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Noncommutative gauge theories in matrix theory
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We present a general framework for matrix theory compactified on a quotient Bpcewith I' a discrete
group of Euclidean motions iR". The general solution to the quotient conditions gives a gauge theory on a
noncommutative space. We characterize the resulting noncommutative gauge theory in terms of the twisted
group algebra of" associated with a projective regular representation. Also we show how to extend our
treatments to incorporate orientifold$0556-282(98)04218-0

PACS numbgs): 11.25.Mj, 02.40-k, 11.25.Sq

[. INTRODUCTION product of X can be used to define the integration on the
space. FinallyD is a derivation acting oft{, called the Dirac
According to general relativity, classical gravity is noth- operator, representing the usual derivative operator.
ing but(spacetimggeometry. It has long been suspected that Gauge theory on a honcommutative space will be abbre-
qguantum fluctuations of gravity near the Planck scale mayiated asnoncommutative gauge theoftMCGT). The gauge
make points in space fuzzy and, therefore, call for modifyinggroup G(A) is the group of unitary elements A, while the
our current description of geometry. Recent progress irtovariant derivative is obtained by adding terms of the form
string theory has indeed confirmed this suspicion. Facts ani;a;[ D,b;] for a; ,b; € A to the Dirac operator. The general-
arguments on the lately discovered string dualities havézed gauge potential in this form is used to incorporate the
pointed to the existence of a fundamental quantum theory imsual Higgs field$7] in the Yang-Mills-Connes action. Pre-
eleven dimensional spacetime, called M theory, which unviously we have showh8] that the BFSS matrix model ac-
derlies all known five perturbative superstring theofigs  tion, which is given by the dimensional reduction of ten di-
The Banks-Fischler-Shenker-Susskiid8FSS matrix model  mensional supersymmetric Nj Yang-Mills theory down to
was proposed in Ref2] for the microscopic description of 0+ 1 dimension, can be understood as an NCGT: The defin-
M theory in discrete light-cone quantizatifl, in terms of a  ing algebra is4do=My(C), that of NX N complex matrices,
set ofN partons, called DO-branes, on which strings can endand the Hilbert space i&,=CN. The Dirac operator is sim-
A novel feature of the Natrix) theory is that the nine trans- ply D=T"%d,+Ao)+I'*X, . Here both the gauge potential
verse coordinateX* (u=1,2,...,9) of the DO-branes are A, and the “Higgs” fieldsX* (u=1,2,....,9) are thegen-
promoted4] into NX N Hermitian matrices. One smells the eralized gauge potentialén the following the explicit form
need for new geometry that deals with spaces whose coordsf the BFSS action is not needgd.
nates(as functions on the spacare nhoncommutative. Such In a recent papdi9], matrix theory on a torus is shown to
spaces are calletbncommutative spaceand their geometry be described by NCGT on a quantum torus. A further case-
noncommutative geomet(}NCG). by-case study is given in RgfL0]. In this note we will show
NCG, as Connes advocat¢fl], deals with a geometric that matrix theory compactified oR"/T", with T a discrete
spacenotas a set of points, instead starting with the set of allgroup of Euclidean motions irR", generically leads to
functions defined on it. For usual manifolds, the latter formsNCGT characterized by the group algebralofwisted by a
a commutative algebra, from which one can reconstruct thgrojective regular representation. Appropridtggrading or

underlying manifold, in accordance with the Gel'fand- 7,-graded extension df will incorporate orientifolds.
Naimark theoren{6]. But in NCG, it can be a noncommu-

tative algebra. The precise data for defining a noncommuta-

tive space consist of the spectral triglé,H,D) [5]. Here A IIl. QUOTIENT CONDITIONS
is an associative algebra, thought of as the algebra of func-
tions (including the coordinatg@on the spacel is a Hilbert We want to study the compactification of some transverse

space that represents the algeldras operators acting on it, directions on a flat quotient spa&®/I", with n<9 andI" a
thought of as the Hilbert space on which the coordinates ardiscrete group of the Euclidean motionsRfi. If the action
represented as operators; the trace associated with the inr&fT is free(i.e. has no fixed poinisthenR"/T" is a manifold
with I" as the fundamental group; otherwise it is an orbifold.
ForgeT', we write the action ofy on xe R" asx—xg
*Present address: Department of Physics, Jadwin Hall, Princetore Ry(X) + T¢(X), whereRy is a rotation, whileT a transla-

University, Princeton, NJ 08544, tion. For simplicity, assum€& preserves orientation and con-
TOn sabbatical from Department of Physics, University of Utah,sider the naturally lifted action df on the matrix-valuec*,
Salt Lake City, UT 84112-0830. denoted asb, for geI':
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DE(X) = (Ry)“X"+ A1, (1)

X* is unchanged if it is not in the compactified directions.

The superpartner?” transforms under®, as a ten-
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=q(e,9)=1. The associativity Y;U )U,=U;(UyUy,) leads
to the 2-cocycle condition

q(f,g)q(fg,h)=q(f,gh)q(g,h). (5

dimensional Majorana-Weyl spinor under the proper rotation

Ry. Or one may work out the action d#, on ¥ by requir-

Thus, the operatorbly's in the quotient conditions form a

ing the Matrix model action be invariant. Below we will faithful, projective representation of’, determined by &-
concentrate on the bosonic variables, since the fermionigocycle dg,h). The faithfulness implies that only, is pro-

ones can be similarly treated.

portional tol. Physically we need this condition, in order for

To implement the compactification, we follow the tech- the quotient conditions to faithfully describe the desired
niques for dealing with D-branes on a quotient spacecompactification.

[11,12,13. Namely for a DO-brane located at some point in

R"/T", we need to consider all image DO-branesfhunder
the action ofl", locating on d-orbit. Then the(Chan-Paton
label for the DO-brane is extended from a single
(=1,2,...,N) to a pair @,i) with geI'. The compactifica-

tion (or quotien to R"/T" implies gauging the discrete sym-

For instance, ifg and h commute with each other:
gh=hg, then the difference#(g,h) = a(g,h) —a(h,g) is a
cohomological invariant. So the projectivity conditigs)
can be replaced by

UgUp=explif(g,h)}UpUg. (6)

metry I' for the DO-brane quantum mechanics, or the gauge _ _
equivalence of the open strings described by the coordinate Using eachUgy(gel’) as a basis vector, we can generate

matrix element){(“)(glyi),(gzyn and by its image under simul-
taneous action of ong; andg,:

(X*)(g,0.0.(80.1)= Pg (X(gy i).(g5.0))- )

We introduce a set of unitary operatofl:gel’} to
implement the action ofF on the matrix variables:

©)

Then gauging the discrete symmefrycan be achieved by

-1 _
Ug IXHUg=DX(X).

a vector space with complex coefficients, whose dimension
is the ordelI’| of the groupr’, i.e. the number of elements in
I', which is either finite or countable. Upon introducing mul-
tiplication of two U’s by Eq. (4), this complex vector space

is turned into an algebra, denoted @8I', called the group
algebra ofl” twisted (or deformed by the 2-cocyclen.

Now we come to the key point of our approach: In the
spirit of NCG using an algebra to define a space, we use the
twisted group algebra&C°T" to define a noncommutative
space, and construct a Hilbert spade to represent the al-
gebra. It is natural to take it to be the linear space spanned by

(1) including Ug's into the theory and making them part of {Ug} in the projectiveregular representation: Thely's act
the gauge group, so that the physical states are invaria@? C“I' by multiplication. There is a one-to-one correspon-
underI” and (2) extending path integral quantization to in- dence between the badi, in C*T" and the basis states in
clude the twisted sectors, which are represented by the soldZr - The state corresponding to the identity operatqris

tions to the above quotient conditiof®. Note that the shift

called the “vacuum” state, denoted asThen the state cor-

operatorU ; also admits the following interpretation in string responding toUy, is denoted asJy). Now Ug's are repre-

picture: Viewed fromR", corresponding to eadd there is

sented as operators Gify whose action is the same as their

an open string stretching between a DO-brane and one of i&ction onC“T".

images that is labelled hy. Upon compactification t&"/T",
it becomes a strindin the ground stalewinding on the
1-cycle corresponding tg. As the size ofR"/T" tends to

Moreover, we need to define an inner productt,
which should make the operatddg, unitary. It is easy to see
that the inner product should be defined by the cyclic linear

zero, these winding states become massless, so we haveftgictional

incorporate them into the compactified theory.

Ill. PROJECTIVE REPRESENTATION
AND TWISTED GROUP ALGEBRA

It follows from the group property ob, in the conditions
(3) that the action olJ U, is the same as that &f 5, so
they can differ only by a phase factor:

UgUp=q(g,h)Ugp, (4)
with g(g,h) = exgia(g,h)}. Hereq(g,h) or a(g,h) depends
on a pair of group elementg(h). We do not want to im-

pose constraints more than necesddd, the operatoiJ,
(corresponding to the identity of I') has to be the identity

(Ug)=46(g,e), (7)
where d(g,e) is 0 if g#e, and is 1 ifg=e. Then the trace
over Hy is simply |I'| times this linear functional.

IV. GENERAL SOLUTION TO QUOTIENT CONDITIONS

Before solving the quotient conditions, upon extending
the Chan-Paton indices fromto (g,i), the algebra4 of the
spectral triple defining the matrix model is enlarged to
A=0O(Hr) X Ay, whereO(Hr) is the algebra of operators
on Hr, while the gauge group is the groug(A), of all
unitary elements in the algebrd. Our problem of Matrix
theory compactification is now reduced to finding the general

operatorl up to a phase factor. Without loss of generality wesolution to the quotient conditions on the noncommutative

rescaleU, to 1. Then it follows from Eq.(4) that q(g,e)

space, namely to write down the general solution Xéfts,
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which are understood as operatorsdracting on the Hilbert
spaceH="Hr X Hg.

To find the general solution, one may follow Zumino’s
prescription[10]. The quotient conditions imply that the ac-
tion of X on the basis ofH, consisting ofU,’s acting on
the “vacuum” state), is determined by its action on the
vacuum, which can be an arbitrary stateHn

XEy=AH(U)). )
HereA*(U) =2, ra*(g)Uq (With a#(g) € Ay) is a general
element of the algebrd. Then for the stat&X“U,), one may
use the quotient condition8) to moveX* to the right, then
use Eq.(8) to obtain

Un®{(X))=Un[ (Ry)yA"(U) +dfT), ©)

Introducing the projective operatoFy, for ge '

PgUh>: 5(g1h)Uh>! (10)
and the elements of some “dual” algebra
On=2 Ugu,U, Py, (11)
gel
then Eq.(9) can be written as
[A*(D)RE+d#TUy), (12)
where
RE=D (RyHPy, dv=2 diPg. (13)
gel’ gel
Thus the general solution of is
X+*=A"U)R:+d*, (14)

All physical (gauge fieldl degrees of freedom iX reside in

PHYSICAL REVIEW D58 066003

V. THE RESULTING NONCOMMUTATIVE
GAUGE THEORY

To characterize the resulting theory as NCGT, let us first
note that after imposing the quotient conditions, the surviv-
ing groupG’ of (local) gauge symmetry becomes the com-
mutant of Ar=C*T" in G(A), i.e.,

G'={geG(A):[g,U,]=0VheTl}. (17

Hence one may take the algebra in the spectral triple defining
the compactified matrix model to be the commutantgfin

A'={ae A:[a,U,]=0Yhel}, (18

so thatG’ is the group of unitary elements id’.

From the general solutiofil4), it is easy to see that
A'= A X Ay, where Ay is spanned by the operatd'fsl’s.
It is easy to verify that

[Uy,Ugl=0, Vh,geTl, (19)

DgUh:eia(h’g)Uhg. (20)
Thus Ay is isomorphic to the algebra obtained frafy by
reversing the ordering of all products. There is also a one-to-
one correspondence betweeR; and Ap given by
Ug> = Ug><—>L~Jg .

In the spirit of NCG, we use the algebtd; and the
associated Hilbert spacH| to define the noncommutative
dual space for the compactified matrix model. Both of them
are characterized by a projectiviacluding genuingregular
representation oF, known to be faithful.

Consider the group of elements= G(.A) preserving the
quotient conditions, i.e.

gUng~*=ePMuy, (2D)

for some B(h) for all heI'. The gauge grouf’ is the

the functionA#(U) defined on the dual space, which can besubgroup of those elements wig(h) =0 for allheT. Itis

viewed as the generalized gauge field in NCGT.
As for Ay and X*'s not in the compactified directions,
they are invariant undet,, so the solutions are simply

Ao=Ay(U) andx*=X*(U). [See Eq(19) below]
The constant operatoR* andd* commute among them-
selves and satisfy

RD,=04R4(Ry)7, (15)

d“0y=04(Redy+dm). (16)

For a group of translations,Rg)4 =&, for all gel’, so
R“= " and Eq.(16) suggests thaii* are derivatives with
respect to the exponents 0f[9,10]. In general, the operator

R also has the interpretation of a derivative on a noncommu-

tative space. A simple example was utilized H to formu-

easy to see tha#(h) has to be a 1-cocycle for ER1) to be
consistent withAr. There is a one-to-one correspondence
betweenH(I",U(1)) and scalings olU,, by phase factors
which can be realized as conjugation by element§(id).
Such transformations shift the exponentslyf (andU,,) by
constants, s&1(I",U(1)) can be viewed as the global sym-
metry group of translations on the dual space. Generally any
algebra automorphism od;. is a global symmetry not exist-
ing before compactification.

Substituting the solutiorf14) into the BFSS action, we
will get the (bosonic part of action for the resulting NCGT,
including deformed Yang-Mills theories and gauged sigma
models(see below for examples

VI. EXAMPLES

A. Matrix theory on quantum tori

late the Higgs field in the standard model as the covariant To show how our abstract approach works in practice, let

derivative on the space of two points.

us first examine the case whénis generated by transla-
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tionst, alongdy (n,a=1,... n=2). Sincel' is Abelian,
Eq. (6) applies. Takingg=t,, h=t,, all nontrivial 2-
cocycles of I' are determined by6,,=— 0,,= 0(t,,tp)
e[0,2m). Ar is generated b)UaEUta satisfying U U,
= expli f,,)UpU,. The dual A} is generated byJ,’s, which
satisfy Egs. (19) and (20 U,U,=U,U, and U,U,
= exp{—i ﬂab}UbUa .

These are just the quantum tori introduced in R@fin a
different way. So we are able to reproduce all results ther

In particular, sinceR“=&", Eq. (16) implies that if we re-
alize U, as the basic functions efip,} on the torus with

€.

PHYSICAL REVIEW D58 066003

sentation is block-diagonalR’s consist of off-diagonal
blocks, which connect neighboring unitary groups making up
the total gauge group, with a structure isomorphic to the
adjacency matriA for the extended Dynkin diagrariThese

considerations foR can be generalized to projective repre-
sentations for arbitrary/, asRy is always a representation of
I" even ifd§+0.)

After taking into account of the fermionic partners, we get
hypermultiplets which transform in the fundamental repre-
Sentations of the unitary groups, according to the representa-

tions @ a,s(n, ,Hs). Pictorially, they correspond to the links
in the extended Dynkin diagram. Put everything together, the

coordinates &o,<2m, then d* are the derivatives field content one obtains is th§=1, D=6 supersymmetric
—id5dldo,. The noncommutative nature of the torus is ex-Yang-Mills theory dimensionally reduced totQL (or 1+ 1)
hibited in the unusual multiplication law for two functions, dimensions, if we start with the BFSS Matrix DO-brafue

pertinent to Eq(20):

L
2

a
]fl((f)fz(a’)

ab do, 60'{)

(fl*fz)(rf)=exp[

o=0'

With [ X#,X”] understood as{“xX”—X"xX*, one gets a
deformed Yang-Mills theory parametrized W, on the
torus with coordinates, [9].

B. Matrix theory on ALE orbifolds

string theory.

VII. ORIENTIFOLDS

We may also consider actions bflifted to matrix vari-
ables other than the natural one. For instance, to extend our
treatments to incorporate orientifolds, we need to consider a
Z,-grading or aZ,-graded extension of the group [11].

This means that we associate a numbgg)=0,1 to each
elementg e I' so that this assignment is compatible with the
product in the(extendegl group:

As the second example, let us consider matrix theory on

asymptotically locally EuclideafALE) orbifolds [15,16.
One will see how the results in type 1B theofy2,17] are
recovered.

The ALE orbifolds areC?/T", whereC? is the complexi-
fication of R* by definingZt=X®%+iX" and Z?=X8+iX?,
andTI is a discrete subgroup of $2) properly acting orC2.

Such subgroups have been classified by Klein in last centu

[18]. They are all finite. The action df on C? is homoge-
neous: ®4(X)=Ry(X), where Ry is the two dimensional

n(g)+n(h)=n(gh) (mod 2. (23
The quotient conditiori3) for Uy with n(g) =0 remains un-
changed, while fon(g)=1 it should be modified to

Ug X U= DH(XD), (24)

"WhereT denotes transposition of the matrices. This is what

we want for orientifolding, because taking the transpose of
the matrix variables corresponds to reversing the orientita-

representation of' embedded in the fundamental represen-on of the open strings connecting the DO-branes.

tation of SU2).

The solutions of the matrix variables are immediately

Z'=A(0)R], Ag=Ay(U) andx#=Xx*(0) fori,j=1,2 and
n=1,....5.

For the case afdr being the untwisted group algehbtd’,
Hy is the genuine regular representationldfThe natural
action of Uy's on Ar are represented By'| X |T'| matrices,

which can be made block-diagonal so that each irreducible

representatioR; of I appears as am X n; block n; times. In
the basis wheréJ, are block-diagonal, so ar&, and X*.
The gauge grou’ is thus a product of unitary groups for
each block:F=II,U(n;N). It can be shown that the opera-

tors R are determined by the well-known representation de

composition:

PR, =d®asRs, (22

wherea,¢ are the elements of the adjacency magixf the

simply laced extended Dynkin diagrams. Namé®s con-
nect the neighboring verticeR, and Ry) in the extended

Dynkin diagram. So in the basis in which the regular repre-

To put the quotient conditions for both(g)=0 and
n(g) =1 into the same form, instead bf; we may consider
U,=U,C"9, whereC is the complex conjugation operator.
Then it is not difficult to repeat the orbifold construction
above for the orientifolds by including this,-grading.

In terms ofU,, the quotient condition is

Uy X#Ug= DA (X), (25)
where the algebra dilg is given by
UgUp=€'*@My, (26)

for somea(g,h). If n(g)=1, thenUgc=c* U, for a com-
plex numberc. The associativity of the algebra bf; implies
that

5a(f1g1h)5(_1)n(f )a(g,h)—a(fg,h)
ta(f,gh)—a(f,g) (27)

=0 (mod 2m); (28
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and shiftingU, by a phase factoe'#® implies that UaUp=0apUap, |Gapl=1, (34)
or equivalently a phase factor for each defining relation: each
a(g,h)—a(g,h)—6B(g,h), (29  f(91,....9,)=e gives rise to
fm(Ug, ... U)=pml, |pm|:1! (35

where 8(g,h)=(—1)"9B(h)—B(gh)+B(g). The co-
boundary operatow defines a cohomology?(I",U(1)),
which can be viewed as the set of inequivalent consistenﬁ3
choices of the algebra &fy [19]. The equivalent classes af

in H2(I",U(1)) correspond to possible backgrounds for the

compactification. Apparently the formulation of orbifolds yhereg,, is antisymmetric. Working only with generators or
can be viewed as a special case of the orientifolds with theyith defining relations simplifies the job of finding all pos-

For instance, iU, commutes withJ,, one may replace Eq.
4) with

UanIeXp{iHab}UbUa, (36)

trivial Z,-grading:n(g)=0 for allgeT. sible 2-cocycles.
Similarly we define the operato'Etg acting on the Hilbert We can generate the twisted group algebta, and the
space spanned by,): representation Hilbert spac#-, in terms of the generators

U.'s. Following the above procedure, one can solveXtis
B in the quotient conditions in terms &f,'s (or U,’s), which
UgUn)=UpUy), (300 can be viewed as a set of coordinates on the dual space.
Examples presented in R¢fL0] were worked out explicitly
in details in this way.
and it follows that So the use of presentation is technically very helpful.
However, the presentation of a given grolipmay not be
_ uniqgue. We would like to emphasize that the underlying
[Ug,Un]=0, (31  mathematics and physics are independent of the choice of a
presentation. In particular it is possible that different choices
of generators inl" can lead to essentially the same set of
090h=0hgei“(h’g)5, (32) “defor!’ned” defining relation§(35), when there i_s a corre-
sponding algebra automorphism gt} (or Ar). This can be
understood as a global symmetry on the dual space where the

wheree=(—1)a andﬁUg>=n(g)Gg>. For (Ry)%, d being generators ofdy. can be interpreted as coordinates.
real, the solution oX* to the quotient condition is
IX. DISCUSSIONS

— vl - vk (TN DM 1
X#=(A" (V) A-n)+A (U)mR, +d*, (33 To conclude, the following remarks are in order.

~ ~ ) ! (1) When the fermionic fieldV” is taken into account, the
whereR; andd* are still defined by Eq(13), but now the  g.6yp T generically will be extended into a larger group
projection operatorPy is defined byPgUp)=48(9,h)Un).  acting on a superspace. Since the spinor representation of
Several examples of this general solution were presented ighatial rotations is a double covering of the vector represen-
Ref.[10]. Here the new insight provided by the present treatyation, the 2-cocycler(g,h) may include the operatorrF,

ment is that Matrix) theory compactified on orientifolds also \ynereF is the fermion number operator. The Dirac operator

corresponds to nhoncommutative gauge theory. acting on’ is then given b)fODO-‘rFMXM with A, andX,
the general solution to the quotient conditions.
VIIl. PRESENTATION OF THE GROUP T (2) In matrix theory, there should be many NCGT's re-

sulting from compactification on flat quotier®/T", with T’
being a point group or space groupRi (for 2<n<9) and
allowing a nontrivial 2-cocycle.
(3) Our approach can be easily used to construct the quo-
nt matrix theory onM/T", if Matrix theory on M is
'’ known and has a discrete symmeliyf M. It also applies
to compactification of any other matrix models, such as the
Ishibashi-Kawai-Kitazawa-Tsuchiya matrix model for type
[IB strings[20].

In the above, we have worked with all elementsIyf
however, in practice it may be more convenient to work with
a presentation(caution: not representatiprof the discrete
groupI'. By presentation we mean a finite set of generator%e
0a's (a=1,2,...,r) and a finite set of defining relations
R:f(91,...,0,)=¢€, (1=m=Kk), such thaf is isomorphic
to the groupF freely generated by, quotient by the equiva-
lence relationdR. Then an arbitrary elememnt of I" can be
written as a product of the generatays, with the relations
R understood.

If a presentation of” is known, we only need to write
down the quotient conditions for the generators, with corre- p.M.H. thanks Yi-Yen Wu for discussion. This work was
sponding operatorsl;=U, . Also for a 2-cocycle, we only  supported in part by NSF grant No. PHY-9601277 and a
need to introduce phase factors for pairs of generators:  grant from Monell Foundation.
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