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Dyons in N=4 supersymmetric theories and three-pronged strings
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We construct and explore BPS states that preserve 1/4 of supersymmigtsdirY ang-Mills theories. Such
states are also realized as three-pronged strings endibBeoranes. We correct the electric part of the BPS
equation and relate its solutions to the unbroken Abelian gauge group generators. Generic 1/4-BPS solitons are
not spherically symmetric, but consist of two or more dyonic components held apart by a delicate balance
between a static electromagnetic force and scalar Higgs force. The instability previously found in three-
pronged string configurations is because of excessive repulsion by one of these static forces. We also present
an alternate construction of these 1/4-BPS states from quantum excitations around a magnetic monopole, and
build up the supermultiplet for arbitrarfguantizedl electric charges. The degeneracy and the highest spin of
the supermultiplet increase linearly with a relative electric charge. We conclude with comments.
[S0556-282(98)00118-0

PACS numbgs): 11.25.Mj, 11.30.Pb, 14.80.Hv

[. INTRODUCTION self-dual under th&L(2,Z2) U duality of the type IIB string
theory. As far as the low energy world-volume physics goes,
Among supersymmetric theories that are known to admitn practical consequence of this is that agyg) string may
a strong-weak coupling dualitify=4 D=4 supersymmetric end on theD3-brane. Hereq and g are the charges with
Yang-Mills field theories are perhaps the easiest and moskspect to the two antisymmetric tensor fieRls, andgw
straightforward to study. In its Coulomb phase, the solitonicihat five, respectively, in the Neveu-Schwarz—Neveu-
spectra are scrutinized in great detail, where a manifeschwarz(NS—N9 sector and in the Ramond-Ramond sector
strong-weak coupling duality was observed among they the type 1IB theory. With respect to the unbroken U(1)
charged Bogomol'nyi-Prasad-SommerfielBPS particles  associated with thd3-brane where aq,g) string ends,
that break exactly half of the supersymmetry. This includesyych an endpoint appears as a particlegadlectric andg
the usual BPS magnetic monopoles and standard dyonic exjagnetic charges. The familiar BP§,§) dyons of SUQ)
citations thereof whose electric charges are proportional tgheory corresponds to a straight, ) string segment that
the magnetic charge. These BPS monopoles and dyons bregknects a pair ob3-branes.
half of N=4 supersymmetry, and duality predicts that they A novelty comes from the fact that three-pronged strings

are all in theN_=4 vector multiplet with the maximum spin gre also in the spectrum of string theory avictheory. They
1, a short multiplet of degenerqcy‘%la _ can be used to connect a set of thi28-branes. The three
There are, however, other kinds of supersymmetric stategegments that meet at a single junction must have different
that break 3/4 of supersymmetry. Such states would come iy, g)’s to preserve some supersymmeidy4], so the result-
an intermediate multiplet that contains spin 3/2 or higher. ling BPS state has its electric charge not proportional to its
is only very recently that their properties have been exploredmagnetic charge. Typically, it will break 3/4 of thé=4
Most notable is a work by Bergmali] who constructed supersymmetry.We will use the phrase “1/4-BPS state” to
such dyons as three-pronged strings that end on three paralldistinguish from the usual BPS states that break only half of
D3-branes. Here, we recapitulate this construction. the supersymmetry. For instance, suppose that we have
Recall thatN=4, D=4, U(n)=SU(n)xU(1) Yang- SU(n) broken down to U(1)"*. Pick a pair of rootsx and
Mills theory is a world-volume theory ofn parallel B with &?=g?=1 and a- B=—1/2. A state of magnetic
D3-branes[2]. The Coulomb phase of the W(—U(1)" chargema+ mg and of electric chargea would then be 1/4
theory is parametrized by six adjoint Higgs expectationsBPS.
whose @ eigenvalues encode the positions of tine Now the question is how these 1/4-BPS states are realized
D3-branes in the internal paf®® of the spacetimeR®  on the field theory side. One might be tempted to look for a
xXR3*1 One special feature of thB3-brane is that it is

IThree-pronged strings can also generate BPS statés i theo-
*Electronic address: klee@phys.columbia.edu ries [5]. In such cases, they actually break only half of the super-
TElectronic address: pilin@mail.Ins.cornell.edu symmetry.
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spherically symmetric soliton. In fact, very recently, a spe-dyonic configuration of magnetic charga+ 8 is con-

cial class of 1/4-BPS states in SU(3) theory was found in atructed, from which we extract the relationship between
spherically symmetric ansaf®]. In terms of roots, these Higgs VEV's, electric charges, and the separation leriRyth
BPS configurations carry magnetic charge ef22. How-  Important but technical details involve Atiyah-Drinfeld-
ever, as will become clear in later sections, the existence dflitchin-Mannin-Nahm(ADHMN) construction, which we
these solutions is quite accidental and fails to illuminate howput in the appendixes. We digress in Sec. IV, and compare
the general 1/4-BPS dyons are constructed in the field theonhe field theory results to those frof-brane and three-
language. One severe problem is that if their electric charggronged string picture. The instability bound is compared
is, say, of the formga, the real numbérq is determined with that from the string construction, and a perfect fit is
uniquely by the HigggVEV'’s). (In the spherically symmet- found.

ric case of the total magnetic charge; B, for instanceq In Sec. V, we present an alternate construction of the
has to vanish for all VEV'S. Because of this, at generic 1/4-BPS dyons via exciting compactly supported eigen-
points of vacuum moduli space, BPS configurations of amodes around spherically symmetric monopoles of magnetic
properly quantized electric chargg<integer) cannot be re- charge a+ 8. The correct supermultiplet structure of
alized as a spherically symmetric classical soliton. 1/4-BPS states are shown to be reproduced, after a careful

In general, we expect the BPS configurations to be of aronsideration of low energy eigenmodes. The approxima-
elongated shape. Roughly speaking, it will consist of a paition, however, ignores some backreaction of the bosonic
of dyonic cores that are bound but separated by some diackground to the excitation of these eigenmodes, which
tanceR. This is because of a delicate balance between thputs a stringent criteria on the validity of the construction.
static electromagnetic force and scalar Higgs fofBee Sec. Because of this, in particular, it is impossible to see the in-
lll.) Once we realize this, it is almost obvious that thestability in this second picture. In Sec. VI, we use this con-
amount of electric charge has to depend on the separ@tion struction to build up the supermultiplet structure of dyons of
as well as Higgs VEV’s, what one misses by insisting thearbitrary quantized electric charge. Finally in Sec. VII, we
spherical symmetry is this extra parameferWith this pic-  conclude with comments on unresolved issues.
ture in mind, it is now clear that a BPS configuration of
given electric and magnetic charges will have some definite
length R that parametrizes the deviation from the spherical
symmetry.

This begs for another question: what happens in the limit
of R—? Since it is the electromagnetic force and Higgs Since the electric part of the BPS equations we found is
interaction that separates the two dyonic cores, a change in different from what is commonly knowfi7], we will red-
implies a change in electric charge. Rt—, the electric  erive the BPS energy bound and equations from scratch.
charge of the 1/4-BPS state reaches a limiting value. In alAlso there are several interesting new comments to be made
cases we consider, the charge will actually reach its maxiabout the BPS field configurations. We start by considering
mum possible value. Trying to put an even larger electricthe bosonic Lagrangian of thé=4 supersymmetric Yang-
charge will result in an instability and cause the two cores tavills theories. With the gauge group Sk)(with Hermitian
fly away from each other. The upper bound on the electrigyeneratorsT® in the n dimensional representation with the
charge can be also translated into a lower bound on a linegformalization tT2T?= §2/2, we introduce the gauge field
combination of Higgs VEV’s with any given electric charge, AﬂzAiTa and six Higgs fieldsp, = ¢2T2, 1=1,...,6. The
in which form the instability was found in the three-prongedpgosonic Lagrangian density is
string configuration in Refl.1].

The paper is organized as follows. In Sec. Il, we derive
the BPS bound of the energy functional and write down the
complete set of equations that 1/4-BPS dyons must satisfy.

This corrects and generalizes those in Réf. The magnetic L=tr] — EF FA"4+ D, ¢ D e

part of the equations are unaffected by the electric part. 2 K w '

Given any purely magnetic BPS solutions, the electric part is

determined by solving a singl®ur-dimensionalcovariant

Laplace equation of an adjoint scalar. The existence of its 12 _ )

solutions is tied to the existence of(1) gauge zero-modes - Z;l (—iel¢, 3D, 2.9
of the purely magnetic soliton, which completes the exis- '

tence proof of all the expected 1/4-BPS dyonic states corre-

sponding to three-pronged strings. In Sec. lll, we take the

specific example of S(3) broken to U(1¥. The 1/4-BPS whereD ,¢,=d, ¢ —ie[A,, b ].

Il. BPS ENERGY BOUND AND EQUATIONS

%Recall the electric charge is not quantized in classical dyon so-
lutions, unlike the magnetic charge which is quantized topologi-
cally. The energy density is

A. BPS bound
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H:tr((Ei)2+(Bi)2+(DO¢I)2+(Di¢I)2+IZJ (—ie[ ¢, 1¢J])2)

=tr

(aEj+bB;— Di¢>|)2“‘(Do<f’|)2+|2J (—ie[ ¢, -¢J])2]

+2 tr{EiDia-¢+BiDib~¢}, (22)

wherea, ,b, are two arbitrary six-dimensional unit vectors orthogonal to botha, andb,. We split the energy density
orthogonal to each othea- ¢=a,¢, andb- p=b,¢,. The from the scalar fields into two parts,
cross terms can be rewritten as

trB;D;b- p=a,(trb- #B;) (2.3 (Doa- ¢)*+(Dob- ¢)*+(—ie[a-¢,b-¢])% (2.6
trE;Dja- p=0d;(tra- ¢E;) —ietr(Dogy[a- ¢, ¢ 1), and
(2.4

Do)+ (—ie[a- ¢, )2+ (—ie[b-¢,¢;])?
where we used the Bianchi identiy;B;=0 and the Gauss (Do) [ &, L)+ [b-.L50)

law, )
W > (—iel4. )2 2.7
DiEi—ie[ ¢ ,Doh]1=0. (2.5 =)

Denote collectively by, , the components o, which are  then complete the squares in the energy density as,

H=tr{(E;—D;a- ¢)°+(B;—D;b- $)*+(Doa- ¢)*+(Dob- ¢p—ie[a- ¢,b- ¢])%}

+1tr{ (Dog —ie[a- ¢,¢1)2+ (D) 3+ (—ie[b- ¢,{3]) %+ IZJ (—ie[¢,40)?

+2ﬁitr{a'¢Ei+b'¢Bi}. (28)

Every term except those in the last line is non-negative, s@&ssuming this, letx be the angle betwee!@l"" andQF, and
the total energy is bounded by the contribution from theg the one betweeh, andQ!" . The extrema occur if and only

latter: if
M_ E
5=f d3xH=Max(a,QE+b,QM), (2.9 =aQr=bQr, (212
which can be translated to an equivalent condition
with
tand +Q com (2.13
anj= ——— . .
QFZZJ d®xd;(trep E;), (2.10 QM+ QFsina

QM and QF are the magnitude of vectof3 andQF. The
Q,M=2f d3xa;(tre B;). (2.11) two positive extrema are the two central terms\bf 4 su-
persymmetry algebra,

One most stringent bound must be found by varyenagnd
b, and achieving the maximum. The quantit@§ and Q)"
can be evaluated by converting to boundary integrals, and

Z.=J(Q")?+(QF)?x2Q"Q sine.  (2.19

clearly depends on the asymptotics only. The true BPS bound fdN=4 theory is then
The expressiora,Q,E+ b,Q{V' is maximized only if the
two unit vectors lie on the plane spanned QV’ and QlE. E=Max(Z,,Z_). (2.15
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B. BPS equations in generid\ =4 vacua only in the said irreducible blo¢k). Thus ¢, should also

The BPS bound is saturated when every bulk term in th&ommute witha- ¢. With such expectation valugy’s, Eq.
energy density vanishes, from which we obtain a total oft2-21 reduces to
eight sets of equations. The first part is the most familiar,

J q P DiDia ¢=e’b-p[b-da 4ll. (223

This is a four-dimensional covariant Laplacian for an adjoint

This is the usual BPS equation that admits magnetic moncscalar field, provided that we identify,= —ieb- ¢. A more
pole solutions. Note that this magnetic equation can béestricted version of this equation, where one assumes
solved independently, regardless of the remaining equationkP: ¢.a- ¢#]=0 as well, has appeared and been used in ex-
The other BPS equations influence only the choice of thdSting literatures[7,6]. Thus, we find two sets of relevant
unit vectorb, . This fact is of crucial importance when we BPS equations, given by E.16 and(2.23, that must be

construct the BPS solution later. solved to produce classical 1/4-BPS configuratigS8gse Ap-
The second electric part is made of several equations Pendix E for a discussion about the energy density of BPS
configurations.
Ei=D;a- ¢, (2.17

C. Dyons and the scalar BPS equation
Doa- ¢=0, 2.1 ) . . .
0d- ¢ 218 The general configuration will have both magnetic and

Dob- b= —ie[b- b,a- &]. (2.19 electric charges. Along, say, z axis, the asymptotic behav-
0 ’ ior of the Higgs fields will be
Using the latter two, we reduce the Gauss &) to

g-H
DiE=€[b-,[b- .2 $11+€,.[4; 2 $]]. D= (229
(2.20
H
Combining this with Eq.(2.17) into a single second order a-p=a- ¢p(»)— q_ (2.25
linear differential equation, we find that 4t
D,D;a- ¢p=€’[b- ¢,[b- p,a- d]]+eq ¢, .[¢ .a- &]], Then—1 dimensional vectorg andq are the magnetic and

2.21) the electric charge, respectively, white generates the Car-
' tan subalgbra of SWY).
which is a linear equation faai- ¢» once(,’s are given. We need to solve the first order equatithl16 and the
So far we have not required that the spatial gauge Aeld second order equatiof2.23. The first order equation is the
be time independent. If we choose such a gauge, one seegll-understood BPS equation for monopol&. Let the
easily that Eq(2.17) is solved by vacuum expectation values of the Higgs be such that

Ag=—a- . (2.22 b-¢(»)=h-H=diaghy,h,,....h)), (2.2

In this gaugeDo¢,—ie[a- ¢,{;1=dp¢;=0, which requires wheré 3,h,=0 and h;<h,<...<h,. The magnetic

¢, to be time independent. Othgr equations require them to charge of any BPS configuration should satisfy the topologi-
be covariantly constant};Z,=0), commute withb- ¢, and  cal quantization

also commute among themselves. In the unitary gauge where

b- ¢ is diagonal, the’s are all diagonal, constant, and uni- "“lag T

form, and also commute with th&’s. The latter condition g szl = B H=—diag =1yl =151
implies that each, is proportional to the identity in each

irreducible blocks) spanned by nontrivial parts of the con- =z, ... 0hq) (2.27

figurationsA; andb- ¢.2 If one thinks of the magnetic solu-
tion to Eq.(2.16 as embedded along a subgroup of the origi-with non-negative integers . One interprets such configu-
nal gauge group, then the expectation valys must be rations as being made of-1 species of fundamental mono-
invariant under such a subgroup. poles, wherd, is the number of theth fundamental mono-
Now Eg. (2.2)) is a zero-eigenvalue problem of a non- pole associated with the simple roBt. The conditions on
negative operator acting am ¢ linearly. Under the bound- the diagonak,’s can be translated quite easily now. Generi-
ary condition thag - ¢(o) should commute with the asymp- cally, {, must have vanishing inner products with @}
totics ofb- ¢ and{,, its solutions have nontrival behaviors wheneverl,#0. The only exception is when a consecutive

3If we were considering more general configurations with many “These quantitied; can be thought of as projected coordinate
three-pronged strings connected to form a string web, this wouldralues of then D3-brane positions along th® direction. Thus, the
translate to the requirement that the BPS string web be planar in thgauge symmetry could be still broken even when soméh;tf
internal spacez®. coincide.
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chain of B, is such that,=- - - =1, and the corresponding  If we let b-¢() be equal to diad(s,h,,hs) with h;
monopoles are “coincident.” In that casé, must have a <h,<h; andh;+h,+h;=0, the two fundamental mono-

vanishing inner product wittE'=5*'8, but not necessarily Poles would have magnetic charges

with individual B,, ... , Bi+s- _ o
The second-order BPS equatit?23 is to be solved in 4ma-H=2mdiag —1,+1,0), 3.1
the background of purely magnetic solutions 4mB-H=2mdiag0,—1,+1) 3.2

=D;(b- ¢). While we will come back to actual solutions for

specific examples in the next section, it is important to noteye will label these monopoles by their charge vector in root
that the existence of the solution is already well establishedspace,a and 8. Throughout the rest of the paper, we will
In fact, we know the exact number of linearly independentconsider 1/4-BPS configurations with magnetic charges of

solutions. This is because any gauge zero mode of a BPg+ g. Accordingly, the asymptotic behavior bf ¢ would
monopole solution is automatically a solution to Eg.23. be

Recall that the conventional way of finding zero-modes of
BPS monopoles is to pertulyy =D;P and impose the back- . (at+tpB)-H
ground gaugeD;sA;=ie[®,5D] [8]. For a gauge zero- b-¢=diaghy,h;y,hg) = ————. 3.3
mode, say, generated by a gauge functionthe linearized
BPS equations are always satisfied since Wtland D;® From the work of Weinber{8], we learn that the separation
are gauge covariant. Only the gauge-fixing condition is nonbetween the two monopole cores is an arbitrary parameter,
trivial, which we denote byR. R uniquely determine#\; andb- ¢
up to an overall position, spatial orientation, and internal
D;sA=ie[®,50]=D;D;A=e¥®,[®,A]]. (2.28  gauge angles. The explicit form of the field configuration can
be obtained in principle from the ADHMN formalisf®,10].
Inserting the solution tdB;=D;(b- ¢) as the background The latter is summarized in Appendixes A and B. Recently,
field, and replacing\ by a- ¢, we realize that this is identi- \Weinberg and one of the authof®.Y.) have found the ex-
cal to Eq.(2.23). The number of solutions to this covariant p|icit Ai andb- ¢ Configuration for these two monop0|es by
Laplace equation must equal the number of unbrokéh) U exploring the Nahm’s formalisril1].
generators that act nontrivially on the monopole solution. Now the difficult part is to solve the covariant Laplace

There must be at least one and at mostl. equation:
Where is the electric charge located? When magnetic
monopoles described by the first BPS equati@rilf are D?Az[b-q&,[b-q&,A]]. (3.9

well separated from each other, the field configuration out-

side the core region is purely Abelian and cannot carry anynce this is done, we simply take ¢ to be a linear com-
electric charge. Each fundamental monopole may carry onlpination of all possible solutiond. We know, from the ar-

its own type of electric Charge’ that |§’r m0n0p0|es can guments in the previous Section, there exist two Iinearly in-
carry only B, electric charges for any simple rog8. One dependent solutions. We already know of one such solution,
could say that generic 1/4-BPS configurations are made dfince D7(b-¢)=D;B;=0 and b-¢ obviously commutes
classically boundtwo or moré 1/2-BPS dyons. with itself. How do we find the other solution? There have

One might think that there is something odd about whateen several works on the finding the solution of the covari-
we are doing here. After all, what we mean by¢ and ant Laplacian of the adjoint Higgs field around the instanton
a- ¢ depends on what kind of electric and magnetic charge§ackground[12]. This can be generalized to the magnetic
we have, yet we seem to have fixbdeven before turning monopole background, which can be obtained as a limit of
on the electric charge. But what matters at the end of the dagn instanton orR®x S' with a nontrivial Wilson loop[13—-
is that we get a set of field configurations that solve all BPSL5]. Appendixes B and C provide a detailed discussion of the
equations simultaneously for sontg and a,. The BPS solution for the covariant four-dimensional Laplacian. Espe-
bound is a mini-max problem where one tries to obtain &cially, a single instanton in the 3B) case is made of three
most stringent lower bound for all reasonably smooth conmonopoles, two of which correspond to two simple roots and
figurations. The simple fact that a configuration saturates &ne that corresponds to one minimal negative root. This ad-
lower bound implies that the bound it saturates is actually thélitional monopole solution depends on tkecoordinate of
maximum possible for all lower bounds. In Sec. Ill, we shallS* and here we take the limit where this additional monopole
see how this is realized in a concrete way. is taken to spatial infinity.

We will refer all detailed computation of the $8) case
to Appendix D. In this section, we will simply borrow the
result and use it for the study @finquantizefi1/4-BPS con-

As an example, let us consider the @WUgauge group. figurations. Combine the Higgs expectation valuesutp
Following the strategy outlined in the previous section, we=hz—h, andu,;=h,—h;. For the SU3) case, there are two
start with a purely magnetic BPS configuration of a pair of
distinct monopoles. The configuration must solve only the
magnetic part of BPS equations, and the scalar BPS equatiorfUnless noted otherwise, we will suppress the electric coupling
will be solved in that background. constante from now on.

1. 1/4-BPS SOLITON IN THE SU (3) THEORY
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independent solutions to the covariant Laplace equationsyould carryq, electric charge and thg monopole would

since there are two unbroken(1)'s acting on the pair of

carry qg electric charge. The relative electric chargg; (

monopole solutions. We will only need their asymptotic —q,)/2 is the part of the electric charge orthogonal to the

forms, which can be read off from E¢D8).

magnetic charge and is given by

As mentioned above, the first is proportional to the Higgs

field b- ¢ itself, whose asymptotics are

i 1 1
AT:dla% hi+ 50 .h2,hs— 5), (3.5
while the second is a bit more involved
. P1
Agr=diag p,+ E,_(M1+M2)
P2—P1 P2
The real numberg, andp, are defined to be
D= M1— M= 2(pmy+2p0) uoR
! pat pot2py pupR
1~ ot 2(2uq+ po) mgR
p2= 3.7

it pot 2 paR

2 2
(ui+ papat uz)R
pat pot 2 pmaRY

Ag=8my (3.1

This is responsible for the electromagnetic repulsion, which
must be balanced against the Higgs attractitinte thatAq

is a monotonic function oR. In particular,R= 0 implies that
Ag=0 as well. When the two constituent monopoles form a
single spherically symmetric configuration, they can be 1/2
BPS but not 1/4 BPS.

As Aqg increasesR increases, and at some critical charge,
the separation diverge®—o. This of course signals that
the BPS configuration no longer exists as a single particle
state. Two solitonic cores are separated by an arbitrarily
large distance oncaq reaches its maximum possible value,

2 2
(U1t papotpy)
Agqy=4mny ’
M2

(3.12

at which point the instability sets in. While we carried out
the analysis with arbitrary electric charges, it is simply a

R is again the separation between the two monopoles, @®atter of putting particular values @ if one wishes to
naturally occurs in the standard form of monopole moduliextend the result to properly quantized dyons.

space metric or in the Nahm data.

Before closing this section, we would like to clarify how

The scalar fielda- ¢ and thusA, would be in general a @ spher_ically symmetric 1/_4-BPS dyon is possible_for higher
linear combination ofA; and Ag. Denote the respective Magnetic charges. As we just saw, the only spherically sym-

coefficients by¢ and »:

a- ¢(=)=édiag hy,hy,hg) + pdiag o, — po— pq,01)

=&h-H+29(u1B-H—poa-H). (3.9
The resulting electric charge is such that
q=0d.atdeB, (3.9
where
Qa=4m(£+ 7P1),
dp=4m(E+ 17p2). (3.10

For any nonzero separatidR, the electric charge is mis-

aligned against the magnetic charge unlgss0. ForR=0,
however, the electric charge is proportionakte 8. For any

metric solution with magnetic charge corresponding to a
root, saya+ B, is the ones that break half of the supersym-
metry. They cannot possess any relative electric charge.
However, when the magnetic charge is a double, say, 2
+ 2B the analogue of this 1/2 BPS, a purely magnetic state,
is not spherically symmetric. The situation is analogous to
having a pair of identical S(2) monopoles as close to each
other as possible, if we consider the @Uas embedded
inside SU3) along a+ B. We know from early works on
SU(2) monopoles that this configuration is cylindrically sym-
metric, and of toroidal shapgl6]. As we turn on relative
electric charges and thereby reduce the state to 1/4 BPS, all
four constituents, twar's and twog's, begin to move away
from one another and eventually become independent. It is
then conceivable that, at some specific electric charge, all
four soliton cores are separated just right so that they actu-
ally form a spherically symmetric shape. The one solution
found in Ref.[6] is an example of this phenomenon.

R, it is easy to double check that the BPS configuration in-

deed saturates the most stringent BPS bound. All one needs

to ensure is that the angle betweenQ{\" and b, is un-

IV. THREE-PRONGED STRING AND INSTABILITY

changed as the electric charge is turned on, which is in turn Let us compare the above result against the string picture.
guaranteed as Edq2.12 holds. This is always true for the For the purpose of this section, we will pretend that the

solution we obtained.

string tension is not quantized, since in the end the physics of

The resulting 1/4-BPS configuration is then composed ofnstability can be understood classically. Let us consider the

a pair of distinct monopole separated by a distaRcand on
top of which the timelike gauge potentidly;=—a- ¢ is

turned on to carry the additional electric charge whose rela- 8it would be interesting to derive this relative charge from the

tive value is completely determined . The @ monopole

consideration of the long range force law.

066005-6



DYONS IN N=4 SUPERSYMMETRIC THEORIES AN . .. PHYSICAL REVIEW D 58 066005

3 1 3 1 1, we described the case where the Higgs VEV’s change.
\Qf?\ wo .\@\ wo When the fundamental string becomes ge?rbitrarily short g:Jso
~7 e that the second 3-brane coincides with the junction at the
J@° 2 center, the string configuration is made only ofg)0and
(g,9) strings. The Higgs force is still attractive but not
@ ) strong enough compare with the repulsive force from the

FIG. 1. Configurations of three-pronged strings when they are{)resence of the relative electric charge; the system is no
(a) stable or(b) at the threshold of instability. We labeled the onger classically bound. In this limit, the angle betweéﬁ

| . .
D3-branes by numerals 1, 2, and 3 in accordance with the choice cﬁ}ni X3, must becomer — . Indeed it is not hard to show
a

2

basis in Sec. Ill.
specific configuration with thg fundamental strings and Xo1 X3z <cog 71— o) 4.9
D strings so that, in the field theoretic context, this translates [Xoal[Xad — ' '

to a magnetic chargg(a+ B) and the electric charge,a.
Take {=—p, 7 so thatq;=0 of Eq.(3.10, then the dyonic  where the equality holds precisely when Higgs VEV'’s and
solution in the previous section acquires an electric chargelectric charge are such thBt—«. Thus we find the same
along e only, instability in both string and field theory pictures.
There are other kinds of instability, for instance, when the
q=4mn(p1— P2 e (4.0 (q,9) string becomes arbitrarily short. Clearly there is no
_ static electromagnetic force between the electric and mag-
Letq=q,=4mn(p1—P2).

| he six-di ional disol h netic charges. In this case, the cause of instability in field
Let X, be the six-dimensional displacement between they,o g retical terms, turned out be due to the repulsion from the

first and the secon®3-branes, and similarly}, be the one Higgs interaction. This is the limit where;=h,—h;=0 in
between the second and the thiD@-branes. The projection he field theory, and whers}, and X} 5= X}, + X}, become

alongb, is determined by the Higgs VEY- ¢(): mutually orthogonal in the string picture.

b X5 =hy—hy, bX5=hs—hy, 4.2
V. 1/4-BPS DYONS FROM QUANTUM EXCITATIONS
and similarlya- ¢() of Eq. (3.8) determines the projection

alonga, . The vectorsQF andQ{V' are then In principle, the supermultiplet structure of the 1/4-BPS

states should be recovered from low energy quantum me-

Q|M =gX'31=g(X'32+ X'21), (4.3 chanics of the above solitonic solution. However, in this pa-
per, we will take a shortcut and ask the question of degen-
QE=gXx! (4.4) eracy by pre_sent@n_g an alte_rnate c_onstruction of the_se dypnic
: 2L states. For simplicity, we will confine the present discussion
where to the case of S(3).

We start with the spherically symmetric magnetic mono-
Xbi=(h,—hy)by— 9(2up+ m1+poui)a,, (4.5 pole solution obtained by an $2) embedding along the root
a+ B with the single nonuniform Higgb- ¢. If a- ¢ van-
X4=(Na—ho)b + (2u1+ mo—pomo)a, . (4.6  ished, the monopole would have eight bosonic and eight fer-
mionic zero modes. In a generic vacuum whéase ¢)#0,
A simple generalization of Bergman's calculation showshowever, half of these 16 zero modes are lifted and acquire
again that the energy of the string configuration coincidedinite energy. Of the remaining four bosonic zero modes,
with the field theoretic one if we identify the string tension of three correspond to translations and one is generated by glo-
(9,9) string to beqZ+g? in the field theory unit. If we bal U1) transformations. There are also four fermionic zero
quantize the systeny becomes the number of the funda- modes, the quantization of which impartshNa=4 vector
mental strings. The same consideration tells us that the angfBultiplet structure, thus the degeneracy @ the soliton.
w between the (@) string and the §,g) string as they meet A minimal 1/4-BPS state should have a degeneracy factor
at the junction is solely determined by their tension, and thu®f 2° and the highest spin 3/2. To see how such structures

by g=4 andq, arise, we need to pay close attention to those modes lifted by
(a- ¢)#0. Fermionic modes are easiest to follow. Introduce
a basis for Dirac matrices wherg is diagonal andy® is
cofm—w)= L. (4.7 off-diagonal
Vo +g? ’
0_ i 3
This anglew is depicted in Fig. 1. y=Tieos .0
The three-pronged string becomes margindily)stable K ke o
whenever any one of the strings has zero length. This hap- Y =090, (5.2
pens either because of the change of Higgs VEV’s or be-
cause of the change in electric charge and coupling. In Fig. Y=1xd?, (5.3
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with 2 by 2 Pauli matricesr'’s. Using S@6) R symmetry, and similarly forE; andE_, with a negative sign. Filling
one can bring the Dirac equation to the following form, the Dirac sea up te=0, creation(or annihilation of one of
o _ these eigenmodes will result in a quantum excitation that
YYDyt y*b-p*ia-¢lV.=eV., (5.4 costs a positive enerdy|=|3v/2.

) . o ] ] To check against the BPS mass formula, we need the
written in the time-independent form with the energy eigen-hehavior of the electric field at large distances when one of
value e. Here we used a static gauge with the purely magthese modes is turned on. From various considerations, it is
netic background solutionN=4 theory has two(adjoin)  well known that these modes from gauge doublets carry no
Dirac fermions, which together lift to a Dirac spinor in six- angular momentum. This can be surmised from the angular
dimensions. The two are of opposite six-dimensional chiraliynomentum formula,J=L +s+t, where the S(2) gauge
ties, and the subscript refers to this fact. generatorg are added to orbital and spin angular momenta.

Decomposing the Dirac spinors #=(x,#)" interms of  The solution toDy=0 with an SU2) doublety is unique
two-component  spinors, and defining an operatbr  and spherically symmetricL?=0), hence must be of the

=io*Dy+ib- ¢, the Dirac equations is rewritten as form
Dy.*[a - d,x-]=€ex=, (5.9 1 | 1 |
pox—=|Ey,S,= — 12— —=|E_z,5,=+1/2)
Dix.F[b- bipa]=ee . (5.6 V2 V2
(5.10
Recall that, given a BPS background monopole configuratio i
that satisfieB,=D,(b- ¢), the operatoD has zero modes ?rom the first doublet, and
while DT does not. Whem- ¢=0, each Dirac fermion con- 1 1
tributes four zero modes=(=0); they solveDy=0 and x Yoo ——=|Eg,5,=— 12— —|E_,,5,=+1/2),
=0. The four solutions tdDy=0 can be labeled by the NA J2
representation under the embedded@3UThe adjoint rep- (5.11)

resentation of the gauge group &YJis decomposed into a

triplet, a pair of doublet, and a singlet with respect to theffom the second. The isospin and the spin are correlated in
SU(2) embedded along+ B. The singlet is associated with Such a way tha®=(s+t)*=0. From this, we learn that the
the generatow- H— B-H, while the two doublets are asso- mode by itself carries an electric charge o{a— )/2, or
ciated with the pairs&, ,E_,) and Ez,E_,). The triplet ~ the relative charge iaq=+1/2. _ _
would contribute two zero modes, and each doublet would However, there is a well known subtlety associated with
contribute one, which accounts for all four solutionsrgg  turning on such a mode from a gauge doublet. Because it

=0. acquires a phase of 1 upon a gauge rotation corresponding
By construction of Eq.(5.4), the uniform fielda- ¢ is  tothe center of S(2), its excitation must be accompanied by
orthogonal to the total magnetic charge- 3, a half-integer momentum along an internal phase angle of
the background monopole. This leads to additional electric
a-¢=v(a-H—B-H), (5.7 charges of the formn(/2) (a+ B) for any odd integem. The

minimal states are those with= *=1. Combining this with
which has a nontrivial commutator only with isospin dou- the fermionic contribution, we find the electric charges are
blets, and even then acts on each as an multiplication by & @ or = . With two Dirac spinors¥ ., quantization then
number. Witha- ¢ # 0, therefore, those modes from the isos-leads to eight minimal dyonic excitations, which split into
pin triplets commutes witla- ¢ and survive as zero modes. four pairs of identical electric chargea, — 8, B, — a. Ex-
As mentioned above, quantization of these leads to a vectmitation energy due to the half-integer momentum2
multiplet structure of degeneracy' 2 16. ==*1/2 is of second order in the electric charge, and will not
The other four from isospinor doublets can no longer beaffect the leading approximation.
zero modes, however, and are promoted to finite energy Does the leading excitation enerlyf=|3v/2| agree with
eigenmodes of the forfil7] the general BPS mass formula? In the limit of small electric
coupling’ the central charges may be expanded as

[0
q’*:em( ,/,)- 5.9 Z. = Q"7+ (QF)°= 2Q"QFsina

_ _ o =QM=+QFsina+- - -. (5.12
The isospin doublet, two-component spingris exactly of

the same mode that solvé®/=0, and thus are normaliz- The actual BPS bound is MaZ( ,Z_), so the first order
able. They are compactly supported around the monopolgorrection due to the electric charge is

core. The energy eigenvalue equals +3v/2 for the first

doublet and+ 3v/2 for the second doublet. This is because

3 3 "We remind readers tha® has a factor ofe while QM has a
v v o )
[a-$,E,]= 5 E.. [a-$,E 4]= 5 E s (59 Lafi:;?r of 1k. We suppressed from notations in Sec. Il and there
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'\(01) w1 counterpart in magnetic soliton structures. This is of course
) 1,1y \(,) . . . . .
why we seem to obtain spherically symmetric configurations,
(1,0
(a)

happen in exact dyonic states. The consequence is that our

choice of b, is independent of the electric charge being
(b) turned on, such that, is in fact parallel toQ. To obtain

the correct BPS bound, in reality, the angl®etweerb, and

QM must be given by

- o .w’ ©.) +E E
~ x Cosy Cosy
. \/‘ fang— _ Q — ~+ Q , (513
QM+ QFsina Qwm

¢1,0) (1,0)

S8))
/( 0 even though we clearly demonstrated that this should rarely

where we used the first conditioQ™> QFsina. The BPS

() (d) bound
FIG. 2. Four different minimal dyonic states of magnetic charge M E
a+ B. Electric charges are, respective(@) a, (b) —a, (c) B, and b Q" +aQ (5.19

(d) —B. For a match with standard notations in string theory, we

relabeled the uniD string by (0,1), instead of (07) in this figure. then contains an error of order

3v 56°QM + 50QFcosu~ M (5.17
IQEsinal=|tr((a~¢>)(a-H))|=|tr((a~¢)(B-H>)|=7’, - Qv '

(5.13  where 66’=6—6'= 6, due to the incorrect anglé’'=0.
Since we ignore the magnetic backreaction to the quantum
Xcitation, we must require this error be negligible against

state is indeed 1/4 BPS. The bosonic counterpart of thi p d . hich lains th d diti
eigenmode analysis should proceed similarly, except that th e first or er estimate, whic exp ains the second con |t!on.
It also explains why we do not find the phenomenon of in-

corresponding eigenmodes will come in a pair of spin dou-_ '3~ ~ S
blets rather than four spin singlets. The final result is, thenStaPility in the present setup. Bergman's criteria tells us that

for each electric chargay, — B, B, — «, there are 22=4 ft occurs when QEcos«x)z is gomparable toQMQEsinq, .
dyonic excitations because of the gauge-doublet eigenmode‘é’.here the_ magnetic backre_actlon to the quantum excitations
the net degeneracy of the resulting dyon is 20=26 for &€ of a first order effect, instead of being a second order
each electric charge, where we take into account the extr%ffeCt' Instablll'gy cannot be probe.d without taking into ac-
degeneracy of 2because of the four fermionic zero modes count the reaction of magnetic solitons to the quantum exci-

from SWU(2) triplets. The spin content of each dyon multiplet tall.t'on' tln th,LS senie, ttfl:e tvglr(]) chn?tructlons ,\[’;’]e ga\ée arte cgm-
is that of twoN=4 vector multipletgfrom fermionic eigen- pimentary to €ach other, the Tirst gave us the understanding

modes plus a tensor product of a spin doublet and dhe of the dynamics while the second is better suited for state

=4 vector multiplet(from bosonic eigenmodgsThis is pre- counting.
cisely the 1/4-BPS multiplet of highest spin 3/2. The four
types of 1/4-BPS dyons correspond to the four differentV!- DEGENERACY AND SUPERMULTIPLET STRUCTURE

string configurations depicted in Fig. 2. OF DYONS

~ Some discussion is due on the validity of the approxima- | the previous section, we saw how the supermultiplet of

tion. Note that the expansion of the BPS mass formula Progegeneracy 2arises in the case of minimally charged BPS

ceeds with the assumption states. The method we developed is applicable for 1/4-BPS

£ 2 states with higher electric charges, and we will summarize

m (5.14 the general supermultiplet structure. Let us parametrize the
oM ' quantized electric charge by writing

which coincides with €| =|3v/2, as it should if the dyonic

QM= QFsina>

which is obtained by expanding the BPS bound. It is clear

from the subleading contributions to dyon energies that these

criteria are necessary for a successful match between the

BPS mass and the energy found from the eigenmode analy- " T(a+ B 6.1)

sis. The first condition simply says that the excitation energy 2 '

should be much smaller that the mass of the bare soliton

itself, and is to be expected. What does the second conditiowith integersk andm. Consistent quantization requires that

do? m be oddever) wheneverk is oddevern. The relative
The present approximation takes into account only part otharge of the system is given lyq=(q;—q,)/2=k/2. The

the backreactions. It does address the change in long-rangtegerk corresponds to the number of excited eigenmodes

electric fields in response to the excitation, but ignored itswhile m/2 is the momentum along an interna(1y angle of

k
a=d.a+ =5 (B-a)
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the magnetic solitons. The case of no relative electric charggmomentum for the 1/4-BPS configurations will reproduce the
Ag=0 corresponds to the usual BPS dyon that breaks half odinswer(6.2) obtained in the pointlike dyon limit. See Ap-
the supersymmetry, which comes in B4 vector multip-  pendix E for a simple expression for the angular momen-
let. The case ofAq==*1/2 was addressed in the previous tum.]

section. The supermultiplet structure found there can be sum-

marized in terms of the eigenvalues under one of the angular

momentum operatorsg, VIl. CONCLUSIONS
J3 32 1 12 o0 -1/2 -1 -=3/2 In this paper we explored 1/4-BPS statedNir-4 super-
Degeneracy 1 6 15 20 15 6 1 Symmetric theories that correspond to three-pronged strings

ending onD3-branes in Type IIB string theory. 1/4-BPS

. . . configurations typically consist of twdor more dyonic

6

The total de_genergcy IS ZWh'Ch'. for 1/4'.BPS state, is the cores, which are positioned so that static electromagnetic
smallest while being also consistent with supersymmetry,

; . . . force i rfectl lan inst th lar Hi force.
Call this multipletG,. This multiplet can be seen as a tensor oree 1S pe e(_:ty bg_a ced aga st the scaiar Tggs force
: ; : The marginal instability previously found in the string pic-
product between the =4 vector multiplet with aN=1 chi- . : : .
ral multiplet. tqre is shown to arise from_the excessive repulsion from
Higher charged states wifg|=1 is obtained by excit- either electromagnetic or Higgs interaction. An alternate

ing appropriate eigenmodés=2|Aq| times. Given a fixed construction using the finite energy excitations around purely

electric charge, there are always two bosonic and two fermimagnetic solitons also revealed supermultiplet structures of

onic eigenmodes at disposal. There lfiel states where no 1/4-BPS states with qrbitrary relgtive electric charge. The
fermionic modes are excitedktates where one fermionic degeneracy and the highest spin in the supermultiplets grow
modes are excited, ankl—1 states where both fermionic linearly with the relative charge. In the minimal cases, the
modes are excited. Combining the degeneracy from four ferultiplet has the degeneracy of @ith the highest spin 3/2.
mion zero modes of the center of mass motion, we then find In principle, the question of degeneracy and supermultip-
the total degeneracy of k& 24=4(2|Aq|)x2%=(2]Aq]) let structures can also be addressed by considering low en-
% 28, For detailed spin content, we only need to recall thatergy quantum mechanics of the classical 1/4-BPS solution
24 has the vector structure and that bosonic excitations carrye found. This would necessarily involve zero-mode analy-
an extra spin of- 1/2. The result is the sum of 2q| tables  sis of these nonspherical solitons, which we did not attempt.
identical to the above, except that eigenvalues are shifted, Our constructions can be generalized to the case of mul-
tipronged string configurations in larger gauge groups. In the
J;—S 32 1 12 0 -12 -1 -3/2 small coupling limit, the same eigenmode analysis should
Degeneracy 1 6 15 20 15 6 1 produce the dyonic states of higher magnetic and electric
charges. Also classically, one can distribute many monopoles
in the background, and solve for possible electric configura-
tions. We expect to find multidyon configurations hung to-

resulting supermultiplet has a tensor product strucBge . :
° -~ ; gether by the delicate balance of static forces. We should be
®[|Aq|-1/2] where we denoted by|Aq|-1/2] the spin able to exploit the ADHMN formalism as in this work to

LAigque_s%/s?pi;eg;essjcnr;[a;?}:uIotifplter][el ﬁ"’:}rﬁ_u'larlz:gfnmsgrﬁz%c?_heexplore these field configurations. One interesting case is

. = ) : . when the gauge symmetry is partially restored as in Ref.
tlon., |t.|s easy to see th"*‘.‘ql of th|s. arises from bosonic [19]. For solutions whose net magnetic charge is Abelian, the
excitations. The only fermionic contribution comes from the

four fermioni d hich t tatl configuration typically consists of massive magnetic cores
our fermionic zero modes, which tops out at 1. . surrounded by non-Abelian magnetic clouds. It would be in-

This bosonic spin_has a rat.her intgresting explanation II?eresting to see if any new physics arises by considering
the context of classical dyonic configurations in Sec. 1. 1/4-BPS versions of such non-Abelian configurations

Coln?lderdthe I|m|ttof Itarge H_|ggfs VE\t/Ii I(r; th'w'g the While we considered onli\=4 theories so far, it is clear
solution er?energ es cl)a palrﬁ pointl ed yonTh ndg that the methods developed here can be applietl a2
types,deac lcarrymg eectn_cli: arggz andqg. 1he con-l theories with minimal modificationdN=2 supersymmetry
iga\{cﬁbuiir:)gnuiirtmgn;i?l?;:i?nls nown to contain an anoma Ouzﬁgebra possesses half the supersymmetry generators and
' also only one central charge, so we naturally expect the spec-
trum be qualitatively different. This is quite apparent from
_ 4 989 the point of view adopted in Sec. V, since reduci :
J=L+>-—R, (6.2) e point of view adopted in Sec. V, since reducing super
am symmetry involves removing one of the two adjoint Dirac
) ) ) spinors. In fact, there appears to be no guarantee that the
proportional to the relative electric charde)=(ds—0a)/2  present constructions produce proper 1/2-BPS states. It may
[18]. The unit vectoR points fromea dyon to 8 dyon. With  in general depend on the particular electromagnetic charges,
the unit magnetic charges= 47 the anomalous angular mo- Higgs VEV’s, and other details of the theory. We are cur-
mentum is exactlyAq|, as expectedWe fully expect that a  rently exploring some of the issues. As this work was being
classical field theoretic calculation of the anomalous angulacompleted, two related papdr20,21 have appeared.

with Sranging from—|Aq|+ 1/2 to|Aq|—1/2 in step 1. The
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APPENDIX A: THE ADHM FORMALISM

The ADHM formalism[9] for k instantons of the S()
gauge theory starts with an ¢ 2k) X 2k matrix

A:<>\nxzk)+< 0 )x,
Mok 2k ok 2k

wherex=x,e, ande,=(ioj,1) [9]. Finding the 6+ 2Kk)
Xn matrixv such that

(A1)

ATv=0, vv=I,x,, (A2)
we can construct the anti-Hermitian gauge field
A,=v'd.0. (A3)

The condition for the field strength to be self-dual is that
(ATA) e ak= Fiedid 22

This implies thatw = u e, with Hermitian matrices & ,) kx«
and that

(A4)

i 7 gl o ] +ra( N TN) =0, (A5)

whereeley= 8,5+ 7, 50" with anti-self-dual 't Hooft ten-
sor 77Ia,8‘ The inversek X k matrix f satisfies equation

2, 1 t
(/_La+Xa) +§tr2)\ A f:|k><k' (AG)
We can choose such that
L -1
U(n+2kyxn=— N ) (A7)
Uokxn

where N=1+u'u is annxn Hermitian matrix[15]. The
ADHM equation becomes

(" +xHu+aT=0. (A8)
The gauge field becomes
A,=NY2(u’g,u)N" Y2+ NY29 N~ (A9)
The self-dual field strength is then given by
Fap=2iN" YT 7, ,uN" 22, (A10)

where e,eh= 3,5+ 7,5, Where 7,5 is the self-dual 't
Hooft tensor.
The construction has redundancy,

A—AU, u—UTuU, u—U'y, (A11)

of U(k) elements ik?. Thus the net number of independent
variables fork instantons in SU{) is

4k?+4nk—3k?*—k?>=4nk. (A13)

APPENDIX B: THE NAHM FORMALISM OF CALORONS

We consider instanton solutions &Fx S! with a non-
trivial Wilson loop, which can be regarded as the infinite
number of instantons which is quasiperiodic alongaxis
[14,11,19. We analyze these calorons by extending the
method in Ref[15] to the case of the SW| gauge group,
along the way, by connecting to the Nahm’s formaliif].

We choose the unit interval of the to be[0,8] and imag-
ine the number of instantons in a given intervalkisThe
ADHM matrices becomes

09 [t
= +
) M Xoy )’

wherel,l’ are integers. Herg,, . for eachll’ is a 2&kXx 2k
matrix and\, for eachl is a X n matrix.
We consider the gauge field to be quasiperiodic so that

(B1)

A, (X, X, + B)=€"PMHA (x,x,)e P H, (B2)

This is equivalent to considering the periodic field configu-
rations with the asymptotic value at spatial infinity to be

(A)=1h-H&,4. (B3)
Note thath-H=X,_,"h,P, such thatt ;h,=0 with P, be-
ing the projection operator to tha component of any
n-dimensional vector. We can choose the gauge so that

2w
hl<h2< P <hn<hl+ .

3 (B4)
The condition(B2) can be satisfied if
Ui(X,Xg+ B)=Uj_1(X,Xg)€ A" H, (BY)
which in turn can be satisfied if
A =\_e AH (B6)
Ml = M -1yt -1)~ B€40) - (B7)
These relations lead to
A =Aje 1AM (B8)
=Ty =1 BSaaditr (B9)
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such thatT,, =T, Note that ATA), (x4+B)

(I-1)('-1)"

=(ATA) -1y —1)(Xa) and so fir(Xa+B)
=fu-na-1(Xa).
We introduce the Fourier transformation of these matri- oo =1+ [27Bgtyl u
ces: * 0 *x
AM)y=2, ePi\], (B10)
[
T (=2 efiT, (B11)
|
u(t)= \/ﬁE e'Aly (B12)
279 b
r — B igtl —ipt'l’
f(t,t )_§2 e'Plf, e . (B13)

1n’

Note thatT ,(t) is the Hermitiank Xk matrix and periodic

undert—t+27/B, NT(t) is 2kx n and periodic, andi(t) is

nx 2k and periodic. The functiorfi(t,t’) is periodic under

shift of t,t" with 27/B.
Furthermore, from EqgB8) and (B10), we get

2
N(t)= 7)\52‘, S(t—hy)P,. (B14)
From the property thati(t,x,+ 8) =u(t,x,)e'#t""H we
can introduce

t—h-H)

Uy (15X, X4) = U(t;X,Xg) € Xl (B15)

such that u, (t+27/B8)=u, (t)e'?™4/ and u, (x,+ B)

= U, (Xg).
In the Fourier functions, the consistent conditi@b) be-
comes the Nahm equation for a caloifdrs,14],

_ i 1
T —i[T4,Ti]= Efijk[Tj T+ StraoiW ; o(t—hyp)
X P,w, (B16)

wherew= 27/ B\y. The ADHMN equation(A8) for u(t)
becomes

[el(id+Ta+xg)+el(Ti+x)ut) +w'>, s(t—h,)

X P,=0. (B17)

In terms of the quasiperiodig, (t), the above equation be-

comes

[id,+Ta—ioy(Ti+x)]u, () +w>, S(t—hy)P,=0.
(B18)

This is the standard Nahm equation for magnetic monopoles

[10].
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In this process the normalization factdr *2 becomes

N~ 172_ eih~HX4N; l/Zefih-HX4’ (Blg)

is single valued undeix,
— X4+ B. After singular gauge transformaticel™ >4, the
gauge field becomes single valued and is given by

27l B
+N;1’2f dtitul (t)u, (HN; Y2,
0

B B _ 27l B _
A* i= N* llzaiN* l/2+ N* lIZJO dtUI_ (t)‘?i(u* (t)N* 1/2) !
(B20)

which is the standard form of the Nahm construction for the
self-dual magnetic monopol¢40].
We redefine the Green function f, (t,t;x,)

=e Xatf(t,t";:x,)e’, which is single valued i, but
multi valued int. It satisfies

(i0+T4)2%f, +(T+x)%f, + %W(t)f* =8(t—t"),
(B21)
where
W(t)=trw'S ,8(t—hy) Paw. (B22)

The single-valued self-dual field strength becomes

FMB=N;1’Z[ f dtdt’ui(t)f*(t,tﬁaﬂu*(t')]N;“Z-
(B23)

APPENDIX C: THE ADJOINT SCALAR FIELD

The general method to find the solution of the covariant
Laplacian for a scalar field in the adjoint representation has
been developed in the instanton backgrolibd]. We start
with a general form

®(x)=v"Qu, (Cy
whereQ is an Hermitian 0+ 2k) X (n+ 2k) matrix. We as-
sume thaQ is independent ok and takes the ansatz

Onxn 0
= )

(C2
0 Picxckl 2x2

Using the fact that the projection operat®=vov'=I
—AfAT, one can show that

1
D2d=4N"Y2'f tr2< Agh— E{)\Tk,p})

_[lua7[lu“a1p]] fUNillzv (Cg)
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where tp is a trace over a two-dimensional part of the ma-+ (27)/], whereg is the circumference o8'. The Nahm
trices. With two Hermitiark X k matrices, equation is almost trivial and the Nahm data gives the posi-
tion vectors of magnetic monopoles as follows:
W=tr,A ™\, A=tr,A Tgn, (C4)

. . . . T1=-%X,=(0,0R),te(ty,ty),
the condition for the scalar field to satisfy the covariant
baplace equatiorDﬁfD:O becomes a condition on the ma- To=—X5=(0,0,0),t e (t5,t5), (D1)
rix p,

2
T3=—x3=(0,0-K) te (ts,tﬁ 7) :

Note that the above equation determipefor a given infini-  Wherex, andx, are the positions o and 8 monopoles, and
tesimal generatay of SU(n). Especially whemg=1,, we X318 the position of the third monqpole. For convenience, we
can see=l,, solves the above equation. put the third monopole at the axis and later on take it to

For similar scalar fields in any caloron background, welMfinity by pushingK—o. The distance betweea and g
extend the method described in Appendix B. We generaliz&"0nopoles ar®k. The jumping conditior(B16) satisfied by
Eq. (C2) to an infinite dimensional matrix, and then the anal-this Nahm data is as follows:

1
_[Mav[lu“a7p]]_§{wlp}+/\:0' (CS)

ogy of Eqg.(C1) would be
gy of Eq.(C1) . [VEKTR)
d=N"YgN Y2+ N"Ylpu NTY2 (CH) W= o |
Similar to the gauge field, the adjoint Higgs scalar field 0
should satisfy the quasiperiodic conditiof®(x,X,+ ) W ( ) (D2)
=e'PMHP(x,x,)e "#"H Thus the above ansatz is consistent 2\ 2R/’

with Eq. (B19) only if

0
[h-H,q]=0. (C7) w;,:(ﬂ).

This equation implies that there are omy-1 independent _ ] ] )
q's when the gauge symmetry is maximally broken origll  Then one can find thé\; ,b¢ field configurations by the

are different. ADHMN method, as explored in detail in Refd.1,14]
To consider the similar solution around magnetic mono-  For given solutions of the corresponding ADHMN equa-
poles, we again Fourier transformmatrix, tion, there exists a general method to find the solution of the

covariant four-dimensional Laplacian satisfied by the adjoint
_ il Higgs field, as summarized in Appendix C. For a single cal-
p(t)—Z € Pio- (€Y oron as in our case, we need to find a continuous and peri-
odic function p(t) on [ty,t;+ (2m)/B], for a given
Then, we can reexpress E@5) as an ordinary differential g€ SU(3) which commutes with the asymptotic Higgs value
equation fork X k Hermitian matrixp(t), h-H. The differential equatiofiC9) for the periodicp(t) in

our context is given by
[6— T4, [ 0= 1T 4,p(O) T [Ti(t),[ Ti(t),p()]] ,
1 dgp(t) —2(K+D)(p(t) —qg)é(t—hy)
= 5 {W(),p()}+A () =0, (€9 —2D(p(t) —g,)8(t—h,) — 2K (p(t) — d3) 3(t —hg) =0,
where W(t) =tr,w'S,8(t—h,)P,w and A (t) =tr,w's,8(t (®3)
- hq) Pan-_FOrK :auch a ;olutiop(t), after a gauge t.ra}nsfor— where q=diag(g;,9,,9s) and g;+q,+qz=0. This equa-
mation bye™ 4", the single-valued solution of adjoint sca- tion is very simple to solve, especially in the limit whete
lar Laplace equation is given by N
There are two independegtmatrices:

2wl B
* » N, * 0 *( )p( ) *( ) * qT:diagh1'h2'h3)’

(C10

ar=diag(uo, — mo— p1,41), (D4)

APPENDIX D: THE SU (3) CASE
where u,=hz—h, and u;=h,—h;, so that tq;qg=0. For

We first consider the Nahm data for three monopoles thaéachq, there exists a correspondipt). Especially in the
make a single instanton d®° X S*, or a calororf13—-15. As  relevant intervat e [hy,hg], for gr,
shown in Appendix B, the Nahm equation is defined over
three auxiliary time intervals, [tq,t,],[t,,t3],[t3,t1 pr=t. (D5)

066005-13



KIMYEONG LEE AND PILJIN YI

For gg,
pi(t—hy)+c, tel[hy,hy]
Pr(t)= _ \
po(t—hy)+c, te[h,,hs]
where
1
C:h2+ﬁ(l32 P1),
o _ M1 pa— 2(pat 2pa) aR
! it pot 2R
0 i pot22puyt po) pmaR
2_ .

M1t pot2puaR

The pr can be a regarded case where=p,=1.

(D6)

(D7)

PHYSICAL REVIEW D 58 066005

Following the ADHMN method of thé¢ field closely,
as explored in Ref[11], we can solve easily the ADHMN
equations(B18) for a given Nahm datdD1) and (D2). Es-
pecially one can see easily that the solutions to the ADHMN
equation for the intervdlts,t;+ (27)/B] goes to zero like
1/JK, similar to the SW2) case in Ref[14]. Thus, there will
be no nontrivial contribution from the intervalts,t,

+ (27)/B]. Then, we can now construct the solution of the
second BPS equatigi2.23 by using Eq(C10 of Appendix

C. From Eg(C10 and the solution of the ADHMN equation
in Ref.[11], we can easily construct thex®3 adjoint Higgs
field which satisfies the second BPS equati@®3. The
solution is

by ¢(3)) 08

A(X)=
0 (d’;rs) b(2)

where

b1)=N"Y2(p1K| +pKr)N"Y24-Cl s,

b(2=2RL*(0,1)(p;N *K N[ '+ pNg'KeNg b

P2—pP1

+
5R S'S,

+c—

0
1 (D9)

0
b3=N"Y2(—pK N '+ szRNRl)( 1) V2RL,

wherey; =X—Xq, Y,=X—X,, and

1
NL=r—=sinh(u1y,)e #9177,
|yl

1
Nr=r—Sinh(uy,)e 2¥2'7,
Y2l

N:NL+NR’

1. —2u1y1- O
KLZZ_lerU[Mle PI7—N ],
1. 2 o
KRZZ—yZYzU[Mze 227 —Ng],

1
L= 7 2’
V(yscothuy; +y,cothusy,)?—R

_ yicothu,y; +yocothusy,—R

s's .
yicothu,y; +yocothusy, +R

(D10)

Whenp,=p,=1, we have the solution corresponding to the
pt, which is of course the original Higgs fielu itself.

Here only useful part of this explicit solution is its
asymptotic form in the limit wheréx|>R,u; !, 15 . As in
Ref [11], we can find the asymptotic form of this solution
easily. In the unitary gauge, its asymptotic limit of Ef38)
for gr and g of Eq. (D4) become Eqs(3.5 and (3.6) in
Sec. lll.

APPENDIX E: ENERGY DENSITY AND ANGULAR
MOMENTUM

Here we want to point out that energy density and total
angular momentum become considerably simpler for the
self-dual configurations. Using the self-dual equations, one
can also simplify the energy density to be

066005-14
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H(X)=tr{E7+B7+ (Db ¢)?+(D;b- ¢)?
+(—ie[a-¢,b- )%
=7t (a- @)%+ (b- ¢)?], (ED) =—2f d*x(xlg;— 8)x'a)tr(a- ¢Djb- ).  (E2)

Ji = — ZJ d3X€iijjtr{€k|mE|Bm+ D0¢I Dk¢|}

The angular momentum is a vector quantity and so should

where we used the result theg{, =ie[a- ¢,{,]=0. depend on the internal structure of the BPS configuration.

The most general BPS solutions carry both electric andwvhile we do not pursue in the paper, we expect that both

magnetic charges and will have nonzero angular momenturanergy density and angular momentum can be simplified fur-
in general. The angular momentum of a BPS configuration isher.

[1] O. Bergman, “Three-pronged strings and 1/4 BPS states in  Quantum Field Theoryedited by N. S. Craigiet al. (World
N=4 Super-Yang-Mills Theory,” hep-th/9712211. Scientific, Singapore, 1982in Structural Elements in Particle
[2] E. Witten, Nucl. PhysB460, 335(1996. Physics and Statistical Mechanjcsdited by J. Honerkamp
[3] O. Aharony, J. Sonnenschein, and S. Yankielowicz, Nucl. et al. (Plenum, New York, 1983
Phys.B474, 309 (1996; J. H. Schwarz, Nucl. Phys. BProc.  [11] E. J. Weinberg and P. Yi, Phys. Rev.38, 046001(1998.

Suppl) 55B, 1 (1997). . [12] N. Dorey, V. V. Khoze, and M. P. Mattis, Phys. Rev. 13,
[4] K. Dasgupta and S. Mukhi, Phys. Lett./23 261(1998; A. 2921(1996; H. Osborn, Ann. Phys(N.Y.) 135 373(1981).
Sen, "String network,” hep-th/9711130; S. J. Rey and J- T-[13] W. Nahm, inGroup Theoretical Methods in Physisdited by
Yee, “BPS dynamics of triple(p,g string junction, D. Denardoet al. (Springer-Verlag, Berlin, 1984H. Garland
hep-th/9711202; N, Krogh and S. Lee, Nucl. Ph§&6 241 and M. Murray, Chem. Phy4.20, 335 (1988

(1998;Y. Matsuo and K. Okuyama, “BPS condition of string [14] K. Lee and P. Yi, Phys. Rev. 6, 3711 (1997; K. Lee

Junction from M-theory, hep-th/.97%2070. . . “Instantons and magnetic monopoles BAx S with arbitrary
[5] O. Bergman and A. Fayyazuddin, “String junctions and BPS . ., ]
states in Heiberg-Witten theory,” hep-th/9802033; A. Mika- simple gauge groups,” hep-th/9802012; K. Lee and C. Lu,
’ ' Phys. Rev. D58, 025011(1998.

hilov, N. Nekrasov, and S. Sethi, “Geometric realizations of )
[15] T. C. Kraan and P. van Baal, “Exact T-duality between cal-

BPS states in N2 theories,” hep-th/9803142. i
[6] K. Hasimoto, H. Hata, and N. Sasakura, “3-string junction and oron and Taub-NUT spaces,” hep-th/9802049.
[16] R. S. Ward, Commun. Math. Phy89, 317 (1981).

BPS saturated solutions in $8) supersymmetric Yang-Mills

theory,” hep-th/9803127. [17] M. Henningson, Nucl. Phy$3461, 101 (1996.
[7] C. Fraser and T. J. Hollowood, Phys. Lett4B2, 106(1997.  [18] N. Manton and G. Gibbons, Phys. Lett. 356 32 (1995; K.
[8] E. J. Weinberg, Nucl. Phy®167, 500 (1980. Lee, E. J. Weinberg, and P. Yi, Phys. Rev5® 1633(1996.
[9] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld, and Yu. I. Mannin, [19] K. Lee, E. J. Weinberg, and P. Yi, Phys. Rev.53, 6351
Phys. Lett85B, 185(1978; N. H. Christ, E. J. Weinberg, and (1996.
N. K. Stanton, Phys. Rev. D8, 2013(1978; E. Corrigan, D.  [20] T. Kawano and K. Okuyama, “String network and 1/4 BPS
Fairlie, P. Goddard, and S. Templeton, Nucl. PHy$40, 31 states in N=4 SUn) supersymmetric Yang-Mills theory,”
(1978; E. Corrigan, P. Goddard, and S. Templetadid. hep-th/9804139.
B151, 93 (1979. [21] O. Bergman and B. Kol, “String webs and 1/4 BPS mono-
[10] W. Nahm, Phys. Lett90B, 413 (1980; in Monopoles in poles,” hep-th/9804160.

066005-15



