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Simulation of supersymmetric models with a local Nicolai map
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We study the numerical simulation of supersymmetric models having a local Nicolai map. The mapping can
be regarded as a stochastic equation and its numerical integration provides an algorithm for the simulation of
the original model. In this paper, the method is discussed in detail and applied to examples an@ 11
dimensions[S0556-282(198)00418-4

PACS numbes): 11.30.Pb, 02.70.Lg, 03.65.Db, 05.49.

[. INTRODUCTION and (iii) the stochastic equation may admit no thermal equi-
librium [10,9]. In other words, when regarded as an evolu-
A deep property of supersymmetric field theories is thetion equation for¢, unbounded solutions may appear with
existence of the Nicolai mal] that is a nonlinear transfor- possible instability problems in the numerical simulation.
mation of the bosonic fields such that(i) the transformed In this paper, we discuss the above three problems in
action describes a Gaussian figldvith unit covariance and (0+1)- and(1+1)-dimensional specific examples. We study
(i) the Jacobian determinant of the transformation exacthgeneral properties of the continuum and discretized Nicolai
cancels the fermion determinant. map and perform explicit numerical simulations to check the
In some cases, the map is local: the new figlis ex-  feasibility of the method.
pressed by a polynomial ip and its derivatives. When this
happens, it is c_onvenient to regagdas a_random_ field and || stocHAsTIC EQUATIONS AND SUPERSYMMETRY
the transformatiorf= £(¢) as a stochastic equati¢@].
A (0+1)-dimensional example is supersymmetric quan- Let ¢,(t), te[0,8] be atime dependent field obeying the
tum mechanic$3] which we shall adopt as a toy model in equation
later discussions. In41 dimensions, a class of models with
a local Nicolai map is that oN=2 Wess-Zumino(WZ) d SW
models. Other examples are+3 dimensionalN=1 super Ea(t) = G Pal(D) + Wo( ), Wa(¢)=g, 2.1
Yang-Mills theory in the light cone gaudé,5] andd dimen- “
sional lattice linear gauge theof@].
The existence of a local Nicolai map plays a major role in
the lattice formulation of such models. Indeed, its discretiza- , ,
tion provides a recipe for the construction of a lattice field (£a(D)E4(L")) = Op0(t—t"), (2.2
theory which retains most of the continuum symmetries. In
particular, the doubling of the fermions is automatically @hdW(¢) is an arbitrary potential function. For the moment
implemented because of relations between the boson and fée do not specify the boundary conditions in &2.1) that
mion propagator$7,8]. Such lattice models can be studied make the problem well posed. The field indexnay include
by standard simulation techniques, but it is interesting to segpatial variables which we assume to vary in a finite volume.
if the underlying discrete stochastic structure can be usefufquation(2.1) may be regarded as a functional change of
for the purpose of numerical computations in a more direcvariable ¢— ¢ which can be inverted in a certain rangeéof
way. giving rise to many brancheg= ¢ (¢), n=1,... N(&).
If one succeeds in solving the stochastic equatipn ~ As shown in[9], the field model with periodic boundary
=¢(¢) then uncorrelate@ configurations may be obtained conditions and classical action
by generatingé samples. Moreover, explicit fermion fields
can be avoided because their correlation functions may be B
expressed by means of the so-called stochastic identities S= f dt
[5,9] in terms of statistical correlations of the solutigif£)
and the random field.
The actual implementation of this program faces three #(0)=9¢(B), Y(0)=¢(B) 2.3
difficulties: (i) specific boundary conditions must be imposed
to preserve supersymmetry making it highly nontrivial tois N=2 supersymmetric and supertraces can be computed as
determineg(£), (i) there may be more than one solution, stochastic averages

where¢, is a Gaussian white noise

1. , — 0,
§(¢a+wa) +l/la75‘//ﬁ ’

0556-2821/98/5&)/0650099)/$15.00 58 065009-1 © 1998 The American Physical Society



BECCARIA, CURCI, AND D'AMBROSIO
St{Q(¢p)e =T Q(p)e” (- 1)F]

= f D¢DYDy e 50(¢)
=; f Dee SO0 (¢ M(§))

(2.9

43
Xsgn d%

whereF is the fermion number is the Hamiltonian, and

S(¢)=3[5¢%dt.

B=0M(§)

Equation(2.4) may be exploited if one is able to solve
numerically Eq.(2.1) with periodic boundary conditions

#(0)=¢(B).

Ill. THE NICOLAI MAP IN THE CONTINUUM
A. 0+1 Dimensions, supersymmetric quantum mechanics

In the case of SUSY quantum mecharig$ Eqg.(2.1) is
simply

a=f(a)+&,
a0)=a(p), (3.0
and the HamiltoniaH appearing in Eq(2.4) is
H= Lo 1f 2 1f’
= 5P+ Q) =51 (a)os,
d 1 0
p__ld_q’ O3~ 0 -1 . (32)

Some properties of Eq.3.1) do not depend orF being a

random field. For this reason, we begin by regarding Eg.

(3.2) as an inner map in the spaﬁe;"([o,ﬂ]) of periodic
smooth functions i 0,8].

The Jacobian of Nicolai map can be computed explicitly

[11] and it is

. (33

d . Y
de<m+f (q))=c-sm Efo dt f'(q(t))

The numbeN(&) of solutions¢ for a givené is an integer

valued function of¢ with possible jumps across the critical

manifold
B
Mf{q(t) eC‘S([O,ﬁ])‘ fo f’(q(t))dt=0]- (3.9

The geometry ofM,. provides information omN(¢); for in-
stance, suppose th&IEj([O,,B])//\/lC is simply connected,

then N(£) must be constant. To evaluate it, we chodse

constant and deduce from
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. . . . B .
a="f(q)+&=(q)?="f(q)q+ &= JO (q)2dt=0,
(3.9

so thatq is also constant and, therefore, given by the roots of
the equation

f(q)+£=0. (3.6
A particularly interesting case is that 6f>0, which implies
M=. In this case, in the open problem

J
EQ(thO):f(Q(t,QO))"‘ &),

q(0,d0) =0, (3.7
we have
aq(t!qO) _ t ,
%0 —eprof (q(z,qg))dz>1, (3.8

so thatA(t,q0) =q(t,q0) —do is @ monotone function o,
and we conclude that if a solution exists then it must be
unique.

To see this argument working in particular cases, let us
consider what happens wheiiq) = «q" with «>0 andn
=1,2,3.

n=1. This is the simplest case. Indee{{3,q,) is a lin-
ear function ofgy and the problem

q=uq+é,

a(0)=a(p), (3.9
has the unique periodic solution
t

q(t)=e’“q(0)+e"‘f e "%¢(z)dz,
0
0)= Jﬁ “HLE(t)dt 3.1
9(0)= 5, & “éwdt (310

n=2. In this casep‘;j([o,/i’])//\/lc is not simply connected
and, moreover, we cannot solve explicitly the problem

9= g’ +¢,
q(0)=a(p). (3.1
Motivated by what happens whaenand ¢ are constant we
guess that, in general, there cannot be solutions faf atid

that, when there are solutions, they come in pairs. This fol-
lows also from the constraint ofy

B B
f §(t)dt=—,uf g?(t)dt=<0, (3.12
0 0
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which excludes somé and from the fact that Eq3.1]) is a

Riccati equation. Ifg,(t) is one particular solution for a

given &(t) then another solution ig,(t) where

1
0z2(t)=0qy(t) + WD’ (3.133
w+2g,(Hhw=—-1, w(0)=w(B). (3.13b
In terms of
t
F(t)=ex;<2f ql(af)da), (3.19
0
the functionw satisfies
1%
L FHwm)=—F(), (3.19
and the periodicity conditiom(8)=w(0) gives
1
w(0)= F(,B) 1f F(a)da. (3.19

Hence, a second solutiog, can always be found except

whenF(B8)=1, namely, on the critical manifold,

f:q(t)dtzo, (3.17)

of the map.
n=3. This is a case wher€ (q)=3uq? is always posi-

tive. The differenceA(8,qo) is @ monotonically increasing

function and it is easy to prove that

lim A(B,qp)= *oo.

do—*

(3.18
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07 "2 02" =" 3.2
(a(0)?) 5 (a( )> ~ o (321
Here g* =0 and the parametes is just f'(gq*), namely,
what we can call the tree level mass. In a numerical simula-
tion, in the B— limit, we expect to have one solution for
each fixed point with large deviations depressed exponen-
tially by potential barriers controlled by parameters like

In these regimegassumingf’(g*)# 0] we can compute the
sign of the Jacobian d&g/dq at eachg=q* and use itin a
neighborhood of that point.

B. 1+1 Dimensions, WZ models

In 1+1 dimensions, lez=x,+ix, and qb(z,?) be a com-
plex field. Equation(2.1) takes the form

=f(¢)+ 7, (3.22

where = n;+i 7, with »; and »,, real independent white
noises, and (¢)=u(¢)+iv(¢), an arbitrary holomorphic
function of ¢». The reason for the peculiar structure of Eq.
(3.22 is that it guarantees that the associated field m@del
so-called WZ modglis Lorentz covarianf9]. The explicit
form of Eq.(3.22 is

d1p1+ dap=U(P1,b2)+ 71,

d1¢p— drpr=—v(P1,b2)+ 7,.

(3.233

(3.23p

The numerical integration of Eq3.23 is difficult because
even in the simplest cases the associated random flow does
not admit an equilibrium distribution. To see this, it is
enough to consider a homogeneduslependent orx,) so-
lution of Eg.(3.23 without noise. It must satisfy

(Strictly speaking this holds only at the discrete level where

blowing solutions do not appeaf-rom this remarks it fol-
lows that there is a unique periodic solution for each periodic

&(1).

d¢o

B (@), (3.24

In the above analysig, was assumed to be smooth. When!f F(¢#) is a primitive of f(¢) then the quantityH

¢ is a white noise it gives fluctuation8g around theé=0
solutions, namelyg=qg* with f(q*)=0. The size ofdq

depends ori’ (g*) and 3. Because of periodicity, we expect

it to approach a constant whegg—o and diverge agg—0
with no regards to the stability of the fixed poigtq*.

An illustrative solvable example is that df(q)=uq.
From

a0= [ e tewa (319
e *P-1J)o '
we obtain
) 1—e 208
(a(0)9)=5~ 2# 1 e why’ (3.20

and indeed we find

=Im F(¢) is a constant of motion since

dH

ax (3.29

f(¢)d¢) Im| f|2=0.

If we consider a functiorfi(z) with asymptotic power behav-
ior ~z" we see that the level curves Hfare not closed and
equilibrium cannot be reached.

As in the (0+1)-dimensional case, for a constantwe
have (by periodicity

0p —
25—f(¢)+7]=>2 (9—

2

:0'

=f(¢) —+77— fdxlf dx2 az

(3.26
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which implies that¢ is a constant obtained from the equa- q="f(q)+&
tion '

f(¢)+ 5=0. (3.27

In particular, whenyp—0, ¢ tends to one of the zeroes of
f(¢$). As in the(0+1)-dimensional case, the Nicolai map is
not singular atp= ¢* with f(¢*)=0 andf’'(¢*)+#0. Ac-

tually, an infinitesimal periodic zero mode such that Where we allowed aj dependent covariance, may be dis-

(£(DE))=D(a(t)s(t—t"), (4.2)

é=¢* +\ is a solution of Eq(3.22 must satisfy cretized according to
ON —
25=f'(¢*))\, (3.28
On+1=dnt+ e[ af(dn) +(1-a)f(dn+1)]
and therefore +VeDY aq+ (1—a)qns1]én, (4.3
(433—|f’(¢*)|2))\=0=>f dx,dx,(| VN |? where the constant parametettakes into account the ambi-

guity in the evaluation of andD. We recall thate=1 and

a=1/2 are usually referred to as the Ito and Stratonovich
+[F'(#*)IN?=0, (329 iscretization schemg42]. For nonconstarid(q), the value

of a is important. Actually, in thee— 0 limit we can replace

giving A=0. Eq. (4.3 by

IV. THE DISCRETE NICOLAI MAP , 5
. L. . . L . qn+1ZQn+€[f(qn)+(l_a)D (Qn)gn]
When time is discretized the intervd,3] is divided into

N subintervals and the Nicolai map is a change of variables
P g D (gt -, (4.4

(&0, -+ én-1)<(do, - - - On-1), 4.7)
and read the associated Fokker-Planck equation

where g, and ¢,, are the values of] and ¢ at timest,
=np/N. The next step is the choice of a definite discretiza-

tion scheme of Eq2.1). Then, one ha§) a discrete stochas- P 14
tic equation whose numerical properties must be studied and gt 249
(i) a precise fermion action to be analyzed from the point of

view of the fermion doubling problem. In this section we
address these problems as well as the use of the so-call
stochastic identities to compute fermion correlation function
without introducing Grassmann fields at all.

1-a J a ) J f
D a(D P) —%( P). (49

?ﬁj our case, howevef) =1 is a constant and the same con-
Yinuum limit is obtained for each value of. However, the
equivalence of the two discretizations is not obvious at first
sight because the Jacobian of the change of variadlds
depends orw. Actually, the Jacobian of the transformation
For simplicity, let us consider a single component field{q}—{£&} expressed by Eq(4.3 with periodic boundary

A. Choice of the discretization procedure

g(t) in 0+1 dimensions. The Langevin equation conditionsén= &y, n=0o iS proportional to
—l-aefy 1-(1-a)ef; 0
0 —1-aef; 1-(1-a)ef; ---
J=de v fa=f(an), (4.9
1-(1-a)efy 0 0 v —l-aefy_,
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which we can compute

N—-1 N—-1
J=1] (—1-aet)+(—DN ] @—(1-a)ef}))
k=0 k=0

e—0

~ galt'@t)diry o= ff"(at)dty 4.7

On the other hand, in the discrete Gaussian action

1 1
E; fﬁ:ZZ {qn+l_Qn_e[afn+(1_a)fn+1]}

1
= Zz {(qn+l_ qn)2+ Ezfﬁ}
n

—; (Uns1—An)(afp+ (1—a)fpiy). (4.8

We need some care to take the limait-0 in the last term.
However, if we write

; (Ans1—An)afnt (1= a)fniq]

1 1
:; (Qn+1_qn)[§(fn+fn+l)+ 2 a(fn+1_fn) )
(4.9

then the correct continuum limit can be read, it dependa on
and is

(4.10

ff( )d—l—l— Uf'( (1)dt
Qdg+|5 -« q :

Putting this result together with we find a final expression
which is independent frona and reproduces precisely Eq.

(3.3). In numerical simulations, the most convenient choice

of @ is a=1 because in this casg, . ; may be evaluated
directly from q,, without solving any equation.

B. Doubling problem

As is well known, naive discrete fermion actions are
plagued by the doubling problefi3]. In a formulation

based on a discrete Nicolai map the fermion action is con-

PHYSICAL REVIEW b8 065009

The doubling problem is related to the kinetic term only and
in this section we sef=0. We begin with the(0+1)-

dimensional case: the Ito discretization of equatipaé is

based on the replacemeqt->V*q. This fixes the fermion
matrix 9¢/9q and leads to the fermion action

SF=§ Yo Pns 1= ) (4.11

On the other hand, sinceé*=VS+VA, we can identify in
Eq. (4.1]) the naive fermion action plus a Wilson term:

1 — 1o —
Se=52 UnlYne1=¥n-1) 52 UnlYne1=20nt o).
(4.12

A similar mechanism happens intl dimensions. For in-
stance, the discrete Nicolai map proposed@hfor the WZ

models is a cubic symmetric version @i~V *q. The con-

tinuum map
] g il

b2

31
&

d1¢p+ioydp=§, ¢:<

0 —i
may be discretized &s
(Vi+V) 1+ V5d,=£1, (4.143
(Vi =V2)bo—Vi1=£,
(4.14H

which, usingV*=VS5+VA, leads to the fermion action
Se=2 Yl VitioVitos(VitVo)ly, (419

namely, (after a redefinition of/) the naive discrete action
plus a Wilson term.

C. Some exact properties of the discrete maps

In Sec. Ill A and Sec. Ill B we discussed some analytical

strained by the bosonic orfanother manifestation of super- tools for the study of the existence of periodic solutions of

symmetry and should be free from doublers. In this sectionthe Langevin equation as well as for the determination of
we briefly explain how the discrete Nicolai map accom-their numbem(¢).

plishes this task by implementing naturally Wilson type lat-

Some of those conclusions hold also in the discrete case.

tice fermions. To see this, let us adopt the standard notatiopet us begin with theg0+1)-dimensional case. The Ito dis-

V=t~ fn, Vf=f—f_q,

1

VSfp= 5 (VI V),
A 1o+ -

VAL =5 (V =V )y

cretization

qn+1:qn+€f(qn)+\/;'fni (4.16

of the open problen(3.7) gives

with this choice ofV * andV ~ the cross terms ig2+ £5 cancel.
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dq
3o =11 @+ef'(an). (417
Qo ™n
Hence, in the cas&’'(gq)>0 we have
d ( )>0 (4.18
dqo aOn—do ’ .

and (at least for asymptotié~q?"** with positive n) it is

PHYSICAL REVIEW D58 065009

However, in terms of the fermion matrix,

9

easy to prove the existence of a unique periodic sequenand, in particular,

{qn} for each periodid &,}.

Concerning the WZ models, we now show that also in the
discrete equations there are not zero modes whés con-

stant. The equation for the zero moras [see Eq(3.28)]

[Vi+io,V3+os(Vi+V5—uy)—oqu]A=0,

Ju 4.19
U=~ .
', .
Expanding the periodia in the Fourier series
Ni(X1,X2)= 2 G i @ ke, (4.20
k1.ko

we find the determinant of the operator in £4.19:

de(V +|0'2V2+ Ug(V?‘i‘ VQ_U]_)_O']_UZ:I

=11

ky.kp

—sir? ky—sir? k,—u3

. kl . k22
- u1+23|r12?+25|nz?) , (4.21)

which is not zero unless;=u,=0.

D. Stochastic identities

this means
(QUa)é)=(nQ(a)(J 1)}\a> (4.24
(Gap) =3V ) =(Waihip), (4.29

which expresses the fermion propagator in terms ofcihe
correlation.

V. NUMERICAL SIMULATION

From the very existence of a local Nicolai map and pre-
vious discussions it follows an algorithm for the numerical
computation of supertraces. The first step is the extraction of
the Gaussian random numbggs}. Then, letg,, be the field
obeying a discretized version of E.1); we must find the
initial condition ¢ such that

A( o) =ldn( o) — ol =0 (5.)
In 0+1 dimensions it is easy to identify all solutions of Eg.
(5.1 as well as the sign of the Jacobian determinant of the
Nicolai map. For the WZ models in+1 dimensions the
problem is harder. However, as we have seen, at least for
large separations of the zerog$ of f(¢) we can expect to
have one solution for eac#i*. Therefore we can usg)* }
as starting guesses and take foragé#q its value at¢*. In
the simplest casé(¢)=pu¢+gep? we haved* =0,— ulg
and the above regime is obtained for lagéy.

If an operatorO(¢) is averaged as in Eq¢2.4) over the
realizations of{£} we obtain an estimate of the supertrace
St Oexp(—pH)] and wheng— +o we obtain({0|0|0) in

i Th? St?Chr?St'f identities rglatel f_erm;gn colr rf.lat'??hfunc'the case of unbroken SUSY. In the fré&@t1)-dimensional
lons 1o stochastic averages involving the solufgpiot the casef(q) = wq (and similarly in the free WZ modelsve can

Langevin equation and the noige In this paper we shall solve analytically the discrete equations and determine the

need only the simplest of them. To prove it at the disCret&;, o |ation functions with the stochastic algorithm or in field
level we write theory.

(Q(Q)E,) The discrete Langevin equation is
= + , =1+eu. 5.2
jj_o__.djg_lel,zg B 0EB)E, Oni1=wlntVe &, w=1+eu (5.2
7 m The linear system
déy  (d e Vo) dén-
= 2= 0(q(8) © —1 0 - 0|/ d o
2
\/_W \/_ \/_ 0 o -1 0 o[} \/_ &
= —\€
dgo ) dgN 1 _1/2(§ +. +§N l Q(q(g)) e
\/_ \/_ 0‘ -1 0 0 w qN—l gN_l(Ss)
:<£ %> 4.22 |
g €,/ ' is easily solved. The inverse of the first factor is
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oVt ) 1
1 1 0’ o
N1 (5.9
wN*Z 1 wal
and therefore the initial value is
1 N—1
Qo= —Ve——(o"N Mot - +1-&y_1). (55
w'—1
The two-point function is
C,= — | mod N+ (i +k) modN’
(900 = s, Z
(5.9
and after a straightforward algebra
c 2¢ oN? F( ‘ N | ) 57
= COoS — = |logw |. .
DD 2/

If we take the limitN—o with e= /N and introduce the
time variabler= ek we obtain

1 cosf(u( —pBl2))

sinh( . B/2)
(5.8

Strige” "ge ") = lim (qoa) =5

N—oo
and

1
)=(0[q(0)q(7)|0)= ﬂexp(—m).
(5.9)

lim Stge” ™Mge A"
B—+x

From the field theoretical point of view, we are computing

Str(ge” Mge #Y) with the free action

18 .
-5 | v ), (510
0

PHYSICAL REVIEW 18 065009

Striqe” Mge P =2G(7). (5.13
If we use the summation formula
expl—iak) T
k===  k?+A2 A sinh(m\)
XcoshN(a—1)), O<a<2,
(5.14

we obtain again the result of E¢.8). A similar computa-
tion can be carried out for the fermionic propagator. From
the solution of Eq(5.2) we have

1 k=1 1 N—k—1
—_—=—, —=——-—, (51
(Akéo) e 1-on (doéi) NP (5.19
which can be combined to give
1 g 1
<Qkfl>ﬁ:w 1 o=k, (516
-
which has the correct continuum limit
Y\ — (r—1") _ r_
(a(né(r))=e | —o—o(r r)l
1 1 27in ,
= 5.2 2ain ex 3 (r—7")],
B ﬂ

(5.17

associated to the fermion propagator ih Ddimensions and
confirming the stochastic identity.

In the interacting casep, must be determined by some
iterative algorithm. In #1 dimensions it is fundamental to
start from a good guess. We use the Newton-Raphson algo-
rithm [14] to solve iteratively the set of nonlinear equations

A=V - ¢9=0, (5.18

and periodic boundary conditions. The generating functional

is

o | o)

=eX;{J' drd7"I(7)G(7— T’)J(T’)), (5.11

where

1 & 1 p( 2k )
—eXp — T,
T 2Bk 47m2K2 B

(5.12

and

where¢® is theith spatial component op at thekth time
slice. The correctio$(® in

¢ — %+ 59", (5.19
is given by
A

The scheme is made more robust by introducing a relaxation
parametelwg in the update ofp(®:

¢ V- (5.21)

Another help against numerical instabilities is to require

O+ wg 6%, 0<wr<l.
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TABLE I. Lightest boson (ng) and fermion () masses as 9
functions ofg at u=4, B=5 on aT=200 lattice in the(0+1)-
dimensional model with driff(q) = — uwq—gq?. e Tog <O
o—— log <Y Oy()> i
g Mg s Mpert
0.0 4.0@3) 4.01(3) 4.0000
0.1 4.043) 4.043) 4.0368
0.2 4.073) 4.083) 4.0750
0.3 4.113) 4.11(3) 4.1062
0.4 4.143) 4.1433) 4.1388
0.5 4.173) 4.183) 4.1699
0.6 4.2@3) 4.21(3) 4.1997
0.7 4.233) 4.243) 4.2281
0.8 4.263) 4.273) 4.2550
t (lattice units)
|69 _ o FIG. 1. Boson and fermion propagators for the+1)-
] <p orsimply [§¢™|<p, (522  gimensional model with driff(q)=—q° at 8=10.0 on aT =100
lattice. Apart from the different normalization the slopes of the two

) o ) ) logarithmic plots are equal.
where p is a minimum correction threshold. The choice of

the optimalwgr and p must be done empirically, but we did

not find it to be critical. C(n)=A, cosr{,u
Finally, another general trick which is useful to improve

numerical stability is to follow a bootstrap procedure and

solve the problem on BX(T—1) lattice to provide a guess ported in Table Il together with the one loop value of the

for the L XT pr_oblem. . doublet mass which is
As a numerical test of the algorithm we measure the bo-

son and fermion propagators in simgle+1)- and (1+1)-

1
T— Eﬁ” (523

On a 2050 lattice we have varied with the results re-

2

dimensional cases. In#ll dimensions, to gain statistics, we m(g)=p— —= g_. (5.26

average over the spatial dimension and sum over all pairs of 3/3 1

time slices with fixed temporal separation. Moreover, we ex-

plicitly symmetrize the propagators under 8— 7. Finite time step errors can be investigated in a first approxi-
The simplest interacting system in-Q dimensions is mation by studying numerically the finite lattice propagator

integrated over space. This, in standard notation, is

f(a)=-wng—ga®, p,9>0, (5.23 L

_ _ D(k)=2 expk ep)—, (5.27)
where dynamical breaking of supersymmetry does not occur. n Py + u
In Table | we show the lightest mass as a functiorgodt
pn=4, =5 on aT=200 lattice. It is obtained by fitting the
boson and fermion propagators where the latter is computeci.
by means of the stochastic ident{®.25. We also show the
O(g?) perturbative value

Ermpt o ° 2+0(g% (5.24
1R 5,97 5,89 9%). :

04 F

In Fig. 1, just to give an example at the critical popat 0
we plot the two propagators @=1 and =0 computed
with =10 on aT=100 lattice. As expected, the slope of ,|
the logarithmic plots is the same.

In 1+1 dimensions, we simulate the WZ model with
f(p)=ud+9ge?. InFig. 2, we show the boson and fermion % a0 w2 @& % % o
propagators evaluated at=4, g=0.1 on a 2(x 90 lattice B Haice i)
with e,=0.1 ande;=0.01, whereeg ande, are the space and FIG. 2. Boson and Fermion propagators for the WZ model with
time discretization steps. The continuous line is the fit withdrift f(¢)=u¢+g¢? at the pointu=4, g=0.1 on a 2 90 lattice
the Ansatz with space and time steps=0.1, ¢,=0.01.

s B> 1920 o o' O>
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TABLE Il. Lightest boson (ng) and fermion (ng) masses as  persymmetry. The reason is that the shifted figler (¢,
functions ofg at u=4, B=0.5 on a 2X50 lattice for the WZ —ulg,$,) obeys the same equations @sbut with u—

[ iat = 2, -
model associated t(¢) =u ¢ +9¢ —u. For{¢¢) and the symmetrizedyss) this change has
no consequences.

9 Mg me Mpert

0.0 4.0@5) 4.005) 4.000

01 4.005) 3.995) 3.999 VI. REMARKS AND CONCLUSIONS

0.4 3.995 3.995) 3.985 In this paper we have shown that the existence of a local

0.6 3.985) 3.995) 3.965 Nicolai map in supersymmetric models has useful conse-

1.2 3.965) 3.975) 3.859 quences for numerical computations. It allows the formula-
tion of a simulation algorithm which generates statistically
independent field configurations by solving a Langevin equa-

where tion with periodic boundary conditions. The so-called sto-
chastic identities can be exploited to avoid Grassmann fields.

27 B d h— 2 .1 The method is feasible and consistent numerical results are
pt_?”“ n=0---T—1, and p= Zts'nietpt' obtained in 6-1 dimensions and also ir+il dimension WZ

(5.28 models even if with some constraint in parameter space. Fur-
ther developments are possible in the direction of more ro-
One can study at fixe@, the difference in the propagator as bust integration schemes for the Langevin equation as well
€ is varied. We checked that ai=4, ¢,.=0.01 andT=50 as in the application to more realistic models. In particular,
the finite step effects are negligible. work is in progress on cases where the Nicolai map is deter-
We also remark that with this particular choice fifp) mined perturbatively[15] and in four-dimensional QCD
we can sample a single zer@{=0) without violating su- [4,5] where the Jacobian of the local Nicolai map is constant.
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