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Conformal symmetry and duality between free particle, H atom, and harmonic oscillator
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We establish a duality between the free massless relativistic partidedimensions, the non-relativistic
hydrogen atom (1/potentia) in (d— 1) space dimensions, and the harmonic oscillatodir2{ space dimen-
sions with its mass given as the light cone momentum of an additional dimension. The duality is in the sense
that the classical action of these systems are gauge fixed forms of the same worldline gauge theory action at the
classical level, and they are all described by the same unitary representation of the conformal grop) SO (
at the quantum level. The world line action has a gauge symme{8) &hich treats canonical variables, )
as doublets and exists only with a target spacetime thadtemacelike dimensions and two timelike dimen-
sions. This spacetime is constrained due to the gauge symmetry, and the various dual solutions correspond to
solutions of the constraints with different topologies. For example, for the H atom the two timelike dimensions
X% X° live on a circle. The model provides an example of how realistic physics can be viewed as existing in
a larger covariant space that includes two timelike coordinates, and how the covariance in the larger space
unifies different looking physics into a single system.
[S0556-282198)00416-0

PACS numbdps): 11.25.Hf, 11.10.Lm

I. GAUGE SECTORS AND DUALITY transforms in the standard way, A= o' + w'¥e Al
+o*e Al The covariant derivative isD, XM= XM
In a recent papefl] a duality was constructed between — g, AKX . An action that is invariant under this gauge
several simple physical systems by showing that they argymmetry is
different aspects of the same quantum theory. The theory is
based on gauging the Sp(2) duality symmetry that treats T Ve N
position and momentumx(p) as a doublet in phase space. Sozif d7(D . X")e" X} nun
The worldline action has a manifest S)2) symmetry act- 0
ing linearly on a target spacetiméM(7) with two times. T 1 .
Thanks to the gauge symmetry the theory is equivalent to a ZJ dT( 9, XY X5~ EAIJXiMX]N VN - 2
theory with a single time, but the choice of “time” is not 0
unique. For different gauge choices of “time” the Hamil- . . . - :
tonian looks different and appears to describe differen s argued in(1] this system exists non-trivially only iy
physical systems. However these systems are gauge eqUI aS S|gnaturec(,2) including two timelike dimensions. T.hus
lent, i.e. duality equivalent. It was shown that the Sp(2) ere is a manifest global SGQ) _symmetry. The canonical
duality gauge invariant sectofs fully characterized in the ~conjugates arexy'=x" and 9s/gX}' = X2M PY. They are
quantum theory by ainique unitary representation of the consistent with the idea thatX{’I X%) is the doublet
conformal group SQ{,2). The quadratic Casimir coefficient (X™,PM). There has been some discussion in the past of an
of SO(d,2) takes the valu€,=1—d?/4 and all higher Ca- action related to this ong2—5], but not including our non-
simir coefficientsC,, are also fixed. If1] it was shown that trivial classical and quantum solutions or our point view on
the free relativistic particle is described by this representatioluality. This action can be generalized in several ways con-
at the quantum level. In this paper we will show that thesistently with the Sp(2) gauge invariance, including super-
hydrogen atom and the harmonic oscillator are also desymmetry, and interactions with background gravitational
scribed by the same unitary representation and hence thdiglds Gy and By and/or background gauge fieléy
are dual to the free particle at the classical as well as quarthat are doublets of Sp(4}1]. In the presence of background
tum levels. fields the global symmetry S@(2) is replaced by the Kill-
First we give the action for the model. To remove theing symmetries of the background fields.
distinction between posmon and momentum we rename The equations of motion foxM Al that follows from the
them X}'=xM and X}'=P™ and define the doubleX!"  Lagrangian(2) are
=(x¥ ,X2 ). The local Sp(2) acts as follows:
" y " aTxM _( A12 A22 XM s
O X (1) =@ ()X (7). D 0.PM Tl —anr _par2/{ pm ()
Herew'!(7)=w!'(7) is a symmetric matrix containing three
local parameters, ane;; is the Levi-Civita symbol that is X-X=X-P=P-P=0. (4)
invariant under Sp(R) and serves to raise or lower indices.
The Sp(2R) gauge fieldA' (7) is symmetric in {(j) and The global symmetry generators for SOZ) are
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LMstiniMx]N:XM pN_xNpM (5) cal basis of some Hamiltonian. Examples of this procedure
include the relativistic massless particle, the H atom, the har-
They are manifestly Sp(2gauge invariant At the classical monic oscillator, and more.
level all Casimir coefficients of S@(2) vanish due to the

constraintg4) Il. FREE PARTICLE AND H ATOM AS GAUGE CHOICES

Consider the basi¥M=(X*",Xx~",X*, X, X! with the
metric "N taking the values;” ~'= " ~=—1 in the light
o o ) cone type dimensions, whilg'!'= 4" for the remainingd
It was shown that this is sufficient to characterize completely_2 space dimensions. Thus one ting® is a linear combi-

all the classical solutions without making any gauge choice o 0: ) L
for “time” [1]. nation of X~ , and the otheiX" is a linear combination of

When the theory is quantized and orders of operatohs X - The gauge group Sp(2) has three gauge parameters,
are taken into account, there is a similar statement. Beford€nceé we can make three gauge choices. The free particle
taking the constraint&}) into account, the quadratic Casimir lightcone gauge iX™ =1, P" =0, X" =7. This is a legiti-

C,(8Qd,2)= %Tr(iL)“zO, classical. (6)

operator of the gauge group is mate gauge choice as shown[i. Inserting this gauge into
the constraint$4), and solving them, one finds the following
C(SH )= 1 M2y PV (P X+ d’>—4 7 components expressed in terms of the remaining independent
2(SK2))=7 m— (X-P)(P-X) () degrees of freedonx(,p*,x', p'):
where the last term results from operator reordering. For M=[+', ="+, —, i]
LMN of the form(5) all the Casimir operatdE,(SO(d,2)) of
Eq. (6) can all be written in terms of the quadratic Casimir of XM=[1,(x2/2— 7x7), 7, X", X] (10)

the gauge groupC,(Sp(2) plus operator reordering con-
stants that depend ah In particular,
1 o2 PY=
C,(SQ(d,2)= ELMNLMN= 4C,(Sp(2))+1— 7

) 22
- _ TP P .
0, x-p—x"pt— . pt, , p'l.
( P P 2p+> P 2p”* pl

(8) One can verify that this gauge corresponds to the free rela-

) , ) ) tivistic massless particle, by inserting the gauge fixed form
In the gauge invariant sector the physical states are smgIeE_sLO) into the action(2). Since all constraints have been

of Sp(2) and therefore, for physical states, solved, theAll terms are absent, and we get

2

d
Ca(Sp(2))=0, Cy(SQAd,2))=1~—-. 9

.
4 So:f d7d,XY' X5 nun
0

Similarly all C,, are fixed at the quantum level by demanding T -5
C,(Sp(2))=0. Thus, the quantum solution of the theory cor- = J dr( IX-p—axp— P ) (1)
responds to a unique unitary representation of &), with 0 2p*

specific eigenvalues of the Casimir coefficiefitgd). This

important information obtained in covariant quantizationThis is the action of the free massless relativistic particle in
completely determines the unitary physical Hilbert spacethe lightcone gauge, in the first order formalism, with the
There are no ghosts in the physical space because this S3rrect HamiltoniarP~=p?/2p*. Note that both time coor-
(d,2) representation is unitary. _ _dinates have been gauge fixeti" =1 andX* =1, to de-

The physical content of the system is better understood igqrjpe the free particle. This is the free particle “time.” The
hon-covariant quantization by chqosmg a “time and con- S0(d,2) symmetry generators in this gauge were given in
structing a Hamlltonlan. The choice of time is not Unique 1) “They will be used in Sec. IV to discuss the duality be-
because the spacetime of our model has more than one tiMggeen, the free massless particle and the harmonic oscillator.
like dimensionX®',X°. Since there is more than one “time”  We now show that the hydrogen atom corresponds to an-
there are different looking Hamiltonians that are canonicallyother gauge choice in this system, with a rather different
conjugate to the given choice of time. In such physicalchoice of “time” as a function of the two timelike dimen-
gauges the system is automatically unitary but one muséionsxo/,xo. Consider the basixM:(XO"XO’XI) and PM
verify that quantization is consistent with the global S() ) . . Y
symmetry. This requires some non-trivial ordering of canoni-__ (P%,P%P!) with metric »° © = »™=—1 and ="
cal operators in the construction of thauge invariangjuan- C?’oo‘:,e 0,on§ gauge  such ) that the four funcFlons
tum generatord N expressed in fixed gauges. After doing X~ ,X",P" ,P” are expressed in terms of three functions
so, we show that the unitary representation is identical to th&,G,u:
one that emerged from covariant quantization, with the same
Casimir eigenvalue€,(d), but now expressed in the physi- X% =F cosu, X°=F sinu (12
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0 _ G ai 0_ T
P =—G sinu, P"=G cosu. (13 So:f dra XMXN
0

Inserting this form in the constraintg) gives

.
=f drGF(—d,u+m'g,n") (20)
XM=F[cosu, sinu, n'] (14) 0

PM=G[—sinu, cosu, m'], (15 T
= | dr(p'dr'—H).
0

wheren',m' are Euclideanunit vectors that are orthogonal. o )

We choose the following parametrization for these unit vecA total derivatived,(—r-p) has been dropped in the last
tors in the basid =[1',i] wherel=1' denotes the extra line. To derive the third line we have used the gauge choices
space dimension and=1,2,--,(d—1) labels ordinary (18),(19) and

space:
P Vv—2H

m'g.n'= [r-pdIny—2H—3.(r-p)+p-3d,r]

1 1. rp._ “«
- —2H r-p, (Fr'—jpp'”, (16) (22)

which follows from them',n' given above.
rp2 " ' Thellast form of the actiqlﬁzo_) is the fir§t order formgl-
mlz{(l_ _) \/——2H—pi}, ism, with the H atom Hamiltonian given in Eq17). This
a a form shows that the unconstrained variablesg() are the
standard canonical variables. The middle line of E2D)
where shows that the H atom ind(-1) space dimensions has
SO() symmetry. The first line shows that the H atom has a
dynamical symmetry SQ@,2) which mixes the two timelike
H= P~ a (17) coordinates with thel space coordinates.

2 r’ Through the two explicit examples discussed in this sec-
tion, we have illustrated that the Sp(2) gauge covariant ac-
éion is capable of describing not only the free particle but
also complicated systems like the H atom, and others. The
underlying reason for this is the ability to choose time as a

: . ) ; . . auge in non-unique ways because we have more than one
is expressed with a particular choice of coordinates, this doed?!9 9 Y

not involve a gauge choice. We still have the freedom OfUmeIike coordinate in the o+ 2)-dimen§ional spacetime.
choosing two gauge functions. One gauge choice is For each choice of time embeddedXf, X° the correspond-

ing canonical Hamiltonian looks different. Nevertheless
these special systems are Sp(2) gauge equivalent, or dual to

is the hydrogen atom Hamiltonian. We emphasize that this i
a general solution of the constrair® that have taken the
formn'n'=m'm'=1 andm'n'=0. Even though the solution

a each other.
GF= , (19
—2H
Ill. SO (d,2) AND THE H ATOM
and the last gauge choice is a gauge for “time” The SO@,2) symmetry generators in the H atom gauge

are obtained by inserting the gau@e?)—(19) in the gauge
1 invariantLMN, In a Hamiltonian formalism, at=u=0, be-
u(r)= Zf (r-pd,N—2H+HJ-2H)d7". (190  fore ordering operators, we have

on__ % | o__ _ %
Note that timer is embedded ix°',X° in a rather compli- L J=2H m, L —2H : 22
cated way given through Eqgé&l2), (18), (19). While 7 takes
values on the infinite real Iine)(o',xO live on a circle. Thus, / o a
the topology of the d+ 2)-dimensional space is different as L00=——  Y=—=(n'm'-n'm"). (23
compared to the free massless particle, although both topolo- V—2H V—2H

gies are permitted as solutions of the same ad®n ) ) . . ] ]

To verify that this gauge choice really corresponds to theBY inserting the forms oh’,m" given in the previous section
H atom, we insert it in the actiof®) and verify that it re- ON€ can verify that the S@ subgroup has generatoks’
duces to the action for the H atom. Since all the constraints= (L",L") that are interpreted as angular momentum and
are explicitly solved, thé\" terms drop out and we get the Runge-Lenz vector generalized to any dimension
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S _ a (1 B i find the H atom, without going through the arguments for the
Li=rp—ripl, LYVi=—n ELllpj+ Eij” —a—|. choice of time at the classical level given above. In the sec-
V—2H r ond approach we simply choose some generator ofdSXp(

(24) and call it “Hamiltonian.” This approach is also simpler for
finding the harmonic oscillator as one of the dual sectors. For
the H atom to emerge it is evident from the discussion above
that diagonalizing the generate®® would be of interest.
This will be done below.
To discuss the second approach to the H atom we choose
1 1 another gauge. In the basi®l=(+',—’,0j), where i
LY '==(rp'+p'r), L%==(r-p+p-r). (25 =12,...,d—1), we make the three gauge choides 7
2 2 o L o
=0), X =0,P™ =1 andP”=0, and then solve the three
The quantum ordered forms of the remaining generator§onstraints. The result'is

L9 andL are more complicated since the nonlinear func- p?

tion v—2H is involved. The ordering of operators must be XM=(0or-p,r,r'), P’\"z(l,?,o,pi). (33

consistent with the commutators involving® ® and the

quantum ordered generatd)_rl/i given above. In fact the The canonical operatorg,p) in this gauge should not be

guantum ordered operators can be defined through the coridentified with the canonical operators in the other H atom

mutators gauge(12)—(19), they are not simply related. The generators
of the conformal group S@(2) areLMN=xMpN—xNpM,

[LOY LY1]=—jLO [LOT LYI]=isiL0Y (26) They are invariant under the Sp(2) gauge transformations,

therefore they can be evaluated in any gauge. Inserting our

These SOf) generators are already written in their quantum
ordered and Hermitian fornfthe factory—2H commutes
with the Runge-Lenz vector and can be written on eithe

side. The quantum ordered forms &f'',L°Y are simple:

[LOO L0 1= —jLO [LOOLO0Y]={ 0", gauge fixed form we obtaitrecall ™'~ = 7%= —1)
(27)
Another consistency requirement on the quantum ordering is L= =Ls—=5(r-p+p-r) (34)
that (L°°,L%"Y" L) must form an SO(1,2) algebra. The
representation of the conformal group SICX) appropriate Lo =Ly /=t (35)

for the H atom can then be discussed. We will not do this

here, but rather we will choose another gauge below where oo’ .o.oa

the ordering is much simpler but yet non-trivial. However, in L™ =Losr=5prp+— (36)
the present gauge, an important observation at the quantum

level is that the quadratic Casimir operators of the &O( Lit = = (37)

and SO(2) subgroups are both related to the H atom Hamil-
tonian as followgwatching orders of operatgrs

Li*’:L .:_E .r i_E ir.
+7i 2p p 2p p

s 1 .
Co(SQd)) = (LM )2+ (L") (28 .
1.
“piripl+b—
g 2 4—2prp+br2 (38
== 2d-2)% (29 .
LO=Lo=—(rp'+p'r) (39
/ a? 2
(LO0)?=—p- (30 ) o
LY=Ljj=r'p'—rlp". (40)

Therefore, the SQI,2) basis labelled by the subgroups

|SO(),SO(2)) is of special interest since the representation

consists of all the quantum states of the H atom taken to- 'The relativistic massless particle of E(LO) can also be de-
gether in a single irreducible representation. At a fixed enscribed in the timelike gauge in the bad=(+',—',0j); at 7
ergy level the SQf) subgroup explains the degeneracies.=0 we have

This is analogous to the well known SO(4) symmetry in XM_(erO i) 31
three dimensions. The generatdr§'*',L%"" L%V L% mix i
different energy levels. PM=(0r-p.|p|,p"). (32)

There is another construction for SQR) that is simpler
for discussing the H atom at the quantum level. We will The second H atom gaug@3) is related to this particle gauge by a
discuss the quantum theory in more detail in the other basigliscrete Sp(2) duality transformation that interchang¥sandPM.
since we want to also show that there is another approach tfter the Sg§2) transformation we rename-—p.
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The system is quantized according to the standard commut&he compact generatal,=Lg/q iS given in terms of the

tion relations

[r'pl]=id", (41

and all operators are ordered to insure that all components of

LMN are Hermitian. In general there are ordering ambigu
ities. These are denoted by the constangdb that appear

inL,.,andL,,,. For example, consider the classical ex-
pression forl o= 2p?r. There are several possible quan-
tum orderings, all of which are Hermitian, and all of which

are consistent with rotation symmetry. For example, for any

parametei we have a Hermitian operator ordered Jgsr

—2r'p'rt~2pir*. This may be reordered to the form

Nniprl=2\ni

! =gt A —d+2 42
SUPrT It =oprpit ooA(A—d+2)  (42)

showing that there is an ordering ambiguity parametrized by

ain L,,o. Similarly, there is an ambiguity ih , ,; param-
etrized byb as indicated.

The operatoré MN should form the algebra of S@(2) in
the quantum theory

[LvnsLrsl=i7mrbnsT i 7nsb mr— i 7nRL s nMSLI\ERé)
4

By using the basic commutation relations amongp] one
can check that the S@(2) commutation relations are indeed
satisfied for anya, and thatb is fixed by demanding correct
closure for the commutator

—b=—-a-——.

@

[LO+’ 1L0i]:_i|—+’i ’
The remaining parameterwill be fixed by the Sp(2) gauge
invariance, not by the S@(2) algebra, as will be discussed
below.

It is evident that the operatots; form the algebra of the
rotation subgroup S@(—1). Its quadratic Casimir operator
is given by

|_2=1|_ LU =rip?ri— 45
=sLjLi=rpri=r-pp-r. (45)

Similarly, the following three operators form a SO(1,2) sub-
algebra

N| =

L+/,rEJ2, (J0+J1), L,/OEJO_J]_,

(46)

L+/0

1 - 2a
J2=§(r-p+p-r), (Jo+~]1):prp+7.

JO_ler. (47)
For any anomaly coefficierd they close correctly
[Jo,d1]1=132, [Jo,d2]=—1d1, [J1,d2]= —iJdo.
(48)

canonical operators as
r
>

L o=spirpi+ 24
oL-0=5PIP Ty

J0:L+ro+ (49)

The quadratic Casimir operator for this subalgebra is

j(j+1)=33-32-733 (50)
:L+70L710+L770L+70_(L+r,r)2
(51
1 1
=L%+ —(d-1)>—5(d—1)+2a (52)
4 2
—|_2+1 d—22—1+2 53
= 4( ) 712 (53

We see that the quadratic Casimir operators of the SO(1,2)
subalgebra and that of the rotation subgroup &O1) are
related to each other in this representation of &@). The
overall quadratic Casimir operator for SH2) may now be
evaluated

1

CZZELMNLMN (54)
:_(L+r,/)2+L+10L,/0+L770L+/0 (55)
1 .
_L+’iL—’i_L—'iL+’i_LOiLOi+ELijLJ
(56)
=L2 1d 2)? 1+2 5
= +Z( ) 2722 (57)
P ST
2L (d—2)"+2a +L (58
2 4
= d2+d 3+4 59
~T 2 o Taa (59
d2
=1-7 (60)

In the last line we required a definite value for the 8]
Casimir operatorC,=1—d?/4, because this is equivalent to
requiring Sp(2) gauge singlets, thus insuring that the states
are physical, as in Eq9). The last step fixes the values @f
andb uniquely in the gauge invariant sector

a=%(5—2d), b (61

These values correspond to an interesting resolution of the
quantum ordering ambiguit42) of the operators i, /g
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wherel stands for a collection of S@( 1) quantum num-
bers that we are about to explaln; is orbital angular mo-
mentum, and its basis must be constructed by taking direct
A basis for the quantum theory is chosen to diagonalizéoroducts of the fundamental unit vectét=r/r. The only
the Hamiltonian. As explained earlier, since we have twdlreducible representations that can be built in this way are
timelike dimensions the choice of “time” corresponds to athe completely symmetric traceless tensors of &OL).
choice of Hamiltonian as a linear combination of the generaConsider a tensor of rark i.e. T; ;,...; () which is sym-
tors of SO@,2). One such choice is dual to another viametric and traceless with indices ird€1) dimensions.
Sp(2) gauge transformations. We now make the followingThese provide a complete set of labels for the stéjtex)
choice for “Hamiltonian” h=J,= L%% which is consistent and are the analogs of the spherical harmonics in 3 dimen-

1. 1 1
Lio=5prp'+ 8—r(5—2d)=r1/2 Epz ri2

with Eq. (30): sions. The number of independent components of the tensor
in (d—1) space dimensions is
1 1/ 1 2 1 1/2
h=JO=L+,O+§L,,O=r 5P +§r : (62 (1+d—4)!
N|(d—1)zm(2|+d—3) (69)

Since this is a generator of the SO(1,2) algebra it is diago-

nalized on the usual SO(1,2) bagdisn) wherem is the  This reduces to (2+1) for d—1=3, in agreement with
quantized eigenvalue of the compact generdgoiEvidently  spherical harmonics. The value of the quadratic Casimir op-
the operatoh is positive, thereforen can only be positive. erator of SO — 1) for this representation is

This is possible only in the positive unitary discrete series o .

representation of SO(1,2) and the spectrunmofust be LE[jmh=1(1+d=3)[jml), 1=012,... (70

m=j+1+n,, n,=0,1,2, .., (63)  This reduces td(I+1) for (d—1)=3 in agreement with
angular momentum in three dimensions. Now, we recall that
where, as we will see shortly, the integgrwill play the role  we have established a relation between the quadratic Casimir
of the radial quantum number. Let us now show the relatioroperators of SO(1,2) and S@¢ 1) in Eq. (50). Using this
to the Hydrogen atom Hamiltonian. Applyinky on these we find
states we have

1 1
VA= 24 =
S
1
Multiplying it with the operatorr ~%/2 from the left, this j=|+§(d—4). (72)
equation is rewritten as

j(j+1)=|(|+d—3)+%(d—Z)(d—4) (7D
rtjm)=mijm). (64)

1 1 m Therefore, we have computed the full spectrum. Applyting
§p2+ 5= —}(r1/2|jm>)1’2=0. (65  on these stateg ¥4jml)) we now have
r
1
We now recognize that the statég,,)=(r'/?jm)) are m=2(d=2)+I+n,. (73

eigenstates of the hydrogen atom Hamiltonian. Actually this
is a rescaled form of the standard Hamiltonian equation WritWe may combine the orbital and radial quantum numbers

ten in terms of dimensionful coordinates and momenfa  into the total quantum number as done for the conventional

~y H atom
p a

W | ) = Epal thi)- (66) l+n,+1=n (74

The following rescaling relates the two equations and give@nd then writejml)=[nl) since the complete spectrum de-
the energy of the atom in terms of the quantum number P€nds only on the total quantum numirer
=j+1+n,

E.= —Maz ! d—4 - 75

~ Ma _. m 3 a® . e I (79
P="7 P T=ua" En=— 5 (j+1+n,)~ =

(67) n=1223,... (76)

We now give an argument to computeSince SO(1,2) [=0,1,..,(n—-1) (77

commutes with the S@(—1) rotation generators;;, the . ] .
SO(1,2) basis can be taken to be simultaneously diagondl agreement with the conventional labeling of the hydrogen

with the SO@—1) basis atom states. We have computed its spectrum in any number
of space dimensiongd(- 1) and found that there is a depen-
|imh)~|SQ1,2,SQd—-1)), (68)  dence ord in the spectrum: the principal quantum numhber
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that appears in the denominator is shifted by a half integeerators at the quantum level. For us this was crucial from the
1(d—4). This shift disappears whend¢1)=3, which  point of view of Sp(2) gauge invariance and the physical
agrees with the standard result for the hydrogen atom istate conditions.
three space dimensions.

We have verified this group theoretical solution by solv- IV. QUANTUM PARTICLE
ing directly the Schrdinger equation for the f/potential in AND HARMONIC OSCILLATOR

D space dimensions. The full wave function is(r) ) )
:r(Dil)lzf(r)Tiliz-~-i|(‘Q')r and the radial equation for any Consider the free particle gaug®0). The generators of

rotationally invariant potential takes the form the conformal group SQ@,2) are obtained at the classical
y P level by inserting this gauge into the gauge invariant form

(5). However, in the quantum theory operator ordering must
, 1 be taken into account to insure that all the generators are
—di+lplp+ ) +v(r)—¢ [f(r)=0, (78  Hermitian and that the algebra of S@)2) closes correctly.
r In [1] it was shown that for this gauge the quantum genera-
tors are(at 7=0)
wherelp=1+(D—3)/2 (try for example the two or three .
dimensional caseB =2,3). The solution of the radial equa- LY=x'p'—x!p' (80)
tion for the 1f potential proceeds just like the standard three
dimensional case, except for replacihg instead ofl. To i - Lo
compare to our group theoretical results above we replace L"=-xp", L '=xp- 2p
D=d-1.
We have shown that all the states of the H atondir 1) 1
dimensions forma single irreducible representatioaf the LYfT=—Z(x pt+p™x7), L™ T==x%p" (82
group SO,2) with a quadratic Casimir operatd,=1 2
—d?/4. This group includes a compact group $Phich
commutes with the generatal,. Therefore the maximal L*'+=p+ L+u:p_ L+’i:5i (83)
compact symmetry that commutes with the Hamiltonian is ' 2p*’
the rotation group in one more dimension, and the energy
eigenstates remain degenerate under its transformations. This T
symmetry is the generalization of the SO(4) symmetry ofthe L™~ = 7 (X-p+p- X=X p —p'x") (84)
H atom in 3 dimensions. Thus, the two dimensional H atom
has an S@) symmetry, the 3 dimensional H atom has an -

(81)

SQ(4) symmetry, the four dimensional H atom has an(50 ! (X2p2+ p2x2—2a)
symmetry, and so on. As a consequence of this symmetry the L= 8p" (85)
energy depends only on the total quantum numband all B N
the states with differerlt=0,1,. .. ,n—1 are degenerate. We - 7(x- p+p-X)+x prx
can compute this degeneraby, at a fixed value oh and -
find m 1
dpixi— Zx. pxi
- s = X' P'X! = X pX
(n+d=3)! =
—1)= 1y=— " — 1.. . 1.
Dn(d—1) ;o Ni(d=1) (d—2)!In! (2n+d=2). — Ex'p-x+ Ex'(x‘p++p+x‘)

By comparing to Eq(69) we see that it equals the number of Hermiticity fixes almost all orders of operators, but the re-
components of a traceless symmetric tensor of ritkone ~ Maining ordering ambiguity introduces the parametem
higher dimensiorD,(d—1)=N,(d). Thisis aresult of the L~ = . This is fixed to a=—-1 by the commutator
SO() symmetry. The computed degeneracy confirms thafL ' | ~i]=i§'IL~"~. With this value ofa the quadratic
indeed the states at a given energy level form a completeasimir operator can then be verified to be precisgjy 1
multiplet of SO@). The multiplet at a fixed energy level is —d2/4 in agreement with covariant quantization.

identified as the completely symmetric traceless tensor in The free particle Hilbert space is defined by diagonalizing

one more space dimension. _ _the operator™,p, which is the same as diagonalizing the
It has been known for a long time that the three dimen-

sional hydrogen atom in 3 dimensions has a spectrum th&ommutlnq generators ™ *,L* Ij The momentum .elgen-
can be described as a representation of the conformal gromﬁﬁateS|P+:p>_f0rm a complete Hilbert space. On this space
SQ(4,2) [6]. We have generalized this result to any dimen-the free particle Hamiltonian, which is another generator of
sion. In comparing the details of our construction to previoughe conformal groupL*"z p%/2p*, is diagonal. These
work we find that the details of our construction are someositive norm states provide a basis for a unitary representa-
what different. Note especially the issues of ordering of op4ion of the conformal group S@(2) through the representa-
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tion of the generators given above. The Casimir eigenvaluel the present gauge we have the construction
for the representation are fixed as we have already discussed.

We now show the relation of this representation to the L:E I
harmonic oscillator. Instead of diagonalizing Gz 4(X P+p-x) 2(X prHpix) (94)
L*'*,L* ~.L*"" we will choose a basis for S@(2) in Lol
which the following operators that commute with each other Got+Gi=p", (95

are simultaneously diagonal

1 . .-
(x?p?+p>x%—2a)

8p* p=+p

Go—Gi= (96)

L Lt (Lt —+L" ), (87)

More accurately, only an appropriate commuting subset of X o s . L
orbital angular momentum operatotd) will be simulta- — 5 (X pHp-X)FXpTX
neously diagonal. These operators correspond to thed SO(

—2) orbital angular momenturh’/ =x'p/—xip', the light- and
cone momentuni* *=p* and the Hamiltonian of the har-

1 .. ..
monic oscillator in | —2) dimensions G§= Z(x- p+p-x), (97)
) ) ~2 +)22 .
T LANL (89 for P
2pt 2 GY+GR= , (98)
2p*

where the lightcone momentuin*’ *=p* in another di- "

mension plays the role of mass. This choice of Hamiltonian GR-GR= Zx2p* 99
- i 0~ LG1=Xp . (99

corresponds to another choice for “time,” as compared to 2

the choice for “time” for the free particle. The spectrum of

this Hamiltonian is well known from the study of the har-

monic oscillator in (l—2) dimensions

Now we see that the Hamiltonian of the harmonic oscillator
is the compact generator of SLE),

1 H=2G = SIS (100
E,=n+5(d-2), n=012,... (89) R T2

We want to show how this quantum numbernd the an- In our special representation the quadratic Casimir operators
gular momentum quantum numbedr®tc. are related to the of these subgroups are related to each other as follows. De-
representation space of S@2). To do so, consider the sub- fining j (j_+1)=G3 —G2,—G3, and jr(jr+1)=Gig
groups SOd—2)®S0(2,2) and label the representation —GiR—GgR we find (for «=—1 which corresponds t€,
space of SO,2) by the representations of these subgroups=1—d?/4 as seen aboye

Recall that SO(2,25 SL(2R), ® SL(2R)g. We will show 1 L
that the Hamiltonian of the harmonic oscillator is the com- o o

pact generator of SL(R)g and that the energy spectrum of JRURFD=1(L+ D)= ZL2+ 1_6(d_2)(d_ 6).

the harmonic oscillator is classified as towers of states cor- (101
responding to the positive discrete series representation

lir,mg) of this SL(2R)g. For every SOd— 2) angular mo- whereL? is the quadratic Casimir of S@¢ 2) given by the
mentum quantum numbér we will find a relation between quantum ordered form

jr.JL andl.

From the general commutation rules for C¥) one can L2=3L;;L"=p'x?p' —p-xx- p. (102
that th t f SO(ZBL(2R SL(2R . . .
Z(ra:givzn b; generators of SO(ZZL(2R).®SL(2R)r The unitary representation of SL@y is labelled by

|irmg) Wheremg, is the eigenvalue 06Gy. SinceGyy is a

1 positive operator in our constructiomg can take only posi-
GE:E(L+"'+L+_)' Ge=Gi=L..», (90 tive values. This is possible only for the positive discrete
series representation, and according to SRj2epresenta-
1 tion theory it is given by
GZRZE(L+'7'_L+7)7 GgiG§:Li’I- (91

mg=jgr+1+n,, n,=0,123,.... (103
These satisfy the commutation rug8},GR]=0 and We will see that the integar,=0 will find an interpretation
LR LR LR LR ~LR LR as the radial quantum number of the harmonic oscillator.
[Go™.G11=iG3™, [Gg .Gz ]1=—IGI™, (920 Next we need to find the allowed values jgf. We saw in
LR ~LR LR Eq. (10)) thatjR is related to angular momentum, therefore
[G17,G3"]=~iGgT, (93 we must find the allowed values of orbital angular momen-
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tum SO@—2) (102. As already explained in the previous The SL(2R), representation is labeled by the eigenvalues of
section the allowed states for orbital angular momentum corthe generato65+ G, =p™ which plays the role of mass for
respond to tensors constructed from the unit vedibr the harmonic oscillator. All the levels taken together make

—x/|x|. The eigenvalues of.2 and the number of states UP @ Single unitary representation of LX).

N,(d—2) are obtained from Eq¢69),(70) by replacing @ We have seen that this representation of &Y is the
—1) by (d—2) same as the fr_ee mgssless particle representation since it has
the same Casimir eigenvalues. Hence the free massless rela-
(1+d—5)! tivistic particle and the harmonic oscillator with its mass
Ni(d—2)= W(ZI +d—4) (104 defined as the lightcone momentum of the particle are dual to
o each other in our model.
L2||>:|(|+d_4)||>, |:O,l,2... . V. SUMMARY
Combining Eq(101) and Eq.(104) yields the allowed values There are two aspects of the model worth emphasizing as
of bothj, andjg potentially more general than the model itself. One is duality
and the other is a larger covariant space with two timelike
.1 1 3 dimensions. The concepts of Sp(2) duality and two times are
jrR=iL=51+7d=3. inextricably connected to each other in our model.
As examples of dualities, we have shown that the H atom,
Inserting this result in Eq(103 one finds the free particle and harmonic oscillator are dual to each

other. These are some of the physical systems that can be
1 1 described by this simple model. A complete classification of
mg=51+2(d=2)+n,. (109 all of its dual sectors has not been obtained at this stage. At
2 4 :
the quantum level the dual sectors are all described by the

Now we can compare to the energy spectrum of the harsame unitary representation of SO¥) with fixed Casimir

monic oscillator(89) by using the relatioi100). We see that e|genvalue_s. This representation O.f Q) is rt_aallzed_m
we must identifyl +2n,=n wheren is the total quantum terms of different sets of unconstrained canonical variables.

number andn, is the radial quantum number in the usual In each case a sm_Jbset of the $|C2() generators is _S|multa—
interpretation of the solutions of the Schinger equation. neously diagonalized and a particular combination of the

Using the total quantum numberinstead of the radial quan- generators is interpreted as the Hamiltonian. Each choice of
tum numbem. we summarize our results Hamiltonian corresponds to a fixed gauge of the duality sym-
r

metry in which “time” is identified as a particular combina-

1 tion of the spacetime coordinates which includes two times
E,=n+5(d=2), n=012,... (106 X% ,X°. The topology of the ¢+ 2) dimensional spacetime
is not the same for each fixed gauge, but each such topology
is an allowed solution of the constraint equations and equa-

I=n,(n=2),(n—-4),...(0 or 1) tions of motion that follow from a single actid®,. “Large”

(107 gauge transformations map the gauge fixed solutions to each
1 1 other. This is similar to M-theory dualities that also map
Mg==n+ —(d—2) (108 physical system_s_ that live in spaces of different_ ftopologi_es.
2 4 Besides dualities, the model shows that familiar physical

systems can be viewed as embedded in a spacetime with two
o timelike dimensions. This provides an example for how it is
JR:JL:§| + Zd_ 2" (109 possible to have more than one timelike dimension and yet

describe realistic physics. Furthermore the model shows that

At a fixed energy leveh it is well known that the states with @ larger spacetime unifies these physical systems under the
different values of belong together in SW(—2) multiplet ~Same umbrella. _ _ .
corresponding to the single row Young tableau withoxes. The duality symmetry in our model is morally similar to
Instead, here these states are rearranged vertically as muItiE—e dualities encountered in M theofy]. However, in M

lets at the same value bfwith different values of the energy heory the analog of the action principle that gives rise to
n. Thus, at each there is an S[2,Riz positive discrete dualities remains to be discovered. It is hoped that our model

series multipletjr,mg) which is a vertical multiplet of dif- May provide some new insight into the duality symmetries in
ferent energy levels. M theory, and into the signals of more than one time or

In summary we have found the following labelling of our higher dimensions already noticed from different directions
special representation by using the harmonic oscillator basiS—19

|SQ(d—2);SL(2R), ;SL(2R)R) (110 ACKNOWLEDGMENTS
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