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Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD Pomeron,
suggesting a single-gluon inner structure rather than that of a perturbative two-gluon bound state. This paper
derives a high-energy, transverse momentum cutoff, confining solution of QCD. The Pomeron, in a first
approximation, is a single Reggeized gluon plus a “wee-parton” component that compensates for the color
and particle properties of the gluon. This solution corresponds to a supercritical phase of Reggeon field theory.
Beginning with the multi-Regge behavior of massive quark and gluon amplitudes, Reggeon unitarity is used to
derive a Reggeon diagram description of a wide class of multi-Regge amplitudes, including those describing
the formation and scattering of bound-state Regge poles. When quark and gluon masses are taken to zero, a
logarithmic divergence is produced by helicity-flip Reggeon interactions containing the infrared quark triangle
anomaly. With the gauge symmetry partially broken, this divergence selects the bound states and amplitudes of
a confining theory. Both the Pomeron and hadrons have an anomalous color-parity wee-parton component. For
the Pomeron the wee-parton component determines that it carries negative color charge parity and that the
leading singularity is an isolated Regge pole.
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[. INTRODUCTION nent that compensates for the particle properties of the gluon.
The restoration of S(B) gauge symmetry is directly related

This is the first of two articles that will report our recent to the critical behaviof3] of the Pomeron. However, in the
progress in “understanding the Pomeron in QCD.” A com- RFT formalism, the transverse momentum cutoff is a rel-
plete understanding of the Pomeron requires no more or less/ant parameter at the critical phase transition. This implies
than solving the theory at high energy. While high energythat the supercritical phase can appear with the full gauge
can be expected to keep the theory as close as possible sggmmetry if a physical cutoff is present. Alternatively, the
perturbation theory, nevertheless the nonperturbative propetarge Q? of deep-inelastic scattering can be viewed as intro-
ties of confinement and chiral symmetry breaking mustducing a(local) lower transverse momentum cutoff which
emerge. Therefore this pap@nd that following necessarily  effectively removes the critical behavior altogether diud
also reports progress in “understanding confinement and chically) keeps the theory in the supercritical phase as the full
ral symmetry breaking.” gauge symmetry is restored.

Our formalism is entirely based within the high-eneigy We will postpone, until the second paper, almost all dis-
matrix. We start with the multi-Regge behavior of massivecussion of the many issues of principle and interpretation
guarks and gluons and arrive at tBenatrix for hadrons via involved in connecting our results to other, more conven-
an extended analysis of infrared divergences within multitional, field theory formalisms. However, if our results can
Regge amplitudes. Rather than appearing as consequencesefinterpreted within a field-theoretic framework, it is likely
a nonperturbative vacuum, both confinement and chiral symto be that of light-cone quantization. In this formalism it is
metry breaking are properties of the bound-stéRmgge hoped[4] that the zero-modézero-longitudinal-momentum
pole) spectrum. It is a crucial strength of the multi-Reggecomponent of physical states can reproduce the nontrivial
formalism that we can simultaneously study the formation ofvacuum properties of confinement and chiral symmetry
bound states and their scattering amplitudes. Hadrons, arateaking. At infinite momentum the “zero modes” are sim-
the Pomeron by which they scatter, emerge together agsly the “wee partons,” carrying finite momentum. Corre-
Regge pole states at spacelike momentum transfer. Indeeslondingly, in our solution of partially broken QCD, both the
there is a close link between confinement, chiral symmetry?omeron and hadrons have a zero-momentum component
breaking, and the Regge pole property of the Pomeron.  which we refer to as a “wee-parton component.” This com-

The main purpose of this first paper is to establish theponent, which in the past we have called a “Reggeon con-
relationship, which we initially suggested over 17 years agalensate,” is closely related to the fermion anomaly and car-
[1], between a supercritical Pomeron phase of Reggeon fieldes “anomalous” color parity(i.e., it contains vectorlike
theory[2] (RFT) and a confining solution of QCD with the multigluon combinations carrying positive color parity: cf.
gauge symmetry broken to $2) (“partially broken the three-gluon component of the winding-number curyent.
QCD”). In this phase the Pomeron is, approximately, an The anomalous color parity of the wee-parton component
SU(2) singlet Reggeized gluon plus a “wee-parton” compo- determines that the Pomeron carries negative color charge

parity overall and also that its leading singularity is a Regge
pole with a trajectory that is exchange degenerate with that
*Email address: arw@hep.anl.gov of a massive, Reggeized, gluon. There is confinement in that
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the states carry color zero and have a completeness propeny the fermion anomaly, the results were still unsatisfactory.
and also there are no massless multigluon states. Note th@fe then returned to th&matrix formalism of multi-Regge
the Ballitskii-Fadin-Kuraev-LipatoBFKL) Pomeror{5] ap-  theory and, in two lengthy articld40,11], laid out what we
pears in the positive color parity sector. Our analysis implieshoped could be developed into a complete dynamical under-
that it does not couple to the physical states. As we willstanding of the Pomeron in QCD. As in our original paper
discuss in detail in the second paper, the color parity propfl] (and the present papepur aim was to use general multi-
erty of the wee-parton component also determines the chiraRegge theory to carry out a combined infrared and multi-
symmetry-breaking nature of the hadron spectrum. In factRegge limit analysis, the essential idea being always the as-
without chiral symmetry breaking it would be inconsistent sociation of supercritical RFT with partially broken QCD
for a negative color parity Pomeron to describe total crosand the identification of the critical Pomeron phase transition
sections and the BFKL Pomeron would not decouple. Whilg 3] with the restoration of the full gauge symmetry.
it may eventually be possible to formulate our solution in  Unfortunately the arguments presented 1] were still
terms of a light-cone quantization procedure which leads divery incomplete. Even so, they gave a fundamentally differ-
rectly to the correct properties of physical states, we wouldent picture of the Pomeron to what might be called the con-
like to emphasize that we have been able to understand thentional, perturbative, BFKL picturgb]. In addition to the
physics of the wee-parton component only by determiningncompleteness of the arguments, the techniques we were
the role of the fermion anomaly in the construction of theusing were(and still arg unfamiliar to most theorists study-
fully unitary, high-energy, multiparticl&& matrix. This is a ing QCD. The analysis also depended on our version of the
very complicated and intricate problem which it is hard tosupercritical Pomeron which was the subject of heated con-
imagine studying outside of the multi-Regge framework wetroversy in the pre-QCD years of RFI2]. As a result, we
use. anticipated that the validity of our arguments would take
The discovery of deep-inelastic scaling provided the im-many years of theoretical study to resolve. We certainly did
petus for the original development of the parton model andiot anticipate that experiment could play a role in what we
underlaid the formulation of QCD as the theory of the strongregarded as fundamentally(deep theoretical issue.
interaction. Deep-inelastic scaling violations now provide Remarkably, as we discussed above, it now appears that
much of the information on short-distance partonic structureexperiment is providing significant support for our picture.
that is the basis for the application of perturbative QCD to arhe experimental results have encouraged us to return to our
wide range of hadronic physics. We believe that the obserearlier work and make another major effort to put it on firmer
vation [6] of diffractive deep-inelastic scattering at the ground and to make it accessible. The outcome is the present
DESY ep collider HERA will turn out to be almost as sig- article (and its successprThis time around, we believe we
nificant in developing an understanding of how QCD de-really have solved the problem. A major reason for the in-
scribes strong-interaction physics. This is because it tells usompleteness of our earlier work was ignorance as to how to
how the parton model operates beyond the simplest shortonstruct the complicated Reggeon diagrams that are neces-
distance processes and, in doing so, provides vital informasary to discuss the simultaneous formation and scattering of
tion on the wee-parton component of physical states. Théound states. The solution of this problem via Reggeon uni-
Pomeron, which, as we have already implied, is deeply tiedarity and the realization of the special role played by
to the long distance dynamics of confinement and chiral'helicity-flip vertices” is, we believe, a significant achieve-
symmetry breaking, is studied experimentally at short disiment of the early sections of this paper. Helicity-flip vertices
tances. By analyzing diffractive scaling violations, H1 haveonly appear as interactions coupling dynamically different
shown[7] that, in deep-inelastic scattering, the Pomeron beReggeon channels. They do not appear as interactions within
haves like a single gluofrather than the perturbative two- the normal Reggeon diagrams that, for example, generate
gluon bound-state BFKL Pomerds]). Within perturbative ~ Pomeron RFT. The other central difficulty in our previous
QCD, gauge invariance makes this a very difficult propertywork was that, although we understood qualitatively that the
to realize. From our perspective, the H1 analy3iimplies  fermion anomaly should have a crucial infrared dynamical
[8] that at intermediat&? values the Pomeron is effectively role, we were unable to pin down specifically how this is the
in the supercritical phase. The phenomenon can also be ugase. The interrelation with ultraviolet regularization seemed
derstood directly within QCD, once the physics of the wee-inevitably to lead to unresolvable field-theoretic complica-
parton component is incorporatés. tions. In fact, the solution of the formal Reggeon diagram
We first suggested that the Pomeron could appear as @roblem has led us to the realization that the anomaly enters
single (Reggeized gluon in[1]. The idea that the Pomeron just in the helicity-flip vertices. In our new development the
should carry negative color parity and that this is closely tiedanomaly plays a straightforward infrared rgkthough ul-
to chiral symmetry breaking was also present. Although thigraviolet regularization is still involved As a result, it is
long paper was accepted for publication, the journal Editorslear that the infrared divergence phenomenon we have been
insisted it be split in two. After eventually conceding this searching for isfwhen the gauge symmetry is broken to
point, we then decided that further development was neede8U(2)] a very simple overall “volume” divergence directly
before “final” publication. We first attempted to do this in related to confinement. Although the global picture we pre-
[9] by (partially) recasting thé&matrix language ofl] inthe  sented in our previous papers reemerges, the details are dif-
more field-theoretic language of light-cone quantizationferent in very important ways.
However, essentially because of problems with our treatment RFT is not a conventional field theory. It is really just a
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diagrammatic technique set in field-theoretic languf@le = dependence on the quark flavor spectrum. Our aim in this
Since it has a non-Hermitian interaction, it is not apparenpaper is to simply expose the infrared massless quark prob-
that there is any kind of “vacuum state” in the theory. As a lem related to the anomaly and to show, in a self-contained
result, the physical meaning of a “vacuum expectationmanner, that this leads to a confining solution of partially
value” for the Pomeron field, together with the consequenfroken QCD. We will identify all the elements of supercriti-
“vacuum production of Pomerons,” has always been par-cal Pomeron behavior, but as we just implied, we will not
ticularly elusive. This was, at least partially, responsible fordiscuss the RFT formulation in any detail.

the disagreement about the nature of the supercritical phase
[12]. The Pomeron field effectively describes the “wee-
particle” distribution in a scattering hadron. Therefore it is  If a theory is “Reggeized,” that is, if all the particles lie
natural that a vacuum expectation value for this field couldon Regge trajectories, it is not unreasonable to expect that
be associated with a zero-mode contribution in the light-con¢he full Smatrix is then determined by the corresponding tree
language and so represent nontrivial vacuum properties afiagrams. If all the multiparticle amplitudes containing the
the underlying theory. If this is the case, then the physicapoles due to the stable particles of the theory can be found,
context for our supercritical solution, which does involve aReggeization should imply that there is no subtraction ambi-
Pomeron vacuum expectation value, is an underlying theorguity in constructing the full amplitudes of the theory disper-
with a nontrivial vacuum. In particular, an understanding ofsively via unitarity.(In practice, there is no formulation of
the QCD Pomeron may be essenti@lechnically, it is the such a program, although recent “unitarity-based” calcula-
presence of helicity-flip vertices containing the anomalytions [14] of loop amplitudes in QCD and supersymmetric
which provides a meaning for Reggeon vacuum produgtion.gauge theories partially illustrate the principle. The loop ex-
Since this was certainly not available at the time of the conpansion for string theories is perhaps an illustration of the
troversy concerning the nature of the supercritical phase, ikssence of the argument.Reggeization also implies that
is, perhaps, not surprising that the issue remained unrahe tree amplitudes can be found by studying the behavior of
solved. Conversely, as we will see is indeed the case, thall multiparticle amplitudes in multi-Regge limits. The lead-
supercritical Pomeron may be a valuable high-energy foring Regge pole trajectories in each quantum-nunttudran-
malism for describing the role of the vacuum properties ofnel are directly associated with a corresponding particte
QCD. resonancg and at the particle poles, Regge pole amplitudes

In this first paper we will concentrate on the developmentgive the corresponding particle amplitudes. Since QCD is
and application of the&s-matrix technical machinery that is believed to be a bound-state theory in which all the particle
the basis for our arguments. As we noted above, we want tetates lie on Regge trajectories, studying multi-Regge limits
reserve all field-theoretic discussion of the interpretation andghould be a direct way to study the particle spectrum.
significance of our results for the second paper. For the pur- In the vacuum quantum-numbeérchannel, however, the
poses of this paper, we could even define QCD as the maskading Regge pole is the Pomeron. The Pomeron is even
less limit of a theory of massive, Reggeized, vector particlesignature and probablfin our view) has no particles on its
(gluong with SU(3) quantum numbers, whose interactionstrajectory. The Pomeron determines, in particular, the high-
satisfy (Reggeon Ward identities as a condition of gauge energy elastic scattering amplitudes of the particles in the
invariance and which couple to quarks with the usual vectotheory. In this and the following paper, we will see that we
interaction. In practice, though, we will use Feynman dia-can extract both the particle spectrum and the high-energy
grams as a direct tool to construct the Reggeon interactiorsmplitudes that correspond to the Pomeron by studying
we discuss. The infrared problems we consider involve takmulti-Regge limits.
ing a subset, or all of, the gluon masses to zero and also During the period that quantum field theory was out of
taking the quark mass to zero. Since the solution of Reggeowogue, very extensive analyticity methods were developed
unitarity by Reggeon diagrams is an infrared approximation[10,15 to study multi-Regge behavior and its interrelation
a (gauge-invariant transverse momentum cutoff is always with unitarity. The analyticity domains for multiparticle am-
implicitly present in our analysis. Consequently, we couldplitudes derived within the formalisms of “axiomatic field
[1,17] specifically formulate our discussion in terms of the theory” and “axiomaticS-matrix theory” were the basis for
Higgs mechanism for spontaneous symmetry breaking anthis abstract analysis. All the assumptions made within these
appeal to complimentaritjl3] to justify using the massless formalisms are expected to be valid perturbatively in a com-
limit to define QCD. However, for this first paper, we will pletely massive spontaneously broken gauge theory, and as
minimize references to specific field-theoretic assumptionsve discussed in the Introduction, tt& matrix of such a
that could be made since, in our experience, this often servaheory can be thought of as the starting point for our analysis
only to confuse the reader as to the issues involved. of QCD.

For related reasons, we will reserve discussion of a num- The abstract formalism remains little known and so in
ber of topics for the second paper. These include chiral symSec. Il we both summarize and develop the contents of our
metry breaking, the quark bound-state spectrum, deepprevious paper$l0]. We emphasize those results required
inelastic diffractive scaling violations, the implications for for the rest of the paper. The most important point, which we
perturbative QCD and the parton model, the RFT formula-do not elaborate on explicitly in this paper, is that there are
tion of both the supercritical Pomeron and the criticalrelatively simple, many-variable, domains of analyticity in
Pomeron, the restoration of full $8) symmetry, and the the multi-Regge asymptotic regime and corresponding mul-

II. OUTLINE OF THE ARGUMENTS
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tiparticle dispersion relations are valid. Consequently, generthen discuss the derivation of Reggeon Ward identities from
alized “Sommerfeld-Watson representations” exist whichgauge invariance gluon Ward identities. We show that quark
imply that all multiparticle asymptotic behavior is strongly scattering Reggeon diagrams have infrared divergences and
constrained by “cross-channel” multiparticle unitarity con- trace the related failure of Reggeon Ward identities to the
tinued in complex angular momenta and helicity variablesrestricted Regge limit kinematics of on-shell elastic scatter-
These constraints are embodied in the general “Reggeomg. After discussing how the Reggeon Ward identities are
unitarity equations,” which hold in every complex angular satisfied in high-order Reggeon interactions, we note that
momentum and helicity plane and control multi-Regge ex-there is an ultraviolet divergence problem in the quark loops
changes in all amplitudes. These equations were first pracontributing to triple-Regge vertices. To obtain the Reggeon
posed in[16]. At the time they were a remarkable “all- Ward identities for massive quark loops, it is necessary to
orders” generalization of results found in lowest-order fieldintroduce Pauli-Villars regulator fermions. These provide a
theory models of Regge cut behavior. However, the full dis-unitarity-violating ultraviolet cutoff in the quark sector,
persion theory basis for multi-Regge theory had to be develwhich we ultimately remove only after the massless quark
oped before the validity and generality of the Reggeon unilimit is taken.
tarity equations could be establishdd0]. Given the In Sec. VIl we show how the triangle quark loop diagram
Reggeization of gluons and quarks, tfessentially factor-  appears in triple-Regge helicity-flip vertices coupling multi-
izing nature of the Reggeon unitarity equations implies theReggeon states. We show that the presence of the triangle
very powerful consequence that the multi-Regge behavior a§ingularity leads to a nonuniformity in the massless and zero-
all QCD multiparticle amplitudes is built up from elementary transverse-momentum limits for such vertices. We identify
components, many of which are already known from existinghe momentum and color structure of this “anomaly.” As
calculations of elastic scattering production processes. we discuss, it is essentially the infrared appearance of the
In Sec. IV we apply the general formalism of Sec. Ill to U(1) axial anomaly. Its appearance in Reggeon diagrams is a
the special case of triple-Regge kinematics. For our pursubtle effect, related to the presence of nonlocal infrared
poses, it is important that the conventional “triple-Regge” axial-like couplings for multi-Reggeon states. We show that
limit of the one-particle inclusive cross section is only theanomalous color parity Reggeon statesth distinct color
simplest kinematical situation in which triple-Regge behav-parity and signatugemust be involved.
ior appears. We show that in the full triple-Regge limit and The infrared divergence phenomenon producing confine-
also in what we term a helicity-flip helicity-pole limit, new ment is described in Sec. VIII. We show that in the limit of
“helicity-flip vertices” appear. These vertices are generatedzero quark mass the triangle anomaly, combined with the
by amplitudes with distinctive combinations of invariant Pauli-Villars regularization procedure, leads to the violation
cuts. We also formulate the additional limits in terms of largeof Reggeon Ward identities in a complicated set of Reggeon
light-cone momenta. This is important in Sec. V for building diagrams. In such diagrams helicity-flip interactions of
up the very complicated multi-Reggeon diagrams that we usanomalous Reggeon states accompany the nonflip interac-
in later sections. tions of normal Reggeon states. We argue that the resulting
The initial discussion in Sec. V is concerned with thelogarithmic divergence cancels in the sum of such diagrams
similarity between RFT Pomeron diagrams and the Reggeowhen the gauge symmetry is unbroken. However, when the
diagrams that describe Regge limit calculations in QCDgauge symmetry of QCD is partially broken to &) the
Both sets of diagrams can be regarded as explicit solutions afivergence does not cancel, but rather selects the “physical
the Reggeon unitarity equations. The remainder of the seamplitudes.” The physical states we identify contain mas-
tion is devoted to the task of constructing the Reggeon diasive SU2) singlet Reggeons with a zero-momentum anoma-
grams that in QCD will contain the bound-state hadron andous odderon component that acts like a background wee-
Pomeron behavior that we are looking for. The essentiaparton component or “Reggeon condensate.” We show that
point is that in a general class of limits, which we call we have a “confinement phenomenon” in that two initial
“maximal helicity-pole limits,” only a single analytically physical Reggeon states states scatter only into arbitrary
continued multiparticle partial-wave amplitude appears, renumbers of the same physical states. We also have confine-
lated to a leading-helicity particle amplitude. Such partial-ment in the sense that, in the gluon sector, we have only
wave amplitudes straightforwardly satisfy Reggeon unitaritymassive Reggeon states composed of elementary Regge pole
equations in eachchannel and, as a result, have a Reggeortonstituents. We postpone discussion of the quark states and
diagram description in terms of two-dimensional transversehiral symmetry breaking until the next paper.
momentum integrals. We show, however, that when a It is presumably important that because the zero trans-
helicity-flip vertex is involved the reduction to transverse verse momenta in the Reggeon condensate are implicitly ac-
momentum integrals is more subtle. In this case, if a light-companied by longitudinal zero momenta, the condensate
cone description of the limits is formulated, a correlatedcan potentially be understood as a zero-mode effect in light-
lightlike vector is necessarily part of the “physical transversecone quantization and as a wee-parton component at infinite
plane.” This longitudinal component vanishes with the cor-momentum. We summarize our confining solution of par-
responding transverse momentum. tially broken QCD as containing exchange-degenerate even-
We begin our QCD analysis in Sec. VI. We show firstand odd-signature Reggeons together with vacuum produc-
how elementary quark-Reggeon couplings are obtained bijon of multi-Reggeon states. These are the defining charac-
calculating successive on-shell scatterings of fast quarks. Weeristics of supercritical Pomeron RFT.
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dard frames associated with the Toller diagram. Foman
point amplitudeMy, we can therefore write

PN PN_']' MN(Pl,...,PN)EMN(tl,...,tN,3,gl,...,gN,3). (32)

If we initially consider all theQ; to be timelike, then we
can use the S@) parametrization

Qg3
g=u()u(Ou,(v), 0<0<mw, O<sv,u<2m,
(3.3
Qn—-4 P
§-2 whereu, andu, are, respectively, rotations about thandx
FIG. 1. Toller diagram for thé-point amplitude. axes. We can also take all tigg and{j; to be boosta,(£)
in thez-t plane. In this case the, rotations clearly commute
IIl. MULTI-REGGE LIMITS AND REGGEON UNITARITY with the a,, and as a result, the external invariant variables

. . _ _ depend only on combination®/, = u;—u, of azimuthal
In this section we describe the general multi-Regge theoryngles. The net effect is that the angular variables for each
that will underly the analysis and arguments of this paper. IMToller diagram reduce always to theN3- 10) independent

many cases a more extensive discussion of the subjects weriables needed to describe Mspoint amplitude. There are
cover can be found if10] and a very useful background always

review is provided by{17]. However, as we noted in the

previous section, we will also need additional elements that(N—3) t; variables (=Q?)

were not adequately described[it0]. We first describe the (N-23) z; variables (=cos ;) { (3N—10) variables.
general kinematics and partial-wave analyses which are then—4) u., variables (=€e'“i)

basis of multi-Regge theory. . (3.9

For each Toller diagram thg, z;, anduj, variables are an

unconstrained Lorentz-invariant set of variables for Nt
To describe the most general Regge behavior of a multipoint amplitude.

particle amplitude, we first introduce a set of angular vari- We will also make use of two parametrizations of

ables. For a given amplitude, there are many possible setsQ(2,1). The first corresponds directly to the &P param-

each associated with a distinct Toller diagram. A Toller dia-etrization (3.3 (with cosé—coshp), i.e.,

gram is simply a tree diagram with only three-point vertices.

A. Toller diagrams and little group variables

Denoting the external momenta for &kpoint amplitude g=U(pm)aBluv), —o<p<w, Osup,v<2m,
by P;, i=1,... N, we begin by drawing a Toller diagram (3.9
and introducing internal momen®;, j=1,... N—3, for

each internal line of the diagram as illustrated in Fig. 1. TheWhere 3 IS now a boost in thec-t plane. An alternative

Q; are defined by imposing momentum conservation at eaCRarametrlzatlon IS

vertex. Next, we introduce three standard Lorentz frames at ,_ _ -, =

each vertex. in each of which one of the three momenta U r)ax Bay(y),  —e=<pry<e, 0\'“\27(7:'3_6)
entering the vertex has a standard form, chosen according to
some convention. We then denote as the Lorentz
transformation—associated with the internal lipewhich
transforms between the two standard frames, in wRighas A general multi-Regge limit is defined, via a particular
the standard form, defined, respectively, at the two verticegoller diagram, as

to which the lingj is attached. Sinc®; has the same form,
say, Q?, in both standard frames,; necessarily belongs to
the little group ofQ}, implying that

B. Invariants and angular variables

2,2,....2y-3—%, ViU fixed. 3.7

A variety of “helicity-pole limits” in which some combina-
_ N . tion of thez; andu;, variables is taken as large can also be
9;SA2D i Q; is spacelike, discussed. The reason for the helicity-pole name will be clear
) o after we introduce Sommerfeld-Watson representations.
9;eSQ3) if Q; is timelike. (8D “Maximal helicity-pole limits” in which (in a sense we will
discuss latgr the maximum number otij, variables are
We also introduce the Lorentz transformatiafjs trans-  taken large will play an important role in our discussion. The
forming between the standard frames defineddpandQ,,  significance of maximal helicity-pole limits is that they can
respectively, at the same vertex. Note tiiatis a function of  pe used to isolate a single, analytically continued, “helicity
t;}=Qf, t,=Qf, andt;=(Q;+Qy)? only. We can clearly amplitude.” A multi-Regge limit, in general, has contribu-
combine theg; and j, (together with;; transformations tions from many different helicity amplitudes.
defined analogously to thg, , but at external verticggo It is straightforward to calculate the behavior of channel
determine any of the external momenta in any of the staninvariants in terms of the angular variables. An explicit ex-
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Q; Q; Q Q
Qj k J Q
o1 : . : + x
Qi Qi Q, Q. Q1
Pj Q Pj Pj Q
—_— l—< -+ >__£
Qi Qk ) Qk Qs
FIG. 2. Toller diagram for the six-point amplitude. Py P,
N P
ample, the six-point amplitude and the angular variables cor- Pi>/)Q/k P’
responding to the Toller diagram of Fig. 2, can be found in
the Appendix of{15]. The parametrizatiof3.5) is used and FIG. 3. Hexagraph vertices from Toller diagram vertices.

the specific standard frames are essentially those we have

described. We can also list a few of the most important feaeach internal line of the Toller diagram is replaced by a line

tures that appear in general. - containing both horizontal and sloping elements. The com-
(A) If we write z;= %(vj +vj’l) (i.e.,v;=¢€ %) and define  plete set of hexagraphs corresponding to a Toller diagram is

uj as above, then all factors bin expressions for invariants constructed as follows.

(coming from sing, and sinwy) cancel. The relation between ~ We begin by substituting for each of the vertices of the

all invariants and ther’'s andv’s is real and analytic. Toller diagram the sets of vertices shown in Fig. 3, in each of
(B) When all thez;’s are large(or all thev;’s), we obtain,  which one of theQ; is attached to a horizontal lin¢As
for smn=(Pm=+ Pn)?, illustrated, the number of vertices substituted depends on the
number of external lines entering the verjexWe next join
Smn~Sinh {imj vj (cosh{ j +coswj j v, vj the available vertices with horizontal lines in all possible

) manners, forming projections on the plane. From the set of

X(coshgj . j +coswj ;)vjsinhf;,, (3.8  graphs obtained, we generate further graphs by “twisting”

each graph about each internal horizontal line. Twisting ro-

wherejy,j2,....js is the set of internal lines of the tree dia- tates all of that part of the graph attached to one end of the
gram linking the two external momenta. As a result, for anyhorizontal line by 180° relative to the remainder of the

invariantsmy...= (Pm+Pn+-*+p;)?, we obtain graph—turning it upside-down in the plane. We continue
“twisting” until no new graphs are obtained.
Smn-r Nv f(LQ))Zjlzjz'”sta (3.9 Examples of hexagraphs obtained from the Toller dia-
Zi—® j

i gram of Fig. 1 are shown in Fig. 4. One use of a hexagraph

o . is to generalize the elastic scattering concepts of tke “
where nowj,,jo,....js denotes the longest path through thechannel,” or “direct-channel,” physical region and thd-*

tree diagram linking any two of the external momenta con- " o Y . X
tained inS,,.... . channel,” or “cross-channel,” physical region. Each

, - . hexagraph simultaneously describes achannel” physi-
(C) When all theuy,’s are large, we similarly obtain cal region in which all theQ; of the Toller diagram are
spacelike and at‘channel” physical region in which all the
Q; are timelike.(Of course, there are also additional chan-
sin ; sinhg; . (3.10  nels in which some&; are timelike and some are spacelike,

' ' but we will not discuss them specifically. The direct chan-
nel is obtained by interpreting the diagram as describing
Scattering particles entering from the bottom of the diagram
and exiting at the top. The cross channel is obtained by in-

It is important, although we will make little reference to terpreting the diagram as d.escribing scatt.e_ring particlt_es en-
it, that the singularities of amplitudes as functions of thel€Mng from the left of the diagram and exiting to the right.

invariant variables have a similar asymptotic structure in(ﬁln%e_:ffwebdo not cor|1|S|der scattef:rmg p_rocesseds as distinct
terms of either the; variables or theu;, variables. that differ by an overall CPT transformation, we do not con-

sider hexagraphs as distinct that differ only by the complete
vertical, or horizontal, reflection corresponding to a CPT
transformation of the corresponding direct channel or cross

Smn"‘Slnh é’mjlsln ejlujl'jZ(COS 0j2+ 1)Uj2,j3' ”ujr—z'jr—l

x(costHJr 1)ujH,jr

Again, the leading behavior of argy,,... is obtained from
the two particles linked by the longest path through the tre
diagram.

C. Hexagraphs, direct channels, and cross channels

While the Toller diagram is sufficient to introduce angular

variables, there are many analytic and kinematic properties
of amplitudes for which it is very useful to introduce a fur- N .
ther set of related “tree diagrams” called “hexagraphs.” - N ‘>—-('< ) ‘ —>}<

There are many hexagraphs for each Toller diagram.
A hexagraph is necessarily drawn in a plane. It has the FIG. 4. Examples of hexagraphs obtained from the Toller dia-
same number of vertices as the parent Toller diagram, buwram of Fig. 1.
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channel. As a result, it is irrelevant whether the scattering We will use hexagraphs to describe more and more infor-
particles enter from the bottom or top in the direct channel omation as we proceed. In particular, we can associate gach
whether they enter from the left or right in the cross chan-and eacht; with the corresponding horizontal line of the
nel) Note that the same cross channel is described by hexagraph, while the independenj, can always be associ-
class of distinct direct-channel hexagraphs related by “twistated(in an obvious manngwith the internal sloping lines.
ing.” As we describe further below, the process of twisting a(This association can also be made for the conjudate,,
hexagraph about a horizontal line defines the multiparticleand n; variables that we introduce below. It will be illus-
generalization of signature. trated in Fig. 5. We can then associate a “twist” about a
The angular variables can be straightforwardly introducechorizontal line of a hexagraph with a change of sign of the
in any physical region by the procedure described in Seccorresponding; and also, for a sloping line attached directly

[l A. In a cross channel, to this line (not via a vertex, with a change of sign of the
) correspondingl . This is how twisting is used in defining
tj=4m°, -—-1sz=<1, -1scoswj<1. (3.1) signature.

For a direct channel the situation is more complicated. Even

if all the Q; meeting at a vertex are spacelike, the vertex may ]

lie in either a spacelike or a timelike plafiee., A(t;,t; ,t,) In a cross channel all the little groups are (S For a

=0, whereh(t; t; ,t) =t2+t2+t2—2t;t,— 2t;t,— 2t,t,]. In  9eneral functiorf(g) on SA3), we can write

that part of a direct channel in which all tig are spacelike @

and all the internal vertices are timelike, f(g):JEO > Din/(g)aJnnn (3.13
=Y n},In"|<J

D. Partial-wave expansions

t;<0, z=1 or =1, —1lscoswys<1. (3.12 ;
o . ) ) ] o where theD_ ,(g) are representation functions. For the pa-
In this kinematic configuration, the multi-Regge limit is a rametrization(3.3),
physical limit, but a helicity-pole limit is unphysical. For
those parts of a direct channel where a vertex is spacelike, Dfm,
the physical region is parametrized by thg angles becom- S
ing boosts as in Eq(3.6). In this case both Regge and where thed; ,(#) are well-known special functions. From

(g)=e"#d’ (6", (3.14

nn’

helicity-pole limits are physical region limits. Eq. (3.2 we can write
J Ine
MyLOL - On-3)= 2 X X > D' (g D" . (gn-3)
170 gl njl<3y IN=370 |y _gliny_gl<dy-3 12 NSNS
Xajl nl,ni ..... JN73,nN73,n,’\‘_3(E)- (3-13

Since, as we have discussed, ebtijdepends only on com- and the helicitiesn; ,n/ . This will enable us to transform
binations of the azimuthal angles; and »;, there is a re- (some of the summations in Eq3.15) into integrals via the
lated constraint on the sums ovey and nj’ in Eqg. (3.15. Sommerfeld-WatsoiSW) transformation. For this purpose
With the particular convention that, at the vertex where linest is necessary to break the full amplitudé, down into
j:k,I meet, the Lorentz transformations, g, ,g, are defined spectral components containing distinct multiple discontinui-

to transform from this particular vertex to adjacent verticesties in the invariant variables that are large in the limit dis-

this constraint takes the form cussed. This is achieved by writing &asymptoti¢ disper-
sion relation in thez; variables. As we noted in Sec. Il, the
nj+ne+n=0. (3.16 existence of such dispersion relations is actually the funda-

) o ) mental core of our development of multi-Regge theory.
After this constraint is imposed there ar{4) indepen-

dentn and n’ indices in Eqg.(3.19 (considering spinless o P
external particleswhich are “conjugate” to the l{—4) in-
dependent azimuthal anglasy introduced above. Thg n,

and n’ variables can be associated with the lines of a P, a J
. . . N-5 N-3 N
hexagraph as illustrated in Fig. 5. 7 7 P
To use the partial-wave expansion to discuss Regge be- 7 By s Ina ;'32 N1
N—

havior in Regge and helicity-pole limits in direct channels,
we first define continuations of the partial-wave amplitudes FIG. 5. Association of, n, andn’ indices with the lines of a
aynn(t) to complex values of the angular momenia  hexagraph.
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n n n;
J . n
an nj4 njz )
T D \'A

FIG. 7. T, D, andV subgraphs of a hexagraph.

FIG. 6. Allowable cuts through the hexagraph of Fig. 3. Ac(t,w,sl...,sn,3)
However, since an understanding of their derivation is not =E (—1)M(t,W,5,+10:5,+i0 Sy_a*i0)
necessary for the purposes of this paper, we simply go " SRR IR e PN R

straight to the result. An extended description of the general 39
derivation can be found ifl0], and the particular example (3.20
corresponding to the Toller diagram of Fig. 2 is discussed i

detail in[15]. r]l'he sum ovek is over all combinations of- and — signs in

Eqg. (3.20 and (—1)€ is positive when the number of
o _ _ signs is even. In writing Eq3.19 the asymptotic relation
E. Asymptotic dispersion relations (3.9 has been used to change variables fmm..,zy_3 to

A primary purpose of the hexagraph notation is to de-Si,---Sn—3. We note again that an explicit example of an
scribe the spectral contributions to the asymptotic dispersiogsymptotic dispersion relation is described in full detail in
relation, for an amplitudéM , obtained by simultaneously [15].
dispersing in all theg; variables of the parent Toller diagram.

By introducing the concept of a ““cut” through a hexagraph, F. Froissart-Gribov continuations and signature

we can use such cuts to describe invariant channels in which
there is a discontinuity or “cut.” For each hexagraph we
define an “allowable” direct-channel discontinuity to be in

n hannel, defin t of the external particl ; ; i . !
any subchannel, defined by a subset of the external particle egge behavior takes. Each cut is associated with a particu-

such that the minimal “cut” drawn through the graph con-_Iar power behavior. Correspondingly, the multi-Regge

necting all the particles involved enters and exits only be . X .
tween a pair of sloping lines. Some allowable cuts of thebeh"’“/Ior of a spectral component is obtained by SW trans-

upper hexagraph in Fig. 4 are shown in Fig. 6. forming only N—3 of the angular momentum and helicity

The asymptotic dispersion relation takes the form sums in Eq(3.19. Indeed, unique Froisart-Gribd¥G) con-
tinuations in the complex plane can only be made for the

relevant indices. An important property of the hexagraph no-
M(p1...o0)= 2, MP(ps,...p0)+ MO (317 tation is that it classifies together all those sets of cuts for
et which continuations in the same helicity and angular mo-
mentum variables can be made. The construction of FG con-
tinuations is described in detail [A0]. Here we will simply
give the rules for determining the continuations that exist for
a particular hexagraph amplitude.

We first need to definél, D, and V subgraphs of a
hexagraph as in Fig. 7. It is obvious how hexagraphs, such as
those of Fig. 4, break up into subgraphs of this form. The
continuation rules are that in eadf) we taken; complex
with (Jj—n;) and (nj—nj’) held fixed at integer values. In
where now the sum is over all sefsof (N—3) nonoverlap- €achD; we taken; complex with ;—n;) held fixed at an
ping cuts which aréall) allowable cuts of the hexagraptin ~ integer value. In eacfi; we takeJ; complex, independently
the Simp|est graphs there will be 0n|y one @t The (N of all the nji. These rules Imply that the he'lClty labels,
—3) cuts must be “asymptotically distinct” when all te  which are attached to sloping lines of the hexagraph, are
variables are large. If we denote the invariant cuts of a paralways coupled té¢that is, differ only by an integer fropthe

Each hexagraph spectral componktt has simultaneous
cuts in onlyN—3 large invariants. As we will see, the in-
ariant cuts are reflected directly in the form that multi-

where the sum is over all hexagrapHsgenerated by the
Toller diagramT and M° contains only nonleading multi-
Regge behavior. Each “hexagraphical componeM™ is
further written as

MH= > MS(py,....on), (3.18
CeH

ticular setC as (s1,...,Sy—3), then angular momentum associated with the corresponding hori-
zontal line of the hexagraph.
MS(p1,....pn) An important point for all continuations is that they are
made separately for positive and negative helicities and also
1 f ds;---dsy_3A%(t,W,S],S),....Sh_3) for positive and negative helicity differences, that is, figr
~(27)V3) T (si—s)(sh—Sp) (Sh_s—Sn_3) =n| for eachV;, for nj=(n; *=n; ) for eachD;, and for

(nj. =n; )=(n;_=n; ) for eachT,. We will use a conven-
(319) I I2 I3 Iyt ]

tion in which if nj, and n, have the same sign, this implies
where they have opposite sign helicities in thechannel center of
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mass.(In a direct channel this would correspond to helicity J, 2 3
sign conservatiop.Continuations from values of; andn;, M ' e
3
with the opposite sign will be referred to as “helicity-flip” n, 6
continuations and will be crucial in what follows. (a) (b)

As in elementary Regge theory, it is necessary to intro- . .
duce signature to obtain well-defined FG continuations. In FIG. 8. Hexagraph from the Toller diagram of Fig.(@) J and

) . ) . h variables andb) cuts.
the analytic procedure we are following, signatured ampli-
tudes are obtained by adding or subtracting the dispersion

relation spectral components corresponding to those hex@'raphs, a maximal helicity-pole limit is simply defined by
graphs differing simply by a twist, about the correspondingtaking all the azimuthaly;; variables to be large. When\a
horizontal line for a continuation in 51] and about the hori- Subgraph is inv0|ved, On|y one combination of the two azi-
zontal line to which the corresponding sloping line is at-muthal angles associated with the central line of the graph is
tached for a continuation in; . This definition also separates taken to be large. The maximal number of helicity poles is
“even” and “odd” terms in the relevant series appearing in stjll involved and a single partial-wave amplitude is isolated.
the partial-wave expansion. As we described above, a single \we consider specifically the Toller diagram for the six-
twist changes the sign of the angular varialéessociated point function shown in Fig. 2. This is the Toller diagram for
with the line about which the twist is madehose conjugate  which the asymptotic dispersion relation is derived 1].
variable ¢; or n;) is taken to be complex. There are 4 basic hexagraphs which after twisting gives a
We shall also utilize the following, equivalent, “group- total of 32 hexagraphs. A full discussion of the SW repre-
theoretic” definition of signature, since in general it is easiersentation for all the hexagraphs and their use in all
to implement. Beginning with aN-point amplitude in a par-  asymptotic limits is given if10]. Here, for illustration, we
ticular direct channel, we form the positiver negativg sig-  concentrate on two of the basic graphs. Consider first the
natured amplitude, with respect to a particular internal line ohexagraph shown in Fig. 8. With theand n variables as

a Toller diagram, by addingor subtracting the amplitude jjjustrated, the partial-wave expansion has the form
obtained by making a complete CPT transformation on all

external particles connectethrough the diagramto one
end of the internal line. The fully signatured amplitude is
formed by carrying out this procedure for all internal lines of

An(Z1,25,23,Uq,Uz, 19,15, 13)

J nqy ¢J n, ¢J
the Toller diagram. In this way signature is introduced at the = % don, (20U "d? | (Z2)Upd 2 ((Z3)agn(t)-
amplitude level without introducing spectral components. It -
is an operation defined directly on the external states. Al- (3.21)

though the equivalence of the two definitions has only been
proved in the simplest cases, we have no reason to doubt th&he hexagraph contains ofiegraph and twd graphs, and
the equivalence is true in general, and we will assume this téhe above rules determine that fram, n,>0 (signatureg
be the case. Of course, to understand the implications dfG continuations can be made to complgx n;, andn, in
signature for phases, etc., it is necessary to utilize the andhe three complex half-planes:
lytic formulation.

Itis interesting to note that, in the case when\fis are ReJ;—Nn;)=0, Re&n,;—n,)=0, Ren,=0,
present in the hexagraph, the total cross-channel angular mo- (3.22
mentum is continued to complex values, together with all the

helicities of (cross-chann¢lsubchannels. In no case is the while J,—n, andJ;— n, are held fixed at integer values. For

angular momentum of a subchannel continued separately,, hrasent we omit the complications of signature in order

from the helicity. WhenVj's are present the total angular 1, nqre simply illustrate other features. The SW transform of
momentum of the cross channel is not used as a variabl at part of Eq(3.21) satisfying Eq.(3.22 is then

Instead, the scattering can be regarded as made up of sub-
processes for which the total angular momenta and subchan-

nel helicities are analytically continued. R 1 j dnzugz J dn1u21
_ _ H78 Jc sinwn, Jc. sinm(ng—n,)
G. Sommerfeld-Watson representations, and multi-Regge M2 M
and helicity-pole limit amplitudes dJld(J),lnl(Zl) - | J
The process of first defining a SW transformation on the xf P S— d?  (z)d?® (z3)
partial-wave expansion for a hexagraph amplitude and then ¢y, SINT(J1=N1) 3p-ny=Ny=0 "1M2 z

studying asymptotic limits is sufficiently complicated that it Ja7n2=N2=0

is difficult to give a general description. We give a general ~

idga of the procedure by cqnsidering si_mple ex_amples. We XaN2N3(31,n1,nz.I)+JE dé,lnl(zl)uzldizl,nz(zﬂ

will study further examples in the following section. As we =0

remarked earlier, we will be particularly interested in “maxi- Ny 4J3
- L . X .

mal helicity-pole limits.” For hexagraphs with n¥ sub- Uz "0, o(Za)an(b), (323
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whereCnZ, Cnl, andCJl are parallel to the imaginary axis.

The sumy, is over that part of Eq(3.21) not satisfying Eq.
(3.22.

We will show first that the representati@8.23 is suffi-
cient to study the “maximal helicity-pole limit”

(3.29

with z, andz; (andtq,t,,t3) kept fixed. The cut structure of
Ay is straightforwardly represented asymptotically by the
SW integrals as follows. Asymptotically, the invariant cuts
of Fig. 8(b) appear in the angular variables via

Z1,Uq,Up— >0,

Sp3= (P2 +P3)2~2y,

Sp34= (P2+ P3+Pa)®~Y12

=[(Z- D"~ 1)"]uy,

S16= (P1+ Pe) >~ V123
=[(ZZ-1)YA2,+1)(Z— 1) uu,.

(3.29

We can rewrite Eq(3.23 in the form

AHzJ’

N2 \,M—N2pJ;—n
><y123y12 P1M(z,)

dn,dn;dJ;
sin 7rn, sin (n,;—ny)sin 7(J;—nNy)

X > PNi(zy)PN2(zg)ay, y,(J1,N01,N,t)
N, N,=0 12

+>, (3.26

where
i—n/o\ — 1 (-n—n")/2 (n" =n)24i
pP(2)=5(1+2) (1-2) di(2),

n>n’, (3.27
is a polynomial for integef—n=N. In the form(3.26), it is
clear that each of the asymptotic cutsAyf is directly rep-
resented by one of the SW integrals. Sidgghas no singu-
larities in the remaining variables, the sums oMgrandN,
(of polynomials will be convergent in the asymptotic region.
An asymptotic expansion for the lim{8.24 can be ob-
tained by pulling thel;, n;, andn, contours to the left in

PHYSICAL REVIEW D 58 074008

tions that the Regge singularities af; n,(J1,n1,nz) occur
at values of];,J,=n;+N; andJ;=n,+N,. In particular,
if there are Regge poles &= a,, J,= a,, andJ;= a3, the

leading behavior in the limif3.24) arises fromN;=N,=0.

A Regge pole atl;= a4, together with “helicity poles” at
n;=J,=a, andn,=J;= a3, gives

a1~ ap, dp— a3, Az ajapag
1 Y12 Y1280

sin magsin m(ay,— ag)sin m(a—as)

z

Zl~>oc
U2~>oc

usgboo

(3.28

Note that this result holds whether or rmt and/orz; are
large. The partial-wave amplitude witN;=N,=0 is se-
lected provided only that the limi; ,u,—o is taken. The
limit is called a “helicity-pole limit” because it is controlled
(in part) by poles(or more generally singularitiegn helicity
planes.

The denominator factors in E(B.28 give singularities in
thet; variables that are determined by the consistency of the
asymptotic cut structure &y with the Steinmann relations.
To see this we use Ed3.25 to rewrite EQ.(3.28 in the
form

1T apxap—azag
An Sy3 Sy36 “Si5
ajapag

00
X - . = 1
Sin massin w(ay— ag)sin m(a;— ay)

(3.29
which implies that, asymptotically,
diSCAH"’Sin 7T(C¥1_ a’2)AH y (33@
S23
diSCAH"‘Sin 7T(a2—a3)AH, (331)
S236
disc Ay~sin razAy . (3.32

S15

Consequently, each discontinuity cancels one of the poles in
the «; variables, and as a result, the triple discontinuity of
Ay has no poles in thg variables. The Steinmann relations
imply this must be the case. The Steinmann relations, which
should be valid asymptotically, forbid singularities in over-
lapping channels.

To obtain a complete asymptotic expansion in the multi-
Regge limit

Eq. (3.26), provided positive power singularities are encoun-

tered. TheY contribution gives only inverse powers of either
u, or usu,. (We will not describe the subtleties of introduc-

(3.33

21122723—>OO

ing second-type representation functions, etc., that are ne&With u; andu, kept fixed, we must also SW transform the

essary to obtain a true asymptotic expangiort can be
shown[10] from the analytically continued unitarity equa-

sums withn,<0 and/orn;—n,<0 in 3. If we again pull
back theJ,, n,, andn, contours appropriately, we obtain
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[’

PNi(z5) PN2(25)
N,=0 SIN magsin m(ay— ag)sin m(a;— ay)

AH -~
Zy—® Nqp,
Zy—®

73— ®
ajarag_a —N; —-N ay(—ajp)ag_a -1 -N -N
X[ﬁNi,lglzszf(ZzUl)aZ I(z3up) 2 2+'BNi,sz 72, H(2aUy )2 T (2ZgUp) "2

ajapy—az_a -N —1yas—N a)(—ap)(—a3z)_a —1ya,—N —1yas—N
+ B\ 5. 2z M (Zoup)*2 N (Z5u, 1) 43 2+ﬂN1,N22 ¥z, (zoup T) "2 N (Z5u, 1) 3T 2]

Np.Np
Zalza22a3 o0
17273 ajagag a;—Ny az=Np | paj(—ap)ag —ay—Ny az—Np
~ = . . [B\N °uy u, + B3N u, u,
sin magsin w(a,— az)sin m(a;— az) N;EN,=0 N2 N2
ajap(—ag) @p=Ny —azg=Ny_ qaj(—ap)(—ag) —ay—Ny —azg=—N
+,8N1N2 u, u, +IBN1N2 u, u, 1. (3.39

In terms of invariants we have the same result as(E@8),
but now the vertex function contains infinite series(aha- o —
lytically continued partial-wave helicity amplitudes. This il-
lustrates the close relationship between thedependence
i i ic reqi d3,d’® (23) -
and z; dependence of amplitudes in the asymptotic region f 3, 0l%3
c

J
f dny(uyup)™ f dJldOvlnl(Zl)
c cy,

1
8 sin 7n, sin w(J;—ny)

J
_— d2? (z)
5 sinm(J3—Ny) J,-nj=N;=0 MM2 2

nl—n2=N2=O

which we referred to earlier. It is, as in this example, simply
a consequence of the presence of only—3) cuts for
(2N—7) variables.

By comparing Egs.(3.29 and (3.34, we see how a xup? Mayn,(J1,J3,n1:t)
(maxima) helicity-pole limit selects a single FG partial-
wave amplitude from the infinite series that appears in the - e .
multi-Regge limit. This is important because the unitarity +JE doylnl(Zl)Ulldninz(ZZ)Uzzdnz‘O(Z:;)a:]D(I). (3.39
properties of a single FG partial-wave amplitude can be =0
straightforwardly studied. Note that the helicity-pole limit
(3.249 is not a physical region limit, although for the more
complicated hexagraphs studied in later sections, analogous
limits will be physical.

Before we discuss the particle-pole properties of EqSwith z, and u,/u, fixed. Regge poles al;=a; and Js
(3.28 and(3.34, we briefly discuss the SW representation — . contribute straightforwardly. If we takél;=N,=0,
of a second hexagraph associated with Fig. 2. We considgpe Regge pole al,=a, appears as a helicity pole a

We now consider the “maximal helicity-pole limit”

Zy,Z3,U Up— 2, (3.37

the hexagraph shown in Fig. 9. , _ = a, and we obtain, in analogy with E¢3.28),
The partial-wave expansion of E(8.21) is again appro-

priate. The hexagraph now contains oneraph and twor 201 927037 2y %2 ﬁalazas
graphs, and the above rules determine that fronm,>0 Ay ~ — 13 129700 _
(signaturedl FG continuations can be made to complhx 24— SINTapSIn m(a;— ap)sin w(az—ay)
Jz, andny in the three complex half-planes Ez—m

3—®

(3.39
Re&J;—ny)=0, Re&J3—ny)=0, Ren,=0, Again, a single FG partial-wave amplitude is isolated. Note

(3.3 that Eq.(3.38 continues to hold iz, is taken large.

We can use Eqs(3.28), (3.34, and (3.38 to illustrate
some general properties of hexagraph multi-Regge ampli-
tudes. Suppose, for simplicity, that the are even-signature
Regge trajectories giving a particle pole @t=0. We note
first that Eq.(3.28 contains a pole only at;=0. A pole at
a,=0 appears if we first set3=0. In contrast, Eq(3.39
1 J3 contains directly a pole at,=0. As we discussed, the pole

J2 structure in thet; variables relates directly to the analytic

n; n, structure in the large invariant variables. Together, Egs.
(3.28 and(3.39 represent a general situation in very com-

FIG. 9. Another hexagraph from the Toller diagram of Fig. 2. plicated hexagraphs. Particle poles occur in association with

with J,—n4 andn; —n, held fixed at integer values. The SW
transform of that part of Eq(3.21) satisfying Eq.(3.39 is
then
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aV subgraph or with & subgraph at the end of a “cascade”
of D subgraphs. Regge pole factorization gives that, in Eq. -

M
(3.39, particle
__ state
1Az __ HA1An L0203 4122;::::::;__ﬁ-“
0~ Po Po (3.39 s

D grap

and so, as the hexagraph of Fig. 9 suggests pictorially, at F|G. 10. A “cascade” ofD graphs for M particle phase space.
a>=0 the amplitude factorizes into a product of four-point

amplitudes. The factorization propelt$.39 holds provided

only that we pick out a Regge pole in thig channel. In f dp(t,ty,...t5,...)

general, we obtain full four-point scattering amplitudes

rather than just the Regge exchange amplitudes given by Eq. MYt ,t) MYt tg,t,)
(3.39. If we continuea, to a nonzero even integer value, = H j t n
then the factorization of Eq3.39 gives the leading-helicity ! !
four-point amplitudes. Analogously, if we continug to an )\1/2(»[1. it
even integer value in Eq(3.28, we obtain the leading- t HRR
helicity amplitude at the particle pole. As illustrated by Eq. !
(3.34), a multi-Regge limit amplitude in general gives a sum
over helicity amplitudes at a particle pole.

Finally, we note that we can also obtain leading-helicity
amplitudes with opposite signs for tine involved by taking
corresponding helicity-pole limits, for example, by taking the
limit u, /u,— o with uju, fixed in Eqg.(3.36 and by taking
u,—0 instead ofu,—~ in Eqg. (3.23.

(3.41

There is a\ function for each internal vertex, including those
involving the internal particlegfor which the corresponding
“1;” is the mas$). The integration region is defined by

At t42) =0 V). (3.42

It can be shown10] that the unitarity integral generates
Regge cut behavior only when particular multiple disconti-
nuities are present in the amplitudes appearing in the inte-

The most important property of the FG amplitudes is thatgral. The necessary discontinuities are present w(aem
they can effectively be used to analytically continue, in theonly when the amplitudes correspond to hexagraphs having
complexJ; and n; planes, the cross-channel multiparticle a “cascade” structure oD subgraphs with respect to the
unitarity equations in any, channel of any Toller diagram. internal phase space, as illustrated in Fig. e subtleties
This leads to a set of “Reggeon unitarity” equations for thein isolating hexagraph product contributions are discussed in
discontinuities across multi-Reggeon branch cuts which apt10]; we will not discuss them hepeAs a result, for the
pear in each of the complex angular momentum planespurposes of studying Regge cuts, we obtain a form of
These equations are crucial in enabling us to build the multihexagraph diagonalization of thieehannel M -particle uni-
Regge behavior of QCD amplitudes on the basis of knowrarity integral
results for elastic and production processes. We will only

H. Reggeon unitarity

give a brief outline of the derivation of the Reggeon unitarity i "o H

equations here(Note that in the abstract analysis of this disc A"=i| dp dgH dgiA" (g,....8j,---)
section and the next section we use “Reggeon” to refer to

any Regge pole. In Sec. V we will use this term specifically XAHR(gfng,...,gj yeed)s (3.43

for an odd-signature Regge pole with intercept near 1, refer-
ring to an even-signature pole with intercept near 1 as ahereH, andHy have the necessary cascade structure. For
Pomeron. From Sec. VI onwards a Reggeon will specificallyexample, ifH is the hexagraph shown in Fig. 11, the hexa-

be a Reggeized gluon. graphsH,_ andHg have the form illustrated in Fig. 12; i.e.,
The discontinuity across th#1-Reggeon cut(i.e., the  H, andHg are formed fromH by splittingH in two at theJ
branch cut due to the exchangeMfRegge polesin anyJ  line and substituting a product & cascades that connect to

plane is derived most simply from thev-particle disconti- the intermediate particle state. Equatig43 can then be
nuity formula in the correspondinigchannel. The-channel  diagonalized by partial-wave projection, i(guppressing all
discontinuity is first expressed as a conventional unitaritythe external hexagraph angular momenta and helicity Iabels
phase-space integral. By using a Toller diagram including
the internal particles, this phase-space intetyg(t) can be
written in the form

IZM(t)=if dp(t,tl,...,tj,...)fngH dg;, (3.40

where theg; are associated with lines of the Toller diagram
and (apart from numerical factors FIG. 11. Hexagraplt.
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are continued to complex values are now denoted piN
denotes all theN;=J;—n; that are kept fixed at integer val-
ues, gz(rj,...,rnj,...) are thesignature labels, withr;

given by the product of the signatures of the contributihg
2M particle Hy Reggeons, andz denotes all the= labels describing the
state signs of helicities and helicity differences from which the
FIG. 12. Product of hexagraphs in the discontinuity formula. ~ continuation is made. The discontinuity formula involves the
product of nonsense—Regge-pole amplitudes extracted from
the FG amplitudes for the hexagraghs andHg of Fig. 12.
disc aH'zif deZ] altal® . (3.44  The discontinuity formula is then

The summation shown is over all internal helicity labels disc,_,, (t)aJHNgZ:ng dp AHLr=(g+)AHRn=(37)
. M o (23

and angular momentbl=J—n of all the D graphs in the o - -
phase-space part ¢f, andHg.

The partial-wave equatior{8.44) can be analytically con- X
tinued to complex values of the external angular momenta
and helicities by converting the internal sums to integrals
having the SW form. Th&1-Reggeon cut is generated in the )
analytically continued equations by a combination Mf  where[dp has the same form as E@.41) except that only
Regge poles, the phase-space bounddfet?), and “non-  Regge-pole energies are integrated dtlee integration over
sense poles” for each of tHa-graph vertices. In the notation the masses of the pairs of particles has been eliminated by

S0-1-3 (ax— 1))

, (3.49

. W ’ - ’ﬂ ’
Smf (a1— Tl)---SIHE (am— ™)

of Fig. 5, the nonsense poles are at using elastic unitarity &), is a (relatively complicatedsig-
nature factor that we will give simple approximations for in
Ji=[njl=n; +n;,—1 (349 sec. V7'=(r+1)/2, andA"tr=(J*) is a “nonsense”

Reggeon scattering amplituae extracted frtaﬁjth?'2 and

evaluated above the Regge cut dtay(t). Here,
-1 (3.46 A";'Lv.ﬂz(\]‘) is the same amplitude evaluated below the cut.
For the introduction of Pomeron and Reggeon diagrams in

when bothnjl and n;, are negative. If the Regge poles are Sec. V, it is important that the phase-space integrafiop

identical, then the relevant boundary of the phase space is #t Ed. (3.49 can be modified by extracting the “threshold
behavior” of the nonsense amplitudes at the phase-space

when nj, and n;, are positive or at

Jj:|nj|:—njl—nj2

Jti= \/ﬁ+ Jte Vi k. (3.47)  boundaries(3.47), i.e., at the nonsense poinh;-n;
j+2
This, combined with all the nonsense conditions, gives a H
trajectory AgR’fZ(J,tl,...,tj Airatjio,..)
J:aM(t):Ma(t/MZ)—M-I—l. (348) ()\(tj ,tj+l,tj+2))(njnj+lnj+2>/2
As we stated eatrlier, in our notatio1=m]-2 is the helicity in Mty t1.tj42)—0 t
the t-channel center-of-mass frame. It is very important in _12
what follows that there is no nonsense pole contribution from _ ( A(t ’tJ+1’ti+2)) _ (3.50
nj, positive andnj2 negative or fromn]-l negative anoh]-2 t

positive. (These are not “nonsense” states.Therefore

P T ; ; ) . We can then write
helicity-flip” partial-wave continuations, from opposite-

signn; at an internal vertex, do not contribute to the gen-

eration of Regge cut§We stated earlier that we will refer to f dp(t,ty,.. ,---)—>f [T dtpn 22t 1, tp)
amplitudes which have; =—n;_ as “helicity-flip” ampli- .

tudes. Such amplitudes are “nonflip” in thechannel center XNty tg,t)

of mass. However, for massless particles, helicity is reversed

N : XY g tn)
in going from thes to thet channel and st-channel nonflip AN ]

amplitudes correspond t®channel helicity-flip amplitudes. (3.5)
Ultimately, it iss-channel helicity properties that will interest . o .
us) A discontinuity formula, essentially the same as Eq.

Consider now the hexagrapt and consider specifically (3.49, also holds in any; plane foraJH,hhf’2 except that the
the M-Reggeon cut in thd channel associzate(i with the cen- hexagraphsH, and Hy that are involved are obtained by

tral T subgraph of Fig. 11. We denote N the signa- inserting into the line of H the same cascade structure that
tured FG amplitude associated with All the helicities that  appears in Fig. 12. This is illustrated in Fig. 13.
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FIG. 13. Another product of hexagraphs. t,
+ twists

Similarly, an analogous discontinuity formula to Eq. t2
(3.49 holds in any complex angular momentum or helicity
plane for any hexagraph FG amplitude. The hexagraphs in- F|G. 15. Hexagraphs associated with the Toller diagram of Fig.
volved in the discontinuity formula are simply found by in- 14,
troducing the relevant cascade structures as in Figs. 12 and
13. Before the advent of QCD it was understood thatwe initially take all thet; positive so that the; are elements
Reggeon unitarity provides a general, model-independentf SO(3). We also define each of thg to transform from the
basis for a Reggeon field theory description of the Pomerorgentral vertex to the external vertex. If, for the moment, we
This will be elaborated on in Sec. V. However, only a lim- take the external particles to be spinless, the amplitude will
ited part of the full set of Reggeon unitarity equations wasphe independent of the;, i=1,2,3, and will depend only on
exploited historically. For the purpose of this paper, the fulldifferences of theu; . Therefore, if we define
set of equation$3.17) has another very important role. Ex-
tensive results on the Reggeon diagram structure of elastic u;,=e'(#17#2), yy=g'(H27#3) Yy =e'(ka™r1)
scattering have been derived by direct calculation within 4.2
QCD (at leading logarithmic, next-to-leading logarithmic,
etc.[5,18,19). As we will discuss, the power of the Reggeon then
unitarity formulas is that they can be used to directly extend
these results to the multi-Regge behavior of arbitrarily com- Ugolpgliz =1 (4.3

plicated multiparticle scattering amplitudes. ] ]
and we can take any two as independent variables. Com-

bined witht,,t,,t; andz;,z,,z3, this gives the appropriate
IV. TRIPLE-REGGE VERTICES AND LIMITS eight independent variables.
) ] o . ) The Toller diagram of Fig. 14 generates the set of hexa-
In this section we specialize much of the discussion of theyraphs shown in Fig. 15. Each hexagraph shown is one of
last section to the various “triple-Regge” limits of the six- 2 2% 2=8 related by twisting, where the twists are made
particle amplitude. It is important that triple-Regge kinemat-apoyt the three horizontal lines in the graphs. There are 24
ics is more general than the well-known case of the largg,exagraphs in total. As we have described in the last section,
mass limit of the diffractive inclusive cross section. Theregach hexagraph corresponds to particular sets of allowable
are “triple-Regge vertices” which play a crucial role in our trigje discontinuities (in direct-channel physical regions
study of QCD, but only appear in the more general triple-yhere thet, are negative
Regge and helicity-pole limit kinematics that we discuss be- g the first hexagraph of Fig. 15, the allowable sets of

low. cuts are as shown in Fig. 16. The cuts of Fig(d.@re in the
invariants
A. Hexagraph cuts and limits
. orep . - , Ci=Syz [=(Py+P3)?],
We consider the Toller diagram shown in Fig. 14. As in

Eq. (3.2), we write C,=s;3 [=(P;+P3)?],

Mg(P1,....Pg)=Mg(t1,t5,13,01,02.93). (4. Ca=Siva [=(P1—Py+Py)?] (4.4

This set of cuts is well known to be related to the one-
particle inclusive cross section. The cuts of Fig(Gare in

2
t,=Q, the invariants
Ci=szp3r, Cy=s13, Cz=spys. (4.9
£ =Q2 This second set of cuts is less familiar, but will play an
: 1 important role in the following. For larges;, and fixed
S23,531,
FIG. 14. Toller diagram foMg. S125=S17213' ™~ S12, (4.6)
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FIG. 16. Hexagraph cuts.

and so, asymptotically, th& ,; cut can be identified as an, From (3B) and (3C) we can see that the following ap-

cut. The Steinmann relations forbid simultaneous cuts irproximations are (essentially uniformly valid in both

S,13, Sg1, and s;,. However, we also have;,~Sy»~ helicity-pole limits, as well as the triple-Regge lint#.7):

—S;0, and simultaneous cuts 83/, S31, ands;, are al-

lowed. In the triple-Regge direct-channel physical regions S13~S1/3/~ —S13~ —S13~21Z3(Uy + 1/Uy), (4.10

that we are interested in, we cannot have all thres,ef,

S,3, and sy, positive. Nevertheless, amplitudes with an S23™~ Spr3r ™~ — Spz ~ — Spi37~ZZ3(Up+ 1Up), (4.11)

Sq7o CUt, in addition tos,, 3, andss; cuts, can be regarded as

having a left-hand cut i5s,,5, even though it is unphysical, S11'37~Sp723 ™~ ~ S1173' ™~ ~ Spr23™ 23, (4.12

and therefore as having the set of c(#s5). This is impor-

tant for the quark loop amplitudes we discuss in Sec. VII. Sp2/17Sgr31 ™ T So2r1 ™ T S3r31™ 21 (4.13
The full triple-Regge limit associated with Fig. 14 is the

multi-Regge limit of the form3.7), i.e., S332~S1712/ ™~ S332/ ™~ ~ S1/12~ Z3, (4.14

21,2,,23—%, t1,t5,13,U31,Us; fixed. 4.7 1271121~ ~S12~ ~ S~ 23 Zp(Ug /U + U2/U1)(4 15

We can also discuss triple-Regge “maximal helicity-pole
limits” involving the u;;. Since each hexagraph naturally
chooses particular pairs of thig as independent variables, it
is convenient(and dynamically significantto associate the
helicity-pole limits with particular hexagraphs. For each
hexagraph there are two distinct helicity-pole limits.

To discuss the limits associated with the first hexagraph In later sections it will be useful to have particular real-
of Fig. 15 we first simplify the notation by writingi; izations of the limits defined in the previous subsection in
=uj3;, Uy=U,3. We can then identify variables with the terms of specific light-cone limits for the momenta involved.
lines of the hexagraph as illustrated in Fig. 17. The first We consider first the triple-Regge limit. Since all three of

Note that all invariants are unchanged whenr-1/u;, u,
—1/u,. This is why the limits(4.8) and (4.9 have two
equivalent definitions.

B. Special light-cone limits

helicity-pole limit is S12, Sp3, andss; are large in this limit,P;, P,, and P4
should lie along distinct light cones. In the notation of Fig.
Z3,Uq,Up;—  (OF Ug,Uy—0). (4.8 14, we can define a particular version of the the triple-Regge

limit, which we call a “maximally nonplanar” limit, in
This is the familiar “triple-Regge” limit of the one-particle which all three momenta are taken to be large and.lightlike in
inclusive cross section. The second helicity-pole limit is ~ orthogonal space directions. We define the following:
Lq,
-1 -1
Z3,Uq,U, ~—%  (Or usu, ~—0). 4.9
3712 ( 172 ) P1—>PI:(p1,p1,0,0), p1—>oo,
For reasons that will soon become apparent, we refer to the Q1 o= Ga= (0,000, 0a)
first limit as the “nonflip limit” and the second as the 17027 0= (5,002, ~d3)s
“helicity-flip limit.”
y p P2—>P;:(p2,0,p2,0), p2_>oo,

p ’
2 Q2—0d3—09:=(0,—01,003),

P3— P; =(p3,0,0p3), pzg—°

Q3—01—0>=(0,4;,—05,0). (4.1

(We omit the light-cone components of both tRgand Q;

that go to zero asymptatically, but are necessary to put both
initial and final particles on mass sheglin terms of invari-
FIG. 17. Hexagraph notation. ants, this limit gives
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S12=(P1+P2)2—=2p1p,, (3.28. (For the triple-Regge limit the dependence on the
finite angular variables is expanded in infinite partial-wave
Sp3= (P, + P3)2—2p,p3, series and therefore is unknown.
The following alternative realization of the helicity-flip
S31=(P3+ P1)2—>2p3p1, limit will also be useful. In this case the finiteness %%/,
) andssy, is more subtle. We define the following:
S120 =(P1+Q2)*—2p1Q1, LJ,
Spay = (P2+Q3)—2p,0;, P,—P;=(p;1,p1,0,0), pi;—c°,
P = + 2—) .
Sa1r =(P3+Q1)"—2ps0s, (4.17 Q1—02—03=(—0s,— 03,02, d3),
and so can be identified with a triple-Regge limit of the form N
(4.7) in which P2—P3 =(p2,0,.0p2.), pr—*,
P1~Z1, P2~7Zz, P3~Z3. (4.18 Q2—03—d;=(d3,0d3,~d2,03),

This particular version of the triple-Regge limit illustrates
how the limit makes maximal use of four-dimensional
Minkowski space. To obtain exactly the above momentum , ,
configuration, we clearly have to choose particular values of Q3—0d2~02=(0.002-12.0). (4.22
theu; and also go to a particular Lorentz frame.

Next, we give some different realizations of the “helicity-
flip” helicity-pole limit (4.9). The essential feature of this
limit, compared to the triple limit, is that, becausgandz,
remain finite, invariants such agy 1 andssa, remain finite.
We first define a limitL,, in which the finiteness o0$35,
andssg, is very simply achieved. In this limi®; andP, lie
in the same plane, but have opposite space momenta, a
this plane is orthogonal to the transverse plane in wkigh
Q,, andQ lie. We define the following:

P3—P3=(p3,—pP3,0,0), pz—,

The behavior of invariants is essentially identical to Egs.
(4.20. At first sight, the roles oP, and P are simply in-
terchanged in going fronb, to L;. However, the crucial
difference is that in Eq94.22 the “transverse momenta”
Q; and Q, have “finite lightlike components” out of the
“transverse plane,” i.e., the 2-3 plane. Most importantly, if
transverse components @f and Q, vanish, then the
lightlike component must vanish also. It will become more
significant in the next section that we always identify the

L transverse plane as the 2-3 plafidote that the limits for
2 each ofP; andP, can be taken to be any linear combination
P.—P; =(p1,p1,0,0), p1—, of P andP; , and provided they are not parallel, the result
will be the same. Consequently, the rolesRaf and P, can
Q1—02,—03=(0,09,,—03), be smoothly interchanged.
Finally, we give two corresponding realizations of the
P,— P, =(p2,—P2.0,0), p,—, “nonflip” limit. In this case, if u;~u,, thens;, ands;, are
also finite. This allowsP; and P, to have parallel limiting
Q,—03—0,=(0,0,-05,93), values. We first define a limit5, in which P4 lies along a
different light cone. We define the following:
Ps—P; =(ps,0,0p3), p3—, L3,
Q3—>qé—q2=(0,0,qé—q2,0). (419) Pl_)P]J_r:(plrplio!o)’ pl—>OO,

In terms of invariants, this limit gives Q;—qo—0s= (0,005, —0s)

S12—4P1P2,  Spz—2P2P3s  S31—2P3P1,
P2_> P;:(p21p210710)1 p2_>oo,
S122+®,  Syzz+®, Sgp—2P3Qs. (4.20

- - ’: 0101_ ’1 1
Comparing with Eqs(4.9) and (4.10—(4.15, we see that Qz— s~ 2= % .ds)

this limit can be identified with the “helicity-flip” helicity- P. Pl = 0.0
pole limit (4.9), with 37 P3 =(P30.0ps). - P32,
Pi~Ui, Po~Uyt, ps~zs. (4.21) Q3—03—02=(0,00,—05,0). (4.23
Again, special values of the nonasymptotic angular variableghe behavior of invariants is now
(in this casez; andz,) are implicitly involved. However, we
will see in the next subsection that, in the leading asymptotic S12h®,  Sp3—2P2P3,  Sz—2P3Pi,
behavior, the dependence on these variables is determined by
the SW representation, as it was for the helicity-pole limit Spoyh®,  Spay-h®,  Syp——2P3Qs. (4.29
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Comparing with Eqs(4.8) and(4.10—(4.15, we see that the

L5 limit is the simple helicity-pole “nonflip limit” (4.8) with

Pi~Ui, P2~Uz, P3~Z3. (4.29

We can also tak®; to be in the same plane & andP,,
but with opposite space component. In this c@eand Q,

again acquire finite lightlike components out of the trans-

verse plane. We define the following:
Lg,

P;— P =(p1,p1,0,0),

p1—,
Q1—02— 03— 03 =(—03 ,— 03 ,02.0),

PZ_> P; = (p21p21010)1

p2—>m,
Q,—03— 03 —G5=(d3 ,03 ,—03,03),
P3—P3; =(p3,—p3,0,0),

p3—>oo,

Q3— 05— 0d>=(0,005—0>,0). (4.26

The behavior of invariants is essentially the same as in Eq.

PHYSICAL REVIEW 58 074008

dny(uy)"™
+ < Sin ’7Tn2

dny(uy)™ j

H_
>4 < S|n7Tnl

J
J‘ d‘]3010,3n1+ n2(23) -

J1
sin w(J3—nN;—ny) Jl—%lzo d_nl'o(zl)

[

J Hg,=
X d? o(Z)ag ™,
Jz‘%lzo n20 a0

(4.28

where the= labels indicate the presence of separate integrals
to reproduce the positive and negative helicity sums.

The triple-Regge limits and helicity-pole limits can be
studied by pulling the contours in E.28) to the left in the
complex plane(Again, we do not discuss the subtleties of
introducing second-type representation functions, etc., that
are necessary to obtain a true asymptotic expansidn.the
triple-Regge limit, Regge poles &f=aq, l,=a,, andl;
= a3 give contributions to each of the terms in the double
sum in Eq.(4.28 and we obtain a result very similar to Eq.
(3.39 (for simplicity, we omit the denominator sine factars

o0 o]
H __ a1 8y ag a;—Ny a—Np
A6 Z]_ 22 23 E_ z_ [Ul u2 Bal,az,a3,Nl,N2
2,25, N71=0 No=0

Z3,—®

(4.24). However, in contrast th,, the lightlike component
s can be chosen independentlyaf and so does not have

—ay+Ny ar—Ny
+u, u, ,8,,11,

to vanish ifq; vanishes. w2t Ntz
From Egs.(4.19 and (4.23 we see that the “helicity- +ufl_Nlu;“2+N2Bal,,az,QS,N1,N2+ ul_"‘1+N1
flip” and “nonflip” limits L, andLj; can, respectively, be
distinguished by whethqr; andp, are in opposite directions X u;“2+N2,[a’_al_az,%Nl,Nz], (4.29
or the same direction on one light cone. From Egs26) it
is also clear that the nonflip limit is truly a “planar limit.” . .
Equation(4.22 differs from Eq.(4.26 in that P, lies out of Whereﬁ“l'“Z'%'Nl'NZ is the Regge-pole residue of the FG

the plane.

C. SW representation and Regge behavior

(analytically continued “nonflip helicity amplitude”

H , .

Jf’;;”nl’nz(tl,t2,t3) at Ji=a;, i=1, 2, 3, andn;=J;

=Ni, 1=1, 2, andB_,, a, .4, N, IS the Regge-pole resi-
Hg,><

As we outlined in the previous section, the SW represendue of the “helicity-flip” amplitudea,®; ; . . (t1,t2,t3)
ta_ttion is obtained by writing appropriate partial-yque expanatJ;=a;, i=1, 2, 3, anch;=—J;+N;, n,=J,—N,. The
sions for each set of hexagraphs related by twisting. In paruiioq contributions come, respectively, from tBeintegrals

ticular, for the set of all hexagraphs related to Fig. 17 by,

twisting, we write

A (21,25,25,u1,U) =2 0 (2))d2 (2,)

xd®,  (zg)ultuay,.

ny+n,,0
(4.27)

n Eq.(4.28.[The symmetry unden;— 1/u,, u,— 1fu, im-

plies that the first and last sums in E4.29 can be identi-
fied, as can the second and third. When the hexagraph of Fig.
16 is part of a larger hexagraph, this symmetry is, in general,
not present.

To obtain the complete behavior &flg in the triple-
Regge limit, we must add contributions corresponding to the
additional hexagraphs illustrated in Fig. 2. These contribu-
tions will have the same general form as E429, but with

(As in our discussion of nonsense states in the previous sethe indices 1, 2, and 3 cyclically rotated. We also add twisted
tion, —n, is the tz-channel center-of-mass helicity. Again, graphs by incorporating signature factors properly.
we remark that we choose the present symmetric notation In analogy with Eq.(3.28, the helicity-pole limit(4.8)

and language to make direct contact wétchannel helicity
amplitudes. The SW transform is obtained by converting
the sums ovenq, n,, andJ; to integrals. To illustrate the

general formalism more simply, we agai@mporarily ig-
nore signature. In this case we can write

picks out the first term of the first sum in E@.29, i.e.,

(4.30

o
As ~ (Z1U1)"UZ2U2)*2Z5°Bu, ay,az0,0:
Ujq,Up,
73,—%®
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while the second limit picks out the first term of the second The importance of this last discussion is as follows. The

sum, i.e., conventional “triple-Regge” limit of the one-particle inclu-
sive cross section has been studj@d] in some detail in

Ag ~ (21U UZoUy H)*22°Ba —ay.az00. (43D QCD. As we noted above, it is in fact the nonflip helicity-
ug, i, pole limit (4.8 that is involved. In this limit only triple-

23,—»oc

Regge behavior associated with the inclusive cross-section

and so distinct helicity amplitudes, i.e., nonflip and flip, con-discontinuities of Fig. 1@ appears. The helicity amplitude
tribute in the distinct helicity-pole limits, while both ampli- that appears is the same amplitude that appears in the
tudes contribute in the full triple-Regge limit. This is why we R€ggeon unitarity formula for the two-Reggeon-cut discon-
refer to Egs.(4.8) and (4.9), respectively, as nonflip and tinuity. Consequently, the triple-Pomeron vertex that appears
helicity-flip limits. Note that, as we anticipated in the previ- in the inclusive cross section can be identified with the ver-
ous subsection. in both Iimi,ts the dependence on botnd tex, discussed in the next section, that appears in elastic scat-
z, is determined by the, andu, dependence. This is nec- t€fing Pomeron diagrams and in RFT. However, there are
essary for the amplitudes to be directly expressible in term@dditional “helicity-flip” triple-Regge vertices associated

of invariants, as is done in the next subsection. with the helicity-flip amplitude appearing in the limi4.9
and, more generally, with the full set of helicity-flip ampli-

tudes appearing in the full triple-Regge limit. These vertices
. . appear in amplitudes containing both the usual inclusive
Consider how the cuts of Fig. 16 are represented asympross-section cuts and the second set of cuts illustrated in

D. Asymptotic analytic structure

totically. From Eqs(4.10—(4.12, we can write Fig. 16b). Such amplitudes have not been discussed within
N o QCD. We will discuss some of the simplest contributing

(Z1U1) “U(ZoUp) “225°= (2323U5) “H(21Z3Up) “X(25) "3~ “17 2 Feynman diagrams in Sec. VII. As we discuss in the next
_ a a ag—ay—ay section, the additional vertices make very important contri-

(S19)"4(S213) "(S11r3) ' butions to the general solution of Reggeon unitarity for mul-

(4.32 tiparticle amplitudes and, as a result, will play a crucial role

. ) in our general construction of hadrons and the Pomeron in
showing how the hexagraph cuts of FigaBare represented QCD.

in the limit (4.8). Similarly for the limit (4.9), we can write

V. POMERON AND REGGEON DIAGRAM SOLUTIONS
OF REGGEON UNITARITY

_ ZyZ3
(21U7) (25U, 1)QZZ§3: (lesul)al( U,

az
) EALE

~(S13)“1(Spr3/) ?2(Sq115) 3™ U2, In Sec. Ill, we generically described a Regge pole partici-
pating in the generation of a Regge cut as a Reggeon and
(4.33 gave the controlling “Reggeon unitarity” equations. In this
section we discuss the solution of these unitarity equations in
terms of “Reggeon diagrams,” in analogy with the Feynman
diagram solution of conventional momentum-space unitarity.
Historically, such diagrams were first introducgt] to de-

and so the cuts of Fig. 18 contribute similarly to both the
nonflip and helicity-flip limits. However, for the limit4.9)
we can also write

(24U (Zpu; 1) 22253 scribe the interactions of an even-signature Pomeron Regge
pole. Later, they appeared as describjgl8 the interac-
~(Z4Z3uy) ¥ @3m@2)2 tions of Reggeized gluons in leadifgnd next-to-leading
(a2 (rt g an)f2 logarithmic calculations in massive gauge theories. Both
% (@) 2rfs (leZUl) 1R Pomeron and Reggeized gluon diagrams are often referred to
u, u, generically as “Reggeon diagrams.” In this section, for sim-

plicity, we will use “Reggeon” to refer exclusively to an
odd-signaturg“Reggeized gluon’) Regge pole, with inter-
(4.39) cept close to unity. Therefore “Reggeon diagrams” involve
Reggeized gluons and “Pomeron diagrams” involve Pomer-
showing that the cuts of Fig. 1) are also present. Both sets ons. We will also use “Reggeon unitarity” exclusively for
of cuts are represented simultaneously by the samthe unitarity condition on Reggeons and use “Pomeron uni-
asymptotic expression, which is equivalent to saying that astarity” to describe the unitarity condition for Pomerons. This
ymptotically the two sets of cuts can not be distinguished. Iwill cause no confusion in this section since we will not
is crucial that there is no expression corresponding to Eqconsider diagrams containing both Reggeons and Pomerons.
(4.34) for the limit (4.8). As a result, we conclude that both A priori they can certainly appear simultaneously in dia-
sets of cuts in Fig. 16 are present in the helicity-flip ampli-grams. Indeed, our ultimate aim is to first construct a
tude appearing in the limi¢4.9), while only those of Fig. Reggeon diagram description of QCD amplitudes and then,
16(a) appear in the nonflip amplitude. Conversely, we expecvia the analysis of infrared divergences and the use of
amplitudes with both sets of cuts to appear in the helicity-flipPomeron “phase-transition theory,” convert to a Pomeron
amplitude and not in the nonflip amplitude. diagram description. At an intermediate stage there will in

,_V (531)(a1+ a3—a2)/2(523)(a2+ ag— al)/Z(Slz)(al+ a2—a3)/2,
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fact be diagrams containing both Reggeons and Pomeronswhich is “momentum conservation” for Pomerons. The
Pomeron and Reggon unitarity equations differ only in thePomeron unitarity equation is initially derived for positite
structure of signature factors, and one purpose of this sectiomnd the change of variabl€5.3) can be made with thé;
is to describe the diagrams for both cases in the same fotaken to be two-dimensional Minkowski momenta. However,
malism. The most important new result will be the extensionthe continuation to negativds most simply done by rotating
of the diagram formalism to solve the unitarity equationthe plane of thék; so that they become spacelike and can be
(3.49 for a large class of multiparticle FG amplitudes. For straightforwardly identified with the transverse momenta of
the Reggeon case, there is a vector parfitie gluon) which  s-channel Feynman diagram or unitarity calculations. The
becomes massless as the intercept of the Reggeon goes tddll continuation ofJ-plane unitarity from the positive re-
Massless particle states give rise to infrared divergences afion, where it is first derived, is actually quite complicated
Reggeon interactions which are very important in our latef21] and it is nontrivial, and very important, that the only
discussion of QCD. In this section we will consider only J-plane singularities that survive at negativare those due
massive Reggeons and will only briefly discuss the specifito Regge cuts. This implies that a solution of Pomeron uni-
form of Reggeon and Pomeron interactions. We begin witharity in the smallt region should be sufficient to satisfy full

the simplest, and historically oldest, diagrams. multiparticlet-channel unitarity equations.
Note that since the amplitudes involved will be functions
A. Pomeron diagrams for elastic scattering of thet; invariants, the “transverse plane” involved in Eqg.

. (5.5 can be shifted by the addition of an orthogonal lightlike
We emphasize from the outset that we expect 0 USgecior without changing the resulting integrals. That is, the
Pomeron(or Reggeondiagrams to discuss infrared phenom- o |4tion of the transverse plane to four-dimensional momenta

ena involving smalt;’s (and smalk’s) only. We denote the  j5 ampiguous up to an orthogonal lightlike vector. This point
Pomeron trajectory by=ap(t), with ap(0)~1. Since the i pe important later in the section.

Pomeron has even signature, all multi-Pomeron cuts are also g, elastic (particle scattering the negative unitarity

even signature and so signature factors can effectively b@quation(3.49), with the approximationg5.1) and (5.2), is
neglected. Thatis, for small values of all thewe can take,  golved by Pomeron diagrams as follows. The even-signature

in Eg. (3.49, FG amplitudea® (J,t) is written in the form
in— / in— ()~1. (5.1 ¢
SII"IE(al—Tl)N"'“‘SInE(aM_TM)’“ . ( . ) a+(J,t)EF(E,|_<2)= 2 an(E,|_(2), (5.6)
m,n=1

& simply gives a factor of-1 for each additional Pomeron

o 3
in the state, and so for av-Pomeron state, where[omitting all factors of (27)°]

Fmn Eal_(z
Ew~ (=DM (5.2 (B0

m
We introduce the usual RFT variables, that is, energies If I1 dzl_(idzl_(,jﬁz{l_(_zl I_(i}
and two-dimensional momenta, as follows. We write b -
% gmgnAmn(E:l_(l PR vl_(m ,l_(i L rl_(r,1)
[E-Z1AK)IE-27 Ak D]

J=1-E and t=k? Vi, (5.3 (5.7

so thatfwith A, =1—a(ty)] Theg,, are couplings of Pomerons to the external particles,

which, in general, will be functions of the transverse mo-

M M
4 B menta. In the approximation which gives Ed$.1) and
5( It kzl Ak) H(s( : k; Ak)’ &4 (5.2, we should take

which we can regard as “energy conservation” by Pomeron Om~ ()™ (5.9

intermediate states. We can also write The A, are Pomeron scattering amplitudéontaining a

dt.dt momentum conserving function). To include the simplest
f sz—kﬁzf d2k; A%k, 5%(ki— k;— ki), diagrams(without Pomeron interactionsn Eq. (5.7), the
DS LT S A, should include disconnected amplitudes, e.g., the com-
(5.5 pletely disconnected amplitude

a"l:l
5
[}
B‘Q
X
S $4
=
g
3]
3¢
$ $¢
82

E- k)
I T, 8¢ ,;A( 5)
FIG. 18. Multi-Pomeron contribution to elastic scattering. FIG. 19. Unitarity for Pomeron amplitudes.
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FIG. 20. Pomeron vertices.

Amn(E,k,k')=6mn52(2 ki— > Isi')rﬁ(E,l_q,...,km),
(5.9

wherel’,, is them-Pomeron propagator:

T (E Ky,

Km) (5.10

B [E_E:T]=1Ar(|_(r)] .

Equation(5.7) is illustrated in Fig. 18. The amplitudes,,,
must satisfy the Pomeron unitarity equation

Ann(E+ie kK )—An(E—iekK")
r

=2 <—1>fif I1 d*k¢s|E- 2 As}
r s s=1

XA (E+ie,kK)An(E—iek" k).

(5.11)

This equation is illustrated in Fig. 19.

It is straightforward to write a general solution to Eg.
(5.11 in terms of a(nonrelativisti¢ graphical expansion in-
volving arbitrary (nonsingulay vertices and propagators for
states containing any number of PomerofEhat interac-

action verticed ,,, given by Eqs.(5.12. There is an inte-
gration fd?k for each loop, and momentum conservation is
imposed at each vertex. The factoriah front of ry in Egs.
(5.12 and all vertices for odd numbers of Pomerons repro-
duce the 1) factor in Eq.(5.11) when the usual graph-
cutting rules are applied.

B. Reggeon diagrams for elastic scattering

We consider next the modification of the diagrams of the
last subsection when the Pomeron is replaced by an odd-
signature Reggeon with trajectory= ag(t) such that
ar(M?)=1, whereM2~0. The product signature rule says
that odd-number Reggeon states appear in the odd-signature
amplitude and even-number states appear in the even-
signature amplitude. In gspontaneously brokengauge
theory, the color quantum numbers break the signatured am-
plitudes up into subamplitudes.

For small values of all th& we now take, in Eq(3.49),

Sin— (a;— 7))~ — o' (t;— M?) (5.13
2 | 1 2 | . .

In the same approximatiod,, gives a factor of+1 when
two odd-signature states are combined and a factor bf
when an odd-signature and even-signature state are com-

tions are nonsingular is assumed because of the absencedf .4 or when two even-signature states are combined. In-

massless particles in the strong interaction.

stead of Eq(5.6), we write

In the notation illustrated in Fig. 20, we take, as interac-

tion vertices,

]"12(:]"’2*1):”04_... , l“13:)\0+... , I‘22:)\(’)+... ,

(5.12

o0

>

n,m=even/od

a*(J,t)=F*(E,k?= anim(E,lgz), (5.14

where even/odd summations are, respectively, associated

etc. The ellipses indicate that we could add transverse mg¥ith the +/= sign and[now omitting, in addition to the
mentum dependence to the interaction vertices, but thigctors of (2m)°, the factors of @/2)e’, which compensate

would actually be inconsistent with making the approxima-

tions (5.1), (5.2), and(5.8). It is important that all of these

approximations are ultimately justified when the critical

Pomeron solution of RFT is formulatg8]. It can be shown

that all the neglected terms correspond to irrelevant operators
in the renormalization group scaling introduced at the critical

point.
A general solution to Eq5.1)) is then given by the com-

for the change in dimensions produced by the particle poles

H dzl_(i dzl_(/j

Frneodd E.kK5) =
m,n—odo( 2 ) i (I_(|2+ MZ) (L(’J2+ MZ)

X 62

m
k— > ki
i=1

plete set of diagrams having the general form illustrated in

Fig. 21. These diagrams involve all possible combinations of

propagatord’,,, given by Eq.(5.10, coupled by the inter-

FIG. 21. General form of Pomeron diagrams.

>
s

A
V4

" GrGnAmn(E Ky, K Ky kp)
[E-=AK)IE-21 A )]
(5.19

The G,, are couplings of Reggeons to external particles and
the A, are odd-signature Reggeon scattering amplitudes.
The scattering amplitudes,,, satisfy the Reggeon unitarity
equation
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A, (E+iek)—A. (E—iek) k, 'Y

de k'J kJ k2 k’

= E (_1)(“1)/2JH _ s ki—< , >—k;‘ Do 2
r=odd s (|_<§+M2) kk ki .

k k’

n

X 0|

r
E-> AS}Amr(EJrie,l_()Am(E—ie,l_().
$=1 (a) (b)

(5.19

F. . is similarly defined in terms of amplitudes, , satisfy-
ing the analogous equation.

The Reggeon unitarity equations can again be solved by Introducing transverse momerka, k,, ki, k; that sat-
Reggeon diagrams. We can introduce general Reggeon intésfy momentum conservatiofi.e., k; + k,=kj +k3), we can
action vertices in the same way as we did for the Pomeronwrite [18]

Because of signature conservation, there isIhg vertex,
only I',, and I' 5 vertices. For thean-Reggeon propagator T oK1, Ko, K] ko) =a(ky+ky)?+bM?
I',, we take

FIG. 22. (a) Vertices and(b) intermediate states in transverse
momentum diagrams.

1 _CR22(|_(1,|_(2,|_(:,|_ 5|_(é)5 (52@

S IL(KE+AM[E-ZM A (k)] wherea, b, andc are color factors, which we discuss below,
(517  andR,, has the complicated structure

(B, Km)

It is well known that a Reggeon diagram formalism is
exactly what emerge$11,1§ from leading and next-to- Roa(K1,Kz K1 ,K3)
leading logarithmic calculations in gauge theories. This is a ) Y ) 5 o o )
very nontrivial result. Indeed, as is explicitly shown[it8], (K[t M) (ky + M%) +(ky+M?) (kT +M?)
matching sixth-order calculations with Reggeon diagrams al- N (ky—k})?+M?2
lows I',, to be extracted. The existing higher-ordeighth- /
and tenth-ordérresults are then predicted completely by it- (K2+M2) (K2 +M2) + (K3 + M2)(k3 +M?2)
erating the Reggeon interaction. This is consistent with the + (Ki—Kb)Z+ M2 .
requirement that, once the form of the Reggeon interactions -2
is known, the structure of the full set of Reggeon diagrams is (5.2
determined by Reggeon unitarity. However, the Reggeon in-
teraction obtained is quite complicated, and so in the nexthe (massiveé BFKL equation[5] is simply the color-zero
subsection we digress from our general formalism to brieflyReggeon “Bethe-Salpeter” equation obtained by iterating
summarize some of the results obtained in massive, the Reggeon interactiohi,, in Reggeon diagrams.

spontaneously brokemauge theories. In other paper$22] we have outlined a program for con-
structing Reggeon interactions by beginning with'g ver-
C. Reggeon diagrams in gauge theories tex which contains a nonsense zero that ensures it does not

participate directly as a Reggeon vertex. The singular part of

Reggeon interactionfincluding the massless limit of Eq.

(5.2)) giving the BFKL kerne] can then be constructed from
ag—channel particle discontinuities and the Reggeon Ward
édentities discussed in the next section. This construction im-
é)lies that we can simultaneously discuss the color structure
and the singularities of Reggeon interactions due to particle
(gluon) poles by introducing the transverse momentum dia-
gram notation illustrated in Fig. 2ZTransverse momentum
diagrams are essentially Reggeon diagrams without Reggeon

Because of the presence @lose t9 massless patrticles,
the Reggeon interaction vertices of a gauge theanjike
the Pomeron vertices discussed abogentain transverse
momentum singularities and cannot be approximated
regular. For simplicity we assume in this section that gaug
symmetry breaking has provided all gluons with the sam
mass. In Sec. VIl we will consider a more complicated situ-
ation.

In lowest-order perturbation theory, the trajectory func-
tion is given by

propagators.
a(g?)=1+A(q?) Amplitudes are obtained by combining vertices and inter-
mediate states according to the following rules.
=1+g%C(g*+M?)Jy(g?), (5.18 (i) For each three-point vertex, illustrated in Fig.(&2

. . we write a factor
whereC is a color factor that we give below and

Jl(q2)~f (@ —— 8[q—ki—ko].
K1

+M?)(k5+M?)

(5.19 FIG. 23. Trajectory function.
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wheref;;, is the usual antisymmetric group tensor. (b) ()
(ii) For each intermediate state, illustrated in Fig(l22
we write a factor

2
+M?2

16773fijk52< 2 k—-> ki,)

d?k,---d?k, (a

)
(KI+M2)---(K2+M?) 4
(

1)

(16773)_”f

The trajectory function5.18, with the color factor in-
cluded, is now given by the simple transverse momentum
diagram shown in Fig. 23.

The interaction terneRy, is given by the sum of diagrams  FiG. 26. (a) Color tensors(b) the Jacobii identity, anéc)—(g)

in Fig. 24. relations between tensors.
We have used a thick line in the above transverse momen-

tum diagrams to specifically indicate that color factors are

included in the same notation. Note that the interaction oktate” Reggeorj20] (or colored Pomeronin the symmetric
Fig. 24 is not projected on a particular color channel intthe octet channel with a trajectory that is exchange degenerate
channel. with the Reggeized gluon. We will refer frequently to this

The regular part of the Reggeon interactiBg, is more  feature in later sections.
complicated to include in the diagram formalism. The zero- |t is clear from Eqs(5.18 and(5.21) that both the trajec-
mass parfi.e., the k;+k,)? term] is determined, from the tory function and the Reggeon interaction are singular as the
singular part, by the Reggeon Ward identities that we discusghassM — 0. We will discuss the significance of this singu-
in the next section. In the color channel with gluon quantumiarity structure in detail in Sec. VIII. In the next subsection
numbers, the mass term can be included diagrammatically age return to our abstract discussion and consider the exten-
shown in Fig. 25. sion of the elastic scattering formalism to multiparticle am-

We also introduce a diagrammatic notation for color fac-plitudes. We continue to illustrate most of our discussion
tors only that will be useful in the remainder of the paper.with Pomeron diagrams because specific examples are sim-
This is illustrated in Fig. 2@since only color factors are pler to write down. However, we will constantly emphasize
involved we use thinner lingsWe have included the sym- the close similarity of Pomeron and Reggeon diagrams.
metricd tensor that exists in SW) for N=3 and expressed
a number of useful identities, not all of which are indepen-
dent, in the same notation.

The Reggeization of the gluon implies that in the gluon
quantum-number channel, the leading higher-order interac- We begin our discussion of multiparticle amplitudes by
tions give only simple Regge-pole exchange. The necessagpnsidering the implications of Pomeron unitarity for the
condition for Reggeization i§5] the “bootstrap cancella- helicity-pole limits (4.8) and(4.9) discussed in the previous
tion” that is expressed in terms of transverse momentunsection. In both cases the leading behavior is described by a
diagrams in Fig. 27. The momentum part of this equation issingle (analytically continuefdhelicity amplitude which sat-
trivial, given the structure of the vertices. The color partisfies Eq.(3.49 in a straightforward manner.
follows from Fig. 2Ge). The cancellation of Fig. 27 ensures ~ Pomeron diagrams describing the nonflip limit, which, as
that when the Reggeon interactidh, is included in the we noted, is the usual inclusive cross-section triple-Regge
triple-Reggeon interaction, only Fig. 25 survives and thislimit, were studied many years ago. The structure of the dia-
simply iterates the Reggeization. grams was derived directly from Pomeron unitafi#s], as

It is interesting to note that, because of Fig.(f26the ~ we now describe, and also from hybrid Feynman diagram
cancelation of Fig. 27 holds also if the left-hand vertex incalculationg24]. The results were the same. For simplicity,
each diagram is replaced by a vertex containingjtansor. ~We omit signature labels as in Sec. IV and again introduce
This implies that in QCD there is an additional “bound- Reggeon field theory notation by writing for the nonflip am-

—<>—<=24<[

D. Helicity amplitude Pomeron diagrams and helicity-flip
vertices

aq’+ b M = >< = >—-<

FIG. 25. Regular interaction in the Reggeon channel.

FIG. 27. Bootstrap condition for Reggeization.
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FIG. 28. Triple-Regge Pomeron diagrams nfr

plitude, introduced via Eq4.28, as cally. Also, when the Pomeron intercept is close to unity and
. all transverse momenta are small, we have

6
‘]1"]2'J3vn1vn2(tl’t2't3)’

(5.22 Ei~ 2 A(KS)~Ex~> A(K2)~> A(K?)~E3~0,

AN(E, E;,E3,0%,03,03)=2

with n;=J;, n,=J,, Ji=1—E;, andt;=q?, i=1,2,3. For (529
the helicity-flip amplitude we similarly write and soT?, , , will coincide with the corresponding elastic
- 0 5 2 Hew< scattering Pomeron vertex, in a first approximation. How-
A (El,Ez,Ea,ql,qZ,%)=aJ16,32,J3,n1,n2(t1,tz,tg), ever, as we emphasized in Sec. lll, “helicity-flip vertices”

(5.23 do not appear internally within the Reggeon unitarity equa-
tion. It is important for the dynamical role of the anomaly
where, in this casa);=J;, n,=—J. that we discuss in later sections that there are no vertices

. F . . .
The crucial property oA and A” is that they each sat- corresponding to thd ., in elastic scattering Pomeron
isfy a Pomeron unitarity equation in all three of tBechan- dlagrar_ns. These vertices appear only in the role of joining

nels, which is essentially the same as the unitarity equatiofcattering channels, as in Fig. 28.

for elastic amplitudes. As a result, we can write :
P It is not necessary thél'tglf,n,r, or T/, ., be connected. In

fact, diagrams involving disconnectdd”” vertices are the
AY(E,,E,,Eq)= 2 FI.(El), vy=MNF (529 most interesting dynamically since they couple the transverse
m.n.r momentum dependence in the three channels. Such diagrams
NF . ) play a crucial role in our analysis. Therefore we want to be
whereF:5, is constructed from Pomeron diagrams as illus-gyre we fully understand their construction and their dynami-
trated in Fig. 28. The notation is the same as in Fig. 18 ang| origin. As the following discussion shows, there are vari-
the A, are again given 5’\}/ Fig. 21. The new element in Fig.oys subtleties when disconnec®ed” vertices are involved.
28 is the central verteﬂ'm’,’:,r, coupling the Pomerons in  The relative definition of the transverse momentum planes
eachE; channel. The Pomeron unitarity equation forces thebecomes an issue, as well as the ordering of different discon-
diagrams to have the essentially factorized form of Fig. 2&ected interactions.
where, apart from th&\7, all the couplings and interactions ~ The simplest diagram with a disconnected vertex is that
are identical to those appearing in elastic scattering. Indeeghown in Fig. 29. This has the disconnected vertex illustrated
the flip-nonflip distinction between the amplitudes is carriedin Fig. 30, i.e., one disconnected pomeron line, together with
only by theTV* vertices. aT,, vertex. We have used a square, andThenotation, in
If the TV” are connected amplitudes which can, like theorder to emphasize that tﬁ'({l vertex is distinct from thé&’,;
On, be treated as constants independent of all the Reggearertex appearing in elastic scattering Pomeron diagrams.
transverse momenta, then the unitarity condition is clearly The diagram of Fig. 29 is particularly simple since there
satisfied. EaclE; channel will have a separate transverseis only one transverse momentum integral. The diagram is
momentum plane and will be completely separate dynamiwritten explicitly as

F1,4E1.E2,E5,Q7,Q5,Q5)=0:95I"1(Ey) f d%k T2(E1)T2(E3) T3((Q1+Kk)2,Q5,(Q3—k)?)

095 d?kT1((Q:+K)2,Q5,(Q3—k)?)
T [E,—A(QY)] ) [Ei—A(KY)—A(Q:—K)DI[Es—AK)—A(Qs—k)D]’

(5.2
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FIG. 29. Simplest disconnected triple-Regge Pomeron diagram.tegral can be defined to be the transverse plane, once the
(lightlike vecton ambiguity forQ; is exploited. There is one
important difference between the contribution of Fig. 29 in
the flip and nonflip limits, apart from the differefit; verti-

wherey= N, F. It is important to have a consistent physical ces. This is in the implicit lightlike components carried by
interpretation of the “transverse momentum” in this dia- the Q;. Using theL} and L} limits to justify writing the
gram. diagram as an integral in the transverse plane implies that if

As we stated in the previous section, we will always de-there is an infrared divergence & —0, then in the flip
fine the “transverse plane” to be the 2-3 plane. An immedi-|imit this is associated also with a vanishing longitudinal
ate question is whether the integration in E5.26 can be  momentum, whereas for the nonflip limit this is not the case.
taken to be in the transverse plane. For the Reggeon cuts @his is important if infrared divergences of this kind are
Fig. 29 to be generated correctly, bafh andQz; must ei-  ultimately to be interpreted as related to wee partons and the
ther lie in thek plane or lie outside of it only by an orthogo- ambiguities of light-cone quantization at zero longitudinal
nal lightlike vector. Having in mind the underlying Feynman momentum.
diagram origin of Regge behavior, we also expect that the Clearly, it is also important that in a helicity-pole limit the
presence of the Pomeron connecting @eandQs external  full six-point amplitude becomes dependent on only six of
vertices requires the integration to be transverse to largehe eight independent variables, i.e., three invariants conju-
light-cone momenta at these vertices. In principle, this alsgate toE;, E,, and E; and the three;. The transverse
defines the plane for the integration. integrals we are describing are able to represent the full am-

At this point it becomes crucial that we are considering aplitude only when it is independent of the remaining angles.
helicity-pole limit, rather than a triple-Regge limit. The  Consider next the diagram of Fig. 31. As indicated, there
helicity-flip helicity-pole limit is the more complicated case. are now two transverse momentum integrals. Khantegra-
Consider the particular kinematics of the lihi defined by  tion should be be orthogonal to the light-cone momenta at
Egs.(4.19. In this case the “transverse plane” is indeed thethe Q, and Q; vertices, while thek, plane should be or-
the Q; plane, but it is not orthogonal 85 . However, if we thogonal to the light-cone momenta at ¢ and Q5 verti-
take the realizatiot., given by Egs.(4.22), then the trans- ces. However, to construct the diagram we can construct the
verse plane is orthogonal to bath andP;. Also, Qs liesin  k; loop first using the.5 limit for the helicity-flip limit or the
the transverse plane ar@, is obtained by adding an or- Lj limit for the nonflip limit. Then, having the invariant
thogonal lightlike vector to a vector in the transverse planeamplitude expressed as an integral in the transverse plane,
Therefore, by using.; it is clear that the integration in Fig. we can smoothly interchange the form Bf and P, and
29 can indeed be taken to be the transverse plaravided  similarly construct thek, loop. The conclusion is that both
we utilize the transverse plane ambiguity integrations can be taken to be in the transverse plane.

For the nonflip limit, theL; description given in Egs. In the notation illustrated, we can write Fig. 3as an-
(4.26) shows immediately that the transverse momentum ineother relatively simple explicit examplén the form

TY(Ey,E,E5,Q1,Q5,Q%) = f d2k;0%k,05030 2(E1) T 5 (Ex)T3(E3) T31((Q1+K1)?,(Qa—kp) 2, (k1 —k2)?)

=fd2k 42K 9593
PR - AKD) - A(Q— k) DI E— A(KD) — A((Q— ko) )]

% TH((Qq+ k1)%,(Q2—k2)?% (k1 —Kz)?)
[E3—A((Q1—k1)?)—A((Qa—k2)H)—A((ky+ k)]

(5.27
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I'zA( E,)

L(E) T(E) T, (E,)
MAAAAAAANAA

-
Q. 1%

£

>
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£
‘D
>
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T ‘2’\"" 9, Q,
- g k, NMAAAAAAY
Qz 1 A MAAAAAAA
T,{(E;)) T(E,) L (E,)
FIG. 31. Another disconnected triple-Regge Pomeron diagram. ~ FIG. 33. Diagram of Fig. 32 with a particular nonconserving
vertex.

An extension of the above discussion shows that there is NO_| ambiauity in the insertion of bropaaators which gives the
difficulty in constructing transverse momentum integrals forfreedomgof c):/hoice propag 9
general diagrams of the form of Figs. 28 and 31 in which Th ' | f di for batl\ and A”
multiple Pomerons are exchanged, provided there is only a e most ger_1era set o mgram_s or an

single disconnected vertex. It is important to rememberinVolves all possible connected and disconnedtid, ., and
however, that the “physical” transverse momenta involved, Ty, . respectively. As in the last example, one diagram
in general, contain lightlike momenta orthogonal to the transtopology will often generate a number of distinct diagrams
verse plane that we integrate over. For helicity-flip limits thewhich differ only by which Reggeon propagators are in-
presence of the lightlike components has a special infrarederted. All such diagrams are considered as distinct.
significance.

Next, we consider Fig. 32 as an example of a diagram of
the form of Fig. 28 in which there are apparently two dis- ] ) )
connected central vertices. Diagrams of this kind are particu- From our discussion of Reggeon and Pomeron diagrams
larly relevant for the arguments of later sections. In this diafor elastic scattering, it is clear that we can construct helicity
gram there are five transverse momentum integrations ar@mplitude Reggeon diagrams in close parallel with the con-
four Reggeon propagators. From the above discussion, all étruction of Pomeron diagrams. For Reggeon diagrams sig-
the transverse integrations can be taken to be in the sanf@ture plays an important role, and so the new vertices
plane.A priori it is not clear, however, which of thE,; and ~ Tpyy,+ Carry signature labels for eadh channel. Signature
T4, vertices is “energy nonconserving.” By starting at eachis not conserved by the new verticés addition to energy
of the external particle couplings and considering the unitaralthoughTﬁf,n,r, will carry a nonsense zero &;—E,—E;
ity condition for each possible cut of the diagram, it is=0 when signature is not conserved. The signature-
straightforwfard to shov23] that the _diagram must contain nonconservingT’mT,n,r,, i.e., the helicity-flip vertices, need
only one unique ener%/-nonqonservmg yert(éShe same re- o+ contain such a factor.
sult was obtained TOA amplitudes by direct calculation of A particularly interesting situation occurs when a non-
hybrid Feynman diagram®4].) The vertex occurs where

. " sense zero appears in of@ more Reggeon vertices in-
there is a transition frori, andE, propagators t&; propa-  yq\ved in an ordering ambiguity of the kind discussed for
gators. In particular, if we insert propagators as shown i

. . e , "Pomeron vertices in the previous subsection. As discussed in
Fig. 33, we determine that, as |nd|c_ated by the notatlo.n, th'1'f"22:|, Reggeon interactions involving nonsense zero vertices
T5y vertex is the energy-nonconserving vertex. Alternatively,can he constructed by simply allowing the zeros to cancel a
as illustrated in Fig. 34, we can insert propagators in thgqresponding Reggeon propagator. The logic behind this is
same diagram in such a manner that Tg vertex is non-  ha¢ the zero will not appear in unsignatured amplitudes and
conserving. In the inclusive cross section this freedom oth4t in such amplitudes the corresponding Reggeon diagram

choice is the freedom to choose the rapidity ordering of the.o pe constructed with the Reggeon propagator present.
two vertices. From the present perspective it is the topologi-

E. Helicity amplitude Reggeon diagrams

L(E) T (Ey) T, (Ey)

AAANNARA
_/ PAAAAANAANAANANAAA

FIG. 32. Triple-Regge Pomeron diagram with two central verti-  FIG. 34. Diagram of Fig. 32 with an alternative nonconserving

ces. vertex.
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T, (E) 1"‘1 (E,) while if the left-hand vertex, say, is helicity flip, the limit is
vwvw—/ Ug,U; 1,z,ug,us—oe. (5.30
T., farsaadananad If uy~u, andusz~u,, then we see from Eqg$5.29 that in
/ /Y the double nonflip limit(5.29 both P,-P, and P;-P, are
\ finite, whereas in the limit of E¢(5.30 P;-P,—.
AN Both limits are maximal helicity-pole limits, and so the
SW representation shows that only a single helicity ampli-
/ ML tude is involved. We can write the amplitude that appears in
T, (E,) \ the double nonflip limit(5.29 as
FIG. 35. Reggeon diagram with a disconnected nonconserving ANNR(E) B, E,E3,Ey), (5.3

vertex whereJ;=n;=1-FE;, i=1,2,3,4, andJ=1—E. Similarly,
When the signatured amplitude is formed, the cancelation of€ can write the flip-nonflip amplitude appearing in the limit
the Reggeon propagator by the nonsense zero will occur. Fép-30 as
example, if we consider Fig. 34 to be a Reggeon diagram,

then ?‘12 will be a sigr?ature-nonconser\g/igrlwg, ene?gy- ATER(Eq,Ep B, B3, Ey), (532
cqnserving, vertex with a nonsense zero. This nonsense Z&{there nowd,=n,=1-E;,i=1,3,4,J,= —n,=1—E,, and

will effectively cancel the's(E;) propagator, and sotie,  j—1_E_ we have used an obvious generalization of nota-

and T3, vertices should simply be combined to obtain asgn in which, for example £\ denotes nonflip at the

single disconnected, energy-nonconserving, vertex as iIIusﬁght vertex and helicity flip at the left vertex.

trated in Fig. 35. s To understand how two-dimensional transverse momen-
We must determine the ne\l'/n\f,n,r, vertices, by direct tym diagrams describe the limit, we discuss the realization of

calculation in QCD. We will construct important masslessthe limits (5.29 and (5.30 in terms of light-cone momenta

quark components of these new vertices in Sec. VII. Theys follows. For the double nonflip limi5.31), we take, as

play a crucial role in our infrared analysis. external light-cone momenta,

F. Higher-order amplitudes P,—P; =(p1,p1,0,0),

Consider next the hexagraph amplitudg shown in Fig.
36. We consider both nonflip and helicity-flip limits at both
vertices. A sufficient description of the behavior of invariants
in both limits is

P,— P;:(DvaZaO:O),

F)3—> P?? = (p3 y p31070)1

pop (Y b o 5 1 P4s— P, =(Ps,—P4,0,0), pj—> Vi
1 i u—2+ u_l y 1° 3"‘"2 U1U3+ u1u3 y (533)
It is clear from Eqs(5.28 that to realize the interna— oo
Us U - . — .
Py Py~ u_3+ u_4) P, Qs~7| ug+ =, limit the Q; must also carry light-cone momenta, i.e.,
4 Ug 1
Qi—0; +Q1, Qy——0y +Q3,
1
Q1-Q3~z, P4‘Q1”Z(U4+Z T Qs—0; +Q3, Qu——0; +Qy, (5.39
- where theq;" lie in the plane of the light-cone momenta
P -Q,Py,-Q,P3-Q,Py,- finite. 5.2 i,
1" QP2 Q.Ps-Q.Pe-Q (5.28 (5.33. Theq" are large, but not as large as the As we
The double nonflip limit is discussed after defininig; in the previous section, when the
limit is nonflip (at both verticeg there is no problem in
Uq,Up,Us,Us— %, (5.29 choosing the light-cone momenta independently from the
Q 0,

P Q P

Q2 Q4 :

P2 P4

(a) ' (b)

FIG. 36. A hexagrapliig for Mg: (a) momenta andb) angular variables, angular momenta, and helicities.
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]

N N.E N.
TLL@TL

FIG. 37. Structure of Pomeron and Reggeon diagrams for FIG. 39. Higher-order hexagraph.

ANNR ATNR

transverse momenta. TI@:L are orthogonal to the light-cone

Taking a helicity-flip limit at a vertex again requires the
introduction of lightlike components determined by the

momenta and lie in the transverse plane. Momentum consegpacelike components, for the correspondig To realize

vation gives
Q=Qr+Q;=Q3+Q;. (5.39

For the nonflip-flip limit of Eq.(5.32, one possibility is
to utilize L, and take

Pl_> P]J_r = (pl 1p17010)1
Py— P;:(Pz,O'OPz)-
P3—P3 =(p3,—pP3,0,0),

Ps—P,=(ps,—p4,0,0), (5.39

while for the internal momenta we takg; andQ, as above
except that now we require specifically that

Q3 +Q;=Q=(0,00,0), (5.37)

so thatQ is still orthogonal to all four of theéP; (this condi-
tion determines that we are considering a helicity-pole Jimit
For Q; andQ, we take

Q:—0; +Q;, Q——10; +Q3, (5.38

Wherle andQé again lie in the transverse plane, f@jt is
chosen to ensure orthogonality to bdth andP,; i.e., if

Q1=(0,0012,019, Q3=(0,002—012,— 013,

(5.39
then
a1 =(013,0130,0). (5.40
Q, > VAAAAAAAAANY AAAAAAAAARAAA o
3
l‘.) ,\,\,\/\
A o
T, P Toe <-
,\,\/‘/ discon- disco:},\A .
Q -> di - nsct?d n -
: n;:%:ﬁ amplitude l;:itzx R
verctex

FIG. 38. Diagram with disconnected components.

the internalz—o limit, it would suffice to take onlyqg;
large. We can not take; large, i.e., take,3— o, since with
the definitions(5.39 and (5.40 this would imply Q%,Q3
— o0, To contribute to or to realize tre—c limit with q; ,
we must instead apply a Lorentz boost simultaneousi.to
andq; that preserves their orthogonality. We write

P,—(P2C,P2S,00,),05 — (A15(C+S),q13(C+9) ,0(.0), )
5.4

whereC=cosh{ and S=sinh{. We can then také— as
(all or) part of the limitz—. We notice that relative t@,,
the lightlike component ofj; continues to vanish agi;
—0.

The double flip limit

up,U, ,z,ug,uy b (5.42

introduces the amplituda”z"=(E, ,E, ,E,E3,E,). To intro-
duce a light-cone realization, we proceed similarly. How-
ever, we now have the extra subtlety thahomenta have to
be introduced for both vertices and a Lorentz bapit es-
sential at ondor both of the vertices to realize the internal
Z—oo limit.

It seems that in a general helicity-pole limit we can al-
ways find a kinematic representation in which each of the
internalQ; momenta is out of the transverse plane only by an
orthogonal lightlike vector. As the foregoing and following
discussion shows, this feature underlies the fact that helicity-
pole limits can be described by helicity amplitudes that sat-
isfy Pomeron and Reggeon unitarity via transverse momen-
tum integrals. We repeat that, for the QCD physics of
divergences associated with the anomaly that we discuss in
later sections, it is important to remember that in helicity-flip
limits the physical “transverse momenta” involve a closely
related lightlike longitudinal component.

G. Pomeron and Reggeon diagrams for higher-order
amplitudes

The general form of the diagrams for each of the helicity
amplitudes corresponding to Fig. 36 is illustrated in Fig. 37.
(For simplicity, we have not explicitly included propaga-
tors) As implied by the notation, th&"* vertices are the
same as those that appear in th&7 discussed above—
including disconnected vertice# priori it is not obvious
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couplings once again indicate eithEY or T vertices which
are both connected and disconnected.

We can set up a light-cone kinematic realization of the
full nonflip limit by extending the discussion of the double
nonflip limit of Fig. 36. We takeP,,...,P, to have the same
form as in Eqs(5.33 and in addition take

Ps— Ps =(ps,0,0ps). (5.43
FIG. 40. Form of Reggeon-Pomeron diagrams for Fig. 38.

We also takeQ,Q,,...,Q4 as in Egs.(5.34 and (5.37). In
that the resulting diagrams involving disconnected verticeaddition toQ, andQ,, Qs andQgz must also be orthogonal
coupling disconnected interactions actually make sense. T@ P, andP,. Qg must be orthogonal t&s, while Q, and
see that this is the case, it will be helpful to consider furtherQ. should not be. We therefore tak® andQg to have the

specific examples. form
Consider next the diagram of Fig. 38, which involves both
disconnected vertices and and a disconnected amplitude, first Qs—Q:+q; —Ts »
as a contribution t&\"z"z, then as a contribution t&”z",
To make sense within our formalism, it must be possible to Qs— Qg +1Ts (5.44

write this diagram as a single integral in the transverse plane.
According to our previous discussion, the integration where Q; and Qg lie in the transverse plane, b is
should be orthogonal to the large momenta at@aeandQ;  chosen to ensure orthogonality @Qf to P} ; i.e., if
vertices. Also, for the Regge cuts in each of g, Q, and
Q3 channels, to have the correct discontinuity each of these Qs =(0,0062,963), (5.495
momenta should either lie in the plane or be outside only by
a lightlike vector. then

To discussAVzV= we use the kinematics of Eq&.33— ~
(5.35. It is then clear that all of the requirements we have Qs =(063,063.0,0). (5.46
just listed are straightforwardly satisfied if we indeed take
the k integration to be in the transverse plaiote that if We see from Eqs(5.49 and (5.46) that to realize a suf-
we remove the external Verticesy the same Reggeon amp[filClently Complicated nonflip limit we have had to introduce
tude appears within elastic scattering Pomeron diagrams e lightlike component for some of th@; which are corre-
cept that the rapidities of th€,, and T, vertices are inte- lated with the transverse plane component. Previously, this
grated over to produce energy conservajionfo consider was onIy necessary to realize heI|C|ty-fI|p limits. The internal
AfﬁNR, we instead use the kinematics of E$_36)_(54Q Regge and heIiCity-pOIe limits, associated with (Dansz
Again, the necessary requirements are satisfied if the integrdines, respectively, can be realized by takipgandgs to be
tion is in the transverse plane. We conclude that Fig. 28arge appropriately. Alternatively, a Lorentz bodstould be
gives a well-defined contribution to each &tV AZcVr, applied as in Eq95.41). To preserve the orthogonality con-
AVc7R - and A7t7R. As we have emphasized, whether theditions the boost has to be applied simultaneously to all of
amplitude is flip or nonflip at each vertex is determined byP2, Ps, Qs, andQg.
whether theT,; and T,, vertices are flip or nonflip. When Now consider the contribution of the Pomeron diagram of
helicity-flip vertices are involved, the amplitude has no rela-Fig. 41 to the limit under discussion. With the above kine-
tionship to elastic scattering amplitudes. matics, both thé& andk’ integrations can be taken to be in

As an example with an important new feature, we con-the transverse plane. The internal boxes of Fig. 40 are indi-
sider contributions to the hexagraph of Fig. 39. We considegated as thin-line boxes in Fig. 41. We now observe that,
the helicity-pole limit in which all the vertices are nonflip. while the overall helicity-pole limit is entirely nonflip, the
The general form of Pomeron and Reggeon diagrams cornF,; vertex in Fig. 41 must actually be a helicity-flip vertex.
tributing in this limit is shown in Fig. 40. The internal box Although not directly coupled in the hexagraph of Fig. 39,

- IMAAA ~
Q 1 T21 IANAAAANAAAAAAANV AN Y N
<-Q )

. k
\N%\’\z\,‘ N «Q

N A i\:: TH M Ty, ;
Q> el Tl <9,

n <-Qs

FIG. 41. Pomeron diagram having the form of Fig. 40.
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FIG. 42. Pomeron diagram and corresponding hexagraph.

P, andPs are in a relative helicity-flip limit. To see this we The importance of our discussion of Figs. 41 and 42 will
simply compare the form we have given f@g, P5, andP;  become apparent in our QCD analysis when we are looking
with Py, P,, andP5 in theL, limit (4.22. Therefore, if we  for bound-state amplitudes in Sec. VIII. We will be looking
introduce an internal vertex coupling, the corresponding exfor nonflip amplitudes within Reggeon diagrams which also
ternal vertices it must be a helicity-flip vertex. Comparing have infrared divergences associated with helicity-flip verti-
with Fig. 38, we see that the addition of the additioRal ~ ces. The crucial dynamics will be produced by accompany-
momentum, in a new plane, has produced a helicity-flip ining helicity-flip processes that occur as we have just dis-
teraction accompanying a helicity-nonflip interactiéire., ~ cussed. _
the T, vertex to the right of thl,, vertex in Fig. 41. In Sec. Il G we noted that internal particle poles occur

The Pomeron diagram of Fig. 41 and the hexagraph ofnly in association with interna¥ subgraphs. The simplest
Fig. 39 have the general form illustrated in Fig. 42. The pointh€xagraph that contains an internal scattering amplitude as-
made in our discussion of Fig. 41 extends to general diaSociated entirely with internal Regge-pole particle poles is
grams having the form of Fig. 42. That is, in a nonflip that illustrated in Fig. 43. In this hexagraph we have added,
helicity-pole limit, corresponding to the exposed vertex ofto each of theQ; lines of Fig. 36, the same additional verti-
the hexagraph of Fig. 42, a helicity-flip vertex can appear a§es that we added to t@, line to obtain the hexagraph of
an energy-nonconserving vertex accompanying an energy-id. 39. When Regge polewith trajectories close to particle
conserving nonflip vertex, provided the left-hand externalPoles are inserted for each of thé lines, the four-particle
couplings have sufficient structure. Since fﬁﬁ vertex is a}mplltude enclosed in the thm—llne box can be factorized qff,
the only one enclosed by a box in Fig. 41, this appears tdirst as a four-Reggeon amplitude and then asa four-particle
violate our rule that the nonflip nature of the limit is corre- @MPlitude as the Reggeons generate particle poles. In our
lated with that of the vertex. However, the two vertices QCD analysis the Regge poles we will be looking for will
picked out in Fig. 42 havéat first sight an ordering ambi- (eventgally be those of bound-state hadrons and the ampli-
guity and should be thought of as an overall disconnected!de Will be that for Pomeron exchange. The general form of
vertex. That the vertex is nonflip is then determined by thed”0meron and Reggeon diagrams for the hexagraph of Fig. 43
presence of thd,; vertex. |s_|llustrated in Flg: 44. The internal boxes once again con-

: e i . tain TV and T” vertices

The ordering ambiguity in the Pomeron diagram of Fig. .
42 is of the kind we have discussed earlier. Apparently, the
T, vertex can appear to the left or to the right of thg H. General helicity amplitudes

vertex. However, the helicit.y-flip verteky; must bg energy. It should now be clear how our discussion generalizes to
nonconserving for the diagram to be consistent withy, heyagraph. We isolate a single helicity amplitude by an
Pomeron unitarity. This is not the case whenTevertexis  appropriate helicity-pole limitwhich in general will involve

to the right of theT,, vertex. Therefore there is no diagram gz combination of nonflip and flip limits for the relevang
corresponding to this possibility. In general, we need ”OR/ariabIes. Given the T and T¥ vertices, the associated
distinguish the ordering of the vertices in Fig. 42 if we selectpomeron and Reggeon diagrams can then be constructed. A
specific Pomeron states in each of the hexagraph channgigjatively simple example of the more complicated graphs
and regard the combination of disconnected vertices as @at we will discuss in Sec. VIII is shown in Fig. 45. We
single Pomeron interaction. For example, if we consider theygain emphasize that while the diagrams are constructed as
two-Pomeron state in each of the channels in Fig. 42, we can
regard theT,; and T,; vertices as combining to produce a
single disconnected vertex coupling the three two-Pomeron
states. If the Pomerons are replaced by Reggeons, then, as
we discussed in Sec. V Hy; contains a nonsense zero, and
the ordering is similarly irrelevant.

R
>—d<3_c>b—<

FIG. 44. Structure of Pomeron and Reggeon diagrams for the
FIG. 43. Hexagraph containing fo subgraphs. hexagraph of Fig. 43.
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y-ptm oy pitp .t
pP-m? , . pP-m’
y_+v.-(p. Ip+)+0(1/p?)
= v a— (6.1
_pL m
B P+

FIG. 45. Relatively simple example of a class of hexagraphs. For a quark initially and finally on shell, we remove the
(p?>—m? 1! factor, and so, in lowest-order perturbation

two-dimensional integrals in a single transverse plane, wheH€ory,

a helicity-flip vertex is involved, a correlated lightlike vector PR

is implicitly added to this plane to obtain the “physical” G1u~9Y-P+Yu¥-P+~y-Py if y,=v+. (62
transverse momentum. This is presumably deeply connect . . : I B

with the relationship between the QCD infrared divergenc;?hOOSIng tie framde 'Etw.h'Ch the initial quark has=0, we
results we will obtain and the zero-mode longitudinal mo- avey-p.=m and obtain
mentum ambiguities of light-cone quantization.

Glu~gmp+ 6—,uEGlp+ . (63)
VI. QUARK-REGGEON COUPLINGS AND REGGEON Therefore we anticipate that, in a scattering process, the lead-
WARD IDENTITIES ing power behavioffor p.— o) will be obtained if the spin

of the scattering quark is conserved; that is, there is helicity

In this and the following sections, we will be concerned conservation. In particular, for the scattering via single-gluon
exclusively with QCD. The Reggeons we consider are spe- -np ' g gle-g

cifically the Reggeized gluons of QCD. In the infrared analy—eXChange of a fast quar_k with mqmentmrpoff a guark W.'th

sis of Sec. VIII, we will discuss setting the gluon mass tomomentumpz, we obtain the helicity-conserving amplitude
zero in some detail. In this section we will simply omit the g
mass because we want to discuss some of the simplest infra- 9?m?p, . 8-, | 5
red divergences that occur when quarks are involved. We ar
particularly focus on the interrelation of such divergence
with “Reggeon Ward identities.”

g’m’s
0y+Pa-~—>—=G17. (6.4
q: t

S'Lorentz invariance requires, of course, that this result hold
We begin by constructing the lowest-order ‘“quark- mdependently of whethep,_ is large or not. .prz‘ IS not
g y g 9 large, the spin structure for the fast quark simply picks out,

Reggeon” couplings, i.e., the couplings for multi-Reggeon’® .
exchange in on-shell quark scattering. Since a Reggeon rgid gluon exchange, the relevant spin component of the slow

duces to a gluon @?=0, multi-Reggeon amplitudes are, in dU&rk: _
general, necessarily given by correspondiog-shel) gluon _Next, we look for the lowest-order two-Reggeon coupling
amplitudes at zero transverse momentum. It follows from thvithin the amplitude for a fast quark to exchange two gluons.
formula for FG amplitude§10] that the particulatnonsense 'S We described above, we ignore logarithms and place each
Reggeon amplitudes which provide the couplings for Reggd'térmediate-state propagator on shgla k_ andk. inte-

cuts can be expressed as integrals of discontinuities, i.e., grauons. The denominator is thus removed from E§.1)

terms of on-shels-channel intermediate states. We have not*>° for_|ntermed|ate states, and in analogy with E3),
given this formula here because, for multi-Reggeon cou¥V® obtain
plings, it is quite cumbersome. Here we will simply utilize
the outcome. That is, the lowest-order contribution of a par-
ticular multi-Reggeon exchange to a scattering amplitude is i
given by that part of the corresponding high-energy muilti- if pi=p=+, (6.9
gluon exchange amplitude having the appropriéRegge
cut) signature and in which all intermediasechannel states
are put on shell; i.e., no logarithnief the energy are gen-
erated. This is what we will exploit to calculate Reggeon
couplings. We will also note the even-signature color octe
case discussed in Sec. V C. In this case there is effectively an

Gopypy~ 92V P4 Y V-Pi Y, Y-P+ ~ 92y Ps

giving the coupling illustrated in Fig. 48).

So the quark spin structure is again preserved and the
unsignatured (helicity-conserving amplitude for two-
Beggeon exchange has the lowest-order form

“AFS cancellation” and the anticipated two-Reggeon cut m
contribution is replaced by a new Regge pole. G, = % ~ g2y G, = ~giy_
1
A. Elementary Reggeon couplings /
Consider the couplings; of a fast(massive quark to a (a) (b)
single gluon—temporarily ignoring color factors. The quark
propagator gives FIG. 46. Quark-Reggeon couplings.
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d?k,d%k, a quark with a particular helicity by the coupling of a fast

(2 fl % o ) . . 0 - .

Ap~iGos| — a7 9 [gd—ki—ko]. (6.6)  antiquark with the opposite helicity. Helicity conservation
2122

makes the parity part of the twist trivial since parity conser-
[Note that we should not cross the gluon lines in obtainingvation implies that the vertices for both helicities are equal.

Eq. (6.6—the corresponding Feynman diagram gives only zConsequently, the only effect of the CPT transformation is to

real logarithm that we are not interested]in replace the color factor of the quark by that for the antiquark.
; . 1 For an Abelian theoryQED) this simply changes the sign of
In the J plane Eq.(6.6) gives (writing E=1—J
P 669 ( g ) the charge. As a result, the exchange of an deeld) num-
G2 f d2k,d%k, ber of Reggeons contributes to the ev@ud signatured

= = 62[g—l_<l—l_<2]. (6.7 amplitude. This is the normal signature rule for Regge cuts.

Ay(E,q%)~ e
2 kiks

(Of course, the photon is not actually Reggeized in QED.
When color factors are introduced, the CPT twist also in-
volves(color) charge conjugation. In this case, provided he-
licity is conserved, signature can be identified with color

d?k,d%k, 8 [q—Kki—Ka] charge parity.

Kk3 [E—AKD-AKD]
(6.8

Higher-order contributions conveE ! to a two-Reggeon
propagator, and Ed6.7) takes the usual two-Reggeon form

A(E,0?)~G} J
B. Color factors

We define the color charge conjugation operation on the
The Reggeon interactions described in Sec. \irOparticu-  color matrix of the gluon field by
lar the full BFKL kerne) also appear as higher-order contri-

butions. Abp— —Aga- (6.12
Proceeding in the same way, we obtain tid&Reggeon ] o o )
coupling illustrated in Fig. 4@®), The minus sign indicates an intrinsic od_d color parity f_or the
gluon. Quarks are transformed into antiquarks. We will dis-
GNM1~~~uN~9N77p+7M17fp+'"77p+7uN77p+ cuss color parity for quarks in more detail in our second
paper. For the purposes of this paper, it is sufficient that
~gNy_p, if p=p=r=un=+, color charge conjugation simply reverses the order of multi-
6.9 plication of color matrices in internal quark loops.

For SU2) color, quark-quark scatterinfvia two-gluon

and for the unsignaturedl-Reggeon amplitude, exchange and highecontains twat-channel color represen-
tations; i.e., in the channel,

AN~(i)N*1mZG§sf d?ky- --d%ky 22—1a3. (6.13

1 1 The singlet representation is symmet(@en color parity,
X 52[9— Ki—Ko - —kn] 2 (6.10  while the triplet is antisymmetritodd color parity. It is well

-1 =N known [11,18 that at next-to-leading logarithmic order the
singlet amplitude contains the two-Reggeon cut, while the
triplet contains only the Reggeizing gluon. This follows from
the bootstrap cancellation of Fig. 27. For gluon-gluon scat-

so that helicity remains conserved. Again, E§.10 is the
lowest-order component of the-plane amplitude:

2o d2ke 2 —Ki—Ko - —k tering we can have
AvEa) -6} [ S S
ki--ky  [E—A(KD) - —A(ky)] 3©3—1®3®5, (6.14
(6.11

and thel=2, symmetric, five-dimensional representation
Note that, once an overall factor af® is absorbed by the also gives a two-Reggeon cut. For three-gluon exchange and
normalization of the scattering states, the Reggeon couplingsigher, helicity conservation implies that in quark-quark
are independent of the quark massit is also important for  scattering, the odd-number Reggeon exchanges appear in the
the discussion in the next section that we need take only ongolor triplet channel while the even-number exchanges ap-
of the scattering quarks to be fast in order to derive thepear in the color singlet channel.
kinematic structure of the lowest-order multi-Reggeon ex- For SU3) color, quark-quark scattering contains thtee
change diagrams. The kinematic structure of the fast quarkhannel representations:
coupling to the exchanged gluons always imposes the same
kinematic structure on the slow quark couplings.

Positive (or negative signatured amplitudes are obtained
by adding (or subtracting the corresponding CPT twisted
amplitude. That is, we make a CPT transformation on oneé\gain (at next-to-leading logarithmic orderthe symmetric
vertex or the other to which the multi-Reggeon state issinglet gives a two-Reggeon cut and the antisymmetric octet
coupled and ad¢br subtractthe amplitude obtained. For the gives the Reggeized gluon. However, as we noted in our
two-Reggeon state we replace the fast quark coupgBipngf discussion following Fig. 27, in the symmetric octet channel

— 1
393165 (8,8,). (6.15
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FIG. 47. Reggeon amplitude extracted from the eight-particle amplitude.

the kernel is identical with the Reggeizing antisymmetricsections, we can define such limits in terms of invariants and
kernel and there is an “AFS cancellation.” That is, the two- also in terms of light-cone momenta in a particular Lorentz
Reggeon cut is replaced by an even-signature Regge poftame.

[20]. The lowest-order amplitude is still E46.7), but in To make our general discussion specific, we consider an
higher orders it is converted to the form eight—point function, as in Flg 47, and suppose that the
multi-Regge or helicity-pole limit considered involves
Iu(c?) —oo, i=1,... ,4_,Where eacls; is gssociated with a particu_—
Ay(E,q%)~ T o (6.16 lar Reggeon as illustrated. Consider the Reggeon associated
E—g°07J.(a%) with s;. We can choose a Lorentz frame in which the limit

s;— is defined byp, —, k—k, wherep andk are the
whereJ;(g?) is given by Eq.(5.19. Ultimately, this will be  momenta labeled in Fig. 48 ardis the transverse momen-
very important for our construction of the QCD Pomeron. Ittum carried by the Reggeon. Since the four-momenkuis
will also be important that, when helicities are not conservedreduced to a transverse momentkrhy the Regge limit, the
the TCP twisting process involves both parity and colorfurther limit k—O is equivalent to setting=0. Because of
charge parity. In general, helicity conservation implies thatReggeization, the Reggeon amplitude must, as illustrated,
even-signature combinations of odd-signature and evergive ak=0 gluon amplitude. Since the Reggeon amplitude
signature Reggeons will appear in both the singlet apd 8is embedded in an on-sh@&@lmatrix amplitude, we obtain the
channels, while the odd-signature combinations will appeazero-momentum limit of the amplitude 4, (k)---)) for an
only in the 8, channel. off-shell gluon to couple to af-matrix element.

It is clear from Eqs.(6.6) and (6.10 that Reggeon dia- Gauge invariance implies directly that the gluon ampli-
grams involving the scattering of on-shell quarks are infraredude (A ,(k)- --) satisfies the simple Ward identif25]
divergent with the divergence arising from the integral over
(gluon) transverse momenta. This divergence is present even Ku(Au(K)-++)=0. (6.18
when the Reggeon state carries zero color. It is important tgjfferentiating this identity(treating each component kfas
understand the origin of this divergence and how it relates tghdependent we obtain
gauge invariance. For this purpose we now discuss the

“Reggeon Ward identities” that, for Reggeon amplitudes, A, ) K —
are a direct requirement of gauge invariance. (Apo)+ K, |, »=0
C. Reggeon Ward identities =(Au ) :) 0
Reggeon amplitudes can be defined directly in terms of ’

analytically continued partial-wave amplitudes or by the rel- if KA, ) oo

evant multi-Regge or helicity pole limit. In terms of multi- Kk, Kk—o '

particle partial-wave amplitudes, it is straightforward to

write (6.19
implying that the gluon amplitude and als there is no

831.35.95.9, 35 subtlety with the Regge limithe Reggeon amplitude should

vanish at zero transverse momentum. This is what we refer
- — A Js,...)

. a s
J—ay, i=1.ai=1 (Ji—ap) o2t 2 P, liu
(6.17) =

and to defineA, o, o, .a,(Js:---) @s anulti-Reggeon ampli-
tude. (For simplicity, we omit the labelsl;, which give the \.]'S k =0 gluon
differences between angular momenta and helicity labels in LY S

the FG continuation involvey. Multi-Reggeon scattering —_—2 ﬁ —_— ﬁ
amplitudes can be defined in momentum space by writing a P> k —> 0

SW representation involving the remainidgor by simply -

taking a multi-Regge limit in which the Regge poles in-  FIG. 48. Reduction of a Reggeon amplitude to a gluon ampli-
volved are exchanged. As we have illustrated in previousude.
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to as a Reggeon Ward identity. By similarly defining the 9K
additional s;—c0 limits as light-cone limits, the argument [&T
can(a priori) be extended to an arbitrary number of Reggeon -
transverse momenta vanishing. so that

In general, therefordmasslessReggeon amplitudes van-
ish linearly ink when any transverse moment- 0. This
is a direct consequence of gauge invariance. It is straightfor- [aT Fg}
ward to check thal',, defined by Eqs(5.20 and(5.21) has -
this property wherM =0. However, if the quark-Reggeon implying that
couplings discussed above had this property, the infrared di-
vergences of Eq€6.6) and(6.11) would not occur. So why
do the quark-Reggeon couplings not satisfy Reggeon Ward Gi=T',~kj
identities?

} ~(k )72 (6.24
k=0

ks 9

J
ok kg K3

— k—l/2
30 kg

Iy, (6.29
k=0

J
—— I3~——T3+0. (6.26
gk 3 ks 37,

Since Eq.(6.23 also requirek_~k,, the transverse com-

D. On-shell quarks ponentl’, similarly satisfies

In parallel with our discussion of fast quarks above, we

. ; : . J J
;:;rrlr?der the coupling of a gluon to on-shell quarks in the T'y~ks (9_k2 F3~&_|(3 P 6.27
Lu(p,p")=(y-ptm)y,(y-p'+m). (6.20  In the gluon Ward identity the contributions &f, and T,
cancel, while the Regge limit picks out just, .
The Ward identity(6.18) is easily shown to hold: Clearly, the mass-shell constraint conflicts with the deri-
vation of the Reggeon Ward identity. Note that, sil@&g is
(P=P") I u(p.p’) given by a sequence of on-shell quark scatterings, this cou-

pling also need not vanish when any, or all, of khe>0. We

=(y-p+ p—m—vy-p+ .n'+
(y-p+m)(y-p=m=y-p+m(y-p’+m conclude that the Reggeon Ward identity does not hold for

=(p2—m?)(y-p’+m)—(y-p+m)(p'?>—m?) Reggeons coupling directly to on-shell quarks—even though
the related gluon Ward identity implied by gauge invariance
=0, (6.2 still holds. Conversely, when Reggeons couple through off-

. - L .. shell quarks or gluons, as is in general the case, the Reggeon
after applying the on-shell condition for the initial and final \y/arq jdentities follow directly from gluon Ward identities.

quarks. : . . (Note that all of the above discussion goes through straight-
To compare with the argument of the previous subsectlo%rwardly when the quark masa is set to zerg
we should evaluate the Reggeon coupl{ag by calculating '

quark-quark scattering in a frame in which one quark has
infinite momentum, but the momentum of the quark we are
considering has finite momentum. The fast quark can then be The vanishing of massless Reggeon interactiors=a,
identified with the line carrying momentumin Fig. 48 and  as a result of the Reggeon Ward identities, is crucial for the
the finite-momentum quark vertex identified with the remain-infrared properties of Reggeon diagrams when the gluon is
ing amplitude that satisfies the Reggeon Ward identitymassless. As elaborated[i??], the infrared finiteness of the
Therefore we identify the quark momentymin Eq. (6.20 BFKL kernel, as well as next-to-leading order corrections, is

E. Reggeon Ward identities in Reggeon diagrams

with p, in Eq. (6.9) and take a direct consequence of this property. Explicit next-to-
leading order calculations have verified9] that the

p=p,, P'=p2tKk, Reggeon Ward identities hold also for the quark production

amplitudes that produce next-to-leading order quark loop in-

P2=(P2+ :P2- ,P22.0), teractions in the BFKL kernel. From the above discussion it

is clear, however, that we could expect a violation of the
k=(0k_ kz,kz). (6.22  Reggeon Ward identitiedut not the gluon Ward identiti¢s

if there is an infrared divergence within a Reggeon interac-
The remnant of the fast quark Regge limit is that—0. A tion due directly to a loop of on-shell quarks. The Reggeon
priori, since all the momenta involved are finite, £§.19  interaction would then involve the on-shell quark couplings
goes through straightforwardly. However, since bpthand  discussed above.

p’ are on mass shell, Note that a violation of the Reggeon Ward identities can-
not be produced by a loop of on-shéthasslessgluons. This
Po=17, (Potk)’=m’—2p, k_=2pyky+K;. is because we can ugechannel helicities to describe the

(6.23 polarizations of the on-shell gluons. Since a Reggeon, at zero

k, is also at-channel gluon, it follows from helicity conser-
Therefore, if we keem, finite, we cannot treak_ and the vation that the Reggeon cannot couple to a pair of on-shell
components ok as independent variables. In particular, gluons in the loop. Hence the Reggeon must decouple from
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FIG. 49. Ward identity diagram sum.

the gluon loop ak=0. Consequently, any divergence due to
an internal loop of on-shell quarks cannot be canceled by an
internal gluon loop. Not surprisingly perhaps, a quark loop
divergence occurs only in very special situatigredated to
the infrared triangle anomahand is a subtle phenomenon to
isolate. The purpose of the remaining sections is to establish
that such a phenomenon can indeed occur.

We can describe how the Reggeon Ward identities are
normally satisfied diagrammaticall§or quark-loop interac- FIG. 50. Triple discontinuity.
tions of the kind that we are interested ias follows. It is
well known that to obtain the gluon Ward identitg. 18 for ._gram there is a gluon line coupling a two-Reggeon—gluon
a multigluon amphtur_je it is necessary, at the Fe_ynman d!a"‘effective vertex” to the quark loop.
gram level, to sum diagrams in which the gluon involved is
attached in all possible ways to the remainder of the diagram.
This is illustrated for a class of diagrams containing a quark
loop in Fig. 49.(Diagrams of this kind will be of particular There is a very important difference between the quark-
interest to us in the next sectigf some or all of the gluons loop Reggeon interaction vertices appearing in Figs. 50 and
are replaced by Reggeons, then, in general, a similar sufil and those appearing in elastic scatterit§]. In both
over all related Reggeon-Feynman diagrams gives theases the process of obtaining Reggeon vertices from Feyn-
Reggeon Ward identity. The number of diagrams involved isman diagrams involves putting quark lines on shell. How-
much smaller if we generalize the argument we gave abovever, for a quark loop contributing as an elastic scattering
for putting intermediate-state particles on shell to obtaininteraction, there is always a sufficient number of disconti-
particle-Reggeon couplings. To obtain a multi-Reggeon counuities taken through the loop to effectively reduce the di-
pling from diagrams such as those of Fig. 49, we first conimension of the loop integration. In contrast, in the example
sider which hexagraph is involved and then put correspondef Fig. 50 the quark lines can be put on shell by using only
ing quark lines on shell to obtain the relevant multiple the longitudinal momentum integrations for the other loops
discontinuity. We will not elaborate the argument for this involving Reggeized gluons. Consequently, the quark loop
procedure—which we follow through in more detail in the remains as a four-dimensional integration. This feature is
next section—but note only that it is directly due to the factassociated with the fact that the multi-Regge limit of interest
that multiparticle FG amplitudes are expressed in terms o€an be defined with the complete quark loop at festwe
the multiple discontinuities of the hexagraph involved.will explicitly do in the next section
(From the discussion of Secs. Il and IV, we have seen how As the quark lines are put on shell, the ultraviolet conver-
multi-Regge behavior explicitly reflects the hexagraph cutgence of the quark loop is significantly reduced. In the first
structure of amplitudek. two diagrams of Fig. 51, there are three quark propagators

As an important example, suppose we replace all the gluremaining off shell, while in the third diagram only two
ons in the first diagram of Fig. 49 by Reggeons and embeduark propagators remain off shell. Therefore in all three
the diagram in a six-quark amplitude, as illustrated in Fig.diagrams the quark loops are power divergent with the third
50. (We evaluate this diagram explicitly in the next sectjon. diagram being particularly badly divergent. Although higher-
If we associate this diagram with the hexagraph of Fig. 17prder diagrams may provide additional convergence, there is
the cuts shown as dashed lines in Fig. 50 correspond to theo a priori reason why this should be the case. Because there
triple discontinuity of Fig. 1&). Since some quarks remain is no loss of dimension in the loop integration, in general we
off shell, after the triple discontinuity is taken, Reggeoncan expect that the reduced quark lodpsoduced by the
Ward identities should hold after we sum over all relatedmulti-Regge kinematics we discysae no more convergent
diagrams having the same triple discontinuity. The most dithan the quark loops encountered in the original definition of
rect way to show this is to follow Fadin and Lipatfl®] and  the theory. This implies that a regulator is necessary to define
introduce Reggeon-Reggeon-gluon effective vertices in addithese loops. While a regulator can straightforwardly be ap-
tion to the quark-Reggeon couplings we have already introplied in the definition of the theory, we cannot do this here.
duced. The results gfL9] can then be applied to show that, In our case, the need for a regulator implies that the multi-
provided the quark-loop integration introduces no problemsRegge behavior of the underlying Feynman diagrams is not
the diagrams of Fig. 51 combine to give a Reggeon Waraorrectly given by the reduction to Reggeon diagrams that
identity zero ak—0. (k is the transverse momentum car- we are implicitly assuming.
ried by a single Reggeonln the first two diagrams all If the reduction of Feynman diagrams to a Reggeon dia-
Reggeons couple directly to the quark loop. In the third dia-gram gives infinite coefficients involving power-divergent

F. Pauli-Villars regulator quarks
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FIG. 51. Quark-loop couplings giving a Reggeon Ward identity.

3

subdiagrams, then the multi-Regge behavior of the underly- Q1,Q,,Q3—0. (6.289
ing diagrams must be larger by a power than that of the
Reggeon diagram. This phenomenon provides a real threat i the third diagram there is no triangle singularity. In the
the unitarity boundedness of the theofWe will return to  next two sections we will see how the presence of the tri-
the significance of this in our second paperAs will be-  angle singularity produces a violation of the Reggeon Ward
come clear from our discussion in the next two sections, it iSdentities when the zero-quark-mass limit is taken. We will
the infrared contribution of the triangle diagram which will also see that the presence of the ultraviolet regulator sector
eventually dominate the dynamical picture that we developplays an important role in the way the limit is realized.
However, we would like a starting point in which we have
both gauge invariance and a finite Reggeon diagram formal- ‘15| £ REGGE HELICITY-FLIP VERTICES
ism. This requires a definition of the contribution of quark
loops to Reggeon interactions which, when the quarks are In this section we study Feynman and Reggeon diagrams
massive, is finite and satisfies the Reggeon Ward identitiesf the kind discussed at the end of the last section, all of
To achieve this we introduce large mass Pauli-Villars reguwhich involve a quark loop. We will study such diagrams in
lator “quarks,” in addition to the light quarks that we ulti- the variety of triple-Regge limits discussed in Sec. IV. Our
mately take to be massless. The regulator quark loops hawm is to extract parts of the helicity-flip Reggeon vertices
the opposite sign to the physical light-quark loops. To ensurerﬁ/n,r, discussed in Sec. V which have spedigsingula)
there are no Reggeon diagram ultraviolet divergences, thearo-quark-mass properties with respect to the Reggeon
safest procedure is to keep the regulator mass finite. In thard identities. As anticipated in the last section, we ini-
following we will make only occasional reference to the tially consider particular Feynman diagram contributions in-
regulator quark mass, , which will provide a finite ultra-  yolving on-shell quarks and then deduce the structure of cor-
violet cutoff in the quark sector. Its presence means that, ifesponding Reggeon couplings. We will build up to diagrams
the quark sector, the theory is not unitary at this mass scalgyjth the complexity of Fig. 50. We begin, however, with the
We will ultimately removem, after we have extracted infra- gjagram of Fig. 52 involving single-gluon exchange.
red divergences associated with the massless quarks.
With the Pauli-Villars cutoff, the Reggeon Ward identities
will be satisfied straightforwardly, as illustrated in Fig. 51, as
long as the light-quark mass is nonzero. When the quarks are Consider the behavior of Fig. 52 in the limits defined in
massless, an infrared divergence problem arises, which lea&ec. IV B. Since each limit is defined in terms of fast exter-
to another important difference between the diagrams of Fignal quarks, we obtain a contribution if we simply apply Eq.
51. The three off-shell propagators in the first two diagramg6.1) to these quarks and leave the quark loop to be evaluated
will generate a triangle Landau singularity, enhancing zeroat finite momentum. Initially, we omit color factors and take
transverse-momentum quark threshold singularities. In théhe quark masm# 0. In this case the quark loop givéspart
first diagram this singularity occurs when from a normalization factgrthe usual vertex function

A. Feynman diagram limits

; - f Ak Tr{y,, (G Kot M), (b Kt M)y, (b + Kot )} -
02,03,M) =1 .
pargn 1.0 Gs [(a1+K) 7ML (Qp+ k) 2= ][ (g K) 2= ]
|
(Since we implicitly consider Pauli-Villars regulator quarks 11 —111 g P1P2P3
to be present as we discussed in the last section, we ignore T =T~ ————T145+5+(01,02,03), (7.2
ultraviolet divergence problem)s. Denoting the full ampli- res
tude corresponding to Fig. 52 By and using Eq(6.1), we
obtain a result analogous to E@.4) for the limitL,, i.e., wheretlei, etc.,, andl'1+,+3+ is defined byy;+=1y,
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. _ 2f d*k
papgram = M | 2?35 0(Q)

XTrY, (A3 K) Y, Ve,

T Yy V(1K) v,

F Yy Vi, Yug(A2+K). (7.6
FIG. 52. Triple-gluon vertex. In the leading term, the numerator terms that are odé# in

vanish after integration and so
+7,1=1,2,3. In this section, for simplicity, we continue to

omit the gluon mass. For the limit, we similarly obtain Uiz m2 = Uy op0(d1,02,03)
Q—0
11 —111 g P1P2P3 : =iR Tr{y,. q + q
T —>T|_2~g tytots I'1+1-3+(02,02,93), (7.3 Y3V Vg™ Vg Y H1Y g
T Yy Y, Y b2} (7.7
and for the limitL HiThp Tus2
Ps where
T T~ g8 ———T1+143+(05,02.03). (7.4
2 it 4 4
d*k d%y
. . . . R:mzf v~ szf 2173 (7.9
Our further discussion of infrared divergences and [k*=m?] [y*—1]
Reggeon Ward identities in the next section will center on
that part of the vertex function§.2—(7.4) that behaves non- Clearly,
uniformly with respect to the two further limits
. .. r ,O(qlvq21q3) -~ Q (79)
(i) 91~02~0s~Q—0, (i) m—=0. (7.5 Fafiatts Q-0

We will be studying effects that are closely related to thejs \we reverse the order of the limit§) and (i), we obtain,
infrared triangle anomaly26]. At first sight it might seem  jnstead of Eq(7.7)

that we should not encounter such behavior. First, Egs.

(7.2—=(7.4) involve I’ P evaluated withtransversgmo- i ~ M2—0. (7.10

menta orthogonal to the appropridtght-cong Lorentz in- m—0

dices. Therefore Eq9.7.2—(7.4) do not contribute to the

djvergence of the trianglg graph in.which the an_omaly re- |t we considerT!! as an isolated Feynman diagram, de-
sides. Howgver, as we discussed in Se_c. \_/I D, if on-shelfned directly in the massless theory, Eg.7) will not be
quarks are involved, transverse and longitudinal componentﬁresem' However, we will shortly consider Reggeon interac-

of vertex functions are linked by the underlying gluon Wardjons containing m2. In the next section we will see
identities, even though the Regge limit picks out just the, . nonunifo;%ibtwgf Eq47.7) and(7.10 implies that i
longitudinal component. Consequently, if the transvers he R Ward Yd t'?' _ t'. fied fFr)J#O th
component contains an infrared divergence of the triang%e eggeon Ward identiies are satistie » tnen
graph, associated with the anomaly, in which the quarks ark #150 1S Present in these interactions whem-0. Note
placed on shell, this will also appear in the longitudinal com-that the presence ah? in the numerator of, ,, .. mz indi-
ponent. Even so, since only vect@ather than axial vectpr cates two helicity flips of the quarks in the loop. That the
couplings appear iﬁﬂluzﬁg’ we again would not expect the helicity-flip processes do not decouple in the limiting pro-
anomaly to appear. In fact, as we build up multi-Reggeorfess, where the limiti) is taken before the limifii), is
interactions in the following, we will consideforiginally) ~ clearly a consequence of the triangle singularity infrared di-
nonlocal couplings to the triangle graph that are “axial vec-vergence produced as all three internal quark propagators go
tor like” in the Regge limit, infrared, region of interest. on shell. The presence of this divergence is therefore crucial.
The most singular behavior in the the linfiif involves all Consider now the contribution of E¢7.7) to Egs.(7.2)-
three denominator poles and the minimum internal moment7-4. In Eq. (7.2) we will have a contribution
tum dependence from the numerator. Since the trace of an

odd number ofy matrices vanishes, the oniy dependence 11 g P1P2P3

of the numerator of",, ,, .. comes from the terms contain- L0~ 9 Tt I'y+2+5+,0(01,02,03),  (7.10)
ing a factor ofm?. Denoting this ‘M’ part” by T'), ,, ... m2,

we have where
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< < Ql
-+ = on-shell Ql‘l' i l
quark L $ $
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(a) (b)
FIG. 53. Triple couplings involving two-gluon exchange. QZ/‘ -\Q3
[i+p+3+ g~ (Tr{y1+ Yo+ y1ya+ }A1+ Tr{y1+ vo+ Y3+ Y2} U2 FIG. 54. Triple vertex for three gluons.
+Tr{y1+Y3Y2+Yy3+}d3) can simply suppose that we have carried out the related lon-

gitudinal integrationg. Denoting now the full amplitude for
Fig. 53a) by T'2 we obtain for the limitL,, in analogy
with Eq. (6.6),

~(g1+ 02+ d3). (7.12

Similarly, in Eq.(7.3 we will have a contribution

. g P1P2P3
P1P2P3 , T2 712 g8 J,(t:)T
S,low tytot I'y+1-3+0(02,02,03) L 19 tat; ta)l1rz+3+(02.62.00),
123 (713
P1P2P3 ; - :
~ T y1+ y1-¥273+ 105 and so again, after the further limifg.5 are taken, there is
tytots Lo e s a contribution of the form{7.7), i.e.,
+(TH{yreyi-va+ vl dat T y1+ ¥3v1-73+103) Tiilv%N_it3‘]1(t3)Tiilv‘13’ i=1,2,3. (7.16
P1P2P3 . . . 222 .
Tt ds, (7.13 Denoting the full amplitude for Fig. 8) by T<-5, we simi-
1lal3 larly obtain
and in Eq.(7.4) we will have :
In Eq.(7.4 we will hav T2, T2 (1139120, p,pds () 1 (1) (1)
111 / _ /
TL3,0 I1+1+3+ 0(02,02,03) ~ Tr{y1+v1+¥2v3+}02 XT 1+9+3+(01,02,03), 7.17
F Ty y1+v3r v2l U2+ TH{y1+ y3y1+ ¥3+}ds and so
=0. 7.1 . .
(7.19 TE25 —itatatad(t) Ii(to) I (ta) TLG,  1=1,2,3.
We conclude from Eq(7.11) that when the additional limits (7.18

(7.5 are taken after the triple-Regge limit, there is a nonzero We can continue adding gluor@s we did for single-

contribution of the helicity flip proces¥.7). There are three : : . .

. . quark couplings in the last sectijpand obtain corresponding
terms. Equation(7.13 suggests that just one of the three ’ . ; : >
terms apqpearinr; in3the gt?iple—Reggé limit appears in thereSUItS' The diagram of '.:'g' o4 CO’.".a'“S thg trlple coup!mg
helicity-flip helicity-pole limit. [We will see shortly that this O Lree-gluon states which we anticipate will give the first

is the case. It cannot be straightforwardly deduced from Eq%iﬂltgs\e/g?yem p%??; riltni% Etirl?ep?c?lrllc?v?/i% Fig. 51. This coupling

(7.12 and(7.13 since we redefined the momentum compo- . . .
nents of theQ; in going from one limit to the othefr.The In this case we obtain, as above, for the libdit,

result of Eq.(7.14) shows that there is no contribution of the T333_, 7333 _ {616 3ot I (1) 3o (1
helicity flip procesH7.7) in the simple nonflip helicity-pole L1 97 P1P2Plz(t1)2(t2)J2(3)
limit. XT'1+2+3+(01,02,03), (7.19

Next, we consider some higher-order Feynman diagrams
in order to determine how they contribute to higher-orderwhere(continuing to omit normalization factors
Reggeon couplings. Suppose first that we replace one or
more of the gluons in Fig. 52 by two-gluon exchange, as N
illustrated in Fig. 53. We again evaluate the quark loop at J2(9%) =
finite momentum. Our interest in two-gluon states is to ex-
tract two-ReggeolRegge cutcouplings and so we calculate and, in all theL; limits,
the diagram with on-shell intermediate states as illustrated. 333 T
(We can justify this by evaluating the appropriate multiple Tt 0™ ~tatatada(t) Jo(t2) da(ta) T, 1=1,2,3.
discontinuity to calculate the relevant FG amplitude or we (7.21

%k ,
T ) (7.20
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1
2 =2 = = |_< |_4< P1P2P3 .
m t 3 IC ¥ * Tioo~d° ttote Ligiigtifiii)(di+da+da)
1fats
AT = (= + |—a< —(dii,i,—ifii,i) (At a2+ a3)]
FIG. 55. Color factors for quark-gluon couplings. =208, i, ptllfzztzs (Q1+ Qo+ 0s3). (7.23

Note that in extracting th&; g from the diagram of Fig.
54, we have put on shelthe denominators ofall those The color factors for the diagrams of Fig. 53 are, of
quark propagators that we had not already put on shell iRqyrse, more complicated. The two gluons can form states
converting the multigluon coupling to a multi-Reggeon cou-yity t-channel color 1, 8, and &. For Fig. 53a) the color
pling. Therefore theT >, couplings actually involve a 100p  factor contains each of the color tensors illustrated in Fig. 57.
of on-shell quark propagators and so, from the discussion ofo extract the full discontinuity giving the Regge cut cou-
the last section, might be anticipated to be associated with pling, we must also add the contribution obtained by replac-
violation of the Reggeon Ward identities. To establish thating the quark loop of Fig. 58) with an antiquark loop. The
such contributions actually appear in multi-Reggeon coufactor of i associated with the on-shell quark now also
plings, we must first consider the color factors involved. changes sign. As a result, only the real part of the color
factor remains, i.e., the first three diagrams in Fig. 57, which
contain an even number dftensors. These color factors
describe, successively, the coupling of 1, &nd § two-

In this subsection we discuss the color factors that shouldluon states to the two single gluons.
be added to the diagrams considered in the last subsection. Moving on to Fig. 58b), we again add the corresponding
We use the tensor notation introduced in Fig. 26. The quarkliagram with an antiquark loop and, because of the factor of
relations shown in Fig. 55 are then sufficient to evaluate théi)® for each on-shell antiquark, select the color diagrams
color factors for any number of gluons coupling to a single-containing an even number dftensors, i.e., the diagrams
quark loop. We can form multigluofmulti-Reggeoh states  shown in Fig. 58. The first diagram in Fig. 58 gives an anti-
with color 1, 8,, and 8 by combiningé, f, andd tensors symmetric coupling of three two-Reggeon states, each carry-
appropriately with gluon fields. The color parity of such aing odd color parity. The second gives an antisymmetric cou-
state will then be given by a product of factors(efl) for  pling of two even-color-parity states and one odd-color-

B. Color factors

each gluon field and—1) for eachf tensor. parity state, and so on.
From the second relation of Fig. 55, the quark loop in Fig.  Finally we consider color factors for the triple coupling of
52 gives a color factor proportional to three-gluon states shown in Fig. 54. Now we have an even
. number of factors of from on-shell quarks and so color
dili2i3+'fi1i2i3’ (7.22 diagrams with an odd number bf/ertices survive when we

add the antiquark loop. Three particular color factors that we

. . will be interested in are those of Fig. 59. These are couplings
wherei, is the color label for the gluon carrying momentum which contain an odd number dfvertices, but provide a

, etc. Consider next the addition of the diagram of Fig. 56 o . X
8vlhich is the only other topologically distin?:t quark-l?)op symmetric triple coupling of_ three-gluon states which each
three-gluon interaction The diagram of Fig. 56 differs from carry even color charge parity.
that of Fig. 52 by permutation of the color matrices, which
(within the trace is the same as reversal of the direction for
multiplication. The result is complex conjugation of the color _ S
factor. Since the sign of the, is also reversed, Fig. 56 can, We discuss now the implications of the results of the last
as illustrated, be obtained directly from Fig. 52 by replacingtWo subsections for Reggeon interaction vertices. First, we
the quark loop by an antiquark loop. For tB¢m?) part with ~ consider how the structure of tfig, o that we have discussed
which we are concerned, the two diagrams combine to giveelates to the general triple-Regge analysis of Sec. IV.

g g g

C. Reggeon interaction vertices: Kinematic structure

P]_ Pl' Pl
//%gzgk antiquark

loop

FIG. 56. Additional quark-loop interaction.
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FIG. 57. Color factors for Fig. 53).

We can rewrite the above formulas in terms of invariantssponding helicity-flip limit. Again, higher-order contribu-

either by writing, for example,

P1P2P301=(P1P3)(P2P3)(P3d3) ~ 1q§

=(S,3)(S31)(S11/3) 103, (7.29
or we can instead write
P1P2P30s= (P1P3) YA P2p3) YA p1p2) Y,
= (S31)VA(S29) Y4510 V05. (7.25

It then remains to expresg directly in terms of invariants.
For the special kinematics of the triple-Regge limit, this
is particularly simple; i.e., we can write

ds=[Q1- Q.12 (7.26

Comparing with Eqs(4.33 and(4.34), we recognize Egs.
(7.24) and(7.25 as having the form appropriate for a triple-
Regge helicity-flip amplitude witlw, = a,= a3=1. The two
expression$7.24) and(7.25 correspond to the lowest-order
contribution from the cuts of Figs. ® and 1&b) if we
suppose that the; can be expanded perturbatively around
unity (as is the case for the trajectory of the Reggeized glu
on). Therefore we can potentially associate theterm in
T, 0 [see Eq(7.4)] with the first of the three hexagraphs in

Fig. 15. Similarly, the other twq; terms could be associated

tions can produce Reggeization of the gluons and convert
Eqgs.(7.24) and(7.25 to the form(4.33 and(4.34), respec-
tively.

In theL, limit g3 has a slightly more complicated expres-
sion in terms of invariants, i.e.,

[—N\(Q%,Q5.Q5)1
2[Q5]Y?

==+

ds (7.27

[We will discuss shortly the significance of the choice of
sign in Eq.(7.27).] Note that Eq(7.27) satisfies Reggeon
Ward identities in that it vanishes linearly when either
Q;—0 or when Q,—0. When the Q; are spacelike,
[\ (Q%,Q3,Q3)]"?is the area of the triangle formed by the
three momenta and so it vanishes when any one of them
vanishes. The denominator spoils the vanishingQgr 0.

In fact, if q3#0, the numerator of the corresponding quark
propagator in Eq(7.7) is off shell. This is what allows two

of the Reggeon Ward identities to hold. In contrast, both of
the quark propagators which form ti channel are strictly

on shell, and so th®;—0 limit gives the on-shell result. In
anticipation of the next section, we note that if all three
reggeon Ward identities hold, we expect the vertex to have
dimension 2 in th&); [as would be obtained, for example, by
simply removing the denominator in E(Z.27)].

with the other two hexagraphs. Of course, the Feynman dia-
gram of Fig. 52 has no cuts. The cuts appear only as the
gluons Reggeize in higher orders. The higher-order loop dia- The discussion of the previous subsection shows that, ki-
grams of Figs. 53 and 54 do have cuts, and in particular theematically, each of th&,_ , that we have considered could

diagram of Fig. 54(with the quark lines initially uncit appear in the corresponding lowest-order multi-Reggeon
clearly has all the relevant cuts necessary to contribute to thﬁencity_ﬂip amplitude. However, we have not yet discussed
helicity-flip limit. (See the discussion in Sec. IV)D.If the  color parity and signature. As we noted in Sec. IV, signature
cuts through this diagram generate Regge cut couplings, 3s defined via a CPT twist that combines coloharge par-
we are antiCipating, then we can direCtly associate the thre@y and space panty Since we are discussing he||c|ty-ﬂ|p
g; terms in Eq.(7.19 with the three hexagraphs of Fig. 15. amplitudes, we expect that space parity plays a nontrivial
In the L, limit we can proceed similarly and again use role. The helicity flip is reflected in the presence of the
Egs.(7.24 and(7.29 to argue thafl_, can be associated factors, and indeed the sign gf, as given by Eq(7.27), is
with the first of the three hexagraphs in Fig. 15. So just as thehanged under the parity transformation associated with sig-
general arguments imply, each of three terms appearing inature. This change takes place for each of the threkan-
the triple-Regge limit is separately picked out by the corre-nels.

D. Reggeon interaction vertices: Signature

w
[

N -
Y

<

+ cyclice
rotations

N

av,

1 1
R
2 2

FIG. 58. Color factors for the six-gluon vertex.
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interested in the situation in which all Reggeons in a
! t 1[ D Reggeon state carry zero transverse momentum and the state
{ 3 [ 6 ]3 [96 }3 itself produces a universal canonical transverse momentum
2 2 2

dependence. In this case we need not distinguish between
distinct Reggeon states when interchanging them to obtain
signatured couplings. Consequently, in discussing the signa-
ture effects of color factors, we only need consider the sym-
metry of the color tensor in the Reggeon vertex and not the
) 111 i tensors involved in forming the Reggeon states. In particular,
Consider fIrSﬂ—Lz,Ov with the color factor(7.23 included. thet; andt, channels we only need consider the symme-
The denominator factors of are, of course, the usual gluon try of the tensor in the vertex7.28. Combined with the
particle poles. We use E@7.25 to extract the(potentia) negative parity ofj;, this gives even signature for theand

FIG. 59. Color factors for the triple coupling of three-gluon
states.

helicity-flip Reggeon vertex t, channels, where odd signature is required. So again there
o is no vertex. The third diagram of Fig. 57 replaces the
Tfil=ifilizi3CI3, (7.28  tensor of Eq(7.28 with a d tensor and so gives odd signa-

ture for thet; channel where even signature is required.

with g5 given by Eq.(7.27. We keep the 0 superscript t0 £ Reggeon interaction vertices: Anomalous Reggeon states
indicate both that this is a particular contribution to the gen- and the anomalous odderon

eral vertex and that it is defined at zero quark mass. Note that
since Eq(7.25 expresses the triple-Regge behavior in terms . . .
a(7.29 exp P 99 diagrams of Fig. 58. In this case the vertex color factor has to

of invariants that have no kinematic singularities in @e it id h f i for the ch f
defines the appropriate vertex to extract if we wish to conP'°V! fr? change o S|fgn to compensate for the change o
sider singular behavior as ti@— 0. sign of the momentum factor, in order to give even signature
S . b in each of the channels. The first diagram of Fig. 58, which
By considering signature we implicitly sum over a large exists in both S(B) and SU3), achieves this by coupling
number of quark '°°P d|ag_rams, many of which hav“e a mu?ﬂhree 8, two-Reggeon states with a vertex of the foff28.
more compllcateq discontinuity ;tructure thgn the planar Therefore T;g can appear in a triple coupling of two-
loops we have discussed. We introduce signature intithe peqgeon states that have “anomalous color parity”; i.e., the
channel by making a CPT transformation of the correspondzjor parity is not equal to the signature. Normaliye., in
ing initial and final scattering states together with the Verte)hext-to-leading logarithmic perturbation theprpecause of
involved. For thet; channel, therefore, we regard Reggeon lhejicity conservation, there is no,8wo-Reggeon state. As
as scattering into Reggeon 2 by exchanging Reggeon 3. Ijye noted in Sec. VI B, the two-Reggeon state has color par-
terchanging 1 and 2 gives a factor efl from the color ity +1 and signature-1. We refer to states with anomalous
parity of thef tensor and a further factor of 1 from the color parity as “anomalous Reggeon” states. Such Reggeon
parity change of sign ofg;. Consequently, Reggeon 3 states will will not appear when quarks scatter with their
should be even rather than odd signatur&jif] is to appear helicity conservedas is the case for the leading-order per-
in the vertex. We conclude th;ﬂfﬁ cannot contribute to the turbative couplings discussed in the last section and must be
triple-Reggeon vertex. Equivalently, when we sum over alithe case to all orders when the quarks are mags|etgsy-
the diagrams for quark and antiquark scattering necessary ®Y€r, these states will couple betweB3) vertices.
define signatured amplitudes, the pieces we have extracted The second diagram of Fig. 58 also provides an interest-
are canceled. The combination of external quark and anti'—”gﬁg’“p“”g- It does not exist in 3B, but in SU3) it gives
quark vertices requires odd signature for tReggeizeyl @ T22 vertex of the form(7.28 that couples an anomalous
gluons to couple while the central vertex requires even SigBa State to two even-signature; 8tates that are not anoma-
nature. lous. As we discussed in Secs. V C and VI B, thee®en

; FO - . signature channel contains a bound-state Reggeon that is ex-
Consider next 3, with the color factor given by the first change degenerate with the Reggeized gluon. If we denote

three diagrams of Fig. 57. To give a Reggeon coupling th%n anomalous Reggeon state bi*'and a normal reggeon
factor ofJ,(t3) must be converted to a two-Reggeon propa-giaie y N, the first two diagrams of Fig. 58, respectively,

gator in higher orderfor for the 8 Regge pole discussed in produce

the last sectionJ;(t3) must contribute to Reggeizatiprin

the first color diagram, there is no color factor and so the “AAA’ and ‘* ANN"
change of sign of the momentum factor is in direct conflict
with the required even signature of the two-Reggeon state. |
the second diagram, orfdensor forms an 8two-Reggeon

Now considerT3:5 with the color factors given by the

ouplings. This is analogous to the well-knownAAA
AVV" structure of the triangle anomaly, wheredenotes

) X . an axial vector coupling and denotes a normal vector cou-
state which then couples to the two single Reggeons via gjin, “a|l the remaining diagrams in Fig. 58 contain a sym-

vertex of the same form as E(Y.28. In this case the color  yaqic vertex color factor that cannot offset the odd-parity
and momentum factors do combine to give even signature 'Broperty ofqs.

the t; channel. In thet; (andt,) channel, the situation is Finally, we consider‘l'gfé%. Again, this has the kinematic

more complicated. Because the Reggeon states iththed  girctyre of Eq(7.29, but now with color factors such as the
t3 channels are distinct, there is no simple parity property fokhree diagrams shown in Fig. 59. These are the only dia-
their |nterChange. However, In the next section we will begrams g|V|ng a tr|p|e Coup"ng of anomalous three-Reggeon
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anomalous
j;?eron

(a) (b)
FIG. 60. SU3) color tensors for@) the octet odderon an(b) 1
the singlet odderon. reggecn

state
states (i.e., AAA couplings. The anomalous color parity
three-Reggeon state will play an important role in the next
section. We refer to it as the “anomalous odderon” state. In
SU(3) we can form an anomalous odderon either as a coloi‘1 . . . .
octet or a color singlet by using the tensors shown in Fig. 60. ave isolated. Slji_Ch vertices can appear in reggeon diagrams

The first diagram of Fig. 59 couples three color octetonly within theTy,, ., vertices discussed in Sec. V.

anomalous odderons. We obtain odd signature for each In addition to theT”:° AAA vertices, there will also be a
three-Reggeon state by combining the even color parity oforresponding variety oANN vertices. In most of our dis-
the centrald tensor with the odd parity of the momentum cussion in the next section, we will specifically consider only
factor; i.e., the three-Reggeon states couple with an effectivée AAA couplings of anomalous Reggeon states. We will

FIG. 61. General amplitude containing the anomalous color par-
ty three-Reggeon state—the “anomalous odderon.”

triple vertex see that the dynamics is determined by &®A couplings,
most importantly because thAA coupling (7.28 provides
Ti2=d i i.ds, (7.29  the only T coupling (either AAA or ANN) of color-zero

1'2'3

states within S(R) and ultimately it is S{2) color singlet

where, agaings is given by Eq.(7.27). The three-Reggeon couplings and infrared divergences that will interest us.

states have even color parity since they are obtained by com-
bining an odddf factor with an odd number of gluons F. General couplings of anomalous Reggeon states

(Reggeonss : . Note that while the anomalous Reggeon states do not
The second diagram of Fig. 59 couples two color octet o . ) )

: R couple to helicity-conserving elastic scattering states, they
anomalous odderons and one color singlet. The third diagram: ; 2 = : !
S . will couple in general multiparticle amplitudes, provided
in Fig. 59 couples three color singlet anomalous odderons \v that the initial and final h diff i
and simply leads to a vertex only that the initial and final states have different parity

properties. A general amplitude of this kind is illustrated in
Fig. 61. In such amplitudes the anomalous Reggeon cou-
plings will automatically satisfy the Reggeon Ward identi-
ties. The distinctive feature of the helicity-flip couplings we
have discussed in this section is that they are associated with
a violation of these identities in the massless quark theory.

This is the subject of the next section.

T49= s, (7.30

with no color factor. Equatior{7.30 exists in both S(P)
and SU3). In SU(2) there is only a color singlet anomalous
odderon. However, the SB) color octet anomalous odderon
has a component that transforms as anZinglet with
respect to an S(2) subgroup. For this component the @Y
version of the third diagram of Fig. 59 is obtained from the VI INFRARED DIVERGENCES AND CONFINEMENT

first two SU3) diagrams by projecting onto the $2) sub- In the last section we found that anomalous color parity
group. Since the three-Reggeon states carry anomalous colReggeon states can couple through the special helicity-flip
parity, they also will not couple to single quarks scatteringyertices that we isolated. These vertices appear in massless
with their helicity conserved. Again, these states will couplequark Feynman diagrams only when tie-0 limit is taken
betweeriT2:5 vertices. after a zero-transverse-momentum limit. In this section we
The above arguments generalize to any number of gluongescribe how, within Reggeon diagrams containing the rel-
coupling via a single-quark loop. It is straightforward to evant interactions, imposition of the Reggeon Ward identi-
show that there arBAA T3] vertices of the form(7.29 and  ties with m#0 implies that these vertices survive the
(7.30 that couple anomalous color ocfetiplet for SU?2)] —0 limit. We will then indicate how, in the particular cir-
two-Reggeon states to color octet and color singlet anomazumstances that the $8) gauge symmetry of QCD is bro-
lous odderons, respectively. The first possibility exists onlyken to SU2), infrared divergences appear as—0. These
in SU(3), of course. AT%Z'O3 vertex of the form(7.28 exists in  divergences produce what we call “a confinement phenom-
SU(3) with color octet anomalous odderon states. There is n@non.” By “confinement” we mean that a particular set of
corresponding vertex for color singlet anomalous odderonscolor-zero states is selected that contains no massless multi-
Although we have discussed only the lowest-order couplinggluon states and has the necessary completeness property to
explicitly, it is clear that there is a large set of even- andconsistently define a8 matrix. That is, if two or more of this
odd-signature anomalous color parity multi-Reggeon stateset of states initially scatter via QCD interactions, the final
that couple through helicity-flip vertices of the kind that we states consist only of arbitrary numbers of the same set of
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1 O~
g v+ _/
FIG. 62. Singular part of the BFKL kernel. Ql}
states. Our discussion is no more than an outline argument

and certainly is not a rigorous proof that this form of con- . . .
finement occurs. Nevertheless, we believe that the argument FIG. 64. Reggeon diagram involving anomalous odderon
is straightforward and that there is no reason to believe iR€99€eon states.

cannot be improved significantly. _ ) ) _
cluded as part of the interaction, all color-zero interactions

are infrared finite forQ?+0. For nonzero color all interac-
tions are infrared divergent, even wh@d+ 0. As discussed
Before discussing the effects of the helicity-flip quarkin [11], Reggeon unitarity implies that these divergences

loop interactions, we first summarize what is known from necessarily exponentiate amplitudes to zerMas 0. There-

tic scattering Reggeon amplitudég, , discussed in Sec. V  the massless limit. Note that this is not equivalent to confine-
when the gluon mass! — 0. The best-known example of an ment since the multi-Reggeon states are still present and pro-
elastic scattering Reggeon amplitude is, of course, the BFKIduce a branch point &?=0. Most important for our pur-
kernel[5]. We first recall the infrared properties of this ker- poses, the infrared finiteness of the interactions implies that

nel. the canonical divergence of the multi-Reggeon stafe
Taking the massless limit in E¢5.21) and including the =0: je,,

trajectory contribution(5.18 as part of the interaction, we

A. Properties of massless Reggeon interactions

obtain the leading-order singular part of the color zero ker-

nel. This can be written in terms of transverse momentum j A2k -k 0% (Q Ky —kp =~ kn)
diagrams as in Fig. 6ZThe full kernel is obtained by adding

the diagrams with the initial states interchangediVe have xi iw 1 8.1)
not shown the regular part of the kernel. As we remarked K2 ki Q° '

earlier, the regular part is uniquely determirj@@] from the
singular part by the requirement that the full kernel satisfypersists in the presence of interactions. Normally, this diver-
the reggeon Ward identities. Since the notation includegence is eliminatede.g., in discussions of the BFKL equa-
momentum-conserving functions, the diagrams are for- tion) by using gauge-invariant couplingfthe external
mally scale invarianteven though potentially infrared diver- particle-Reggeon coupling&,, in Eq. (5.15] that have
geny. The infrared cancelation that provides the finiteness oReggeon Ward identity zeros.
the kernel is illustrated diagrammatically in Fig. 63. The
dashed line carries zero transverse momentum. This cancel-
lation is present only in the color-zero channel. When
higher-order corrections to the kernel are calculated, the in- We now begin our discussion of an infrared phenomenon
frared finiteness and Reggeon Ward identities pefdigt. ~ involving massless Reggeons and massless quark helicity-
Therefore, for our purposes, it is sufficient to frame our dis-flip vertices. A focal point for most of the following discus-
cussion in terms of the |eading-order diagrams_ sion will be the Reggeon diagram shown in Flg 64 in which
As we have emphasized in previous sections, the helicityanomalous odderon Reggeon states containing three mass-
flip interactions do not appear in elastic scattering Reggeotfss Reggeized gluons are coupled by two helicity-flip verti-
diagrams. As a consequence, whén-0, gauge invariance Ces. We suppose that this diagram is embedded in a larger
implies that the Reggeon Ward indentities hold for all thediagram so tha®, Q,, andQ, are each integrated over. The
Al . Fort=Q2%#0, the resulting zeros are sufficient to com- Vi boxes represent the remainder of the full diagamgen-
pensate for any internal infrared divergences ofAg due  €ral, they will be indirectly coupled by additional Reggepns
to the Reggeon propagatofse., due to the particle pole An example pf sych an embeddmg is the diagram shown in
factors of 4<r2+ M2)~1 that we have included in E¢5.17) as Fig. 65. In this diagram, the thick lines represent the anoma-
defining a Reggeon propagaloiherefore, forQ20, all lous odderon Reggeon state, and for the moment, the thin

: . ! : : .. __lines represent any norméle., nonanomaloysombination
infrared divergences arise only from particle singularities ’ . L
within the Reggeon interactions. of Reggeons. We take both the thick and thin lines to be

- lor singlets. For our initial discussion the gauge group
We anticipate that the above features of the BFKL kernef© ;
. - —could be either S(B) or SU?2). Although we do not show
generalize as follows. When Reggeization effects are |n(Amn) interactions within the Reggeon states, they can be

present within both the odderon and normal states without

B. Infrared scaling of helicity-flip vertices

- _ — modifying our discussion. We will discuss later interactions
- - + S that link Reggeons in the normal state with those in the od-
- deron state. Figure 65 will correspond to the hexagraph in

FIG. 63. Infrared finiteness of the BFKL kernel. Fig. 43 and will be of the form illustrated in Fig. 44 provided

074008-42



CONFINEMENT AND THE SUPERCRITICAL POMERON IN QCD PHYSICAL REVIEW B8 074008

massless Reggeon theory in the infrared region. As we ob-
served following Eq.(7.27), the loss of a dimension is
coupled to the loss of a Reggeon Ward identity. Since this
identity is reinstated by the addition of the extra diagrams of
Fig. 51, we expect the fullTy,;; to have the normal
dimension-2 infrared behavior. Therefore, wher: 0, the
limit (8.2 will give

T~ Q% (8.4)

whereas

T3~ CQ, (8.5
FIG. 65. Embedding Fig. 64 in a larger diagram. 337 CQ

whereC is a constant which depends on precisely how the
the V; have the necessary structure. Comparing with the diagmit (8.2 is defined in terms of th€; and also contains a
gram of Fig. 41, it is then clear that™t (ET%Q andTFR  color factor.
(=T%2) can contribute as helicity-flip verticeéThese ver- Let us first ignore th&, and Q, dependence of th¥
tices must, of course, be energy-nonconserving and coupkertices, and consider the behavior of the remainder of Eq.
distinct scattering channels as shown. In all the diagrams wé8-3) in the region(8.2). If we insert Eq.(8.4) for T35, we
discuss, there will be a combination of a “regular” vertex  obtain
and aTF vertex that appear together as a single disconnected

Reggeon interaction. The regular vertex will be a nonflip, dz_Q (f dZ_Q TR Q Q))( dZ_Q 7R Q Q))
energy-conserving vertex that could appear in elastic scatter- Q? Q* 3d @ Q* 3d Q
ing Reggeon diagrams. 46
We suppose than;f3 and T3f§3 contain all the diagrams ~f Q_? (8.6)
0

analogous to those of Fig. 51, together with the correspond-
ing Pauli-Villars regulator diagrams, which are needed to

obtain the full range of Reggeon Ward identities when the'Vhich is only logarithmically divergent, and so any power

quark massn+ 0. Both vertices contaili 1 u,u3, m? con- convergence pr_ovided by thé will _be_sufficient to g_ive a

tributions. We concentrate on the infrared region where wi Inite mteg\;\z;ll. il_r(ljce ?aCh_ O_f thé, will, in general, satisfy a

expect the presence of tﬁ'egg’% vertices to be most signifi- eggeon Ward identity giving

cant; i.e., we consider the region Vi(Q) ~ Q [=V(Q)], 8.7
Q

Q:~Q,~Q—0. (8.2 -0

We also consider the internal phase-space region of th
Reggeon states wh_ere e_ach Reggeqn carries transverse 9 indicate a coupling that vanishes linearlyQ
mentumk; ~ Q. In this region, as we discussed above, color- . ; . F

: . If we instead insert the behavi@8.5) for T3;35 and now
zero Reggeon interactions can be present, but because the lude theV find that Eq(8.6) i laced b
are infrared finite, the full Reggeon state scales canonicalljfTc'ude theVi, we find that £q(6.0) 1S replaced by
as “1/Q2.” Figure 64 then gives

d?Q, d?
f #Q—Q; Vi(...,Q)Va(...,Q—Q1)V3(Qy,...)

we expect no infrared divergence problem—provided Eg.
.4) holds.[We will useV(Q) generically in the following

d6
fo & H Vi(Q). 8.9

In this case at least three of thg must satisfy Eq(8.7) to

f d?Q ensure convergence. If we choose, sdy,and V, to not
XV —Qo,... i — i i ic di
4(Q—Qz2,...) 0%0-0,)20-0,)? \é??r:sehfgﬁl, Q,—0, there will be a logarithmic divergence

XTo4(Q1,Q)TIA(Q,Q,)

d’Q [ [ d*Q 0

X[Reggeon propagatdrs (8.3 f Q7 Q_V(Q)Tsss(Q'Q)

A vital property of theT”° vertices is that they have d?Q Fra0
dimension 1 with respect to transverse momentum. This f FV(Q)TM(Q,Q)
should be contrasted with the dimension 2 of the elastic
Reggeon interaction vertices which appear in #g,, for _j d*Q KT T/LO K[ T/RO 8.9
example,I',, given by Egs.(5.20 and (5.21). When com- Q7 [Ta33 1K Taa3 1, (8.9
bined with the momentum-conservings function,
dimension-2 interactions naturally produce a scale-invariantvhere the functional

X
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The Pauli-Villars quarks i will give the same singular
behavior, but with the opposite sign and with the light-quark
mass scale replaced by the cutoff scalg. Therefore we

can take
- m?
T (m,Q)=-C +ooe, 8.1
(m,Q) Q M+ 02 (8.19
and so for the fullT” we obtain
m’ = +
V=R m? Qrm 2
FIG. 66. Reggeon diagram containing thiEe vertices. 5o 9
— C 2(——— 4o 8.1
K[Tf]:f ?V(Q)Tf(Q) (8.10 .
Now consider
will occur again in the following. IfT*(Q) satisfies Eq. I(m)=K[V‘£fG]
ﬁg;i)c,)r:.henK[Tf] is logarithmically divergent in the infrared = J dQ—3 T*(m,Q)G(m,Q), (8.17

Consider next a diagram with an additiodl vertex and
having the structure of Fig. 66. With the vertices appropri-
ately chosen, this diagram can be associated with th
hexagraph of Fig. 45. Again, thick lines represent the anoma

where G(m,Q) is regular atm~Q~0 and represents the
emainder of some Reggeon diagram. Substituting our model
for T/(m,Q), we obtain

lous odderon Reggeon state, thin lines are any normal d?Q m? 2Q
Reggeon state, and both can contain interactions. Now, as I(m)=Cj oz W—l+m—+"‘ G(m,Q)
indicated, there are four independent transverse momenta in- 0 42 »
tegrated over. If we again chood&g andV, to be finite :_Cf _QZ G(m,Q)
whenQ,, Q,—0, we obtain, from Fig. 66, o (M+Q)
d’Q ( 20m  2Q )
2 —cf — | =——5——++|G(m,
| e A] (8.1 0 @ L(QTm* m, me

Q =1,(m)+1,(m). (8.18
and if we insert Eq(8.5), the overall logarithmic divergence 12(m) is finite asm—0, while I;(m) gives
persists. 1,(m)— —C IN[m?]G(0,0). (8.19

Before proceeding further we consider how E@s4) and
(8.5 are interrelated by the Reggeon Ward identitiestas Therefore we have a logarithmic divergence with the residue
—0. We discuss this in terms of a simple model that illus-given by the remainder of the Reggeon diagram evaluated at

trates the general behavior to be expected. Q=0.
In the above model we have

C. Triangle anomaly and Reggeon Ward identities T}'(O’Q)N —CcOo+ O(QZ), (8.20
We first make the separation
where the leading term can simply be identified witir*?°.
T§33= Tﬁm2+'~rf, (8.12 The model illustrates simply the general situation. The use of
a Pauli-Villars ultraviolet cutoff implies that in the infrared
region, where all transverse momenta are uniformly small,
he Reggeon Ward identities are satisfied by a simple cancel-
ation between the light-quark triangle graph and the corre-
sponding regulator graph. However, the nonuniformity in the
neighborhood of~m~ 0 implies that the limit$Q—0 and
Fm2, 2 o~ 0 _ m—0 do not commute for the light-quark graph. Conse-

T2M(m%,Q)=T"F(Q/m)=CQFQ/m), (8.13  guently, the satisfaction of the Reggeon Ward identities
whenm=0 implies that they are partially lost in the limit
an oversimplified model foF (x), which nevertheless gives m_.0. However, the offending contribution, i.&7, can be
the essential behavior of the triangle graph, is evaluated in terms of a loop of on-shell massless quarks. As
we discussed in Sec. VI, such a contribution can violate the
Reggeon Ward identities while not violating the underlying
Ward identities that give the gauge invariance of the theory.

Wher~eTJT’m2 contains the contribution fromi wyu,us, M?,
and T* does not contain any singular behavior associate
with the quark triangle diagram. If we write, in the region
(8.2,

F(x)= (8.14)

(1+x)%"
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FIG. 68. Infrared-divergent diagram.

FIG. 67. Reggeon diagram involving many helicity-flip vertices. )
tum and consideT” to be the full massless quark vertex,the

. ) diagram will have an overall infrared logarithmic divergence
It is apparent from Eq98.15—(8.20 that we are seeing ¢ the form

the infrared presencf26] of the anomaly in the triangle

graph reflected in Reggeon interactions involving anomalous d’Q Fon
parity Reggeon states. This happens for the reasons dis- J HT(K[V’T nr (8.2
cussed in Sec. VII A. Gluon Ward identities relate the longi-

tudinal Regge Ii_njit interactions to transvelr.se interaction§NherenT is the number off* vertices in the diagram. From
that can be sepsmve to the anomaly. In addition, the anomasq (8.18, it is clear that the residue involves evaluating
lous color parity of, for example, the anomalous odderoneyery T#, and therefore every anomalous Reggeon state, at
three-Reggeon state determines that, effectively, it has afero transverse momentum. As before, including interactions
infrared “axial vector coupling” via on-shell quark states. within the anomalous or the normal Reggeon states does not
(As we stated would be the case, in this section we havghange the discussion. Recall also that, as we emphasized in
considered onlyAAA couplings. We recall from the last sec- Sec. V, because the divergence involves helicity-flip verti-
tion that, as for the normal anomaly, we also haMdN ces, there is implicitly a zero longitudinal component also
couplings) associated with the zero transverse momentum of the anoma-
We can also view our ultraviolet regularization procedure Jous Reggeon state.
using Pauli-Villars regulator fermions, as responsible for in- Imposing thatv,; andV, be nonzero when the anomalous
troducing the anomaly in the infrared region. If we considerReggeon state carries zero momentum is equivalent to
all the quark loops implicitly involved in our discussion, it is choosing two initial Reggeon scattering states that contain a
straightforward to see that for many of them tienatrix ~ Zero-momentum anomalous component. Figure 67 shows
structure will generate reduced loops containing the converthat if these states are allowed to scattgithin QCD) into
tional ultraviolet anomaly. From general arguments we exdeneral Reggeon states, an overall logarithmic divergence
pect the fermion anomaly to introduce an ambiguous interS€l€cts final states having the same property. This is poten-
play between infrared and ultraviolet behavior in theli@lly @ completeness property for this class of Reggeon

massless quark theory. Our manipulations can be viewed slates. The crucial questiqn s then whethgr the infrared di-
fixing this ambiguity by requiring a finite Reggeon theory vergence we have found in the class of diagrams we have

and Reggeon Ward identities for the massive quark theoryStUdIed can be (_:anceled by_ a similar o!lvergence In some
In fact, as we discuss further in the next paper, this is Ver)further qlass of diagrams. This is the subject of the next two
likely to be the only resolution of this ambiguity that gives a subsections.
unitary solution to the theory.

E. Cancellation of infrared divergences

In this subsection we will give an argument suggesting
that if all Reggeons are massless, i.e., if(S)Uyauge sym-
metry is fully restored, then the infrared divergence that we

Consider now an arbitrary reggeon diagram containinchave discussed cancels when all diagrams are summed over.
many T7 vertices, for example, the diagram shown in Fig. We formulate the argument by discussing the Reggeon dia-
67. Once again, the thick lines represent the anomalous odyram of Fig. 68. This is the lowest-order diagram that is most
deron Reggeon state and the thin lines are any normalbviously of the form we have discussed. All Reggeon lines
Reggeon state. As illustrated, for every n&Wvertex intro-  represent a single Reggeizédasslessgluon, and since this
duced there is inevitably an accompanyigvertex which, is a “lowest-order diagram,” we specifically exclude inter-
from normal QCD interactions, will satisfy a Reggeon Wardactions within either the anomalous odderon or the normal
identity. Consequently, if we impose thdt andV, are non-  Reggon states. The multi-Reggeon states, for which Reggeon
zero when the anomalous Reggeon state carries zero momepropagators are present, are indicated by the thin vertical

D. Infrared divergence of diagrams with many helicity-flip
vertices
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FIG. 69. Potential canceling configurations.

) ) o ) ] ) FIG. 70. Divergences to be produced by the regular Reggeon
line. To avoid the exponentiation of infrared divergences injnteraction.

higher orders, these states must carry color zero. In lowest-

order, the “regular” interactionR between the normal ot obvious possibility for a cancellation is that a Reggeon
Reggeon states will actually be disconnected. Figure 6ticipating in the anomalous odderon interaction instead
clearly has the form illustrated in Fig. 65 once the anomalougaticipates in the regular Reggeon interaction, as illustrated
odderon three-Reggeon state is identified with the thick lineg, Fig 70 To produce a zero-quark-mass divergence identi-
and the remaining two-Reggeon state is identified with the: 1o that in Fig. 68, the regular Reggeon interaction must
thin lines. The logarithmic divergence is preséasm—0)  give an infrared divergence involving the indicated dashed
provided only thatv, andV, are appropriately chosen. lines. Because the anomalous states with just two Reggeons
In the previous discussion of this section, we have asmyst carry octet color, the regular Reggeon interaction also
sumed that the anomalous odderon state separately carriggries net octet color. A normal Reggeon interaction carry-
zero color. In this case the two-Reggeon state must also carfyy nonzero color is necessarily divergent. The simplest di-
zero color. Figure 68 is then the lowest-order diagram conyergence will be produced by a massl&ss interaction, as
taining Fig. 64. However, as we discussed in the previous, Fig. 71(a). Since the anomalous odderon Reggeons are
section, in SUB) the anomalous queronf%an'also carry octeharticipating in a helicity-flip interaction, it is also possible
color. We also showed that helicity-flip” ™ triple-odderon  for an infrared-divergent interaction to occur as in Fig(tf1
couplings exist when either all the odderons, or two of theas we discussed in Sec. VIE. similar Reggeon infrared-
three, carry octet 90595- In addition, there are anomalougjiyergent interactions to those of Fig. 71 are involved in
Reggeon states, witli”" couplings, that contain only tWo yroducing the Reggeon Ward identities for e vertices,
Reggeons and carry octet color. In fact, once we allowts, example, the third diagram of Fig. 51.
anomalous Reggeon states that are not color singlets, Figure por m+0, the complete cancellation of all divergences
68 is not the lowest-order diagram containing the-0 di- ~ e|ated to those of Fig. 71 will necessarily involve all pos-
vergence. The lowest-order diagrams involve combinationgjp|e interactions between the color-zero five-Reggeon states.
of normal one- and two-Reggeon states with anomalous tworjs js achieved if we combine all left- and right-side dia-
and three-Reggeon states. Because the lowest-Bderti-  grams of the form of Fig. 70 with the corresponding dia-
ces contain only gluon internal interactions, the Iowest—ordegJrams forming Fig. 68. In this way we obtain a set of dia-
diagrams involve only Reggeized gluon Reggeons. When ingrams containing triple anomalous Reggeon vertices, which
ternal quark interactions are included in Reertices(or we  o5ch have then=0 divergence and which, when+0, are
consider the scattering of multiquark Reggeon states, as We|ated by the cancellation of divergences of the form of Fig.
will do in the next paper the symmetric octet bound-state 70 | the infrared region producing the=0 divergence,
Reggeon also appears. In this case a particularly simple pore cancellation of divergences related to Fig. 70 is between
tential cancellation is between the Reggeon states illustrategeggeon interactions having the distinct forms shown in Fig.
in Fig. 69. This cancellation will be particularly relevant for 75 3| dashed lines carry zero transverse momeptum
our discussion of deep-inelastic scattering in the next paper. pach of the interactions in Fig. 72 contains the=0
_Since, as we have already said, Fig. 68 is the lowest-ordet, o majoys interaction and scales appropriately to generate
diagram that fits specifically into our previous discussion, Wee |ogarithmic divergence in individual diagrams. However,
will concentrate on finding diagrams that cancel the diveryhe aqgitional infrared cancellation between the complete set
gence of this particular diagram. Since tRevertices are . giagrams should survive the—0 limit and be sufficient
lowest order, they cannot involve internal quark mteracuonst0 ensure that there is nm=0 divergence. If we go to
Consequently, the symmetric octet Reggeon cannot appear figner_order and incorporate Reggeon interactions within
canceling diagrams. Note also that, since color parity is con-
served and we have chosen each of the Reggeon channels in

Fig. 68 to carry anomalous color parity overall, we do not <> %

need to consideAVV vertices(in addition toAAA vertices 5 - E@w
when looking for cancellations. We proceed by considering ’ 3:9% <> j':M
possible alternative couplings for the Reggeons originatin s T
from V. T e -

If Reggeons within the anomalous and normal Reggeon (a) )

states interact, additional Reggeon propagators are intro-
duced and a cancellation with Fig. 68 is not possible. The FIG. 71. Regular Reggeon interactions producing divergences.
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S5 L -k, o O b 75 (a) (b)

FIG. 72. Reggeon interactions producing the infrared cancella- FIG. 74. (a) f couplings and(b) d couplings after symmetry
tion. breaking.

and between the normal and anomalous states, we can expegfevant configurations of massless(8JUReggeons. For ex-

more elaborate cancellations to hold. We can also expect thgnple, if we consider Fig. 68 to be composed entirely of
ANN vertices to play a role. We note that the crucial featuresu(z) massless Reggeons, then the divergence will be
of the cancellation is the existence of infrared-divergent in—, . ccant. However, the Reggeon infrared cancellation of Figs.
teractions between the R_eggeons in the anomal_ous_odder —72 also remains valid. In fact, the necessary infrared-
state and the Reggeons in the normal state. This will be aaivergent interactions will exist, and so, presumably, an

important dynamical element of our further discussion. analogous cancellation will take place, provided only that
one of the normal Reggeon states in the diagram contains
massless Reggeons.

Suppose now that the $8) gauge symmetry is only par- An obviously divergent class of diagrams is those of the
tially restored to S(P). In this case five of the eight 88)  form of Fig. 77. This diagram is an $P) version of Fig. 68,
gluons remain massive. There is one(3lkinglet and two  except that the normal Reggeon states contain no massless
SU(2) doublets. We use the notation of Fig. 73. Thendd ~ Reggeons. The Reggeons indicated by the dotted lines are
couplings of the different representations are illustrated inmassiess and form an $2) singlet anomalous odderon
Fig. 74. The resulting trajectory function transverse momenxiate [From now on we use the dotted line notation to indi-
tum diagrams are shown in Fig. 75. _ cate Reggeons that both belong to the massles8)Stiplet

The SU2) smglet_ trajectory functl_on contains no mass- 5,4 carry zero transverse momentum in the overall infrared
Igss Reggeon con?nbuﬂons _and S0 1S manlfest_ly infrared fIEjivergence of the diagramAll the multi-Reggeon states cut
mtg. Therefore this gluqn IS a S.'mple massive Reggeo y a thin vertical line are S(@) singlets if, in particular, the
which, if color charge parity is carried over from the unbro- additional Reggeon states indicated by a thick unbroken
ken theory, carries negative color parity. The two(S\4lou- Reggeon line arésome number ofthe SU2) singlet, mas-

blets form SU2) singlets with both even and odd &) ) ) .
color parity. The odd-color-parity combination gives the sive, Reggeized gluons. We recall from the last section that

Reggeization of the color singlet Reggeon shown in Fig. 755iNc€ We now discuss 322 color only, to containT”*?

The even-color-parity doublet forms a separate infrared fi€0lor-zero interactions th&"’s must beAAA couplings of

nite, even-signature, “bound-state” Reggeon with a trajec_anomalous odderons. Since there is no triple coupling for the

tory that is exchange degenerate with the singlet Reggeize®inglet Reggeon, we cannot take all the normal states to con-

gluon trajectory. The cancellation of Fig. 76 demonstratedain only a single Reggeoiilt would be sufficient for some

simultaneously the infrared finiteness and the Reggeizationormal states to be a single bound-state Reggeon, but these

of this trajectory, provided we omit the contribution of the states require an internal quark regular interaction in order to

massless Reggeons. The reason for this omission will sooppuple. As we shall see shortly, there is also an additional

become apparent. In the massless limit, i.e., as the fulBsU subtlety involved.

gauge symmetry is restored, this bound-state trajectory be- Figure 77 is obviously of the form of Fig. 65 and so

comes the even-signature octet trajectory, which we referregontains the logarithmic divergence. The anomalous odderon

to in Sec. VC and VI B. three-Reggeon state once again corresponds to the thick
Initially, we consider the complete set of Reggeon dia-lines, while the thin lines are now identified with Reggeon

grams containing both massless and massive Reggéons.states that, in lowest order, consist of massivéZdinglet

priori the m=0 logarithmic divergence we have discussed

will still be present in individual diagrams containing the o T s R )

F. Symmetry breaking and confinement

---------- SU(2) triplet, mass =0

{?
>

—— 2 8SU(2) doublets, mass = 2M//3 O

AAAAAAA SU(2) singlet, mass = M

- mﬁO\N\,\f = N@W
FIG. 73. Notation for the gluon spectrum when the gauge sym-

metry is broken. FIG. 75. Trajectory functions for the different representations.
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FIG. 76. Reggeization of the bound-state Reggeon.
FIG. 78. Bound-state coupling to infrared divergences.
gluons. From Fig. 7@) it is clear that, at lowest order, the

singlet simply has no coupling to the massless sector. As gg| Since it is even signature and symmetric with respect to

result, there are no infrared-divergent interactions analogou@obr, this requires that the bound state carry positive parity
to Fig. 71 and no cancellation corresponding to Fig. 72. The{which it does.

analogue of the interactions of Fig. 71 involves the exchange e now take all the amplitudes containing the logarith-
of a massive S(2) doublet. That is, the divergent interac- mjc divergence as our physical amplitudes. We remove the
tions that were part of the cancellation with the (8usym- divergence as a normalization factor and also factorize off all
metry unbroken now contain massive propagators. This img,a v/ couplings. We are left with a set of multi-Reggeon
plies that the logarithmic divergencems-0 is qualitatively  giagrams in which every Reggeon state has the form shown

of the form in Fig. 79, where now the wee-parton component, indicated
by the four rows of dots, contains arbitrary numbers of mass-

1 1 M2 less Reg_geons with odd signature, color zero, and positive

J dQZ(—z— s ~|n<7) (8.2  color parity. Each massless reggeon carries zero transverse
m? Q° Q°+M m momentum. The wavy line is any combination of massive

SU(2) singlet Reggeon states. Note that the odd-signature
nature of the wee-parton component switches the signature
f the massive Reggeon component of states. In particular,
he odd-signature elementary Reggeon gives an even-
| signature “Pomeron,” while the bound-state Reggeon gives
an odd-signature, exchange-degenerate, partner to the
Pomeron. Because of signature factors, the Pomeron will not
generate a vector particle, while the odd-signature bound-
Htate Regge pole will give such a particle at the mass of the
(2) singlet. In effect, while the Reggeized gluon becomes
the Pomeron, the unconfined massive single-gluon vector

states. Interactions between the massless and massi@@'ticle, which in perturbation theory lies on the Reggeized

Reggeons can take place, but since they are infrared finit(g,oun(;i?]gdaﬁigg\;eisglrfgrlgced by a composite bound state of
they simply produce Reggeon Ward identity zeros that elimi- ' i
y Py P 99 v We have thus demonstrated the ‘“confinement phenom-

nate the overall infrared divergence. Therefore such interac- "~ hich ferred lier. If insist th
tions do not appear in the divergent diagrams. If the anomaf—ar.“.)nI whic lweRre erred to ear 'ﬁr' vr\:e :,nS'St tf alét. tW;)g
lous Reggeon state carries color, interactions within this statl%'t'a scattering Reggeon states have the form of Fig. 79,
will exponentiate the diagram to zero. then these states scatter into arbitrary numbers of the same
Clearly, the thin lines could also be a multiquark ReggeorPtates Onlxll'.k Als% s||(nce th(;a“v%/ee—parton cgmponerlt ﬁf ghe
state, but we will leave a discussion of quark Reggeon stategate_ acts like a backgroun €ggeon con epsatg, the dy-
until the next paper. As preparation for our discussion 01namlcal propt_ertles of the Reggeon states are identical to that
chiral symmetry breaking, it will be interesting to discussOf the SU2) singlet Reggeon component of the state. There-
here how the bound-state Reggeon avoids an infrared intef2'€ W€ also have confinement in the sense that we have only
action of the form of Fig. 70. At lowest order the bound-stateM2SSiVe Reggeon states composed of elementary Regge-pole
constituents.

Reggeon couples to infrared divergences via the two dia h hasized th h hi h
grams illustrated in Fig. 78. Because of the antisymmetry of As we have emp asize t roug out t 'S paper, the Z€ro
ansverse momenta involved in producing the infrared di-

the gauge coupling, if the two massive Reggeons are in |

completely symmetric state, the two diagrams of Fig. 78 canY&rgences a_nd _Reggeon condensate are implicity accompa-
nied by longitudinal zero momenta. The presence of this lon-

gitudinal component implies that the condensate can
potentially be understood as a light-cone zero-mode contri-

and so is clearly a direct consequence of the symmetr
breaking.

All diagrams having the form of Figs. 66, 67, etc., wil
similarly contain an uncanceled overall logarithmic diver-
gence (with V; and V, appropriately chosenif the state
represented by the thick lines contains any numbéemoér-
acting massless Reggeons forming a state with the quantu
numbers of the anomalous odderon and the thin lines are a
combination of(interacting massive SI() singlet Reggeon

ANNNANANN

FIG. 77. Diagram containing SB@) singlet Reggeons. FIG. 79. Confinement Reggeon states
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FIG. 80. Diagram with vacuum production of &) singlet Reggeons.

bution at finite momentum or, in the language of the Intro-That is, both the odd-signature Reggeon partner for the
duction, as a “wee-parton” component at infinite momen-Pomeron and the vacuum production of Fig. 79 must simul-

tum. taneously decouple as the Pomeron intercept vanishes. The
reinstatement of the infrared cancellation of Figs. 69—71 is
G. Supercritical Pomeron presumably involved in these effects in a subtle manner.

An inescapable conclusion from our construction is that

clude those of the form illustrated in Fig. 80 in which the (€ Pomeron carries odd color charge parity. The odd and
helicity-flip T vertices, in addition to coupling the zero- €VeN color parity of the Reggeized gluon and the wee-parton

transverse-momentum  anomalous odderon  massle§9MPONent, respectively, combine to give overall odd color
Reggeons, produce an additional pair of massive Reggeom&rity. This property will persist after the $8) gauge sym-
carrying zero net transverse momentum. THevertices in- metry is restored. Note that to obtain an(8)color singlet,
volved will also contain the triangle anomaly we have dis-the anomalous odderon that appears in the Pomeron has to be
cussed. The Reggeon lines in the right-hand diagram of Figth SU3) octet (rather than the singlet discussed initially in
80 are “physical’: i.e., they correspond to either the Sec. VIIIE). For an odd-color-parity Pomeron to describe
Pomeron or its odd-signature partner. Diagrams such as Figotal cross sections, the scattering hadrons cannot be eigen-
80, together with all the obvious generalizations, are, effecstates of color parity. We will show in our next paper that the
tively, responsible for “vacuum production” of massive pion is a mixture of states with even and odd color parity
Reggeon states within the Reggeon diagrams describing oyibut odd physical parity The guark-antiquark and anoma-
confining theory. lous odderon components are, correspondingly, in either a
We can, therefore, summarize our confining solution ofcolor singlet or a color octet state. The Pomeron scatters the
partially broken QCD as containing exchange-degeneratgdd (even state into the everodd state.
even- and odd-signature Reggeons, with vacuum production The RFT formalism also tells us that the transverse mo-
of multi-Reggeon states. These are the defining characterignentum cutoff is a relevant parameter for the critical limit.
tics of supercritical Pomeron RHILO]. We have shown that Therefore, if this(gauge-invariantcutoff is varied, it is pos-
the appearance of this RFT phase is a consequence of thgyje for the supercritical phase to appear even when the full
confinement produced by the infrared divergence associateghuge symmetry is restored. In this case the direction of the
with the massless quark anomalifaving derived the mass- Sy(2) wee-parton component is effectively averaged over
less theory, it should be possible to add effective quarkyithin SU(3). In the next paper, we will discuss how this can
masses to the theory, for example, by chiral perturbatiomhe ynderstood as an average over thé2direction of the
theory, and still remain in the supercritical phaseWe  anomaly(or instanton effectsin SU(3). It is also possible to
have postponed discussion of the RFT formulation of thgegard the larg&)? of deep-inelastic scattering as introduc-
supercritical phase to the following paper because we wanhg a “finite-volume” effect which removes the critical
to emphasize the self-contained nature of the QCD infraredhase transition. As a result, the theory remains in the
analysis. “single-gluon-dominated” supercritical phase as the(3U
We haye explicitly associated the supercritical phase Withsymmetry is restored. With the wee-parton component in-
the breaking of S(B) gauge symmetry to SW). The resto-  cjyded, this feature can be seen explicitly by studying the
ration of SU3) symmetry should follow if we take the zero- Reggeon-gluon diagrams involvg8]. Deep-inelastic scat-

mass limit for the S(P) singlet Reggeon. This is equivalent tering is another subject that will be covered in depth in the
to setting the intercept of the Pomeron to zero. The principlgo|iowing paper.

of complementarity{13] implies that the symmetry can be

_smoothly restored prowgled only that an ultraviolet (_:utoff is ACKNOWLEDGMENTS

introduced. However, since the massless quark divergence

has selected only a part of the broken theory, restoration of | am particularly grateful to Mark Wathoff for extensive

full SU(3) symmetry is clearly nontrivial. Nevertheless, pro- discussions of the contents of this paper. | have also ben-
vided we can completely identify our solution of partially efited, over the years, from many discussions with Jochen
broken QCD with the supercritical Pomeron, setting theBartels and Lev Lipatov. This work was supported by the

Pomeron intercept to zero corresponds to taking the critical.S. Department of Energy, Division of High Energy Phys-

limit from within the supercritical phase. Note that two ad- ics, Contracts No. W-31-109-ENG-38 and DEFG05-86-ER-

ditional important features of this limit must also be realized.40272.

Finally, we note that the divergent diagrams will also in-
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