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Gauged duality, conformal symmetry, and spacetime with two times

I. Bars, C. Deliduman, and O. Andreev*
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484

~Received 24 March 1998; published 11 August 1998!

We construct a duality between several simple physical systems by showing that they are different aspects
of the same quantum theory. Examples include the free relativistic massless particle and the hydrogen atom in
any number of dimensions. The key is the gauging of the Sp~2! duality symmetry that treats position and
momentum (x,p) as a doublet in phase space. As a consequence of the gauging, the Minkowski spacetime
vectorsxm,pm get enlarged by one additional spacelike and one additional timelike dimension to (xM,pM). A
manifest global symmetry SO(d,2) rotates (xM,pM)-like (d12)-dimensional vectors. The SO(d,2) symmetry
of the parent theory may be interpreted as the familiar conformal symmetry of quantum field theory in
Minkowski spacetime in one gauge or as the dynamical symmetry of a totally different physical system in
another gauge. Thanks to the gauge symmetry, the theory permits various choices of ‘‘time’’ which correspond
to different looking Hamiltonians, while avoiding ghosts. Thus we demonstrate that there is a physical role for
a spacetime with two times when taken together with a gauged duality symmetry that produces appropriate
constraints.@S0556-2821~98!04016-8#

PACS number~s!: 11.25.Hf, 11.10.Lm
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I. INTRODUCTION

The purpose of this paper is to introduce some new po
of view on duality as a gauge symmetry and to connect
ality to the concept of a spacetime with two timelike dime
sions. This is an attempt at finding a physical role for t
idea that there may be more than one timelike dimensio
describe our universe at the fundamental level. We will sh
that certain familiar physical systems, such as the free m
less relativistic particle, hydrogen atom, harmonic oscillat
and others, do fit such a concept, as reported in this p
and in a companion paper@1#. We will show that these and
other apparently different physical systems correspond to
same quantum Hilbert space characterized by auniqueuni-
tary representation of the conformal group SO(d,2) . We will
argue that the presence of conformal symmetry or dynam
symmetry in these special casesis evidence for the presenc
of two timelike coordinates. The physics looks different b
cause the choice of ‘‘time’’ is not unique and hence t
Hamiltonians look different, although they describe the sa
parent system for which we present an action. These spe
physical systems are related to each other by a duality th
a gauge symmetry. Thanks to the gauge symmetry ghost
eliminated from the two-time Hilbert space.

Clues for two or more timelike dimensions have be
emerging from various points of view, including the bra
scan @2#, the structure of extended supersymmetry
p-branes@3#, extensions of M theory@4# to F theory@5# and
S theory@6,7#, ~1,2! strings@8#, 12D super Yang-Mills and
supergravity theories in backgrounds of constant lightl
vectors@9#, and finally the discovery of models of multisu
perparticles that are fully covariant in~10,2! and ~11,3! di-
mensions@10–13#.

Two or more timelike dimensions are possible only w
appropriate gauge symmetry and constraints that reduce

*Permanent address: Landau Institute, Moscow, Russia.
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theory to an effective theory with a single timelike dime
sion and no ghosts. The gauged Sp(2) duality symmetry s
gested here is an evolution of the local bosonic symme
introduced in@10–12# for the same purpose. The differenc
is that we apply the concept to the phase space dou
(XM,PM) for a single particle rather than to a multiplet of th
positions of several particles (X1

M ,X2
M , . . . ). Wesuggest an

action principle in phase space, including invariant inter
tions with background fields, with and without supersymm
try.

We have suggestively named our local symplectic sy
metry Sp(2) ‘‘duality’’ because we see signs that our dua
is related to the generalized concept of electric-magnetic
ality in super Yang-Mills theories and M theory. Howeve
this connection remains to be established by further deta
study.

II. GAUGING DUALITY

The quantization rules of quantum mechanics are sy
metric under the interchange of coordinates and mome
This is known as the symplectic symmetry Sp(2) that tra
forms (x,p) as a doublet. Maxwell’s equations for electrici
and magnetism are symmetric under the interchange of e
tricity and magnetism in the absence of sources. The elec
and magnetic fields are generalized coordinates and
menta. In the presence of particles with quantized elec
and magnetic charges the symmetry is a discrete versio
Sp(2). This symmetry, known as ‘‘electric-magnetic dua
ity,’’ is apparently broken in our part of the universe by th
absence of magnetic monopoles and dyons. The idea
electric-magnetic duality symmetry has been generalized
recent nonperturbative studies of supersymmetric fi
theory@14# and string theory@15#, which are now believed to
be only some aspect of a larger, duality-invariant, mysteri
theory ~M theory, F theory, S theory, U theory, etc.!. In the
context of the mysterious theory, ‘‘duality,’’ which is a muc
© 1998 The American Physical Society04-1
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larger symmetry than Sp~2!, but containing it, is believed to
be a gauge symmetry.

In this paper we study an elementary system with lo
continuous Sp(2) duality symmetry. We start by reformul
ing the world line description of the standard free massl
relativistic point particle by gauging the Sp~2! duality sym-
metry. What we find in doing so is a more general theo
capable of describing not only the free particle but oth
physical systems dual to it, such as the hydrogen atom,
monic oscillator, and others.

To remove the distinction betweenx and p we will re-
name themX1

M[XM and X2
M[PM and define the double

Xi
M5(X1

M ,X2
M). The local Sp(2) acts as follows:

dvXi
M~t!5« ikvkl~t!Xl

M~t!. ~1!

Herev i j (t)5v j i (t) is a symmetric matrix containing thre
local parameters, and« i j is the Levi-Cività symbol that is
invariant under Sp(2,R) and serves to raise or lower indice
We also introduce an Sp(2,R) gauge fieldAi j (t) which is
symmetric in (i j ) which transforms in the standard way:

dvAi j 5]tv
i j 1v ik«klA

l j 1v jk«klA
il . ~2!

The covariant derivative is

DtXi
M5]tXi

M2« ikAklXl
M . ~3!

An action that is invariant under this gauge symmetry is

S05
1

2E0

T

dt~DtXi
M !« i j Xj

NhMN

5E
0

T

dtS ]tX1
MX2

N2
1

2
Ai j Xi

MXj
NDhMN . ~4!

Here hMN is a flat metric ind12 dimensions and a tota
derivative has been dropped in rewriting the first term. T
signature of the metrichMN is not specified at this stage, bu
we will see that it will beimposedon us that it must have
signature for two timelike dimensions. From the second fo
of the action one may identify the canonical conjugates
X1

M5XM and]S/]Ẋ1
M5X2

M5PM, so that the action is con
sistent with the idea that (X1

M ,X2
M) is the doublet (XM,PM)

rather than describing two particles.
If instead of the full Sp(2) group we had gauged a tria

gular Abelian subgroup containing onlyv22(t), and kept
only the gauge potentialA22(t), then the resulting action
would have been the free massless particle action in the
order formalism, withhmn the standard Minkowski metric
Thusv22 is closely related tot reparametrization invariance
but v12,v11 are new local symmetry parameters that per
the removal of redundant gauge degrees of freedom. In
presence of the gauge degrees of freedom we are able t
the structure of duality and the role it plays in exhibitin
higher symmetries in higher dimensions.

In addition to the local Sp(2,R) symmetry there is a mani
fest global symmetry SO(d,2) @assuming signature (d,2)#
acting on the space timeXi

M with d spacelike and two time
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like dimensions labelled by the indexM . This symmetry
contains the d-dimensional Poincare´ symmetry ISO(d
21,1) as a subgroup, but there is no translation symmetr
d12 dimensions. Using Noe¨ther’s theorem one finds th
generators of the symmetry SO(d,2):

LMN5« i j Xi
MXj

N5XMPN2XNPM. ~5!

They are manifestlygauge invariantunder the local Sp(2,R)
transformations.

To obtain spacetime supersymmetry in target space
use the Neveu-Schwarz approach but only for zero mod
To do so, phase space is enlarged by the addition of fer
onic degrees of freedomcM(t) which are their own canoni-
cal conjugates~i.e., they form a Clifford algebra when quan
tized!. The Sp(2) doublet is enlarged to an OSp(1/2) trip
(cM,X1

M ,X2
M) and the supergroup OSp(1/2) is gauged

adding two fermionic gauge potentialsFi in addition to the
three bosonic gauge potentialsAi j . The action is the direct
generalization of Eq.~4! to a gauge theory based o
OSp(1/2). In d1254,5,8,12 dimensions, in a particula
gauge, the degrees of freedom reduce correctly to the
N51 spacetime supersymmetric particle in Minkowsk
space in dimensionsd52,3,6,10. This scheme can be e
larged toN supersymmetries by gauging OSp(N/2). Like the
bosonic case, the supersymmetric case also has mul
physical sectors as seen from the point of view of vario
gauge choices for ‘‘time.’’ The supersymmetric case will
discussed in more detail in another paper@16#.

Interactions with gravitational fieldsGMN(X1 ,X2) and
gauge fieldsAj

N(X1 ,X2) in a way that respects the Sp(2
duality symmetry are possible~of course, also in the super
symmetric case!:

SG,A5
1

2E0

T

dtF ~DtXi
M !« i j Xj

NGMN~X1 ,X2!

1~DtXi
M !« i j AjN~X1 ,X2!

G . ~6!

GMN is a scalar under Sp(2) and a symmetric traceless
sor in d12 dimensions. SimilarlyAj

M is a doublet under
Sp(2) and a vector ind12 dimensions. It is tempting to
suggest that the Sp(2) doublet of electromagnetic fieldsAj

M

is related to the electric-magnetic dual potentials of Ma
well’s theory and its Yang-Mills generalizations. For the l
cal invariance to hold, there must be restrictions on the fu
tional forms of bothGMN(X1 ,X2) andAj

N(X1 ,X2) since the
arguments (X1 ,X2) also transform under Sp(2). These
amount to a set of differential equations that restrict the fu
tional forms of GMN(X1 ,X2) and Aj

N(X1 ,X2). One auto-
matic solution is to take any functionsGMN(L), Aj

N(L)
whereLMN is the gauge invariant combination of (X1 ,X2)
given in Eq.~5!. In the presence of the background fields t
global symmetry SO(d,2) is replaced by the Killing symme
tries of the background fields. We see that, for consiste
with the local symmetry, gravity and gauge interactions
more conveniently expressed in terms of bilocal fie
GMN(X1 ,X2) and Aj

N(X1 ,X2) in d12 dimensions. Bilocal
fields were advocated in@6# as a means of extending supe
gravity and super Yang-Mills theory to~10,2! dimensions
4-2
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GAUGED DUALITY, CONFORMAL SYMMETRY, AND . . . PHYSICAL REVIEW D 58 066004
based on clues from the Bogomol’nyi-Prasad-Sommerfi
~BPS! solutions of extended supersymmetry.

We refer to the forms of the actionsS0 ,SG,A above as the
first order formalism. Although not necessary, a second o
formalism is obtained ifX2

M is integrated out in the path
integral ~or eliminated semiclassically through one of t
equations of motion!. Eliminating X2

M is not easy for the
interacting case, but for the free actionS0 the result is

S05E dtF 1

2A22
~]tX

M2A12XM !22
A11

2
X•XG . ~7!

This form of the action may be thought of as ‘‘conform
gravity’’ on the world line, with the conformal group
SO(1,2)5Sp(2).

In this paper we will mainly analyze the simplest caseS0.
The configuration space version ofS0, Eq. ~7! was previ-
ously obtained with different reasoning and motivation@17#,1

and without the concept of duality. Our solutions to both t
classical and quantum problems go well beyond previ
discussion of this system@18–20#. More importantly, our
interpretation of the system and its scope as a theory
duality and two times, and the applications to physical s
ations are new.

III. CLASSICAL SOLUTIONS AND DUAL SECTORS

The equation of motion for (X1 ,X2) in the case ofS0 is

S ]tX
M

]tP
M D 5S A12 A22

2A11 2A12
D S XM

PM D . ~8!

In addition, the equation of motion for theAi j produces the
constraints

X•X50, X•P50, P•P50. ~9!

At least two timelike dimensions are required to obtain no
trivial solutions to the constraints@10#, and our gauge sym
metry does not allow more than two timelike dimensio
without running into problems with ghosts. Thus our syst
exists physically only with the signature (d,2).

To show that the massless Minkowski particle is one
the classical solutions of our system, we may choose
gauge A125A1150 and A2251, solve the equationXM

5QM1PMt, and obtain the constraintsQ25P25Q•P50.
There is a remaining gauge symmetry

v11~t!5v0
11, v12~t!52v0

11t1v0
12,

v22~t!5v0
11t222v0

12t1v0
22, ~10!

wherev0
i j aret-independent constants. Next define the ba

QM5(Q18,Q28,qm), PM5(P18,P28,pm), where68 indi-
cate a light-cone-type basis for the extra~1,1! dimensions

1We thank K. Pilch for discovering this reference at the time
publication.
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with metric h1828521. Using two parameters of the re
maining gauge freedom chooseQ1851, P1850, and solve
the two constraintsQ25Q•P50, so that the solution take
the form

X18~t!51, X28~t!5
q2

2
1q•pt,

Xm~t!5qm1pmt, p250 massless.
~11!

There remains one free gauge parameterv0
22 and one con-

straint P25p250, which is also what follows fromt rep-
arametrizations on the world line. The motion
d-dimensional Minkowski subspacexm(t) is the same as the
standard massless particle. Furthermore, the motion in
remaining two coordinatesX18,X28 is fully determined by
the position and momentum (qm,pm) in Minkowski space.

The free massless particle is not the only classical so
tion. For example, in the gaugeA1250, A115A225v the
solution is

XM5aMeivt1aM
† e2 ivt,

a•a5a†
•a5a†

•a†50. ~12!

This is an oscillatory motion with a different physical inte
pretation than the free relativistic particle. As we will se
our system has dual sectors that include the H atom
harmonic oscillator, which evidently are periodic system
Some previously known solutions include a massive part
in Minkowski space@17#, a massless particle in de Sitte
space@17#, etc. Thus, there are classical solutions of t
same system with various physical meanings.

What is going on is that choosing ‘‘time’’ is tricky in ou
system since there is more than one timelike dimension.
dynamics of the system is arranged to evolve according
some gauge choice of ‘‘time’’ which is not unique in th
system. For each such choice there is a corresponding
nonical conjugate Hamiltonian which looks like differe
physics. However, there really is one single overall the
that follows from our action. It has various physical interpr
tations that are dual to each other, where duality is the Sp
gauge symmetry that we have introduced. Under Sp
transformations every classical solution which has a differ
physical interpretation in some gauge can be mapped to
free massless particle by a gauge transformation and a
ferent choice of ‘‘time.’’

There is a gauge-invariant way to characterize the ove
system at the classical as well as quantum levels.
SO(d,2) global symmetry generatorsLMN are gauge invari-
ant, as well as constants of motion with respect to
‘‘time’’ t. Using the constraints, it is straightforward to com
pute that all the Casimir operators of SO(d,2) vanish at the
classical level:

Cn„SO~d,2!…5
21

n!
Tr~L !n50 classical. ~13!f
4-3
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I. BARS, C. DELIDUMAN, AND O. ANDREEV PHYSICAL REVIEW D58 066004
For a noncompact group such a representation is nontri
For example the free particle is such a representation. T
can be verified by inserting the free particle gauge of E
~11! into Eq. ~5!. As we will see, the Casimir operatorsCn
will not all be zero at the quantum level, when ordering
operators is taken into account. We will find very speci
values in the quantum gauge-invariant sector, in particu
C2„SO(d,2)…512d2/4. Both at the classical and quantu
levels, the Casimir invariants specify auniqueunitary repre-
sentation of SO(d,2) which fully characterizes the gauge
invariant physical space of the system. This approach d
not involve a choice of ‘‘time’’ or Hamiltonian or effective
Lagrangian in a fixed gauge.

Having realized this important observation one may n
understand more generally that in a special gauge we fin
rather nontrivial classical and quantum solution of our s
tem, namely, the hydrogen atom in any dimension~the non-
relativistic central force problem with the 1/r potential!. The
essential reason for its existence is that all the levels of th
atom taken together form a single irreducible representa
of the conformal group SO(d,2), in accordance with the ob
servation above. In fact, the representation is precisely
unique one that emerges from quantum ordering~next sec-
tion!, with specific values of the Casimir operators. It w
known that the H atom in three dimensions (d2153) forms
a single irreducible representation of SO~4,2! @21#. The well-
known SO(4) symmetry is the subgroup of SO(4,2). T
solution will be fully explained and generalized to any d
mension at the classical and quantum levels in a sepa
paper@1# ~with quantum ordering and other technical aspe
that differ from the old literature@21#!. It will also be shown
there that the harmonic oscillator in (d22) dimensions, with
its mass equal to a light cone momentum in an additio
dimension, is also a solution of the system. As for all so
tions, the H atom or harmonic oscillator are Sp(2) dual
the free massless relativistic particle.

To close this section we provide a general parametriza
of classical solutions in any gauge. We take advantage of
fact that the SO(d,2) generators are constants of moti
]tL

MN50 with respect to the ‘‘time’’t. A general classica
solution in any gauge may be given in various basesM
5(18,28,m), M5(08,18,m), M5(08,0,I ). The first is a
light-cone-type basis in the extra dimensionsX185(X08
1X18), X285 1

2 (X082X18), and the last distinguishes th
two timelike coordinates from the spacelike ones. The fi
two are covariant under SO(1,1)^ S(d21,1) and the last is
covariant under SO(2)̂SO(d). The general solution is

M5@18,28,m#,

XM5Fa,b,
2aL28m1bL18m

ad2bc G ,
PM5Fc,d,

2cL28m1dL18m

ad2bc G ,
~14!

with
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S A12 A22

2A11 2A12
D 5S ]ta ]tb

]tc ]td
D S a b

c dD
21

, ~15!

where the matrix„a(t),b(t),c(t),d(t)… is a group element
of GL(2,R). It can be checked that by inserting this form in
Eq. ~5! the constantsL68m that appear in Eqs.~14! are con-
sistent with their definitions. Another constant of motion
the determinant of the matrix

L18285ad2bc. ~16!

So, effectively, the local gauge group is Sp(2) as para
etrized by (a,b,c,d). The remaining generatorsLmn, which
are also constants of motion, are now written in terms of
constantsL1828, L68m:

Lmn5XmPn2XnPm5
1

L1828
~L18mL28n2L28mL18n!.

~17!

We may forget completely about the gauge potentialsAi j and
concentrate instead on the local group element (a,b,c,d)
and the global symmetry generatorsLMN. The constraints~9!

become conditions to be satisfied by theL68m,L1828,Lmn

without any condition on the group element:

L18mL18nhmn5L28mL28nhmn50,

1

2
~Lmn!25L18mL28nhmn52~L1828!2.

~18!

With these conditions the Casimir operator for SO(d,2) be-
comes

C25
1

2
~LMN!250, ~19!

at the classical level, and similarly for all higher Casim
coefficients. But we will see below that in quantum theo
when we watch the orders of the operators, the quadr
Casimir operators will beC2512d2/4. Similarly all higher
Casimir operators of SO(d,2) vanish at the classical leve
but not at the quantum level.

The same arguments may be repeated in the other ba
For example, in the basisM5(08,0,I ) we have

M5@08, 0, I #,

XM5Fa, b,
2aL0I1bL08I

ad2bc G ,
PM5Fc, d,

2cL0I1dL08I

ad2bc G , ~20!
4-4
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GAUGED DUALITY, CONFORMAL SYMMETRY, AND . . . PHYSICAL REVIEW D 58 066004
with

L0805ad2bc,

LIJ5
1

L080
~L08IL0J2L08JL0I !, ~21!

and

~L0I !25~L08I !252
1

2
~LIJ!252~L080!2, ~22!

so that again Eq.~19! and the same conditions on the high
order Casimir operators hold.

IV. QUANTUM THEORY

In any gauge the naive quantum rules that follows fro
the actionS0 are @Xi

M ,Xj
N#5 i« i j h

MN. These are subject to
the constraintXi•Xj50. We will rewrite these in any gaug
as

@XM,PN#5 ihMN, X25P25X•P50. ~23!

As usual one may approach the problem of quantization
covariant formalism or in a noncovariant formalism.

In a covariant formalism one may apply the constraints
states constructed in a Hilbert space that obeys the n
quantization rules above. This approach would be manife
covariant under both the duality symmetry Sp(2,R) as well
as the SO(d,2) symmetry. But it does not seem to give dire
insight into the physical content of the theory since ‘‘time
or ‘‘Hamiltonian’’ is not specified. In this paper we wil
obtain one crucial result on the values of the Casimir ope
tors Cn„SO(d,2)… that follow from covariant quantization.

In a noncovariant formalism both the duality symme
and the manifest SO(d,2) symmetry are broken by th
choice of gauges and solution of the constraints. One m
then verify that the quantization procedure respects
gauge-invariant algebra of the global SO(d,2) generators
LMN in Eq. ~5!. In the fixed gauge formalism these gene
tors incorporate the naive global transformation on thed
12 spacetime coordinates as well as the duality transfor
tions Sp(2,R). This is because after an SO(d,2) transforma-
tion one goes out of the gauge slice, and a gauge trans
mation must be applied to go back to the gauge slice. Th
the details of the SO(d,2) conformal generators in the fixe
gauge provide information on the duality transformations.
a fixed gauge some of theLMN require normal ordering o
the canonical degrees of freedom and therefore there
anomaly coefficients. The closure of the algebra can fix so
of these coefficients, but it turns out that this is not so
every gauge. It turns out that imposing the eigenvalues of
Casimir operatorsCn obtained in the covariant quantizatio
must be used to fully determine the anomaly coefficients
particular for the hydrogen atom this additional constrain
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needed. In this paper we will treat only the free particle
two different gauges and verify that we have the correct r
resentation.

A. SO„d,2… and Sp„2… covariant quantization

The Hermitian quantum generators of Sp(2,R) are

J05
1

4
~P21X2!, J15

1

4
~P22X2!, ~24!

J25
1

4
~X•P1P•X!. ~25!

The Lie algebra that follows from the quantum rules is

@J0 ,J1#5 iJ2 , @J0 ,J2#52 iJ1 , @J1 ,J2#52 iJ0 .
~26!

The quadratic Casimir operatorC2„Sp(2)…5J0
22J1

22J2
2

takes the Hermitian form~watching the orders of operators!

C2„Sp~2!…5
1

4FXMP2XM2~X•P!~P•X!1
d2

4
21G ,

~27!

where the constant term arises from reordering the opera
(d12)224(d12)5d224. The gauge-invariant SO(d,2)
Lorentz generators given in Eq.~5! are used to compute th
quadratic Casimir operator for SO(d,2). One finds that the
quadratic Casimir operator of the two groups are related

C2„SO~d,2!…5
1

2
LMNLMN5FC2„Sp~2!…112

d2

4 G ,
~28!

whereC2„Sp(2)… is given by Eq.~27!. SinceLMN is gauge
invariant, bothC2„SO(d,2)… and C2„Sp(2)… must have the
same spectrum in any quantization scheme in any gauge

We will describe the general properties of the covaria
Hilbert space we should find. The ‘‘physical’’ states form
subset of the Hilbert space for which the matrix elements
Sp(2,R) generators vanish weakly:

^physuJ0,1,2uphys8&;0. ~29!

For SL(2,R)5Sp(2,R) all the unitary representations are l
belled by u jm&. Within this space the singlet stat
C2„Sp(2)…5 j ( j 11)50 and m50 satisfy the physical re-
quirements. This is the module with only one state from
point of view of Sp(2,R). However, there can be an infinit
number of such gauge-invariant states which are class
by the global symmetry SO(d,2). This must be the case sinc
we already know that there is a nontrivial solution of t
4-5
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constraints in the classical limit when the signature ofhMN is
(d,2).2 Thus, we have argued that for nontrivial states
must have

C2„SO~d,2!…512
d2

4
, C2„Sp~2!…50. ~30!

This will be confirmed by the noncovariant quantization b
low. To compute the eigenvalues of all the Casimir operat
Cn we use the same approach. We find that allCn at the
quantum level can first be written in terms ofC2„Sp(2)… plus
normal ordering constants that depend ond. Once the gen-
eral expression is obtained we setC2„Sp(2)…50 and obtain
the eigenvalues ofCn(SO(d,2)) for the gauge-invarian
states. This procedure uniquely determines the phys
space content of our theory as aunique unitary representa
tion of the conformal group SO(d,2). We only need the qua
dratic Casimir operator in the present paper.

Although we have identified the physical representat
of Sp(2,R) and SO(d,2), building explicitly the Sp(2,R) and
SO(d,2) fully covariant Hilbert space in terms of the cov
riant canonical variablesXM,PM remains as an open prob
lem. For a physical interpretation this is desirable. A natu
approach to study the general problem covariantly is in te
of bilocal fields f(X1

M ,X2
M). Recall that bilocal fields are

also relevant as background fields in the general actionSG,A .

B. Fully gauge-fixed quantization

In the noncovariant approach we choose a gauge
solve all the constraints at the classical level, and then qu
tize the remaining degrees of freedom. The advantage of
approach is that unitarity is manifest and we work direc
with the physical states. The disadvantage is that by cho
ing a gauge we hide the duality properties. We will discu
here only the free massless particle interpretation of the
bert space. In another paper we will show that the sa
Hilbert space is dual to the H atom and also to the harmo
oscillator. We fix three gauges that make evident the f
particle interpretation as in the classical solution~11!, X18
51,P1850,X15p1t. Since we will express the commuta
tion rules att50, we have, in a light cone basisM5(18,
28,1,2,i ),

XM5~1,x28;0,x2;xi !, PM5~0,p28;p1,p2,pi !,
~31!

2There is another trivial state that satisfies the physical state
ditions with some modification in the weak condition. This is t
Fock vacuum if one uses a harmonic oscillator representation
XM5(aM1aM

† )/A2 andPM5(aM2aM
† )/A2i . Taking into account

operator ordering, then one findsJ05
1
2 a†

•a1
1
4 (d12) and com-

putes that the Fock vacuum hasj ( j 11)5211d2/4 and m0

5
1
4 (d12). The physical state condition gets modified toJ05

1
4 (d

12) instead of zero. This state is the lowest state of the nontri
discrete series representation of Sp(2). However, it is the trivial
singlet state from the point of view of SO(d,2) sinceLMN5aM

† aN

2aN
† aM annihilates it. This is the only state that would exist in t

theory if the signature were (d12,0) or (d11,1).
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where the transverse vectorsxi ,pi are in (d22) dimensions.
Inserting this form in the constraints gives

x285
x2

2
, p285~x•p2x2p1!, p25

p2

2p1
, ~32!

where we have usedh18285h12521. The canonical
pairs are

@x,p#, @x2,p1#, Fx150,p25
p2

2p1G ,

Fx285
x2

2
,p1850G , @x1851,p285~x•p2x2p1!#.

~33!

The ones in the first line,@x,p‡,@x2,p1# are the true canoni-
cal operators for the relativistic particle, which are quantiz
according to the usual canonical rules:

@xi ,pj #5 id i j , @x2,p1#5 ih1252 i . ~34!

On the other hand,x150,x1851,p1850 are gauge choice
andp2,p28,x28 are dependent operators which must be
placed by the given expressions in all gauge-invariant
servables.

Recall that the Lorentz generatorsLMN are gauge inde-
pendent and commute with the Sp(2,R) generators. There
fore they can be expressed in any gauge, consistently
the constraints, by simply replacing our gauge choice~31!,
~32! into Eq. ~5!. Thus, we obtain

Li j 5xipj2xjpi , ~35!

L1 i52xi p1, L2 i5x2pi2
pjxipj

2p1
, ~36!

L1252
1

2
~x2p11p1x2!, L2815

1

2
x2p1,

~37!

L1815p1, L1825
p2

2p1
, L18 i5pi , ~38!

L18285
1

2
~x•p1p•x2x2p12p1x2!, ~39!

L2825F 1

8p1
~x2p21p2x222a!

2
x2

2
~x•p1p•x!1x2p1x2

G , ~40!

n-

th

l

4-6
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L28 i5F 1

2
xjpixj2

1

2
x•pxi

2
1

2
xip•x1

1

2
xi~x2p11p1x2!

G ,

~41!

where operators are ordered to ensure that all componen
LMN are Hermitian. All possible ordering constants a
uniquely fixed by Hermiticity except for the parametera in
L282. Our aim is to show that these operators form t
correct commutation rules for SO(d,2), namely,

@LMN ,LPQ#5 ihM PLNQ1 ihNQLM P2 ihNPLMQ

2 ihMQLNP . ~42!

This requirement fixes the parametera521. In particular,

@L28 i ,L2 j #5 id i j L282, → a521. ~43!

In a laborious calculation it can be verified that our constr
tion satisfies the correct commutation rules. The structur
the algebra may be described as follows. First note
Lmn5(Li j ,L6 i ,L12) form the SO(d21,1) Lorentz algebra
and thatpm5(L181,L182,L18 i) are the generators of trans
lations. The set (Lmn,pm) forms the Poincare´ algebra
ISO(d21,1) in the massless sectorp250. The operators
Km5(L281,L282,L28 i) are the special conformal transfo
mations and finallyD5L1828 is the dilatation operator.

It is also useful to note that the subs
(L686,L687,L1828,L12) forms the algebra of SO(2,2)
Since SO(2,2)5SL(2,R)L ^ SL(2,R)R , it is convenient to
identify the SL(2,R)L ^ SL(2,R)R combinations as

G2
L5

1

2
~L18281L12!, G0

L6G1
L5L686 , ~44!

G2
R5

1

2
~L18282L12!, G0

R6G1
R5L687 , ~45!

which satisfy@Ga
L ,Gb

R#50 and

@G0
L,R ,G1

L,R#5 iG2
L,R,@G0

L,R,G2
L,R#52 iG1

L,R, ~46!

@G1
L,R,G2

L,R#52 iG0
L,R. ~47!

In our case we found the representation

G2
L5

1

4
~x•p1p•x!2

1

2
~x2p11p1x2!, ~48!

G0
L1G1

L5p1, ~49!
06600
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G0
L2G1

L5F 1

8p1
~x2p21p2x222a!

2
x2

2
~x•p1p•x!1x2p1x2

G , ~50!

and

G2
R5

1

4
~x•p1p•x!, ~51!

G0
R1G1

R5
p2

2p1
, ~52!

G0
R2G1

R5
1

2
x2p1. ~53!

These structures do indeed correctly form the Lie algebra
SO(2,2)5SL(2,R)L ^ SL(2,R)R . We compute the quadrati
Casimir operator of each SL(2,R) by j ( j 11)5G0

22G1
2

2G2
2. We find

j R~ j R11!5
1

4
L21

1

16
~d22!22

1

4
~d22!, ~54!

j L~ j L11!5 j R~ j R11!2
11a

4
, ~55!

where L25 1
2 Li j L

i j is the Casimir operator for the orbita
rotation subgroup SO(d22):

L25pix2pi2p•xx•p. ~56!

Note that fora521 we havej L5 j R . The overall quadratic
Casimir operator for SO(d,2) of Eq. ~28! takes the form

C25$L181,L282%1$L182,L281%2~L1828!22~L12!2

2$L18 i ,L28 i%2$L1 i ,L2 i%1
1

2
Li j L

i j , ~57!

5L21
1

4
~d22!22~d22!22L22

1

2
~d22!21L2,

~58!

52
d2

4
11. ~59!

As expected, the ‘‘orbital’’ part involving the canonical pai
(x2,p1) and (x,p… dropped out. By comparison to the cov
riant form ~28! we have verified thatC2„Sp(2)…50. This
makes sense since we have enforced the constraints a
classical level and thereby guaranteed that the Sp(2,R) gen-
erators vanish in the physical sector.
4-7
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C. Lorentz-covariant quantization and field theory

We may choose the gauge for the free particle partially
the following form in the basisM5(18,28,m):

XM~t!5S 1,
x2~t!

2
,xm~t! D ,

PM~t!5„0,p~t!•x~t!,pm~t!…. ~60!

There remains the gauge degree of freedom that corresp
to t reparametrizationv22(t) and the corresponding con
straintp2(t)50. The independent canonical pairs are qu
tized as@xm,pn#5 ihmn, which is Lorentz covariant. Physica
statesuf& must satisfy thep2uf&50 condition weakly. The
well-known solution may be given inx space, f(x)
5^xuf&, where ^xupm52 i (]/]xm)^xu, for which the con-
straint takes the form of the Klein-Gordon equation for
massless particle:

hf~x!50. ~61!

The field theory ‘‘effective action’’ that gives this equation

Se f f5
1

2E ddx
]f

]xm

]f

]xn
hmn. ~62!

The solutions of the constraint are well known:

f~x!5E ddku~k0!

~2p!d21
d~k2!@a~k!eik•x1a†~k!e2 ik•x#.

~63!

The statesuf& have the Lorentz-invariant positive norm d
fined by

^fuf&52
i

2E dd21x~f* ]0f2]0f* f!,

5E dd21ka†~k!a~k!, ~64!

which is independent of the time componentx0 even though
x0 is not integrated. The Lorentz invariance of this norm
well known from the study of the Klein-Gordon equatio
and can be seen by writing it in the form*dx`•••`dx
`J where Jm5(2 i /2)(f* ]mf2]mf* f). If one wishes
one may rewrite the norm by choosing to fix the light co
time x1 instead of the ordinary timex0.

Since SO(d,2) is not manifest, we must check that th
gauge-invariant conserved symmetry generators for SO(d,2)
have the correct commutation rules~42!. We must first com-
06600
o

ds

-

pute the gauge-invariantLMN in terms of (xm,pm) by insert-
ing our gauge choice and solutions of constraints given
Eqs.~60!. We find

L18285
1

2
~p•x1x•p!1 i , ~65!

L18m5pm, ~66!

L28m5
1

2
xlpmxl2

1

2
xmp•x2

1

2
x•pxm

2 ixm, ~67!

Lmn5xmpn2xnpm, ~68!

where operators are ordered. The commutation rules
SO(d,2) are satisfied. All ordering ambiguities are unique
determined by Hermiticity,

^f1uLMNf2&5^LMNf1uf2&, ~69!

relative to the nontrivial Lorentz-invariant norm in Eq.~64!.
This is the reason for the appearance of the anomalous
rections proportional toi in L1828,L28m. Without these
anomaly pieces the generators are not Hermitian. As a ch
that we have correctly ordered our operators we compute
dimension of the scalar field by applyingL1828 on it:

iL 1828f~x!5^xu iL 1828uf&5
1

2
x•]f1

1

2
]•~xf!2f

5x•]f1S d

2
21Df. ~70!

The dimension (d/221) is the correct dimension of the sca
lar field in the effective field theory action~62!. We also see
that by replacingpm52 i ]/]xm we arrive at the well-known
construction of the conformal group in terms of different
operators as known in field theory. The effective field theo
Se f f and the dot product are invariants under these SO(d,2)
conformal transformations applied on the field:

df~x!5 i«MNLMNf~x!, dSe f f505d~^f1uf2&!.
~71!

Thus L1828 is the dimension operator,L18m is the transla-
tion operator,L28m is the generator of special conform
transformations, andLmn is the generator of Lorentz trans
formations.

We can now compute the quadratic Casimir operator
SO(d,2) in this gauge. As we have argued in the previo
section, its value is gauge invariant; therefore it can be co
puted in any gauge. We find that it reduces to a number
4-8
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C252~L1828!22$L18m,L28n%hmn1
1

2
LmnLmn ~72!

52
d2

4
11, ~73!

where all (x,p) dependence has dropped out.3 The value of
the gauge invariant quadratic Casimir is again the same.
fixes the Sp(2,R) representation uniquely toC2„Sp(2)…50
in agreement with the previous sections.

One may be puzzled by questions such as follows: Or
nally the operatorL1828 was a transformation that acte
purely in the extra dimensionsX68 while leaving Minkowski
spacexm untouched; how can it now act like the scale tran
formations in Minkowski space? The answer is that we ch
the gaugeX1851 that fixed a scale. However linear tran
formation in global SO(d,2) transformsXM out of this gauge
slice. To come back to the same gauge one must apply a
duality gauge transformation onXM(t). The duality gauge
transformation that corresponds to a rescaling ofX18 also
rescales the rest of the components. This is precisely w
the operatorL1828 does on Minkowski space. The structu
of the gauge invariantoperatorL1828 ‘‘knows’’ that this
gauge transformation must be performed onXM(t).

Through our construction, the conformal group of ma
less field theories has now acquired the new meaning of
ing the Lorentz-like group in an actual spacetime with tw
timelike dimensionsXM. The conformal field theorySe f f has
been expressed in a fixed gauge of the lar
(d12)-dimensional space. There should exist a fully co
riant effective field theory corresponding to the SO(d,2)
^ Sp(2,R) covariant quantization. The fully covariant actio
in d12 dimensions would collapse to the effective action
a massless particle given above upon gauge fixing. Su
field theory may be formulated in terms of a bilocal fie
f(X1

M ,X2
M).

V. OUTLOOK

We have seen that the familiar free massless particl
d-dimensional Minkowski spacetime may be viewed as
siding in a larger spacetime ofd12 dimensions. The highe
spacetime includes gauge degrees of freedom, but in t
presence the full SO(d,2) conformal invariance takes th

3The dropping out of the orbital part is a phenomenon that occ
more generally for any Casimir operator in a more general const
tion available forany group @22#. For example, a more genera
construction for SO(d,2) including the spin operatorsmn and the
anomalous dimension operatord0,

J18285L18281id0, J18m5L18m,

J28m5L28m2id0x
m2smlxl ,

Jmn5Lmn1smn,
also has the property thatall Casimir operators do not depend o
the ‘‘orbital’’ operators (x,p) contained in theLMN. In particular
the quadratic casimir isC252d2/41(d011)21

1
2 smnsmn .
06600
is

i-

-
e

o a

at

-
e-

r
-

f
a

in
-

eir

new meaning of being the linear ‘‘Lorentz symmetry’’ in
spacetime that includes two timelike dimensions. Which

the two ‘‘times’’ x08,x0 is the familiar time coordinate? For
the gauge choice we have made, time isx0 and with it we
have described the dynamics a free particle. However, th
are other choices of time as we have demonstrated in
classical solutions, here, and quantum solutions in ano
paper@1#. For other choices of time the Hamiltonian is di
ferent and the physics looks different~such as the H atom!,
even though we are describing the same overall system
corresponds to a single unique representation of the con
mal group SO(d,2). So the concept of ‘‘time’’ seems to b
more general, and both of our two times play a physical ro
We may say that for the free massless particle the appear
of conformal symmetryis the manifestation of a larger
spacetime that includes two timelike coordinates. Similarly,
for the H atom and other dual systems, the presence of
conformal symmetryis part of the evidence of the presenc
of two timelike dimensions.

Duality and the concept of two times are meshed toget
in our theory. The duality we found is in the same spirit
the duality symmetry of M theory, but its realization requir
two timelike dimensions in target spaceXM(t). This is more
in line with the ideas of S theory@6# and F theory@5#. In our
case, we have actually constructed an action for a minia
s theory, which should serve as a guide for constructin
full fledged S theory in (10,2) and perhaps even in (11
dimensions@7#.

It may be interesting to view our theory asconformal
gravity on the world line as noted earlier in the paper. W
may then regard the gauge fields (A22,A12,A11) as the gauge
fields for translations, dilatations, and special conform
transformations, respectively. Our theory may be used a
guide for generalizations from the world line to the wor
sheet or world volume for variousp-branes. Although con-
formal gravity on the world sheet has been considered be
@23#, our approach in phase space is somewhat different
may yield a new and different action. Such a reformulati
of p-brane actions would permit the introduction of tw
timelike dimensions inXM(t,s1 , . . . ,sp) just as in the par-
ticle casep50.

The present paper, as well as some of our previous pa
@10–12#, is an attempt to take the concept of two or mo
timelike dimensions seriously. We may ask, are there m
observable effects of two timelike dimensions besides
conformal invariance and the duality connections we ha
suggested? To answer such a question it would be usef
study interacting theories that are consistent with the ga
duality symmetries. This is essential in order to avoid gho
As a first step one may explore the interacting theorySG that
would result from a curved background in (d,2) dimensions.
This is formulated by taking a curved metricGMN(X1 ,X2)
instead ofhMN in the action~4!. One way to maintain the
local Sp(2,R) symmetry is to takeGMN as a function of only
the gauge-invariant combinationXi

MXj
N« i j . It is also possible

to study interactions usingSA in the presence of backgroun
gauge fieldsAM

i (X1 ,X2) that couple in a gauge-invarian
way to DtXi

M(t) in d12 dimensions. Here it would be in

rs
c-
4-9
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teresting to explore the possible relation between our Sp
doubletAM

i and the electric-magnetic dual potentials of Ma
well’s theory and its generalizations@14#. One thing that is
becoming clearer is that bilocal fieldsf(X1 ,X2) are prob-
ably going to be very useful for writing down the low energ
effective theories consistently with the local Sp(2,R) invari-
ance.

The idea of bilocal fields also emerged before as a me
of displaying the hidden timelike dimensions in certa
Bogomol’nyi-Prasad-Sommerfield~BPS! sectors which pro-
vide short representations of the superalgebra of S theory@6#.
It was emphasized that such BPS sectors, which reveal e
timelike dimensions in black holes@24#, must be considered
dual sectors to other BPS solutions of M theory. Progr
along these and other directions for interacting theories
be reported in the future. We hope that such interacting th
ries would provide the means to discuss how to probe
higher hidden dimensions and perhaps find some additi
measurable consequences and tests.
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We would like to think that the presence of duality@4#
and conformal symmetry@25# in M theory, as well as in
special super Yang-Mills theories under current consid
ation, is also a sign of the presence of higher dimensions,
in particular of extra timelike dimensions. Indeed vario
signs that the mysterious theory may actually have 12 dim
sions with signature (10,2) have been accumulating. It
also been argued that a fundamental theory that ismanifestly
covariantunder both duality and supersymmetry requires
dimensions with signature (11,3) to display the covarian
~in the spirit of the current paper!, and it must have certain
‘‘BPS’’ constraints that are due to gauge invariances@7#. The
various ideas outlined in this paper may be regarded a
small step toward a formulation of such a theory.
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