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Two Higgs doublet model predictions for B̄˜Xsg in NLO QCD
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Institut für Theoretische Physik, Universita¨t Zürich, Winterthurerstrasse 190, 8057 Zu¨rich, Switzerland

Christoph Greub
Institut für Theoretische Physik, Universita¨t Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

~Received 23 February 1998; published 2 September 1998!

The decayB̄→Xsg is studied at next to leading order in QCD in a class of models containing at least two
Higgs doublets and with only one charged Higgs boson nondecoupled at low energy. The two-loop matching
condition is calculated and it is found to agree with existing results. The complete dependence of the Wilson
coefficients on the matching scale is given. The size of the next to leading order corrections is extensively
discussed. Results for branching ratios, possibleCP asymmetries, and lower bounds on the charged Higgs
boson mass are presented when the convergence of the perturbative series appears fast enough to yield reliable
predictions. Regions in the parameter space of these models where the next to leading order calculation is still
not a good approximation of the final result for these observables are singled out.@S0556-2821~98!07217-8#

PACS number~s!: 13.25.Hw, 12.38.Bx
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I. INTRODUCTION

It is well known that charged Higgs contributions to th
branching ratio for the decayB̄→Xsg, B(B̄→Xsg), de-
couple very slowly from the standard model~SM! one.
Hence, in the absence of any experimental evidence fo
charged Higgs boson, this decay may provide a powe
tool to limit the range of unknown parameters in mod
where such a particle is present and other, nonstandard,
tributions toB(B̄→Xsg) are subleading@1,2#.

Supersymmetric models constitute, perhaps, the best
tivated extension of the SM where a second Higgs doub
and therefore a charged Higgs bosonH6, is necessary for
internal consistency@3#. Simpler extensions where onl
Higgs doublets are added to the SM are, however, impor
on their own right. They are also excellent pedagogical to
to understand the subtleties that the next to leading o
~NLO! calculation ofB(B̄→Xsg) entails, and which may be
hidden in the SM results.

The simplest class of such extensions, with two Hig
doublets, is usually denoted as 2HDMs. This class cont
the well-known type-I and type-II models in which the sam
or the two different Higgs fields couple to up- and down-ty
quarks. For what concerns us here, multi-Higgs-doub
models can be included in this class, provided only o
charged Higgs boson remains light enough to be relevan
the processB̄→Xsg. This generalization allows a simulta
neous study ofB̄→Xsg in different models, including type
and type II, by a continuous variation of the~generally com-
plex! charged Higgs couplings to fermions.~No tree-level
flavor violating neutral couplings are assumed in the pres
paper.! It also allows a more complete investigation of t
question whether the measurement ofB(B̄→Xsg) closes the
possibility of a relatively lightH6 not embedded in a supe
symmetric model@4#.

At present, a measurement of this decay rate by the CL
Collaboration is available@5#:
0556-2821/98/58~7!/074004~20!/$15.00 58 0740
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B~B̄→Xsg!5~2.3260.5760.35!31024. ~1!

There also exists a preliminary result by the ALEPH C
laboration with a larger central value@6#:

B~B̄→Xsg!5~3.1160.8060.72!31024. ~2!

Adding statistical and systematical errors in quadrature,
obtains 90% C.L. lower and upper limits onB(B̄→Xsg) of
1.2231024 and 3.4231024 from the CLEO measuremen
and 1.3431024, 4.8831024 from the ALEPH result. The
band of allowed values, corresponding to a more conse
tive estimate of the systematic error, is reported by CLEO
be (1.024.2)31024 @5#.

The theoretical situation within the SM, is at the mome
far better settled than the experimental one. After the origi
observation that QCD corrections to the decayB̄→Xsg are a
substantial fraction of its rate@7#, a collective theoretical
effort of almost a decade has led to the determination
B(B̄→Xsg) at the NLO in QCD, and to a considerable r
duction of the theoretical error. For the leading order~LO!
calculation, several groups contributed to the evaluation
the elements of the anomalous dimension matrix@8,9# and
provided phenomenological analyses with partial inclus
of some NLO contributions~e.g., bremsstrahlung correc
tions! @10–13#. The two-loop matching condition, needed f
a complete NLO calculation, was first obtained in Ref.@14#
and later confirmed in Refs.@15–17#, using different tech-
niques. The two-loop corrections to the matrix elements w
calculated@18# and the determination of theO(as

2) elements
of the anomalous dimension matrix, started already si
some time @19,20#, has been completed only recent
@21,22#. In addition, nonperturbative contributions toB(B̄
→Xsg), scaling as 1/mb

2 @23–25# and 1/mc
2 @26#, were also

computed. The issue of the dependence of the branching
tio on scales, first raised at the LO level in Refs.@11,13#, was
addressed for the NLO calculation, and discussed in detai
Ref. @27#. In the SM, uncertainties due to sensitivity o
© 1998 The American Physical Society04-1
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FRANCESCA M. BORZUMATI AND CHRISTOPH GREUB PHYSICAL REVIEW D58 074004
B(B̄→Xsg) on such scales are small and the theoretical
timate for this observable suffers mainly from the large e
perimental errors of the input parameters.

It would be desirable to have similarly precise calcu
tions also in extensions of the SM. Thus, more accurate
perimental measurements, when available, could prov
stringent constraints on the free parameters of these mo
We present here a detailed study ofB̄→Xsg at the NLO in
QCD, in the class of models specified above, aiming, in p
ticular, to obtain an assessment of the reliability of the t
oretical calculation. Our results are, in general, less optim
tic than one could have foreseen. Indeed, we fi
unexpectedly large NLO corrections and scale depende
in the Higgs contributions toB(B̄→Xsg), irrespective of the
value of the charged Higgs couplings to fermions. This f
ture remains undetected in type-II models, where the
contribution to B(B̄→Xsg) is always larger than, and in
phase with, the Higgs contributions. It can, however, p
duce unacceptably large scale uncertainties for certain ra
of these couplings and, at times, completely ill-defined
sults which are expected to be cured by even higher o
QCD corrections. We single out combinations of couplin
and of values of the charged Higgs massmH for which the
branching ratio can be reliably predicted at this order
QCD. In this case, a comparison between theoretical
experimental results forB(B̄→Xsg) allows us to conclude
that values ofmH5O(MW) can be excluded, in general, on
in type-II models, but are otherwise allowed.

Previous LO analyses dealt with type-I and type-II mod
@8,28–30# and the generalized class of models conside
here@31,32#. LO calculations are known to have large sca
uncertainties. Consequently, they are not particularly g
arenas to distinguish the quantitative differences betw
QCD corrections to charged Higgs and SM contributio
These differences stand out clearly at the NLO level. T
NLO calculations have been performed recently@17,33#.
They deal with type-I and type-II models and the issue
scale uncertainty is addressed in Ref.@17# for type-II models.
The fact that the NLO corrections to the Higgs contributio
are large is, therefore, understandably missed, since
branching ratio is dominated by the SM contribution. Fro
the technical point of view, our calculation of the two-loo
matching condition agrees with that reported in Re
@17,33#. The analytic dependence ofB(B̄→Xsg) on the
matching scale is also in agreement with the published
sults, after having been corrected in Refs.@27,17#.

The remainder of this paper is organized as follows.
Sec. II we define the class of two Higgs doublet mod
~2HDMs! studied. In Sec. III we outline the main steps of t
calculation; to keep this section readable, we relegate s
parts of our results to appendixes. In Sec. IV we present
phenomenological analysis of the decayB̄→Xsg in the class
of models considered. After giving our branching ratio p
diction for the SM, we discuss, in Sec. IV A, the size of t
NLO corrections to the charged Higgs contributions at
amplitude level. In Sec. IV B, we give results forB(B̄
→Xsg) for various ranges of real couplings of the charg
Higgs boson to fermions. We discuss their reliability a
07400
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point to the technical reason for the possible appearanc
large scale instabilities. NLO branching ratios for type-I a
type-II models are in particular studied in Sec. IV C, whe
lower bounds formH , are given within type-II models. In
Sec. IV D, we consider the decayB̄→Xsg when complex
couplings are involved and we investigate the impact of th
phases onCP rate asymmetries ofB̄→Xsg. We also give
specific examples of couplings for which the theoretical p
diction of the branching ratio is reliable and compatible w
the CLEO measurement, even formH5O(MW). Finally, our
concluding remarks are in Sec. V.

II. TWO HIGGS DOUBLET MODELS

Models with more than one Higgs doublet have gene
cally a Yukawa Lagrangian of the form

2L5hi j
d qLi8 f1dR j8 1hi j

u qLi8 f̃2uR j8 1hi j
l l Li8 f3eR j8 1H.c.,

~3!

where qL8 , l L8 , f i , (i 51,2,3) are SU~2! doublets (f̃ i

5 is2f i* ), uR8 , dR8 , andeR8 are SU~2! singlets, andhd, hu,
andhl denote 333 Yukawa matrices. Gauge invariance im
poses the value of hyperchargeY(f i)5 1

2 . Suitable discrete
symmetries are usually invoked to forbid additional term
such ashi j

d qLi8 f2dR j8 which would induce flavor changing
neutral couplings at the tree level. Indeed, to avoid th
altogether, it is sufficient to impose that no more than o
Higgs doublet couples to the same right-handed field@34#.

When only two Higgs doublets are present,f1 andf2 , it
is in generalf35f1 ~or f35f2). Nevertheless, for the sak
of generality, we leave the symbolf3 distinct from the other
two. We indeed also include in our discussion, as ‘‘effe
tive’’ 2HDMs, models where ann number of sequentia
Higgs doublets is present and we assume that the additi
charged Higgs bosons other than the lightest one bec
heavy enough to decouple from our problem.

After rotating the fermion fields from the current eige
state to the mass eigenstate basis, the charged Higgs co
nent in Eq.~3! becomes

2L5
mdi

^f1
0&

ūL jVji dRif1
12

mui

^f2
0&

ūRiVi j dL jf2
1

1
mli

^f3
0&

n̄LieRif3
11H.c., ~4!

whereVji are elements of the Cabibbo-Kobayashi-Maska
~CKM! matrix. A further rotation of the charged Higgs field
to their physical basis through a unitary matrixU

S f1
1

f2
1

f3
1

¯

fn
1

D 5US f1

H1

H1
1

¯

Hn22
1

D ~5!

yields the following Yukawa interaction forH1:
4-2
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TWO HIGGS DOUBLET MODEL PREDICTIONS FOR . . . PHYSICAL REVIEW D 58 074004
L5
g

&

H S mdi

MW
DXūL jVji dRi1S mui

MW
DYūRiVi j dL j

1S mli

MW
DZn̄LieRiJ H11H.c. ~6!

All fields Hi
1 are supposed to be heavy enough to beco

irrelevant for phenomenology at the electroweak scale
Eq. ~6!, the symbolsX andY are defined in terms of elemen
of the matrixU @35–37,31,32#:

X52
U12

U11
, Y5

U22

U21
. ~7!

The symbolZ has a similar definition, i.e.,Z52U32/U31 if
f3Þf1 ,f2 or coincides with X(2Y) if f35f1 (f3
5f2). Notice thatX, Y, andZ are in general complex num
bers and therefore potential sources ofCP violating effects
@38,39#. Their values are only very loosely constrained
the requirement of perturbativity and low-energy proces
such as theB-B̄ mixing @32#.

When only two doublets are considered, the diagonal
tion matrix U is a 232 orthogonal matrix

S cosb 2sin b

sin b cosb D . ~8!

Although both doublets are present in the theory, one
has the freedom of selectingf15f2 in Eq. ~3!. This choice
gives rise to the 2HDM of type I, to be distinguished fro
the type II in which both doublets contribute to the Yukaw
interactions@40#. It is easy to see that in these two cases
couplingsX andY are real and given by

X52cot b, Y5cot b ~ type I!,
~9!

X5tan b, Y5cot b ~ type II!.

Note that the coupling of the Goldstone bosonf1 to mat-
ter fields is independent of the numbern of Higgs doublets
considered, and always equal to

L5
2g

&

H S mdi

MW
D ūL jVji dRi2S mui

MW
D ūRiVi j dL j

1S mli

MW
D n̄LieRiJ f11H.c. ~10!

The calculation of theB̄→Xsg decay rate in these model
therefore, is modified simply by the addition of charg
Higgs contributions to the usual SM one. The results can
described in terms ofmH and the two complex parametersX
and Y. The presence of phases in the couplingsX and Y
allows for CP asymmetries in the decay rate forB̄→Xsg.

III. THE CALCULATION

We use the framework of an effective low-energy theo
with five quarks, obtained by integrating out the heavy d
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grees of freedom, which in the present case are thet quark,
the W boson, and the charged Higgs boson. As in the S
calculations, we only take into account operators up to
mension 6 and we putms50. In this approximation the ef-
fective Hamiltonian relevant for radiativeB decays~with
uDBu5uDSu51),

Heff52
4GF

&

Vts
! Vtb(

i 51

8

Ci~m!Oi~m!, ~11!

consists precisely of the same operatorsOi(m) used in the
SM case, weighted by the Wilson coefficientsCi(m). They
read

O15~ s̄LgmTacL!~ c̄LgmTabL!,

O25~ s̄LgmcL!~ c̄LgmbL!,

O35~ s̄LgmbL!(
q

~ q̄gmq!,

O45~ s̄LgmTabL!(
q

~ q̄gmTaq!,

O55~ s̄LgmgngrbL!(
q

~ q̄gmgngrq!,

O65~ s̄LgmgngrTabL!(
q

~ q̄gmgngrTaq!,

O75
e

16p2 m̄b~m!~ s̄LsmnbR!Fmn ,

O85
gs

16p2 m̄b~m!~ s̄LsmnTabR!Gmn
a ,

~12!

whereTa (a51,8) are SU~3! color generators andgs ande
are the strong and electromagnetic coupling constants. In
~12!, m̄b(m) is the runningb-quark mass in the modified
minimal subtraction (MS) scheme at the renormalizatio
scalem. Henceforth,m̄q(m) andmq denoteMS running and
pole masses, respectively. To first order inaS , these masses
are related through

m̄q~m!5mqS 11
aS~m!

p
ln

mq
2

m22
4

3

aS~m!

p D . ~13!

Note that the equations of motion have been used when w
ing down the list of operators in Eq.~12!. This is sufficient
since we are interested in on-shell matrix elements@41# and
since we choose to perform the matching by comparing
shell amplitudes obtained in the effective theory with t
corresponding amplitudes in the full theory. The reader w
is interested in doing off-shell matching@and therefore work-
ing in a ~larger! off-shell operator basis# is referred to Ref.
@17#.
4-3
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Working to NLO precision means that one is resumm
all the terms of the formaS

n(mb)lnn(mb /M), as well as
aS(mb) @aS

n(mb)lnn(mb /M)#, whereM stands for one of the
heavy massesMW , mt , or mH . This is achieved by perform
ing the following three steps.

~1! One matches the full standard model theory with
effective theory at a scalemW , of orderM. At this scale, the
matrix elements of the operators in the effective theory le
to the same logarithms as the calculation in the full theo
Consequently, the Wilson coefficientsCi(mW) only pick up
‘‘small’’ QCD corrections, which can be calculated in fixe
order perturbation theory. In the NLO program, the match
has to be worked out at theO(aS) level.

~2! The evolution of these Wilson coefficients fromm
5mW down to m5mb , wheremb is of the order ofmb , is
obtained by solving the appropriate renormalization gro
equation ~RGE!. As the matrix elements of the operato
evaluated at the low scalemb are free of large logarithms, th
latter are contained in resummed form in the Wilson coe
cients. For a NLO calculation, this step has to be perform
using the anomalous dimension matrix up to orderaS

2.
~3! The corrections to the matrix elements of the operat

^sguOi(m)ub& at the scalem5mb have to be calculated to
orderaS precision.

The charged Higgs boson enters the NLO calculation o
via step~1!. The Higgs boson contribution to the matchin
condition is obtained in the same way as the SM one@15#;
therefore, we do not repeat any technical details. A gen
remark, however, is in order. In the procedure describ
above all heavy particles~W boson, t quark, and charged
Higgs boson! are integrated out simultaneously at the sc
mW . In the context of a NLO calculation this should be
reasonable approximation providedmH is of the same orde
of magnitude asMW or mt .

Before giving the results of the three steps listed abo
we should briefly mention that instead of the original Wils
coefficientsCi(m) it is convenient to use certain linear com
binations of them, the so-called ‘‘effective Wilson’’ coeffi
cientsCi

eff(m) introduced in Refs.@13,21#

Ci
eff~m!5Ci~m! ~ i 51, . . . ,6!,

C7
eff~m!5C7~m!1(

i 51

6

yiCi~m!,

C8
eff~m!5C8~m!1(

i 51

6

ziCi~m!, ~14!

whereyi and zi are defined in such a way that the leadi
order matrix elementŝsguOi ub& and^sguOi ub& ( i 51,6) are
absorbed in the leading orders terms inC7

eff(m) andC8
eff(m).

The explicit values of$yi% and $zi%, y5(0,0,2 1
3 ,2 4

9 ,2 20
3 ,

2 80
9 ), z5(0,0,1,2 1

6 ,20,2 10
3 ) were obtained in Ref.@21# in

the MS scheme with fully anticommutingg5 ~also used in
the present paper!.
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A. NLO Wilson coefficients at the matching scale
µW : Ci

eff
„µW…

To give the results for the effective Wilson coefficien
Ci

eff at the matching scalemW in a compact form, we write

Ci
eff~mW!5Ci

0,eff~mW!1
aS~mW!

4p
Ci

1,eff~mW!. ~15!

The LO Wilson coefficients at this scale are well know
@42,28#. We decompose them in such a way to render
plicit their dependence on the couplingsX andY:

C2
0,eff~mW!51,

Ci
0,eff~mW!50 ~ i 51,3,4,5,6!,

C7
0,eff~mW!5C7,SM

0 1uYu2C7,YY
0 1~XY* !C7,XY

0 ,

C8
0,eff~mW!5C8,SM

0 1uYu2C8,YY
0 1~XY* !C8,XY

0 . ~16!

The coefficientsC7,SM
0 (mW) andC8,SM

0 (mW) are functions of
x5mt

2/MW
2 , while C7,j

0 (mW) andC8,j
0 (mW) ( j 5YY,XY) are

functions of y5mt
2/mH

2 ; their explicit forms are given in
Appendix A. Note that there is noexplicit dependence of the
matching scalemW in these functions. Whether there is a
implicit mW dependence via thet-quark mass depends on th
precise definition of this mass which has to be specifi
when going beyond leading logarithms. If one chooses,
example, to work withmt(mW), then there is such an im
plicit mW dependence of the lowest order Wilson coefficie
in contrast, when working with the pole massmt there is no
such dependence. We choose to express our~NLO! results in
terms of the pole massmt .

The NLO piecesCi
1,eff(mW) of the Wilson coefficients

have an explicit dependence on the matching scalemW and
for i 57,8 they also explicitly depend on the actual definiti
of the t-quark mass. Initially, when the heavy particles a
integrated out, it is convenient to work out the matchi
conditionsCi

1,eff(mW) for i 57,8 in terms ofm̄t(mW). Using
Eq. ~13!, it is then straightforward to get the correspondi
result expressed in terms of the pole massmt . As in the LO
case we give them in a form where the dependence of
couplingsX andY is explicit:

C1
1,eff~mW!51516 ln

mW
2

MW
2 ,

C4
1,eff~mW!5E01

2

3
ln

mW
2

MW
2 1uYu2EH ,

Ci
1,eff~mW!50 ~ i 52,3,5,6!,

C7
1,eff~mW!5C7,SM

1,eff ~mW!1uYu2C7,YY
1,eff ~mW!

1~XY* !C7,XY
1,eff ~mW!,
4-4
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C8
1,eff~mW!5C8,SM

1,eff ~mW!1uYu2C8,YY
1,eff ~mW!

1~XY* !C8,XY
1,eff ~mW!, ~17!

where for i 57,8 the three terms on the right-hand side c
be written in the form

Ci ,SM
1,eff ~mW!5Wi ,SM1Mi ,SMln

mW
2

MW
2 1Ti ,SMS ln

mt
2

mW
2 2

4

3D ,

Ci ,YY
1,eff~mW!5Wi ,YY1Mi ,YYln

mW
2

mH
2 1Ti ,YYS ln

mt
2

mW
2 2

4

3D ,

Ci ,XY
1,eff~mW!5Wi ,XY1Mi ,XYln

mW
2

mH
2 1Ti ,XYS ln

mt
2

mW
2 2

4

3D .

~18!

Note that in Eq. ~18! the Wi , j and the Mi , j ( j
5SM,XY,YY) terms would be the full result when workin
in terms ofm̄t(mW). The Ti , j terms result when expressin
m̄t(mW) in terms of the pole massmt in the corresponding
lowest order coefficients. Thus, fori 57,8, theTi , j quantities
are

Ti ,SM58x
]Ci ,SM

0,eff ~mW!

]x
,

Ti , j58y
]Ci , j

0,eff~mW!

]y
~ j 5XY,YY!.

~19!

Notice that if one worked with the runningt-quark mass
m̄t(m t) normalized at the scalem t instead of the pole mas
mt , the third terms on the right-hand sides of Eqs.~18!
would have to be replaced byTi , j ln(mt

2/mW
2 ) ( j

5SM,YY,XY). The functions Wi , j , Mi , j , and Ti , j ( j
5SM,XY,YY), together withE0 andEH , are listed in Ap-
pendix A. Our results forC7

1,eff(mW) andC8
1,eff(mW) agree with

those in Refs.@33# and @17#, when taking into account tha
the latter results are expressed in terms ofm̄t(mW). As cor-
rect is also recognized the form ofC1

1,eff(mW) andC4
1,eff(mW)

in the final version of Refs.@27,17#.

B. NLO Wilson coefficients at the low-scaleµb : Ci
eff
„µb…

The evolution from the matching scalemW down to the
low-energy scalemb is described by the RGE

m
d

dm
Ci

eff~m!5Cj
eff~m!g j i

eff~m!. ~20!

The initial conditionsCi
eff(mW) for this equation are given in

Sec. III A, and the anomalous dimension matrixg i j
eff is given

in Appendix B up to orderaS
2, which is the precision neede

for a NLO calculation. The solution of Eq.~20!, obtained
through the procedure described in Ref.@43#, yields for the
coefficient
07400
n

Ci
eff~mb!5Ci

0,eff~mb!1
aS~mb!

4p
Ci

1,eff~mb!, ~21!

the LO term

C7
0,eff~mb!5h16/23C7

0,eff~mW!1
8

3
~h14/232h16/23!C8

0,eff~mW!

1(
i 51

8

hih
a iC2

0,eff~mW! ~22!

and the NLO term

C7
1,eff~mb!5h39/23C7

1,eff~mW!1
8

3
~h37/232h39/23!C8

1,eff~mW!

1S 297 664

14 283
h16/232

7 164 416

357 075
h14/23

1
256 868

14283
h37/232

6 698 884

357075
h39/23DC8

0,eff~mW!

1
37 208

4761
~h39/232h16/23!C7

0,eff~mW!

1(
i 51

8

@eihC4
1,eff~mW!1~ f i1kih!C2

0,eff~mW!

1 l ihC1
1,eff~mW!#hai. ~23!

The symbolh is defined ash5as(mW)/aS(mb); the vectors
ai , hi , ei , f i , ki , and l i are listed in Appendix C. Notice
that Eq.~23! can be used in this form for all models in whic
the same set of coefficientsCi(mW) are nonvanishing. It is
more general than the corresponding Eq.~21! given in Ref.
@21#, which can be used only when the matching scalemW is
fixed at the valueMW .

As far as the other Wilson coefficients are concerned, t
are only needed to LO precision in the complete NLO ana
sis of B(B̄→Xsg). In this precision, the Wilson coefficient
of the four-Fermi operators (i 51, . . . ,6) are thesame as in
the SM. As the coefficientsC3

eff(mb), . . . ,C6
eff(mb) are nu-

merically much smaller thanC2
eff(mb), we neglect contribu-

tions proportional to these small Wilson coefficients in t
amplitude forB(B̄→Xsg) and list here only the LO expres
sions forC1

eff(mb), C2
eff(mb), andC8

eff(mb):

C1
0,eff~mb!5~h6/232h212/23!C2

0,eff~mW!,

C2
0,eff~mb!5S 2

3
h6/231

1

3
h212/23DC2

0,eff~mW!,

C8
0,eff~mb!5h14/23C8

0,eff~mW!

1(
i 51

5

hi8h
ai8C2

0,eff~mW!. ~24!
4-5
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When discussing the contributions due to the charged H
boson, it is convenient to split the Wilson coefficients at t
scale mb into the contributionsCi ,SM

eff (mb), Ci ,YY
eff (mb), and

Ci ,XY
eff (mb):

Ci
eff~mb!5Ci ,SM

eff ~mb!1uYu2Ci ,YY
eff ~mb!1~XY* !Ci ,XY

eff ~mb!.

~25!

As the solution~23! of the renormalization group equatio
~20! is linear in the initial conditions, this splitting is given i
an obvious way in terms of the corresponding splitting at
matching scalemW , presented in Sec. III A.

When calculating NLO results in the numerical analys
in Sec. IV, we use the NLO expression for the strong c
pling constant

aS~m!5
aS~MZ!

v~m! F12
b1

b0

aS~MZ!

4p

ln v~m!

v~m! G ~26!

with

v~m!512b0

aS~MZ!

2p
lnS MZ

m D , ~27!

where b05 23
3 and b15 116

3 . However, for LO results we
always use the LO expression foraS(m), i.e., b1 is put to
zero in Eq.~26!.

C. Branching ratio for B„B̄˜Xsg…

We first give the formulas for the quark decayb→Xsg
and discuss the meson decayB̄→Xsg later. In a NLO calcu-
lation, b→Xsg involves the subprocessesb→sg ~including
virtual corrections! andb→sgg, i.e., the gluon bremsstrah
lung process. The amplitude for the first can be written a

A~b→sg!52
4GF

&

Vts
! VtbD̄^sguO7ub& tree, ~28!

where the reduced amplitudeD̄ is

D̄5C7
0,eff~mb!1

aS~mb!

4p
@C7

1,eff~mb!1V~mb!#. ~29!

The symbolV(mb) is defined as

V~mb!5(
i 51

8

Ci
0,eff~mb!F r i1

1

2
g i7

0,eff ln
mb

2

mb
2G2

16

3
C7

0,eff~mb!.

~30!

In writing Eq. ~28! we directly converted the running mas
factor mb(mb), which appears in the definition of the oper
tor O7 in Eq. ~12!, into the pole massmb by making use of
Eq. ~13!. This conversion is absorbed into the functio
V(mb) and consequently the symbol^sguO7ub& tree is the
tree-level matrix element of the operatorO7 , where the run-
ning mass factormb(mb) is understood to be replaced by th
pole massmb . In the previous literature, this procedure w
done in two steps. First,mb(mb) was expressed in terms o
mb(mb) and then in turnmb(mb) was converted into the pol
07400
s
e

e

s
-

massmb . This last step brought into the game the quantityF
~see, e.g., Ref.@18#!. The elementsg i7

0,eff of the anomalous
dimension matrix and the virtual correction functionsr i in
Eq. ~30! are given in Appendixes B and D, respective
Note, that some parts of the bremsstrahlung contributi
associated withO7 are effectively transferred tor 7 as de-
tailed in Ref.@18#.

A splitting analogous to that in Eq.~25! holds also for the
reduced amplitudeD̄,

D̄5D̄SM1uYu2D̄YY1~XY* !D̄XY , ~31!

as well as for the functionV(mb).
FromA(b→sg) in Eq. ~28! the decay widthG(b→sg) is

easily obtained to be

G~b→sg!5
GF

2

32p4 uVts
! Vtbu2aemmb

5uD̄u2. ~32!

In the numerics we discard those terms inuD̄u2 which are
explicitly of orderaS

2. Note, however, that there are implic
higher order terms which are retained. Such terms arise
example because we evaluate the quantityh
5@aS(mW)/aS(mb)# using the NLO expression foraS also
in those Wilson coefficients which are needed only in L
precision.

To obtain the inclusive rate forb→Xsg consistently at the
NLO level, we have to take into account the bremsstrahlu
contributions@10,44#. The corresponding decay widthG(b
→sgg) is of the form

G~b→sgg!5
GF

2

32p4 uVts
! Vtbu2aemmb

5A, ~33!

whereA is

A5
aS~mb!

p (
i , j 51;i< j

8

Re$Ci
0,eff~mb!@Cj

0,eff~mb!#* f i j %.

~34!

As in the virtual contributions we putCi
0,eff50 for i

53, . . . ,6. Incontrast to Ref.@21#, we do not introduce a
cutoff when the photon gets soft. In order to cancel the
frared singularity, which appears in this case, we include
in Ref. @18# the virtual photonic correction to the processb
→sg, which we absorb into the quantityf 88 „see Eq.~B9! in
Ref. @18#…. Note also that in our approach the termf 77 is
already absorbed into the functionr 7 . The nonvanishingf i j
terms, which have to be taken into account explicitly in E
~34!, are listed in Appendix E.

In order to get the decay width for the meson decayB̄
→Xsg we take into account the nonperturbative correctio
which scale as 1/mb

2 @23# and those which scale as 1/mc
2 @26#.

The decay widthG(B̄→Xsg) then reads
4-6



t

el

th
o
ge

n

he

in

e-
in

er-

, in
ive

ers
in
r

hing

of
a-

g

do
t

ove
erest
cu-
to

the
in

ho-

-

en-
. At

TWO HIGGS DOUBLET MODEL PREDICTIONS FOR . . . PHYSICAL REVIEW D 58 074004
G~B̄→Xsg!5
GF

2

32p4 uVts
! Vtbu2aemmb

5

3H uD̄u21A1
dg

NP

mb
2 uC7

0,eff~mb!u2

1
dc

NP

mc
2 ReF @C7

0,eff~mb!#*

3S C2
0,eff~mb!2

1

6
C1

0,eff~mb! D G J . ~35!

Since we work in the new operator basis, a contribution
the term in 1/mc

2 comes not only fromO2 , as was incorrectly
assumed in Ref.@17#, but also fromO1 . The nonperturbative
quantitiesdg

NP @23# anddc
NP @26# in Eq. ~35! are

dg
NP5

l1

2
2

9l2

2
, dc

NP52
l2

9
, ~36!

where l1 and l2 parametrize the kinetic energy of theb
quark and the chromomagnetic interactions, respectiv
Their values arel1520.5 GeV2 andl2520.12 GeV2. Of
these two parameters, the first has larger uncertainties
the second one. As will appear from the final formula f
B(B̄→Xsg), the overalll1 dependence cancels to a lar
extent.

The branching ratio is then obtained as

B~B̄→Xsg!5
G~B̄→Xsg!

GSL
BSL , ~37!

whereBSL is the measured semileptonic branching ratio a
the semileptonic decay widthGSL is given by

GSL5
GF

2

192p3 uVcbu2mb
5g~z!S 12

2aS~m̄b!

3p
f ~z!1

dSL
NP

mb
2 D ;

z5
mc

2

mb
2 . ~38!

The phase space functiong(z) and the~approximated! QCD-
radiation functionf (z) @45# in Eq. ~38! are

g~z!5128z18z32z4212z2ln z,

f ~z!5S p22
31

4 D ~12Az!21
3

2
~39!

and the nonperturbative correctiondSL
NP reads@24,25#

dSL
NP5

l1

2
1

3l2

2 F124
~12z!4

g~z! G . ~40!

In Eq. ~38! m̄b is the renormalization scale relevant to t
semileptonic process, which isa priori different from the
renormalization scalemb in the radiative decay, as stressed
Ref. @27#. However, as pointed out in Ref.@46#, the identifi-
07400
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cationm̄b5mb turns out to be more conservative. We ther
fore usem̄b5mb in the numerical analysis. Furthermore,
the evaluation of Eq.~37!, we do not expand 1/GSL in powers
of aS .

IV. RESULTS

In this section we discuss results and theoretical unc
tainties of the NLO calculation ofB(B̄→Xsg) in 2HDMs.
As will be shown, these uncertainties can be very large
contrast with what is found in the SM. For reference, we g
our SM result

B~B̄→Xsg!5@3.5760.12
0.01~mb!60.08

0.00~mW!60.27
0.29~param!#

31024. ~41!

The central value 3.5731024 is obtained formb54.8 GeV,
mW5MW and the central values of the input paramet
listed in Table I of Appendix F. The low-scale variation
the interval @2.4,9.6# GeV gives the maximum value fo
B(B̄→Xsg) at mb54.2 GeV and the minimum atmb
59.6 GeV. The matching scale dependence of the branc
ratio is monotonically decreasing for increasingmW : from
the central value in Eq.~41! B(B̄→Xsg) is reduced by 2% at
mW5mt . The value 3.5731024 in Eq. ~41! reduces to
3.4631024 when the factor 1/GSL in Eq. ~37! is expanded in
aS .

Our results for the branching ratioB(B̄→Xsg) in the
class of 2HDMs considered, is parametrized in terms
$X,Y,mH%. We limit the range of this three-dimensional p
rameter space as follows. We fixY to small real values of
O~1! and scanX in the complex plane without ever violatin
the perturbativity requirement onX andY discussed in Ref.
@32#. As explained in Ref.@47#, the value ofmH in 2HDMs
can be as low as the LEP I lower bound of 45 GeV. We
not strictly apply cuts on$X,Y,mH% due to the measuremen
of Rb or of other processes such asB-B̄ mixing with virtual
exchange of charged Higgs bosons, which could rem
some corners of the parameter space considered. Our int
is more to show some theoretical features of the NLO cal
lation of B(B̄→Xsg) in regions as wide as possible and
discuss constraints due to the decayB̄→Xsg itself. For the
numerical evaluations, unless otherwise specified, we use
central value of the input parameters listed in Table I
Appendix F. The values of the matching and low scale, c
sen respectively in the intervals@MW ,max(mt ,mH)# and@2.4,
9.6# GeV, are explicitly given for each result presented.

In order to investigate the reliability of the NLO predic
tion for the branching ratio, we study the termuD̄u2, which
dominates the expression within curly brackets in Eq.~35!.
Notice thatuD̄u2 encapsulates all the matching scale dep
dence and the bulk of the dependence on the low scale
the NLO level, the procedure of squaringD̄ dictated by per-
turbation theory, in which terms ofO(aS

2) are omitted, gives

uD̄u25uC7
0,eff~mb!u2$112 Re~DD̄ !%, ~42!
4-7
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whereDD̄ is defined as@see Eq.~29!#

DD̄[
D̄2C7

0,eff~mb!

C7
0,eff~mb!

5S aS~mb!

4p D C7
1,eff~mb!1V~mb!

C7
0,eff~mb!

.

~43!

If uDD̄u is not small, the formally next to next to leadin
order ~NNLO! term uDD̄u2, dropped in Eq.~42!, is numeri-
cally relevant. Its omission can lead to branching ratios w
a large dependence onmb , or in extreme cases, even
negative values for the branching ratio. In these situatio
the truncation of the perturbative expansion ofD̄ at the NLO
level is certainly not justified. As we shall see, the size
uDD̄u depends crucially on the values ofX, Y, andmH . We
split our analysis as follows. In Sec. IV A, we disentang
the effect of the couplingsX and Y by studying the NLO
contributions to the Higgs componentsD̄XY and D̄YY of the
reduced amplitudeD̄. In Sec. IV B we illustrate predictions
for the branching ratio for realX and Y couplings, giving
particular emphasis to cases in which the results are hig
unstable or altogether unacceptable. In Sec. IV C we disc
in detail type-II models, for which the NLO corrections a
under control, and type-I models for which the reliability
the theoretical prediction depends strongly on the point
parameter space considered. Finally, in Sec. IV D, we st
branching ratios andCP asymmetries in the presence
complex couplings, and outline regions of parameter sp
where these predictions are trustworthy.

A. Amplitude: X-Y independent analysis

Before analyzing the size of the various corrections wit
2HDMs, it is worth reviewing the situation in the SM. Ther
as it is was first observed in Ref.@21#, the NLO contribution
to the matching condition tends to cancel the contribut
due to the NLO evolution from the matching scalemW to the
low-energy scalemb ~see upper frame in Fig. 1!. Indeed,
C7,SM

1,eff , which is 12% ofC7,SM
0,eff at mW , is practically negli-

gible for mbP@2.4,9.6# GeV. The dominant NLO effect is
therefore due toVSM(mb) which, in the same range ofmb , is
at most 20% of the leading termC7,SM

0,eff (mb) and vanishes
exactly atmb;3.5 GeV. These features are illustrated in F
2. The size ofVSM(mb) results from cancellations among th
individual contributions of the four operatorsO1 , O2 , O7 ,
andO8 retained in Eq.~30!. The details of the above de
scribed cancellations and, more generally, of the distribu
of the complete NLO correction among the individual term
in Eq. ~29!, are specific to theMS scheme~with anticommut-
ing g5) and could be altered by a different choice of schem
We remind that only the completeD̄SM term as well as the
final B(B̄→Xsg) are scheme independent, up to higher
der.

One is naturally led to ask whether the cancellatio
among different sets of NLO corrections observed in the
are spoiled in 2HDMs. To address this issue, we investig
the building blocksD̄XY and D̄YY defined in Eq.~31!, for a
specific value ofmH . In Fig. 2, we show the real parts o
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D̄XY andD̄YY for mH5100 GeV, together with the real pa

of D̄SM. Even when considering realX and Y couplings,
imaginary parts toD̄ come from the absorptive terms of th
loop corrections in Eq.~30!. As it can be seen from Eq.~42!,
the imaginary parts ofD̄XY , D̄YY, andD̄SM do not contrib-
ute to B(B̄→Xsg) at this order of perturbation theory ifX
andY are real. In the remainder of this section, therefore, a
reference to these components is understood as a referen
their real parts.

Unlike in the SM, the NLO corrections coming from
C7,XY

1,eff (mb) andVXY(mb), have roughly the same size~;20%!
and the same sign, formH5100 GeV. The combined correc
tion

FIG. 1. RGE evolution of the Wilson coefficientsC7
eff , at the

LO ~with NLO aS) ~dashed lines! and at the NLO~solid lines!, for
mW5MW . The upper frame shows the SM coefficients, the low
one the coefficientsC7,YY

eff , C7,XY
eff , for mH5100 GeV. The needed

input parameters are fixed at their central values listed in Table
Appendix E.

FIG. 2. Low-scale dependence of the termD̄ ~solid line! of the
LO coefficient C7

0,eff(mb) ~with NLO aS) ~dashed line!, and of
C7

eff(mb) ~dotted lines!, for mW5MW . For D̄XY andD̄YY , the value
mH5100 GeV was used. The needed input parameters are fixe
their central values listed in Table I in Appendix F.
4-8
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DD̄XY[
D̄XY2C7,XY

0,eff ~mb!

C7,XY
0,eff ~mb!

5S aS~mb!

4p D C7,XY
1,eff ~mb!1VXY~mb!

C7,XY
0,eff ~mb!

~44!

amounts to the considerable values of243 to 236 % when
varying mbP@2.4,9.6# GeV. @We warn the reader here tha
all components of the LO Wilson coefficientC7

0,eff(mb) dis-
cussed in this section and plotted in Figs. 1 and 2, are ev
ated with NLOaS .# Differently than in the SM, there is no
scalemb in the range considered, at which the LO and NL
prediction forD̄XY coincide. Similar results hold forD̄YY.

The change in matching scale frommW5MW ~value used
for Fig. 2! to, say,mW5mH , is practically inconsequentia
for mH5100 GeV. It becomes very relevant for large valu
of mH , since it crucially affects the size of the NLO corre
tions. FormH5500 GeV, as shown in Fig. 3, the correctio
DD̄XY reduces to237 and231 % when varyingmb in the
usual interval@2.4,9.6# GeV, whereas values of251 and
245 % are obtained formW5MW . Notice that, for mH

5500 GeV, uD̄XYu is roughly ten times smaller thanuD̄SMu
andD̄YY completely negligible. When using the same matc
ing scalemW5500 GeV for the SM contribution, the cance
lation between the NLO correction to the matching condit
and the NLO evolution of the Wilson coefficientC7,SM

eff does
not occur anymore. Large cancellations are instead obse
betweenVSM(mb) and C7,SM

1,eff (mb). The complete correction
uDD̄SMu ranges still between 19 and 2 % formb

FIG. 3. Low-scale dependence of the termD̄ ~solid lines! of the
LO coefficient C7

0,eff(mb) ~with NLO aS) ~dashed lines!, and of
C7

eff(mb) ~dotted lines!, for mH5500 GeV. The matching scalemW

5MW is used in the upper frame andmW5mH in the lower one.
The needed input parameters are fixed at their central values l
in Table I in Appendix F.
07400
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P@2.4,9.6# GeV, but the point where NLO and LO predic
tions for D̄SM coincide is pushed to the higher end ofmb .
These results imply that for heavyH1 and large enoughX
and Y couplings@to lift at least D̄XY to be ofO(D̄SM)#, a
choice ofmW of O(mH), instead thanO(MW), minimizes
the size of the NLO corrections.

We draw attention to the fact that the sensitivity of t
reduced amplitudeD̄ to mH is weaker than that of the Wilson
coefficientC7

eff(mW) at the matching scale. It is interesting
see that the coefficientsC7,SM

eff andC7,XY
eff are almost identical

at the matching scalemW for mH5100 GeV. This feature is
clearly visible in Fig. 1, where the matching scalemW
5MW is used.~It remains true for allmWP@MW ,mt#.) We
observe in Fig. 1 that the RGE flow frommW to mb intro-
duces a large gap betweenC7,SM

eff (mb) andC7,XY
eff (mb), which is

then somewhat widened at the level of the reduced amplit
D̄ by the inclusion of theV(mb) contribution. At mb

P@2.4,9.6# GeV, D̄XY is about a factor of three smaller tha
D̄SM.

When going to physical observables such asB(B̄
→Xsg), the individual building blocks ofD̄, discussed
above in a coupling-independent way, are weighted acco
ing to the values of the couplingsX andY.

B. Branching ratio: Real couplings

The almost perfect flatness ofD̄YY and D̄XY shown in
Figs. 2 and 3, should not lead to the conclusion that the N
prediction forB(B̄→Xsg) is well behaved. It was explicitly
shown in Ref.@27#, by expanding the Wilson coefficient
aroundmb5mb , that the dominant scale dependence of
form aS(mb)ln(mb /mb) is cancelled in the complete NLO
expression forD̄ in Eq. ~29! and consequently also inuD̄u2.
If the NLO corrections are large enough to reduce subs
tially the magnitude of the LO term,uD̄u2 becomes sensitive
to higher order dependence onmb of the form
aS

2(mb)lnp(mb /mb) (p51,2). The flatness ofD̄ seems to in-
dicate that the omitted NNLO termuDD̄u2 would cancel to a
large extent this remainingmb dependence. Nevertheles
whether the omitteduDD̄u2 in Eq. ~42! is the bulk of the
NNLO corrections can only be decided when a compl
NNLO calculation is at hand.

It is clear that the reliability of the NLO prediction for th
branching ratio, which is linked to the size ofDD̄, depends
on the values ofX andY. For a givenmH , it is possible to
choose these couplings in such a way that the reduced
plitude D̄ is dominated, for example, by the Higgs contrib
tion D̄XY . For such points in the parameter space$X,Y,mH%,
the size of the NLO corrections to the branching ratio is th
roughly 2 Re(DD̄XY), i.e., about280% formH5100 GeV. In
this case, the NLO corrections substantially reduce the le
ing order prediction. As expected, the resulting scale dep
dence of the branching ratioB(B̄→Xsg) is large, viz. about
40%. ForY51 and the same value ofmH , D̄XY completely
dominates the branching ratio foruXu>20, outside the range
shown in Figs. 4. The prediction forB(B̄→Xsg) is then,

ed
4-9
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however, far above the band of values allowed by the CL
measurement.

Moreover, it is possible to chooseX andY in such a way
that Re(DD̄),250%. As Eq.~42! shows, this choice leads t
a negative NLO prediction forB(B̄→Xsg). Needless to say
in such a situation higher order corrections to the NLO c
culation are mandatory to obtain sensible results. In our r
resentative case ofmH5100 GeV andY51 illustrated in
Fig. 4, the range ofX corresponding to a negative branchin
ratio is roughly210,X,22. A comparison with the uppe
frame of this figure shows that, given the very large sc
dependence of the LO calculation, one could have gues
the pathological situation which is encountered at the N
level.

Reliable predictions for the branching ratio with a mi
scale dependence are obtained only forX.21 ~see lower
frame of Fig. 4!. For these values, the SM contribution dom
nates, but the Higgs contribution proportional toXY* is still
large enough to produce a sharp raise ofB(B̄→Xsg) whenX
increases from21 to 2. Notice that forY51 the valuesX
521 and X51 correspond respectively to the ordina
2HDM of type I and type II with tanb51. Type-I models,
however, are not always so stable and well behaved as in
case described above. ForY51 andX521 ~corresponding
to tanb51), it is enough to lowermH to 45 GeV to find a
low-scale dependence of260%

140% ~see Fig. 7!. KeepingmH at
100 GeV and increasingY to 2, we find that forX522
~corresponding to a type-I model with tanb50.5), the
branching ratio is negative for all values ofmb
P@2.4,9.6# GeV.

FIG. 4. Branching ratio as a function of the couplingX, for Y
51 and mH5100 GeV. The upper~lower! frame shows the LO
~NLO! result formb54.8 GeV~solid lines!, mb52.4 GeV~dashed
lines!, and mb59.6 GeV ~dash-dotted lines!, and matching scale
mW5mH5100 GeV. The needed input parameters are fixed at t
central values listed in Table I in Appendix F. Superimposed is
range of values allowed by the CLEO measurement.
07400
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Going to heavier Higgs masses, e.g.,mH5500 GeV, we
find for Y51 the same qualitative features as in Fig. 4, b
shifted to larger ranges ofuXu. We should warn the reade
however, that for large enoughuXu, when the Higgs contribu-
tion dominates over the SM one, the stability of the bran
ing ratio becomes worse. The NLO corrections have a m
dramatic dependence on the particular matching scale
sen, than in the casemH5100 GeV. Indeed, formW5mH
5500 GeV, the relevant correction for the branching ra
2 Re(DD̄XY) is ;270%, but exceeds2100% for mW
5MW .

C. Type-I and type-II models

Theoretical predictions for the branching ratio in type
models stand, in general, on rather solid ground. In Fig
we show these predictions in a type-II model with tanb
52, for 100<mH<600 GeV. This value of tanb is particu-
larly interesting since already for tanb>2, the branching ra-
tio becomes insensitive to the actual value of this variab
the contributionD̄YY is, in fact, suppressed by the couplin
uYu2<1/4, whereas the contributionD̄XY is multiplied by the
couplingXY* 51, for any value of tanb. For tanb<2, the
branching ratio grows very rapidly when tanb decreases and
can be made compatible with existing measurements only
large values ofmH .

The upper frame of Fig. 5 shows the low-scale dep
dence ofB(B̄→Xsg) for matching scalemW5mH , for mH
.100 GeV. It is less than 10% for any value ofmH above
the lower bound at the CERNe1e2 collider LEP of 45 GeV.
Such a small scale uncertainty is a generic feature of typ

ir
e

FIG. 5. Branching ratio as a function ofmH in a 2HDM of type
II, for three different choices of the low scale:mb52.4, 4.8, 9.6
GeV andmW5mH ~upper frame!, and for for three different choices
of the matching scalemW5MW , mt , mH , andmb54.8 GeV. The
needed input parameters are fixed at their central values liste
Table I in Appendix F.
4-10
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models and remains true for values of tanb as small as 0.5
The lower frame in Fig. 5 shows the~very weak! matching
scale dependence as obtained by varyingmW in the interval
@MW ,max(mt ,mH)#. We point out that the lowest estimate
B(B̄→Xsg) comes from the largest value ofmW in this in-
terval.

In type-II models, the theoretical estimate ofB(B̄
→Xsg) can be well above the range (124.2)31024 indi-
cated by the CLEO Collaboration as the band of experim
tally allowed values. It is therefore interesting to establ
with some accuracy which values of$tanb,mH% are excluded
by possible measurements of the branching ratioB(B̄
→Xsg). Our results are given in Fig. 6, where we show t
contour of the region excluded by the upper bound obtai
by CLEO, 4.231024, as well as for other two hypothetica
values, 3.431024 and 5.031024; the latter one is not far
from the upper bound obtained by the ALEPH Collaboratio
These contours are obtained by finding the minimum
B(B̄→Xsg), when varying simultaneously the input param
eters within their errors~see Table I in Appendix F! and the
two scalesmb andmW in the ranges 2.4<mb<9.6 GeV and
MW<mW<max(mt ,mH). For tanb50.5, 1, 5, we exclude re
spectivelymH<375, 289, 255 GeV. Notice that the flatne
of the curves shown in Fig. 5 towards the higher end ofmH ,
causes a high sensitivity of these bounds on all details of
calculation. Different treatments of the infrared singularit
when the photon gets soft~e.g., with a cut in the photon
energy@21#! and the possible expansion of 1/GSL in powers
of aS could alter the branching ratio at the 1% level, i.
well within the estimated theoretical uncertainty. These
tails, however, could still produce shifts of several tens
GeV, in either direction, in the lower bounds quoted abo

Branching ratios in type-I models can be reliably pr
dicted for mH.100 GeV and tanb.1. Theoretical results
for this range of parameters fall within the CLEO band
24.2)31024, as it can be seen in Fig. 7 for tanb51 and
100<mH<600 GeV. Larger values of tanb decrease the
Higgs contribution to the branching ratio, giving therefo
values closer to the SM prediction. Lower values ofmH
~and/or tanb,1) can produce results outside the CLE
range. For these parameters, however, the theoretical pr
tions are unstable under scale variation and, at times, ill

FIG. 6. Contour plot in (tanb,mH) obtained by using the NLO
expression for the branching ratioB(B̄→Xsg) and possible experi-
mental upper bounds~see text!. The allowed region is above th
corresponding curves.
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fined. As shown in Fig. 7, a scale dependence of260%
140% is

obtained formH545 GeV and tanb51. For tanb,1, nega-
tive values of the branching ratio are found already formH
5100 GeV.

D. Branching ratio: Complex couplings and rate asymmetries

In this section we study several aspects of the decaB̄
→Xsg in the presence of complexX and Y couplings. Par-
ticularly motivating is the observation that the measurem
of B(B̄→Xsg) yields strong constraints on Im(XY* ) @31,32#.
In turn, these constraints limit the possibility of having lar
indirect CP asymmetries in neutralB decays such asB
→cKs @32#. This observation is based on a LO analys
whose reliability and stability under scale variation was n
enquired. We plan to investigate this aspect and to ch
how the bound in Ref.@32# may be modified by the inclusion
of NLO corrections.

The bound of Ref.@32# on Im(XY* ) is obtained as fol-
lows. Since the LO branching ratio is proportional
uC7

0,eff(mb)u2, the upper boundB(B̄→Xsg)<4.231024 from
the CLEO measurement implies an upper bound
uC7

0,eff(mb)u2, and therefore on Im(XY* ) when

C7
0,eff~mb!5$C7,SM

0,eff ~mb!1uYu2C7,YY
0,eff ~mb!

1Re~XY* !C7,XY
0,eff ~mb!%1 i Im~XY* !C7,XY

0,eff ~mb!

5 i Im~XY* !C7,XY
0,eff ~mb!, ~45!

i.e., when the real parts of the charged Higgs contributio
cancel the SM coefficientC7,SM

0,eff (mb). An inspection of the
upper frame of Fig. 4 shows that, formH5100 GeV andY
51, a vanishing branching ratio is induced by the real co
pling X522. The choice of complex couplingsX andY with
Y51 and ReX522, therefore, fulfills to a good approxima
tion the condition~45!, for all values of ImX. The corre-
sponding branching ratio, obtained with the central value
the input parameters,mW5mH, andmb5mb , and shown in
Fig. 8 as a function of ImX, equals 4.231024 at uIm Xu
;2. For the chosen Higgs boson mass,mH5100 GeV, there-
fore, the upper bound onuIm(XY* )u is ;2. Notice that this

FIG. 7. Branching ratio as a function ofmH in a 2HDM of type
I, for three different choices of the low scale:mb52.4, 4.8, 9.6 GeV
and for mW5mH . The needed input parameters are fixed at th
central values listed in Table I in Appendix F.
4-11
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procedure yields only a first estimate for the actual L
bound, since the errors of the input parameters have not b
considered.

We observe that a variation of the low-scalemb in the
usual range leads to large uncertainties for the branch
ratio, throughout the whole range of ImX. In particular, for
uIm Xu;2, this uncertainty amounts to625%. When includ-
ing NLO corrections, the situation does not improve, as
lower frame of Fig. 8 shows. It is interesting to see that
value of B(B̄→Xsg) for mb5mb , at uIm Xu;2 drops from
4.231024 to roughly 131024. The intersection of the NLO
curve for mb5mb with the CLEO upper bound is at ImX
;4. This procedure is essentially the construction of
NLO bound foruIm(XY* )u in the sense specified before.~In
the actual construction, one should have cancelled also s
real parts ofC7

0,eff with NLO as and small terms coming
from absorptive parts of virtual corrections.!

The inclusion of NLO corrections verifies explicitly th
instability of the LO upper bound on Im(XY* ). Given the fact
that the NLO predictions forB(B̄→Xsg) are plagued by
even larger scale uncertainties, it is hard to believe that
NLO candidate qualifies as a reliable bound.

Not all complexX andY couplings yield NLO predictions
as problematic as those shown in Fig. 8. A typical case
which the perturbative expansion ofB(B̄→Xsg) can be
safely truncated at the NLO level is identified by:Y51/2,
X52 exp(if), andmH5100 GeV. Indeed, for these param
eters, the real and imaginary part ofuYu2D̄YY and (XY* )D̄XY

are dominated byD̄SM. Therefore, the low-scale dependen

FIG. 8. Branching ratio as a function of ImX, with fixed ReX
522 and Y51, for mW5mH and different low scales:mb

54.8 GeV ~solid lines!, mb52.4 GeV ~dashed lines!, and mb

59.6 GeV ~dash-dotted lines!. The needed input parameters a
fixed at their central values listed in Table I in Appendix F. Sup
imposed is the range of values allowed by the CLEO measurem
The upper~lower! frame shows the LO~NLO! result.
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of the branching ratio is not much larger than the very m
one obtained for the SM estimate, as shown in Fig. 9. T
case is particularly interesting since it gives rise to a theo
ical prediction of B(B̄→Xsg) consistent with the CLEO
measurement, even for a relatively small value ofmH . Such
a light charged Higgs boson can contribute to the decay
the t quark, through the modet→H1b.

We now investigateCP asymmetries induced by comple
couplings. It is well known that in the SM a nonvanishin
direct CP rate asymmetry

aCP5
B~B̄→Xsg!2B~B→Xsg!

B~B̄→Xsg!1B~B→Xsg!
~46!

is due to nontrivial relative weak and relative strong pha
in the decay amplitude forb→sg ~as well as the one forb
→sgg). We write the amplitude ofb→sg and of theCP
conjugated process as

A~b→sg!5~VubVus* !Au1~VcbVcs* !Ac1~VtbVts* !At ,

A~ b̄→ s̄g!5~VubVus* !* Au1~VcbVcs* !* Ac1~VtbVts* !* At ,
~47!

where the dependence on the CKM matrix is manife
Working in the LO approximation, the quantitiesAu , Ac ,
and At are real, henceuA(b̄→ s̄g)u25uA(b→sg)u2, and
consequentlyaCP50. Relative strong phases amongAu ,
Ac , andAt only appear at the NLO level, due to absorpti
terms in the loop diagrams. Thus, a nonvanishingCP asym-

-
nt.

FIG. 9. Branching ratio as a function off, where f param-
etrizesX: X52 exp(if), for Y5

1
2 , mH5100 GeV, andmW5mH .

Solid, dashed, and dash-dotted lines correspond, respectivel
mb54.8, 2.4, and 9.6 GeV. The needed input parameters are fi
at their central values listed in Table I in Appendix F. Superi
posed is the range of values allowed by the CLEO measurem
The upper~lower! frame shows the LO~NLO! result.
4-12
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metry results ifVubVus* , VcbVcs* , andVtbVts* have also rela-
tive phases. In the approximationVubVus* 50, which we used
so far, theCP asymmetry vanishes, since unitarity implie
thatVcbVcs* 52VtbVts* . Undoing this approximation, the SM
CP rate asymmetry turns out to be below 1%@48#.

Since theCP rate asymmetry is so tiny in the SM,
would be exciting if the imaginary parts of theX and Y
couplings would induce—together with the absorptive pa
of the NLO loop functions—measurableCP rate asymme-
tries. In order to investigate this question, we switch off t
SM asymmetry by working in the limitVubVus* 50. As an
illustrative example we calculate theCP asymmetries for the
same values of parameters as in Fig. 9, i.e., forX
52 exp(if), Y5 1

2 , and for mH5100 GeV, where the
branching ratio appears to be well behaved. As mentio
above, the NLO prediction for the branching ratio in t
numerator of Eq.~46! is required to obtain the first nonvan
ishing term for the rate asymmetry. For the denominator,
can either use the LO or the NLO estimate for the t
branching ratios. The difference amounts to higher or
terms which are not systematically calculated. The respec
results are shown in the upper and lower frame in Fig. 10
a function of f. For this specific choice ofX and Y the
asymmetries are rather modest, at the 1% level. The s
dependence shown by the lower frame is certainly sma
than that in the upper frame. However, since both proced
are in principle viable, one cannot conclude that the result
the CP asymmetries is as reliable as indicated in the low
frame. Although we have not systematically scanned the
rameter space$X,Y,mH%, this is our generic result: choice
of couplingsX andY which render the branching ratio stabl

FIG. 10. CP rate asymmetryaCP as a function off, wheref
parametrizesX: X52 exp(if), for Y5

1
2 , mH5100 GeV, andmW

5mH . Solid, dashed, and dash-dotted lines correspond, res
tively, to mb54.8, 2.4, and 9.6 GeV. The needed input parame
are fixed at their central values listed in Table I in Appendix F.
the upper~lower! frame the LO~NLO! expression for the denomi
nator in Eq.~46! is used. See text for more details.
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i.e., not plagued by a large dependence on the scalemb ,
induce small values ofaCP .

V. CONCLUSIONS

We have presented NLO predictions for the decayB̄
→Xsg in generic 2HDMs with flavor-conserving tree-lev
neutral couplings. We include in this definition multi-Higg
doublet models where all charged Higgs bosons, except
are heavy and completely decoupled at the electrow
scale. Their existence leaves an imprint only in the Yuka
potential where the couplingsX and Y multiplying respec-
tively the down and up term are not necessarily correlat
and in general complex. This generalization allows a sim
taneous study ofB̄→Xsg for different types of 2HDMs by
continuously varying the couplingsX andY. Results for the
well-known type-I and type-II models are then obtained
specific choices of real couplings: only one combination oX
andY, usually denoted as tanb, occurs. Since supersymme
ric models have an enlarged Higgs sector with two Hig
doublets of type II, the results presented here are also a
step towards a complete evaluation of the rate ofB̄→Xsg in
these models. They constitute already a good approxima
for those supersymmetric scenarios, such as gauge-med
supersymmetric models with large tanb, where the Higgs
contribution dominates by far over the genuinely supersy
metric contributions@49#.

Our calculation is carried out using the effective Ham
tonian formalism with on-shell operators. The NLO matc
ing condition for the decayB̄→Xsg was already completely
calculated in Ref.@17# and partially in Ref.@33#. For the
Wilson coefficientsC7

eff(mw) andC8
eff(mw), we find agreement

with the existing results. Consensus is also reached in
final version of Refs.@27,17# on the form ofC1

eff(mw) and
C4

eff(mw) which we present in this paper. We give a gener
ized solution of the RGE needed to obtain the coeffici
C7

eff(mb) at the low-scalemb for values ofmw different from
Mw . We correct the dependence on the Wilson coefficie
of one of the nonperturbative contribution toG(B̄→Xsg),
which is erroneously reported in Ref.@17#.

We have given predictions forB(B̄→Xsg) in 2HDMs as
functions of the parameters$X,Y,mH%. We found that the
theoretical uncertainties of these NLO calculations are
general larger than those obtained in the SM. The quality
our predictions, therefore, depends strongly on the value
the parameters considered. Before attempting a compar
with the existing experimental data, we summarize the th
retical features of our results. We distinguish several ca
~i! When these parameters are such that the SM contribu
is much larger than the Higgs contribution toB(B̄→Xsg),
the reliability of our predictions does not differ much fro
that in the SM. This, however, does not preventB(B̄
→Xsg) from being rather sensitive tomH . ~ii ! For values of
parameters which bring the Higgs contributions to the sa
level as the SM one, with constructive interference betwe
the two, we find in general larger scale dependence tha
the SM. ~iii ! When the Higgs contributions are still of th
same order as the SM contribution, but interfere destr

c-
rs
4-13
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FRANCESCA M. BORZUMATI AND CHRISTOPH GREUB PHYSICAL REVIEW D58 074004
tively with it, we find very large scale dependences and
specific cases, we obtain negative values ofB(B̄→Xsg). ~iv!
When X and Y make the Higgs contributions largely dom
nate over the SM one, we find a scale dependence inB(B̄
→Xsg) of ;40% formH of O(MW). For much larger values
of mH , whenMW

2 !mH
2 , this scale dependence can impro

or worsen according to which value of the matching scale
chosen, i.e., closer tomH or to MW . Obviously, models with
parameters which induce values ofB(B̄→Xsg) highly in-
stable or negative require the inclusion of higher order Q
corrections before a comparison with experimental res
becomes possible.

Type-II models are typical of case~i! and marginally be-
come of case~ii ! for mH at the LEP lower bound of 45 GeV
@47# and for tanb;0.5. The theoretical uncertainty for suc
models is in general below 10%. Similar uncertainties
obtained for type-I models whenmH and/or tanb are large
enough. Rather unstable results are, however, obtained
mH at the lower end of allowed values and tanb&O(1).
However, in these problematic regions, all predictions
tained for type-I models are consistent with the CLEO m
surement ofB(B̄→Xsg). The same is not true for type-I
models where the theoretical predictions are always ab
the SM result. Measurements become then highly constr
ing. Taking into account only the CLEO result, without com
bining it with the still preliminary one from ALEPH, we
excludemH<375 GeV for tanb50.5 andmH<255 GeV for
tanb55. These bounds are very sensitive to details in
definition of the branching ratio~e.g., whether or not it re-
quires an expansion inas of 1/GSL), which give rise to
uncertainties usually not included in the theoretical error
this observable. For the generic 2HDMs which we consid
we find wide regions of parameter space where the theo
cal predictions forB(B̄→Xsg) are reliable and within the
band of values (1.024.2)31024 allowed by the CLEO mea
surement. In particular, we find that within these mode
charged Higgs bosons can still be light enough to be p
duced through a decay of thet quark.

SinceX andY are in general complex, new CP violatin
effects are induced. In particular, the combination Im(XY* )
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is important as it may affect the indirectCP asymmetries in
B→cKs already at the LO. It is known that the measureme
of B(B̄→Xsg) constrains Im(XY* ) @31# and an upper bound
for this quantity has been obtained in Ref.@32# using the LO
calculation. We find that the LO estimate of the branchi
ratio at the values ofX and Y which determine the uppe
bound extracted in Ref.@32# is unstable under scale varia
tion. The addition of NLO corrections tend to shift the L
bound to a higher value. Nevertheless, the scale depend
of B(B̄→Xsg) for the new combination ofX andY needed,
is still too large to conclude that the bound obtained at
NLO level is stable against higher order corrections. T
large instabilities encountered even at this order are du
the fact that the construction of this upper bound requires
almost complete cancellation of the SM contribution.

At the NLO, complex values ofX andY induce also direct
CP rate asymmetries, inB̄→Xsg, which is essentially van-
ishing in the SM. If sizable, a measurement of this obse
able, could provide a handle to detect some of these mod
Unfortunately, we find that combinations of couplings whe
B(B̄→Xsg) is reliably predicted, lead to rate asymmetri
only at the 1% level.

We find that within 2HDMs, the truncation of the pertu
bative series at the NLO level is often inappropriate. This
in sharp contrast with the SM case, where the large LO t
oretical uncertainties are drastically reduced in the NLO c
culation, and the overall size of the NLO corrections is,
comparison, rather modest. It is somehow disturbing to fi
the problematic features described in this paper in mod
which structurally do not differ very much from the SM an
it is conceivable that other extensions may suffer from
same problems.
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APPENDIX A: WILSON COEFFICIENTS AT µW

We list here the functions introduced in the text, which define the Wilson coefficients at the matching scale@see Eqs.
~16!–~18!#.

1. SM case

The LO functions are (x5mt
2/Mw

2 )

C7,SM
0 5

x

24 F28x313x2112x271~18x2212x!ln x

~x21!4 G

C8,SM
0 5

x

8 F2x316x223x2226x ln x

~x21!4 G . ~A1!

In the MS scheme, we have at the NLO
4-14
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E05
x~x2111x218!

12~x21!3 1
x2~4x2216x115!

6~x21!4 ln x2
2

3
ln x2

2

3
,

W7,SM5
216x42122x3180x228x

9~x21!4 Li 2S 12
1

xD1
6x4146x3228x2

3~x21!5 ln2 x

1
2102x52588x422262x313244x221364x1208

81~x21!5 ln x

1
1646x4112 205x3210 740x212509x2436

486~x21!4 ,

W8,SM5
24x4140x3141x21x

6~x21!4 Li 2S 12
1

xD1
217x3231x2

2~x21!5 ln2x

1
2210x511086x414893x312857x221994x1280

216~x21!5 ln x

1
737x4214 102x3228 209x21610x2508

1296~x21!4 ,

M7,SM5
82x51301x41703x322197x211319x22082~162x411242x32756x2!ln x

81~x21!5 ,

M8,SM5
77x52475x421111x31607x211042x21401~918x311674x2!ln x

108~x21!5 ,

T7,SM5
x

3 F47x3263x219x172~18x3130x2224x!ln x

~x21!5 G ,
T8,SM52xF2x329x219x111~6x216x!ln x

~x21!5 G . ~A2!

2. 2HDM case, couplingzYz2

The functions relative to charged Higgs contributions, with couplinguYu2, are at the LO (y5mt
2/mH

2 )

C7,YY
0 5

1

3
C7,SM

0 ~x→y!

C8,YY
0 5

1

3
C8,SM

0 ~x→y!, ~A3!

at the NLO

EH5
1

36
yF7y3236y2145y2161~18y212!ln y

~y21!4 G ,
W7,YY5

2

9
yF8y3237y2118y

~y21!4 Li 2S 12
1

yD1
3y3123y2214y

~y21!5 ln2y1
21y42192y32174y21251y250

9~y21!5 ln y

1
21202y317569y225436y1797

108~y21!4 G2
4

9
EH ,

W8,YY5
1

6
yF13y3217y2130y

~y21!4 Li 2S 12
1

yD2
17y2131y

~y21!5 ln2y1
42y41318y311353y21817y2226

36~y21!5 ln y
074004-15
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1
24451y317650y2218 153y11130

216~y21!4 G2
1

6
EH ,

M7,YY5
1

27
yF214y41149y32153y2213y1312~18y31138y2284y!ln y

~y21!5 G ,
M8,YY5

1

36
yF27y4125y32279y21223y1381~102y21186y!ln y

~y21!5 G ,
T7,YY5

1

3
T7,SM~x→y!,

T8,YY5
1

3
T8,SM~x→y!. ~A4!

3. 2HDM case, coupling„XY* …

Similarly, the functions relative to the charged Higgs contributions proportional to (XY* ) are at the LO

C7,XY
0 5

1

12
yF25y218y231~6y24!ln y

~y21!3 G ,
C8,XY

0 5
1

4
yF2y214y2322 ln y

~y21!3 G ~A5!

and at the NLO

W7,XY5
4

3
yF8y2228y112

3~y21!3 Li 2S 12
1

yD1
3y2114y28

3~y21!4 ln2y1
4y3224y212y16

3~y21!4 ln y1
22y2113y27

~y21!3 G ,
W8,XY5

1

3
yF17y2225y136

2~y21!3 Li 2S 12
1

yD2
17y119

~y21!4 ln2y1
14y3212y21187y13

4~y21!4 ln y2
3~29y2244y1143!

8~y21!3 G ,
M7,XY5

2

9
yF28y3155y2268y1212~6y2128y216!ln y

~y21!4 G ,
M8,XY5

1

6
yF27y3123y2297y1811~34y138!ln y

~y21!4 G ,
T7,XY5

2

3
yF13y2220y172~6y214y24!ln y

~y21!4 G ,
T8,XY52yF2y224y151~4y12!ln y

~y21!4 G . ~A6!

APPENDIX B: ANOMALOUS DIMENSION MATRIX

For completeness, we give the anomalous dimension matrix which govern the evolution of the Wilson coefficients fmw
to mb . It can be expanded perturbatively as

g j i
eff~m!5

aS~m!

4p
g j i

0,eff1
aS

2~m!

~4p!2 g j i
1,eff1O~aS

3!. ~B1!
074004-16



TWO HIGGS DOUBLET MODEL PREDICTIONS FOR . . . PHYSICAL REVIEW D 58 074004
The matrixg j i
0,eff is given by

~B2!

and in theMS scheme with fully anticommutingg5 , g j i
1,eff is @21#

~B3!

APPENDIX C: ‘‘RUNNING’’ NUMBERS

The vectors$ai%, $hi% and$ai8%, $hi8% needed for the evaluation of the low-scale Wilson coefficientsC7
0,eff(mb) andC8

0,eff(mb)
are

$ai%5H 14

23
,

16

23
,

6

23
, 2

12

23
,0.4086,20.4230,20.8994,0.1456J ,
074004-17
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$hi%5H 626 126

272 277
,2

56 281

51 730
,2

3

7
,2

1

14
,

20.6494,20.0380,20.0186,20.0057J , ~C1!

$ai8%5H 14

23
,0.4086,20.4230,20.8994,0.1456J ,

$hi8%5H 313 063

363 036
,20.9135,0.0873,20.0571,0.0209J ; ~C2!

those needed forC7
1,eff(mb) are

$ei%5H 46 61 194

816 831
,2

8516

2217
,0,0,21.9043,20.1008,0.1216,0.0183J ,

$ f i%5$217.3023,8.5027,4.5508,0.7519,2.0040,0.7476,20.5385,0.0914%,

$ki%5$9.9372,27.4878,1.2688,20.2925,22.2923,20.1461,0.1239,0.0812%,

$ l i%5$0.5784,20.3921,20.1429,0.0476,20.1275,0.0317,0.0078,20.0031%. ~C3!

APPENDIX D: VIRTUAL CORRECTION FUNCTIONS r i

The renormalization scale-independent parts of the virtual corrections, encoded in the functionsr i in Eq. ~30!, read

r 152
1

6
r 2 ,

r 25
2

243
$28331144p2z3/21@17282180p221296z~3!1~12962324p2!L1108L2136L3#z

1@648172p21~4322216p2!L136L3#z21@254284p211092L2756L2#z3%

1
16p i

81
$251@4523p219L19L2#z1@23p219L2#z21@28212L#z3%1O~z4!,

r 75
32

9
2

8

9
p2,

r 852
4

27
~23312p226ip!, ~D1!

where z is defined asz5mc
2/mb

2 and the symbolL denotesL5 ln(z). Notice thatr 3 , r 4 , r 5 , and r 6 are not used in the
approximationCi

0,eff(mb)50 (i 53,4,5,6) used for the matrix elements.

APPENDIX E: BREMSSTRAHLUNG f i j TERMS

The expressions for the bremsstrahlung functionsf i j we use in the present paper are obtained after integrating one var
in the expressions given in Appendix B in Ref.@18#. The explicit expressions read~converted to the operator basis 12!

f 115
1

36
f 22,
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fs.

te of
e

TWO HIGGS DOUBLET MODEL PREDICTIONS FOR . . . PHYSICAL REVIEW D 58 074004
f 1252
1

3
f 22,

f 1752
1

6
f 27,

f 1852
1

6
f 28,

f 225
16z

27 E
0

1/z

dt~12zt!2UG~ t !

t
1

1

2U
2

,

f 2752
8z2

9 E
0

1/z

dt~12zt!S G~ t !1
t

2D ,

f 2852
1

3
f 27,

f 785
8

9 S 25

12
2

p2

6 D ,

f 885
1

27 S 16

3
2

4p2

3
14 ln

mb

mb
D , ~E1!

wherez is z5mc
2/mb

2 andmb is the renormalization scale. The functionG(t) appearing in Eq.~E1! reads

G~ t !55 22 arctan2 A t

42t
for t,4,

2p2/212 ln2SAt1At24

2 D 22ip lnSAt1At24

2 D for t>4.

~E2!

APPENDIX F: INPUT PARAMETERS

We list in Table I the values of input parameters used in our calculation. The massesmt , mb , andmc are understood to be
the pole masses of the top, bottom, and charm quark. The value of themt is obtained by combining the results given in Re
@50, 51#; those of the two combinations ofmc andmb are taken from Ref.@24#. For aem and uVts* Vtb /Vcbu2 we refer to Refs.
@52# and @53#, respectively. We takeaS(MZ)50.11960.004, as an average between a pessimistic and optimistic estima
the error@54#, as suggested in Ref.@55#. The value of the semileptonic branching ratioBSL has been recently obtained by th
CLEO Collaboration@56#. The other constants used in the calculation areMW580.33 GeV, l1520.5 GeV2, and l2
50.12 GeV2.

TABLE I. Central value of our input parameters~first line! and their uncertainties~second line!.

as(Mz)
mt

~GeV! mc /mb

mb2mc

~GeV! aem
21 uVts

! Vtb /Vcbu2 BSL

0.119 175 0.29 3.39 130.3 0.95 0.1049
60.004 65.0 60.02 60.04 62.3 60.03 60.0046
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