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Stability of incoherence in an isotropic gas of oscillating neutrinos
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In the early universe and in supernovae, the flavor evolution of massive neutrinos is nonlinear. Previously,
numerical simulations have explored these conditions and have sometimes found collective, synchronized
neutrino oscillations. Here these coherent phenomena are studied in the simplest possible system, an isotropic
gas of two-flavor neutrinos. An analytical method is used to study the stability of the incoherent state. It is
found that the incoherent state hasutral stability. That is, a steady state synchronization can exist for all
nonzero neutrino densities, but the amount depends on the initial conditions. This result is verified by numeri-
cal simulation, but it is shown that numerical simulations are accurate for only a limited time. In more
complicated neutrino systems, the incoherent state could be stable or uns3abe6-282(198)02919-1

PACS numbsdrs): 14.60.Pq

[. INTRODUCTION been related to a variety of physical phenomena in superno-
vae: the success of the explosion mechan[&9,10, r-

There are presently several indications that the neutrinprocess nucleosynthesikl,10, and the velocity distribution
flavors are mixed by neutrino masses. Strong evidencef pulsars[12]. In the early universe, neutrino masses have
comes from solar neutrino observations. Well tested solabeen related to the dark matter probléamd so the forma-
models[1] calculate the rates of nuclear reactions in the Surtion of structure [6], and to big bang nucleosynthe$ik3].
and, hence, also predict neutrino fluxes. These predictionSeutrino flavor in the early universe is relatively uncon-
require the addition of neutrino mixing in order to be com- strained, it could be much larger than the baryon asymmetry,
patible with the many independent observations of solar neun fact, it could even be larger than the entrdfiy#]. Definite
trinos[2]. Strong evidence for another neutrino mass comestatements about any of these possibilities are difficult be-
from observations of neutrinos produced in the atmosphereause of the unique physical conditions present in these as-
by cosmic rays. The atmospheric neutrino flux rafi®sand  trophysical phenomena, the sparsity of astrophysical obser-
the angular dependence of the neutrino fludgsoth imply  vations, and the uncertainty in neutrino mass and mixing
neutrino masses and mixings. In addition, measurements oflues. However there are many present and planned experi-
neutrinos produced by a low-energy accelergfdrsuggest ments trying to overcome these difficulties.
nonzero masses and mixing. Finally, measurements of the It is well known that the dynamics of neutrino flavor are
mass density of the universe and the structure of the univerdafluenced by forward scattering off of background particles.
hint at a massive neutrintsee, e.g.[6]). While it is quite  Neutrino forward scattering off of an electron background is
likely that one or more of these latter experimental results isesponsible for the Mikheyev-Smirnov-WolfenstdiSW)
incorrect, the evidence for nonzero neutrino masses is quiteffect [15] which is relevant to solar neutrino observations
strong. (for reviews, see, e.g.9] and[16]). The large neutrino den-

If neutrinos have masses and mix, then neutrino flavor isities which make the early universe and supernovae sensi-
not conserved, but can vary in space and time. For exampléive to neutrino masses, also mean that neutrino-neutrino for-
electron-neutrinos produced in the Sun can become muon- evard scattering occurs. When neutrinos forward scatter off
tau-neutrinos by the time they reach the Earth. Flavor evoluef other neutrinos, they can exchange flavor coherently via
tion between the source and the detector is used to explain atie weak neutral currentl7]. This nonlinear effect makes
of the above experimental results. Neutrinos are unique imeutrino flavor dynamics a many-body phenomena. Thus,
that their flavor evolution occurs on such large, macroscopigjualitatively new types of neutrino flavor evolution are pos-
scales. This is because neutrino masses, which cause the fible in the early universe and in supernovae.
vor evolution, are so small. The experimental results suggest As detailed above, there are many ways that neutrino
neutrinos masses somewhere in the range fronP HY to  masses can influence supernovae and the early universe.
10 eV. These small values are theoretically palatable becauddost studies of these possibilities simply neglect the
they can emerge naturally from the structure of the standardeutrino-neutrino interaction. However there are a few ex-
model [7]. However they imply that neutrino mass effects ceptions, all of which have included this interaction using a
may most readily be observed on astrophysical scales. density matrix approacfi8,19,2Q. In Ref.[21], the dynami-

Two astrophysical environments, where the effects of acal equations were solved perturbatively to demonstrate that
neutrino mass can be large are the early universe and supéhe neutrino-neutrino interaction altered MSW transitions
novae. Both of these are characterized by large matter demutside a supernovae’s core. A subsequent numerical study
sities which trap neutrinos. This trapping allows neutrinoof this effect found that the incoherent state provided a rea-
densities to become large, which allows neutrino propertiesonable basis for estimating the amount of flavor evolution
such as mass and mixing to influence directly the astrophys{22]. The incoherent state was also found to be sometimes
cal environment. For example, neutrino mass effects havaseful for estimating flavor evolution in the early universe
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[23,24. However these latter numerical studies also ob-approximation—that each neutrino in the gas is described by
served a qualitatively new phenomenon—coherent, synchrats own wave function and is subject to an equivalent poten-
nized neutrino oscillations. It is not surprising that this newtial due to the other neutrinos. The Pauli blocking and other
phenomena was observed in studies of the early universe arg@ich fermion symmetry effects are neglected, so only dilute
not in those of the region outside a supernovae’s core. In thgystems are considered. For these initial inquiries, some fur-
early universe, nonlinear dynamics dominate for a very widgner approximations are made to simplify the physical situa-
range of parameters because, after electron-positron annihjnn, 1t is assumed that there are only two neutrino flavors,
lation, neutrino densities are many orders of magnitudgnat the neutrino gas is uniform and isotropic, and that the
larger than all other fermion densities. Analytical descr'p'physical system does not contain charged leptons or an-

Flor:ﬁ olf thte iypcihlror;!zed soiutlfn have E)heen %bta'ﬁt;ﬁd’ tineutrinos. Under all these assumptions, the flavor dynamics
in the limit of total alignment. However there has been no__ "o easily formulated.

effort to determine if and when the incoherent state or the We choose to work with bilinears of the neutrino wave

synchronized state is stable. This is the problem examined 'Rinction because that is what the neutrino-neutrino potential

this paper. . . .
There is a sizeable literature on how collections of non-?riexpgnds on. In the flavor basis, the one particle density ma-

linear oscillators become synchronizéske, e.g.[26—-33
and references therginMuch of the motivation for these
works comes from the many biological examp|8d], such pe(iztk)=
as the electrical synchrony among cardiac pacemaker cells,

the chirping of crickets in unison, and the synchronous flash-

ing in swarms of fireflies, however, there are also physicaHerev,, is the slowly varying part of the ith neutrino’s wave
examples such as charge-density wal8s. A particularly  function of flavora with energy/momenturk at timet. Neu-
simple model for these phenomena was proposed by Kurarinos are created and destroyed in the flavor basis, but the
moto, which consists of a mean-field theory of coupled osvacuum mass eigenstate basis is more convenient for the

cillators with an arbitrary distribution of frequenci¢g6].  dynamics. The vacuum mass matrix take the simplest form
This model has been extensively studied in the literature. fyhen written in the vacuum mass eigenstate bass,

exhibits a phase transition between the incoherent state and
the synchronized state. This was analytically analyzed in an pyv(iit,k)=UTpe(i:t,k)U 2
notable paper by Strogatz and Miro[l28]. As we shall see,
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neutrino oscillations can be rewritten in a form which is P11 P12 Cy =S
similar to the Kuramoto model. Thus, the same analytical “ls, C
. . . . P21 P22 0 0
techniques used to study collections of nonlinear oscillators
can also be applied to analyze neutrino oscillations. Pee Pen|| Co Sy
In this initial paper, we do not examine neutrino oscilla- X s, c.I €)
P,ue p,up, i 0 (4

tions in either the early universe or a supernovae, but instead
work with a simple, idealized system—a collection of isotro- o0 | is the(time independentvacuum mixing matrix
pic, massive neutrinos with only two flavor degrees of free<,ich rotates from the flavor basis to the vacuum mass
dom. In particular, we do not include a charged lepton backgjgenstate basis wite ,= cos# and S,=sin 4 (the notation
ground[15], an antineutrino background, noi§e0], three  s"-qnsistent with the conventions in RES]). The coupled,
flavor mixing[9], nonforward scattering or anisotrop?ll.  opjinear equationi23,20,21 describing the temporal flavor
In Sec. Il the evolution equations for the neutrino densityy,namics are
matrix are presented. We discuss how these equations ar

formally equivalent to those describing a collection of mag- J
netic moments in an external field with varying intensity. i atP
They evolution equations are rewritten in a phase and angle
parametrization that makes the similarity to the Kuramotoiy the vacuum mass eigenstate basis, the effective potential,
model apparent. This parametrization is also more intuitive; takes the form:
and allows us to identify easily the complex order parameter

of the system. In Sec. Ill we discretize the evolution equa- Al-1 0
tions and numerically study the behavior of the order param-V/(t,k;py) = — [ 0 1

(it k) =[V(t,k;p),p(i;t,k)]. 4

d3q

Umeric ) . 2k +‘/§GFJ ﬁz pv(j;t,q)
eter. The limitations on numerical methods are also dis- J
cussed. In Sec. IV we define a single, governing density (5)
function. The evolution equation describing this is linearized
and solved analytically. In Sec. V, we summarize our result
and discuss their implications. An appendix contains detail
of the calculation.

here A=m3—m? is the difference in neutrino vacuum
Tnasses square®: denotes Fermi’'s constant and k is the
Hieutrino momentum. The first term in the potential describes
the effects of the vacuum mass parameters. The second term
comes from neutrino forward scattering off of background
neutrinos via the weak neutral current. This potential de-
Our goal is to describe the flavor evolution of a dilute, pends on the sum over all neutrinos in the background. One
multi-neutrino gas. The initial assumption is the Hartreeneutrino couples equally to all of the other neutrinos in the

Il. THE FLAVOR EVOLUTION EQUATIONS
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system because of the assumption that our gas is isotropi2(k) is just one per unit volume. For the multi-neutrino
and uniform(in an anisotropic system, there are additionaldensity matrix, cancellations typically occur in the summa-
effects[21]). The neutrino-neutrino forward scattering poten-tion between neutrinos with different phases and different
tial contains flavor diagon4B6] and flavor off-diagondl17]  mixing angles, and so theD (k) is much smaller than the
contributions. Note that the evolution equations do not detotal neutrino density with momentum k. For this paper we
pend on the vacuum mixing anglé, The vacuum mixing adopt an intermediate approach. We apply the parameteriza-
angle enters the dynamics only through the initial conditionstion of Eq. (7) to density matrices which are a sum of iden-
The potential in the dynamical equations only depends otical one-particle density matrices of both “species.” Spe-
the neutrino momentum and the total neutrino density maeifically, the sum is over all “neutrinos” with momentui
trix. Thus, the evolution equation is the same for all neutri-phaseg(t,k) and mixing angled(t,k) plus those with phase
nos with the same momentum. Hence, the equations als@(t,k)+ 7) and mixing angl€=—246(t,k)). In the summa-
apply to sums of the one-particle density matrix over neutrition, complete cancellation occurs between one-particle den-
nos with the same momentum. sity matrices of these two “species.” To fix the ambiguity in
the resultant mixing angle, we additionally require tBbgk)
is always nonnegativénhich will be important in Sec. 1Y,
If all neutrinos happen to have the same phase and mixing
angle at some time, then we can identiifk) as the total
o flavor asymmetry per unit volume, but otherwise it is smaller
A. Angle-phase parametrization than that. In the potential, the total neutrino density matrix is
The elements of the density matrix have straightforwardelevant so there is still an additional summation there over
physical interpretations. However the density matrix formal-different phases, mixing angles and momentum. In the nota-
ism is generally not the best to use for studying the dynamtion adopted here, this summation over phases and mixing
ics. It is very inefficient, since there are fewer free param-angles will be denoted by a discrete summation sign, but we
eters than their are elements of the density matrix. Here wehall henceforth drop the indices labeling different phase and
choose to reparametrize the neutrino evolution dynamics imixing angles with the same momentum.
terms of an effective mixing anglej(t,k), and oscillation It is actually slightly more convenient to use the param-
phase,¢(t,k). Similar parametrizations have been used toeter w instead of the momentum parameker
study how a charged lepton background affects the oscilla-

p(t,k>=2 p(ist,k). (6)

tions of a neutrino(see, e.g.[9] and references theregin _A ®)
Specifically, the density matrix elements can be parametrized AT
as
w is the vacuum oscillation frequency and is inversely pro-
p2At.K) ~ pra(t.k) D(K)cog26(t,k)] portional to the neutrino momenturk, The evolution equa-
2 ’ tions can then be rewritten in the angle-phase parametriza-
tion as

polt,K) = —D(K)sSiM 26(t,k) Jexd i p(t,K)].

@ P2 L art260 RSN B(t,0) -~ p(0)]
The mixing angle lies in the ranger(2)> 6(t,k) >0, while
there are no restrictions o#(t,k). This parametrization is Ib(t,w)
designed to incorporate all of the general constraints on den-  —— "=+ ¢—¢ tan26g)cof 26(t, )]
sity matrix elements. The diagonal elements are real because at
the density matrix is Hermitian. The trace of the density X R(t)cog ¢(t, ) — ¢(t)]. (9)

matrix is the total neutrino density and it is a conserved

quantity. It drops out of the evolution equations, SO we NeeGne neytrino-neutrino forward scattering potential depends
only to parameterize the difference of the diagonal element%n the sum over all neutrinos in the background and this

which is the flavor asymmetry in the neutrino background.Fnters the dynamics in the parametégs & andR.

The trace of the square of the density matrix is proportional Here 6 is the average mixing angle, defined as
to the total entropy of the systefd8] and is a conserved F '

guantity because we have neglected dissipative effects like AV, 1
nonforward scattering. This constraint forces the magnitude cogng)zf —¢ E cog26(t,w)] (10)
squared of the elements in Eqg) to be time independent, No Ng
and that magnitude is denoted here k). ) i i

Because this parameterization satisfies all of the generdfhe€reNg is the total number of terms in the discrete sum and
constraints on a neutrino density matrix, we could use it tdVe IS the total of the continuous sum over the neutrino
describe either the one-particle matricegj:t,k), or the asymmetry distribution
multi-neutrino density matrices of E(), p(t,k). The inter- 2
pretation of the elements of the parametrization is different _
for these different cases. For a one particle density matrix, N, WD(k)dk' (1)
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Although it is not apparent from its definitio is time- Py Py
independent: it is specified by the initial conditions. This QyiRe) L2
conserved quantity follows because neutrino-neutrino for- 2

ward scattering, and so all of the evolution equations respect
L, andL,, the lepton number family symmetrigd7]. A 26 E
charged lepton background would break this symmetry and
then 8 would be time dependent. The parameges just
proportional to cos(&:), and so it too is time independent

£=2v2Grcog 20F)N, Ny (12 ) Im(pey)

i 'Im(plz)
where N,,Ny is the total neutrino asymmetry per unit vol- -Re(®,,) 20 !
ume. ¢ is the neutrino-neutrino forward scattering induced
potential—it is similar to the parameter used in calculations Re(@y)
of the MSW effect[15], A/k=2v2GgN,, whereN, is the
electron density. The neutrino-neutrino potential depends FiG. 1. A graphical representation of neutrino evolution in
only on the net flavor asymmetry in the neutrino backgrounderms of the phase and mixing angle parameterization.
as measured by cod{?. Independent of where it comes
from, £ acts as a coupling between the different oscillators. d

w

All nonlinear effects enter through thecoupling constant. N =g(w)dw 14
The remaining expression in the dynamical equations, @
Egs.(9), is a complex order parameter whereg(w) is normalized to one per unit volume. Note that
d(w) can always be chosen to have a mean of zero. That is,
) dN, 1 we can redefine the phas#(t,w) by going to a rotating
R(texdiy(t)]= sin260) | N, Ng reference frame so that the frequency distribution has a mean
at zero frequencyg.g., w—o+o, ¢— ¢+ ot). Then the
X > si26(t,w)]exdi ¢(t,w)]. average frequencyy, drops out of the dynamical equations.

Thus, the flavor dynamics do not depend on the average
(13y  vacuum frequency, but do depend on the width of the fre-
quency range, and how these frequencies are distributed.

. Also note that it follows from our previous convention of a
This order parameter measures the degree of coherence ﬁ%nnegativdj(k) thatg(w) is always nonnegative
the system. If the neutrino oscillations are incoherent, then ’

R=0, while if the neutrinos are completely synchronized,
then R=1. All of the dynamics depend on this single order
parameter. The angle-phase parametrization allows an instructive

In the limit where the total neutrino background asymme-graphical representation. The details of the graphical repre-
try density vanishes§ vanishes and the situation reduces tosentation are not unique. Different choices in sign conven-
purely vacuum oscillations. Then the dynamical equationstions, or using wave functions instead of density matrices,
Egs.(9), tell us that the mixing angled(t,w), is a constant lead to different representatiofsee, e.g.[16]). For the con-
and that the phase evolves linearly with frequengyFor  ventions assumed here, Fig. 1 shows the graphical represen-
neutrinos created a0 in the flavor eigenstates, the mixing tation. The flavor basis and the vacuum mass eigenstate basis
angle is just the vacuum anglét,w) = 6, the phase will be are represented by three dimensional coordinate systems
¢(t,w)=wt, andD(K) = poo(0K) — p11(0K) /2 cos(d). which coincide along the Impg,) =1m(p,,) axis. The other

For the physical environments of the early universe or aaxes differ in direction by a relative rotation angle & Zhe
supernovae, the neutrinos started off in thermal equilibriumneutrino density matrixas defined hepes represented as a
Flavor asymmetries can be present in equilibrium as chemisingle vector of lengttD at a zenith angle of 2and a tan-
cal potentials, or they may be generated as the neutringgential angle ofp. Vacuum oscillations correspond to pre-
leave equilibrium, but regardless, the neutrinos are expectetession of this vector about the vacuum eigenstate axis at a
to retain an approximately thermal distribution. THugE) is  zenith angle of 2. The neutrino dynamics we are consider-
typically roughly proportional to a Boltzmann factor, and soing depend on the average properties of the entire neutrino
the neutrino asymmetry distribution, Ed.1), is expected to population. The time independent parameter c@g(2orre-
vanish exponentially at large momentum. At small momen-sponds to the average vector component along the vacuum
tum the neutrino asymmetry distribution vanishes because aghass eigenstate direction. The average vector components in
phase space factors. In terms of frequency, a physical netke directions perpendicular to this axis correspond to the
trino asymmetry distribution is nonzero over al>0, but  real and imaginary parts of the order parameeexp().
falls off very quickly at each end of its range. Here we pa-An incoherent population of vacuum neutrinos can be repre-
rameterize the frequency distribution as sented by a collection of vectors uniformly distributed along

B. Graphical representation
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a cone at a zenith angle obabout the vacuum mass eigen- This model was not derived from any specific physical sys-
state direction. Such an incoherent population has a vanistiem, but was intended to model the essential behavior of

ing order parameter. biological system$37]. It can be “motivated” from a mag-
netic moments approach with a couple of additional assump-
C. Magnetic moments analogy tions beyond those used in the previous section. The zenith

angle degree of freedom is removed by restricting all mag-

l\_/lan_y authors have .USEd the _an_alogy betw_eer_1 neum_nﬂetic moments to have the same zenith angle, so the Kura-
oscillations and the motion of a spin in a magnetic field. Th'smoto model is like an X-Y modef31]. Also a source of

analogy continues to hold when the flavor evolution is inﬂu'dissipation must be added

enced by neutrino-neutrino forward scattering. It is useful to The equations of motioﬁ for the Kuramoto model are

make this connection explicit.
Consider a collection of magnetic moments with angular Fs K N

momentumL; and magnetic moment; = ugL;. The mag- et 21 sin( ¢ — ¢;) (16)

netic moments are in an external magnetic field which is =

everywhere parallel, but the intensity of which varies among,herek is a coupling constant anidranges from 1 tN.

the magnetic momeniﬁi. The total magnetic field felt by |ntroducing the order parameter

any magnetic moment depends on the external magnetic field

and also on that produced by the magnetic moments. With A

the assumption that all magnetic moments contribute re'wzﬁ Jz_:l e'’i. (17)

equally, then the total magnetic field Ei=§i+§2,&j,

where{ is a coupling parameter. Then the equation of mo-Then the equations of motions may be rewritten as
tion of theith magnetic moment is given byL; /dt= ugL;

X I:|i . We choose the direction of the external magnetic field ‘9_¢'
l§i to be the z direction, and parameterize the angular mo- o
mentum in the usual spherical coordinates, but with a»zenitla]-hiS model has been studied extensivg®8—33. For K
angle twice the  conventional  definiton L; >0 and large N, it has been shown that there is a critical

=L(sin 26; cos¢;,sin 20; sin¢;,cos ;). Then the equa- value for the coupling constant
tions of motion can be written as

=0 —Kr sin(¢;— ). (18

2
96 K.= . (19
a—t':—gﬂBzLZ sin(26;)sin(¢;— ;) ¢ mg(0)
J
Hereg(w) is the density of oscillators, assumed to be sym-
d b ) metric about and peaked at the mean frequency, [==e,
ot —meBi—lug L e.g., Eq.(14)]. ForK less tharK., the incoherent state was

found to have “neutral” stability, with synchronization de-
caying at a rate which is exponential at intermediate times,
x| 2 cog26;)—cot(26) but which is slower than exponential at long times. This
: decay mechanism is similar to Landau damping of waves in
. a collisionless plasmd80]. ForK aboveK,, the incoherent
X 2, Sin(26;)cod ¢ — &) | (15 state is always unstable and spontaneous synchronization of
: the oscillators occurs. Then, when the order parameter is
mall it grows likeR(t)~Rye'. The growth parametex, is

These equations of motion are a completely discrete versio )
a peey etermined by 28]

of those given in Eq(9) describing neutrino flavor dynam-
ics. When the moment-moment coupling vanishes, the spins

: : : K (= g(v)

just precess around the external field at a constant zenith 1= — dv . (20)
angle with the frequency=—ugB;. The Z; cos(%),) is 2 ) Mtivw

time-independent because the total angular momentum in the . o

direction of the external magnetic field is conserved. Thelhus there is a phases transition in the system as the cou-

order parameter is the average magnetic field in the x and §ling parameterK, is varied.

directions, (1f)=; sin(26,)exp(;)>(H,+iH,) and it is the It is apparent that the evolution equations of the Kura-

same for all magnetic moments. moto model, Eqs(18) and (17), are quite similar to those
Similar models have been studied to try to understandleéscribing the flavor evolution of a dilute neutrino gas, Egs.

how oscillators become synchronized. (9) and (13). The parameteK in the Kuramoto model is

analogous to the paramet&in the neutrino gas model. The
fact that the neutrino flavor evolution depends on two param-
eters is not that important because it is the evolution of the
Kuramoto proposed an analytically tractable model forphase which is most crucial to synchronization. The larg-
studying the collective synchronization of oscillatd&6]. est difference between neutrino flavor evolution and the

D. Kuramoto model
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Kuramoto model is that the former depends on a cosine cout is assumed that the “neutrinos” are completely synchro-
pling of the phases, while the latter depends on a sine courized at =0, i.e., they all have the same mixing angle and
pling. There has only been minimal attention in the synchrozero phase, sR(0)=1. There is no evolution of the mixing
nization literature to nonlinear couplings other than a sineangle in the vacuum case, so it drops out of the expression
[27]. With a cosine coupling, some methods used to studyor the order parameter. Then integration yielgs 0 and

the Kuramoto model are not practical. For example, it is

difficult to find a Lyapunov function[31]. However the sin( yt)
method used by Strogatz and Miroll@8] to determine the R(t)= 1
stability of the incoherent state, and to calculate analytically

the rate of growth of the synchronized state, is still appli-The order parameter decreases in time and slowly ap-
cable. This method will be used in Sec. VI to study the diluteproaches zero, showing that vacuum oscillations slowly

. (22

neutrino gas. disappear and the neutrinos become incoherent. To calculate
the discrete version, we choose the parametrizatign
IIl. THE DISCRETE MA?\EA%(QII\SID ITS NUMERICAL =y[—-1+2j/(N,+1)] wherej runs from 1 toN,. Then

summing the series yieldg=0 and

The neutrino evolution equations, EdS), were studied .
numerically. This was done in order to understand the behav- R(t)= S"’[Q’t)Nw/Nw“L 1] _
ior of the system, to verify the results of analytical calcula- N,sin(yt)1N,+1]
tions, and to look for unexpected behavior. For the numerical
calculations, the frequency, was divided intoN,, uniform  The discrete expression fét initially decreases, in agree-
bins, turning the integral over frequency into a discrete summent with the continuous case. But subsequently, the dis-
Then each “neutrino” had a particular frequency. The num-Crete expression increases, and in fact it periodically returns

(23

ber of “neutrinos” with the same frequency is given by;.  to 1, an example of Poincare recurrence. The continuous and

A fourth order Runge-Kutta method was used to evolve theliscrete expression agree whii, is large compared to 1

angle and phase parameters for each “neutrino.” and, more importantly, when the total time is small such that
A. Numerical errors yt=2mN5c<N,, . (29

There are two plaqes where numericgl errors can r_n"’m.ifesfiierenosC is the number of oscillations that the order param-
themselves, in the discrete approximation to the denvatwegter has gone through. Thus the number of frequency bins
with respect to time or the discrete approximation to ther places an upper limit on how long we can evolve the

integral over frequency. Each source of error is importantq, ations and still trust the numerical results to agree with
and (_:annot_be ignored. _ . the continuous model.
It is straightforward how to achieve accuracy using the

Runge-Kutta approximation. For the numerical results given
here, the time step was chosen to be a couple orders of mag-
nitude smaller than the largest frequency. The efficacy of this The relation Eq(24) was derived for vacuum oscillations,
choice was tested by two different techniques. One checkut it should still roughly hold when the nonlinear terms are
was provided by the average mixing angle, c@s(2While  small compared to the vacuum terms. However when the
the mixing angle of a typical “neutrino” changed consider- nonlinear terms are large, the situation can be very different.
ably in time, the average mixing angle should remain con-A priori, it is possible that then phenomena such as Poincare
stant[see, e.g., Eq.10)]. A different check was provided by recurrence occur leading to huge errors, or perhaps there are
the constraint that the mixing angle for each “neutrino” attractors and the errors are vanishing. These possibilities
should always stay in the range<®< m/2. These con- can be explored somewhat by examining how volumes in
straints were tested at each time step, and violations of theiphase space evolve for the discrete model. For example, vol-
were eliminated by restarting the calculation with a smallerumes in the Kuramoto model’'s 2N dimensional phase space
time steps. obey

Making the frequency discrete produces errors that are

B. Evolution of volumes in phase space

more difficult to monitor. The problem can be illustrated 1dv a .

with a sample calculation. Here we calculate the order pa- V] azgl s i (25
rameter, Eq(13), exactly for the continuous case and for a

discrete approximation. This can be done when the nonlinear = —K(Nr2—1), (26)

effects are negligible §=0), so only vacuum oscillations

are relevant. We look at the simplest possible case, a uniforrp|erer is the order parameter, E€L7). This equation tells us

frequency distribution that, for large N, a small amount of coherence cause volumes
in phase space to shrink, suggesting the presence of an at-

1 ! e ; ; .

— for —y<w<y, tractor. This qualitative observation agrees with experience
g(w)=1 27 (21 from numerical simulations of the Kuramoto model, where it

0  otherwise. is found that the steady state value of the order parameter is
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insensitive to the initial conditions. For the neutrino model, 1x10:; ] it
volumes in the 4N dimension phase space obey 1;}8_3 J S
\ 1x1078
1dv > g . 9 ) ) X106 -
- = — b+ — 6 _ . /
V dt = ﬁ¢| ¢I (90| I ( 7) 1X10_; i ,,l
ix10-, | /
e 1x10°, | i
= ¢NRSsIn(x— ), (28) 1X10 11 -
1x10732 ] s
where R is the discretized version of the order parameter }qgji - ,,/
defined in Eq(13), andS is an analogous quantity 1x10‘}§ 1.~
1x10°° ¥
1x1 -17
sar_ L g cot26) ’o x10 . : ;
=— > ——F—€'%,
N 24 Cot20,) (29) 0 20 40 60 80
(@ time
When all neutrinos have the same mixing an§@@ndR are 1

identical, so Eg. (28) vanishes and the system is
conservative—volumes in phase space are preserved. In gen-
eral, the mixing angle will have a distribution of values
(from MSW type effects soS andR are typically different

and the system is not always conservative. However, it na-
ively appears that Eq28) will typically oscillate in sign,

and so the neutrino system is approximately conservative on
the average. This suggests that there is no robust attractor for
the discrete neutrino model. Consequently, it should be ex-
pected that, for all values of the nonlinear coupling, numeri-
cal simulations of the neutrino model will depend on initial
conditions, and the discrete and continuous models will di-
verge with time, analogous to E(R4). i] T T T

0.1 1 10 1x10 2 1x10 3

o 0.5 T

C. Numerical results
(b) time

The general numerical strategy employed here is to al- _
ways choose parameters for the total evolution time and the F!G- 2. Plots of the magnitude of the order parameter as a func-
number of bins that satisfy Eq24). In addition, the time ton of time. In(@ theN,, =300, N4= 10 “neutrinos” were initially
evolution of the order parameter is always monitored for"CON€reN{R(0)=0], with £=2.0 andf;-=0.25. For comparison,
large fluctuations, and compared to a recalculation with he diShed line ira) Shc_’ws the be_ha\{for Of.the ,Kuramptp_ model
different number of frequency bins. This is an improvementOIr K=2.0. In(b) thEN"’_Z.OOO’_Nd_l neut_rlnos were initially

. . . . . synchronized R(0)=1], with £&=0.5 andfx=0.25.
over all previous numerical studies of neutrino-neutrino fla-
vor dynamics which have neglected the difference betweeformly distributed between 0 andn2so thatR(0)=0. The
the continuous and discrete models. Some previously publatter was useful for studying the growth of coherence.
lished numerical studies have evolved neutrino systems for Figures 2 show the evolution of the magnitude of the
far longer than the limit given in Eq24). Thus numerical order parameter. The behavior of the “neutrinos” for a large
results on nonlinear neutrino dynamics in the existing literavalue of the neutrino background coupling and incoherent
ture must be used with caution. initial conditions is illustrated in Fig. ). Initially R(0)

Our numerical solutions of the neutrino dynamics model,=0, but subsequently, the finite precision of machine calcu-
Egs. (9), are given in Figs. 2—4. These solutions are for alations introduces small amounts of noise to this quantity. In
uniform neutrino asymmetry distribution, as given in Eg.the Kuramoto model(dashed ling the order parameter
(21). The parameter which sets the scale for vacuum oscillagrows exponentially, from these small fluctuations to a com-
tions, y, was chosen to be 1. The “neutrinos” were always pletely synchronized steady state. However for the model of
started with a common mixing angl@(0,0) = 6¢), but sev-  neutrino dynamics studied here, the fluctuations in the order
eral values ofgr were used. While these are not the mostparameter do not grow exponentially, but instead appear to
general conditions, they are adequate for illustrating the typeemain consistent with numerical zero. Calculations at other
of behavior that occurs in neutrino dynamics. values of ¢ show the same behavior, neutrinos which are

Two different types of initial conditions were used for the initially incoherent remain incoherent. For the Kuramoto
phase, ¢(t,w). Sometimes the “neutrinos” were started model, the incoherent state is unstable, but this is not so for
completely synchronized witNy3=1 and¢(0,0)=0 so that the neutrino model. However this does not mean that the
R(0)=1. The other initial condition used was to start with incoherent state is stable for neutrinos. In Figh)2he “neu-
incoherent “neutrinos”, i.e., the phases of thg “neutri- trinos” are started off completely coherent, with only a small
nos” that have the same frequency were started out univalue for the neutrino background coupling, Initially

073002-7



J. PANTALEONE PHYSICAL REVIEW D 58 073002

1.00
0.75 -
S
£ 050 T o
0.25 -
0.00
0.0
(@)
0.00
-1.00 1.2
=
200 -
°
2
-=-3.00 -
-4.00
0.0 1.0 20 3.0
(b) Xi

FIG. 3. Plots of steady state values of the order parameter’s
magnitude(a) and rate of phase changle) as a function of, the
neutrino background density parameter. The “neutrinos” were ini-
tially synchronized R(0)=1], and two different values of initial
mixing angle were used,fr=0.125 (circle and 6-=0.25
(squares The solid curves denote approximate analytical calcula-
tions.

R(0)=1, but subsequently, the order parameter decreases,
undergoes large and small scale oscillations, and ultimately
settles down to a nonzero steady state value. Because the
order parameter settles down to a nonzero value, we know
that the incoherent state is not an attractive, stable state, even
at small & This is different than the Kuramoto modgiot
plotted, where the order parameter relaxes completely to
zero below the critical coupling, Eq.19). These results
clearly show that the neutrino steady state is sensitive to the
initial conditions, as expected from E(R8). In general, it
appears that the nonlinear neutrino dynamics in this simple
model does not cause synchronization to increase, but does
support some synchronization, even when the neutrino back-
ground is small.

The amount of steady state synchronization that remains
when starting from initially coherent neutrinos is explored in £, 4. Plots of the steady state valueshof=2000, Ny=1
Fig. 3. There the steady state values of the order parametergscillators. The “neutrinos” were initially synchronizefR(0)
magnitude(a) and rate of phase change) are plotted as a =17, with £&=0.5 andé=0.25. Figure(a) shows the phase versus
function of the coupling£, for two different values of the the frequency, figuréb) shows the mixing angle versus the phase,
mixing angle,fr . Also shown on these figures are the ap-and figure(c) shows the mixing angle versus the frequency. The
proximate theoretical predictions from E@\9). Only posi- phase in these figures has been binned and scaled to range from
tive ¢ values are shown in these figures because, for evedto 1.
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dg(w), R is an even function of, while ¢ is odd. The mag- for all t andw. This density function should not be confused

nitude of the order parameter approaches 1 for lagigeut  with the neutrino density matrix. The density function is a

decreases towards 0 gsdecrease. The phase of the ordersingle quantity which describes how the elements of the den-

parameter changes at a constant, nonzero rate in the steasijy matrix are distributed.

state. This is shown in Fig.(B) which plots @y/dt—§) The evolution equation fop(8, ¢, w,t) is just the equa-

versusé. Note that it is difficult to calculate numerically the tion for conservation of oscillators:

steady state value of the order parameter and its phase when

&is small. This is because then the order parameter initially ap

falls off approximately as given in Eq&2) and(23), which St TV (pv)=0 (3D

is rather slow, so very long calculations times are needed

[see Eq(24)] to discern the small, residual synchronization.

In general, there does not appear to be a sharp change in t R o i )

order parameter at any nonzero valuegof = (¢ sin 6,6). Substituting fov using Eqs(9) gives an evo-
The distribution of “neutrinos” in the steady state is ex- lution equation of

plored in Fig.(4). There are plotted the state of each oscil-

lator at the end of the evolution shown in FigbR These ap 9 [ ( tar(NHF) ) }

plots are for initially synchronized neutrinos with a relatively 0=-—+—1 p| (0 +§)—§é———Rcod¢—¢)

small value of the couplingé. Figure 4a) shows the distri- i i tan(6)

bution of the neutrino phases as a function of frequency. The

wgere v is the velocity of the oscillators given by

phases have had multiples ofr&ubtracted off, and their 9 - .
remainder scaled to range from 0 to 1. This figure shows that +—{p[— & tan(0p)R sin(p— ) ]}. (32
the phase grows continuously with frequency. Figutb) 4 a0

plots the mixing angle of each “neutrino” versus its phase. ) .
Crudely, this figure shows a “background” of continuously Here the_ order parameter can be represented in the density
distributed “neutrinos” and a rather localized structure cor-formulation as

responding to the synchronized neutrinos. Note that the

phase associated with the center of the localized structure in T _ . (2« sin(9) .

Fig. 4b) changes in time, as illustrated in Figlb® Figure Réd/:f da)g(w)J dé sin(6) J dpp———¢€'?.
4(c) plots the mixing angle of each “neutrino” versus its 0 0 Sin(fg)
frequency. The mixing angle in Figs( and 4c) has not (33

been scaled and can range from O@. While the average
of the mixing angles must remain equal to their initial value,
0-=0.25, these figures show considerable structure. Th
steady state mixing angle is a function of frequency, has

small scale oscillations and also large scale distortions. A. Perturbations about an incoherent state

The plots shown in Fig. 4 would appear quite different if  \ye wish to describe the evolution of the density function
calculated for large values of the coupliggAt large cou- i the neighborhood of an incoherent solution. For neutrinos
pling, the continuous background in Figchdisappears and  ogcillating in vacuum, the incoherent state corresponds to
all of the neutrinos are in a localized structure. Thus, there ieytrinos uniformly distributed around the cone in Fig. 1.
a transition from partial entrainment to full entrainment.\we shall use this here as our initial zeroth order state.
However Fig. 3 indicates that the order parameter is continu-

ous and nonzero a8is varied through this transition.

Interactions between neutrinos occurs through the order pa-
fameter.

- 5(6—0g)
po(0, ¢, w,t)= ——F—. (34)
IV. ANALYTICAL SOLUTIONS 271 Sin(Og)

The stability of the incoherent state of the continuous NneUtha denominator is chosen to insure thet satisfies the

trino model can be analyzed analytically. The methods useformajization, Eq(30). Substituting this into the expression
here are similar to those used in studies of the Kuramotq,: the order parameter, E®3), we see thaR=0 for this
”_‘Ode'[zs] and in _stud|es O,f two component l'm',t cycle OS- jncoherent state. Consequently, the nonlinear terms in the
C|Il~at0rs[29]. The first step is to~|ntroduce a denS|ty~functlon evolution equation, Eq32), vanish and it is straightforward
p(6,¢,0,t). Here the parametet=20 is used since and  to verify that the incoherent vacuum solution, Eg84), is

¢ follow the usual rules for spherical coordinates. This den-lso a solution of the nonlinear evolution equation.

sity function is the fraction of the oscillators of frequenay Now we consider small perturbations about the incoherent
betweend and +d6 and betweenp and ¢+ de. It obeys  state.

the normalization condition

p=po(0,¢,0,t)+en(8,4,0,t) (35)
fwd"é sin(?)jzwd@;("é bot)=1 (30) wheree< 1. Note that Eq(30) determines the normalization
0 0 A condition for 7 as
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T . 27 ~ &Al _1(w,t) .
désind| dén(6,¢,0,t)=0. (36) 0='T—|(w+§)A1,,l(w,t)
0 0
o - . , 3¢
The functiony is a deviation from the incoherent state, so it +i > f dog(w)A; —1(w,t1). (42

induces an order parameter the size of the perturbation,

This simple amplitude equation determines the growth of the

Re’=eR.e"” order parameter. The analogous amplitude equation derived
~ for the Kuramoto model is almost identical to this, the only

T (27 sin(6) i difference being the coefficient of the integral is then real.

:‘ff dwg(“’)Jo dé sin 0J dén er. This is rather surprising considering that the neutrino model

° sin(0g) depends not just on the a phase parameter, but also on the
(377  mixing angle parameter. However the final amplitude equa-
tion is independent of cogf), except through thé param-
Then the evolution equation at ordeis eter. Similar amplitude equations can be easily derived for
the other harmonics, however, they are not relevant to the
on growth of the order parameter.
— + poéRySIN( p— 1) The equation for theA; _; amplitude, Eq.(42), has a
d¢p discrete and a continuous spectrum of eigenva]l@28 This
is not surprisingly, since the numerical solution found local-
5 Ipo ized and continuous structure. The continuous spectrum is
— ¢ tan(fg)Rysin(¢p—¢) —. (38)  responsible for phase mixing which causes the order param-
a6 eter to decrease in time. The discrete solution is responsible
for the steady state behavior of the order parameter. The
This linear equation describes the growth of the order paranfguation can be solved completely, to find the relative am-
eter near the incoherent state. plitudes of the discrete and continuous solutions, using
Our goal is to determine the behavior of the order paraml-aplace transformgsee the Appendix Here we shall con-
eter as a function of time. It is instructive to note from Eq. fine our analysis to the physically most interesting part, the
(37) that the factor multiplying the density function in the discrete eigenvalue. It is of the form
definition of the order parameter is proportional to a spheri-

an
0= E-f—(w-i— £)

cal harmonic: As-1(0,)=B(w)eM (43)
5 5 where the eigenvalue is independent«nfSubstituting this
sin(@)ei¢= — /?77 Y1,1(9,¢)= /?77 Y?[‘,fl(’éad))' in yields an equation for the eigenvaldeof
3
(39 )\B=i(w+§)B—i7§fdfg(f)B(f). (44

Thus, because the spherical harmonics are orthogonal, only o _ o
the part of that is proportional tor; _; contributes to the This equation is easy to solve because the integral is just a
order parameter. Hence, it makes sense to expand constant, independent af. Let the value of this constant be

spherical harmonics. denoted byC. Then we can solve foB(w)
5 < B(w)= —(ﬁ) _° (45)
10.6.00=% 3 An(00YinB6). 40 =12 s

Substituting this back into the equation for the eigenvalue,
The coefficientsA, ,, are the amplitudes of the different Ed. (44), the constant C cancels out, since C must be non-
modes of oscillation. The normalization condition requireszero, otherwise, the solution is trivial. Then the equation for
Aoo=0 and because is real, A ,=(—1)"A¥_ . The or- the eigenvalue is
der parameter is
9(w)

3¢
1= f de (0+ &) +IN (46)

) 1 8
R.e'¥= \/—fd A B, (41
! sin(T9F) 3 @g(@)Ar-1(@,). (4D where we have canceled out a factoi dfom the numerator

and denominatgrcompare to Eq(20)]. This equation speci-

. . . . fies the time dependence of the synchronized state.

To pick out theA; _,(w,t) amplitude from the linearized ¢ gigenvalue equation can be solved analytically for
evolution equation, we multiply Eq38) by Y7_1(6,¢) and  specific frequency distribution functiongj(w). However
then integrate oved and ¢. This gives even without solving it, we can deduce an important property
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about the eigenvalue. Writinigp =x+iy, the imaginary part 1 3¢ 3¢ 2
of this eigenvalue equation can be written as A=ig+izlopgto,— |+ (wﬂ_wa_ - (1-2a)
3¢ g(w) , 12
0=y~ f do (0T Er 02y (47) +(38)%a(l-a)| . (50)

The integral in this equation is necessarily nonzero becausE€€ are now two eigenvalues. In the limit that-0, the

all physicalg(w) are positive at every frequency, and be- rootls_ Ju_St rfeduce to the valcuum frefquhen%te?,ar;d “p - In .
cause the denominator is always positive. Thus for nonzerf€ limit of a—0 or 1, only one of the delta functions is
¢ the last equation shows thgt=0. Consequently, the ei- relevant and the two roots are then just the vacuum fre-
genvalue must always be purely imaginary. In the KuramotdiUency of the decoupLed oscn_lator, andf the otherhvacfuum
model, the eigenvalue has a real part with leads to exponeff€dueéncy minus 2. The most important feature is that, for

tial growth of the order parameter. But the results herefll values ofé and for any physical value af, the argument
of the square root is positive. Thus, the discrete eigenvalue is

clearly indicate that for the neutrino dynamics model, the | i ) ! ith th
incoherent state has neutral stability, and the magnitude @'Ways purely imaginary, in agreement with the arguments
m Eq. (47). The incoherent state has neutral stability.

the order parameter will never increase or decrease exponeﬁ9
tially in time.
B. Perturbations about two mixing angles

1. Solution for uniform rum . - . .
Solution for uniform spectru The previous analytical calculations assumed the neutri-

The integration in Eq(46) can be performed for a uni- nos were predominantly incoherent in phase with a single
form frequency distribution, Eq21). Then, solving for\ mixing angle. However it is more physical to consider a
yields zeroth order state which has a distribution of mixing angles.

e.g., Fig. 4c)], or they can also be produced by effects not
: (48) included in the present neutrino dynamics model, such as
Using this result, we see that the integrand in &f) is  tures associated with such a state, we consider perturbations
never singular, since X + £)> v for all nonzero values of. ~ about a generalization of E¢34).

Such distributions can be produced by nonlinear effeszs,
2
)\=i{§—y cotr'(g—g)
MSW type effects. To search for any qualitatively new fea-

Only for £&=0 does the denominator of the integral vanish, ~ 5(6-6,)
indicating that the discrete solution disappear. Thus in the po(0,¢,0,1)=Q(w) —
neutrino model, a steady state synchronized solution exists 27 sin(6,)

for all values of the nonlinear coupling,

This result is used to generate the theoretical curve plotted o
on Fig. 3b). The phase of the order parameter is related to H1-Qo)] ———. (52)
the eigenvalue by Eq$41) and (43), which gives @y/dt 2 Sin(62)
=& =(—ir—¢&). In the figure, the theoretical prediction This density function describes neutrinos uniformly distrib-
agrees well with the numerical results whéns small. At  uted in phase at two discrete mixing angles. H&(&) pa-
large ¢ the order parameter is large and our linearizedrameterizes the relative amount of each mixing angle as a

)

method breaks down. function of frequency, while the overall normalization satis-
fies Eq.(30). Because the density function must be nonnega-
2. Solution for delta function spectrum tive, Q is limited to the range & Q=<1. The average mixing

The previous frequency distribution is an even, singleangle,d, is determined by
humped function. These are rather special properties and fre- _ _
qguency distributions without them may have qualitatively COS(HF)=f dog(w)[Q(w)cog #;)+[1—Q(w)]cog b,)]
different behavior{33]. For generality, we examine a fre-
R . : (52
guency distribution which does not have these properties. In 5 5
particular, consider the sum of two delta functions, centerednd 6 lies between the two mixing angleg; and 6,. Be-

at frequenciesv, andwg. cause the phase is uniformly distributed, the order parameter
vanishes and so this density solves the nonlinear evolution
g(w)=ad(o—w,)+(1-a)d(o—wg). (49 equation, Eq(31).

Starting from this zeroth order state, the calculation can
Here « parameterizes the relative amount of each frequencyproceed parallel to the one outlined in Sec. IV A. The per-
while keeping the overall normalization g{ w) equal to 1.  turbations can be written as an expansion in spherical har-
Sinceg(w) must always be positive, the parameteis re-  monics. Then the equations describing the evolution of the
stricted to the range € a<1. This bimodal distribution is amplitudes can be derived. Again the _; amplitude is the

not an even function of frequency, exceptaat 0.5. only one responsible for the growth of the order parameter,
The integration of Eq(46) can be easily performed for a and it has a discrete solution. The eigenvalue equation for
delta function integrand. Then, solving faryields this solution is
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3§ w)q(w) are initially synchronized remain synchronized. However the

J w+§ (53 amount of synchronization supportable by the system de-

pends on the width of the neutrino spectrum, and on the

The only difference between this eigenvalue equation an@umber of neutrinos per unit volume. At large neutrino num-
that derived previously for a single mixing angle, £46), is  ber densities, the system can be completely synchronized. At

the additional function in the integrand(w), defined as small neutrino number densities, some of the synchroniza-
. . tion can decay via phase mixing, but a small amount of syn-

4(w) = z+ {Q(w)sin(6;) +[1—-Q(w)]sin(62)} chronization is always supportable.
3 sin%;) ' The amount of synchronization possible in our neutrino

(54) system was determined analytically by defining a continuous
density function to describe the distribution of oscillators.
Because &f#<s and 0<Q=<1, q(w) is necessarily non- This formalism is extremely powerful and allowed us to
negative for all frequencies. Thus the effects of introducingstudy the behavior of the system near the incoherent state.
q(w) into the eigenvalue equation can be absorbed into th&/sing this technique, an approximate expression for the
frequency distributiong(w), and the nonlinear constart,  steady state value of the order parameter’s magnitude and
That is, the eigenvalues derived from this “two mixing phase was derivedEq. (A9)]. This analytical expression
angle” equation are not qualitatively different than those de-agreed well with the numerical simulatiofisig. 3).
rived from the previous “one mixing angle” eigenvalue  The neutrino system studied in this paper is too simple to
equation. In particular, the proof that the eigenvalues ar¢nake definite predictions about the physical environments,
necessarily purely imaginary, E¢47), holds for this new where neutrino-neutrino forward scattering is relevant. In the
eigenvalue equation. The incoherent state in &) has  early universe and in type Il supernovae, there are always the
neutral stability. additional effects of antineutrino degrees of freedom and of
three neutrino flavors. At various times, there are other ef-
fects which are relevant: forward scattering off of charged
leptons, nonforward scattering, spatial anisotropy, and den-
In this paper we have analyzed the flavor dynamics of ity fluctuations. All of these possibilities can be studied with
dilute, isotropic gas of massive neutrinos. The only interacthe techniques used in this paper. Work on them is in
tion included was the neutrino-neutrino forward scattering progress. However we shall briefly speculate on how these
which is a large and often dominant effect in the early uni-effects modify the results found here.
verse, and which is also relevant in type Il supernovae. This The “steady state” of the neutrino model studied here
interaction makes the flavor evolution nonlinear and thusdepends on the initial amount of synchronization. This is
collective phenomena can be important. because this model is approximately a conservative system
The dynamics were described using a phase and mixingsee Eq.(28)]. The addition of antineutrino degrees of free-
angle formalism. This parametrization is efficient, intuitive, dom to the system is not likely to change this. Similarly, the
and allows us to adopt methods from the extensive literaturaddition of a constant electron background is not expected to
on the synchronization of oscillators. Writing the equationsmake the system dissipative. However if the electron back-
of motion in this parametrization immediately suggests aground is allowed to vary with time, this would qualitatively
specific order parameter for the system. Also, it is apparenthange the situation. For example, an electron background
that synchronization of phases leads to evolution of the mixéensity that decreased monotonically in time might induce
ing angle. The behavior of the neutrino system, and in parsynchronization—since it does so when the neutrino back-
ticular, the order parameter, was studied numerically an@round is negligible and the MSW transition is nonadiabatic.
analytically. The neutrino-neutrino forward scattering might then sustain
Numerical simulations provided useful examples of thethe synchronization after the electron background became
behavior in this nonlinear dynamical system, Figs. 2—4negligible. But if the electron background density fluctuated
However numerical simulations have their limitations andrandomly, then this would most likely make the incoherent
these were also examined. Numerical simulations necessarigtate stable. Calculations in the Kuramoto model have shown
require a discrete number of “neutrinos” to evolve, and thisthat random fluctuations tend to make the incoherent state
number is far less than the number of neutrinos present istable. However the Kuramoto model also illustrates how
physical systems. This places a severe limit on the length afissipative effects can cause the generation of synchroniza-
time for which numerical simulations will accurately model tion by making the incoherent state unstable. The similarity
the physical systenfisee Eq.(24)]. As time increases, the of the neutrino model to the Kuramoto model, E48),
neutrino spectrum is probed at decreasing frequency scalesiakes it seem likely that the incoherent state may be un-
so increasing numbers of neutrinos are needed to model thigable in some neutrino systems. In particular, it is easy to
accurately. This effect has been ignored in previously pubshow that only a small phase shift needs to be added to the
lished numerical studies of nonlinear neutrino systems, conaeutrino model's cosine coupling to make the incoherent
sequently, those previous results must be used with cautiostate unstable. Such a phase shift might come from the T
Our numerical and analytical analyses show that the incoviolating phase that is intrinsic with three neutrino flavors.
herent state has neutral stability. Neutrino systems that afdonforward scattering and spatial anisotropy might also
initially incoherent, remain incoherent, while systems thathave a similar effect. It appears possible that collective flavor

V. CONCLUSIONS
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phenomena are a robust feature of some high density neu- : | [atie
trino systems. 1e'"=C f

a—iwe

IN[(y+&+is)/(—y+E+is)]
1—(3&4y)In[(y+ E+is)(—y+E+is)]
I would like to thank J. Maselko for bringing to my atten- (A5)
tion the extensive literature on synchronization of oscnlatorsm the complexs plane, the integrand has a pole and two

and S. Strogatz for suggesting some useful references. Thj . . X _ i )
work is supported by the Research Corporation. Btanch points, all on the imaginary axis. The pole is deter

mined by setting the denominator equal to zero, which yields
an equation identical to Eq46). The pole location is thus
APPENDIX: CALCULATING THE STEADY STATE given by Eq.(48), with sy=\, thus the pole lies below both
ORDER PARAMETER branch points(for £&>0). Consequently, we choose both
branch cuts to lie on the imaginary axis above the branch
The linear amplitude equation, E#2), can be solved points, so that in the integrand, the two branch cuts cancel
completely using Laplace transformatidi@]. Here we use out above the upper branch point. Then the integration con-
this to calculate the steady state value of the order parametdnur can be deformed, so the integral has two pieces, the pole
Multiplying through Eq.(42) by e~ S and integrating over term and the integration around the branch cut connecting
t yields the two branch points.
The pole part of the integrand is straightforward to calcu-
late, it is
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. ~ [3¢& ~
[S—I(a)+§)]A(w,S)=A(w,O)—I(?)fdwg(w)A(w,S)

(29137
(A1)

SINF(27/38) ©
To get the normalization constant, we need to know the total
integral att=0. At t=0, the integration between the branch
points can be rewritten as

R1€"] continuouto=C’ (2 )fld Hl—(ﬁ)m
[R1€"]continuouso=C' (27y 1 y 4y

[Ry€'"Jpoie=C' (477) (A6)

where the Laplace transform éf is
1-y\]?
1+y

7T3§ 2) -1
e a7)

Alw,s)= f:dte*S‘A(w,t) (A2)

and the (1;-1) subscripts oMA have been dropped. The

order parameter depends on the integrahalver frequency An exact, analytical expression for the last integral could not

as given in Eq(41). Thus we calculate the integral of the be found, however, a good approximate expression is easy to
Laplace transform ofA over frequency. Using Eq(Al) obtain. Because the logarithm is slowly varying, and because

yields it vanishes in the middle of the integration regionyat0, it
is an extremely good approximation to just neglect it in the
- fdog(o)A(w,0)/[s—i(w+§)] integrand:
J dog(w)A(w,s)= - - .
1+i(3¢/2) fdwg(w)/[s—i(w+§)] _ 1
(A3) [R1€"Tcontinuoubo=C" (47y) 15 (n38iay)2" (A8)
Then the order parameter is given by Using this and the expression for the pole term yields an

expression for the steady state value of the order parameter:

atio

o . 3¢/2y)? sintP(2y/3¢)| 1
4s¢' [ dog(@R(0,8) A Rie|guy sur| 1+ o SOy,

1+ (mw3¢&l4y)?

R.,e’=C f

a—i

(A9)

where the contour of integration lies to the right of all sin- The magnitude of this equation is plotted in Figa)3 where
gularities.C is an unimportant constant that can be absorbedt is compared to the results of numerical simulations. There
into A(w,0). is good agreement, considering that this analytical expres-

We wish to consider the case, where the neutrinos arsion is derived from the linearized evolution equation. The
initially synchronized. The\(w,0) is the same for all neu- phase of the steady state order parameter is just the phase of
trinos so it is a constant, independent of frequency. We furthe pole term, and it agrees with the calculation in Sec.
ther restrict the calculation to a uniform frequency distribu-1V A 1. The phase is plotted in Fig.(B) and agrees with the
tion, as described in Eg21). Then the integrations over numerical results when the magnitude of the order parameter
frequency can be easily performed to yield is small.
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