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Dyons in N54 supersymmetric theories and three-pronged strings

Kimyeong Lee*
Physics Department, Columbia University, New York, New York 10027

Piljin Yi †

F. R. Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853
~Received 30 April 1998; published 13 August 1998!

We construct and explore BPS states that preserve 1/4 of supersymmetry inN54 Yang-Mills theories. Such
states are also realized as three-pronged strings ending onD3-branes. We correct the electric part of the BPS
equation and relate its solutions to the unbroken Abelian gauge group generators. Generic 1/4-BPS solitons are
not spherically symmetric, but consist of two or more dyonic components held apart by a delicate balance
between a static electromagnetic force and scalar Higgs force. The instability previously found in three-
pronged string configurations is because of excessive repulsion by one of these static forces. We also present
an alternate construction of these 1/4-BPS states from quantum excitations around a magnetic monopole, and
build up the supermultiplet for arbitrary~quantized! electric charges. The degeneracy and the highest spin of
the supermultiplet increase linearly with a relative electric charge. We conclude with comments.
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I. INTRODUCTION

Among supersymmetric theories that are known to ad
a strong-weak coupling duality,N54 D54 supersymmetric
Yang-Mills field theories are perhaps the easiest and m
straightforward to study. In its Coulomb phase, the solito
spectra are scrutinized in great detail, where a mani
strong-weak coupling duality was observed among
charged Bogomol’nyi-Prasad-Sommerfield~BPS! particles
that break exactly half of the supersymmetry. This includ
the usual BPS magnetic monopoles and standard dyonic
citations thereof whose electric charges are proportiona
the magnetic charge. These BPS monopoles and dyons b
half of N54 supersymmetry, and duality predicts that th
are all in theN54 vector multiplet with the maximum spin
1, a short multiplet of degeneracy 24516.

There are, however, other kinds of supersymmetric st
that break 3/4 of supersymmetry. Such states would com
an intermediate multiplet that contains spin 3/2 or higher
is only very recently that their properties have been explor
Most notable is a work by Bergman@1# who constructed
such dyons as three-pronged strings that end on three pa
D3-branes. Here, we recapitulate this construction.

Recall that N54, D54, U(n)5SU(n)3U(1) Yang-
Mills theory is a world-volume theory ofn parallel
D3-branes@2#. The Coulomb phase of the U(n)→U(1)n

theory is parametrized by six adjoint Higgs expectatio
whose 6n eigenvalues encode the positions of then
D3-branes in the internal partR6 of the spacetimeR6

3R311. One special feature of theD3-brane is that it is

*Electronic address: klee@phys.columbia.edu
†Electronic address: piljin@mail.lns.cornell.edu
0556-2821/98/58~6!/066005~15!/$15.00 58 0660
it

st
c
st
e

s
x-

to
ak

es
in
It
d.

llel

,

self-dual under theSL(2,Z) U duality of the type IIB string
theory. As far as the low energy world-volume physics go
a practical consequence of this is that any (q,g) string may
end on theD3-brane. Hereq and g are the charges with

respect to the two antisymmetric tensor fieldsBmn and B̃mn

that live, respectively, in the Neveu-Schwarz–Neve
Schwarz~NS–NS! sector and in the Ramond-Ramond sec
of the type IIB theory. With respect to the unbroken U(1
associated with theD3-brane where a (q,g) string ends,
such an endpoint appears as a particle ofq electric andg
magnetic charges. The familiar BPS (q,g) dyons of SU(n)
theory corresponds to a straight (q,g) string segment tha
connects a pair ofD3-branes.

A novelty comes from the fact that three-pronged strin
are also in the spectrum of string theory andM theory. They
can be used to connect a set of threeD3-branes. The three
segments that meet at a single junction must have diffe
(q,g)’s to preserve some supersymmetry@3,4#, so the result-
ing BPS state has its electric charge not proportional to
magnetic charge. Typically, it will break 3/4 of theN54
supersymmetry.1 We will use the phrase ‘‘1/4-BPS state’’ t
distinguish from the usual BPS states that break only hal
the supersymmetry. For instance, suppose that we h
SU(n) broken down to U(1)n21. Pick a pair of rootsa and
b with a25b251 and a•b521/2. A state of magnetic
chargema1mb and of electric chargena would then be 1/4
BPS.

Now the question is how these 1/4-BPS states are real
on the field theory side. One might be tempted to look fo

1Three-pronged strings can also generate BPS states inN52 theo-
ries @5#. In such cases, they actually break only half of the sup
symmetry.
© 1998 The American Physical Society05-1
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spherically symmetric soliton. In fact, very recently, a sp
cial class of 1/4-BPS states in SU(3) theory was found i
spherically symmetric ansatz@6#. In terms of roots, these
BPS configurations carry magnetic charge of 2a12b. How-
ever, as will become clear in later sections, the existenc
these solutions is quite accidental and fails to illuminate h
the general 1/4-BPS dyons are constructed in the field the
language. One severe problem is that if their electric cha
is, say, of the formqa, the real number2 q is determined
uniquely by the Higgs~VEV’s!. ~In the spherically symmet
ric case of the total magnetic charge,a1b, for instance,q
has to vanish for all VEV’s.! Because of this, at generi
points of vacuum moduli space, BPS configurations o
properly quantized electric charge (q5 integer) cannot be re
alized as a spherically symmetric classical soliton.

In general, we expect the BPS configurations to be of
elongated shape. Roughly speaking, it will consist of a p
of dyonic cores that are bound but separated by some
tanceR. This is because of a delicate balance between
static electromagnetic force and scalar Higgs force.~See Sec.
III. ! Once we realize this, it is almost obvious that t
amount of electric charge has to depend on the separatioR
as well as Higgs VEV’s, what one misses by insisting t
spherical symmetry is this extra parameterR. With this pic-
ture in mind, it is now clear that a BPS configuration
given electric and magnetic charges will have some defi
length R that parametrizes the deviation from the spheri
symmetry.

This begs for another question: what happens in the li
of R→`? Since it is the electromagnetic force and Hig
interaction that separates the two dyonic cores, a changeR
implies a change in electric charge. AtR→`, the electric
charge of the 1/4-BPS state reaches a limiting value. In
cases we consider, the charge will actually reach its m
mum possible value. Trying to put an even larger elec
charge will result in an instability and cause the two cores
fly away from each other. The upper bound on the elec
charge can be also translated into a lower bound on a lin
combination of Higgs VEV’s with any given electric charg
in which form the instability was found in the three-prong
string configuration in Ref.@1#.

The paper is organized as follows. In Sec. II, we der
the BPS bound of the energy functional and write down
complete set of equations that 1/4-BPS dyons must sat
This corrects and generalizes those in Ref.@7#. The magnetic
part of the equations are unaffected by the electric p
Given any purely magnetic BPS solutions, the electric par
determined by solving a singlefour-dimensionalcovariant
Laplace equation of an adjoint scalar. The existence of
solutions is tied to the existence of U~1! gauge zero-mode
of the purely magnetic soliton, which completes the ex
tence proof of all the expected 1/4-BPS dyonic states co
sponding to three-pronged strings. In Sec. III, we take
specific example of SU~3! broken to U(1)2. The 1/4-BPS

2Recall the electric charge is not quantized in classical dyon
lutions, unlike the magnetic charge which is quantized topolo
cally.
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dyonic configuration of magnetic chargea1b is con-
structed, from which we extract the relationship betwe
Higgs VEV’s, electric charges, and the separation lengthR.
Important but technical details involve Atiyah-Drinfeld
Hitchin-Mannin-Nahm~ADHMN ! construction, which we
put in the appendixes. We digress in Sec. IV, and comp
the field theory results to those fromD-brane and three-
pronged string picture. The instability bound is compar
with that from the string construction, and a perfect fit
found.

In Sec. V, we present an alternate construction of
1/4-BPS dyons via exciting compactly supported eige
modes around spherically symmetric monopoles of magn
charge a1b. The correct supermultiplet structure o
1/4-BPS states are shown to be reproduced, after a ca
consideration of low energy eigenmodes. The approxim
tion, however, ignores some backreaction of the boso
background to the excitation of these eigenmodes, wh
puts a stringent criteria on the validity of the constructio
Because of this, in particular, it is impossible to see the
stability in this second picture. In Sec. VI, we use this co
struction to build up the supermultiplet structure of dyons
arbitrary quantized electric charge. Finally in Sec. VII, w
conclude with comments on unresolved issues.

II. BPS ENERGY BOUND AND EQUATIONS

Since the electric part of the BPS equations we found
different from what is commonly known@7#, we will red-
erive the BPS energy bound and equations from scra
Also there are several interesting new comments to be m
about the BPS field configurations. We start by consider
the bosonic Lagrangian of theN54 supersymmetric Yang
Mills theories. With the gauge group SU(n) with Hermitian
generatorsTa in the n dimensional representation with th
normalization trTaTb5dab/2, we introduce the gauge fiel
Am5Am

a Ta and six Higgs fieldsf I5f I
aTa, I 51, . . . ,6. The

bosonic Lagrangian density is

L5trH 2
1

2
FmnFmn1Dmf ID

mf I

2
1

2 (
I ,J51

6

~2 ie@f I ,fJ# !2J , ~2.1!

whereDmf I5]mf I2 ie@Am ,f I #.

A. BPS bound

The energy density is

o-
i-
5-2
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H5trH ~Ei !
21~Bi !

21~D0f I !
21~Dif I !

21(
I ,J

~2 ie@f I ,fJ# !2J
5trH ~aIEi1bIBi2Dif I !

21~D0f I !
21(

I ,J
~2 ie@f I ,fJ# !2J

12 tr$EiDia•f1BiDib•f%, ~2.2!
rs
where aI ,bI are two arbitrary six-dimensional unit vecto
orthogonal to each other,a•f[aIf I and b•f[bIf I . The
cross terms can be rewritten as

trBiDib•f5] i~ trb•fBi !, ~2.3!

trEiDia•f5] i~ tra•fEi !2 ietr~D0f I@a•f,f I # !,
~2.4!

where we used the Bianchi identityDiBi50 and the Gauss
law,

DiEi2 ie@f I ,D0f I #50. ~2.5!

Denote collectively byz I , the components off I which are
, s
he

an

06600
orthogonal to bothaI and bI . We split the energy density
from the scalar fields into two parts,

~D0a•f!21~D0b•f!21~2 ie@a•f,b•f#!2, ~2.6!

and

~D0z I !
21~2 ie@a•f,z I # !21~2 ie@b•f,zJ# !2

1(
I ,J

~2 ie@z I ,zJ# !2, ~2.7!

then complete the squares in the energy density as,
H5tr$~Ei2Dia•f!21~Bi2Dib•f!21~D0a•f!21~D0b•f2 ie@a•f,b•f#!2%

1trH ~D0z I2 ie@a•f,z I # !21~Diz I !
21~2 ie@b•f,zJ# !21(

I ,J
~2 ie@z I ,zJ# !2J

12] i tr$a•fEi1b•fBi%. ~2.8!
Every term except those in the last line is non-negative
the total energy is bounded by the contribution from t
latter:

E5E d3xH>Max~aIQI
E1bIQI

M !, ~2.9!

with

QI
E52E d3x] i~ trf IEi !, ~2.10!

QI
M52E d3x] i~ trf IBi !. ~2.11!

One most stringent bound must be found by varyingaI and
bI and achieving the maximum. The quantitiesQI

E andQI
M

can be evaluated by converting to boundary integrals,
clearly depends on the asymptotics only.

The expressionaIQI
E1bIQI

M is maximized only if the
two unit vectors lie on the plane spanned byQI

M and QI
E .
o

d

Assuming this, leta be the angle betweenQI
M andQI

E , and
u the one betweenbI andQI

M . The extrema occur if and only
if

6aIQI
M5bIQI

E , ~2.12!

which can be translated to an equivalent condition

tanu5
6QEcosa

QM6QEsina
. ~2.13!

QM andQE are the magnitude of vectorsQI
M andQI

E . The
two positive extrema are the two central terms ofN54 su-
persymmetry algebra,

Z65A~QM !21~QE!262QMQEsina. ~2.14!

The true BPS bound forN54 theory is then

E>Max~Z1 ,Z2!. ~2.15!
5-3
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KIMYEONG LEE AND PILJIN YI PHYSICAL REVIEW D 58 066005
B. BPS equations in genericN54 vacua

The BPS bound is saturated when every bulk term in
energy density vanishes, from which we obtain a total
eight sets of equations. The first part is the most familiar

Bi5Dib•f. ~2.16!

This is the usual BPS equation that admits magnetic mo
pole solutions. Note that this magnetic equation can
solved independently, regardless of the remaining equati
The other BPS equations influence only the choice of
unit vectorbI . This fact is of crucial importance when w
construct the BPS solution later.

The second electric part is made of several equations

Ei5Dia•f, ~2.17!

D0a•f50, ~2.18!

D0b•f52 ie@b•f,a•f#. ~2.19!

Using the latter two, we reduce the Gauss law~2.5! to

DiEi5e2@b•f,@b•f,a•f##1e2@z I ,@z I ,a•f##.
~2.20!

Combining this with Eq.~2.17! into a single second orde
linear differential equation, we find that

DiDia•f5e2@b•f,@b•f,a•f##1e2@z I ,@z I ,a•f##,

~2.21!

which is a linear equation fora•f oncez I ’s are given.
So far we have not required that the spatial gauge fieldAi

be time independent. If we choose such a gauge, one
easily that Eq.~2.17! is solved by

A052a•f. ~2.22!

In this gaugeD0z I2 ie@a•f,z I #5]0z I50, which requires
z I to be time independent. Otherz I equations require them t
be covariantly constant (Diz I50), commute withb•f, and
also commute among themselves. In the unitary gauge w
b•f is diagonal, thez ’s are all diagonal, constant, and un
form, and also commute with theAi ’s. The latter condition
implies that eachz I is proportional to the identity in eac
irreducible block~s! spanned by nontrivial parts of the con
figurationsAi andb•f.3 If one thinks of the magnetic solu
tion to Eq.~2.16! as embedded along a subgroup of the ori
nal gauge group, then the expectation valuez I ’s must be
invariant under such a subgroup.

Now Eq. ~2.21! is a zero-eigenvalue problem of a no
negative operator acting ona•f linearly. Under the bound-
ary condition thata•f(`) should commute with the asymp
totics of b•f andz I , its solutions have nontrival behavior

3If we were considering more general configurations with ma
three-pronged strings connected to form a string web, this wo
translate to the requirement that the BPS string web be planar in
internal spaceR6.
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only in the said irreducible block~s!. Thus z I should also
commute witha•f. With such expectation valuez I ’s, Eq.
~2.21! reduces to

DiDia•f5e2@b•f,@b•f,a•f##. ~2.23!

This is a four-dimensional covariant Laplacian for an adjo
scalar field, provided that we identifyD4[2 ieb•f. A more
restricted version of this equation, where one assum
@b•f,a•f#50 as well, has appeared and been used in
isting literatures@7,6#. Thus, we find two sets of relevan
BPS equations, given by Eq.~2.16! and~2.23!, that must be
solved to produce classical 1/4-BPS configurations.~See Ap-
pendix E for a discussion about the energy density of B
configurations.!

C. Dyons and the scalar BPS equation

The general configuration will have both magnetic a
electric charges. Along, say,2z axis, the asymptotic behav
ior of the Higgs fields will be

b•f.b•f~`!2
g•H

4pr
, ~2.24!

a•f.a•f~`!2
q•H

4pr
. ~2.25!

The n21 dimensional vectorsg andq are the magnetic and
the electric charge, respectively, whileH generates the Car
tan subalgbra of SU(n).

We need to solve the first order equation~2.16! and the
second order equation~2.23!. The first order equation is the
well-understood BPS equation for monopoles@8#. Let the
vacuum expectation values of the Higgs be such that

b•f~`!5h•H5diag~h1 ,h2 ,...,hn!, ~2.26!

where4 (aha50 and h1,h2, . . . ,hn . The magnetic
charge of any BPS configuration should satisfy the topolo
cal quantization

g•H5 (
r 51

n21
4p

e
l rbr•H5

2p

e
diag~2 l 1 ,l 12 l 2 ,l 2

2 l 3 , . . . ,l n21! ~2.27!

with non-negative integersl r . One interprets such configu
rations as being made ofn21 species of fundamental mono
poles, wherel r is the number of ther th fundamental mono-
pole associated with the simple rootbr . The conditions on
the diagonalz I ’s can be translated quite easily now. Gene
cally, z I must have vanishing inner products with allbr
wheneverl rÞ0. The only exception is when a consecuti

y
ld
he

4These quantitieshi can be thought of as projected coordina
values of then D3-brane positions along thebI direction. Thus, the
gauge symmetry could be still broken even when some ofhi ’s
coincide.
5-4
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DYONS IN N54 SUPERSYMMETRIC THEORIES AND . . . PHYSICAL REVIEW D 58 066005
chain ofbr is such thatl s5•••5 l s1t and the corresponding
monopoles are ‘‘coincident.’’ In that case,z I must have a
vanishing inner product with( r 5s

r 5s1tbr but not necessarily
with individual br , . . . , br 1s .

The second-order BPS equation~2.23! is to be solved in
the background of purely magnetic solutions toBi
5Di(b•f). While we will come back to actual solutions fo
specific examples in the next section, it is important to n
that the existence of the solution is already well establish
In fact, we know the exact number of linearly independe
solutions. This is because any gauge zero mode of a
monopole solution is automatically a solution to Eq.~2.23!.

Recall that the conventional way of finding zero-modes
BPS monopoles is to perturbBi5DiF and impose the back
ground gaugeDidAi5 ie@F,dF# @8#. For a gauge zero
mode, say, generated by a gauge functionL, the linearized
BPS equations are always satisfied since bothBi and DiF
are gauge covariant. Only the gauge-fixing condition is n
trivial,

DidAi5 ie@F,dF#⇒DiDiL5e2@F,@F,L##. ~2.28!

Inserting the solution toBi5Di(b•f) as the background
field, and replacingL by a•f, we realize that this is identi
cal to Eq.~2.23!. The number of solutions to this covaria
Laplace equation must equal the number of unbroken U~1!
generators that act nontrivially on the monopole soluti
There must be at least one and at mostn21.

Where is the electric charge located? When magn
monopoles described by the first BPS equation~2.16! are
well separated from each other, the field configuration o
side the core region is purely Abelian and cannot carry
electric charge. Each fundamental monopole may carry o
its own type of electric charge, that is,br monopoles can
carry onlybr electric charges for any simple rootsbr . One
could say that generic 1/4-BPS configurations are made
classically bound~two or more! 1/2-BPS dyons.

One might think that there is something odd about w
we are doing here. After all, what we mean byb•f and
a•f depends on what kind of electric and magnetic char
we have, yet we seem to have fixedbI even before turning
on the electric charge. But what matters at the end of the
is that we get a set of field configurations that solve all B
equations simultaneously for somebI and aI . The BPS
bound is a mini-max problem where one tries to obtain
most stringent lower bound for all reasonably smooth c
figurations. The simple fact that a configuration saturate
lower bound implies that the bound it saturates is actually
maximum possible for all lower bounds. In Sec. III, we sh
see how this is realized in a concrete way.

III. 1/4-BPS SOLITON IN THE SU „3… THEORY

As an example, let us consider the SU~3! gauge group.
Following the strategy outlined in the previous section,
start with a purely magnetic BPS configuration of a pair
distinct monopoles. The configuration must solve only
magnetic part of BPS equations, and the scalar BPS equa
will be solved in that background.
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If we let b•f(`) be equal to diag(h1 ,h2 ,h3) with h1
,h2,h3 and h11h21h350, the two fundamental mono
poles would have magnetic charges5

4pa•H52pdiag~21,11,0!, ~3.1!

4pb•H52pdiag~0,21,11!. ~3.2!

We will label these monopoles by their charge vector in ro
space,a and b. Throughout the rest of the paper, we w
consider 1/4-BPS configurations with magnetic charges
a1b. Accordingly, the asymptotic behavior ofb•f would
be

b•f.diag~h1 ,h2 ,h3!2
~a1b!•H

r
. ~3.3!

From the work of Weinberg@8#, we learn that the separatio
between the two monopole cores is an arbitrary parame
which we denote byR. R uniquely determinesAi andb•f
up to an overall position, spatial orientation, and intern
gauge angles. The explicit form of the field configuration c
be obtained in principle from the ADHMN formalism@9,10#.
The latter is summarized in Appendixes A and B. Recen
Weinberg and one of the authors~P.Y.! have found the ex-
plicit Ai andb•f configuration for these two monopoles b
exploring the Nahm’s formalism@11#.

Now the difficult part is to solve the covariant Laplac
equation:

Di
2L5@b•f,@b•f,L##. ~3.4!

Once this is done, we simply takea•f to be a linear com-
bination of all possible solutionsL. We know, from the ar-
guments in the previous section, there exist two linearly
dependent solutions. We already know of one such solut
since Di

2(b•f)5DiBi50 and b•f obviously commutes
with itself. How do we find the other solution? There ha
been several works on the finding the solution of the cov
ant Laplacian of the adjoint Higgs field around the instan
background@12#. This can be generalized to the magne
monopole background, which can be obtained as a limi
an instanton onR33S1 with a nontrivial Wilson loop@13–
15#. Appendixes B and C provide a detailed discussion of
solution for the covariant four-dimensional Laplacian. Esp
cially, a single instanton in the SU~3! case is made of three
monopoles, two of which correspond to two simple roots a
one that corresponds to one minimal negative root. This
ditional monopole solution depends on thex4 coordinate of
S1 and here we take the limit where this additional monop
is taken to spatial infinity.

We will refer all detailed computation of the SU~3! case
to Appendix D. In this section, we will simply borrow th
result and use it for the study of~unquantized! 1/4-BPS con-
figurations. Combine the Higgs expectation values tom2
5h32h2 andm15h22h1. For the SU~3! case, there are two

5Unless noted otherwise, we will suppress the electric coup
constante from now on.
5-5
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KIMYEONG LEE AND PILJIN YI PHYSICAL REVIEW D 58 066005
independent solutions to the covariant Laplace equatio
since there are two unbroken U~1!’s acting on the pair of
monopole solutions. We will only need their asympto
forms, which can be read off from Eq.~D8!.

As mentioned above, the first is proportional to the Hig
field b•f itself, whose asymptotics are

LT.diagS h11
1

2r
,h2 ,h32

1

2r D , ~3.5!

while the second is a bit more involved

LR.diagS m21
p1

2r
,2~m11m2!

1
p22p1

2r
,m12

p2

2r D . ~3.6!

The real numbersp1 andp2 are defined to be

p15
m12m222~m112m2!m2R

m11m212m1m2R
,

p25
m12m212~2m11m2!m1R

m11m212m1m2R
. ~3.7!

R is again the separation between the two monopoles
naturally occurs in the standard form of monopole mod
space metric or in the Nahm data.

The scalar fielda•f and thusA0 would be in general a
linear combination ofLT and LR . Denote the respective
coefficients byj andh:

a•f~`!5jdiag~h1 ,h2 ,h3!1hdiag~m2 ,2m22m1 ,m1!

5jh–H12h~m1b•H2m2a•H!. ~3.8!

The resulting electric charge is such that

q5qaa1qbb, ~3.9!

where

qa54p~j1hp1!,

qb54p~j1hp2!. ~3.10!

For any nonzero separationR, the electric charge is mis
aligned against the magnetic charge unlessh50. ForR50,
however, the electric charge is proportional toa1b. For any
R, it is easy to double check that the BPS configuration
deed saturates the most stringent BPS bound. All one n
to ensure is that the angleu betweenQI

M and bI is un-
changed as the electric charge is turned on, which is in
guaranteed as Eq.~2.12! holds. This is always true for the
solution we obtained.

The resulting 1/4-BPS configuration is then composed
a pair of distinct monopole separated by a distanceR, and on
top of which the timelike gauge potentialA052a•f is
turned on to carry the additional electric charge whose r
tive value is completely determined byR. The a monopole
06600
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would carryqa electric charge and theb monopole would
carry qb electric charge. The relative electric charge (qb
2qa)/2 is the part of the electric charge orthogonal to t
magnetic charge and is given by

Dq58ph
~m1

21m1m21m2
2!R

m11m212m1m2R
. ~3.11!

This is responsible for the electromagnetic repulsion, wh
must be balanced against the Higgs attraction.6 Note thatDq
is a monotonic function ofR. In particular,R50 implies that
Dq50 as well. When the two constituent monopoles form
single spherically symmetric configuration, they can be
BPS but not 1/4 BPS.

As Dq increases,R increases, and at some critical charg
the separation diverges,R→`. This of course signals tha
the BPS configuration no longer exists as a single part
state. Two solitonic cores are separated by an arbitra
large distance onceDq reaches its maximum possible valu

Dqcr54ph
~m1

21m1m21m2
2!

m1m2
, ~3.12!

at which point the instability sets in. While we carried o
the analysis with arbitrary electric charges, it is simply
matter of putting particular values ofR if one wishes to
extend the result to properly quantized dyons.

Before closing this section, we would like to clarify ho
a spherically symmetric 1/4-BPS dyon is possible for high
magnetic charges. As we just saw, the only spherically sy
metric solution with magnetic charge corresponding to
root, saya1b, is the ones that break half of the supersy
metry. They cannot possess any relative electric cha
However, when the magnetic charge is a double, say,a
12b the analogue of this 1/2 BPS, a purely magnetic sta
is not spherically symmetric. The situation is analogous
having a pair of identical SU~2! monopoles as close to eac
other as possible, if we consider the SU~2! as embedded
inside SU~3! along a1b. We know from early works on
SU~2! monopoles that this configuration is cylindrically sym
metric, and of toroidal shape@16#. As we turn on relative
electric charges and thereby reduce the state to 1/4 BPS
four constituents, twoa’s and twob’s, begin to move away
from one another and eventually become independent.
then conceivable that, at some specific electric charge
four soliton cores are separated just right so that they a
ally form a spherically symmetric shape. The one solut
found in Ref.@6# is an example of this phenomenon.

IV. THREE-PRONGED STRING AND INSTABILITY

Let us compare the above result against the string pict
For the purpose of this section, we will pretend that t
string tension is not quantized, since in the end the physic
instability can be understood classically. Let us consider

6It would be interesting to derive this relative charge from t
consideration of the long range force law.
5-6
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specific configuration with theq fundamental strings andg
D strings so that, in the field theoretic context, this transla
to a magnetic chargeg(a1b) and the electric chargeqaa.
Takej52p2h so thatqb50 of Eq. ~3.10!, then the dyonic
solution in the previous section acquires an electric cha
alonga only,

q54ph~p12p2!a. ~4.1!

Let q[qa54ph(p12p2).
Let X21

I be the six-dimensional displacement between
first and the secondD3-branes, and similarlyX32

I be the one
between the second and the thirdD3-branes. The projection
alongbI is determined by the Higgs VEVb•f(`):

bIX21
I 5h22h1 , bIX32

I 5h32h2 , ~4.2!

and similarlya•f(`) of Eq. ~3.8! determines the projection
alongaI . The vectorsQI

E andQI
M are then

QI
M5gX31

I 5g~X32
I 1X21

I !, ~4.3!

QI
E5qX21

I , ~4.4!

where

X21
I 5~h22h1!bI2h~2m21m11p2m1!aI , ~4.5!

X32
I 5~h32h2!bI1h~2m11m22p2m2!aI . ~4.6!

A simple generalization of Bergman’s calculation sho
again that the energy of the string configuration coincid
with the field theoretic one if we identify the string tension
(q,g) string to beAq21g2 in the field theory unit. If we
quantize the system,q becomes the number of the fund
mental strings. The same consideration tells us that the a
v between the (0,g) string and the (q,g) string as they mee
at the junction is solely determined by their tension, and t
by g54p andq,

cos~p2v!5
g

Ag21q2
. ~4.7!

This anglev is depicted in Fig. 1.
The three-pronged string becomes marginally~un!stable

whenever any one of the strings has zero length. This h
pens either because of the change of Higgs VEV’s or
cause of the change in electric charge and coupling. In

FIG. 1. Configurations of three-pronged strings when they
~a! stable or ~b! at the threshold of instability. We labeled th
D3-branes by numerals 1, 2, and 3 in accordance with the choic
basis in Sec. III.
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1, we described the case where the Higgs VEV’s chan
When the fundamental string becomes arbitrarily short
that the secondD3-brane coincides with the junction at th
center, the string configuration is made only of (0,g) and
(q,g) strings. The Higgs force is still attractive but no
strong enough compare with the repulsive force from
presence of the relative electric charge; the system is
longer classically bound. In this limit, the angle betweenX21

I

and X32
I must becomep2v. Indeed it is not hard to show

that

X21•X32

uX21uuX32u
<cos~p2v!, ~4.8!

where the equality holds precisely when Higgs VEV’s a
electric charge are such thatR→`. Thus we find the same
instability in both string and field theory pictures.

There are other kinds of instability, for instance, when t
(q,g) string becomes arbitrarily short. Clearly there is
static electromagnetic force between the electric and m
netic charges. In this case, the cause of instability in fi
theoretical terms, turned out be due to the repulsion from
Higgs interaction. This is the limit wherem15h22h150 in
the field theory, and whereX12

I and X13
I 5X12

I 1X23
I become

mutually orthogonal in the string picture.

V. 1/4-BPS DYONS FROM QUANTUM EXCITATIONS

In principle, the supermultiplet structure of the 1/4-BP
states should be recovered from low energy quantum
chanics of the above solitonic solution. However, in this p
per, we will take a shortcut and ask the question of deg
eracy by presenting an alternate construction of these dy
states. For simplicity, we will confine the present discuss
to the case of SU~3!.

We start with the spherically symmetric magnetic mon
pole solution obtained by an SU~2! embedding along the roo
a1b with the single nonuniform Higgsb•f. If a•f van-
ished, the monopole would have eight bosonic and eight
mionic zero modes. In a generic vacuum where^a•f&Þ0,
however, half of these 16 zero modes are lifted and acq
finite energy. Of the remaining four bosonic zero mod
three correspond to translations and one is generated by
bal U~1! transformations. There are also four fermionic ze
modes, the quantization of which imparts aN54 vector
multiplet structure, thus the degeneracy 24, to the soliton.

A minimal 1/4-BPS state should have a degeneracy fa
of 26 and the highest spin 3/2. To see how such structu
arise, we need to pay close attention to those modes lifted
^a•f&Þ0. Fermionic modes are easiest to follow. Introdu
a basis for Dirac matrices whereg0 is diagonal andg5 is
off-diagonal,

g052 i ^ s3, ~5.1!

gk5sk
^ s2, ~5.2!

g551^ s1, ~5.3!

e

of
5-7



n
ag

-
al

tio

-

he
h
-

u

u-
y
s

s.
ct

b
rg

-
o

e

hat

the
of

it is
no

ular

ta.

d in

ith
e it
g
y
of

tric

re

to

ot

tric

-
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with 2 by 2 Pauli matricess i ’s. Using SO~6! R symmetry,
one can bring the Dirac equation to the following form,

g0@ igkDk1g5b•f6 ia•f#C65eC6 , ~5.4!

written in the time-independent form with the energy eige
value e. Here we used a static gauge with the purely m
netic background solution.N54 theory has two~adjoint!
Dirac fermions, which together lift to a Dirac spinor in six
dimensions. The two are of opposite six-dimensional chir
ties, and the subscript6 refers to this fact.

Decomposing the Dirac spinors asC5(x,c)T in terms of
two-component spinors, and defining an operatorD
[ iskDk1 ib•f, the Dirac equations is rewritten as

Dc66@a•f,x6#5ex6 , ~5.5!

D †x67@b•f,c6#5ec6 . ~5.6!

Recall that, given a BPS background monopole configura
that satisfiesBk5Dk(b•f), the operatorD has zero modes
while D † does not. Whena•f50, each Dirac fermion con
tributes four zero modes (E50); they solveDc50 andx
50. The four solutions toDc50 can be labeled by the
representation under the embedded SU~2!. The adjoint rep-
resentation of the gauge group SU~3! is decomposed into a
triplet, a pair of doublet, and a singlet with respect to t
SU~2! embedded alonga1b. The singlet is associated wit
the generatora•H2b•H, while the two doublets are asso
ciated with the pairs (Ea ,E2b) and (Eb ,E2a). The triplet
would contribute two zero modes, and each doublet wo
contribute one, which accounts for all four solutions toDc
50.

By construction of Eq.~5.4!, the uniform fielda•f is
orthogonal to the total magnetic chargea1b,

a•f5v~a•H2b•H!, ~5.7!

which has a nontrivial commutator only with isospin do
blets, and even then acts on each as an multiplication b
number. Witha•fÞ0, therefore, those modes from the iso
pin triplets commutes witha•f and survive as zero mode
As mentioned above, quantization of these leads to a ve
multiplet structure of degeneracy 24516.

The other four from isospinor doublets can no longer
zero modes, however, and are promoted to finite ene
eigenmodes of the form@17#

C65e2 i etS 0

c D . ~5.8!

The isospin doublet, two-component spinorc is exactly of
the same mode that solvesDc50, and thus are normaliz
able. They are compactly supported around the monop
core. The energy eigenvaluee equals63v/2 for the first
doublet and73v/2 for the second doublet. This is becaus

@a•f,Ea#5
3v
2

Ea , @a•f,E2b#5
3v
2

E2b , ~5.9!
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and similarly forEb and E2a with a negative sign. Filling
the Dirac sea up toe50, creation~or annihilation! of one of
these eigenmodes will result in a quantum excitation t
costs a positive energyueu5u3v/2u.

To check against the BPS mass formula, we need
behavior of the electric field at large distances when one
these modes is turned on. From various considerations,
well known that these modes from gauge doublets carry
angular momentum. This can be surmised from the ang
momentum formula,J5L1s1t, where the SU~2! gauge
generatorst are added to orbital and spin angular momen
The solution toDc50 with an SU~2! doubletc is unique
and spherically symmetric (L250), hence must be of the
form

c6}
1

A2
uEa ,sz521/2&2

1

A2
uE2b ,sz511/2&

~5.10!

from the first doublet, and

c6}
1

A2
uEb ,sz521/2&2

1

A2
uE2a ,sz511/2&,

~5.11!

from the second. The isospin and the spin are correlate
such a way thatJ25(s1t)250. From this, we learn that the
mode by itself carries an electric charge of6(a2b)/2, or
the relative charge isDq571/2.

However, there is a well known subtlety associated w
turning on such a mode from a gauge doublet. Becaus
acquires a phase of21 upon a gauge rotation correspondin
to the center of SU~2!, its excitation must be accompanied b
a half-integer momentum along an internal phase angle
the background monopole. This leads to additional elec
charges of the form (m/2)(a1b) for any odd integerm. The
minimal states are those withm561. Combining this with
the fermionic contribution, we find the electric charges a
6a or 7b. With two Dirac spinorsC6 , quantization then
leads to eight minimal dyonic excitations, which split in
four pairs of identical electric charges,a, 2b, b, 2a. Ex-
citation energy due to the half-integer momentumm/2
561/2 is of second order in the electric charge, and will n
affect the leading approximation.

Does the leading excitation energyueu5u3v/2u agree with
the general BPS mass formula? In the limit of small elec
coupling,7 the central charges may be expanded as

Z65A~QM !21~QE!262QMQEsina

.QM6QEsina1•••. ~5.12!

The actual BPS bound is Max(Z1 ,Z2), so the first order
correction due to the electric charge is

7We remind readers thatQE has a factor ofe while QM has a
factor of 1/e. We suppressede from notations in Sec. III and there
after.
5-8
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uQEsinau.utr„~a•f!~a•H!…u5utr„~a•f!~b•H!…u5U3v
2 U,
~5.13!

which coincides withueu5u3v/2u, as it should if the dyonic
state is indeed 1/4 BPS. The bosonic counterpart of
eigenmode analysis should proceed similarly, except that
corresponding eigenmodes will come in a pair of spin d
blets rather than four spin singlets. The final result is, th
for each electric charge,a, 2b, b, 2a, there are 21254
dyonic excitations because of the gauge-doublet eigenmo
the net degeneracy of the resulting dyon is 4324526 for
each electric charge, where we take into account the e
degeneracy of 24 because of the four fermionic zero mod
from SU~2! triplets. The spin content of each dyon multipl
is that of twoN54 vector multiplets~from fermionic eigen-
modes! plus a tensor product of a spin doublet and oneN
54 vector multiplet~from bosonic eigenmodes!. This is pre-
cisely the 1/4-BPS multiplet of highest spin 3/2. The fo
types of 1/4-BPS dyons correspond to the four differ
string configurations depicted in Fig. 2.

Some discussion is due on the validity of the approxim
tion. Note that the expansion of the BPS mass formula p
ceeds with the assumption

QM@QEsina@
~QEcosa!2

QM
, ~5.14!

which is obtained by expanding the BPS bound. It is cl
from the subleading contributions to dyon energies that th
criteria are necessary for a successful match between
BPS mass and the energy found from the eigenmode an
sis. The first condition simply says that the excitation ene
should be much smaller that the mass of the bare sol
itself, and is to be expected. What does the second cond
do?

The present approximation takes into account only par
the backreactions. It does address the change in long-r
electric fields in response to the excitation, but ignored

FIG. 2. Four different minimal dyonic states of magnetic cha
a1b. Electric charges are, respectively,~a! a, ~b! 2a, ~c! b, and
~d! 2b. For a match with standard notations in string theory,
relabeled the unitD string by (0,1), instead of (0,4p) in this figure.
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counterpart in magnetic soliton structures. This is of cou
why we seem to obtain spherically symmetric configuratio
even though we clearly demonstrated that this should ra
happen in exact dyonic states. The consequence is tha
choice of bI is independent of the electric charge bei
turned on, such thatbI is in fact parallel toQI

M . To obtain
the correct BPS bound, in reality, the angleu betweenbI and
QI

M must be given by

tanu5
6QEcosa

QM6QEsina
.6

QEcosa

QM
, ~5.15!

where we used the first conditionQM@QEsina. The BPS
bound

bIQI
M1aIQI

E ~5.16!

then contains an error of order

du2QM6duQEcosa;
~QEcosa!2

QM
, ~5.17!

where du8[u2u85u, due to the incorrect angleu850.
Since we ignore the magnetic backreaction to the quan
excitation, we must require this error be negligible agai
the first order estimate, which explains the second condit
It also explains why we do not find the phenomenon of
stability in the present setup. Bergman’s criteria tells us t
it occurs when (QEcosa)2 is comparable toQMQEsina,
where the magnetic backreaction to the quantum excitat
are of a first order effect, instead of being a second or
effect. Instability cannot be probed without taking into a
count the reaction of magnetic solitons to the quantum e
tation. In this sense, the two constructions we gave are c
plimentary to each other; the first gave us the understand
of the dynamics while the second is better suited for st
counting.

VI. DEGENERACY AND SUPERMULTIPLET STRUCTURE
OF DYONS

In the previous section, we saw how the supermultiplet
degeneracy 26 arises in the case of minimally charged BP
states. The method we developed is applicable for 1/4-B
states with higher electric charges, and we will summar
the general supermultiplet structure. Let us parametrize
quantized electric charge by writing

q5qaa1qbb5
k

2
~b2a!

1
m

2
~a1b! ~6.1!

with integersk andm. Consistent quantization requires th
m be odd~even! whenever k is odd~even!. The relative
charge of the system is given byDq5(qb2qa)/25k/2. The
integerk corresponds to the number of excited eigenmo
while m/2 is the momentum along an internal U~1! angle of

e

5-9
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KIMYEONG LEE AND PILJIN YI PHYSICAL REVIEW D 58 066005
the magnetic solitons. The case of no relative electric cha
Dq50 corresponds to the usual BPS dyon that breaks ha
the supersymmetry, which comes in anN54 vector multip-
let. The case ofDq561/2 was addressed in the previo
section. The supermultiplet structure found there can be s
marized in terms of the eigenvalues under one of the ang
momentum operators,J3,

J3 3/2 1 1/2 0 21/2 21 23/2
Degeneracy 1 6 15 20 15 6 1

The total degeneracy is 26, which, for 1/4-BPS state, is th
smallest while being also consistent with supersymme
Call this multipletG0. This multiplet can be seen as a tens
product between theN54 vector multiplet with aN51 chi-
ral multiplet.

Higher charged states withuDqu>1 is obtained by excit-
ing appropriate eigenmodesk52uDqu times. Given a fixed
electric charge, there are always two bosonic and two fer
onic eigenmodes at disposal. There arek11 states where no
fermionic modes are excited, 2k states where one fermioni
modes are excited, andk21 states where both fermioni
modes are excited. Combining the degeneracy from four
mion zero modes of the center of mass motion, we then
the total degeneracy of 4k32454(2uDqu)3245(2uDqu)
326. For detailed spin content, we only need to recall t
24 has the vector structure and that bosonic excitations c
an extra spin of61/2. The result is the sum of 2uDqu tables
identical to the above, except thatJ3 eigenvalues are shifted

J32S 3/2 1 1/2 0 21/2 21 23/2
Degeneracy 1 6 15 20 15 6 1

with S ranging from2uDqu11/2 to uDqu21/2 in step 1. The
resulting supermultiplet has a tensor product structureG0
^ @ uDqu21/2# where we denoted by@ uDqu21/2# the spin
uDqu21/2 representation of the angular momentum. T
highest spin of such a multiplet isuDqu11. From construc-
tion, it is easy to see thatuDqu of this arises from bosonic
excitations. The only fermionic contribution comes from t
four fermionic zero modes, which tops out at 1.

This bosonic spin has a rather interesting explanation
the context of classical dyonic configurations in Sec.
Consider the limit of large Higgs VEV’s. In this limit, the
solution degenerates to a pair of pointlike dyons ofa andb
types, each carrying electric chargesqa and qb . The con-
served angular momentum is known to contain an anoma
contribution in this situation,

J5L1
gDq

4p
R̂, ~6.2!

proportional to the relative electric chargeDq5(qb2qa)/2
@18#. The unit vectorR̂ points froma dyon tob dyon. With
the unit magnetic chargesg54p the anomalous angular mo
mentum is exactlyuDqu, as expected.@We fully expect that a
classical field theoretic calculation of the anomalous ang
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momentum for the 1/4-BPS configurations will reproduce
answer~6.2! obtained in the pointlike dyon limit. See Ap
pendix E for a simple expression for the angular mom
tum.#

VII. CONCLUSIONS

In this paper we explored 1/4-BPS states inN54 super-
symmetric theories that correspond to three-pronged str
ending onD3-branes in Type IIB string theory. 1/4-BP
configurations typically consist of two~or more! dyonic
cores, which are positioned so that static electromagn
force is perfectly balanced against the scalar Higgs for
The marginal instability previously found in the string pi
ture is shown to arise from the excessive repulsion fr
either electromagnetic or Higgs interaction. An alterna
construction using the finite energy excitations around pur
magnetic solitons also revealed supermultiplet structure
1/4-BPS states with arbitrary relative electric charge. T
degeneracy and the highest spin in the supermultiplets g
linearly with the relative charge. In the minimal cases, t
multiplet has the degeneracy of 26 with the highest spin 3/2.

In principle, the question of degeneracy and supermul
let structures can also be addressed by considering low
ergy quantum mechanics of the classical 1/4-BPS solu
we found. This would necessarily involve zero-mode ana
sis of these nonspherical solitons, which we did not attem

Our constructions can be generalized to the case of m
tipronged string configurations in larger gauge groups. In
small coupling limit, the same eigenmode analysis sho
produce the dyonic states of higher magnetic and elec
charges. Also classically, one can distribute many monop
in the background, and solve for possible electric configu
tions. We expect to find multidyon configurations hung t
gether by the delicate balance of static forces. We should
able to exploit the ADHMN formalism as in this work t
explore these field configurations. One interesting case
when the gauge symmetry is partially restored as in R
@19#. For solutions whose net magnetic charge is Abelian,
configuration typically consists of massive magnetic co
surrounded by non-Abelian magnetic clouds. It would be
teresting to see if any new physics arises by conside
1/4-BPS versions of such non-Abelian configurations.

While we considered onlyN54 theories so far, it is clea
that the methods developed here can be applied toN52
theories with minimal modifications.N52 supersymmetry
algebra possesses half the supersymmetry generators
also only one central charge, so we naturally expect the s
trum be qualitatively different. This is quite apparent fro
the point of view adopted in Sec. V, since reducing sup
symmetry involves removing one of the two adjoint Dira
spinors. In fact, there appears to be no guarantee that
present constructions produce proper 1/2-BPS states. It
in general depend on the particular electromagnetic char
Higgs VEV’s, and other details of the theory. We are cu
rently exploring some of the issues. As this work was be
completed, two related papers@20,21# have appeared.
5-10
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APPENDIX A: THE ADHM FORMALISM

The ADHM formalism@9# for k instantons of the SU~n!
gauge theory starts with a (n12k)32k matrix

D5S ln32k

m2k32k
D 1S 0

I 2k32k
D x, ~A1!

where x5xaea and ea5( is j ,1) @9#. Finding the (n12k)
3n matrix v such that

D†v50, v†v5I n3n , ~A2!

we can construct the anti-Hermitian gauge field

Aa5v†]av. ~A3!

The condition for the field strength to be self-dual is that

~D†D!2k32k5 f k3k
21 I 232 . ~A4!

This implies thatm5maea with Hermitian matrices (ma)k3k
and that

ihab
i @ma ,mb#1tr2~s il†l!50, ~A5!

whereea
†eb5dab1 ihab

i s i with anti-self-dual ’t Hooft ten-
sor hab

i . The inversek3k matrix f satisfies equation

H ~ma1xa!21
1

2
tr2l†lJ f 5I k3k . ~A6!

We can choosev such that

v ~n12k!3n5S I n3n

u2k3n
DN2 1/2, ~A7!

where N511u†u is an n3n Hermitian matrix @15#. The
ADHM equation becomes

~m†1x†!u1l†50. ~A8!

The gauge field becomes

Aa5N 1/2~u†]au!N21/21N1/2]aN21/2. ~A9!

The self-dual field strength is then given by

Fab52iN2 1/2u†f h̄abuN2 1/2, ~A10!

where eaeb
†5dab1 i h̄ab , where h̄ab is the self-dual ’t

Hooft tensor.
The construction has redundancy,

l→lU, m→U†mU, u→U†u, ~A11!
06600
,
.
-
e

whereU belongs toU(k). The number of parameters ofma
andl are

ma :4k2, l:4nk. ~A12!

The number of the conditions~A5! are 3k2 and the number
of U(k) elements isk2. Thus the net number of independe
variables fork instantons in SU(n) is

4k214nk23k22k254nk. ~A13!

APPENDIX B: THE NAHM FORMALISM OF CALORONS

We consider instanton solutions onR33S1 with a non-
trivial Wilson loop, which can be regarded as the infin
number of instantons which is quasiperiodic alongx4 axis
@14,11,15#. We analyze these calorons by extending t
method in Ref.@15# to the case of the SU(n) gauge group,
along the way, by connecting to the Nahm’s formalism@10#.
We choose the unit interval of thex4 to be@0,b# and imag-
ine the number of instantons in a given interval isk. The
ADHM matrices becomes

D~x!5S l l

m l l 8
D 1S 0

xd l l 8
D , ~B1!

where l ,l 8 are integers. Herem l l 8 for eachl l 8 is a 2k32k
matrix andl l for eachl is a 2k3n matrix.

We consider the gauge field to be quasiperiodic so th

Aa~x,x41b!5eibh•HAa~x,x4!e2 ibh•H. ~B2!

This is equivalent to considering the periodic field config
rations with the asymptotic value at spatial infinity to be

^Aa&5 ih•Hda4 . ~B3!

Note thath•H5(a51
nhaPa such that(aha50 with Pa be-

ing the projection operator to thea component of any
n-dimensional vector. We can choose the gauge so that

h1,h2, . . . ,hn,h11
2p

b
. ~B4!

The condition~B2! can be satisfied if

ul~x,x41b!5ul 21~x,x4!e2 ibh•H, ~B5!

which in turn can be satisfied if

l l
†5l l 21

† e2 ibh•H, ~B6!

m l l 85m~ l 21!~ l 821!2be4d l l 8 . ~B7!

These relations lead to

l l
†5l0

†e2 ib lh•H, ~B8!

m l l 8
a

5Tll 8
a

2 lbda4d l l 8 , ~B9!
5-11
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such that Tll 8
a

5T( l 21)(l 821)
a . Note that (D†D) l l 8(x41b)

5(D†D)( l 21)(l 821)(x4) and so f l l 8(x41b)
5 f ( l 21)(l 821)(x4).

We introduce the Fourier transformation of these ma
ces:

l†~ t !5(
l

eibt ll l
† , ~B10!

Ta~ t !5(
l

eibt lTl0
a , ~B11!

u~ t !5A b

2p(
l

eibt lul , ~B12!

f ~ t,t8!5
b

2p(
l l 8

eibt l f l l 8e
2 ibt8 l 8. ~B13!

Note thatTa(t) is the Hermitiank3k matrix and periodic
undert→t12p/b, l†(t) is 2k3n and periodic, andu(t) is
n32k and periodic. The functionf (t,t8) is periodic under
shift of t,t8 with 2p/b.

Furthermore, from Eqs.~B8! and ~B10!, we get

l†~ t !5
2p

b
l0

†(
a

d~ t2ha!Pa . ~B14!

From the property thatu(t,x41b)5u(t,x4)eib(t2h•H), we
can introduce

u* ~ t;x,x4!5u~ t;x,x4!e2 ix4~ t2h•H!, ~B15!

such that u* (t12p/b)5u* (t)ei2px4 /b and u* (x41b)
5u* (x4).

In the Fourier functions, the consistent condition~A5! be-
comes the Nahm equation for a caloron@13,14#,

] tTi2 i @T4 ,Ti #5
i

2
e i jk@Tj ,Tk#1

1

2
tr2s iw

†(
a

d~ t2ha!

3Paw, ~B16!

wherew5A2p/bl0. The ADHMN equation~A8! for u(t)
becomes

@e4
†~ i ] t1T41x4!1ei

†~Ti1xi !#u~ t !1w†(
a

d~ t2ha!

3Pa50. ~B17!

In terms of the quasiperiodicu* (t), the above equation be
comes

@ i ] t1T42 is i~Ti1xi !#u* ~ t !1w†(
a

d~ t2ha!Pa50.

~B18!

This is the standard Nahm equation for magnetic monop
@10#.
06600
-

s

In this process the normalization factorN21/2 becomes

N2 1/25eih•Hx4N
*
2 1/2e2 ih•Hx4, ~B19!

where N* 511*0
2p/bdtu

*
† u* is single valued underx4

→x41b. After singular gauge transformationeih•Hx4, the
gauge field becomes single valued and is given by

A* 45N
*
21/2 i(

a
haPaN

*
21/2

1N
*
21/2E

0

2p/b

dt itu
*
† ~ t !u* ~ t !N

*
21/2,

A* i5N
*
21/2] iN*

21/21N
*
21/2E

0

2p/b

dtu
*
† ~ t !] i„u* ~ t !N

*
21/2

… ,

~B20!

which is the standard form of the Nahm construction for t
self-dual magnetic monopoles@10#.

We redefine the Green function f * (t,t;x4)
5e2 ix4t f (t,t8;x4)eix4t8, which is single valued inx4 but
multi valued int. It satisfies

~ i ] t1T4!2f * 1~Ti1xi !
2f * 1

1

2
W~ t ! f * 5d~ t2t8!,

~B21!

where

W~ t !5trw†Sad~ t2ha!Paw. ~B22!

The single-valued self-dual field strength becomes

F* ab5N
*
21/2H E dtdt8u

*
† ~ t ! f * ~ t,t8!h̄abu* ~ t8!J N

*
21/2.

~B23!

APPENDIX C: THE ADJOINT SCALAR FIELD

The general method to find the solution of the covaria
Laplacian for a scalar field in the adjoint representation
been developed in the instanton background@12#. We start
with a general form

F~x!5v†Qv, ~C1!

whereQ is an Hermitian (n12k)3(n12k) matrix. We as-
sume thatQ is independent ofx and takes the ansatz

Q5S qn3n 0

0 pk3kI 232
D . ~C2!

Using the fact that the projection operatorP5vv†5I
2D f D†, one can show that

Da
2F54N21/2u†f F tr2S l†ql2

1

2
$l†l,p% D

2@ma ,@ma ,p##G f uN21/2, ~C3!
5-12
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where tr2 is a trace over a two-dimensional part of the m
trices. With two Hermitiank3k matrices,

W5tr2l†l,L5tr2l†ql, ~C4!

the condition for the scalar field to satisfy the covaria
Laplace equationDa

2F50 becomes a condition on the m
trix p,

2@ma ,@ma ,p##2
1

2
$W,p%1L50. ~C5!

Note that the above equation determinesp for a given infini-
tesimal generatorq of SU(n). Especially whenq5I n3n , we
can seep5I k3k solves the above equation.

For similar scalar fields in any caloron background,
extend the method described in Appendix B. We genera
Eq. ~C2! to an infinite dimensional matrix, and then the an
ogy of Eq.~C1! would be

F5N21/2qN21/21N21/2ul
†pll 8ul 8N

21/2. ~C6!

Similar to the gauge field, the adjoint Higgs scalar fie
should satisfy the quasiperiodic conditionF(x,x41b)
5eibh•HF(x,x4)e2 ibh•H. Thus the above ansatz is consiste
with Eq. ~B19! only if

@h•H,q#50. ~C7!

This equation implies that there are onlyn21 independent
q’s when the gauge symmetry is maximally broken or allha
are different.

To consider the similar solution around magnetic mon
poles, we again Fourier transformp matrix,

p~ t !5(
l

eibt l pl0 . ~C8!

Then, we can reexpress Eq.~C5! as an ordinary differentia
equation fork3k Hermitian matrixp(t),

@] t2 iT4 ,@] t2 iT4 ,p~ t !##2@Ti~ t !,@Ti~ t !,p~ t !##

2
1

2
$W~ t !,p~ t !%1L~ t !50, ~C9!

where W(t)5tr2w†(ad(t2ha)Paw and L(t)5tr2w†(ad(t
2ha)Paqw. For such a solutionp(t), after a gauge transfor
mation bye2 ix4h•H, the single-valued solution of adjoint sca
lar Laplace equation is given by

F* 5N
*
21/2qN

*
21/21N

*
21/2E

0

2p/b

dtu
*
† ~ t !p~ t !u* ~ t !N

*
21/2.

~C10!

APPENDIX D: THE SU „3… CASE

We first consider the Nahm data for three monopoles
make a single instanton onR33S1, or a caloron@13–15#. As
shown in Appendix B, the Nahm equation is defined ov
three auxiliary time intervals, @ t1 ,t2#,@ t2 ,t3#,@ t3 ,t1
06600
-

t

e
-

t

-

at

r

1 (2p)/b#, whereb is the circumference ofS1. The Nahm
equation is almost trivial and the Nahm data gives the po
tion vectors of magnetic monopoles as follows:

T152xa5~0,0,R!,tP~ t1 ,t2!,

T252xb5~0,0,0!,tP~ t2 ,t3!, ~D1!

T352x35~0,0,2K !,tPS t3 ,t11
2p

b D ,

wherexa andxb are the positions ofa andb monopoles, and
x3 is the position of the third monopole. For convenience,
put the third monopole at thez axis and later on take it to
infinity by pushingK→`. The distance betweena and b
monopoles areR. The jumping condition~B16! satisfied by
this Nahm data is as follows:

w1
†5S A2~K1R!

0
D ,

w2
†5S 0

A2R
D , ~D2!

w3
†5S 0

A2K
D .

Then one can find theAi ,bf field configurations by the
ADHMN method, as explored in detail in Refs.@11,14#

For given solutions of the corresponding ADHMN equ
tion, there exists a general method to find the solution of
covariant four-dimensional Laplacian satisfied by the adjo
Higgs field, as summarized in Appendix C. For a single c
oron as in our case, we need to find a continuous and p
odic function p(t) on @ t1 ,t11 (2p)/b#, for a given
qPSU~3! which commutes with the asymptotic Higgs valu
h•H. The differential equation~C9! for the periodicp(t) in
our context is given by

] t
2p~ t !22~K1D !„p~ t !2q1…d~ t2h1!

22D„p~ t !2q2…d~ t2h2!22K„p~ t !2q3…d~ t2h3!50,

~D3!

where q5diag(q1 ,q2 ,q3) and q11q21q350. This equa-
tion is very simple to solve, especially in the limit whereK
→`.

There are two independentq matrices:

qT5diag~h1 ,h2 ,h3!,

qR5diag~m2 ,2m22m1 ,m1!, ~D4!

wherem25h32h2 andm15h22h1, so that trqTqR50. For
eachq, there exists a correspondingp(t). Especially in the
relevant intervaltP@h1 ,h3#, for qT ,

pT5t. ~D5!
5-13
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For qR ,

pR~ t !5S p1~ t2h2!1c, tP@h1 ,h2#

p2~ t2h2!1c, tP@h2 ,h3#
D , ~D6!

where

c5h21
1

2R
~p22p1!,

p15
m12m222~m112m2!m2R

m11m212m1m2R
, ~D7!

p25
m12m212~2m11m2!m1R

m11m212m1m2R
.

The pT can be a regarded case wherep15p251.
06600
Following the ADHMN method of thebf field closely,
as explored in Ref.@11#, we can solve easily the ADHMN
equations~B18! for a given Nahm data~D1! and ~D2!. Es-
pecially one can see easily that the solutions to the ADHM
equation for the interval@ t3 ,t11 (2p)/b# goes to zero like
1/AK, similar to the SU~2! case in Ref.@14#. Thus, there will
be no nontrivial contribution from the interval@ t3 ,t1
1 (2p)/b#. Then, we can now construct the solution of t
second BPS equation~2.23! by using Eq.~C10! of Appendix
C. From Eq.~C10! and the solution of the ADHMN equation
in Ref. @11#, we can easily construct the 333 adjoint Higgs
field which satisfies the second BPS equation~2.23!. The
solution is

L~x!5S f~1! f~3!

f~3!
† f~2!

D , ~D8!

where
f~1!5N21/2~p1KL1p2KR!N21/21cI232 ,

f~2!52RL2~0,1!~p1NL
21KLNL

211p2NR
21KRNR

21!S 0

1D 1c2
p22p1

2R
S†S, ~D9!

f~3!5N21/2~2p1KLNL
211p2KRNR

21!S 0

1DA2RL,
he
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n

tal
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ne
wherey15x2x1, y25x2x2, and

NL5
1

uy1u
sinh~m1y1!e2m1y1•s,

NR5
1

uy2u
sinh~m2y2!em2y2•s,

N5NL1NR ,

KL5
1

2y1
ŷ1•s@m1e22m1y1•s2NL#,

KR5
1

2y2
ŷ2•s@m2e2m2y2•s2NR#,

L5
1

A~y1cothm1y11y2cothm2y2!22R2
,

S†S5
y1cothm1y11y2cothm2y22R

y1cothm1y11y2cothm2y21R
. ~D10!

Whenp15p251, we have the solution corresponding to t
pT , which is of course the original Higgs fieldbf itself.

Here only useful part of this explicit solution is it
asymptotic form in the limit whereuxu@R,m1

21 ,m2
21. As in

Ref @11#, we can find the asymptotic form of this solutio
easily. In the unitary gauge, its asymptotic limit of Eq.~D8!
for qT and qR of Eq. ~D4! become Eqs.~3.5! and ~3.6! in
Sec. III.

APPENDIX E: ENERGY DENSITY AND ANGULAR
MOMENTUM

Here we want to point out that energy density and to
angular momentum become considerably simpler for
self-dual configurations. Using the self-dual equations, o
can also simplify the energy density to be
5-14
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H~x!5tr$Ei
21Bi

21~D0b•f!21~Dib•f!2

1~2 ie@a•f,b•f#!2%

5] i
2tr@~a•f!21~b•f!2#, ~E1!

where we used the result thatD0z I5 ie@a•f,z I #50.
The most general BPS solutions carry both electric a

magnetic charges and will have nonzero angular momen
in general. The angular momentum of a BPS configuratio
c
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S
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06600
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m
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Ji522E d3xe i jkxj tr$eklmElBm1D0f IDkf I%

522E d3x~xj] i2d i
j xl] l !tr~a•fD jb•f!. ~E2!

The angular momentum is a vector quantity and so sho
depend on the internal structure of the BPS configurati
While we do not pursue in the paper, we expect that b
energy density and angular momentum can be simplified
ther.
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