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Conformal symmetry and duality between free particle, H atom, and harmonic oscillator

Itzhak Bars
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484

~Received 8 April 1998; published 26 August 1998!

We establish a duality between the free massless relativistic particle ind dimensions, the non-relativistic
hydrogen atom (1/r potential! in (d21) space dimensions, and the harmonic oscillator in (d-2) space dimen-
sions with its mass given as the light cone momentum of an additional dimension. The duality is in the sense
that the classical action of these systems are gauge fixed forms of the same worldline gauge theory action at the
classical level, and they are all described by the same unitary representation of the conformal group SO (d,2)
at the quantum level. The world line action has a gauge symmetry Sp~2! which treats canonical variables (x,p)
as doublets and exists only with a target spacetime that hasd spacelike dimensions and two timelike dimen-
sions. This spacetime is constrained due to the gauge symmetry, and the various dual solutions correspond to
solutions of the constraints with different topologies. For example, for the H atom the two timelike dimensions

X08,X0 live on a circle. The model provides an example of how realistic physics can be viewed as existing in
a larger covariant space that includes two timelike coordinates, and how the covariance in the larger space
unifies different looking physics into a single system.
@S0556-2821~98!00416-0#

PACS number~s!: 11.25.Hf, 11.10.Lm
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I. GAUGE SECTORS AND DUALITY

In a recent paper@1# a duality was constructed betwee
several simple physical systems by showing that they
different aspects of the same quantum theory. The theor
based on gauging the Sp(2) duality symmetry that tre
position and momentum (x,p) as a doublet in phase spac
The worldline action has a manifest SO(d,2) symmetry act-
ing linearly on a target spacetimeXM(t) with two times.
Thanks to the gauge symmetry the theory is equivalent
theory with a single time, but the choice of ‘‘time’’ is no
unique. For different gauge choices of ‘‘time’’ the Hami
tonian looks different and appears to describe differ
physical systems. However these systems are gauge eq
lent, i.e. duality equivalent. It was shown that the Sp(
duality gauge invariant sectoris fully characterized in the
quantum theory by aunique unitary representation of th
conformal group SO(d,2). The quadratic Casimir coefficien
of SO(d,2) takes the valueC2512d2/4 and all higher Ca-
simir coefficientsCn are also fixed. In@1# it was shown that
the free relativistic particle is described by this representa
at the quantum level. In this paper we will show that t
hydrogen atom and the harmonic oscillator are also
scribed by the same unitary representation and hence
are dual to the free particle at the classical as well as qu
tum levels.

First we give the action for the model. To remove t
distinction between position and momentum we rena
them X1

M[XM and X2
M[PM and define the doubletXi

M

5(X1
M ,X2

M). The local Sp(2) acts as follows:

dvXi
M~t!5« ikvkl~t!Xl

M~t!. ~1!

Herev i j (t)5v j i (t) is a symmetric matrix containing thre
local parameters, and« i j is the Levi-Civita symbol that is
invariant under Sp(2,R) and serves to raise or lower indice
The Sp(2,R) gauge fieldAi j (t) is symmetric in (i j ) and
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transforms in the standard waydvAi j 5]tv
i j 1v ik«klA

l j

1v jk«klA
il . The covariant derivative isDtXi

M5]tXi
M

2« ikAklXl
M . An action that is invariant under this gaug

symmetry is

S05
1

2E0

T

dt~DtXi
M !« i j Xj

NhMN

5E
0

T

dtS ]tX1
MX2

N2
1

2
Ai j Xi

MXj
NDhMN . ~2!

As argued in@1# this system exists non-trivially only ifhMN
has signature (d,2) including two timelike dimensions. Thu
there is a manifest global SO(d,2) symmetry. The canonica
conjugates areX1

M5XM and ]S/]Ẋ1
M5X2

M5PM. They are
consistent with the idea that (X1

M ,X2
M) is the doublet

(XM,PM). There has been some discussion in the past o
action related to this one@2–5#, but not including our non-
trivial classical and quantum solutions or our point view
duality. This action can be generalized in several ways c
sistently with the Sp(2) gauge invariance, including sup
symmetry, and interactions with background gravitation
fields G(MN) andB[ MN] and/or background gauge fieldsAi

M

that are doublets of Sp(2)@1#. In the presence of backgroun
fields the global symmetry SO(d,2) is replaced by the Kill-
ing symmetries of the background fields.

The equations of motion forXi
M ,Ai j that follows from the

Lagrangian~2! are

S ]tX
M

]tP
M D 5S A12 A22

2A11 2A12D S XM

PM D ~3!

X•X5X•P5P•P50. ~4!

The global symmetry generators for SO(d,2) are
© 1998 The American Physical Society06-1
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LMN5« i j Xi
MXj

N5XMPN2XNPM. ~5!

They are manifestly Sp(2)gauge invariant. At the classical
level all Casimir coefficients of SO(d,2) vanish due to the
constraints~4!

Cn„SO~d,2!…5
1

n!
Tr~ iL !n50, classical. ~6!

It was shown that this is sufficient to characterize complet
all the classical solutions without making any gauge cho
for ‘‘time’’ @1#.

When the theory is quantized and orders of operatorsX,P
are taken into account, there is a similar statement. Be
taking the constraints~4! into account, the quadratic Casim
operator of the gauge group is

C2„Sp~2!…5
1

4FXMP2XM2~X•P!~P•X!1
d224

4 G , ~7!

where the last term results from operator reordering.
LMN of the form~5! all the Casimir operatorCn(SO(d,2)) of
Eq. ~6! can all be written in terms of the quadratic Casimir
the gauge groupC2„Sp(2)… plus operator reordering con
stants that depend ond. In particular,

C2„SO~d,2!…5
1

2
LMNLMN5F4C2„Sp~2!…112

d2

4 G .
~8!

In the gauge invariant sector the physical states are sing
of Sp(2) and therefore, for physical states,

C2„Sp~2!…50, C2„SO~d,2!…512
d2

4
. ~9!

Similarly all Cn are fixed at the quantum level by demandi
C2„Sp(2)…50. Thus, the quantum solution of the theory co
responds to a unique unitary representation of SO(d,2), with
specific eigenvalues of the Casimir coefficientsCn(d). This
important information obtained in covariant quantizati
completely determines the unitary physical Hilbert spa
There are no ghosts in the physical space because this
(d,2) representation is unitary.

The physical content of the system is better understoo
non-covariant quantization by choosing a ‘‘time’’ and co
structing a Hamiltonian. The choice of time is not uniq
because the spacetime of our model has more than one
like dimensionX08,X0. Since there is more than one ‘‘time
there are different looking Hamiltonians that are canonica
conjugate to the given choice of time. In such physi
gauges the system is automatically unitary but one m
verify that quantization is consistent with the global SO(d,2)
symmetry. This requires some non-trivial ordering of cano
cal operators in the construction of thegauge invariantquan-
tum generatorsLMN expressed in fixed gauges. After doin
so, we show that the unitary representation is identical to
one that emerged from covariant quantization, with the sa
Casimir eigenvaluesCn(d), but now expressed in the phys
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cal basis of some Hamiltonian. Examples of this proced
include the relativistic massless particle, the H atom, the h
monic oscillator, and more.

II. FREE PARTICLE AND H ATOM AS GAUGE CHOICES

Consider the basisXM5(X18,X28,X1,X2,Xi) with the
metrichMN taking the valuesh18285h12521 in the light
cone type dimensions, whileh i j 5d i j for the remainingd

22 space dimensions. Thus one timeX08 is a linear combi-
nation of X68, and the otherX0 is a linear combination of
X6. The gauge group Sp(2) has three gauge parame
hence we can make three gauge choices. The free par
lightcone gauge isX1851, P1850, X15t. This is a legiti-
mate gauge choice as shown in@1#. Inserting this gauge into
the constraints~4!, and solving them, one finds the followin
components expressed in terms of the remaining indepen
degrees of freedom (x2,p1,xW i , pW i):

M5@18, 28,1, 2, i #

XM5@1, ~xW2/22tx2!, t, x2, xW i # ~10!

PM5F0, S xW•pW 2x2p12
tpW 2

2p1D , p1,
pW 2

2p1
, pW i G .

One can verify that this gauge corresponds to the free r
tivistic massless particle, by inserting the gauge fixed fo
~10! into the action ~2!. Since all constraints have bee
solved, theAi j terms are absent, and we get

S05E
0

T

dt ]tX1
MX2

NhMN

5E
0

T

dtS ]txW•pW 2]tx
2p12

pW 2

2p1D . ~11!

This is the action of the free massless relativistic particle
the lightcone gauge, in the first order formalism, with t
correct HamiltonianP25pW 2/2p1. Note that both time coor-
dinates have been gauge fixed,X1851 andX15t, to de-
scribe the free particle. This is the free particle ‘‘time.’’ Th
SO(d,2) symmetry generators in this gauge were given
@1#. They will be used in Sec. IV to discuss the duality b
tween the free massless particle and the harmonic oscilla

We now show that the hydrogen atom corresponds to
other gauge choice in this system, with a rather differ
choice of ‘‘time’’ as a function of the two timelike dimen
sionsX08,X0. Consider the basisXM5(X08,X0,XI) and PM

5(P08,P0,PI) with metric h08085h00521 and h IJ5d IJ.
Choose one gauge such that the four functio
X08,X0,P08,P0 are expressed in terms of three functio
F,G,u:

X085F cosu, X05F sin u ~12!
6-2
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CONFORMAL SYMMETRY AND DUALITY BETWEEN . . . PHYSICAL REVIEW D58 066006
P0852G sin u, P05G cosu. ~13!

Inserting this form in the constraints~4! gives

XM5F@cosu, sin u, nI # ~14!

PM5G@2sin u, cosu, mI #, ~15!

wherenI ,mI areEuclideanunit vectors that are orthogona
We choose the following parametrization for these unit v
tors in the basisI 5@18,i # where I 518 denotes the extra
space dimension andi 51,2,•••,(d21) labels ordinary
space:

nI5F2
1

a
A22H r–p, S 1

r
r i2

r–p

a
pi D G , ~16!

mI5F S 12
rp2

a D , A22H
r

a
pi G ,

where

H5
p2

2
2

a

r
, ~17!

is the hydrogen atom Hamiltonian. We emphasize that thi
a general solution of the constraints~4! that have taken the
form nInI5mImI51 andmInI50. Even though the solution
is expressed with a particular choice of coordinates, this d
not involve a gauge choice. We still have the freedom
choosing two gauge functions. One gauge choice is

GF5
a

A22H
, ~18!

and the last gauge choice is a gauge for ‘‘time’’

u~t!5
1

aE
t

~r–p]tA22H1HA22H !dt8. ~19!

Note that timet is embedded inX08,X0 in a rather compli-
cated way given through Eqs.~12!, ~18!, ~19!. While t takes
values on the infinite real line,X08,X0 live on a circle. Thus,
the topology of the (d12)-dimensional space is different a
compared to the free massless particle, although both top
gies are permitted as solutions of the same action~2!.

To verify that this gauge choice really corresponds to
H atom, we insert it in the action~2! and verify that it re-
duces to the action for the H atom. Since all the constra
are explicitly solved, theAi j terms drop out and we get
06600
-

is

es
f

lo-

e

ts

S05E
0

T

dt ]tX1
MX2

NhMN

5E
0

T

dt GF~2]tu1mI]tn
I ! ~20!

5E
0

T

dt~pi]tr
i2H !.

A total derivative]t(2r–p) has been dropped in the la
line. To derive the third line we have used the gauge choi
~18!,~19! and

mI]tn
I5

A22H

a
@r–p]tlnA22H2]t~r–p!1p•]tr #

~21!

which follows from themI ,nI given above.
The last form of the action~20! is the first order formal-

ism, with the H atom Hamiltonian given in Eq.~17!. This
form shows that the unconstrained variables (r i ,pi) are the
standard canonical variables. The middle line of Eq.~20!
shows that the H atom in (d21) space dimensions ha
SO(d) symmetry. The first line shows that the H atom ha
dynamical symmetry SO(d,2) which mixes the two timelike
coordinates with thed space coordinates.

Through the two explicit examples discussed in this s
tion, we have illustrated that the Sp(2) gauge covariant
tion is capable of describing not only the free particle b
also complicated systems like the H atom, and others.
underlying reason for this is the ability to choose time a
gauge in non-unique ways because we have more than
timelike coordinate in the (d12)-dimensional spacetime
For each choice of time embedded inX0,X08 the correspond-
ing canonical Hamiltonian looks different. Neverthele
these special systems are Sp(2) gauge equivalent, or du
each other.

III. SO „d,2… AND THE H ATOM

The SO(d,2) symmetry generators in the H atom gau
are obtained by inserting the gauge~12!–~19! in the gauge
invariantLMN. In a Hamiltonian formalism, att5u50, be-
fore ordering operators, we have

L08I5
a

A22H
mI , L0I52

a

A22H
nI ~22!

L0805
a

A22H
, LIJ5

a

A22H
~nImJ2nJmI !. ~23!

By inserting the forms ofnI ,mI given in the previous section
one can verify that the SO(d) subgroup has generatorsLIJ

5(Li j ,L18 i) that are interpreted as angular momentum a
the Runge-Lenz vector generalized to any dimensiond
6-3
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ITZHAK BARS PHYSICAL REVIEW D 58 066006
Li j 5r ipj2r jpi , L18 i5
a

A22H
S 1

2
Li j pj1

1

2
pjL

i j 2a
r i

r D .

~24!

These SO(d) generators are already written in their quantu
ordered and Hermitian form~the factorA22H commutes
with the Runge-Lenz vector and can be written on eit
side!. The quantum ordered forms ofL08 i ,L018 are simple:

L08 i5
1

2
~rpi1pi r !, L0185

1

2
~r–p1p–r !. ~25!

The quantum ordered forms of the remaining genera
L0818 andL0i are more complicated since the nonlinear fun
tion A22H is involved. The ordering of operators must b
consistent with the commutators involvingL080 and the
quantum ordered generatorL18 i given above. In fact the
quantum ordered operators can be defined through the c
mutators

@L018,L18 i #52 iL 0i , @L08 i ,L18 j #5 id i j L0818 ~26!

@L080,L08 i #52 iL 0i , @L080,L018#5 iL 0818.
~27!

Another consistency requirement on the quantum orderin
that (L080,L0818,L018) must form an SO(1,2) algebra. Th
representation of the conformal group SO(d,2) appropriate
for the H atom can then be discussed. We will not do t
here, but rather we will choose another gauge below wh
the ordering is much simpler but yet non-trivial. However,
the present gauge, an important observation at the quan
level is that the quadratic Casimir operators of the SOd)
and SO(2) subgroups are both related to the H atom Ha
tonian as follows~watching orders of operators!:

C2„SO~d!…5~L18 i !21
1

2
~Li j !2 ~28!

5
a2

22H
2

1

4
~d22!2, ~29!

~L080!25
a2

22H
. ~30!

Therefore, the SO(d,2) basis labelled by the subgroup
uSO(d),SO(2)& is of special interest since the representat
consists of all the quantum states of the H atom taken
gether in a single irreducible representation. At a fixed
ergy level the SO(d) subgroup explains the degeneracie
This is analogous to the well known SO(4) symmetry
three dimensions. The generatorsL0818,L08 i ,L018,L0i mix
different energy levels.

There is another construction for SO(d,2) that is simpler
for discussing the H atom at the quantum level. We w
discuss the quantum theory in more detail in the other ba
since we want to also show that there is another approac
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find the H atom, without going through the arguments for t
choice of time at the classical level given above. In the s
ond approach we simply choose some generator of SO(d,2)
and call it ‘‘Hamiltonian.’’ This approach is also simpler fo
finding the harmonic oscillator as one of the dual sectors.
the H atom to emerge it is evident from the discussion ab
that diagonalizing the generatorL008 would be of interest.
This will be done below.

To discuss the second approach to the H atom we cho
another gauge. In the basisM5(18,28,0,i ), where i
51,2,. . .,(d21), we make the three gauge choices~at t

50), X1850, P1851 andP050, and then solve the thre
constraints. The result is1

XM5~0,r–p,r ,r i !, PM5S 1,
p2

2
,0,pi D . ~33!

The canonical operators (r ,p) in this gauge should not be
identified with the canonical operators in the other H ato
gauge~12!–~19!, they are not simply related. The generato
of the conformal group SO(d,2) areLMN5XMPN2XNPM.
They are invariant under the Sp(2) gauge transformatio
therefore they can be evaluated in any gauge. Inserting
gauge fixed form we obtain~recall h18285h00521)

L28185L18285
1

2
~r–p1p–r ! ~34!

L0185L0285r ~35!

L0285L0185
1

2
pi rpi1

a

r
~36!

Li 185L28 i5r i ~37!

Li 285L18 i52
1

2
p–r p i2

1

2
pir–p

1
1

2
pj r ipj1b

r i

r2
~38!

Li05L0i52
1

2
~rpi1pi r ! ~39!

Li j 5Li j 5r ipj2r jpi . ~40!

1The relativistic massless particle of Eq.~10! can also be de-
scribed in the timelike gauge in the basisM5(18,28,0,i ); at t
50 we have

XM5S1,
r2

2
,0,r i D ~31!

PM5~0,r–p,upu,pi !. ~32!

The second H atom gauge~33! is related to this particle gauge by
discrete Sp(2) duality transformation that interchangesXM andPM.
After the Sp~2! transformation we renamer↔p.
6-4
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The system is quantized according to the standard comm
tion relations

@r i ,pj #5 id i j , ~41!

and all operators are ordered to insure that all componen
LMN are Hermitian. In general there are ordering ambig
ities. These are denoted by the constantsa andb that appear
in L180 and L18 i . For example, consider the classical e
pression forL1805 1

2 p2r . There are several possible qua
tum orderings, all of which are Hermitian, and all of whic
are consistent with rotation symmetry. For example, for a
parameterl we have a Hermitian operator ordered as1

2 p2r
→ 1

2 r lpi r 122lpi r l. This may be reordered to the form

1

2
r lpi r 122lpi r l5

1

2
pi rpi1

1

2r
l~l2d12! ~42!

showing that there is an ordering ambiguity parametrized
a in L180. Similarly, there is an ambiguity inL18 i param-
etrized byb as indicated.

The operatorsLMN should form the algebra of SO(d,2) in
the quantum theory

@LMN ,LRS#5 ihMRLNS1 ihNSLMR2 ihNRLMS2 ihMSLNR .
~43!

By using the basic commutation relations among (r ,p) one
can check that the SO(d,2) commutation relations are indee
satisfied for anya, and thatb is fixed by demanding correc
closure for the commutator

@L018 ,L0i #52 iL 18 i , →b52a2
d22

4
. ~44!

The remaining parametera will be fixed by the Sp(2) gauge
invariance, not by the SO(d,2) algebra, as will be discusse
below.

It is evident that the operatorsL i j form the algebra of the
rotation subgroup SO(d21). Its quadratic Casimir operato
is given by

L2[
1

2
Li j L

i j 5r jp2r j2r–p p–r . ~45!

Similarly, the following three operators form a SO(1,2) su
algebra

L1828[J2 , L180[
1

2
~J01J1!, L280[J02J1 ,

~46!

J25
1

2
~r–p1p–r !, ~J01J1!5pi rpi1

2a

r
,

J02J15r . ~47!

For any anomaly coefficienta they close correctly

@J0 ,J1#5 iJ2 , @J0 ,J2#52 iJ1 , @J1 ,J2#52 iJ0 .
~48!
06600
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The compact generatorJ05L080 is given in terms of the
canonical operators as

J05L1801
1

2
L2805

1

2
pi rpi1

a

r
1

r

2
. ~49!

The quadratic Casimir operator for this subalgebra is

j ~ j 11!5J0
22J1

22J2
2 ~50!

5L180L2801L280L1802~L1828!
2

~51!

5L21
1

4
~d21!22

1

2
~d21!12a ~52!

5L21
1

4
~d22!22

1

4
12a. ~53!

We see that the quadratic Casimir operators of the SO(
subalgebra and that of the rotation subgroup SO(d21) are
related to each other in this representation of SO(d,2). The
overall quadratic Casimir operator for SO(d,2) may now be
evaluated

C25
1

2
LMNLMN ~54!

52~L1828!
21L180L2801L280L180 ~55!

2L18 iL28 i2L28 iL18 i2L0iL0i1
1

2
Li j L

i j

~56!

5L21
1

4
~d22!22

1

4
12a ~57!

22L22
1

2
~d22!212a2

5

4
1L2 ~58!

52
d2

4
1d2

3

2
14a ~59!

512
d2

4
~60!

In the last line we required a definite value for the SO(d,2)
Casimir operator,C2512d2/4 , because this is equivalent t
requiring Sp(2) gauge singlets, thus insuring that the sta
are physical, as in Eq.~9!. The last step fixes the values ofa
andb uniquely in the gauge invariant sector

a5
1

8
~522d!, b52

1

8
. ~61!

These values correspond to an interesting resolution of
quantum ordering ambiguity~42! of the operators inL180
6-5
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L1805
1

2
pi rpi1

1

8r
~522d!5r 1/2F1

2
p2G r 1/2.

A basis for the quantum theory is chosen to diagona
the Hamiltonian. As explained earlier, since we have t
timelike dimensions the choice of ‘‘time’’ corresponds to
choice of Hamiltonian as a linear combination of the gene
tors of SO(d,2). One such choice is dual to another v
Sp(2) gauge transformations. We now make the follow
choice for ‘‘Hamiltonian’’ h5J05L080 which is consistent
with Eq. ~30!:

h5J05L1801
1

2
L2805r 1/2F1

2
p21

1

2G r 1/2. ~62!

Since this is a generator of the SO(1,2) algebra it is dia
nalized on the usual SO(1,2) basisu jm& where m is the
quantized eigenvalue of the compact generatorJ0. Evidently
the operatorh is positive, thereforem can only be positive.
This is possible only in the positive unitary discrete ser
representation of SO(1,2) and the spectrum ofm must be

m5 j 111nr , nr50,1,2,. . . , ~63!

where, as we will see shortly, the integernr will play the role
of the radial quantum number. Let us now show the relat
to the Hydrogen atom Hamiltonian. Applyingh on these
states we have

r 1/2F1

2
p21

1

2G r 1/2u jm&5mu jm&. ~64!

Multiplying it with the operatorr 21/2 from the left, this
equation is rewritten as

F1

2
p21

1

2
2

m

r G~r 1/2u jm&)1/250. ~65!

We now recognize that the statesucm&5(r 1/2u jm&) are
eigenstates of the hydrogen atom Hamiltonian. Actually t
is a rescaled form of the standard Hamiltonian equation w
ten in terms of dimensionful coordinates and momentar̃ ,p̃

F p̃2

2M
2

a

r̃
G ucm&5Emucm&. ~66!

The following rescaling relates the two equations and gi
the energy of the atom in terms of the quantum numbem
5 j 111nr

p̃5
Ma

m
p, r̃ 5

m

Ma
r , Em52

Ma2

2
~ j 111nr !

22.

~67!

We now give an argument to computej . Since SO(1,2)
commutes with the SO(d21) rotation generatorsLi j , the
SO(1,2) basis can be taken to be simultaneously diag
with the SO(d21) basis

u jml&;uSO~1,2!,SO~d21!&, ~68!
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wherel stands for a collection of SO(d21) quantum num-
bers that we are about to explain.Li j is orbital angular mo-
mentum, and its basis must be constructed by taking di
products of the fundamental unit vectorV5r /r . The only
irreducible representations that can be built in this way
the completely symmetric traceless tensors of SO(d21).
Consider a tensor of rankl , i.e. Ti 1i 2••• i l

(V) which is sym-

metric and traceless with indices in (d21) dimensions.
These provide a complete set of labels for the statesu jml&
and are the analogs of the spherical harmonics in 3 dim
sions. The number of independent components of the te
in (d21) space dimensions is

Nl~d21!5
~ l 1d24!!

~d23!! l !
~2l 1d23! ~69!

This reduces to (2l 11) for d2153, in agreement with
spherical harmonics. The value of the quadratic Casimir
erator of SO(d21) for this representation is

L2u jml&5 l ~ l 1d23!u jml&, l 50,1,2,. . . . ~70!

This reduces tol ( l 11) for (d21)53 in agreement with
angular momentum in three dimensions. Now, we recall t
we have established a relation between the quadratic Cas
operators of SO(1,2) and SO(d21) in Eq. ~50!. Using this
we find

j ~ j 11!5 l ~ l 1d23!1
1

4
~d22!~d24! ~71!

j 5 l 1
1

2
~d24!. ~72!

Therefore, we have computed the full spectrum. Applyingh
on these states (r 1/2u jml&) we now have

m5
1

2
~d22!1 l 1nr . ~73!

We may combine the orbital and radial quantum numb
into the total quantum number as done for the conventio
H atom

l 1nr115n ~74!

and then writeu jml&5unl& since the complete spectrum d
pends only on the total quantum numbern

En52
Ma2

2 S 1

2
~d24!1nD 22

~75!

n51,2,3,. . . ~76!

l 50,1,. . . ,~n21! ~77!

in agreement with the conventional labeling of the hydrog
atom states. We have computed its spectrum in any num
of space dimensions (d21) and found that there is a depe
dence ond in the spectrum: the principal quantum numbern
6-6
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that appears in the denominator is shifted by a half inte
1
2 (d24). This shift disappears when (d21)53, which
agrees with the standard result for the hydrogen atom
three space dimensions.

We have verified this group theoretical solution by so
ing directly the Schro¨dinger equation for the 1/r potential in
D space dimensions. The full wave function isc(r )
5r (D21)/2f (r )Ti 1i 2••• i l

(V), and the radial equation for an
rotationally invariant potential takes the form

S 2] r
21

1

r 2
l D~ l D11!1v~r !2« D f ~r !50, ~78!

where l D5 l 1(D23)/2 ~try for example the two or three
dimensional casesD52,3). The solution of the radial equa
tion for the 1/r potential proceeds just like the standard thr
dimensional case, except for replacingl D instead ofl . To
compare to our group theoretical results above we rep
D5d21.

We have shown that all the states of the H atom in~d21!
dimensions forma single irreducible representationof the
group SO(d,2) with a quadratic Casimir operatorC251
2d2/4. This group includes a compact group SO(d) which
commutes with the generatorJ0. Therefore the maxima
compact symmetry that commutes with the Hamiltonian
the rotation group in one more dimension, and the ene
eigenstates remain degenerate under its transformations.
symmetry is the generalization of the SO(4) symmetry of
H atom in 3 dimensions. Thus, the two dimensional H at
has an SO~3! symmetry, the 3 dimensional H atom has
SO~4! symmetry, the four dimensional H atom has an SO~5!
symmetry, and so on. As a consequence of this symmetry
energy depends only on the total quantum numbern and all
the states with differentl 50,1,. . . ,n21 are degenerate. W
can compute this degeneracyDn at a fixed value ofn and
find

Dn~d21!5 (
l 50

n21

Nl~d21!5
~n1d23!!

~d22!!n!
~2n1d22!.

~79!

By comparing to Eq.~69! we see that it equals the number
components of a traceless symmetric tensor of rankn in one
higher dimensionDn(d21)5Nn(d). This is a result of the
SO(d) symmetry. The computed degeneracy confirms t
indeed the states at a given energy level form a comp
multiplet of SO(d). The multiplet at a fixed energy level i
identified as the completely symmetric traceless tenso
one more space dimension.

It has been known for a long time that the three dime
sional hydrogen atom in 3 dimensions has a spectrum
can be described as a representation of the conformal g
SO~4,2! @6#. We have generalized this result to any dime
sion. In comparing the details of our construction to previo
work we find that the details of our construction are som
what different. Note especially the issues of ordering of o
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erators at the quantum level. For us this was crucial from
point of view of Sp(2) gauge invariance and the physi
state conditions.

IV. QUANTUM PARTICLE
AND HARMONIC OSCILLATOR

Consider the free particle gauge~10!. The generators of
the conformal group SO(d,2) are obtained at the classic
level by inserting this gauge into the gauge invariant fo
~5!. However, in the quantum theory operator ordering m
be taken into account to insure that all the generators
Hermitian and that the algebra of SO(d,2) closes correctly.
In @1# it was shown that for this gauge the quantum gene
tors are~at t50)

Li j 5xW i pW j2xW j pW i ~80!

L1 i52xW i p1, L2 i5x2pW i2
pW j xW i pW j

2p1
~81!

L1252
1

2
~x2p11p1x2!, L2815

1

2
xW2p1 ~82!

L1815p1, L1825
pW 2

2p1
, L18 i5pW i ~83!

L18285
1

2
~xW•pW 1pW •xW2x2p12p1x2! ~84!

L2825F 1

8p1
~xW2pW 21pW 2xW222a!

2
x2

2
~xW•pW 1pW •xW !1x2p1x2

G ~85!

L28 i5F 1

2
xW j pW ixW j2

1

2
xW•pW xW i

2
1

2
xW i pW •xW1

1

2
xi~x2p11p1x2!

G .

~86!

Hermiticity fixes almost all orders of operators, but the r
maining ordering ambiguity introduces the parametera in
L282 . This is fixed to a521 by the commutator

@L28 i ,L2 j #5 id i j L282. With this value ofa the quadratic
Casimir operator can then be verified to be preciselyC251
2d2/4 in agreement with covariant quantization.

The free particle Hilbert space is defined by diagonaliz
the operatorsp1,pW , which is the same as diagonalizing th
commuting generatorsL181,L18 i . The momentum eigen
statesup1,pW & form a complete Hilbert space. On this spa
the free particle Hamiltonian, which is another generator
the conformal groupL1825pW 2/2p1 , is diagonal. These
positive norm states provide a basis for a unitary represe
tion of the conformal group SO(d,2) through the representa
6-7
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tion of the generators given above. The Casimir eigenva
for the representation are fixed as we have already discus

We now show the relation of this representation to
harmonic oscillator. Instead of diagonalizin
L181,L182,L18 i we will choose a basis for SO(d,2) in
which the following operators that commute with each oth
are simultaneously diagonal

Li j ,L181,~L1821L281!. ~87!

More accurately, only an appropriate commuting subse
orbital angular momentum operatorsLi j will be simulta-
neously diagonal. These operators correspond to the Sd

22) orbital angular momentumLi j 5xW i pW j2xW j pW i , the light-
cone momentumL1815p1 and the Hamiltonian of the har
monic oscillator in (d22) dimensions

H[L1821L2815
pW 2

2p1
1

p1xW2

2
, ~88!

where the lightcone momentumL1815p1 in another di-
mension plays the role of mass. This choice of Hamilton
corresponds to another choice for ‘‘time,’’ as compared
the choice for ‘‘time’’ for the free particle. The spectrum o
this Hamiltonian is well known from the study of the ha
monic oscillator in (d22) dimensions

En5n1
1

2
~d22!, n50,1,2,. . . . ~89!

We want to show how this quantum numbern and the an-
gular momentum quantum numbersl etc. are related to the
representation space of SO(d,2). To do so, consider the sub
groups SO(d22)^ SO(2,2) and label the representatio
space of SO(d,2) by the representations of these subgrou
Recall that SO(2,2)5SL(2,R)L ^ SL(2,R)R . We will show
that the Hamiltonian of the harmonic oscillator is the co
pact generator of SL(2,R)R and that the energy spectrum
the harmonic oscillator is classified as towers of states
responding to the positive discrete series representa
u j R ,mR& of this SL(2,R)R . For every SO(d22) angular mo-
mentum quantum numberl , we will find a relation between
j R , j L and l .

From the general commutation rules for SO(d,2) one can
see that the generators of SO(2,2)5SL(2,R)L ^ SL(2,R)R
are given by

G2
L5

1

2
~L18281L12!, G0

L6G1
L5L686 , ~90!

G2
R5

1

2
~L18282L12!, G0

R6G1
R5L687 . ~91!

These satisfy the commutation rules@Ga
L ,Gb

R#50 and

@G0
L,R ,G1

L,R#5 iG2
L,R , @G0

L,R,G2
L,R#52 iG1

L,R, ~92!

@G1
L,R,G2

L,R#52 iG0
L,R, ~93!
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In the present gauge we have the construction

G2
L5

1

4
~xW•pW 1pW •xW !2

1

2
~x2p11p1x2! ~94!

G0
L1G1

L5p1, ~95!

G0
L2G1

L5F 1

8p1
~xW2pW 21pW 2xW222a!

2
x2

2
~xW•pW 1pW •xW !1x2p1x2

G ~96!

and

G2
R5

1

4
~xW•pW 1pW •xW !, ~97!

G0
R1G1

R5
pW 2

2p1
, ~98!

G0
R2G1

R5
1

2
xW2p1. ~99!

Now we see that the Hamiltonian of the harmonic oscilla
is the compact generator of SL(2,R)

H52G0R5
pW 2

2p1
1

p1xW2

2
. ~100!

In our special representation the quadratic Casimir opera
of these subgroups are related to each other as follows.
fining j L( j L11)5G0L

2 2G1L
2 2G2L

2 and j R( j R11)5G0R
2

2G1R
2 2G2R

2 we find ~for a521 which corresponds toC2

512d2/4 as seen above!

j R~ j R11!5 j L~ j L11!5
1

4
L21

1

16
~d22!~d26!,

~101!

whereL2 is the quadratic Casimir of SO(d22) given by the
quantum ordered form

L2[ 1
2 Li j L

i j 5pW ixW2pW i2pW •xWxW•pW . ~102!

The unitary representation of SL(2,R)R is labelled by
u j RmR& wheremR is the eigenvalue ofG0R . SinceG0R is a
positive operator in our construction,mR can take only posi-
tive values. This is possible only for the positive discre
series representation, and according to SL(2,R) representa-
tion theory it is given by

mR5 j R111nr , nr50,1,2,3, . . . . ~103!

We will see that the integernr>0 will find an interpretation
as the radial quantum number of the harmonic oscilla
Next we need to find the allowed values ofj R . We saw in
Eq. ~101! that j R is related to angular momentum, therefo
we must find the allowed values of orbital angular mome
6-8
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tum SO(d22) ~102!. As already explained in the previou
section the allowed states for orbital angular momentum c
respond to tensors constructed from the unit vectorVW

5xW /uxW u. The eigenvalues ofL2 and the number of state
Nl(d22) are obtained from Eqs.~69!,~70! by replacing (d
21) by (d22)

Nl~d22!5
~ l 1d25!!

~d24!! l !
~2l 1d24! ~104!

L2u l &5 l ~ l 1d24!u l &, l 50,1,2, . . . .

Combining Eq.~101! and Eq.~104! yields the allowed values
of both j L and j R

j R5 j L5
1

2
l 1

1

4
d2

3

2
.

Inserting this result in Eq.~103! one finds

mR5
1

2
l 1

1

4
~d22!1nr . ~105!

Now we can compare to the energy spectrum of the h
monic oscillator~89! by using the relation~100!. We see that
we must identifyl 12nr5n where n is the total quantum
number andnr is the radial quantum number in the usu
interpretation of the solutions of the Schro¨dinger equation.
Using the total quantum numbern instead of the radial quan
tum numbernr we summarize our results

En5n1
1

2
~d22!, n50,1,2, . . . ~106!

l 5n,~n22!,~n24!, . . .,~0 or 1!
~107!

mR5
1

2
n1

1

4
~d22! ~108!

j R5 j L5
1

2
l 1

1

4
d2

3

2
. ~109!

At a fixed energy leveln it is well known that the states with
different values ofl belong together in SU(d22) multiplet
corresponding to the single row Young tableau withn boxes.
Instead, here these states are rearranged vertically as m
lets at the same value ofl with different values of the energ
n. Thus, at eachl there is an SL~2,R!R positive discrete
series multipletu j R ,mR& which is a vertical multiplet of dif-
ferent energy levels.

In summary we have found the following labelling of o
special representation by using the harmonic oscillator b

uSO~d22!;SL~2,R!L ;SL~2,R!R& ~110!

u l ; j L~ l !p1; j R~ l !mR~n!&.
06600
r-

r-

l

tip-

is

The SL(2,R)L representation is labeled by the eigenvalues
the generatorG0

L1G1
L5p1 which plays the role of mass fo

the harmonic oscillator. All the levels taken together ma
up a single unitary representation of SO(d,2).

We have seen that this representation of SO(d,2) is the
same as the free massless particle representation since
the same Casimir eigenvalues. Hence the free massless
tivistic particle and the harmonic oscillator with its ma
defined as the lightcone momentum of the particle are dua
each other in our model.

V. SUMMARY

There are two aspects of the model worth emphasizing
potentially more general than the model itself. One is dua
and the other is a larger covariant space with two timel
dimensions. The concepts of Sp(2) duality and two times
inextricably connected to each other in our model.

As examples of dualities, we have shown that the H ato
the free particle and harmonic oscillator are dual to ea
other. These are some of the physical systems that ca
described by this simple model. A complete classification
all of its dual sectors has not been obtained at this stage
the quantum level the dual sectors are all described by
same unitary representation of SO(d,2) with fixed Casimir
eigenvalues. This representation of SO(d,2) is realized in
terms of different sets of unconstrained canonical variab
In each case a subset of the SO(d,2) generators is simulta
neously diagonalized and a particular combination of
generators is interpreted as the Hamiltonian. Each choic
Hamiltonian corresponds to a fixed gauge of the duality sy
metry in which ‘‘time’’ is identified as a particular combina
tion of the spacetime coordinates which includes two tim
X08,X0. The topology of the (d12) dimensional spacetime
is not the same for each fixed gauge, but each such topo
is an allowed solution of the constraint equations and eq
tions of motion that follow from a single actionS0. ‘‘Large’’
gauge transformations map the gauge fixed solutions to e
other. This is similar to M-theory dualities that also ma
physical systems that live in spaces of different topologie

Besides dualities, the model shows that familiar physi
systems can be viewed as embedded in a spacetime with
timelike dimensions. This provides an example for how it
possible to have more than one timelike dimension and
describe realistic physics. Furthermore the model shows
a larger spacetime unifies these physical systems unde
same umbrella.

The duality symmetry in our model is morally similar t
the dualities encountered in M theory@7#. However, in M
theory the analog of the action principle that gives rise
dualities remains to be discovered. It is hoped that our mo
may provide some new insight into the duality symmetries
M theory, and into the signals of more than one time
higher dimensions already noticed from different directio
@8–19#.
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