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Vacuum energy density near fluctuating boundaries
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The imposition of boundary conditions upon a quantized field can lead to singular energy densities on the
boundary. We treat the boundaries as quantum mechanical objects with a nonzero position uncertainty, and
show that the singular energy density is removed. This treatment also resolves a long-standing paradox con-
cerning the total energy of the minimally coupled and conformally coupled scalar fields.
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[. INTRODUCTION spatial integral of( T,;). Consider the case of two parallel
plates with separatioh on which the field vanishes. If we
It is well known that boundary conditions imposed uponfirst form the Hamiltonian operatéd = [ T,,d3x, the result is
guantum fields may lead to divergent expectation values fothe same for both the minimal and conformally coupled
local observables. A simple example is a massless, minifields. This follows from the fact that the stress tensor for the
mally coupled scalar field(t,x) which vanishes on the  conformal field,

=0 plane:
=0 1 1 a
¢[2=0=0. (1) 0,,=0,93,0— > Nurd“ @@
One finds[1] that the renormalized expectation values of 1
2 . .

b_o'th ¢° and of the energy densiff;; diverge az— 0. Spe- — 2[0,(00,0)+3,(93,0) 27,0 (¢d,0)],
cifically, 6

1 ®)

(¢?)=— 167272 2
differs from that for the minimal field, Eq4), by a total

and derivative term which integrates to zero. If we find the renor-

malized expectation value &1, the energy per unit area is
1 found to be— 72/(1440@_3%). However, if we attempt to com-
<Tn)=—m- ©) pute this energy per unit area a%(Ttt)dz, the result is
divergent. This discrepancy has led some auth®}$o pos-
[Units in whichZ=c=1 will be used throughout this paper. tulate the existence of a singular surface energy density,
The metric tensor is taken to bg,,=diag(1-1,—1,—1).]  which would render the latter expression finite and equal to
The stress energy tensor of the massless minimally coupleitie former result.(Note that the surface energy densities
scalar field is given by which are of concern here are distinct from the surface-area-
dependent terms in the regularized Casimir energy which can
N arise in particular regularization methods5].)
T =0u0d, 0= 5 1,,0°¢d . ) In curved or topologically nontrivial spacetimes, it is also
possible for the renormalized expectation value of the stress
Similar divergences occur in the expectation values of theensor to diverge on particular boundaries. An example is the
squared electric or magnetic field&2) or (B?), near a per- Boulware vacuum state in Schwarzschild spacetime, for
fectly conducting plane, although in this case the local enwhich the stress tensor diverges on the event horfgon.
ergy density remains finite. When the conducting boundaryrhis divergence is usually interpreted as indicating that this
is curved, then the energy density diverges on the boundarg not a physically realizable state. Other examples of diver-
[2]. gent stress tensors include Misner space, where the diver-
Furthermore, there is a puzzling discrepancy between thgence occurs on the Cauchy horiZ@j. In this and similar
Casimir energy for a minimal scalar field computed as theexamples, one is tempted to resolve the problem by regard-
renormalized expectation value of the Hamiltonian and as éng the spacetime itself to be unphysical. Indeed, this phi-
losophy is the basis of Hawking’'s chronology protection
conjecturd 10], which argues that closed timelike curves are
*Email address: ford@cosmos2.phy.tufts.edu prohibited by the effects of divergent energy densities which
"Email address: nfuxsvai@Ilafex.cbpf.br would otherwise appear on the chronology horiz(ihe
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boundary between a region containing closed timelike curve$he full two-point function,G(x,x"), vanishes whenever

and one without such curves =q or z'=q. The renormalized expectation value of is
One may understand why the imposition of a boundarygiven by the coincidence limit of the renormalized two-point

condition such as Eq.l) on a quantum field can result in function, Gg(x,x’),

infinities. In the case of?), renormalization means taking

the difference of the expectation value in the presence of the N _ 1

boundary and in its absence. Normally, this removes the in- (¢%)=Gr(xx)=— 167%(z—q)?’

finite part and leaves a finite remainder. However, on the

boundary the formal expectation value(af?) is finite, and  and is singular az=q.

so the subtraction results in an infinite difference. We can We now wish to allow the position variabégto fluctuate.

also understand why quantities such(é§> and (T, be- Th|s will occur if Fhe mirror is treated as a quantum opj_ect

come infinite on the boundary. The fieldand its time de- ~With @ wave functionj(q), and hence a position probability

rivative ¢ are conjugate variables which satisfy an uncer-d'smbunon of
tainty relation. If ¢ _is precisely specifiedéo is completely f(q)=|¥(q)
indeterminate, ande?) and thus(Ty)=3(e?+(V ¢)?) are
infinite. A state in whichy is precisely determined at a point Where
has infinite energy density at that point for essentially the "
same reason that a posit!on eigenstate in single particle quan- f f(q)dg=1. (12)
tum mechanics has infinite energy. %
In the case of material boundaries, such metal plates, in- - )
finite values of(E?) or other observables are presumably Th€ average over position of a functiéf(q) becomes
avoided because such boundaries are not perfect reflectors at -
all freqqencies. A metal plat_e is a good reflector of electro- <H>=J’ H(q)f(q)dg. (12)
magnetic waves at frequencies below the plasma frequency, —
but becomes relatively transparent at higher frequencies. i )
Such a high frequency cutoff seems not to be available whehus to find the mean value @, we need to calculate
the “boundary” is a feature of the spacetime structure. ~ (Gr)- This is most easily done by expressi@g in a Fourier
The purpose of the present paper is to explore an alternd€Presentation, and then averaging theependence of the
tive mechanism for introducing a cutoff which removes sin-mode functions:
gular behavior on boundaries. This is to allow the position of 1 a3k
the boundary to undergo quantum fluctuations. One might (GR(X,X'))=— 5+— Re(f — etk (X))
expect that such fluctuations will smear out the contributions 2(2m) w
of the high frequency modes without the need to introduce

(©)

?, (10

an explicit high frequency cutoff. ><e—iw(t—t’)eikz<2+2’><e—2ikzt1>), (13
Il. (¢%) NEAR A SINGLE PLATE wherek; andx; denote the components kfandx, respec-
. tively, in directions parallel to the plate.
Let us consider a plane boundary locatedaty. If we To proceed further, we must specify the probability dis-

impose the boundary condition on a massless quantized scgibution, f(q). A convenient choice is a Gaussian peaked
lar field ¢ that it vanish on this boundary, the appropriate gpoutq=0,
two-point function may be constructed as an image sum. The

result is a
fla)=+/—e "7, (14)

(e()e(X)=C(xX)=Co(xX') +CrXx"),  ®) .\

where (e~ 2ikatly = g~ 2K (15)

1 with

ol X) =" 2 a2 "

(@)= o (16)

q 2a°

is the empty space two-point function, wittt=t—t’, Ax? _ - S )

=|x—x'|? and This probability distribution is the appropriate one to de-
scribe, for example, a plate in the ground state of a harmonic
potential. Note that Eq15) is equivalent to the result which

1 one obtains when taking the vacuum expectation value of the

Gr(xX")= A AtP— AX2—Ay’—(z+2'—29)?]" ® complex exponential of a free quantum fie[&ee, for ex-
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ample, Eq.(8) of Ref.[9].] This is to be expected, as a free <¢2>A?
guantum field in the vacuum state is equivalent to an infinite
collection of harmonic oscillators in their ground states.

If we use Eq.(15) in Eq. (13), setx’ =x, and use

0.006

0.004

f d3k=277j7 dk, ‘k‘dww, 17
z 0.002

for integrands independent of the azimuthal angle, the resul

IS z/A

-0.002

! —
(GR(trt )> 2(277)2(t_t')
FIG. 1. The mean value a$? near a mirror undergoing Gauss-
% Re{i jw d kzei[zzkz+(t—t’)|kz\]e—2k§A2 ian position fluctuations is shown. Heteis the characteristic width
' of the probability distribution. Foz/A large,(¢?) is approximately
given by Eq.(2), but it is finite asz/A—0.

(18

thus recovering the usual form far from the mirror. As

—0,

where

A=(a?) (19

is the root-mean-squared displacement of the mirror. This

integral may be performed in terms of the error functidto (Gr)— 1672A2" (24
be
(GRr(t,t"))y=— —IQZTF—, and is hence finite. For intermediate valueszpf{Gg) may
8(2m)*(t—t")A be computed numerically, and is depicted in Fig. 1.
> e—(Zz—t+t')2/(8A2)(I)( i -t _22)
2V2A Ill. ENERGY DENSITY NEAR A SINGLE PLATE
ezt g | | t—t'+2z A. Gaussian fluctuations
2V2A We now wish to apply the procedure used in the previous

section to find the energy density in the presence of a single
(20 N . ) .
plate, whose position is undergoing fluctuations with a
were performed with the aid of the symbolic algebra pro-P€ expressed as
gram MACSYMA.) This quantity is finite in the limit that’ 1
—t <P>:§ lim (ﬁtat,+vx'vx’)<GR(XaX,)>- (25)
t' >t
\f22 2 2 V4 1 X' —x
Gr)=——=—e 2/ d|i— |+ —=>3.
(e 32/m°A% VZA|  16m%A°
2D A repetition of the procedure used f0Bg) leads to

Note that this expression is real, as may be seen from the fact

that

1 d3k . :
<p>:—m lim R%J T(wz—kg)elk[-(xt_xt)

2i (x5 t'—t

O(ix)=—P(—ix =—f e’ du. 22 ',

(b=~ (== 7= | (22) " x

—iw(t—t") oiky(z+2') / o 2iky
The quantity(Gg) is (¢?) in the presence of position xe! el e q>)' (26)

fluctuations, and is finite for alt. For largez, we have

(Ge)~ — 1 342 e 7mA 23) If we now employ the relation for Gaussian fluctuations, Eq.
R 167°z> 167°Z* : : (15), and perform the integrations as before, we find
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<p>Al <Txx>:<Tyy>: _<P>- (32

0-o0 Furthermore, the conservation law(T ,,) =0, implies that

0.0005 d
2IA SIFi2-Fa2)]=0. (33
1 2 4 5

~6.0005 We define the renormalized stress tensor so {fiat,)

-0.001 —0 asz—o, which impliesF(z)=F»(z), and hence
(T = (P) (Tt ). (34

w0002 As a consequence, the pressure normal to the mirror van-

ishes:

FIG. 2. The mean energy density), near a mirror undergoing
Gaussian position fluctuations is shown. The integral of this func- (T,»=0. (35)
tion over all positivez vanishes.
Finally, we note that one may calculate the integral of the
2i T 92 right-hand side of Eq(28) explicitly and verify that
()= V2 t','Tt U

fo (p)dz=0. (36
Xli e—u2/(8A2)q)( i u )
utuv 2vV2A This confirms that the boundary fluctuations remove the ap-
parent discrepancy between the Casimir energies of the mini-
+e_”2/(8A2)(I)<i v ) ] 27) mal a_nd conformal scalar fields. Note that although is
2V/3A ' negative both at large distances and at the mean position of

the mirror, it is positive in a region near=0, as illustrated
whereu=t—t’'—2z andv=t—t’+2z. Explicit evaluation in Fig. 2. The positive energy region can be regarded as the

of the last expression leads to conf:rete realization of the positive surface energy density
conjectured by Kennedgt al. [3].
1 210N 2. . Z
(p)= 1997277 V2mz(22—3A%)e #7124 )|¢’< [ \/_2_A) B. General probability distribution

Now we wish to generalize our discussion to an arbitrary
probability distribution. For later use, we will momentarily
assume that the distribution functidnis peaked symmetri-
cally around an arbitrary value dfj), and write f =f(s),

Far from the mirror, the energy density is that calculatedvhere s=gq—(ag). The average of a complex exponential
without fluctuations, function of g then becomes

+2A(%—2A%)|. (29

1 (e =e*f(a), (37)
<p>~—m+ s Z>A, (29) ~
wheref denotes the Fourier transform of

and near the mirror it is finite: "
f(a)zf e'*sf(s)ds. (38)

1
We may now use ECK26) to express the averaged energy

The energy densityp), is given as a function o in Fig. 2. density for an arbitrary, symmetric probability distribution as

The remaining components of the expectation value of the 1 52 i o
stress tensoK,T,,), may be readily obtained. This must be a (py=— 75— lim —Re{ f dk,
Lorentz tensor formed from the metrig,, andn,n,, where 27 't dudv utv Jo
n*=(0,0,0,1) is the unit normal vector to the mirror. Hence,

—ikuf( _ —ikv}
(T =F1(2)p,,+Fa(2)n,n,, (31) xle Tz 2kg) e f(ZkZ)]]’ 39

whereF; andF, are scalar functions of. We see immedi- where, as beforgy=t—t'—2z andv=t—t’'+2z. We next

ately that the transverse components are just minus the eose Eq.(38) to re-expresgp) in terms off, and employ the
ergy density: relation
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<p> s, Note that(p) has a cusp at=s;. If we had chosen a distri-
bution function for which any of the first three derivatives

0.1 are discontinuous at this poinfp) would become singular
there. Similarly, we could smooth out the cusp by matching

0.05 more derivatives at this point. We may verify directly that

the total energy again vanishes:

z/s,
0.5 1 1.5 2 0
\ﬁ f (p)dz=0. (46)
-0.05 0

-0.1 IV. SQUARED ELECTRIC FIELD NEAR A SINGLE
PLATE

As noted in the Introduction, the squared electric and
magnetic fields diverge in the presence of a perfectly reflect-
ing plate with no position fluctuations. Specifically, one has

FIG. 3. The mean energy densityy, is illustrated for the com-
pact probability distribution, Eq43), wheres, is the width of the
probability distribution. Again, the integral dp) over positivez

vanishes.
(E9)=~(BY)= s ry an
. | 16m%z*’
Jax=— 4 : :
fo dxe a mo(a) (40 and so the energy density vanishes:
; 1
to find (p)=5((E?)+(BH)=0. (48)
1 . ¢ [F(u+F(v) o
(p)=—— lim EE n , (41)  We may now calculate the squared electric field in the pres-
T OUY urv ence of a fluctuating boundary. The two point function for
the photon field is
where
D#¥(x,x") =(0|A*(x)A*(x")|0). (49
= f(s)
F(u)= f_ dsocry (42)  Inthe presence of the reflecting plate, this may be expressed
as
and the last integral is understood to be a principal value. D#¥(x,x')=DE(x—x") +DE(x,x) (50)

Thus, given the probability distributiori(s), we need
only calculate F (the Hilbert transform off ), and then WhereDé’“”(x—x’) is the two point function in the absence
evaluate the derivatives and limit in E@-l) It is of interest of the boundary' and the renormalized two point function,
to apply this formalism to the case of a compactly supporteth»(x x’), is the correction introduced by the presence of

distribution. A simple example is the boundary. In a particular choice of gauge, we have that
315 D{¥(x—x")=p*"Go(x—X' 51
f(s)= == (S—sp)*(S+5p)*, —sp=s<sp, (43 o )= 7" Gol ) (52)
25653
and
and f(s)=0 for |s|>sy. This function is chosen so thét DE(x X' )= — ( n2V+ 2n*N") G ' 52
and its first three derivatives are continuoussat +s;. R'(xX)==(n n*n”)Gr(x,x"). (52
Equation(41) now leads to Here G, and Gy, are the scalar two point functions given in

Egs.(7) and (8), respectively, ansi*=(0,0,0,1) is the unit
vector normal to the plate. The renormalized field strength
two point function can now be obtained by taking the four
dimensional curl inx and inx’ of Eq. (52). The electric field

1 5 2,3 4
<p>= m{(ZZO& —31505;z°+ 9456,2)

X[In(z+sg) —In[z—so|] part of this function is
_ 4 3,2__ 5
This function is plotted in Fig. 3. Again, we have that, at = dodo{ Ai(X)A(X")) + 33 (Ao(X) Ag(X)).

large distances from the mirror, (53

In the presence of boundary fluctuations, the mean squared

1
{p)~= T6n2 T P S 9 glectric field is now given by
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1 o0
(E?)=1lim (8,9 = V- V3 )(GRr(X,X")) = §(Tﬁ), (549) — > glkddzrH2me-2mil)g]| - (5g)
t'—t m=—
x"—x
where the prime on a summation denotes thantle0 term
WhereTZ is the trace of the minimal scalar field stress tensoris omitted.

From Egs.(32) and(35), we find that We will assume that the positions of both plates are de-
scribed by the same probability distributidn,We then have
(E®)=—-3(p). (55  that

Thus our explicit results for the scalar field energy density,<eikz[z—2’+2m(o— 77)]>
(p), Eqs.(28) and (44), also give us(E?) for the Gaussian

and compact probability distributions, respectively. . .
It is of interest to note that the Casimir-Polder potential :J d77f(77)J dof(g)elddz 2 +2me=
between a polarizable particle with a frequency-independent
polarizability « and a conducting boundary is given by = glkdlz=2"+2m(o0) = (m1F2(2mk,) (59)
1
V(@)= - a(E?). 56 2N

<eikz[z+z' +2mo—2(m+1) 77])

Thus Figs. 2 and 3 are also plots o¥/¢)/(3a) for the

Gaussian and compact probability distributions, respectively. = gikzAz+2'+2m(o)=2(m+ 1))} (om k) f2(m+1)k,).

In both cases, there is a minimum\V{z) at a finite distance (60)
from the mean position of the boundary, at which the particle

could apparently become trapped. This should probably nothe mean energy density is given by E25). If we combine
be taken too seriously. In the case of Gaussian fluctuationhis expression with the above results, we find

there is a nonzero probability to find the mirror to thight

of the minimum ofV(z). In the case of the compact prob- 1 =i\ (= il At
ability distribution, Eq.(43), the mirror may be found at any (p)=- 872 AIImO Re -2 | At ﬂodkze ‘
location to the left of the minimum o¥(z). =
V. ENERGY DENSITY BETWEEN TWO PLATES Xm;_w e?lalmaf2(2ml,)
Here we will address the problem of finding the mean 12 P\ =i\ (=
energy density for a minimally coupled, massless scalar field + <_ —— _2) (_) f dk,e'lklat
between a pair of parallel plates. As before, the field is as- 40z° Gt°)\At) )=
sumed to vanish on the plates, but their positions are allowed w
to fluctuate. First suppose that the plates are fixed=ap % 2 e?ilkd(mat 2} omic)F(2(m+1)k,)
andz= g, respectively. The two point function may be con- m=— z )
structed as an image sum: 61)
G(xX')= — — i 1 where we have seto)=0 anda=(7): so a is the mean
T An? | e ATP—[z-7 +2m(o—7)]? separation between the plates.
We now employ Eq(40) and the identity11]
- 1
_m;w A2 —[z+Z +2mo—2(m+1)5]?|’ D 1 o cotma 62
< m-—a '

(57) o

After the derivatives have been evaluated, our final result

where A7?=At?— Ax?=At?—Ax?—Ay2. The renormal-
may be expressed as

ized two point function is obtained by subtractiGg(x,x"),
which amounts to omitting then=0 term in the first sum- — + 63
mation. The result may be written as (pr=(p)at{p)2, 63

where

Ggr(x X’)=; Re d_skeikt-AxtefiwAt
RUX, 2(277)3 w 3 2 focd J'ood f(s)f(r) o
o <P>1———1440 g8 r—(s+r+a)4 (64)
X " gikz=2"+2m(o = n)]
m;w and
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integration, but the integrals are well-defined as principal
(P)2== 73 f dSJ drf(s)f(r) value or generalized principal value integrél®]. That is,
we use identities of the form
zZ+r o '
2 g TETD| g d f9 _ 1= 10
s+r+a (S a (s—a)3
X . (65 -
ol m(z+r)
(s+r+a)* sinf| —— 1 (= f7(s)
st+r+a =—J’ ds——
6 ) . (s—a)’
Let us first discuss the limit in which the position of both "
plates is precisely defined. In this case, we t&{® = 5(s) _ 1 (> "0
| =—= ds . (68)
and obtain 6 /- s—a
w? Thus we see that bottp); and(p), will be finite every-
(P1=~ 122028 (66)  where.
We may now integrate the finite energy density Dto
and obtain the mean energy per unit area:
a
: zsmz(”—z>—3 e~ [(p)az-ErtE,, (69
T a 0
O S—— (67)
48 z
2 sin“(%) where
E;=a(p)s (70
This is just the usual resull]; {p), is now the energy den- and
sity for a conformal scalar field, angb), diverges on the
boundaries. w o
Now suppose that we taki(s) to be a function with a Ez= _mds _wdrf(s)f(r)H(s,r), (71)
finite width, and whose first three derivatives are finite. The
integrals in Eqs(64) and(65) contain poles in the ranges of andH(s,r) is defined by
|
ar 3 w(z+r) 3 ar w(z+r)
Hierye T OFstrra™|strral MMstr+alstr+a 2
(S1)="7g e m(z+r) (72
(s+r+a)”si str+al>" |strta

In order to discuss the case of plates which are highly localin both cases, we now find the same, negative Casimir en-
ized in position, we need to Taylor expaiht{s,r) around ergy.(Note that, in general, the sign of a Casimir energy is

s=r=0: very difficult to predict in advance of an explicit calculation,
and can depend upon both boundary conditions and the di-
1 (1 1\ 7%s+r) mensionality of spacetimil3].)
H(S,r)%—m<§+r—3)+w+"' (73)

VI. SUMMARY AND CONCLUSIONS
Although the leading term in this expansion is singulas at

=0 orr=0, its contrlbut_lqn thz_vanlshes because of the tuations of a reflecting boundary are capable of removing
symmetry of the prgbablllty dlstnpuuorf,(s):f(—_s). All divergences in the renormalized values of local observables,
subsequent terms in the expansiontfs,r) vanish ats uch as{¢?) and(T,,). In the case of the massless, mini-
- r_=0. Thus we find that if we first form the tOt"?" energy per mally coupled scalaﬂr field, such fluctuations also remove the
unit area of the plates, and then take the limit in Wh'Chdlscrepancy between the spatial integral of the renormalized
f(s)— 4(s), the result is the same as for the conformal scaenergy density/(T,)dx, and the renormalized expectation
lar field: value of the Hamiltonian{H). Position fluctuations are nec-
essary if one is to treat the mirror as a quantum mechanical
object.

Of course, for real mirrors the mass is likely to be so large

In the previous sections, we have seen that position fluc-

2

T
Elﬂ—m, E,—O0. (74
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that the position uncertaint is very small. In this case, the more strongly to gravity by virtue of their larger energy. It is
cutoff in reflectivity due to dispersion will normally be the of course possible that a more complete quantum theory of
dominant effect. Dielectric materials become transparent tgravity will introduce an effective cutoff at the Planck scale.
electromagnetic radiation at wavelengths shorter than aboutt present, any discussion of Planck scale physics must be
the plasma wavelength,,. As long as the position uncer- regarded as highly speculative. Nonetheless, position fluc-
tainty is small compared to this length,<\,, dispersive tuations of the horizon would seem to provide a possible way
effects are dominant, and the position fluctuations may béo avoid divergent stress tensors. It is plausible that the loca-
ignored. However, if one could arrange to prepare a mirror irtion of a spacetime horizon undergoes position fluctuations
a quantum state in which>\,, the position fluctuation due either to the quantum nature of gravitactive fluctua-
effects discussed in this paper would become dominant. tions”) [14] or to fluctuations of the stress tensor of quantum
In the area of gravitational physics, the situation is rathematter fields(“passive fluctuations} [15]. This is a topic
different. Here it is also possible to have horizons which actrequiring further study.
as boundaries for quantized fields and for the renormalized
expectation value of the stress tensor to diverge on the hori- ACKNOWLEDGMENTS
zon. As discussed in the Introduction, examples include the
event horizon of Schwarzschild spacetime in the Boulware We would like to thank Bruce Jensen and Michael Pfen-
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