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Noncommutative gauge theories in matrix theory
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We present a general framework for matrix theory compactified on a quotient spaceRn/G, with G a discrete
group of Euclidean motions inRn. The general solution to the quotient conditions gives a gauge theory on a
noncommutative space. We characterize the resulting noncommutative gauge theory in terms of the twisted
group algebra ofG associated with a projective regular representation. Also we show how to extend our
treatments to incorporate orientifolds.@S0556-2821~98!04218-0#

PACS number~s!: 11.25.Mj, 02.40.2k, 11.25.Sq
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I. INTRODUCTION

According to general relativity, classical gravity is not
ing but~spacetime! geometry. It has long been suspected t
quantum fluctuations of gravity near the Planck scale m
make points in space fuzzy and, therefore, call for modify
our current description of geometry. Recent progress
string theory has indeed confirmed this suspicion. Facts
arguments on the lately discovered string dualities h
pointed to the existence of a fundamental quantum theor
eleven dimensional spacetime, called M theory, which
derlies all known five perturbative superstring theories@1#.
The Banks-Fischler-Shenker-Susskind~BFSS! matrix model
was proposed in Ref.@2# for the microscopic description o
M theory in discrete light-cone quantization@3#, in terms of a
set ofN partons, called D0-branes, on which strings can e
A novel feature of the M~atrix! theory is that the nine trans
verse coordinatesXm (m51,2,. . . ,9) of the D0-branes ar
promoted@4# into N3N Hermitian matrices. One smells th
need for new geometry that deals with spaces whose coo
nates~as functions on the space! are noncommutative. Suc
spaces are callednoncommutative spaces, and their geometry
noncommutative geometry~NCG!.

NCG, as Connes advocated@5#, deals with a geometric
spacenot as a set of points, instead starting with the set of
functions defined on it. For usual manifolds, the latter for
a commutative algebra, from which one can reconstruct
underlying manifold, in accordance with the Gel’fan
Na�mark theorem@6#. But in NCG, it can be a noncommu
tative algebra. The precise data for defining a noncomm
tive space consist of the spectral triple~A,H,D! @5#. HereA
is an associative algebra, thought of as the algebra of fu
tions ~including the coordinates! on the space.H is a Hilbert
space that represents the algebraA as operators acting on it
thought of as the Hilbert space on which the coordinates
represented as operators; the trace associated with the
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product ofH can be used to define the integration on t
space. FinallyD is a derivation acting onH, called the Dirac
operator, representing the usual derivative operator.

Gauge theory on a noncommutative space will be abb
viated asnoncommutative gauge theory~NCGT!. The gauge
groupG~A! is the group of unitary elements inA, while the
covariant derivative is obtained by adding terms of the fo
( iai@D,bi # for ai ,biPA to the Dirac operator. The genera
ized gauge potential in this form is used to incorporate
usual Higgs fields@7# in the Yang-Mills-Connes action. Pre
viously we have shown@8# that the BFSS matrix model ac
tion, which is given by the dimensional reduction of ten d
mensional supersymmetric U(N) Yang-Mills theory down to
011 dimension, can be understood as an NCGT: The de
ing algebra isA05MN(C), that ofN3N complex matrices,
and the Hilbert space isH05CN. The Dirac operator is sim-
ply D5G0(]01A0)1GmXm . Here both the gauge potentia
A0 and the ‘‘Higgs’’ fieldsXm (m51,2,. . . .,9) are thegen-
eralized gauge potentials.~In the following the explicit form
of the BFSS action is not needed.!

In a recent paper@9#, matrix theory on a torus is shown t
be described by NCGT on a quantum torus. A further ca
by-case study is given in Ref.@10#. In this note we will show
that matrix theory compactified onRn/G, with G a discrete
group of Euclidean motions inRn, generically leads to
NCGT characterized by the group algebra ofG twisted by a
projective regular representation. AppropriateZ2-grading or
Z2-graded extension ofG will incorporate orientifolds.

II. QUOTIENT CONDITIONS

We want to study the compactification of some transve
directions on a flat quotient spaceRn/G, with n<9 andG a
discrete group of the Euclidean motions inRn. If the action
of G is free~i.e. has no fixed points!, thenRn/G is a manifold
with G as the fundamental group; otherwise it is an orbifo

For gPG, we write the action ofg on xPRn as x→xg
[Rg(x)1Tg(x), whereRg is a rotation, whileTg a transla-
tion. For simplicity, assumeG preserves orientation and con
sider the naturally lifted action ofG on the matrix-valuedXm,
denoted asFg for gPG:

on

,
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Fg
m~X!5~Rg!n

mXn1dg
mI . ~1!

Xm is unchanged if it is not in the compactified direction
The superpartnerC transforms underFg as a ten-
dimensional Majorana-Weyl spinor under the proper rotat
Rg . Or one may work out the action ofFg on C by requir-
ing the Matrix model action be invariant. Below we wi
concentrate on the bosonic variables, since the fermio
ones can be similarly treated.

To implement the compactification, we follow the tec
niques for dealing with D-branes on a quotient spa
@11,12,13#. Namely for a D0-brane located at some point
Rn/G, we need to consider all image D0-branes inRn under
the action ofG, locating on aG-orbit. Then the~Chan-Paton!
label for the D0-brane is extended from a singlei
(51,2,. . . ,N) to a pair (g,i ) with gPG. The compactifica-
tion ~or quotient! to Rn/G implies gauging the discrete sym
metry G for the D0-brane quantum mechanics, or the gau
equivalence of the open strings described by the coordi
matrix element (Xm)(g1 ,i ),(g2 , j ) and by its image under simul

taneous action ofG on g1 andg2 :

~Xm!~g1g,i !,~g2g, j !5Fg
m~X~g1 ,i !,~g2 , j !!. ~2!

We introduce a set of unitary operators$Ug :gPG% to
implement the action ofG on the matrix variables:

Ug
21XmUg5Fg

m~X!. ~3!

Then gauging the discrete symmetryG can be achieved by
~1! including Ug’s into the theory and making them part o
the gauge group, so that the physical states are inva
underG and ~2! extending path integral quantization to in
clude the twisted sectors, which are represented by the s
tions to the above quotient conditions~3!. Note that the shift
operatorUg also admits the following interpretation in strin
picture: Viewed fromRn, corresponding to eachUg there is
an open string stretching between a D0-brane and one o
images that is labelled byg. Upon compactification toRn/G,
it becomes a string~in the ground state! winding on the
1-cycle corresponding tog. As the size ofRn/G tends to
zero, these winding states become massless, so we ha
incorporate them into the compactified theory.

III. PROJECTIVE REPRESENTATION
AND TWISTED GROUP ALGEBRA

It follows from the group property ofFg in the conditions
~3! that the action ofUgUh is the same as that ofUgh , so
they can differ only by a phase factor:

UgUh5q~g,h!Ugh , ~4!

with q(g,h)5exp$ia(g,h)%. Hereq(g,h) or a(g,h) depends
on a pair of group elements (g,h). We do not want to im-
pose constraints more than necessary@14#, the operatorUe
~corresponding to the identitye of G! has to be the identity
operator1 up to a phase factor. Without loss of generality w
rescaleUe to 1. Then it follows from Eq.~4! that q(g,e)
06600
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5q(e,g)51. The associativity (U fUg)Uh5U f(UgUh) leads
to the 2-cocycle condition

q~ f ,g!q~ f g,h!5q~ f ,gh!q~g,h!. ~5!

Thus, the operatorsUg’s in the quotient conditions form a
faithful, projective representation ofG, determined by a2-
cocycle q(g,h). The faithfulness implies that onlyUe is pro-
portional to1. Physically we need this condition, in order fo
the quotient conditions to faithfully describe the desir
compactification.

For instance, if g and h commute with each other
gh5hg, then the differenceu(g,h)5a(g,h)2a(h,g) is a
cohomological invariant. So the projectivity condition~4!
can be replaced by

UgUh5exp$ iu~g,h!%UhUg . ~6!

Using eachUg(gPG) as a basis vector, we can genera
a vector space with complex coefficients, whose dimens
is the orderuGu of the groupG, i.e. the number of elements i
G, which is either finite or countable. Upon introducing mu
tiplication of two U ’s by Eq. ~4!, this complex vector space
is turned into an algebra, denoted asCaG, called the group
algebra ofG twisted ~or deformed! by the 2-cocyclea.

Now we come to the key point of our approach: In t
spirit of NCG using an algebra to define a space, we use
twisted group algebraCaG to define a noncommutative
space, and construct a Hilbert spaceHG to represent the al-
gebra. It is natural to take it to be the linear space spanne
$Ug% in the projectiveregular representation: TheUg’s act
on CaG by multiplication. There is a one-to-one correspo
dence between the basisUg in CaG and the basis states i
HG . The state corresponding to the identity operatorUe is
called the ‘‘vacuum’’ state, denoted as&. Then the state cor-
responding toUh is denoted asUh&. Now Ug’s are repre-
sented as operators onHG whose action is the same as the
action onCaG.

Moreover, we need to define an inner product inHG ,
which should make the operatorsUg unitary. It is easy to see
that the inner product should be defined by the cyclic lin
functional

^Ug&5d~g,e!, ~7!

whered(g,e) is 0 if gÞe, and is 1 ifg5e. Then the trace
overHG is simply uGu times this linear functional.

IV. GENERAL SOLUTION TO QUOTIENT CONDITIONS

Before solving the quotient conditions, upon extendi
the Chan-Paton indices fromi to (g,i ), the algebraA of the
spectral triple defining the matrix model is enlarged
A[O(HG)3A0 , whereO(HG) is the algebra of operator
on HG , while the gauge group is the group,G~A!, of all
unitary elements in the algebraA. Our problem of Matrix
theory compactification is now reduced to finding the gene
solution to the quotient conditions on the noncommutat
space, namely to write down the general solution forXm’s,
3-2
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NONCOMMUTATIVE GAUGE THEORIES IN MATRIX THEORY PHYSICAL REVIEW D58 066003
which are understood as operators inA acting on the Hilbert
spaceH[HG3H0 .

To find the general solution, one may follow Zumino
prescription@10#. The quotient conditions imply that the ac
tion of X on the basis ofHG , consisting ofUh’s acting on
the ‘‘vacuum’’ state&, is determined by its action on th
vacuum, which can be an arbitrary state inH:

Xm&5Am~U !&. ~8!

HereAm(U)5(gPGam(g)Ug ~with am(g)PA0! is a general
element of the algebraA. Then for the stateXmUh&, one may
use the quotient conditions~3! to moveXm to the right, then
use Eq.~8! to obtain

UhFh
m~X!&5Uh@~Rh!n

mAn~U !1dh
m#&, ~9!

Introducing the projective operatorsPg for gPG:

PgUh&5d~g,h!Uh&, ~10!

and the elements of some ‘‘dual’’ algebra

Ũh[ (
gPG

UgUhUg
21Pg , ~11!

then Eq.~9! can be written as

@An~Ũ !R̃n
m1d̃m#Uh&, ~12!

where

R̃n
m[ (

gPG
~Rg!n

mPg , d̃m[ (
gPG

dg
mPg . ~13!

Thus the general solution ofX is

Xm5An~Ũ !R̃n
m1d̃m. ~14!

All physical ~gauge field! degrees of freedom inX reside in
the functionAm(Ũ) defined on the dual space, which can
viewed as the generalized gauge field in NCGT.

As for A0 and Xm’s not in the compactified directions
they are invariant underUg , so the solutions are simpl
A05A0(Ũ) andXm5Xm(Ũ). @See Eq.~19! below.#

The constant operatorsR̃n
m andd̃m commute among them

selves and satisfy

R̃n
mŨg5ŨgR̃s

m~Rg!n
s , ~15!

d̃mŨg5Ũg~R̃n
mdg

n1d̃m!. ~16!

For a group of translations, (Rg)n
m5dn

m for all gPG, so

R̃n
m5dn

m and Eq.~16! suggests thatd̃m are derivatives with

respect to the exponents ofŨ @9,10#. In general, the operato
R̃ also has the interpretation of a derivative on a noncomm
tative space. A simple example was utilized in@7# to formu-
late the Higgs field in the standard model as the covar
derivative on the space of two points.
06600
-
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V. THE RESULTING NONCOMMUTATIVE
GAUGE THEORY

To characterize the resulting theory as NCGT, let us fi
note that after imposing the quotient conditions, the surv
ing groupG8 of ~local! gauge symmetry becomes the com
mutant ofAG[CaG in G~A!, i.e.,

G85$gPG~A!:@g,Uh#50,;hPG%. ~17!

Hence one may take the algebra in the spectral triple defin
the compactified matrix model to be the commutant ofAG in
A:

A85$aPA:@a,Uh#50,;hPG%, ~18!

so thatG8 is the group of unitary elements inA8.
From the general solution~14!, it is easy to see tha

A85AG83A0 , whereAG8 is spanned by the operatorsŨg’s.
It is easy to verify that

@Ũh ,Ug#50, ;h,gPG, ~19!

ŨgŨh5eia~h,g!Ũhg . ~20!

ThusAG8 is isomorphic to the algebra obtained fromAG by
reversing the ordering of all products. There is also a one
one correspondence betweenHG and AG8 given by

Ũg&5Ug&↔Ũg .
In the spirit of NCG, we use the algebraAG8 and the

associated Hilbert spaceHG to define the noncommutativ
dual space for the compactified matrix model. Both of the
are characterized by a projective~including genuine! regular
representation ofG, known to be faithful.

Consider the group of elementsgPG(A) preserving the
quotient conditions, i.e.

gUhg215eib~h!Uh , ~21!

for some b(h) for all hPG. The gauge groupG8 is the
subgroup of those elements withb(h)50 for all hPG. It is
easy to see thatb(h) has to be a 1-cocycle for Eq.~21! to be
consistent withAG . There is a one-to-one corresponden
betweenH1

„G,U(1)… and scalings ofUh by phase factors
which can be realized as conjugation by elements inG~A!.
Such transformations shift the exponents ofŨh ~andUh! by
constants, soH1

„G,U(1)… can be viewed as the global sym
metry group of translations on the dual space. Generally
algebra automorphism ofAG8 is a global symmetry not exist
ing before compactification.

Substituting the solution~14! into the BFSS action, we
will get the ~bosonic part of! action for the resulting NCGT,
including deformed Yang-Mills theories and gauged sig
models~see below for examples!.

VI. EXAMPLES

A. Matrix theory on quantum tori

To show how our abstract approach works in practice,
us first examine the case whenG is generated byn transla-
3-3
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tions ta along da
m (m,a51, . . . ,n>2). SinceG is Abelian,

Eq. ~6! applies. Takingg5ta , h5tb , all nontrivial 2-
cocycles of G are determined byuab52uba5u(ta ,tb)
P@0,2p). AG is generated byUa[Uta

satisfying UaUb

5exp$iuab%UbUa . The dualAG8 is generated byŨa’s, which

satisfy Eqs. ~19! and ~20!: ŨaUb5UbŨa and ŨaŨb

5exp$2iuab%ŨbŨa .
These are just the quantum tori introduced in Ref.@9# in a

different way. So we are able to reproduce all results th
In particular, sinceR̃n

m5dn
m , Eq. ~16! implies that if we re-

alize Ũa as the basic functions exp$isa% on the torus with
coordinates 0<sa,2p, then d̃m are the derivatives
2 ida

m]/]sa . The noncommutative nature of the torus is e
hibited in the unusual multiplication law for two function
pertinent to Eq.~20!:

~ f 1! f 2!~s!5expH i

2
uab

]

]sa

]

]sb8
J f 1~s! f 2~s8!U

s5s8

.

With @Xm,Xn# understood asXm!Xn2Xn!Xm, one gets a
deformed Yang-Mills theory parametrized byuab on the
torus with coordinatessa @9#.

B. Matrix theory on ALE orbifolds

As the second example, let us consider matrix theory
asymptotically locally Euclidean~ALE! orbifolds @15,16#.
One will see how the results in type IIB theory@12,17# are
recovered.

The ALE orbifolds areC2/G, whereC2 is the complexi-
fication of R4 by definingZ15X61 iX7 and Z25X81 iX9,
andG is a discrete subgroup of SU~2! properly acting onC2.
Such subgroups have been classified by Klein in last cen
@18#. They are all finite. The action ofG on C2 is homoge-
neous:Fg(X)5Rg(X), where Rg is the two dimensiona
representation ofG embedded in the fundamental represe
tation of SU~2!.

The solutions of the matrix variables are immediate
Zi5Aj (Ũ)R̃j

i , A05A0(Ũ) andXm5Xm(Ũ) for i , j 51,2 and
m51,...,5.

For the case ofAG being the untwisted group algebraCG,
HG is the genuine regular representation ofG. The natural
action ofUg’s onAG are represented byuGu3uGu matrices,
which can be made block-diagonal so that each irreduc
representationRi of G appears as anni3ni block ni times. In
the basis whereUg are block-diagonal, so areA0 and Xm.
The gauge groupG8 is thus a product of unitary groups fo
each block:F5P rU(nrN). It can be shown that the opera
tors R̃ are determined by the well-known representation
composition:

F ^ Rr5 % sarsRs , ~22!

wherears are the elements of the adjacency matrixA of the
simply laced extended Dynkin diagrams. Namely,R̃’s con-
nect the neighboring vertices~Rr and Rs! in the extended
Dynkin diagram. So in the basis in which the regular rep
06600
e.

-

n

ry

-

le

-

-

sentation is block-diagonal,R̃’s consist of off-diagonal
blocks, which connect neighboring unitary groups making
the total gauge groupF, with a structure isomorphic to the
adjacency matrixA for the extended Dynkin diagram.~These
considerations forR̃ can be generalized to projective repr
sentations for arbitraryG, asRg is always a representation o
G even if dg

mÞ0.!
After taking into account of the fermionic partners, we g

hypermultiplets which transform in the fundamental rep
sentations of the unitary groups, according to the represe
tions % ars(nr ,n̄s). Pictorially, they correspond to the link
in the extended Dynkin diagram. Put everything together,
field content one obtains is theN51, D56 supersymmetric
Yang-Mills theory dimensionally reduced to 011 ~or 111!
dimensions, if we start with the BFSS Matrix D0-brane~or
string! theory.

VII. ORIENTIFOLDS

We may also consider actions ofG lifted to matrix vari-
ables other than the natural one. For instance, to extend
treatments to incorporate orientifolds, we need to consid
Z2-grading or aZ2-graded extension of the groupG @11#.
This means that we associate a numbern(g)50,1 to each
elementgPG so that this assignment is compatible with t
product in the~extended! group:

n~g!1n~h![n~gh! ~mod 2!. ~23!

The quotient condition~3! for Ug with n(g)50 remains un-
changed, while forn(g)51 it should be modified to

Ug
21XmUg5Fg

m~XT!, ~24!

whereT denotes transposition of the matrices. This is wh
we want for orientifolding, because taking the transpose
the matrix variables corresponds to reversing the orient
tion of the open strings connecting the D0-branes.

To put the quotient conditions for bothn(g)50 and
n(g)51 into the same form, instead ofUg we may consider
Ug[UgCn(g), whereC is the complex conjugation operato
Then it is not difficult to repeat the orbifold constructio
above for the orientifolds by including thisZ2-grading.

In terms ofUg , the quotient condition is

Ug
21XmUg5Fg

m~X!, ~25!

where the algebra ofUg is given by

UgUh5eia~g,h!Ugh ~26!

for somea(g,h). If n(g)51, thenUgc5c* Ug for a com-
plex numberc. The associativity of the algebra ofUg implies
that

da~ f ,g,h![~21!n~ f !a~g,h!2a~ f g,h!

1a~ f ,gh!2a~ f ,g! ~27!

[0 ~mod 2p!; ~28!
3-4
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and shiftingUg by a phase factoreib(g) implies that

a~g,h!→a~g,h!2db~g,h!, ~29!

where db(g,h)[(21)n(g)b(h)2b(gh)1b(g). The co-
boundary operatord defines a cohomologyH2

„G,U(1)…,
which can be viewed as the set of inequivalent consis
choices of the algebra ofUg @19#. The equivalent classes ofa
in H2

„G,U(1)… correspond to possible backgrounds for t
compactification. Apparently the formulation of orbifold
can be viewed as a special case of the orientifolds with
trivial Z2-grading:n(g)50 for all gPG.

Similarly we define the operatorsŨg acting on the Hilbert
space spanned byUg&:

ŨgUh&5UhUg&, ~30!

and it follows that

@Ug ,Ũh#50, ~31!

ŨgŨh5Ũhge
ia~h,g!e, ~32!

wheree5(21)n̂ andn̂Ũg&5n(g)Ũg&. For (Rg)n
m , dg

m being
real, the solution ofXm to the quotient condition is

Xm5„An~Ũ!~12n̂!1An* ~Ũ!n̂…R̃n
m1d̃m, ~33!

whereR̃n
m and d̃m are still defined by Eq.~13!, but now the

projection operatorPg is defined byPgUh&5d(g,h)Uh&.
Several examples of this general solution were presente
Ref. @10#. Here the new insight provided by the present tre
ment is that M~atrix! theory compactified on orientifolds als
corresponds to noncommutative gauge theory.

VIII. PRESENTATION OF THE GROUP G

In the above, we have worked with all elements ofG;
however, in practice it may be more convenient to work w
a presentation~caution: not representation! of the discrete
groupG. By presentation we mean a finite set of generat
ga’s (a51,2,. . . ,r ) and a finite set of defining relations
R: f m(g1 , . . . ,gr)5e, (1<m<k), such thatG is isomorphic
to the groupF freely generated byga quotient by the equiva-
lence relationsR. Then an arbitrary elementg of G can be
written as a product of the generatorsga , with the relations
R understood.

If a presentation ofG is known, we only need to write
down the quotient conditions for the generators, with cor
sponding operatorsUa[Uga

. Also for a 2-cocycle, we only
need to introduce phase factors for pairs of generators:
06600
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UaUb5qa,bUab , uqa,bu51, ~34!

or equivalently a phase factor for each defining relation: e
f m(g1 , . . . ,gr)5e gives rise to

f m~U1 , . . . ,Ur !5pm1, upmu51, ~35!

For instance, ifUa commutes withUb , one may replace Eq
~34! with

UaUb5exp$ iuab%UbUa , ~36!

whereuab is antisymmetric. Working only with generators o
with defining relations simplifies the job of finding all pos
sible 2-cocycles.

We can generate the twisted group algebra,AG , and the
representation Hilbert space,HG , in terms of the generator
Ua’s. Following the above procedure, one can solve theXi ’s
in the quotient conditions in terms ofŨa’s ~or Ũa’s!, which
can be viewed as a set of coordinates on the dual sp
Examples presented in Ref.@10# were worked out explicitly
in details in this way.

So the use of presentation is technically very helpf
However, the presentation of a given groupG may not be
unique. We would like to emphasize that the underlyi
mathematics and physics are independent of the choice
presentation. In particular it is possible that different choic
of generators inG can lead to essentially the same set
‘‘deformed’’ defining relations~35!, when there is a corre
sponding algebra automorphism onAG8 ~or AG!. This can be
understood as a global symmetry on the dual space where
generators ofAG8 can be interpreted as coordinates.

IX. DISCUSSIONS

To conclude, the following remarks are in order.
~1! When the fermionic fieldC is taken into account, the

group G generically will be extended into a larger grou
acting on a superspace. Since the spinor representatio
spatial rotations is a double covering of the vector repres
tation, the 2-cocyclea(g,h) may include the operatoripF,
whereF is the fermion number operator. The Dirac opera
acting onC is then given byG0D01GmXm with A0 andXm
the general solution to the quotient conditions.

~2! In matrix theory, there should be many NCGT’s r
sulting from compactification on flat quotientsRn/G, with G
being a point group or space group inRn ~for 2<n<9! and
allowing a nontrivial 2-cocycle.

~3! Our approach can be easily used to construct the q
tient matrix theory onM/G, if Matrix theory onM is
known and has a discrete symmetryG of M. It also applies
to compactification of any other matrix models, such as
Ishibashi-Kawai-Kitazawa-Tsuchiya matrix model for typ
IIB strings @20#.
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