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Gauged duality, conformal symmetry, and spacetime with two times
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We construct a duality between several simple physical systems by showing that they are different aspects
of the same quantum theory. Examples include the free relativistic massless particle and the hydrogen atom in
any number of dimensions. The key is the gauging of th€)Sguality symmetry that treats position and
momentum X,p) as a doublet in phase space. As a consequence of the gauging, the Minkowski spacetime
vectorsx#,p* get enlarged by one additional spacelike and one additional timelike dimensial ). A
manifest global symmetry S@(2) rotates xM,p™)-like (d+ 2)-dimensional vectors. The S@Q) symmetry
of the parent theory may be interpreted as the familiar conformal symmetry of quantum field theory in
Minkowski spacetime in one gauge or as the dynamical symmetry of a totally different physical system in
another gauge. Thanks to the gauge symmetry, the theory permits various choices of “time” which correspond
to different looking Hamiltonians, while avoiding ghosts. Thus we demonstrate that there is a physical role for
a spacetime with two times when taken together with a gauged duality symmetry that produces appropriate
constraints[S0556-282(98)04016-§

PACS numbds): 11.25.Hf, 11.10.Lm

I. INTRODUCTION theory to an effective theory with a single timelike dimen-
sion and no ghosts. The gauged Sp(2) duality symmetry sug-
The purpose of this paper is to introduce some new pointgested here is an evolution of the local bosonic symmetry
of view on duality as a gauge symmetry and to connect duintroduced in[10—17 for the same purpose. The difference
ality to the concept of a spacetime with two timelike dimen-is that we apply the concept to the phase space doublet
sions. This is an attempt at finding a physical role for the(x™ PM) for a single particle rather than to a multiplet of the
idea that there may be more than one timelike dimension t@ositions of several particlex{! X}, . ..). Wesuggest an
describe our universe at the fundamental level. We will showaction principle in phase space, including invariant interac-
that certain familiar physical systems, such as the free masgpns with background fields, with and without supersymme-
less relativistic particle, hydrogen atom, harmonic oscillator gy,
and others, do fit such a concept, as reported in this paper \ye have suggestively named our local symplectic sym-
and in a companion papét]. We will show that these and metry Sp(2) “duality” because we see signs that our duality
other apparently different physical systems correspond to thg re|ated to the generalized concept of electric-magnetic du-
same quantum Hilbert space characterized igueuni- ity in super Yang-Mills theories and M theory. However,

tary representation of the conformal group (%) . We will  thjs connection remains to be established by further detailed
argue that the presence of conformal symmetry or dynamicajyqy.

symmetry in these special cags®vidence for the presence
of two timelike coordinates. The physics looks different be-
cause the choice of “time” is not unique and hence the
Hamiltonians look different, although they describe the same
parent system for which we present an action. These special The quantization rules of quantum mechanics are sym-
physical systems are related to each other by a duality that imetric under the interchange of coordinates and momenta.
a gauge symmetry. Thanks to the gauge symmetry ghosts afdis is known as the symplectic symmetry Sp(2) that trans-
eliminated from the two-time Hilbert space. forms (X,p) as a doublet. Maxwell’s equations for electricity
Clues for two or more timelike dimensions have beenand magnetism are symmetric under the interchange of elec-
emerging from various points of view, including the branetricity and magnetism in the absence of sources. The electric
scan [2], the structure of extended supersymmetry ofand magnetic fields are generalized coordinates and mo-
p-braneq 3], extensions of M theor}{4] to F theory[5] and  menta. In the presence of particles with quantized electric
S theory[6,7], (1,2) strings[8], 12D super Yang-Mills and and magnetic charges the symmetry is a discrete version of
supergravity theories in backgrounds of constant lightlikeSp(2). This symmetry, known as ‘“electric-magnetic dual-
vectors[9], and finally the discovery of models of multisu- ity,” is apparently broken in our part of the universe by the
perparticles that are fully covariant 10,2 and (11,3 di-  absence of magnetic monopoles and dyons. The idea of
mensiond10-13. electric-magnetic duality symmetry has been generalized in
Two or more timelike dimensions are possible only withrecent nonperturbative studies of supersymmetric field
appropriate gauge symmetry and constraints that reduce thkeory[14] and string theory15], which are now believed to
be only some aspect of a larger, duality-invariant, mysterious
theory (M theory, F theory, S theory, U theory, étcln the
*Permanent address: Landau Institute, Moscow, Russia. context of the mysterious theory, “duality,” which is a much
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larger symmetry than $B), but containing it, is believed to like dimensions labelled by the indeM. This symmetry
be a gauge symmetry. contains the d-dimensional Poincaresymmetry 1SOd

In this paper we study an elementary system with local—1,1) as a subgroup, but there is no translation symmetry in
continuous Sp(2) duality symmetry. We start by reformulat-d+ 2 dimensions. Using Ndler's theorem one finds the
ing the world line description of the standard free masslesgenerators of the symmetry S@Q):
relativistic point particle by gauging the &) duality sym-
metry. What we find in doing so is a more general theory LMN= gl XMX}'=XMPN—XNPM, (5)
capable of describing not only the free particle but other
physical systems dual to it, such as the hydrogen atom, haithey are manifestigauge invarianunder the local Sp(R)

monic oscillator, and others. transformations.

To remove the distinction betweenand p we will re- To obtain spacetime supersymmetry in target space we
name themxg"ExM and xg"zp'\" and define the doublet use the Neveu-Schwarz approach but only for zero modes.
XM=(xM x3. The local Sp(2) acts as follows: To do so, phase space is enlarged by the addition of fermi-

onic degrees of freedom™(7) which are their own canoni-
S XM () =g (1) XM (7). (1) cal conjugatesi.e., they form a Clifford algebra when quan-

B ) tized). The Sp(2) doublet is enlarged to an OSp(1/2) triplet
Here 'l(7) = w!'(7) is @ symmetric matrix containing three (4™, XM x%) and the supergroup OSp(1/2) is gauged by
local parameters, and; is the Levi-Civitasymbol that is adding two fermionic gauge potentigfis in addition to the
invariant under Sp(R) and serves to raise or lower indices. three bosonic gauge potentiads!. The action is the direct
We also introduce an Sp®) gauge fieldA''(7) which is  generalization of Eq.(4) to a gauge theory based on
symmetric in {j) which transforms in the standard way:  OSp(1/2). Ind+2=4,5,8,12 dimensions, in a particular
- o . . . gauge, the degrees of freedom reduce correctly to the free
8,A1=0, 0"+ e Al + wfe Al (20 N=1 spacetime supersymmetric particle in Minkowski
space in dimensiond=2,3,6,10. This scheme can be en-
larged toN supersymmetries by gauging O8{iR). Like the
3 bosonic case, the supersymmetric case also has multiple
physical sectors as seen from the point of view of various
gauge choices for “time.” The supersymmetric case will be
discussed in more detail in another pafEs|.
17T B Interactions with gravitational field&yn(X,X,) and
SO:EJ d7(D X" e "X} pu gauge fieldsAY(X;,X,) in a way that respects the Sp(2)
0 duality symmetry are possibl@f course, also in the super-

The covariant derivative is
D XM=g XM—g; AKXM.

An action that is invariant under this gauge symmetry is

T 1 symmetric case
= [Tar o= 3K . @ __
0 s 1de (DX e XFGun(X1,X;) ©
== T y .
Here 7y is a flat metric ind+2 dimensions and a total A 2)0 +(D XM e Aj(X1,X,)

derivative has been dropped in rewriting the first term. The
signature of the metriey, is not specified at this stage, but Gy is @ scalar under Sp(2) and a symmetric traceless ten-
we will see that it will beimposedon us that it must have sor in d+2 dimensions. SimilarIyA}VI is a doublet under
signature for two timelike dimensions. From the second fornSp(2) and a vector il+2 dimensions. It is tempting to
of the action one may identify the canonical conjugates asuggest that the Sp(2) doublet of electromagnetic fiél?ﬁs
XM=xM and 4S/9x})' =X¥=PM, so that the action is con- is related to the electric-magnetic dual potentials of Max-
sistent with the idea thatX(’{" ,Xg") is the doublet X™,PM) well’s theory and its Yang-Mills generalizations. For the lo-
rather than describing two particles. cal invariance to hold, there must be restrictions on the func-
If instead of the full Sp(2) group we had gauged a trian-tional forms of bothGyn(X1,Xz) andAf(Xy,X,) since the
gular Abelian subgroup containing only®%(7), and kept arguments X;,X;) also transform under $%p). These
only the gauge potentiaAZZ( 7), then the resulting action amount to a set of differential equations that restrict the func-
would have been the free massless particle action in the firgional forms of Gyn(X1,X,) and AY(X;,X,). One auto-
order formalism, withy,,, the standard Minkowski metric. matic solution is to take any function§yn(L), A]N(L)
Thusw??is closely related te- reparametrization invariance, whereLMN is the gauge invariant combination oX{,X5)
but »*? w'! are new local symmetry parameters that permitgiven in Eq.(5). In the presence of the background fields the
the removal of redundant gauge degrees of freedom. In thglobal symmetry SQ{,2) is replaced by the Killing symme-
presence of the gauge degrees of freedom we are able to siies of the background fields. We see that, for consistency
the structure of duality and the role it plays in exhibiting with the local symmetry, gravity and gauge interactions are
higher symmetries in higher dimensions. more conveniently expressed in terms of bilocal fields
In addition to the local Sp(R) symmetry there is a mani- Gyy(X;,X,) and A}\'(Xl,xz) in d+2 dimensions. Bilocal
fest global symmetry S@(2) [assuming signatured(2)] fields were advocated 6] as a means of extending super-
acting on the space tim¢ with d spacelike and two time- gravity and super Yang-Mills theory t610,2 dimensions
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based on clues from the Bogomol'nyi-Prasad-Sommerfieldvith metric »*'~'=—1. Using two parameters of the re-
(BP9 solutions of extended supersymmetry. maining gauge freedom choo§ '=1, P*'=0, and solve
We refer to the forms of the actior®,Sg A above as the the two constraintQ?=Q-P=0, so that the solution takes
first order formalism. Although not necessary, a second ordethe form
formalism is obtained ifxg" is integrated out in the path
integral (or eliminated semiclassically through one of the
equations of motion Eliminating Xg" is not easy for the
interacting case, but for the free acti®p the result is

2
X' (7r)=1, X_'(T)=%+q~p7,

XH(7)=q*+pHr, p?=0 massless.
. Al ()=gk+pk7, p a

ZAZZ(aTXM—A”XM)Z— —X-X|. (D

2

So=f dr
There remains one free gauge parammé?r and one con-
This form of the action may be thought of as “conformal straint P?=p2=0, which is also what follows fromr rep-
gravity” on the world line, with the conformal group arametrizations on the world line. The motion in
SO(1,2F=Sp(2). d-dimensional Minkowski subspacg(7) is the same as the
In this paper we will mainly analyze the simplest c&e  standard massless particle. Furthermore, the motion in the
The configuration space version 8§, Eq. (7) was previ- remaining two coordinateX™’, X"’ is fully determined by
ously obtained with different reasoning and motivati@@],"  the position and momentunyt,p*) in Minkowski space.
and without the concept of duality. Our solutions to both the The free massless particle is not the only classical solu-
classical and quantum problems go well beyond previousion. For example, in the gauga'?=0, A'=A%=g the
discussion of this systerfil8—20. More importantly, our solution is
interpretation of the system and its scope as a theory for
dqality and two times, and the applications to physical situ- Xy=aye' ™+ a{,le*iwf,
ations are new.
a-a=a'-a=a'-a'=0. (12
Ill. CLASSICAL SOLUTIONS AND DUAL SECTORS
This is an oscillatory motion with a different physical inter-
pretation than the free relativistic particle. As we will see,
9. XM A, Ay | (XM our system has dual sectors that include the H atom and
P PM) :(—A _A )(P"")' (8) harmonic oscillator, which evidently are periodic systems.
4 1 12 Some previously known solutions include a massive particle
in Minkowski space[17], a massless particle in de Sitter
space[17], etc. Thus, there are classical solutions of the
same system with various physical meanings.
X-X=0, X-P=0, P.-P=0. (9) What is going on is that choosing “time” is tricky in our
system since there is more than one timelike dimension. The
At least two timelike dimensions are required to obtain non-dynamics of the system is arranged to evolve according to
trivial solutions to the constrain{s.0], and our gauge sym- some gauge choice of “time” which is not unique in the
metry does not allow more than two timelike dimensionssystem. For each such choice there is a corresponding ca-
without running into problems with ghosts. Thus our systemnonical conjugate Hamiltonian which looks like different
exists physically only with the signaturel ). physics. However, there really is one single overall theory
To show that the massless Minkowski particle is one ofthat follows from our action. It has various physical interpre-
the classical solutions of our system, we may choose thaations that are dual to each other, where duality is the Sp(2)
gauge A=A"=0 and A%?=1, solve the equatiorXM  gauge symmetry that we have introduced. Under Sp(2)
=QM+PM7, and obtain the constrain®?=P2=Q-P=0. transformations every classical solution which has a different

The equation of motion forX;,X,) in the case of5, is

In addition, the equation of motion for th&; produces the
constraints

There is a remaining gauge symmetry physical interpretation in some gauge can be mapped to the
free massless particle by a gauge transformation and a dif-
o'(7)= wél, w(1)=— w317+ wéz, ferent choice of “time.”
There is a gauge-invariant way to characterize the overall
0?(7)= 0§ - 205+ 03, (100  system at the classical as well as quantum levels. The

- SO(d,2) global symmetry generatots'N are gauge invari-
wherewg are r-independent constants. Next define the basisint, as well as constants of motion with respect to the
QM=(Q"",Q ',g#), PM=(P*'",P~’,p*), where*" indi- “time” 7. Using the constraints, it is straightforward to com-
cate a light-cone-type basis for the extgl) dimensions pute that all the Casimir operators of UZ) vanish at the

classical level:

1We thank K. Pilch for discovering this reference at the time of C,(S0d,2)= __1-|-r(L)n:0 classical. (13)
publication. n!
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a b
c d

where the matriXa(7),b(7),c(7),d(7)) is a group element

-1

For a noncompact group such a representation is nontrivial. ( A A, ) (573 a,b
= , (19

For example the free particle is such a representation. This A —A gc od
can be verified by inserting the free particle gauge of Eq. 1 12 T T
(1) into Eqg. (5). As we will see, the Casimir operato€,

will not all_be Zero gt the quantum Ieve_l, vyhen orderingquof GL(2,R). It can be checked that by inserting this form into
operators is taken into account. We will find very specific

values in the quantum gauge-invariant sector, in particulaﬁq' ) th_e constant&_ N M that appear in Eqg14) are con-
C,(SO(d,2))=1—d%4. Both at the classical and quantum sistent with their definitions. Another constant of motion is

levels, the Casimir invariants specifyuaiqueunitary repre- e determinant of the matrix
sentation of SQ4,2) which fully characterizes the gauge-

invariant physical space of the system. This approach does LT ~'=ad-bc. (16)
not involve a choice of “time” or Hamiltonian or effective
Lagrangian in a fixed gauge. So, effectively, the local gauge group is Sp(2) as param-

Having realized this important observation one may nowetrized by @,b,c,d). The remaining generatots“”, which
understand more generally that in a special gauge we find are also constants of motion, are now written in terms of the
rather nontrivial classical and quantum solution of our systonstantd +' =", L*'#:
tem, namely, the hydrogen atom in any dimensthre non-
relativistic central force problem with therlpotentia). The
essential reason for its existence is that all the levels of the H , , , ,
atom taken together form a single irreducible representation LW:XMPV_XVP#:LM—’ (LTALT =L e,
of the conformal group S@2), in accordance with the ob- (17)
servation above. In fact, the representation is precisely the
unique one that emerges from quantum ordefingxt sec- \We may forget completely about the gauge poten#dlsand
tion), with specific values of the Casimir operators. It wasconcentrate instead on the local group elemenbc,d)
known that the H atom in three dimensiors(1=3) forms  and the global symmetry generatar¥N. The constraint$9)
a single irreducible representation of @&2) [21]. The well-  pacome conditions to be satisfied by thé # L+ =7 e

known SO(4) symmetry is the subgroup of SO(4,2). Thisyjithout any condition on the group element:

solution will be fully explained and generalized to any di-

mension at the classical and quantum levels in a separate ) , , )

paper[1] (with quantum ordering and other technical aspects LY #L" Vy,,=L" L™ ¥n,,=0,

that differ from the old literatur§¢21]). It will also be shown

there that the harmonic oscillator id { 2) dimensions, with 1

its mass equal to a light cone momentum in an additional _(LMV)2=|_+’M|_*’V77#V=_(|_+’*’)2_

dimension, is also a solution of the system. As for all solu- 2

tions, the H atom or harmonic oscillator are Sp(2) dual to (18)

theTfree mass'less rglatmsﬂc pqrtlcle. ._ .. With these conditions the Casimir operator for 8(%) be-
o close this section we provide a general parametrlzatlor&omes

of classical solutions in any gauge. We take advantage of thé

fact that the SCOd,2) generators are constants of motion

3,LMN=0 with respect to the “time”r. A general classical

solution in any gauge may be given in various babks

=(+',—",u), M=(0",1",), M=(0',0]). The first is a

light-cone-type basis in the extra dimensioKs'= (X% at the classical level, and similarly for all higher Casimir

+X1,  X7'=3(X% =X, and the last distinguishes the coefficients. But we will see below that in quantum theory,

two timelike coordinates from the spacelike ones. The firswwhen we watch the orders of the operators, the quadratic

two are covariant under SO(1@)5(d—1,1) and the last is Casimir operators will b&,=1—d?/4. Similarly all higher

C2=%(LMN)2=0, (19

covariant under SO(2) SO(). The general solution is Casimir operators of S@(2) vanish at the classical level,
but not at the quantum level.
M=[+",—-",u], The same arguments may be repeated in the other bases.

For example, in the basid =(0',0]) we have
—aL™'#+bL"'#

M:
XT=lab =% | M=[0’, O, 1,
— ’ _aLOI+bL0/I
pi— | ¢ g, CLFdLT” XV=la, b, —————,
T ad—bc ' ad—bc
14
(19 " d —cL%+dL%"
with PU=lc, d — e I (20)
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with needed. In this paper we will treat only the free particle in
two different gauges and verify that we have the correct rep-
L90=ad—bc resentation.

A. SO(d,2) and Sp(2) covariant quantization

LN= 1 (L°/'L°J— LO’JLOI) (21) The Hermitian quantum generators of SfRare
0’0 !
Jo= S (PEHX?), 3= (P2 X2 24
and 0~ 4( )l 1_4( )1 ( )
(LOI)ZZ(LO'I)ZZ_E(LlJ)ZZ_(LO'O)Z (22) 1

2 ’ 3= 7(X:-P+P-X). (25)

so that again Eq.19) and the same conditions on the higher
order Casimir operators hold. The Lie algebra that follows from the quantum rules is
IV. QUANTUM THEORY [J0,d1]1=1J2, [Jo.d2]=—131, [J1,d2]= _iJO'(ze)

In any gauge the naive quantum rules that follows from
the actionS, are[X\" ,X[']=ie;;»"". These are subject to
the constrain;- X;=0. We will rewrite these in any gauge
as

The quadratic Casimir operato€,(Sp(2)=J3—J2—J3
takes the Hermitian fornjwatching the orders of operatgrs

2
(XM, PY]=in",  X*=P*=X-P=0. (23 Ca(SH2)= 5 XMP2Xy— (X-P)(P-X)+ 51,
As usual one may approach the problem of quantization in a (27)
covariant formalism or in a noncovariant formalism.

In a covariant formalism one may apply the constraints orwhere the constant term arises from reordering the operators
states constructed in a Hilbert space that obeys the naiv@+2)?—4(d+2)=d?—4. The gauge-invariant S©O(2)
guantization rules above. This approach would be manifestly.orentz generators given in E¢p) are used to compute the
covariant under both the duality symmetry SiXPas well  quadratic Casimir operator for S&@). One finds that the
as the SO4,2) symmetry. But it does not seem to give direct quadratic Casimir operator of the two groups are related:
insight into the physical content of the theory since “time”
or “Hamiltonian” is not specified. In this paper we will 1 d2
obtain one crucial result on the values of the Casimir opera-  C,(SQ(d,2))= = LynL"N=|C,(Sp(2))+1— —|,
tors C,(S0(d,2)) that follow from covariant quantization. 2 4

In a noncovariant formalism both the duality symmetry (28)
and the manifest S@(2) symmetry are broken by the
choice of gauges and solution of the constraints. One musthereC,(Sp(2)) is given by Eq.(27). Sincel,y is gauge
then verify that the quantization procedure respects thénvariant, bothC,(SO(d,2)) and C,(Sp(2)) must have the
gauge-invariant algebra of the global SIX) generators same spectrum in any quantization scheme in any gauge.
LMN'in Eq. (5). In the fixed gauge formalism these genera- We will describe the general properties of the covariant
tors incorporate the naive global transformation on the Hilbert space we should find. The “physical” states form a
+2 spacetime coordinates as well as the duality transformasubset of the Hilbert space for which the matrix elements of
tions Sp(2R). This is because after an SMOP) transforma- Sp(2R) generators vanish weakly:
tion one goes out of the gauge slice, and a gauge transfor-
mation must be applied to go back to the gauge slice. Thus,
the details of the SQ@{,2) conformal generators in the fixed
gauge provide information on the duality transformations. In
a fixed gauge some of theMN require normal ordering of For SL(2R)=Sp(2R) all the unitary representations are la-
the canonical degrees of freedom and therefore there afeelled by |jm). Within this space the singlet state
anomaly coefficients. The closure of the algebra can fix som€,(Sp(2))=j(j+1)=0 andm=0 satisfy the physical re-
of these coefficients, but it turns out that this is not so inquirements. This is the module with only one state from the
every gauge. It turns out that imposing the eigenvalues of thpoint of view of Sp(2R). However, there can be an infinite
Casimir operator€,, obtained in the covariant quantization number of such gauge-invariant states which are classified
must be used to fully determine the anomaly coefficients. Irby the global symmetry S@(2). This must be the case since
particular for the hydrogen atom this additional constraint iswe already know that there is a nontrivial solution of the

(phygJo 14phys)~0. (29)
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constraints in the classical limit when the signature;4f'is ~ where the transverse vectotfsp' are in (d—2) dimensions.
(d,2) 2 Thus, we have argued that for nontrivial states welnserting this form in the constraints gives
must have

d? X . _ P
Cy(S0(d,2))=1- -,  Cy(SP(2))=0. (30) X'=2, p=(xpmxTpY), p “20" (32
This will be confirmed by the noncovariant quantization be-where we have used;”’~'=7""=—1. The canonical

low. To compute the eigenvalues of all the Casimir operatorpairs are

C, we use the same approach. We find that@G|l at the

guantum level can first be written in terms®@$(Sp(2)) plus

normal ordering constants that dependcrOnce the gen- [x,p], [x7.p"1,

eral expression is obtained we $&4(Sp(2))=0 and obtain

the eigenvalues ofC,(S0O(d,2)) for the gauge-invariant

states. This procedure uniquely determines the physical

space content of our theory asuaique unitary representa- x’=—,p+’=0}, [x"'=1p '=(x-p—xp")].

tion of the conformal group S@(2). We only need the qua- 2

dratic Casimir operator in the present paper. (33
Although we have identified the physical representationrne ones in the first lingx,p],[x~,p*] are the true canoni-

of Sp(2R) and SO(,2), building explicitly the Sp(B) and ¢4 gperators for the relativistic particle, which are quantized
S0(d,2) fully covariant Hilbert space in terms of the cova- according to the usual canonical rules:

riant canonical variableX™,PM remains as an open prob-
lem. For a physical interpretation this is desirable. A natural P i1 i o

approach to study the general problem covariantly is in terms [x.p]=id",  [x".p7]=in" =~ (34)
of bilocal fields ¢(Xy',X}"). Recall that bilocal fields are 5 the other hands* =0x*'=1,p*’
also relevant as background fields in the general aSioR. ’ ’

p2

:2p+

x"=0,p

X2

=0 are gauge choices

andp~,p ',x” ' are dependent operators which must be re-

] o placed by the given expressions in all gauge-invariant ob-
B. Fully gauge-fixed quantization servables.

In the noncovariant approach we choose a gauge and Recall that the Lorentz generator$'™ are gauge inde-
solve all the constraints at the classical level, and then quarpendent and commute with the SgR2,generators. There-
tize the remaining degrees of freedom. The advantage of thiore they can be expressed in any gauge, consistently with
approach is that unitarity is manifest and we work directlythe constraints, by simply replacing our gauge chdi@®,
with the physical states. The disadvantage is that by choo¢32) into Eq.(5). Thus, we obtain
ing a gauge we hide the duality properties. We will discuss
here only the free massless particle interpretation of the Hil- Li=xp —xip', (35)
bert space. In another paper we will show that the same
Hilbert space is dual to the H atom and also to the harmonic
oscillator. We fix three gauges that make evident the free
particle interpretation as in the classical solutidd), X*’ - - 2p*
=1P"'=0X"=p" 7. Since we will express the commuta-
tion rules atr=0, we have, in a light cone basM=(+", L L
=+, - - +y— -1+

: (36)

XM=(1x"":0x":x), PM=p ";p*,p".p), (37)
(3D

L+!+:p+, L+,7:p_
There is another trivial state that satisfies the physical state con- 2p

ditions with some modification in the weak condition. This is the

Fock vacuum if one uses a harmonic oscillator representation with

Xu=(ay+a})/y2 andPy=(ay—aj;)/\/2i. Taking into account

operator ordering, then one findgz%aT~a+%(d+2) and com-

putes that the Fock vacuum hg¢j+1)=—1+d%4 and m,

=%(d+2). The physical state condition gets modifiedJte= 7 (d

+2) instead of zero. This state is the lowest state of the nontrivial

discrete series representation of(Sp However, it is the trivial e 8p+

singlet state from the point of view of S@@) sincel yy=aj,ax L™ = _ , (40)

—aLaM annihilates it. This is the only state that would exist in the

theory if the signature wered(+2,0) or d+1,1).

L+ri:pi1 (38)

1
L+’"=§(x~p+p'x—x‘p+—p+x‘), (39

(X°p%+p°x%—2a)
X
- 7(x- p+p-X)+x ptx”
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L i — Ly oy 1
EX pPxX— §X~ pX (X2p2+p2X2—2a)

L 8p*
o IR ' Gh-Gi=| " _ . (50
oyl oyl -—nt +y—
2xp~x+2x(x pT+pTx) —7(x-p+p~x)+x‘p+x‘
(41)
and
where operators are ordered to ensure that all components of
LMN are Hermitian. All possible ordering constants are
uniquely fixed by Hermiticity except for the parametetin GRZE(X‘ p+p-X) (51)
L™'7. Our aim is to show that these operators form the 24 ’
correct commutation rules for S@), namely,
p?
: : . R, ~R_
[Lvn,Leol=inmpLlngtinngbme—i7nplvg Go+G1_2p+’ (52)
—inuqlne- (42)
. . ' . 1
This requirement fixes the parameter — 1. In particular, G(F;_G?: E)(2|o+_ (53
[Lf’i’LfJ]: idiL~"", = a=-1. (43 These structures do indeed correctly form the Lie algebras of

SO(2,2FSL(2R), ® SL(2R)g. We compute the guadratic
In a laborious calculation it can be verified that our construc-Casimir operator of each SL®) by j(j+1)=G3—G2
tion satisfies the correct commutation rules. The structure of G2, We find
the algebra may be described as follows. First note that
L#v=(LY,L=',L" ") form the SOf—1,1) Lorentz algebra, 1 1 1
and thatp#=(L*'*,L*'~,L*"") are the generators of trans- jR(jR+1)=ZL2+ E(d—Z)Z—Z(d—Z), (54)
lations. The set I(**,p*) forms the Poincarealgebra
ISO(d—1,1) in the massless sectpf=0. The operators

I ; 1+«

Kﬂ—_(L L . L™ ijlrf,e_ :Ehe SpeCI_aI anformal transfor- i+ D) =jr(ir+1) - — (55)
mations and finallyD =L is the dilatation operator.

It is also wuseful to note that the subset
(L' =,L*"7,L*' =" L*7) forms the algebra of SO(2,2).
Since SO(2,23SL(2R)_ ®SL(2R)R, it is convenient to
identify the SL(2R), ® SL(2R)g combinations as

where L?=3L;L" is the Casimir operator for the orbital
rotation subgroup SQ@(—2):

L2=p'x%p'—p-xx-p. (56)
Note that fora=—1 we havej =jr. The overall quadratic

1
G5=§(L+,_,+L+_), Go=Gi=L.,., (44  Casimir operator for SQ2) of Eq.(28) takes the form

1 o Co={L* F L7 }H{LY L7 = (LY 72— (L")
Gzzi(l—+'—’_|—+—)1 GoxGr=L.is, (45) _ _ _ _ 1 )
_{L+’|1L7’|}_{L+I,L*I}+ELijLH, (57)

which satisfy[ G},GR]=0 and

1 1
=L%+ —(d=2)?—=(d—2)—2L2%— - (d—2)%+L?,
[GI(‘,'R,GIi’R]:iGé’R,[GB’R,G;’R]Z—iGli’R, (46) 4 2

(58)
[GyR,.G5R=—iG5R. (47) o2
=——+1. (59
In our case we found the representation 4
As expected, the “orbital” part involving the canonical pairs
1 1 _ (x~,p™) and (x,p) dropped out. By comparison to the cova-
L_"/y. v — — + + ~o ! . .
G2_4()( P+p-X) 2(X pPTHpTXT), (48) riant form (28) we have verified thaC,(Sp(2))=0. This

makes sense since we have enforced the constraints at the
Lol classical level and thereby guaranteed that the 8)(gen-
Got+Gi=p", (49 erators vanish in the physical sector.
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C. Lorentz-covariant quantization and field theory pute the gauge-invarianty, in terms of &*,p*) by insert-

We may choose the gauge for the free particle partially tdng our gauge'choice and solutions of constraints given in
the following form in the basidi=(+',—",u): Egs.(60). We find

2 r_r 1 .
XM(T)=(1,X ;T),X“(T)), L* =§(p-x+x-p)+|, (65)
PM(7)=(0,p(7)-X(7),p"(7)). (60) L* #=p*, (66)
There remains the gauge degree of freedom that corresponds L*'#zlx pixh — Ex“p-x— Ex- DXt
to 7 reparametrizatiorw?(r) and the corresponding con- 2™ 2 2

straintp?(7)=0. The independent canonical pairs are quan-
tized aq x*,p”]=i n*”, which is Lorentz covariant. Physical
states| ¢) must satisfy thep?|¢)=0 condition weakly. The
well-known solution may be given inx space, ¢(x) L#Y=x#p"—x"p*, (68)
=(x| ), where(x|p,=—i(d/x*)(x|, for which the con-
straint takes t_he form of the Klein-Gordon equation for ayhere operators are ordered. The commutation rules for
massless particle: S0(d,2) are satisfied. All ordering ambiguities are uniquely
determined by Hermiticity,

—ix*, (67)

Cb(x)=0. 61)
(pa|LMNepo)y =(LMN | ), (69)

The field theory “effective action” that gives this equation is
relative to the nontrivial Lorentz-invariant norm in E@4).
This is the reason for the appearance of the anomalous cor-

seflef ddxﬁ a4 . (62) rections proportional ta in L+ ~",L~ "~ Without these
2 axt ax” anomaly pieces the generators are not Hermitian. As a check
that we have correctly ordered our operators we compute the
The solutions of the constraint are well known: dimension of the scalar field by applying™ ~ on it:
dk6(k°) - ‘ iL*’*’¢(x)=<x|i|_+’*’|¢>=1x-a¢>+ Ea.(xqs)—gb
¢(x)=f—5(k2)[a(k)e'k'X+aT(k)e—'k'X]. 2 2
(27T)d71
(63 d
=X-d¢+ E—l . (70

The stateg¢) have the Lorentz-invariant positive norm de-
fined by The dimension @/2—1) is the correct dimension of the sca-
lar field in the effective field theory actiof®2). We also see
i that by replacing,, = —id/9x* we arrive at the well-known
(Pl p)y=— EJ d9Ix(p* dop— dod* ¢), construction of the conformal group in terms of differential
operators as known in field theory. The effective field theory
Sq¢; and the dot product are invariants under thesedsZ)(

conformal transformations applied on the field:
=f d4~*ka'(k)a(k), (64)

Sp(x)=ieunL"Np(x),  8Ser1=0=8((¢pa| o))
(71)

which is independent of the time componefiteven though
x is not integrated. The Lorentz invariance of this norm is . ,
well known from the study of the Klein-Gordon equation, ThusL™ ™ is the dimension operatot,” * is the transla-
and can be seen by writing it in the forfidx/\---Adx  tion operator,L~ # is the generator of special conformal
NJ where J,=(—i/2)(¢*d,¢—3d,¢* ¢). If one wishes transformations, and*” is the generator of Lorentz trans-
one may rewrite the norm by choosing to fix the light coneformations.
time x* instead of the ordinary time®. We can now compute the quadratic Casimir operator for
Since SO(,2) is not manifest, we must check that the SO(d,2) in this gauge. As we have argued in the previous
gauge-invariant conserved symmetry generators fodSXp(  section, its value is gauge invariant; therefore it can be com-
have the correct commutation rulet?). We must first com- puted in any gauge. We find that it reduces to a number
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o . 1 new meaning of being the linear “Lorentz symmetry” in a
Co=—(L* 7 )2—{L""# L™ "y, + SLwl* (72 spacetime that includes two timelike dimensions. Which of
the two “times” x°',x° is the familiar time coordinate? For
the gauge choice we have made, timexsand with it we
have described the dynamics a free particle. However, there
are other choices of time as we have demonstrated in the
where all &,p) dependence has dropped 8dthe value of  classical solutions, here, and quantum solutions in another
the gauge invariant quadratic Casimir is again the same. Thisaper[1]. For other choices of time the Hamiltonian is dif-
fixes the Sp(R) representation uniquely t8,(Sp(2)=0  ferent and the physics looks differefsiich as the H atom
in agreement with the previous sections. even though we are describing the same overall system that
One may be puzzled by questions such as follows: Origizorresponds to a single unique representation of the confor-
nally the operatol.™ = was a transformation that acted mal group SO@,2). So the concept of “time” seems to be
purely in the extra dimensions®’ while leaving Minkowski  more general, and both of our two times play a physical role.
spacex* untouched; how can it now act like the scale trans-We may say that for the free massless particle the appearance
formations in Minkowski space? The answer is that we chosef conformal symmetnyjs the manifestation of a larger
the gaugeX*’ =1 that fixed a scale. However linear trans- spacetime that includes two timelike coordinat8snilarly,
formation in global SOd,2) transformsx™ out of this gauge for the H atom and other dual systems, the presence of the
slice. To come back to the same gauge one must apply alsocdnformal symmetrys part of the evidence of the presence
duality gauge transformation o¥M (7). The duality gauge of two timelike dimensions.
transformation that corresponds to a rescalingkof also Duality and the concept of two times are meshed together
rescales the rest of the components. This is precisely whé our theory. The duality we found is in the same spirit of
the operatot.*’'~" does on Minkowski space. The structure the duality symmetry of M theory, but its realization requires
of the gauge invariantoperatorL*"' “knows” that this WO time_like dimensions in target spa¥&' (7). This is more
gauge transformation must be performed)d(7). in line with the ideas of S theof6] and F theon|5]. In our

Through our construction, the conformal group of mass-case, we have actually constructed an action for a miniature

less field theories has now acquired the new meaning of be> theory, which should serve as a guide for constructing a

ing the Lorentz-like group in an actual spacetime with two'U!l ledged S theory in (10,2) and perhaps even in (11,3)
timelike dimension™. The conformal field theors; has d|menS|oni7]._ , ,

been expressed in a fixed gauge of the larger It'may be interesting to view our theqry aonformal
(d+2)-dimensional space. There should exist a fully cova-9"avity on the world line as T“"e‘;' ealrzherllm the paper. We
riant effective field theory corresponding to the Si(X) may then regard the gauge fields’t, A% A™) as the gauge

® Sp(2R) covariant quantization. The fully covariant action Peldsf for ttranslatlons, tQ|Ialltat|8ns, thand specw:)l confc&rmal
in d+2 dimensions would collapse to the effective action of ransiormations, respectively. Dur theory may be used as a
a massless particle given above upon gauge fixing. Such uide for generalizations from the world line to the world

field theory may be formulated in terms of a bilocal field S eet or world volume for various-branes. Although con-
¢>(X¥' ,xg”). formal gravity on the world sheet has been considered before

[23], our approach in phase space is somewhat different and
may yield a new and different action. Such a reformulation
V. OUTLOOK of p-brane actions would permit the introduction of two

We have seen that the familiar free massless particle iimelike dimensions irX™(7,04, ... o) just as in the par-
d-dimensional Minkowski spacetime may be viewed as reficle casep=0. .
siding in a larger spacetime df+2 dimensions. The higher _ The present paper, as well as some of our previous papers
spacetime includes gauge degrees of freedom, but in theid0—12, is an attempt to take the concept of two or more

presence the full S@(2) conformal invariance takes the timelike dimensions seriously. We may ask, are there more
observable effects of two timelike dimensions besides the

conformal invariance and the duality connections we have
3 _ _ _ suggested? To answer such a question it would be useful to
The dropping out of the orbital part is a phenomenon that occurgy,qy interacting theories that are consistent with the gauge
more generally for any Casimir operator in a more general construcdua”ty symmetries. This is essential in order to avoid ghosts.
tion available forany group[22]. For example, a more general As a first step one may explore the interacting the@gythat
construction for SQ4,2) including the spin operat@™” and the .14 resyit from a curved background id,) dimensions.
anomalous d'megic,m oge_r?m, o This is formulated by taking a curved meti@,,\(X1,X5)
JUo=LT o Aidy, I =LA, instead ofznyy in the action(4). One way to maintain the
I E= L id g — g%, local Sp(2R) symmetry is to také&s,,, as a function of only
J= Py gt the gauge-invariant combinatiodv'X]Ns”. It is also possible
also has the property thall Casimir operators do not depend on t0 study interactions using, in the presence of background
the “orbital” operators &,p) contained in the.™VN. In particular ~ gauge fieldsAy(X;,X,) that couple in a gauge-invariant
the quadratic casimir i€,=—d?/4+ (dy+ 1)2+%SMVSILV' way to DTXi'V'(r) in d+2 dimensions. Here it would be in-

d2

:—Z'i‘l, (73)
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teresting to explore the possible relation between our Sp(2) We would like to think that the presence of dualltg]
doubletA}, and the electric-magnetic dual potentials of Max-and conformal symmetry25] in M theory, as well as in
well’'s theory and its generalizatioi$4]. One thing that is special super Yang-Mills theories under current consider-
becoming clearer is that bilocal fields(X;,X,) are prob- ation, is also a sign of the presence of higher dimensions, and
ably going to be very useful for writing down the low energy in particular of extra timelike dimensions. Indeed various
effective theories consistently with the local SggRjnvari-  signs that the mysterious theory may actually have 12 dimen-
ance. sions with signature (10,2) have been accumulating. It has
The idea of bilocal fields also emerged before as a meanslso been argued that a fundamental theory thatdaifestly
of displaying the hidden timelike dimensions in certain covariantunder both duality and supersymmetry requires 14
Bogomol'nyi-Prasad-SommerfiekPS sectors which pro-  dimensions with signature (11,3) to display the covariance
vide short representations of the superalgebra of S tHédry  (in the spirit of the current paperand it must have certain
It was emphasized that such BPS sectors, which reveal extr@8ps” constraints that are due to gauge invariang8s The
timelike dimensions in black hole_{Q4], must be considered ,arious ideas outlined in this paper may be regarded as a
dual sectors to other BPS solutions of M theory. Progresg g step toward a formulation of such a theory.
along these and other directions for interacting theories will
be reported in the future. We hope that such interacting theo- This research was partially supported by the U.S. Depart-
ries would provide the means to discuss how to probe thénent of Energy under grant number DE-FG03-84ER40168,
higher hidden dimensions and perhaps find some additionand by the National Research Council under grant number
measurable consequences and tests. GACO021197.
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