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Stability of incoherence in an isotropic gas of oscillating neutrinos

J. Pantaleone
Department of Physics and Astronomy, University of Alaska Anchorage, Anchorage, Alaska 99508

~Received 26 January 1998; published 18 August 1998!

In the early universe and in supernovae, the flavor evolution of massive neutrinos is nonlinear. Previously,
numerical simulations have explored these conditions and have sometimes found collective, synchronized
neutrino oscillations. Here these coherent phenomena are studied in the simplest possible system, an isotropic
gas of two-flavor neutrinos. An analytical method is used to study the stability of the incoherent state. It is
found that the incoherent state hasneutral stability. That is, a steady state synchronization can exist for all
nonzero neutrino densities, but the amount depends on the initial conditions. This result is verified by numeri-
cal simulation, but it is shown that numerical simulations are accurate for only a limited time. In more
complicated neutrino systems, the incoherent state could be stable or unstable.@S0556-2821~98!02919-1#

PACS number~s!: 14.60.Pq
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I. INTRODUCTION

There are presently several indications that the neut
flavors are mixed by neutrino masses. Strong evide
comes from solar neutrino observations. Well tested s
models@1# calculate the rates of nuclear reactions in the S
and, hence, also predict neutrino fluxes. These predict
require the addition of neutrino mixing in order to be com
patible with the many independent observations of solar n
trinos @2#. Strong evidence for another neutrino mass com
from observations of neutrinos produced in the atmosph
by cosmic rays. The atmospheric neutrino flux ratios@3# and
the angular dependence of the neutrino fluxes@4# both imply
neutrino masses and mixings. In addition, measurement
neutrinos produced by a low-energy accelerator@5# suggest
nonzero masses and mixing. Finally, measurements of
mass density of the universe and the structure of the univ
hint at a massive neutrino~see, e.g.,@6#!. While it is quite
likely that one or more of these latter experimental result
incorrect, the evidence for nonzero neutrino masses is q
strong.

If neutrinos have masses and mix, then neutrino flavo
not conserved, but can vary in space and time. For exam
electron-neutrinos produced in the Sun can become muon
tau-neutrinos by the time they reach the Earth. Flavor evo
tion between the source and the detector is used to explai
of the above experimental results. Neutrinos are unique
that their flavor evolution occurs on such large, macrosco
scales. This is because neutrino masses, which cause th
vor evolution, are so small. The experimental results sug
neutrinos masses somewhere in the range from 1025 eV to
10 eV. These small values are theoretically palatable bec
they can emerge naturally from the structure of the stand
model @7#. However they imply that neutrino mass effec
may most readily be observed on astrophysical scales.

Two astrophysical environments, where the effects o
neutrino mass can be large are the early universe and su
novae. Both of these are characterized by large matter
sities which trap neutrinos. This trapping allows neutri
densities to become large, which allows neutrino proper
such as mass and mixing to influence directly the astroph
cal environment. For example, neutrino mass effects h
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been related to a variety of physical phenomena in supe
vae: the success of the explosion mechanism@8,9,10#, r-
process nucleosynthesis@11,10#, and the velocity distribution
of pulsars@12#. In the early universe, neutrino masses ha
been related to the dark matter problem~and so the forma-
tion of structure! @6#, and to big bang nucleosynthesis@13#.
Neutrino flavor in the early universe is relatively unco
strained, it could be much larger than the baryon asymme
in fact, it could even be larger than the entropy@14#. Definite
statements about any of these possibilities are difficult
cause of the unique physical conditions present in these
trophysical phenomena, the sparsity of astrophysical ob
vations, and the uncertainty in neutrino mass and mix
values. However there are many present and planned ex
ments trying to overcome these difficulties.

It is well known that the dynamics of neutrino flavor a
influenced by forward scattering off of background particle
Neutrino forward scattering off of an electron background
responsible for the Mikheyev-Smirnov-Wolfenstein~MSW!
effect @15# which is relevant to solar neutrino observatio
~for reviews, see, e.g.,@9# and@16#!. The large neutrino den
sities which make the early universe and supernovae se
tive to neutrino masses, also mean that neutrino-neutrino
ward scattering occurs. When neutrinos forward scatter
of other neutrinos, they can exchange flavor coherently
the weak neutral current@17#. This nonlinear effect makes
neutrino flavor dynamics a many-body phenomena. Th
qualitatively new types of neutrino flavor evolution are po
sible in the early universe and in supernovae.

As detailed above, there are many ways that neutr
masses can influence supernovae and the early univ
Most studies of these possibilities simply neglect t
neutrino-neutrino interaction. However there are a few
ceptions, all of which have included this interaction using
density matrix approach@18,19,20#. In Ref.@21#, the dynami-
cal equations were solved perturbatively to demonstrate
the neutrino-neutrino interaction altered MSW transitio
outside a supernovae’s core. A subsequent numerical s
of this effect found that the incoherent state provided a r
sonable basis for estimating the amount of flavor evolut
@22#. The incoherent state was also found to be sometim
useful for estimating flavor evolution in the early univer
© 1998 The American Physical Society02-1
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@23,24#. However these latter numerical studies also o
served a qualitatively new phenomenon—coherent, sync
nized neutrino oscillations. It is not surprising that this ne
phenomena was observed in studies of the early universe
not in those of the region outside a supernovae’s core. In
early universe, nonlinear dynamics dominate for a very w
range of parameters because, after electron-positron an
lation, neutrino densities are many orders of magnitu
larger than all other fermion densities. Analytical descr
tions of the synchronized solution have been obtained@25#,
in the limit of total alignment. However there has been
effort to determine if and when the incoherent state or
synchronized state is stable. This is the problem examine
this paper.

There is a sizeable literature on how collections of no
linear oscillators become synchronized~see, e.g.,@26–33#
and references therein!. Much of the motivation for these
works comes from the many biological examples@34#, such
as the electrical synchrony among cardiac pacemaker c
the chirping of crickets in unison, and the synchronous fla
ing in swarms of fireflies, however, there are also phys
examples such as charge-density waves@35#. A particularly
simple model for these phenomena was proposed by K
moto, which consists of a mean-field theory of coupled
cillators with an arbitrary distribution of frequencies@26#.
This model has been extensively studied in the literature
exhibits a phase transition between the incoherent state
the synchronized state. This was analytically analyzed in
notable paper by Strogatz and Mirollo@28#. As we shall see,
neutrino oscillations can be rewritten in a form which
similar to the Kuramoto model. Thus, the same analyti
techniques used to study collections of nonlinear oscilla
can also be applied to analyze neutrino oscillations.

In this initial paper, we do not examine neutrino oscill
tions in either the early universe or a supernovae, but ins
work with a simple, idealized system—a collection of isotr
pic, massive neutrinos with only two flavor degrees of fre
dom. In particular, we do not include a charged lepton ba
ground @15#, an antineutrino background, noise@10#, three
flavor mixing @9#, nonforward scattering or anisotropy@21#.
In Sec. II the evolution equations for the neutrino dens
matrix are presented. We discuss how these equations
formally equivalent to those describing a collection of ma
netic moments in an external field with varying intensi
They evolution equations are rewritten in a phase and a
parametrization that makes the similarity to the Kuram
model apparent. This parametrization is also more intuit
and allows us to identify easily the complex order parame
of the system. In Sec. III we discretize the evolution eq
tions and numerically study the behavior of the order para
eter. The limitations on numerical methods are also d
cussed. In Sec. IV we define a single, governing den
function. The evolution equation describing this is lineariz
and solved analytically. In Sec. V, we summarize our res
and discuss their implications. An appendix contains det
of the calculation.

II. THE FLAVOR EVOLUTION EQUATIONS

Our goal is to describe the flavor evolution of a dilut
multi-neutrino gas. The initial assumption is the Hartr
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approximation—that each neutrino in the gas is described
its own wave function and is subject to an equivalent pot
tial due to the other neutrinos. The Pauli blocking and ot
such fermion symmetry effects are neglected, so only dil
systems are considered. For these initial inquiries, some
ther approximations are made to simplify the physical sit
tion. It is assumed that there are only two neutrino flavo
that the neutrino gas is uniform and isotropic, and that
physical system does not contain charged leptons or
tineutrinos. Under all these assumptions, the flavor dynam
can be easily formulated.

We choose to work with bilinears of the neutrino wa
function because that is what the neutrino-neutrino poten
depends on. In the flavor basis, the one particle density
trix is

rF~ i ;t,k!5F ree rem

rme rmm
G

i

5F ne

nm
G@ne* nm* # i~ t,k!. ~1!

Herena is the slowly varying part of the ith neutrino’s wav
function of flavora with energy/momentumk at timet. Neu-
trinos are created and destroyed in the flavor basis, but
vacuum mass eigenstate basis is more convenient for
dynamics. The vacuum mass matrix take the simplest fo
when written in the vacuum mass eigenstate basis,rV .

rV~ i ;t,k!5U†rF~ i ;t,k!U ~2!

Fr11 r12

r21 r22
G5FCu 2Su

Su Cu
G

3F ree rem

rme rmm
G

i

F Cu Su

2Su Cu
G . ~3!

Here U is the~time independent! vacuum mixing matrix
which rotates from the flavor basis to the vacuum m
eigenstate basis withCu5cosu and Su5sinu ~the notation
is consistent with the conventions in Ref.@9#!. The coupled,
nonlinear equations@23,20,21# describing the temporal flavo
dynamics are

i
]

]t
r~ i ;t,k!5@V~ t,k;r!,r~ i ;t,k!#. ~4!

In the vacuum mass eigenstate basis, the effective poten
V, takes the form:

VV~ t,k;rV!5
D

4k F21 0

0 1G1&GFE d3qW

~2p!3 (
j

rV~ j ;t,q!

~5!

here D5m2
22m1

2 is the difference in neutrino vacuum
masses squared,GF denotes Fermi’s constant and k is th
neutrino momentum. The first term in the potential describ
the effects of the vacuum mass parameters. The second
comes from neutrino forward scattering off of backgrou
neutrinos via the weak neutral current. This potential d
pends on the sum over all neutrinos in the background. O
neutrino couples equally to all of the other neutrinos in t
2-2
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STABILITY OF INCOHERENCE IN AN ISOTROPIC . . . PHYSICAL REVIEW D 58 073002
system because of the assumption that our gas is isotr
and uniform~in an anisotropic system, there are addition
effects@21#!. The neutrino-neutrino forward scattering pote
tial contains flavor diagonal@36# and flavor off-diagonal@17#
contributions. Note that the evolution equations do not
pend on the vacuum mixing angle,u. The vacuum mixing
angle enters the dynamics only through the initial conditio

The potential in the dynamical equations only depends
the neutrino momentum and the total neutrino density m
trix. Thus, the evolution equation is the same for all neu
nos with the same momentum. Hence, the equations
apply to sums of the one-particle density matrix over neu
nos with the same momentum.

r~ t,k!5(
i

r~ i ;t,k!. ~6!

A. Angle-phase parametrization

The elements of the density matrix have straightforw
physical interpretations. However the density matrix form
ism is generally not the best to use for studying the dyna
ics. It is very inefficient, since there are fewer free para
eters than their are elements of the density matrix. Here
choose to reparametrize the neutrino evolution dynamic
terms of an effective mixing angle,u(t,k), and oscillation
phase,f(t,k). Similar parametrizations have been used
study how a charged lepton background affects the osc
tions of a neutrino~see, e.g.,@9# and references therein!.
Specifically, the density matrix elements can be parametr
as

r22~ t,k!2r11~ t,k!

2
5D~k!cos@2u~ t,k!#

r12~ t,k!52D~k!sin@2u~ t,k!#exp@ if~ t,k!#.

~7!

The mixing angle lies in the range (p/2).u(t,k).0, while
there are no restrictions onf(t,k). This parametrization is
designed to incorporate all of the general constraints on d
sity matrix elements. The diagonal elements are real bec
the density matrix is Hermitian. The trace of the dens
matrix is the total neutrino density and it is a conserv
quantity. It drops out of the evolution equations, so we ne
only to parameterize the difference of the diagonal eleme
which is the flavor asymmetry in the neutrino backgroun
The trace of the square of the density matrix is proportio
to the total entropy of the system@18# and is a conserved
quantity because we have neglected dissipative effects
nonforward scattering. This constraint forces the magnit
squared of the elements in Eqs.~7! to be time independent
and that magnitude is denoted here byD(k).

Because this parameterization satisfies all of the gen
constraints on a neutrino density matrix, we could use i
describe either the one-particle matrices,r( i ;t,k), or the
multi-neutrino density matrices of Eq.~6!, r(t,k). The inter-
pretation of the elements of the parametrization is differ
for these different cases. For a one particle density ma
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D(k) is just one per unit volume. For the multi-neutrin
density matrix, cancellations typically occur in the summ
tion between neutrinos with different phases and differ
mixing angles, and so thenD(k) is much smaller than the
total neutrino density with momentum k. For this paper w
adopt an intermediate approach. We apply the paramete
tion of Eq. ~7! to density matrices which are a sum of ide
tical one-particle density matrices of both ‘‘species.’’ Sp
cifically, the sum is over all ‘‘neutrinos’’ with momentumk,
phasef(t,k) and mixing angleu(t,k) plus those with phase
„f(t,k)1p… and mixing angle„p22u(t,k)…. In the summa-
tion, complete cancellation occurs between one-particle d
sity matrices of these two ‘‘species.’’ To fix the ambiguity
the resultant mixing angle, we additionally require thatD(k)
is always nonnegative~which will be important in Sec. IV!.
If all neutrinos happen to have the same phase and mix
angle at some time, then we can identifyD(k) as the total
flavor asymmetry per unit volume, but otherwise it is smal
than that. In the potential, the total neutrino density matrix
relevant so there is still an additional summation there o
different phases, mixing angles and momentum. In the n
tion adopted here, this summation over phases and mix
angles will be denoted by a discrete summation sign, but
shall henceforth drop the indices labeling different phase
mixing angles with the same momentum.

It is actually slightly more convenient to use the para
eterv instead of the momentum parameterk.

v5
D

2k
. ~8!

v is the vacuum oscillation frequency and is inversely p
portional to the neutrino momentum,k. The evolution equa-
tions can then be rewritten in the angle-phase parametr
tion as

]u~ t,v!

]t
52

j

2
tan~2uF!R~ t !sin@f~ t,v!2c~ t !#

]f~ t,v!

]t
5v1j2j tan~2uF!cot@2u~ t,v!#

3R~ t !cos@f~ t,v!2c~ t !#. ~9!

The neutrino-neutrino forward scattering potential depe
on the sum over all neutrinos in the background and t
enters the dynamics in the parametersuF , j andR.

HereuF is the average mixing angle, defined as

cos~2uF!5E dNv

Nv

1

Nd
( cos@2u~ t,v!# ~10!

whereNd is the total number of terms in the discrete sum a
Nv is the total of the continuous sum over the neutri
asymmetry distribution

dNv5
k2

2p2 D~k!dk. ~11!
2-3
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J. PANTALEONE PHYSICAL REVIEW D 58 073002
Although it is not apparent from its definition,uF is time-
independent: it is specified by the initial conditions. Th
conserved quantity follows because neutrino-neutrino
ward scattering, and so all of the evolution equations resp
L1 and L2, the lepton number family symmetries@17#. A
charged lepton background would break this symmetry
then uF would be time dependent. The parameterj is just
proportional to cos(2uF), and so it too is time independent

j52&GFcos~2uF!NvNd ~12!

whereNvNd is the total neutrino asymmetry per unit vo
ume. j is the neutrino-neutrino forward scattering induc
potential—it is similar to the parameter used in calculatio
of the MSW effect@15#, A/k52&GFNe , whereNe is the
electron density. The neutrino-neutrino potential depe
only on the net flavor asymmetry in the neutrino backgrou
as measured by cos(2uF). Independent of where it come
from, j acts as a coupling between the different oscillato
All nonlinear effects enter through thej coupling constant.

The remaining expression in the dynamical equatio
Eqs.~9!, is a complex order parameter

R~ t !exp@ ic~ t !#5
1

sin~2uF!
E dNv

Nv

1

Nd

3( sin@2u~ t,v!#exp@ if~ t,v!#.

~13!

This order parameter measures the degree of coheren
the system. If the neutrino oscillations are incoherent, t
R50, while if the neutrinos are completely synchronize
then R51. All of the dynamics depend on this single ord
parameter.

In the limit where the total neutrino background asymm
try density vanishes,j vanishes and the situation reduces
purely vacuum oscillations. Then the dynamical equatio
Eqs.~9!, tell us that the mixing angle,u(t,v), is a constant
and that the phase evolves linearly with frequencyv. For
neutrinos created at t50 in the flavor eigenstates, the mixin
angle is just the vacuum angleu(t,v)5u, the phase will be
f(t,v)5vt, andD(k)5@r22(0,k)2r11(0,k)#/2 cos(2u).

For the physical environments of the early universe o
supernovae, the neutrinos started off in thermal equilibriu
Flavor asymmetries can be present in equilibrium as che
cal potentials, or they may be generated as the neutr
leave equilibrium, but regardless, the neutrinos are expe
to retain an approximately thermal distribution. ThusD(k) is
typically roughly proportional to a Boltzmann factor, and
the neutrino asymmetry distribution, Eq.~11!, is expected to
vanish exponentially at large momentum. At small mome
tum the neutrino asymmetry distribution vanishes becaus
phase space factors. In terms of frequency, a physical
trino asymmetry distribution is nonzero over allv.0, but
falls off very quickly at each end of its range. Here we p
rameterize the frequency distribution as
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Nv
5g~v!dv ~14!

whereg(v) is normalized to one per unit volume. Note th
g(v) can always be chosen to have a mean of zero. Tha
we can redefine the phasef(t,v) by going to a rotating
reference frame so that the frequency distribution has a m
at zero frequency~e.g., v→v1v̄, f→f1v̄t!. Then the
average frequency,v̄, drops out of the dynamical equation
Thus, the flavor dynamics do not depend on the aver
vacuum frequency, but do depend on the width of the f
quency range, and how these frequencies are distribu
Also note that it follows from our previous convention of
nonnegativeD(k) that g(v) is always nonnegative.

B. Graphical representation

The angle-phase parametrization allows an instruc
graphical representation. The details of the graphical rep
sentation are not unique. Different choices in sign conv
tions, or using wave functions instead of density matric
lead to different representations~see, e.g.,@16#!. For the con-
ventions assumed here, Fig. 1 shows the graphical repre
tation. The flavor basis and the vacuum mass eigenstate b
are represented by three dimensional coordinate syst
which coincide along the Im(r12)5Im(rem) axis. The other
axes differ in direction by a relative rotation angle of 2u. The
neutrino density matrix~as defined here! is represented as
single vector of lengthD at a zenith angle of 2u and a tan-
gential angle off. Vacuum oscillations correspond to pre
cession of this vector about the vacuum eigenstate axis
zenith angle of 2u. The neutrino dynamics we are conside
ing depend on the average properties of the entire neut
population. The time independent parameter cos(2uF) corre-
sponds to the average vector component along the vac
mass eigenstate direction. The average vector componen
the directions perpendicular to this axis correspond to
real and imaginary parts of the order parameter,R exp(ic).
An incoherent population of vacuum neutrinos can be rep
sented by a collection of vectors uniformly distributed alo

FIG. 1. A graphical representation of neutrino evolution
terms of the phase and mixing angle parameterization.
2-4
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STABILITY OF INCOHERENCE IN AN ISOTROPIC . . . PHYSICAL REVIEW D 58 073002
a cone at a zenith angle of 2u about the vacuum mass eige
state direction. Such an incoherent population has a van
ing order parameter.

C. Magnetic moments analogy

Many authors have used the analogy between neut
oscillations and the motion of a spin in a magnetic field. T
analogy continues to hold when the flavor evolution is infl
enced by neutrino-neutrino forward scattering. It is usefu
make this connection explicit.

Consider a collection of magnetic moments with angu
momentumLW i and magnetic momentmW i5mBLW i . The mag-
netic moments are in an external magnetic field which
everywhere parallel, but the intensity of which varies amo
the magnetic momentsBW i . The total magnetic field felt by
any magnetic moment depends on the external magnetic
and also on that produced by the magnetic moments. W
the assumption that all magnetic moments contrib
equally, then the total magnetic field isHW i5BW i1z(mW j ,
wherez is a coupling parameter. Then the equation of m
tion of the i th magnetic moment is given bydLW i /dt5mBLW i

3HW i . We choose the direction of the external magnetic fi
BW i to be the z direction, and parameterize the angular m
mentum in the usual spherical coordinates, but with a ze
angle twice the conventional definition LW i
5L(sin 2u i cosfi ,sin 2u i sinfi ,cos 2u i). Then the equa-
tions of motion can be written as

]u i

]t
52

z

2
mB

2L(
j

sin~2u j !sin~f j2f i !

]f i

]t
52mBBi2zmB

2L

3S (
j

cos~2u j !2cot~2u i !

3(
j

sin~2u j !cos~f j2f i ! D . ~15!

These equations of motion are a completely discrete ver
of those given in Eq.~9! describing neutrino flavor dynam
ics. When the moment-moment coupling vanishes, the s
just precess around the external field at a constant ze
angle with the frequencyv52mBBi . The ( j cos(2uj) is
time-independent because the total angular momentum in
direction of the external magnetic field is conserved. T
order parameter is the average magnetic field in the x an
directions, (1/n)( j sin(2uj)exp(ifj)}^Hx1iHy& and it is the
same for all magnetic moments.

Similar models have been studied to try to understa
how oscillators become synchronized.

D. Kuramoto model

Kuramoto proposed an analytically tractable model
studying the collective synchronization of oscillators@26#.
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This model was not derived from any specific physical s
tem, but was intended to model the essential behavio
biological systems@37#. It can be ‘‘motivated’’ from a mag-
netic moments approach with a couple of additional assu
tions beyond those used in the previous section. The ze
angle degree of freedom is removed by restricting all m
netic moments to have the same zenith angle, so the K
moto model is like an X-Y model@31#. Also a source of
dissipation must be added.

The equations of motion for the Kuramoto model are

]f i

]t
5v i2

K

N (
j 51

N

sin~f i2f j ! ~16!

whereK is a coupling constant andi ranges from 1 toN.
Introducing the order parameter

reic5
1

N (
j 51

N

eif j . ~17!

Then the equations of motions may be rewritten as

]f i

]t
5v i2Kr sin~f i2c!. ~18!

This model has been studied extensively@28–33#. For K
.0 and large N, it has been shown that there is a criti
value for the coupling constant

Kc5
2

pg~0!
. ~19!

Hereg(v) is the density of oscillators, assumed to be sy
metric about and peaked at the mean frequency, zero@see,
e.g., Eq.~14!#. For K less thanKc , the incoherent state wa
found to have ‘‘neutral’’ stability, with synchronization de
caying at a rate which is exponential at intermediate tim
but which is slower than exponential at long times. Th
decay mechanism is similar to Landau damping of waves
a collisionless plasmas@30#. For K aboveKc , the incoherent
state is always unstable and spontaneous synchronizatio
the oscillators occurs. Then, when the order paramete
small it grows likeR(t)'R0elt. The growth parameter,l, is
determined by@28#

15
K

2 E
2`

`

dn
g~n!

l1 in
. ~20!

Thus there is a phases transition in the system as the
pling parameter,K, is varied.

It is apparent that the evolution equations of the Ku
moto model, Eqs.~18! and ~17!, are quite similar to those
describing the flavor evolution of a dilute neutrino gas, E
~9! and ~13!. The parameterK in the Kuramoto model is
analogous to the parameterj in the neutrino gas model. Th
fact that the neutrino flavor evolution depends on two para
eters is not that important because it is the evolution of
phase,f which is most crucial to synchronization. The lar
est difference between neutrino flavor evolution and
2-5
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Kuramoto model is that the former depends on a cosine c
pling of the phases, while the latter depends on a sine c
pling. There has only been minimal attention in the synch
nization literature to nonlinear couplings other than a s
@27#. With a cosine coupling, some methods used to st
the Kuramoto model are not practical. For example, it
difficult to find a Lyapunov function@31#. However the
method used by Strogatz and Mirollo@28# to determine the
stability of the incoherent state, and to calculate analytica
the rate of growth of the synchronized state, is still app
cable. This method will be used in Sec. VI to study the dilu
neutrino gas.

III. THE DISCRETE MODEL AND ITS NUMERICAL
ANALYSIS

The neutrino evolution equations, Eqs.~9!, were studied
numerically. This was done in order to understand the beh
ior of the system, to verify the results of analytical calcu
tions, and to look for unexpected behavior. For the numer
calculations, the frequency,v, was divided intoNv uniform
bins, turning the integral over frequency into a discrete su
Then each ‘‘neutrino’’ had a particular frequency. The nu
ber of ‘‘neutrinos’’ with the same frequency is given byNd .
A fourth order Runge-Kutta method was used to evolve
angle and phase parameters for each ‘‘neutrino.’’

A. Numerical errors

There are two places where numerical errors can man
themselves, in the discrete approximation to the derivati
with respect to time or the discrete approximation to
integral over frequency. Each source of error is import
and cannot be ignored.

It is straightforward how to achieve accuracy using t
Runge-Kutta approximation. For the numerical results giv
here, the time step was chosen to be a couple orders of m
nitude smaller than the largest frequency. The efficacy of
choice was tested by two different techniques. One ch
was provided by the average mixing angle, cos(2uF). While
the mixing angle of a typical ‘‘neutrino’’ changed conside
ably in time, the average mixing angle should remain c
stant@see, e.g., Eq.~10!#. A different check was provided by
the constraint that the mixing angle for each ‘‘neutrino
should always stay in the range 0,u,p/2. These con-
straints were tested at each time step, and violations of t
were eliminated by restarting the calculation with a sma
time steps.

Making the frequency discrete produces errors that
more difficult to monitor. The problem can be illustrate
with a sample calculation. Here we calculate the order
rameter, Eq.~13!, exactly for the continuous case and for
discrete approximation. This can be done when the nonlin
effects are negligible (j50), so only vacuum oscillations
are relevant. We look at the simplest possible case, a unif
frequency distribution

g~v!5H 1

2g
for 2g,v,g,

0 otherwise.

~21!
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It is assumed that the ‘‘neutrinos’’ are completely synch
nized at t50, i.e., they all have the same mixing angle a
zero phase, soR(0)51. There is no evolution of the mixing
angle in the vacuum case, so it drops out of the expres
for the order parameter. Then integration yieldsc50 and

R~ t !5
sin~gt !

gt
. ~22!

The order parameter decreases in time and slowly
proaches zero, showing that vacuum oscillations slow
disappear and the neutrinos become incoherent. To calcu
the discrete version, we choose the parametrizationv j
5g @2112 j /(Nv11)# where j runs from 1 toNv . Then
summing the series yieldsc50 and

R~ t !5
sin@~gt !Nv /Nv11#

Nvsin@~gt !1/Nv11#
. ~23!

The discrete expression forR initially decreases, in agree
ment with the continuous case. But subsequently, the
crete expression increases, and in fact it periodically retu
to 1, an example of Poincare recurrence. The continuous
discrete expression agree whenNv is large compared to 1
and, more importantly, when the total time is small such t

gt'2pnosc!Nv . ~24!

Herenosc is the number of oscillations that the order para
eter has gone through. Thus the number of frequency b
Nv places an upper limit on how long we can evolve t
equations and still trust the numerical results to agree w
the continuous model.

B. Evolution of volumes in phase space

The relation Eq.~24! was derived for vacuum oscillations
but it should still roughly hold when the nonlinear terms a
small compared to the vacuum terms. However when
nonlinear terms are large, the situation can be very differ
A priori, it is possible that then phenomena such as Poinc
recurrence occur leading to huge errors, or perhaps there
attractors and the errors are vanishing. These possibil
can be explored somewhat by examining how volumes
phase space evolve for the discrete model. For example,
umes in the Kuramoto model’s 2N dimensional phase sp
obey

1

V

dV

dt
5(

i 51

N
]

]f i
ḟ i ~25!

52K~Nr221!. ~26!

Herer is the order parameter, Eq.~17!. This equation tells us
that, for large N, a small amount of coherence cause volu
in phase space to shrink, suggesting the presence of a
tractor. This qualitative observation agrees with experie
from numerical simulations of the Kuramoto model, where
is found that the steady state value of the order paramet
2-6
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STABILITY OF INCOHERENCE IN AN ISOTROPIC . . . PHYSICAL REVIEW D 58 073002
insensitive to the initial conditions. For the neutrino mod
volumes in the 4N dimension phase space obey

1

V

dV

dt
5(

i 51

N S ]

]f i
ḟ i1

]

]u i
u̇ i D ~27!

5jNRSsin~x2c!, ~28!

where R is the discretized version of the order parame
defined in Eq.~13!, andS is an analogous quantity

Seix5
1

N (
j 51

N
cot~2u j !

cot~2uF!
eif j . ~29!

When all neutrinos have the same mixing angle,S andR are
identical, so Eq. ~28! vanishes and the system
conservative—volumes in phase space are preserved. In
eral, the mixing angle will have a distribution of value
~from MSW type effects!, soS andR are typically different
and the system is not always conservative. However, it
ively appears that Eq.~28! will typically oscillate in sign,
and so the neutrino system is approximately conservative
the average. This suggests that there is no robust attracto
the discrete neutrino model. Consequently, it should be
pected that, for all values of the nonlinear coupling, nume
cal simulations of the neutrino model will depend on init
conditions, and the discrete and continuous models will
verge with time, analogous to Eq.~24!.

C. Numerical results

The general numerical strategy employed here is to
ways choose parameters for the total evolution time and
number of bins that satisfy Eq.~24!. In addition, the time
evolution of the order parameter is always monitored
large fluctuations, and compared to a recalculation wit
different number of frequency bins. This is an improveme
over all previous numerical studies of neutrino-neutrino fl
vor dynamics which have neglected the difference betw
the continuous and discrete models. Some previously p
lished numerical studies have evolved neutrino systems
far longer than the limit given in Eq.~24!. Thus numerical
results on nonlinear neutrino dynamics in the existing lite
ture must be used with caution.

Our numerical solutions of the neutrino dynamics mod
Eqs. ~9!, are given in Figs. 2–4. These solutions are fo
uniform neutrino asymmetry distribution, as given in E
~21!. The parameter which sets the scale for vacuum osc
tions, g, was chosen to be 1. The ‘‘neutrinos’’ were alwa
started with a common mixing angle,„u(0,v)5uF…, but sev-
eral values ofuF were used. While these are not the mo
general conditions, they are adequate for illustrating the t
of behavior that occurs in neutrino dynamics.

Two different types of initial conditions were used for th
phase,f(t,v). Sometimes the ‘‘neutrinos’’ were starte
completely synchronized withNd51 andf(0,v)50 so that
R(0)51. The other initial condition used was to start wi
incoherent ‘‘neutrinos’’, i.e., the phases of theNd ‘‘neutri-
nos’’ that have the same frequency were started out
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formly distributed between 0 and 2p so thatR(0)50. The
latter was useful for studying the growth of coherence.

Figures 2 show the evolution of the magnitude of t
order parameter. The behavior of the ‘‘neutrinos’’ for a lar
value of the neutrino background coupling and incoher
initial conditions is illustrated in Fig. 2~a!. Initially R(0)
50, but subsequently, the finite precision of machine cal
lations introduces small amounts of noise to this quantity
the Kuramoto model~dashed line!, the order paramete
grows exponentially, from these small fluctuations to a co
pletely synchronized steady state. However for the mode
neutrino dynamics studied here, the fluctuations in the or
parameter do not grow exponentially, but instead appea
remain consistent with numerical zero. Calculations at ot
values of j show the same behavior, neutrinos which a
initially incoherent remain incoherent. For the Kuramo
model, the incoherent state is unstable, but this is not so
the neutrino model. However this does not mean that
incoherent state is stable for neutrinos. In Fig. 2~b! the ‘‘neu-
trinos’’ are started off completely coherent, with only a sm
value for the neutrino background coupling,j. Initially

FIG. 2. Plots of the magnitude of the order parameter as a fu
tion of time. In~a! theNv5300, Nd510 ‘‘neutrinos’’ were initially
incoherent@R(0)50#, with j52.0 anduF50.25. For comparison,
the dashed line in~a! shows the behavior of the Kuramoto mod
for K52.0. In ~b! theNv52000,Nd51 ‘‘neutrinos’’ were initially
synchronized@R(0)51#, with j50.5 anduF50.25.
2-7
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R(0)51, but subsequently, the order parameter decrea
undergoes large and small scale oscillations, and ultima
settles down to a nonzero steady state value. Because
order parameter settles down to a nonzero value, we k
that the incoherent state is not an attractive, stable state,
at smallj. This is different than the Kuramoto model~not
plotted!, where the order parameter relaxes completely
zero below the critical coupling, Eq.~19!. These results
clearly show that the neutrino steady state is sensitive to
initial conditions, as expected from Eq.~28!. In general, it
appears that the nonlinear neutrino dynamics in this sim
model does not cause synchronization to increase, but
support some synchronization, even when the neutrino b
ground is small.

The amount of steady state synchronization that rem
when starting from initially coherent neutrinos is explored
Fig. 3. There the steady state values of the order parame
magnitude~a! and rate of phase change~b! are plotted as a
function of the coupling,j, for two different values of the
mixing angle,uF . Also shown on these figures are the a
proximate theoretical predictions from Eq.~A9!. Only posi-
tive j values are shown in these figures because, for e

FIG. 3. Plots of steady state values of the order paramet
magnitude~a! and rate of phase change~b! as a function ofj, the
neutrino background density parameter. The ‘‘neutrinos’’ were
tially synchronized@R(0)51#, and two different values of initial
mixing angle were used,uF50.125 ~circles! and uF50.25
~squares!. The solid curves denote approximate analytical calcu
tions.
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FIG. 4. Plots of the steady state values ofNv52000, Nd51
oscillators. The ‘‘neutrinos’’ were initially synchronized@R(0)
51#, with j50.5 anduF50.25. Figure~a! shows the phase versu
the frequency, figure~b! shows the mixing angle versus the phas
and figure~c! shows the mixing angle versus the frequency. T
phase in these figures has been binned and scaled to range
0 to 1.
2-8
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STABILITY OF INCOHERENCE IN AN ISOTROPIC . . . PHYSICAL REVIEW D 58 073002
g(v), R is an even function ofj, while c is odd. The mag-
nitude of the order parameter approaches 1 for largej, but
decreases towards 0 asj decrease. The phase of the ord
parameter changes at a constant, nonzero rate in the s
state. This is shown in Fig. 3~b! which plots (dc/dt2j)
versusj. Note that it is difficult to calculate numerically th
steady state value of the order parameter and its phase w
j is small. This is because then the order parameter initi
falls off approximately as given in Eqs.~22! and~23!, which
is rather slow, so very long calculations times are nee
@see Eq.~24!# to discern the small, residual synchronizatio
In general, there does not appear to be a sharp change i
order parameter at any nonzero value ofj.

The distribution of ‘‘neutrinos’’ in the steady state is e
plored in Fig.~4!. There are plotted the state of each osc
lator at the end of the evolution shown in Fig. 2~b!. These
plots are for initially synchronized neutrinos with a relative
small value of the coupling,j. Figure 4~a! shows the distri-
bution of the neutrino phases as a function of frequency.
phases have had multiples of 2p subtracted off, and thei
remainder scaled to range from 0 to 1. This figure shows
the phase grows continuously with frequency. Figure 4~b!
plots the mixing angle of each ‘‘neutrino’’ versus its phas
Crudely, this figure shows a ‘‘background’’ of continuous
distributed ‘‘neutrinos’’ and a rather localized structure co
responding to the synchronized neutrinos. Note that
phase associated with the center of the localized structur
Fig. 4~b! changes in time, as illustrated in Fig. 3~b!. Figure
4~c! plots the mixing angle of each ‘‘neutrino’’ versus i
frequency. The mixing angle in Figs. 4~b! and 4~c! has not
been scaled and can range from 0 top/2. While the average
of the mixing angles must remain equal to their initial valu
uF50.25, these figures show considerable structure.
steady state mixing angle is a function of frequency, h
small scale oscillations and also large scale distortions.

The plots shown in Fig. 4 would appear quite different
calculated for large values of the couplingj. At large cou-
pling, the continuous background in Fig. 4~c! disappears and
all of the neutrinos are in a localized structure. Thus, ther
a transition from partial entrainment to full entrainmen
However Fig. 3 indicates that the order parameter is cont
ous and nonzero asj is varied through this transition.

IV. ANALYTICAL SOLUTIONS

The stability of the incoherent state of the continuous n
trino model can be analyzed analytically. The methods u
here are similar to those used in studies of the Kuram
model @28# and in studies of two component limit cycle o
cillators @29#. The first step is to introduce a density functio
r( ũ,f,v,t). Here the parameterũ[2u is used sinceũ and
f follow the usual rules for spherical coordinates. This de
sity function is the fraction of the oscillators of frequencyv

betweenũ and ũ1dũ and betweenf andf1df. It obeys
the normalization condition

E
0

p

dũ sin~ ũ !E
0

2p

dfr~ũ,f,v,t !51 ~30!
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for all t andv. This density function should not be confuse
with the neutrino density matrix. The density function is
single quantity which describes how the elements of the d
sity matrix are distributed.

The evolution equation forr( ũ,f,v,t) is just the equa-
tion for conservation of oscillators:

]r

]t
1“•~rv!50 ~31!

where v is the velocity of the oscillators given byv

5(ḟ sin ũ,u̇̃). Substituting forv using Eqs.~9! gives an evo-
lution equation of

05
]r

]t
1

]

]f H rS ~v1j!2j
tan~ ũF!

tan~ ũ !
R cos~f2c!D J

1
]

]ũ
$r@2j tan~ ũF!R sin~f2c!#%. ~32!

Here the order parameter can be represented in the de
formulation as

Reic5E dvg~v!E
0

p

dũ sin~ ũ ! E
0

2p

dfr
sin~ ũ !

sin~ ũF!
eif.

~33!

Interactions between neutrinos occurs through the order
rameter.

A. Perturbations about an incoherent state

We wish to describe the evolution of the density functi
in the neighborhood of an incoherent solution. For neutrin
oscillating in vacuum, the incoherent state corresponds
neutrinos uniformly distributed around the cone in Fig.
We shall use this here as our initial zeroth order state.

r0~ ũ,f,v,t !5
d~ũ2 ũF!

2p sin~ ũF!
. ~34!

The denominator is chosen to insure thatr0 satisfies the
normalization, Eq.~30!. Substituting this into the expressio
for the order parameter, Eq.~33!, we see thatR50 for this
incoherent state. Consequently, the nonlinear terms in
evolution equation, Eq.~32!, vanish and it is straightforward
to verify that the incoherent vacuum solution, Eq.~34!, is
also a solution of the nonlinear evolution equation.

Now we consider small perturbations about the incoher
state.

r5r0~ ũ,f,v,t !1eh~ũ,f,v,t ! ~35!

wheree!1. Note that Eq.~30! determines the normalizatio
condition forh as
2-9
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E
0

p

dũ sin ũE
0

2p

dfh~ũ,f,v,t !50. ~36!

The functionh is a deviation from the incoherent state, so
induces an order parameter the size of the perturbation,e.

Reic5eR1eic

5eE dvg~v!E
0

p

dũ sin ũE
0

2p

dfh
sin~ ũ !

sin~ ũF!
eif.

~37!

Then the evolution equation at ordere is

05
]h

]t
1~v1j!

]h

]f
1r0jR1sin~f2c!

2j tan~ ũF!R1sin~f2c!
]r0

]ũ
. ~38!

This linear equation describes the growth of the order par
eter near the incoherent state.

Our goal is to determine the behavior of the order para
eter as a function of time. It is instructive to note from E
~37! that the factor multiplying the density function in th
definition of the order parameter is proportional to a sph
cal harmonic:

sin~ ũ !eif52A8p

3
Y1,1~ ũ,f!5A8p

3
Y1,21* ~ ũ,f!.

~39!

Thus, because the spherical harmonics are orthogonal,
the part ofh that is proportional toY1,21 contributes to the
order parameter. Hence, it makes sense to expandh in
spherical harmonics.

h~ũ,f,v,t !5(
l 51

`

(
m52 l

l

Al ,m~v,t !Yl ,m~ ũ,f!. ~40!

The coefficientsAl ,m are the amplitudes of the differen
modes of oscillation. The normalization condition requir
A0,050 and becauseh is real,Al ,m5(21)mAl ,2m* . The or-
der parameter is

R1eic5
1

sin~ ũF!
A8p

3
E dvg~v!A1,21~v,t !. ~41!

To pick out theA1,21(v,t) amplitude from the linearized
evolution equation, we multiply Eq.~38! by Y1,21* ( ũ,f) and

then integrate overũ andf. This gives
07300
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]A1,21~v,t !

]t
2 i ~v1j!A1,21~v,t !

1 i
3j

2 E dvg~v!A1,21~v,t !. ~42!

This simple amplitude equation determines the growth of
order parameter. The analogous amplitude equation der
for the Kuramoto model is almost identical to this, the on
difference being the coefficient of the integral is then re
This is rather surprising considering that the neutrino mo
depends not just on the a phase parameter, but also on
mixing angle parameter. However the final amplitude eq
tion is independent of cos(uF), except through thej param-
eter. Similar amplitude equations can be easily derived
the other harmonics, however, they are not relevant to
growth of the order parameter.

The equation for theA1,21 amplitude, Eq.~42!, has a
discrete and a continuous spectrum of eigenvalues@28#. This
is not surprisingly, since the numerical solution found loc
ized and continuous structure. The continuous spectrum
responsible for phase mixing which causes the order par
eter to decrease in time. The discrete solution is respons
for the steady state behavior of the order parameter.
equation can be solved completely, to find the relative a
plitudes of the discrete and continuous solutions, us
Laplace transforms~see the Appendix!. Here we shall con-
fine our analysis to the physically most interesting part,
discrete eigenvalue. It is of the form

A1,21~v,t !5B~v!elt ~43!

where the eigenvalue is independent ofv. Substituting this
in yields an equation for the eigenvaluel of

lB5 i ~v1j!B2 i
3j

2 E d f g~ f !B~ f !. ~44!

This equation is easy to solve because the integral is ju
constant, independent ofv. Let the value of this constant b
denoted byC. Then we can solve forB(v)

B~v!52 i S 3j

2 D C

l2 i ~v1j!
. ~45!

Substituting this back into the equation for the eigenval
Eq. ~44!, the constant C cancels out, since C must be n
zero, otherwise, the solution is trivial. Then the equation
the eigenvalue is

15
3j

2 E dv
g~v!

~v1j!1 il
~46!

where we have canceled out a factor ofi from the numerator
and denominator@compare to Eq.~20!#. This equation speci-
fies the time dependence of the synchronized state.

The eigenvalue equation can be solved analytically
specific frequency distribution functions,g(v). However
even without solving it, we can deduce an important prope
2-10
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STABILITY OF INCOHERENCE IN AN ISOTROPIC . . . PHYSICAL REVIEW D 58 073002
about the eigenvalue. Writingil5x1 iy , the imaginary part
of this eigenvalue equation can be written as

05y
3j

2 E dv
g~v!

~v1j1x!21y2 . ~47!

The integral in this equation is necessarily nonzero beca
all physical g(v) are positive at every frequency, and b
cause the denominator is always positive. Thus for nonz
j, the last equation shows thaty50. Consequently, the ei
genvalue must always be purely imaginary. In the Kuram
model, the eigenvalue has a real part with leads to expon
tial growth of the order parameter. But the results h
clearly indicate that for the neutrino dynamics model, t
incoherent state has neutral stability, and the magnitud
the order parameter will never increase or decrease expo
tially in time.

1. Solution for uniform spectrum

The integration in Eq.~46! can be performed for a uni
form frequency distribution, Eq.~21!. Then, solving forl
yields

l5 i Fj2g cothS 2g

3j D G . ~48!

Using this result, we see that the integrand in Eq.~46! is
never singular, since (il1j).g for all nonzero values ofj.
Only for j50 does the denominator of the integral vanis
indicating that the discrete solution disappear. Thus in
neutrino model, a steady state synchronized solution ex
for all values of the nonlinear coupling,j.

This result is used to generate the theoretical curve plo
on Fig. 3~b!. The phase of the order parameter is related
the eigenvalue by Eqs.~41! and ~43!, which gives (dc/dt
2j)5(2 il2j). In the figure, the theoretical predictio
agrees well with the numerical results whenj is small. At
large j the order parameter is large and our lineariz
method breaks down.

2. Solution for delta function spectrum

The previous frequency distribution is an even, sin
humped function. These are rather special properties and
quency distributions without them may have qualitative
different behavior@33#. For generality, we examine a fre
quency distribution which does not have these properties
particular, consider the sum of two delta functions, cente
at frequenciesva andvb .

g~v!5ad~v2va!1~12a!d~v2vb!. ~49!

Herea parameterizes the relative amount of each frequen
while keeping the overall normalization ofg(v) equal to 1.
Sinceg(v) must always be positive, the parametera is re-
stricted to the range 0<a<1. This bimodal distribution is
not an even function of frequency, except ata50.5.

The integration of Eq.~46! can be easily performed for
delta function integrand. Then, solving forl yields
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l5 i j1 i
1

2 H Fvb1va2
3j

2 G6F S vb2va2
3j

2
~122a! D 2

1~3j!2a~12a!G1/2J . ~50!

There are now two eigenvalues. In the limit thatj→0, the
roots just reduce to the vacuum frequencies,va andvb . In
the limit of a→0 or 1, only one of the delta functions i
relevant and the two roots are then just the vacuum
quency of the decoupled oscillator, and the other vacu
frequency minus 3j/2. The most important feature is that, fo
all values ofj and for any physical value ofa, the argument
of the square root is positive. Thus, the discrete eigenvalu
always purely imaginary, in agreement with the argume
from Eq. ~47!. The incoherent state has neutral stability.

B. Perturbations about two mixing angles

The previous analytical calculations assumed the neu
nos were predominantly incoherent in phase with a sin
mixing angle. However it is more physical to consider
zeroth order state which has a distribution of mixing angl
Such distributions can be produced by nonlinear effects@see,
e.g., Fig. 4~c!#, or they can also be produced by effects n
included in the present neutrino dynamics model, such
MSW type effects. To search for any qualitatively new fe
tures associated with such a state, we consider perturba
about a generalization of Eq.~34!.

r0~ ũ,f,v,t !5Q~v!
d~ ũ2 ũ1!

2p sin~ ũ1!

1@12Q~v!#
d~ ũ2 ũ2!

2p sin~ ũ2!
. ~51!

This density function describes neutrinos uniformly distr
uted in phase at two discrete mixing angles. HereQ(v) pa-
rameterizes the relative amount of each mixing angle a
function of frequency, while the overall normalization sat
fies Eq.~30!. Because the density function must be nonne
tive, Q is limited to the range 0<Q<1. The average mixing
angle,ũF , is determined by

cos~ ũF!5E dvg~v!@Q~v!cos~ ũ1!1@12Q~v!#cos~ ũ2!#

~52!

anduF lies between the two mixing angles,ũ1 and ũ2 . Be-
cause the phase is uniformly distributed, the order param
vanishes and so this density solves the nonlinear evolu
equation, Eq.~31!.

Starting from this zeroth order state, the calculation c
proceed parallel to the one outlined in Sec. IV A. The p
turbations can be written as an expansion in spherical
monics. Then the equations describing the evolution of
amplitudes can be derived. Again theA1,21 amplitude is the
only one responsible for the growth of the order parame
and it has a discrete solution. The eigenvalue equation
this solution is
2-11
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3j

2 E dv
g~v!q~v!

~v1j!1 il
. ~53!

The only difference between this eigenvalue equation
that derived previously for a single mixing angle, Eq.~46!, is
the additional function in the integrand,q(v), defined as

q~v!5S 2

3
1

$Q~v!sin~ ũ1!1@12Q~v!#sin~ ũ2!%

3 sin~ ũF!
D .

~54!

Because 0<ũ<p and 0<Q<1, q(v) is necessarily non-
negative for all frequencies. Thus the effects of introduc
q(v) into the eigenvalue equation can be absorbed into
frequency distribution,g(v), and the nonlinear constant,j.
That is, the eigenvalues derived from this ‘‘two mixin
angle’’ equation are not qualitatively different than those d
rived from the previous ‘‘one mixing angle’’ eigenvalu
equation. In particular, the proof that the eigenvalues
necessarily purely imaginary, Eq.~47!, holds for this new
eigenvalue equation. The incoherent state in Eq.~51! has
neutral stability.

V. CONCLUSIONS

In this paper we have analyzed the flavor dynamics o
dilute, isotropic gas of massive neutrinos. The only inter
tion included was the neutrino-neutrino forward scatteri
which is a large and often dominant effect in the early u
verse, and which is also relevant in type II supernovae. T
interaction makes the flavor evolution nonlinear and th
collective phenomena can be important.

The dynamics were described using a phase and mi
angle formalism. This parametrization is efficient, intuitiv
and allows us to adopt methods from the extensive litera
on the synchronization of oscillators. Writing the equatio
of motion in this parametrization immediately suggests
specific order parameter for the system. Also, it is appa
that synchronization of phases leads to evolution of the m
ing angle. The behavior of the neutrino system, and in p
ticular, the order parameter, was studied numerically
analytically.

Numerical simulations provided useful examples of t
behavior in this nonlinear dynamical system, Figs. 2–
However numerical simulations have their limitations a
these were also examined. Numerical simulations necess
require a discrete number of ‘‘neutrinos’’ to evolve, and th
number is far less than the number of neutrinos presen
physical systems. This places a severe limit on the lengt
time for which numerical simulations will accurately mod
the physical system@see Eq.~24!#. As time increases, the
neutrino spectrum is probed at decreasing frequency sc
so increasing numbers of neutrinos are needed to model
accurately. This effect has been ignored in previously p
lished numerical studies of nonlinear neutrino systems, c
sequently, those previous results must be used with cau

Our numerical and analytical analyses show that the in
herent state has neutral stability. Neutrino systems that
initially incoherent, remain incoherent, while systems th
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are initially synchronized remain synchronized. However
amount of synchronization supportable by the system
pends on the width of the neutrino spectrum, and on
number of neutrinos per unit volume. At large neutrino nu
ber densities, the system can be completely synchronized
small neutrino number densities, some of the synchron
tion can decay via phase mixing, but a small amount of s
chronization is always supportable.

The amount of synchronization possible in our neutri
system was determined analytically by defining a continu
density function to describe the distribution of oscillato
This formalism is extremely powerful and allowed us
study the behavior of the system near the incoherent s
Using this technique, an approximate expression for
steady state value of the order parameter’s magnitude
phase was derived@Eq. ~A9!#. This analytical expression
agreed well with the numerical simulations~Fig. 3!.

The neutrino system studied in this paper is too simple
make definite predictions about the physical environme
where neutrino-neutrino forward scattering is relevant. In
early universe and in type II supernovae, there are always
additional effects of antineutrino degrees of freedom and
three neutrino flavors. At various times, there are other
fects which are relevant: forward scattering off of charg
leptons, nonforward scattering, spatial anisotropy, and d
sity fluctuations. All of these possibilities can be studied w
the techniques used in this paper. Work on them is
progress. However we shall briefly speculate on how th
effects modify the results found here.

The ‘‘steady state’’ of the neutrino model studied he
depends on the initial amount of synchronization. This
because this model is approximately a conservative sys
@see Eq.~28!#. The addition of antineutrino degrees of fre
dom to the system is not likely to change this. Similarly, t
addition of a constant electron background is not expecte
make the system dissipative. However if the electron ba
ground is allowed to vary with time, this would qualitative
change the situation. For example, an electron backgro
density that decreased monotonically in time might indu
synchronization—since it does so when the neutrino ba
ground is negligible and the MSW transition is nonadiaba
The neutrino-neutrino forward scattering might then sust
the synchronization after the electron background beca
negligible. But if the electron background density fluctuat
randomly, then this would most likely make the incohere
state stable. Calculations in the Kuramoto model have sho
that random fluctuations tend to make the incoherent s
stable. However the Kuramoto model also illustrates h
dissipative effects can cause the generation of synchron
tion by making the incoherent state unstable. The simila
of the neutrino model to the Kuramoto model, Eq.~18!,
makes it seem likely that the incoherent state may be
stable in some neutrino systems. In particular, it is easy
show that only a small phase shift needs to be added to
neutrino model’s cosine coupling to make the incoher
state unstable. Such a phase shift might come from th
violating phase that is intrinsic with three neutrino flavo
Nonforward scattering and spatial anisotropy might a
have a similar effect. It appears possible that collective fla
2-12
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phenomena are a robust feature of some high density
trino systems.
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APPENDIX: CALCULATING THE STEADY STATE
ORDER PARAMETER

The linear amplitude equation, Eq.~42!, can be solved
completely using Laplace transformations@30#. Here we use
this to calculate the steady state value of the order param

Multiplying through Eq.~42! by e2st and integrating over
t yields

@s2 i ~v1j!#Ã~v,s!5A~v,0!2 i S 3j

2 D E dvg~v!Ã~v,s!

~A1!

where the Laplace transform ofA is

Ã~v,s!5E
0

`

dte2stA~v,t ! ~A2!

and the (1,21) subscripts onA have been dropped. Th
order parameter depends on the integral ofA over frequency
as given in Eq.~41!. Thus we calculate the integral of th
Laplace transform ofA over frequency. Using Eq.~A1!
yields

E dvg~v!Ã~v,s!5
*dvg~v!A~v,0!/@s2 i ~v1j!#

11 i ~3j/2!*dvg~v!/@s2 i ~v1j!#
.

~A3!

Then the order parameter is given by

R1eic5CE
a2 i`

a1 i`

dsestE dvg~v!Ã~v,s! ~A4!

where the contour of integration lies to the right of all si
gularities.C is an unimportant constant that can be absor
into A(v,0).

We wish to consider the case, where the neutrinos
initially synchronized. ThenA(v,0) is the same for all neu
trinos so it is a constant, independent of frequency. We
ther restrict the calculation to a uniform frequency distrib
tion, as described in Eq.~21!. Then the integrations ove
frequency can be easily performed to yield
07300
u-
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R1eic5C8E
a2 i`

a1 i`

dsest

3
ln@~g1j1 is!/~2g1j1 is!#

12~3j/4g!ln@~g1j1 is!/~2g1j1 is!#
.

~A5!
In the complexs plane, the integrand has a pole and tw
branch points, all on the imaginary axis. The pole is det
mined by setting the denominator equal to zero, which yie
an equation identical to Eq.~46!. The pole location is thus
given by Eq.~48!, with s05l, thus the pole lies below both
branch points~for j.0!. Consequently, we choose bo
branch cuts to lie on the imaginary axis above the bra
points, so that in the integrand, the two branch cuts can
out above the upper branch point. Then the integration c
tour can be deformed, so the integral has two pieces, the
term and the integration around the branch cut connec
the two branch points.

The pole part of the integrand is straightforward to calc
late, it is

@R1eic#pole5C8~4pg!
~2g/3j!2

sinh2~2g/3j!
es0t. ~A6!

To get the normalization constant, we need to know the to
integral att50. At t50, the integration between the branc
points can be rewritten as

@R1eic#continuousu05C8~2pg!E
21

1

dyH F12S 3j

4g D lnS 12y

11yD G2

1S p3j

4g D 2J 21

. ~A7!

An exact, analytical expression for the last integral could
be found, however, a good approximate expression is eas
obtain. Because the logarithm is slowly varying, and beca
it vanishes in the middle of the integration region aty50, it
is an extremely good approximation to just neglect it in t
integrand:

@R1eic#continuousu0.C8~4pg!
1

11~p3j/4g!2 . ~A8!

Using this and the expression for the pole term yields
expression for the steady state value of the order param

R1eicusteady state.F11
~3j/2g!2 sinh2~2g/3j!

11~p3j/4g!2 G21

es0t.

~A9!

The magnitude of this equation is plotted in Fig. 3~a!, where
it is compared to the results of numerical simulations. Th
is good agreement, considering that this analytical exp
sion is derived from the linearized evolution equation. T
phase of the steady state order parameter is just the pha
the pole term, and it agrees with the calculation in S
IV A 1. The phase is plotted in Fig. 3~b! and agrees with the
numerical results when the magnitude of the order param
is small.
2-13
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