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Vacuum energy density near fluctuating boundaries
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The imposition of boundary conditions upon a quantized field can lead to singular energy densities on the
boundary. We treat the boundaries as quantum mechanical objects with a nonzero position uncertainty, and
show that the singular energy density is removed. This treatment also resolves a long-standing paradox con-
cerning the total energy of the minimally coupled and conformally coupled scalar fields.
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I. INTRODUCTION

It is well known that boundary conditions imposed up
quantum fields may lead to divergent expectation values
local observables. A simple example is a massless, m
mally coupled scalar fieldw(t,x) which vanishes on thez
50 plane:

wuz5050. ~1!

One finds@1# that the renormalized expectation values
both w2 and of the energy densityTtt diverge asz→0. Spe-
cifically,

^w2&52
1

16p2z2 ~2!

and

^Ttt&52
1

16p2z4 . ~3!

@Units in which\5c51 will be used throughout this pape
The metric tensor is taken to behmn5diag(1,21,21,21).#
The stress energy tensor of the massless minimally cou
scalar field is given by

Tmn5]mw]nw2
1

2
hmn]aw]aw. ~4!

Similar divergences occur in the expectation values of
squared electric or magnetic fields,^E2& or ^B2&, near a per-
fectly conducting plane, although in this case the local
ergy density remains finite. When the conducting bound
is curved, then the energy density diverges on the bound
@2#.

Furthermore, there is a puzzling discrepancy between
Casimir energy for a minimal scalar field computed as
renormalized expectation value of the Hamiltonian and a
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spatial integral of̂ Ttt&. Consider the case of two paralle
plates with separationL on which the field vanishes. If we
first form the Hamiltonian operatorH5*Tttd

3x, the result is
the same for both the minimal and conformally coupl
fields. This follows from the fact that the stress tensor for
conformal field,

Qmn5]mw]nw2
1

2
hmn]aw]aw

2
1

6
@]m~w]nw!1]n~w]mw!22hmn]a~w]aw!#,

~5!

differs from that for the minimal field, Eq.~4!, by a total
derivative term which integrates to zero. If we find the ren
malized expectation value ofH, the energy per unit area i
found to be2p2/(1440L3). However, if we attempt to com
pute this energy per unit area as*0

L^Ttt&dz, the result is
divergent. This discrepancy has led some authors@3# to pos-
tulate the existence of a singular surface energy dens
which would render the latter expression finite and equa
the former result.~Note that the surface energy densiti
which are of concern here are distinct from the surface-a
dependent terms in the regularized Casimir energy which
arise in particular regularization methods@4,5#.!

In curved or topologically nontrivial spacetimes, it is als
possible for the renormalized expectation value of the str
tensor to diverge on particular boundaries. An example is
Boulware vacuum state in Schwarzschild spacetime,
which the stress tensor diverges on the event horizon@6,7#.
This divergence is usually interpreted as indicating that t
is not a physically realizable state. Other examples of div
gent stress tensors include Misner space, where the d
gence occurs on the Cauchy horizon@8#. In this and similar
examples, one is tempted to resolve the problem by reg
ing the spacetime itself to be unphysical. Indeed, this p
losophy is the basis of Hawking’s chronology protecti
conjecture@10#, which argues that closed timelike curves a
prohibited by the effects of divergent energy densities wh
would otherwise appear on the chronology horizon~the
© 1998 The American Physical Society07-1
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boundary between a region containing closed timelike cur
and one without such curves!.

One may understand why the imposition of a bound
condition such as Eq.~1! on a quantum field can result i
infinities. In the case of̂w2&, renormalization means takin
the difference of the expectation value in the presence of
boundary and in its absence. Normally, this removes the
finite part and leaves a finite remainder. However, on
boundary the formal expectation value of^w2& is finite, and
so the subtraction results in an infinite difference. We c
also understand why quantities such as^ẇ2& and ^Ttt& be-
come infinite on the boundary. The fieldw and its time de-
rivative ẇ are conjugate variables which satisfy an unc
tainty relation. If w is precisely specified,ẇ is completely
indeterminate, and̂ẇ2& and thuŝ Ttt&5 1

2 ^ẇ21(“w)2& are
infinite. A state in whichw is precisely determined at a poin
has infinite energy density at that point for essentially
same reason that a position eigenstate in single particle q
tum mechanics has infinite energy.

In the case of material boundaries, such metal plates
finite values of^E2& or other observables are presumab
avoided because such boundaries are not perfect reflecto
all frequencies. A metal plate is a good reflector of elect
magnetic waves at frequencies below the plasma freque
but becomes relatively transparent at higher frequenc
Such a high frequency cutoff seems not to be available w
the ‘‘boundary’’ is a feature of the spacetime structure.

The purpose of the present paper is to explore an alte
tive mechanism for introducing a cutoff which removes s
gular behavior on boundaries. This is to allow the position
the boundary to undergo quantum fluctuations. One m
expect that such fluctuations will smear out the contributio
of the high frequency modes without the need to introdu
an explicit high frequency cutoff.

II. Šw2
‹ NEAR A SINGLE PLATE

Let us consider a plane boundary located atz5q. If we
impose the boundary condition on a massless quantized
lar field w that it vanish on this boundary, the appropria
two-point function may be constructed as an image sum.
result is

^w~x!w~x8!&5G~x,x8!5G0~x,x8!1GR~x,x8!, ~6!

where

G0~x,x8!52
1

4p2~Dt22Dx2!
~7!

is the empty space two-point function, withDt5t2t8, Dx2

5ux2x8u2, and

GR~x,x8!5
1

4p2@Dt22Dx22Dy22~z1z822q!2#
. ~8!
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The full two-point function,G(x,x8), vanishes wheneverz
5q or z85q. The renormalized expectation value ofw2 is
given by the coincidence limit of the renormalized two-po
function,GR(x,x8),

^w2&5GR~x,x!52
1

16p2~z2q!2 , ~9!

and is singular atz5q.
We now wish to allow the position variableq to fluctuate.

This will occur if the mirror is treated as a quantum obje
with a wave functionc(q), and hence a position probabilit
distribution of

f ~q!5uc~q!u2, ~10!

where

E
2`

`

f ~q!dq51. ~11!

The average over position of a functionH(q) becomes

^H&5E
2`

`

H~q! f ~q!dq. ~12!

Thus to find the mean value ofw2, we need to calculate
^GR&. This is most easily done by expressingGR in a Fourier
representation, and then averaging theq dependence of the
mode functions:

^GR~x,x8!&52
1

2~2p!3 ReS E d3k

v
eikt•~xt2xt8!

3e2 iv~ t2t8!eikz~z1z8!^e22ikzq& D , ~13!

wherekt andxt denote the components ofk andx, respec-
tively, in directions parallel to the plate.

To proceed further, we must specify the probability d
tribution, f (q). A convenient choice is a Gaussian peak
aboutq50,

f ~q!5Aa

p
e2aq2

, ~14!

which leads to

^e22ikzq&5e22kz
2^q2&, ~15!

with

^q2&5
1

2a
. ~16!

This probability distribution is the appropriate one to d
scribe, for example, a plate in the ground state of a harmo
potential. Note that Eq.~15! is equivalent to the result which
one obtains when taking the vacuum expectation value of
complex exponential of a free quantum field.@See, for ex-
7-2
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ample, Eq.~8! of Ref. @9#.# This is to be expected, as a fre
quantum field in the vacuum state is equivalent to an infin
collection of harmonic oscillators in their ground states.

If we use Eq.~15! in Eq. ~13!, setx85x, and use

E d3k52pE
2`

`

dkzE
ukzu

`

dvv, ~17!

for integrands independent of the azimuthal angle, the re
is

^GR~ t,t8!&5
1

2~2p!2~ t2t8!

3ReF i E
2`

`

dkze
i @2zkz1~ t2t8!ukzu#e22kz

2D2G ,
~18!

where

D5A^q2& ~19!

is the root-mean-squared displacement of the mirror. T
integral may be performed in terms of the error functionF to
be

^GR~ t,t8!&52
iA2p

8~2p!2~ t2t8!D

3Fe2~2z2t1t8!2/~8D2!FS i
t2t822z

2&D
D

1e2~2z1t2t8!2/~8D2!FS i
t2t812z

2&D
D G .

~20!

~Here and at many other places in this paper, the calculat
were performed with the aid of the symbolic algebra p
gram MACSYMA.! This quantity is finite in the limit thatt8
→t:

^GR&5
&z

32Ap3D3
e2z2/~2D2!iFS i

z

&D
D 1

1

16p2D2 .

~21!

Note that this expression is real, as may be seen from the
that

F~ ix !52F~2 ix !5
2i

Ap
E

0

x

eu2
du. ~22!

The quantity^GR& is ^w2& in the presence of position
fluctuations, and is finite for allz. For largez, we have

^GR&;2
1

16p2z2 2
3D2

16p2z4 1¯ , z@D, ~23!
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thus recovering the usual form far from the mirror. Asz
→0,

^GR&→
1

16p2D2 , ~24!

and is hence finite. For intermediate values ofz, ^GR& may
be computed numerically, and is depicted in Fig. 1.

III. ENERGY DENSITY NEAR A SINGLE PLATE

A. Gaussian fluctuations

We now wish to apply the procedure used in the previo
section to find the energy density in the presence of a sin
plate, whose position is undergoing fluctuations with
Gaussian probability distribution. This energy density m
be expressed as

^r&5
1

2
lim
t8→t
x8→x

~] t] t81“x•“x8!^GR~x,x8!&. ~25!

A repetition of the procedure used for^GR& leads to

^r&52
1

2~2p!3 lim
t8→t
x8→x

ReS E d3k

v
~v22kz

2!eikt•~xt2xt8!

3e2 iv~ t2t8!eikz~z1z8!^e22ikzq& D . ~26!

If we now employ the relation for Gaussian fluctuations, E
~15!, and perform the integrations as before, we find

FIG. 1. The mean value ofw2 near a mirror undergoing Gauss
ian position fluctuations is shown. HereD is the characteristic width
of the probability distribution. Forz/D large,^w2& is approximately
given by Eq.~2!, but it is finite asz/D→0.
7-3
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^r&5
2i

~2p!3D
Ap

2
lim
t8→t

]2

]u]v

3H 1

u1v Fe2u2/~8D2!FS i
u

2&D
D

1e2v2/~8D2!FS i
v

2&D
D G J , ~27!

whereu5t2t822z and v5t2t812z. Explicit evaluation
of the last expression leads to

^r&5
1

192p2D7 FA2pz~z223D2!e2z2/~2D2!iFS i
z

&D
D

12D~z222D2!G . ~28!

Far from the mirror, the energy density is that calcula
without fluctuations,

^r&;2
1

16p2z4 1¯ , z@D, ~29!

and near the mirror it is finite:

^r&→2
1

48p2D4 z→0. ~30!

The energy density,̂r&, is given as a function ofz in Fig. 2.
The remaining components of the expectation value of

stress tensor,̂Tmn&, may be readily obtained. This must be
Lorentz tensor formed from the metrichmn andnmnn , where
nm5(0,0,0,1) is the unit normal vector to the mirror. Henc

^Tmn&5F1~z!hmn1F2~z!nmnn , ~31!

whereF1 andF2 are scalar functions ofz. We see immedi-
ately that the transverse components are just minus the
ergy density:

FIG. 2. The mean energy density,^r&, near a mirror undergoing
Gaussian position fluctuations is shown. The integral of this fu
tion over all positivez vanishes.
06500
d

e

,

n-

^Txx&5^Tyy&52^r&. ~32!

Furthermore, the conservation law,]m^Tmn&50, implies that

d

dz
@F1~z!2F2~z!#50. ~33!

We define the renormalized stress tensor so that^Tmn&
→0 asz→`, which impliesF1(z)5F2(z), and hence

^Tmn&5^r&~hmn1nmnn!. ~34!

As a consequence, the pressure normal to the mirror v
ishes:

^Tzz&50. ~35!

Finally, we note that one may calculate the integral of t
right-hand side of Eq.~28! explicitly and verify that

E
0

`

^r&dz50. ~36!

This confirms that the boundary fluctuations remove the
parent discrepancy between the Casimir energies of the m
mal and conformal scalar fields. Note that although^r& is
negative both at large distances and at the mean positio
the mirror, it is positive in a region nearz50, as illustrated
in Fig. 2. The positive energy region can be regarded as
concrete realization of the positive surface energy den
conjectured by Kennedyet al. @3#.

B. General probability distribution

Now we wish to generalize our discussion to an arbitra
probability distribution. For later use, we will momentari
assume that the distribution functionf is peaked symmetri-
cally around an arbitrary value of^q&, and write f 5 f (s),
where s5q2^q&. The average of a complex exponenti
function of q then becomes

^eiaq&5eia^q& f̂ ~a!, ~37!

where f̂ denotes the Fourier transform off :

f̂ ~a!5E
2`

`

eiasf ~s!ds. ~38!

We may now use Eq.~26! to express the averaged ener
density for an arbitrary, symmetric probability distribution

^r&52
1

2p2 lim
t8→t

]2

]u]v
ReH i

u1v E
0

`

dkz

3@e2 ikzu f̂ ~22kz!1e2 ikzv f̂ ~2kz!#J , ~39!

where, as before,u5t2t822z andv5t2t812z. We next
use Eq.~38! to re-expresŝr& in terms of f , and employ the
relation

-

7-4
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E
0

`

dxeiax5
i

a
1pd~a! ~40!

to find

^r&52
1

p2 lim
t8→t

]2

]u]v FF~u!1F~v !

u1v G , ~41!

where

F~u!5E
2`

`

ds
f ~s!

2s1u
, ~42!

and the last integral is understood to be a principal value
Thus, given the probability distributionf (s), we need

only calculateF ~the Hilbert transform off !, and then
evaluate the derivatives and limit in Eq.~41!. It is of interest
to apply this formalism to the case of a compactly suppor
distribution. A simple example is

f ~s!5
315

256s0
9 ~s2s0!4~s1s0!4, 2s0<s<s0 , ~43!

and f (s)50 for usu.s0 . This function is chosen so thatf
and its first three derivatives are continuous ats56s0 .
Equation~41! now leads to

^r&5
1

512p2s0
9 $~2205z523150s0

2z31945s0
4z!

3@ ln~z1s0!2 lnuz2s0u#

24410s0z414830s0
3z22672s0

5%. ~44!

This function is plotted in Fig. 3. Again, we have that,
large distances from the mirror,

^r&;2
1

16p2z4 1¯ , z@s0 . ~45!

FIG. 3. The mean energy density,^r&, is illustrated for the com-
pact probability distribution, Eq.~43!, wheres0 is the width of the
probability distribution. Again, the integral of̂r& over positivez
vanishes.
06500
d

Note that^r& has a cusp atz5s0 . If we had chosen a distri-
bution function for which any of the first three derivative
are discontinuous at this point,^r& would become singular
there. Similarly, we could smooth out the cusp by match
more derivatives at this point. We may verify directly th
the total energy again vanishes:

E
0

`

^r&dz50. ~46!

IV. SQUARED ELECTRIC FIELD NEAR A SINGLE
PLATE

As noted in the Introduction, the squared electric a
magnetic fields diverge in the presence of a perfectly refle
ing plate with no position fluctuations. Specifically, one h

^E2&52^B2&5
3

16p2z4 , ~47!

and so the energy density vanishes:

^r&5
1

2
~^E2&1^B2&!50. ~48!

We may now calculate the squared electric field in the pr
ence of a fluctuating boundary. The two point function f
the photon field is

Dmn~x,x8!5^0uAm~x!An~x8!u0&. ~49!

In the presence of the reflecting plate, this may be expres
as

Dmn~x,x8!5D0
mn~x2x8!1DR

mn~x,x8! ~50!

whereD0
mn(x2x8) is the two point function in the absenc

of the boundary, and the renormalized two point functio
DR

mn(x,x8), is the correction introduced by the presence
the boundary. In a particular choice of gauge, we have t

D0
mn~x2x8!5hmnG0~x2x8! ~51!

and

DR
mn~x,x8!52~hmn12nmnn!GR~x,x8!. ~52!

HereG0 andGR are the scalar two point functions given
Eqs. ~7! and ~8!, respectively, andnm5(0,0,0,1) is the unit
vector normal to the plate. The renormalized field stren
two point function can now be obtained by taking the fo
dimensional curl inx and inx8 of Eq. ~52!. The electric field
part of this function is

^Ei~x!Ej~x8!&5^F0i~x!F0 j~x8!&

5]0]08^Ai~x!Aj~x8!&1] i] j8^A0~x!A0~x8!&.

~53!

In the presence of boundary fluctuations, the mean squ
electric field is now given by
7-5
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^E2&5 lim
t8→t
x8→x

~] t] t82“x•“x8!^GR~x,x8!&5
1

3
^Tm

m&, ~54!

whereTm
m is the trace of the minimal scalar field stress tens

From Eqs.~32! and ~35!, we find that

^E2&523^r&. ~55!

Thus our explicit results for the scalar field energy dens
^r&, Eqs. ~28! and ~44!, also give uŝ E2& for the Gaussian
and compact probability distributions, respectively.

It is of interest to note that the Casimir-Polder potent
between a polarizable particle with a frequency-independ
polarizability a and a conducting boundary is given by

V~z!52
1

2
a^E2&. ~56!

Thus Figs. 2 and 3 are also plots of 2V(z)/(3a) for the
Gaussian and compact probability distributions, respectiv
In both cases, there is a minimum inV(z) at a finite distance
from the mean position of the boundary, at which the parti
could apparently become trapped. This should probably
be taken too seriously. In the case of Gaussian fluctuat
there is a nonzero probability to find the mirror to theright
of the minimum ofV(z). In the case of the compact prob
ability distribution, Eq.~43!, the mirror may be found at an
location to the left of the minimum ofV(z).

V. ENERGY DENSITY BETWEEN TWO PLATES

Here we will address the problem of finding the me
energy density for a minimally coupled, massless scalar fi
between a pair of parallel plates. As before, the field is
sumed to vanish on the plates, but their positions are allo
to fluctuate. First suppose that the plates are fixed atz5h
andz5s, respectively. The two point function may be co
structed as an image sum:

G~x,x8!52
1

4p2 F (
m52`

`
1

Dt22@z2z812m~s2h!#2

2 (
m52`

`
1

Dt22@z1z812ms22~m11!h#2G ,

~57!

where Dt25Dt22Dxt
25Dt22Dx22Dy2. The renormal-

ized two point function is obtained by subtractingG0(x,x8),
which amounts to omitting them50 term in the first sum-
mation. The result may be written as

GR~x,x8!5
1

2~2p!3 Re E d3k

v
eikt•Dxte2 ivDt

3F (
m52`

`

8 eikz[z2z812m~s2h!]
06500
r.

,

l
nt

y.

e
ot
ns

ld
s-
d

2 (
m52`

`

eikz[z1z812ms22~m11!h] G , ~58!

where the prime on a summation denotes that them50 term
is omitted.

We will assume that the positions of both plates are
scribed by the same probability distribution,f . We then have
that

^eikz[z2z812m~s2h!]&

5E dh f ~h!E ds f ~s!eikz[z2z812m~s2h!]

5eikz[z2z812m~^s&2^h&!] f̂ 2~2mkz! ~59!

and

^eikz[z1z812ms22~m11!h]&

5eikz[z1z812m^s&22~m11!^h&] f̂ ~2mkz! f̂ „2~m11!kz….
~60!

The mean energy density is given by Eq.~25!. If we combine
this expression with the above results, we find

^r&52
1

8p2 lim
Dt→0

ReF ]2

]t2 S 2 i

Dt D E2`

`

dkze
i ukzuDt

3 (
m52`

`

8 e2i ukzumaf̂ 2~2mkz!

1S 1

4

]2

]z2 2
]2

]t2D S 2 i

Dt D E2`

`

dkze
i ukzuDt

3 (
m52`

`

e2i ukzu~ma1z! f̂ ~2mkz! f̂ „2~m11!kz…G ,

~61!

where we have set̂s&50 and a5^h&: so a is the mean
separation between the plates.

We now employ Eq.~40! and the identity@11#

(
m52`

`
1

m2a
52p cot pa. ~62!

After the derivatives have been evaluated, our final res
may be expressed as

^r&5^r&11^r&2 , ~63!

where

^r&152
p2

1440E2`

`

dsE
2`

`

dr
f ~s! f ~r !

~s1r 1a!4 ~64!

and
7-6
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^r&252
p2

48 E
2`

`

dsE
2`

`

dr f ~s! f ~r !

3

2 sin2Fp~z1r !

s1r 1aG23

~s1r 1a!4 sin4Fp~z1r !

s1r 1aG . ~65!

Let us first discuss the limit in which the position of bo
plates is precisely defined. In this case, we takef (s)5d(s)
and obtain

^r&152
p2

1440a4 ~66!

and

^r&25
p2

48

2 sin2S pz

a D23

a4 sin4S pz

a D . ~67!

This is just the usual result@1#; ^r&1 is now the energy den
sity for a conformal scalar field, and̂r&2 diverges on the
boundaries.

Now suppose that we takef (s) to be a function with a
finite width, and whose first three derivatives are finite. T
integrals in Eqs.~64! and~65! contain poles in the ranges o
ca

t
e

er
ch
ca

06500
e

integration, but the integrals are well-defined as princi
value or generalized principal value integrals@12#. That is,
we use identities of the form

E
2`

`

ds
f ~s!

~s2a!4 52
1

3 E
2`

`

ds
f 8~s!

~s2a!3

5
1

6 E
2`

`

ds
f 9~s!

~s2a!2

52
1

6 E
2`

`

ds
f-~s!

s2a
. ~68!

Thus we see that botĥr&1 and ^r&2 will be finite every-
where.

We may now integrate the finite energy density onz to
obtain the mean energy per unit area:

E5E
0

a

^r&dz5E11E2 , ~69!

where

E15a^r&1 ~70!

and

E25E
2`

`

dsE
2`

`

dr f ~s! f ~r !H~s,r !, ~71!

andH(s,r ) is defined by
H~s,r !52
p

48

cosF pr

s1r 1aGsin3Fp~z1r !

s1r 1aG2sin3F pr

s1r 1aGcosFp~z1r !

s1r 1aG
~s1r 1a!3 sin3F pr

s1r 1aGsin3Fp~z1r !

s1r 1aG . ~72!
en-
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In order to discuss the case of plates which are highly lo
ized in position, we need to Taylor expandH(s,r ) around
s5r 50:

H~s,r !'2
1

48p2 S 1

s3 1
1

r 3D1
p2~s1r !

720a4 1¯ . ~73!

Although the leading term in this expansion is singular as
50 or r 50, its contribution toE2 vanishes because of th
symmetry of the probability distribution,f (s)5 f (2s). All
subsequent terms in the expansion ofH(s,r ) vanish ats
5r 50. Thus we find that if we first form the total energy p
unit area of the plates, and then take the limit in whi
f (s)→d(s), the result is the same as for the conformal s
lar field:

E1→2
p2

1440a3 , E2→0. ~74!
l-

-

In both cases, we now find the same, negative Casimir
ergy. ~Note that, in general, the sign of a Casimir energy
very difficult to predict in advance of an explicit calculatio
and can depend upon both boundary conditions and the
mensionality of spacetime@13#.!

VI. SUMMARY AND CONCLUSIONS

In the previous sections, we have seen that position fl
tuations of a reflecting boundary are capable of remov
divergences in the renormalized values of local observab
such aŝ w2& and ^Tmn&. In the case of the massless, min
mally coupled scalar field, such fluctuations also remove
discrepancy between the spatial integral of the renormali
energy density,*^Ttt&d

3x, and the renormalized expectatio
value of the Hamiltonian,̂H&. Position fluctuations are nec
essary if one is to treat the mirror as a quantum mechan
object.

Of course, for real mirrors the mass is likely to be so lar
7-7
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that the position uncertaintyD is very small. In this case, th
cutoff in reflectivity due to dispersion will normally be th
dominant effect. Dielectric materials become transparen
electromagnetic radiation at wavelengths shorter than a
the plasma wavelength,lp . As long as the position uncer
tainty is small compared to this length,D!lp , dispersive
effects are dominant, and the position fluctuations may
ignored. However, if one could arrange to prepare a mirro
a quantum state in whichD.lp , the position fluctuation
effects discussed in this paper would become dominant.

In the area of gravitational physics, the situation is rat
different. Here it is also possible to have horizons which
as boundaries for quantized fields and for the renormali
expectation value of the stress tensor to diverge on the h
zon. As discussed in the Introduction, examples include
event horizon of Schwarzschild spacetime in the Boulw
vacuum, the Cauchy horizon in Misner space, and poss
the chronology horizon in a spacetime containing clos
timelike curves. Now there is no natural cutoff at high fr
quencies, and in fact higher frequency modes tend to co
,

06500
to
ut

e
n

r
t
d

ri-
e
e
ly
d

le

more strongly to gravity by virtue of their larger energy. It
of course possible that a more complete quantum theor
gravity will introduce an effective cutoff at the Planck sca
At present, any discussion of Planck scale physics mus
regarded as highly speculative. Nonetheless, position fl
tuations of the horizon would seem to provide a possible w
to avoid divergent stress tensors. It is plausible that the lo
tion of a spacetime horizon undergoes position fluctuati
due either to the quantum nature of gravity~‘‘active fluctua-
tions’’! @14# or to fluctuations of the stress tensor of quantu
matter fields~‘‘passive fluctuations’’! @15#. This is a topic
requiring further study.
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