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Simulation of supersymmetric models with a local Nicolai map
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We study the numerical simulation of supersymmetric models having a local Nicolai map. The mapping can
be regarded as a stochastic equation and its numerical integration provides an algorithm for the simulation of
the original model. In this paper, the method is discussed in detail and applied to examples in 011 and 111
dimensions.@S0556-2821~98!00418-4#

PACS number~s!: 11.30.Pb, 02.70.Lq, 03.65.Db, 05.40.1j
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I. INTRODUCTION

A deep property of supersymmetric field theories is
existence of the Nicolai map@1# that is a nonlinear transfor
mation of the bosonic fieldf such that~i! the transformed
action describes a Gaussian fieldj with unit covariance and
~ii ! the Jacobian determinant of the transformation exa
cancels the fermion determinant.

In some cases, the map is local: the new fieldj is ex-
pressed by a polynomial inf and its derivatives. When thi
happens, it is convenient to regardj as a random field and
the transformationj5j(f) as a stochastic equation@2#.

A ~011!-dimensional example is supersymmetric qua
tum mechanics@3# which we shall adopt as a toy model
later discussions. In 111 dimensions, a class of models wi
a local Nicolai map is that ofN52 Wess-Zumino~WZ!
models. Other examples are 113 dimensionalN51 super
Yang-Mills theory in the light cone gauge@4,5# andd dimen-
sional lattice linear gauge theory@6#.

The existence of a local Nicolai map plays a major role
the lattice formulation of such models. Indeed, its discreti
tion provides a recipe for the construction of a lattice fie
theory which retains most of the continuum symmetries.
particular, the doubling of the fermions is automatica
implemented because of relations between the boson and
mion propagators@7,8#. Such lattice models can be studie
by standard simulation techniques, but it is interesting to
if the underlying discrete stochastic structure can be us
for the purpose of numerical computations in a more dir
way.

If one succeeds in solving the stochastic equationj
5j(f) then uncorrelatedf configurations may be obtaine
by generatingj samples. Moreover, explicit fermion field
can be avoided because their correlation functions may
expressed by means of the so-called stochastic ident
@5,9# in terms of statistical correlations of the solutionf(j)
and the random fieldj.

The actual implementation of this program faces th
difficulties: ~i! specific boundary conditions must be impos
to preserve supersymmetry making it highly nontrivial
determinef(j), ~ii ! there may be more than one solutio
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and ~iii ! the stochastic equation may admit no thermal eq
librium @10,9#. In other words, when regarded as an evo
tion equation forf, unbounded solutions may appear wi
possible instability problems in the numerical simulation.

In this paper, we discuss the above three problems
~011!- and ~111!-dimensional specific examples. We stud
general properties of the continuum and discretized Nico
map and perform explicit numerical simulations to check
feasibility of the method.

II. STOCHASTIC EQUATIONS AND SUPERSYMMETRY

Let fa(t), tP@0,b# be a time dependent field obeying th
equation

ja~ t !5
d

dt
fa~ t !1Wa~f!, Wa~f!5

dW

dfa
, ~2.1!

whereja is a Gaussian white noise

^ja~ t !jb~ t8!&5dabd~ t2t8!, ~2.2!

andW(f) is an arbitrary potential function. For the mome
we do not specify the boundary conditions in Eq.~2.1! that
make the problem well posed. The field indexa may include
spatial variables which we assume to vary in a finite volum
Equation~2.1! may be regarded as a functional change
variablef→j which can be inverted in a certain range ofj
giving rise to many branchesf5f (n)(j), n51, . . . ,N(j).

As shown in@9#, the field model with periodic boundar
conditions and classical action

S5E
0

b

dtF1

2
~ḟa1Wa!21c̄a

]ja

]fb
cbG ,

f~0!5f~b!, c~0!5c~b! ~2.3!

is N52 supersymmetric and supertraces can be compute
stochastic averages
© 1998 The American Physical Society09-1



e

Eq

itly

al

of

be

us

fol-

BECCARIA, CURCI, AND D’AMBROSIO PHYSICAL REVIEW D58 065009
Str@V~f!e2bH#5Tr@V~f!e2bH~21!F#

5E DfDcDc̄ e2SV~f!

5(
n
E Dje2S~j!V„f~n!~j !…

3sgn det
]j

]f U
f5f~n!~j!

, ~2.4!

whereF is the fermion number,H is the Hamiltonian, and
S(j)5 1

2 *0
bj2dt.

Equation~2.4! may be exploited if one is able to solv
numerically Eq. ~2.1! with periodic boundary conditions
f(0)5f(b).

III. THE NICOLAI MAP IN THE CONTINUUM

A. 011 Dimensions, supersymmetric quantum mechanics

In the case of SUSY quantum mechanics@3#, Eq. ~2.1! is
simply

q̇5 f ~q!1j,

q~0!5q~b!, ~3.1!

and the HamiltonianH appearing in Eq.~2.4! is

H5
1

2
p21

1

2
f ~q!22

1

2
f 8~q!s3 ,

p52 i
d

dq
, s35S 1 0

0 21D . ~3.2!

Some properties of Eq.~3.1! do not depend onj being a
random field. For this reason, we begin by regarding
~3.1! as an inner map in the spaceCp

`(@0,b#) of periodic
smooth functions in@0,b#.

The Jacobian of Nicolai map can be computed explic
@11# and it is

detS d

dt
1 f 8~q! D5c•sinhF1

2E0

b

dt f8„q~ t !…G . ~3.3!

The numberN(j) of solutionsf for a givenj is an integer
valued function ofj with possible jumps across the critic
manifold

Mc5H q~ t !PCp
`~@0,b#!U E

0

b

f 8„q~ t !…dt50J . ~3.4!

The geometry ofMc provides information onN(j); for in-
stance, suppose thatCp

`(@0,b#)/Mc is simply connected,
then N(j) must be constant. To evaluate it, we choosej
constant and deduce from
06500
.

q̇5 f ~q!1j⇒~ q̇!25 f ~q!q̇1jq̇⇒E
0

b

~ q̇!2dt50,

~3.5!

so thatq is also constant and, therefore, given by the roots
the equation

f ~q!1j50. ~3.6!

A particularly interesting case is that off 8.0, which implies
Mc5B. In this case, in the open problem

]

]t
q~ t,q0!5 f „q~ t,q0!…1j~ t !,

q~0,q0!5q0 , ~3.7!

we have

]q~ t,q0!

]q0
5expE

0

t

f 8„q~z,q0!…dz.1, ~3.8!

so thatD(t,q0)5q(t,q0)2q0 is a monotone function ofq0
and we conclude that if a solution exists then it must
unique.

To see this argument working in particular cases, let
consider what happens whenf (q)5mqn with m.0 andn
51,2,3.

n51. This is the simplest case. Indeed,q(b,q0) is a lin-
ear function ofq0 and the problem

q̇5mq1j,

q~0!5q~b!, ~3.9!

has the unique periodic solution

q~ t !5emtq~0!1emtE
0

t

e2mzj~z!dz,

q~0!5
1

e2mb21
E

0

b

e2mtj~ t !dt. ~3.10!

n52. In this case,Cp
`(@0,b#)/Mc is not simply connected

and, moreover, we cannot solve explicitly the problem

q̇5mq21j,

q~0!5q~b!. ~3.11!

Motivated by what happens whenq and j are constant we
guess that, in general, there cannot be solutions for allj and
that, when there are solutions, they come in pairs. This
lows also from the constraint onj,

E
0

b

j~ t !dt52mE
0

b

q2~ t !dt<0, ~3.12!
9-2
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which excludes somej and from the fact that Eq.~3.11! is a
Riccati equation. Ifq1(t) is one particular solution for a
given j(t) then another solution isq2(t) where

q2~ t !5q1~ t !1
1

w~ t !
, ~3.13a!

ẇ12q1~ t !w521, w~0!5w~b!. ~3.13b!

In terms of

F~ t !5expS 2E
0

t

q1~a!da D , ~3.14!

the functionw satisfies

]

]t
„F~ t !w~ t !…52F~ t !, ~3.15!

and the periodicity conditionw(b)5w(0) gives

w~0!52
1

F~b!21E0

b

F~a!da. ~3.16!

Hence, a second solutionq2 can always be found excep
whenF(b)51, namely, on the critical manifold,

E
0

b

q~ t !dt50, ~3.17!

of the map.
n53. This is a case wheref 8(q)53mq2 is always posi-

tive. The differenceD(b,q0) is a monotonically increasing
function and it is easy to prove that

lim
q0→6`

D~b,q0!56`. ~3.18!

~Strictly speaking this holds only at the discrete level wh
blowing solutions do not appear.! From this remarks it fol-
lows that there is a unique periodic solution for each perio
j(t).

In the above analysis,j was assumed to be smooth. Wh
j is a white noise it gives fluctuationsdq around thej50
solutions, namely,q5q* with f (q* )50. The size ofdq
depends onf 8(q* ) andb. Because of periodicity, we expec
it to approach a constant whenb→` and diverge asb→0
with no regards to the stability of the fixed pointq5q* .

An illustrative solvable example is that off (q)5mq.
From

q~0!5
1

e2mb21
E

0

b

e2mtj~ t !dt, ~3.19!

we obtain

^q~0!2&5
1

2m

12e22mb

~12e2mb!2
, ~3.20!

and indeed we find
06500
e

ic

^q~0!2& ;
b→0 1

m2b
, ^q~0!2& →

b→1` 1
2umu . ~3.21!

Here q* 50 and the parameterm is just f 8(q* ), namely,
what we can call the tree level mass. In a numerical simu
tion, in theb→` limit, we expect to have one solution fo
each fixed point with large deviations depressed expon
tially by potential barriers controlled by parameters likem.
In these regimes@assumingf 8(q* )Þ0# we can compute the
sign of the Jacobian det]j/]q at eachq5q* and use it in a
neighborhood of that point.

B. 111 Dimensions, WZ models

In 111 dimensions, letz5x11 ix2 andf(z,z̄) be a com-
plex field. Equation~2.1! takes the form

2
]f

]z
5 f ~f!1h, ~3.22!

whereh5h11 ih2 with h1 andh2 , real independent white
noises, andf (f)5u(f)1 iv(f), an arbitrary holomorphic
function of f. The reason for the peculiar structure of E
~3.22! is that it guarantees that the associated field model~the
so-called WZ model! is Lorentz covariant@9#. The explicit
form of Eq. ~3.22! is

]1f11]2f25u~f1 ,f2!1h1 , ~3.23a!

]1f22]2f152v~f1 ,f2!1h2 .
~3.23b!

The numerical integration of Eq.~3.23! is difficult because
even in the simplest cases the associated random flow
not admit an equilibrium distribution. To see this, it
enough to consider a homogeneous~independent onx2) so-
lution of Eq. ~3.23! without noise. It must satisfy

df

dx1
5 f ~f!. ~3.24!

If F(f) is a primitive of f (f) then the quantityH
5Im F(f) is a constant of motion since

dH

dx1
5ImS f ~f!

df

dx1
D5Imu f u250. ~3.25!

If we consider a functionf (z) with asymptotic power behav
ior ;zn we see that the level curves ofH are not closed and
equilibrium cannot be reached.

As in the ~011!-dimensional case, for a constanth we
have~by periodicity!

2
]f

]z
5 f ~f!1h⇒2U]f

]zU
2

5 f ~f!
]f

]z
1h

]f

]z
⇒E

0

b

dx1E
0

s

dx2U]f

]zU
2

50,

~3.26!
9-3
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which implies thatf is a constant obtained from the equ
tion

f ~f!1h̄50. ~3.27!

In particular, whenh→0, f tends to one of the zeroes o
f (f). As in the~011!-dimensional case, the Nicolai map
not singular atf5f* with f (f* )50 and f 8(f* )Þ0. Ac-
tually, an infinitesimal periodic zero model such that
f5f* 1l is a solution of Eq.~3.22! must satisfy

2
]l

]z
5 f 8~f* !l, ~3.28!

and therefore

„4]]̄2u f 8~f* !u2…l50⇒E dx1dx2„u¹lu2

1u f 8~f* !u2ulu2…50, ~3.29!

giving l[0.

IV. THE DISCRETE NICOLAI MAP

When time is discretized the interval@0,b# is divided into
N subintervals and the Nicolai map is a change of variab

~j0 , . . . ,jN21!↔~q0 , . . . ,qN21!, ~4.1!

where qn and jn are the values ofq and j at times tn
5nb/N. The next step is the choice of a definite discretiz
tion scheme of Eq.~2.1!. Then, one has~i! a discrete stochas
tic equation whose numerical properties must be studied
~ii ! a precise fermion action to be analyzed from the poin
view of the fermion doubling problem. In this section w
address these problems as well as the use of the so-c
stochastic identities to compute fermion correlation functio
without introducing Grassmann fields at all.

A. Choice of the discretization procedure

For simplicity, let us consider a single component fie
q(t) in 011 dimensions. The Langevin equation
06500
s

-

nd
f

led
s

q̇5 f ~q!1j,

^j~ t !j~ t8!&5D„q~ t !…d~ t2t8!, ~4.2!

where we allowed aq dependent covariance, may be di
cretized according to

qn115qn1e@a f ~qn!1~12a! f ~qn11!#

1AeD1/2@aqn1~12a!qn11#jn , ~4.3!

where the constant parametera takes into account the amb
guity in the evaluation off andD. We recall thata51 and
a51/2 are usually referred to as the Ito and Stratonov
discretization schemes@12#. For nonconstantD(q), the value
of a is important. Actually, in thee→0 limit we can replace
Eq. ~4.3! by

qn115qn1e@ f ~qn!1~12a!D8~qn!jn
2#

1AeD1/2~qn!jn1•••, ~4.4!

and read the associated Fokker-Planck equation

]P

]t
5

1

2

]

]qS D12a
]

]q
~DaP! D2

]

]q
~ f P!. ~4.5!

In our case, however,D[1 is a constant and the same co
tinuum limit is obtained for each value ofa. However, the
equivalence of the two discretizations is not obvious at fi
sight because the Jacobian of the change of variables~4.1!
depends ona. Actually, the Jacobian of the transformatio
$q%→$j% expressed by Eq.~4.3! with periodic boundary
conditionsjN5j0 , qN5q0 is proportional to
J5detS 212ae f 08 12~12a!e f 18 0 ••• 0

0 212ae f 18 12~12a!e f 28 ••• 0

•••

12~12a!e f 08 0 0 ••• 212ae f N218

D , f n[ f ~qn!, ~4.6!
9-4
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which we can compute

J5 )
k50

N21

~212ae f k8!1~21!N21 )
k50

N21

„12~12a!e f k8…

;
e→0

ea* f 8„q~ t !…dt@12e2* f 8„q~ t !…dt#. ~4.7!

On the other hand, in the discrete Gaussian action

1

2(n
jn

25
1

2e( $qn112qn2e@a f n1~12a! f n11#%

5
1

2e(n
$~qn112qn!21e2f n

2%

2(
n

~qn112qn!~a f n1~12a! f n11!. ~4.8!

We need some care to take the limite→0 in the last term.
However, if we write

(
n

~qn112qn!@a f n1~12a! f n11#

5(
n

~qn112qn!F1

2
~ f n1 f n11!1

122a

2
~ f n112 f n!G ,

~4.9!

then the correct continuum limit can be read, it depends oa
and is

E f ~q!dq1S 1

2
2a D E f 8„q~ t !…dt. ~4.10!

Putting this result together withJ we find a final expression
which is independent froma and reproduces precisely Eq
~3.3!. In numerical simulations, the most convenient cho
of a is a51 because in this caseqn11 may be evaluated
directly from qn without solving any equation.

B. Doubling problem

As is well known, naive discrete fermion actions a
plagued by the doubling problem@13#. In a formulation
based on a discrete Nicolai map the fermion action is c
strained by the bosonic one~another manifestation of supe
symmetry! and should be free from doublers. In this secti
we briefly explain how the discrete Nicolai map acco
plishes this task by implementing naturally Wilson type l
tice fermions. To see this, let us adopt the standard nota

¹1 f n5 f n112 f n , ¹2 f n5 f n2 f n21 ,

¹Sf n5
1

2
~¹11¹2! f n ,

¹Af n5
1

2
~¹12¹2! f n .
06500
e

-

-
-
n

The doubling problem is related to the kinetic term only a
in this section we setf [0. We begin with the~011!-
dimensional case: the Ito discretization of equationq̇5j is
based on the replacementq̇→¹1q. This fixes the fermion
matrix ]j/]q and leads to the fermion action

SF5(
n

c̄n~cn112cn!. ~4.11!

On the other hand, since¹15¹S1¹A, we can identify in
Eq. ~4.11! the naive fermion action plus a Wilson term:

SF5
1

2(n
c̄n~cn112cn21!1

1

2(n
c̄n~cn1122cn1cn21!.

~4.12!

A similar mechanism happens in 111 dimensions. For in-
stance, the discrete Nicolai map proposed in@8# for the WZ
models is a cubic symmetric version ofq̇→¹1q. The con-
tinuum map

]1f1 is2]2f5j, f5S f1

f2
D , j5S j1

j2
D ,

s25S 0 2 i

i 0 D , ~4.13!

may be discretized as1

~¹1
11¹2

A!f11¹2
Sf25j1 , ~4.14a!

~¹1
22¹2

A!f22¹2
Sf15j2 ,

~4.14b!

which, using¹65¹S6¹A, leads to the fermion action

SF5(
n

c̄n@¹1
S1 is2¹2

S1s3~¹1
A1¹2

A!#c, ~4.15!

namely,~after a redefinition ofc) the naive discrete action
plus a Wilson term.

C. Some exact properties of the discrete maps

In Sec. III A and Sec. III B we discussed some analytic
tools for the study of the existence of periodic solutions
the Langevin equation as well as for the determination
their numberN(j).

Some of those conclusions hold also in the discrete c
Let us begin with the~011!-dimensional case. The Ito dis
cretization

qn115qn1e f ~qn!1Aejn , ~4.16!

of the open problem~3.7! gives

1With this choice of¹1 and¹2 the cross terms inj1
21j2

2 cancel.
9-5
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dqN

dq0
5)

n
„11e f 8~qn!…. ~4.17!

Hence, in the casef 8(q).0 we have

d

dq0
~qN2q0!.0, ~4.18!

and ~at least for asymptoticf ;q2n11 with positive n! it is
easy to prove the existence of a unique periodic seque
$qn% for each periodic$jn%.

Concerning the WZ models, we now show that also in
discrete equations there are not zero modes whenf is con-
stant. The equation for the zero model is @see Eq.~3.28!#

@¹1
S1 is2¹2

S1s3~¹1
A1¹2

A2u1!2s1u2#l50,

ui5
]u

]f i
U

f5f0

. ~4.19!

Expanding the periodicl in the Fourier series

l i~x1 ,x2!5 (
k1 ,k2

ci ,k1 ,k2
ei ~k1x11k2x2!, ~4.20!

we find the determinant of the operator in Eq.~4.19!:

det@¹1
S1 is2¹2

S1s3~¹1
A1¹2

A2u1!2s1u2#

5 )
k1 ,k2

F2sin2 k12sin2 k22u2
2

2S u112 sin2
k1

2
12 sin2

k2

2 D 2G , ~4.21!

which is not zero unlessu15u250.

D. Stochastic identities

The stochastic identities relate fermion correlation fun
tions to stochastic averages involving the solutionq of the
Langevin equation and the noisej. In this paper we shal
need only the simplest of them. To prove it at the discr
level we write

^V~q!ja&

5E dj0

A2p
•••

djN21

A2p
e21/2~j0

2
1•••1jN21

2
!V„q~j!…ja

52E dj0

A2p
•••

~de21/2ja
2
!

A2p
•••

djN21

A2p
V„q~j!…

5E dj0

A2p
•••

djN21

A2p
e21/2~j0

2
1•••1jN21

2
!

]

]ja
V„q~j!…

5 K ]V

]qb

]qb

]ja
L . ~4.22!
06500
ce

e

-

e

However, in terms of the fermion matrix,

Jab5
]ja

]qb
, ~4.23!

this means

^V~q!ja&5^]lV~q!~J21!la&, ~4.24!

and, in particular,

^qajb&5^~J21!ab&5^c̄acb&, ~4.25!

which expresses the fermion propagator in terms of theq-j
correlation.

V. NUMERICAL SIMULATION

From the very existence of a local Nicolai map and p
vious discussions it follows an algorithm for the numeric
computation of supertraces. The first step is the extractio
the Gaussian random numbers$jn%. Then, letfn be the field
obeying a discretized version of Eq.~2.1!; we must find the
initial condition f0 such that

D~f0!5ifN~f0!2f0i50. ~5.1!

In 011 dimensions it is easy to identify all solutions of E
~5.1! as well as the sign of the Jacobian determinant of
Nicolai map. For the WZ models in 111 dimensions the
problem is harder. However, as we have seen, at leas
large separations of the zeroesf* of f (f) we can expect to
have one solution for eachf* . Therefore we can use$f* %
as starting guesses and take for det]j/]q its value atf* . In
the simplest casef (f)5mf1gf2 we havef* 50,2m/g
and the above regime is obtained for largem/g.

If an operatorO(f) is averaged as in Eq.~2.4! over the
realizations of$j% we obtain an estimate of the supertra
Str@Oexp(2bH)# and whenb→1` we obtain^0uOu0& in
the case of unbroken SUSY. In the free~011!-dimensional
casef (q)5mq ~and similarly in the free WZ models! we can
solve analytically the discrete equations and determine
correlation functions with the stochastic algorithm or in fie
theory.

The discrete Langevin equation is

qn115vqn1Ae jn , v511em. ~5.2!

The linear system

S v 21 0 ••• 0

0 v 21 ••• 0

•••

21 0 0 ••• v

D S q0

q1

•••

qN21

D 52AeS j0

j1

•••

jN21

D
~5.3!

is easily solved. The inverse of the first factor is
9-6
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1

vN21
•S vN21

••• v 1

1 ••• v2 v

•••

vN22
••• 1 vN21

D ~5.4!

and therefore the initial value is

q052Ae
1

vN21
~vN21j01•••11•jN21!. ~5.5!

The two-point function is

Ck5^q0qk&5
e

~vN21!2 (i 50

N21

v i mod N1~ i 1k! mod N,

~5.6!

and after a straightforward algebra

Ck5
2e vN/2

~v221!~vN21!
coshS S k2

N

2 D logv D . ~5.7!

If we take the limitN→` with e5b/N and introduce the
time variablet5ek we obtain

Str~qe2tHqe2bH!5 lim
N→`

^q0qk&5
1

2m

cosh„m~t2b/2!…

sinh~mb/2!

~5.8!

and

lim
b→1`

Str~qe2tHqe2bH!5^0uq~0!q~t!u0&5
1

2m
exp~2mt!.

~5.9!

From the field theoretical point of view, we are computi
Str(qe2tHqe2bH) with the free action

S5
1

2E0

b

dt~ q̇21m2q2!, ~5.10!

and periodic boundary conditions. The generating functio
is

Z5 K expS E dt JqD L
5expS E dt dt8J~t!G~t2t8!J~t8! D , ~5.11!

where

G~t!5
1

2b (
k52`

`
1

m21
4p2k2

b2

expS 2
2p ik

b
t D ,

~5.12!

and
06500
al

Str~qe2tHqe2bH!52G~t!. ~5.13!

If we use the summation formula

(
k52`

`
exp~2 iak!

k21l2
5

p

l sinh~pl!

3cosh„l~a2p!…, 0,a,2p,

~5.14!

we obtain again the result of Eq.~5.8!. A similar computa-
tion can be carried out for the fermionic propagator. Fro
the solution of Eq.~5.2! we have

^qkj0&
1

Ae
5

vk21

12vN
, ^q0jk&

1

Ae
5

vN2k21

12vN
, ~5.15!

which can be combined to give

^qkj l&
1

Ae
5vk2 l 21F 1

12vN
2u~ l 2k!G , ~5.16!

which has the correct continuum limit

^q~t!j~t8!&5em~t2t8!F 1

12emb
2u~t82t!G

5
1

b (
n52`

`
1

2p in

b
2m

expS 2p in

b
~t2t8! D ,

~5.17!

associated to the fermion propagator in 011 dimensions and
confirming the stochastic identity.

In the interacting case,f0 must be determined by som
iterative algorithm. In 111 dimensions it is fundamental t
start from a good guess. We use the Newton-Raphson a
rithm @14# to solve iteratively the set of nonlinear equatio

D i5f i
~N!2f i

~0!50, ~5.18!

wheref i
(k) is the i th spatial component off at thekth time

slice. The correctiondf i
(0) in

f i
~0!→f i

~0!1df i
~0! , ~5.19!

is given by

]D i

]f j
~0!

df j
~0!52D i . ~5.20!

The scheme is made more robust by introducing a relaxa
parametervR in the update off i

(0) :

f i
~0!→f i

~0!1vR df i
~0! , 0,vR,1. ~5.21!

Another help against numerical instabilities is to require
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udf~0!u

uf~N!u
,r or simply udf~0!u,r, ~5.22!

wherer is a minimum correction threshold. The choice
the optimalvR andr must be done empirically, but we di
not find it to be critical.

Finally, another general trick which is useful to improv
numerical stability is to follow a bootstrap procedure a
solve the problem on aL3(T21) lattice to provide a gues
for the L3T problem.

As a numerical test of the algorithm we measure the
son and fermion propagators in simple~011!- and ~111!-
dimensional cases. In 111 dimensions, to gain statistics, w
average over the spatial dimension and sum over all pair
time slices with fixed temporal separation. Moreover, we
plicitly symmetrize the propagators undert→b2t.

The simplest interacting system in 011 dimensions is

f ~q!52mq2gq3, m,g.0, ~5.23!

where dynamical breaking of supersymmetry does not oc
In Table I we show the lightest mass as a function ofg at
m54, b55 on aT5200 lattice. It is obtained by fitting the
boson and fermion propagators where the latter is comp
by means of the stochastic identity~4.25!. We also show the
O(g2) perturbative value

E15m1
3

2m
g2

9

2m3
g21O~g3!. ~5.24!

In Fig. 1, just to give an example at the critical pointm50
we plot the two propagators atg51 and m50 computed
with b510 on aT5100 lattice. As expected, the slope
the logarithmic plots is the same.

In 111 dimensions, we simulate the WZ model wi
f (f)5mf1gf2. In Fig. 2, we show the boson and fermio
propagators evaluated atm54, g50.1 on a 20390 lattice
with es50.1 ande t50.01, wherees ande t are the space an
time discretization steps. The continuous line is the fit w
the Ansatz

TABLE I. Lightest boson (mB) and fermion (mF) masses as
functions of g at m54, b55 on a T5200 lattice in the~011!-
dimensional model with driftf (q)52mq2gq3.

g mB mF mpert

0.0 4.00~3! 4.01~3! 4.0000
0.1 4.04~3! 4.04~3! 4.0368
0.2 4.07~3! 4.08~3! 4.0750
0.3 4.11~3! 4.11~3! 4.1062
0.4 4.14~3! 4.14~3! 4.1388
0.5 4.17~3! 4.18~3! 4.1699
0.6 4.20~3! 4.21~3! 4.1997
0.7 4.23~3! 4.24~3! 4.2281
0.8 4.26~3! 4.27~3! 4.2550
06500
-

of
-

r.

ed

C~t!5A0 coshFmS t2
1

2
b D G . ~5.25!

On a 20350 lattice we have variedg with the results re-
ported in Table II together with the one loop value of t
doublet mass which is

m~g!5m2
2

3A3

g2

m
. ~5.26!

Finite time step errors can be investigated in a first appro
mation by studying numerically the finite lattice propaga
integrated over space. This, in standard notation, is

D~k!5(
nt

exp~k e tpt!
1

p̂t
21m2

, ~5.27!

FIG. 1. Boson and fermion propagators for the~011!-
dimensional model with driftf (q)52q3 at b510.0 on aT5100
lattice. Apart from the different normalization the slopes of the tw
logarithmic plots are equal.

FIG. 2. Boson and Fermion propagators for the WZ model w
drift f (f)5mf1gf2 at the pointm54, g50.1 on a 20390 lattice
with space and time stepses50.1, e t50.01.
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where

pt5
2p

b
nt , nt50•••T21, and p̂t5

2

e t
sin

1

2
e tpt .

~5.28!

One can study at fixedb, the difference in the propagator a
e t is varied. We checked that atm54, e t50.01 andT550
the finite step effects are negligible.

We also remark that with this particular choice off (f)
we can sample a single zero (f* 50) without violating su-

TABLE II. Lightest boson (mB) and fermion (mF) masses as
functions of g at m54, b50.5 on a 20350 lattice for the WZ
model associated tof (f)5mf1gf2.

g mB mF mpert

0.0 4.00~5! 4.00~5! 4.000
0.1 4.00~5! 3.99~5! 3.999
0.4 3.99~5! 3.99~5! 3.985
0.6 3.98~5! 3.98~5! 3.965
1.2 3.96~5! 3.97~5! 3.859
nd

s

06500
persymmetry. The reason is that the shifted fieldf̃5(f1
2m/g,f2) obeys the same equations asf but with m→
2m. For ^ff& and the symmetrized̂c̄c& this change has
no consequences.

VI. REMARKS AND CONCLUSIONS

In this paper we have shown that the existence of a lo
Nicolai map in supersymmetric models has useful con
quences for numerical computations. It allows the formu
tion of a simulation algorithm which generates statistica
independent field configurations by solving a Langevin eq
tion with periodic boundary conditions. The so-called s
chastic identities can be exploited to avoid Grassmann fie
The method is feasible and consistent numerical results
obtained in 011 dimensions and also in 111 dimension WZ
models even if with some constraint in parameter space. F
ther developments are possible in the direction of more
bust integration schemes for the Langevin equation as w
as in the application to more realistic models. In particul
work is in progress on cases where the Nicolai map is de
mined perturbatively@15# and in four-dimensional QCD
@4,5# where the Jacobian of the local Nicolai map is consta
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