero net transverse momentum. TheTF vertices in-
volved will also contain the triangle anomaly we have d
cussed. The Reggeon lines in the right-hand diagram of
80 are ‘‘physical’’: i.e., they correspond to either th
Pomeron or its odd-signature partner. Diagrams such as
80, together with all the obvious generalizations, are, eff
tively, responsible for ‘‘vacuum production’’ of massiv
Reggeon states within the Reggeon diagrams describing
confining theory.

We can, therefore, summarize our confining solution
partially broken QCD as containing exchange-degene
even- and odd-signature Reggeons, with vacuum produc
of multi-Reggeon states. These are the defining charact
tics of supercritical Pomeron RFT@10#. We have shown tha
the appearance of this RFT phase is a consequence o
confinement produced by the infrared divergence associ
with the massless quark anomaly.~Having derived the mass
less theory, it should be possible to add effective qu
masses to the theory, for example, by chiral perturba
theory, and still remain in the supercritical phase.! We
have postponed discussion of the RFT formulation of
supercritical phase to the following paper because we w
to emphasize the self-contained nature of the QCD infra
analysis.

We have explicitly associated the supercritical phase w
the breaking of SU~3! gauge symmetry to SU~2!. The resto-
ration of SU~3! symmetry should follow if we take the zero
mass limit for the SU~2! singlet Reggeon. This is equivalen
to setting the intercept of the Pomeron to zero. The princ
of complementarity@13# implies that the symmetry can b
smoothly restored provided only that an ultraviolet cutoff
introduced. However, since the massless quark diverge
has selected only a part of the broken theory, restoratio
full SU~3! symmetry is clearly nontrivial. Nevertheless, pr
vided we can completely identify our solution of partial
broken QCD with the supercritical Pomeron, setting t
Pomeron intercept to zero corresponds to taking the crit
limit from within the supercritical phase. Note that two a
ditional important features of this limit must also be realize
07400
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That is, both the odd-signature Reggeon partner for
Pomeron and the vacuum production of Fig. 79 must sim
taneously decouple as the Pomeron intercept vanishes.
reinstatement of the infrared cancellation of Figs. 69–71
presumably involved in these effects in a subtle manner.

An inescapable conclusion from our construction is th
the Pomeron carries odd color charge parity. The odd
even color parity of the Reggeized gluon and the wee-pa
component, respectively, combine to give overall odd co
parity. This property will persist after the SU~3! gauge sym-
metry is restored. Note that to obtain an SU~3! color singlet,
the anomalous odderon that appears in the Pomeron has
an SU~3! octet ~rather than the singlet discussed initially
Sec. VIII E!. For an odd-color-parity Pomeron to describ
total cross sections, the scattering hadrons cannot be ei
states of color parity. We will show in our next paper that t
pion is a mixture of states with even and odd color par
~but odd physical parity!. The quark-antiquark and anoma
lous odderon components are, correspondingly, in eithe
color singlet or a color octet state. The Pomeron scatters
odd ~even! state into the even~odd! state.

The RFT formalism also tells us that the transverse m
mentum cutoff is a relevant parameter for the critical lim
Therefore, if this~gauge-invariant! cutoff is varied, it is pos-
sible for the supercritical phase to appear even when the
gauge symmetry is restored. In this case the direction of
SU~2! wee-parton component is effectively averaged o
within SU~3!. In the next paper, we will discuss how this ca
be understood as an average over the SU~2! direction of the
anomaly~or instanton effects! in SU~3!. It is also possible to
regard the largeQ2 of deep-inelastic scattering as introdu
ing a ‘‘finite-volume’’ effect which removes the critica
phase transition. As a result, the theory remains in
‘‘single-gluon-dominated’’ supercritical phase as the SU~3!
symmetry is restored. With the wee-parton component
cluded, this feature can be seen explicitly by studying
Reggeon-gluon diagrams involved@8#. Deep-inelastic scat-
tering is another subject that will be covered in depth in
following paper.
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