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Variational principle in the algebra of asymptotic fields
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This paper proposes a variational principle for the solutions of quantum field theories, in which the “trial
functions” are chosen from the algebra of asymptotic fields, and illustrates this variational principle in simple
cases[S0556-282(98)01318-9

PACS numbdps): 11.10-z

I. INTRODUCTION rameters by minimizing the ground state enef§y. The
exact ground state energy will be less than the approximate
The most used methods to find approximate solutions oénergy at the minimum. Many attempts have been made to
guantum field theories are based on path integrhis5]. carry over this approach to quantum field theories. In field
They have many advantages; however the Hilbert space arttleory, the ground state wave function is replaced by a
particle structure of field theory are not evident from thisvacuum wave functional that can depend on functions as
point of view. Fock space methods, such as the Tammwell as parameters. Minimizing the vacuum energy deter-
Dancoff approximatior{6,7] and the discretized light cone mines the functions and parameters and yields approximate
guantization approximatiodDLCQ) [8] place the Hilbert information about the solution of the theof$0—13. This
space and particle structure of the theory in the forefrontapproach is usually restricted to wave functionals closely re-
however the covariance of the theory is not evident. Thdated to Gaussians, because the necessary path integrals can
functional Schrdinger picture allows intuitive guesses aboutbe done only in that case. Also, this approach does not take
the form of the solutions of a field theory to be incorporated,advantage of the particle spectrum that we expect to occur in
but this method also fails to be explicitly covariant. quantum field theories. For a relativistic theory, for example,
Another method, less developed than those just merthe spectrum should consist of a vacuum of energy-
tioned, is the expansion in normal-ordered asymptotic fieldsmomentum zero, one or more single-particle stabeslud-
the “Haag expansion” or “N-quantum approximation,” ing possible bound statesvith various masseghere, as in
which applies directly only to theories without zero-massthe rest of this paper, the analysis is restricted to cases with-
particles. In particular, it does not apply directly to gaugeout massless statesand many-particle states whose energies
theories. Nonetheless, this method can be extended to gaugad momenta correspond to several massive particles. This
theories; indeed it has been applied to quantum electrodyparticle structure can be put into a variational calculation at
namics. Using the Haag expansion, one works in the algebrihe outset by choosing to approximate the fields, rather than
of asymptotic fields, and can keep creation and annihilatiorthe states, and by using an expansion in asymptotic fields for
parts of operators on the same footing, since one can choodee interacting fields(Alternatively, as given below, one can
not to apply elements of the algebra to the vacuum, wherese generalized free fields in the expansion of the interacting
terms with annihilation operators would annihilate thefields andderivethe fact that the fields in the expansion are
vacuum and be lost. By contrast, in the Tamm-Dancoff apordinary free field9.Thus, in quantum field theory, assuming
proximation, the annihilation parts destroy the vacuum anacompleteness and irreducibility of the algebra of asymptotic
disappear from the calculation. In addition to losing explicitfields, one finds that the solutions lie in this algebra and the
Lorentz invariance, this asymmetric treatment of the annihitrial wave functions are replaced by trial operators chosen
lation and creation parts of the fields destroys crossing symirom this algebra. Haaf14] introduced the idea to use an
metry. The DLCQ method also treats annihilation and creelement in the algebra of asymptotic fields to represent the
ation operators asymmetrically; in addition, it suffers from ainteracting field. It is fitting to call such a representation a
lack of explicit covariance. This complicates renormalization“Haag expansion.” Some applications of Haag expansions
considerably. are given in[15]. While a systematic approximation using
Just as variational methods have been used in other aperms with normal-ordered products having an arbitrarily
proaches to quantum field theory, this paper proposes high degree in asymptotic fields leads to amplitudes with
variational principle based on the Haag expansion. Variaarbitrarily many momenta and becomes intractable, a varia-
tional principles in quantum mechanics are powerful ways tdional trial operator in the algebra of asymptotic fields can
go beyond perturbation theory. In quantum mechanics, thbave infinite degrees, but still can be parametrized in a trac-
solutions lie in a Hilbert space of functions and the trialtable way. Section Il formulates the variational principle and
functions are chosen from this space. For example, to agproves that the minimum picks out the solution of the field
proximate the ground state, one can choose a wave functiadheory. Section lll illustrates the principle with the simplest
¢ that depends on some parameters and determine the pezases: a free neutral scalar field of masswith the trial
operator chosen to be a generalized free field, and a free
Dirac field where the trial operator is a free Dirac field. To
*Email address: owgreen@physics.umd.edu compare with the variational method using a vacuum func-
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tional, Sec. IV studies the* model in 1+ 1 and compares whereA in SL(2,C) is replaced by\ in SO(3,1) for integer
the results in the lowest approximation with the results ofspin fields. One can also show that the asymptotic fields obey
[10]. To show how the principle works in cases where thefree field commutation relations, for example, for a scalar
trial element has infinite degree, Sec. V applies the principldield,
to the gradient coupling model, which has a “nucleon” as as . .2
Dirac field coupled to a scalar “meson” field. In that case, L6700, ¢(y)]-=i1A(x—y;me), )
one can choose the trial operator for the nucleon field to bevhere
the product of an arbitrary function of a free scalar field and
a free nucleon field all at a single spacetime point and the iA(x,m2)=(277)*3f d*ke(K®) 6, (k)exp( —ik-X),
trial operator for the meson field to be a free scalar field.
Section VI concludes with the outlook for future work. 5.(K) = 8(k2—m?) @)
Il. THE VARIATIONAL PRINCIPLE is the Pauli-Jordan commutator function. These two condi-
) . . tions, together with the requirement that the vacuum have
Using reasonable assumptm(ms_s parncular that no mass-  zero energy, imply that the generators of the Poingaoeip
less fields are presenand a physicist's level of mathemati- gre the free bilinear functionals of the asymptotic fields, in
cal rigor, one can shoWl6] that the asymptotic fields obey particular that(apart from a constant which is the vacuum
the same Poincaréransformation law as the interacting matrix element of the Hamiltoniarthe Hamiltonian is di-
fields. For example, for a scalar field, agonalized by the asymptotic fields:

U@ AU A =g (Axra), (D PO=H=const > H.cd ¢7°]. ®)
A eSO(1,3), ac R* For the general case, i

as + “1. as To see this, assumél has an arbitrary expansion in
Ua,A) ¢ (x)U(a,A) =Dy (A" )i (Ax+a), (2 asymptotic fields:

n n
H=F©+ ;l FYAMN0) +j§l FUAMNO)T

3
+§ [J d_i[F(Z) (KA (K)A"(— k) expl — 2i 0, x°) + F 2. s,t(k)AiSn(k)TAitn(k)

2w - st

+F@, (ALK TAN—K)T exp(2i w,x?)

” d3"k
+ 2

n>2 Hwki

FM(k):I1 A}“(ki)o:a(E iki)exmiwkitiki-xi), w= K2+ m2. (6)
J

A"(k;)O stands for either the creation or the annihilation The nonrelativistically normalized annihilation and creation
operator, normalized relativistically. From E(B) and the operators ara" (k;)0=(2E,) A" (k)0 ,E,=k°>0. Put

Fourier transform the form forH into the infinitesimal form of Eq(1),
¢i”(x)=(277)_3/2f d*kd"(K) S(K)exp(—ik-X), (7) i[H, () ]=dodp®(x). (10
_ An(K) The commutation relation, Eq3) or (2), say that a normal-
" (k) 5m(k) = 6(K°) Tﬁ(ko—wk) ordered term irH with n factors of ¢3S will contribute to a
K term withn—1 factors of¢?° on the right-hand side of Eq.
o An(—k)T 0 (10). Since the right-hand side of E(LO) is linear in ¢°,
+60(—Kk") 2—W5(k +wy, (B  the only terms allowed iH are those wittn=0 or n=2.

Then=0 term is the vacuum energy, and becaydé is a
the commutation relations of the creation and annihilatiorfree field, then=2 term is the free field Hamiltonian.

operators are The Haag expansion of the interacting fields, stated for
_ ‘ simplicity for a single neutral scalar field with only scalar
[AN(k),A" T(1)]_=2kZ+ m28(k—1). (9)  bound states, is
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o

1 no (here, to simplify the notation, | dropped the subscripts that
p(x)=2 = f > d* M x—x}:I1 ¢"(x):,  label the possibly different asymptotic fiejdshe \'s are
n=0 N7 j =1 arbitrary positive or vanishing numbers that can be chosen to
(1D control the weight attached to each term. If the Haag expan-
, sion of the interacting field has a finite degree, the terms in
where thegj" include in fields for stable bound states, if the Hamiltonian of highest degrees in in-fields cannot possi-
there are any. The terfi®=y is a constant that occurs for bly vanish, so the\’s for such terms should be chosen to
a scalar field when symmetry is broken. The term viith ~ vanish. For infinite degree Haag expansions which remove
=1 is just the in field with coefficient one to fix field the restriction to weak coupling one can keep all #ie

strength renormalization. In momentum space, the expansidppSitive. For the exact solution all off-diagonal terms vanish
is and the diagonal terms are minimum, so this principle gives

the exact solution of the theorg all sectorsat the absolute
minimum if all the\’s are positive. If all\’s except the one

(k)= (2m) ¥ 5(K) + ¢ (K) Srm(K) multiplying the a'a term for a bound state are chosen to
= vanish, this variational principle reduces to the quantum me-
E - E F() chanical one for the bound state. Another possible condition
+ , FM(ky, ... k) : Al on :
n=2 NI 7] is to minimize the integral of the absolute square of the co-
efficients:

x:[] ?ﬁ}”(ki)ém.(ki):é(k—E k;)H dk;,
i=1 ! i=1

[ T awiFo, kol (14
(12
for some set of values ofi and for each combination of

fM(xy, ... x,)=(2m7) 3252 FM(k, .. k) exp(isk; c[]eationtand ar?nirlirl]attion parts (t)f tfhe operz?t;)hrs. Oni_ car: also
TR, L 0 e CE (M) choose to require that some set of sums of the positive terms
X'N)gg k. Hermiticity of tr.we'ﬁeld |mp||e§f (ky, . k) in Eqg. (13) vanish. Each of these possibilities gives a set of
=F"*(—ky,...,—ky). Similar expansions hold for out eqyations for the solution of the variational principle. The
fields. When this expansion is inserted into the HamlltonlanspeciﬁC conditions one should impose in a given problem
the result is an infinite series of the form already given in EQshould be chosen by experience.
(6).

For a given Haag expansion, Ed=2), parametrized by
and thef(’s, the F("'s of Eq. (6) are functionals of and

the T™’s. From the discussion above, for the exact solution "€ simplest case on which to test this variational prin-
FM=0 forn=1 and for alln>2. F®®=0 for the — — and ciple is the free field. The Hamiltonian for a free neutral

scalar field is

Ill. APPLICATION TO THE FREE FIELD

++ cases, an@‘?) is the minimum. In other words, as just
discussed, the Hamiltonian is the sum of free-field Hamilto- 1 .
nians for each in field, together with a constant term which is H=— J d3x(p%+ (V )2+ m2¢?). (15)
the vacuum matrix element dfi. The condition that the 2

Haag expansion diagonalizé$ leads to an infinite set of As a trial operator, choose a generalized free fielg,

nonlinear integral equations inand thef(W’s, Asolutionto  whose two-point function has an unknown positive measure
this set of equations is equivalent to the solution of the fleldp(KZ). To avoid the trivial case where=0, require
theory in all sectors. In practice, it will be difficult to find an Jep(x?)dx? to have a fixed positive value; the exact value
exact solution. Variational methods can yield approximat€joes not matter. Let the fieldy;; be represented as the sum

solutions. Many different conditions can be imposed on they 5 term bais(x: x2), with a discrete weight at mage® and
F("'s to find an approximation solution from a variational 5 term with a continuous weight, ¢.on(X;0)

principle. One such condition is to minimize the sugh
(with possible weighting factora,) of the integral of the bgtt(X) = Pais(X; 1) + beon(X; 0), (16)
absolute squares of the coefficients of the operator terms:

3
Q=g FO[2+ N _[FD24 ), [FD)2 bais(X; u?) = (2;)3/2 f 2Edﬂ|(<k)
+>\,,f d3k|F(_2)_(k,—k)|2+)\+ff A3k F 2. (k)2 X[A(K)e™ + ATk e,
KO=E,.(k), (17
+x++fd3k|F<f>_(k,—k)|2 . y
¢con(X;0'):W§ f dxzm[B(k;Kz)e

—ik-x

30 TT POk, k)P 13 BTk 2]
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KO=E, (k)= VkZ+ «2. (189 ~Wwe want to bring the Hamiltonian to diagonal fornfor
terms of the formb'b, we must minimize the energy,
The relativistically normalized commutation relations are

2 2
[A(K),AT(/)]_ = 2E (k) 8(k— ), (19 EKE (K KT+ m

2VE(K)Ex(K)
[B(k;x%),BT(/;A?)]-=2E (k) 8(k— /) 8(k*=\?)or(x?),

(20)  with respect tac?> and\?. For terms of the fornb'a ora'b,

) ) . similar expressions have their minima ferconcentrated at
other commutators vanish. To find the minimum of the en-.2_ ,2_m2 For terms of the formaa, a'a’, ab, a'b’,

ergy of a given particle, one should minimize the coefficientyp, anqbtp! the squares of the coefficients vanish fot
of the a'a term. The relations between the relativistically =r,nz and o éoncentrated ak?=m2. For the contributions
(capital letters and nonrelativistically(lower-case lettejs
normalized operators are

(27)

from ¢con, the minimum occurs for at k>=m?. The net
result is that the minimum of the operator H occurs at

Alk)=v2E,(K)alk), @Y Br1(X) = baisX:MP), beon=O. (28)
B(k;Kz):\/ZEK(k)b(k;KZ). (22

i.e., for a free field of the mass in the Lagrangian. This is no
surprise. In general, for theories without massless fields or
particles, we would assume free field form for the asymptotic
fields without doing a calculationNote that these results

When the trial operatothy; is inserted into the free scalar
Hamiltonian, the result is

H=Hgis+ Hgis—conT Heons (23) require minimizing an expression that has dimensions of en-
ergy)
1 d3k ) o If one assumes a free field in the corresponding calcula-
Hais=5 f ZE—(k)(E“(k) +k*+m?)5(0) tion of the Hamiltonian for the Dirac field the'b andd'd
" terms are diagonal in helicity, thed andb'd" terms are not.

1 d3k 5 ) The minimum of the absolute valued squared coefficients
ts f ZEM(k){[(k +m=—E,(k)%) also yields the resuli?=m?.

. Ly-a—2iE, (Kt
X:a(kja(—k):em "=+ H.e ] IV. APPLICATION TO THE ¢* MODEL IN 1 +1

+2(E (k)2 +k2+m?):al(k)a(k):} (24 A less trivial, but still elementary, example is thg*

theory in one space, one time dimension. This model was

H _J d\?d’k (= E.(KE, (K K2+ m) studied recently using a variational method by Tiktopoulos
dis—con— —Eu N

E (KE. (k) [10]. (The literature on variational calculations can be traced
2VEL(E(K) from [10-13.) The example just below illustrates the varia-
><:a(k)b(—k;)\2):e‘i[Eu<k)+Ex(k>1X° tional principle in the algebra of asymptotic fields for this
theory in the lowest non-trivial approximation, where the

+(E,(K)Ex(k) +k?+m?):b"(k;\?) calculations can be done easily by hand. Higher approxima-

><a(k);e_i(Eu(k)_E)\(k))xo—f— Hel, 25 tions require symbolic manipulation programs that have been

developed usingebuck 3.5 We will report on the results of
higher approximations separately. The Lagrangian is

1rded
Hconzzf (Ex(k)*+ k“+m)o( k) 6(0)

2E, K 1 A
L=5 (0, 0" ¢=mi¢*) = 77 " (29
24y 243 20 ¢ u 4!
+1 f difar gk {[(—E(K)E,(k)+k?+m?)
— —_— f— « m
2 ) 2JE(K)E,\(k) ) The Hamiltonian density is
X:b(k: k2)b(—k;\2):e TERFENRX L o] 1 N
H==(¢*+ ¢’ 2+ miep?)+ — ¢*. 30
+2(E,(K)E, (K) + K2+ m?) R ($7H " M)t é (30
X b (kN2 b(K; k2): e I E By (26)  For a theory that has no massless particles or fields(cie

+ ) shel) asymptotic fields will be an irreducible set of operators
For the terms of the form (vacuum energyor a'a (particle iy which to expand the interacting field. The demonstration

energy, we must minimize the energy k2+u®  given above that the free asymptotic fields diagonalize the
+m?)/Vk?+ u? with respect tou?, or, alternatively, mini-  free Hamiltonian supports this expectation. The lowest varia-
mize the same energy written &, (k)?+k*+m?]/E,(k)  tional ansatz is then

with respect tcE ,(k); for terms of the formaa or a'a we _

minimize the absolute value squared of the coefficigirice d(x)=v+ M (x;m?), (31)

065004-4



VARIATIONAL PRINCIPLE IN THE ALGEBRA OF . .. PHYSICAL REVIEW D 58 065004

where the constant is a symmetry-breaking vacuum matrix S(H) 1 K2+ mﬁ A p2
element of¢ that may occur due to radiatively-induced sym- _—=— ( =
metry breaking an@ (™ is a free field of unknown mass. oE(k) 87 E(k) 16w E(k)
Substituting this ansatz and re-normal ordering, the Hamil- N A dK 1
tonian becomes — f
2'm% J A E(K') E(k)?
=[%(<¢S>+<¢52>>+m5(v2+<¢3>> =0. (37

N After multiplying by 87E(k)?, the result is the gap equation,
+ E(U4+ 6v2<¢§>+3(¢§>2)} som?=m? as given by Eq(33).
' Since the gap equation relates the physical ma,%s

A Y which should be finite, to the bare mass and the divergent
+ mﬁv+ €v3 + §U<¢(2’>}:¢°: integrals cut-off atA, one can follow Tiktopoulos in intro-
ducing another finite mas$), via
. A
Lot iyt m5+§(v2+<¢g>)}:¢g:] MP=m2 s No(A dk 39
877 A E(K)’

. 43. . 4.

+ 6”'%' + 24 bo (32 This form of renormalization can replace the usual one, since

here only the mass is renormalized. As Tiktopoulos showed,
where ¢, stands for¢(™(0;m?). The vacuum matrix ele- the gap equation then relates finite quantities,
ment is just the first square bracket above. The coefficient of

: 2. : A N M2
the terT in (1/2)p5: should be the square of the physical mf= M2+ —p2+ —In —. (39
massm;, i.e. 2 87 mj
A The minimum of the vacuum energy density is
m3=m3+§(v2+<¢>3)). (33
, Aodk|?
This is the gap equation in this approximation. Following (H)= dk| k|- M*=3- _A \/kzi
Tiktopoulos, one can verify this below by minimizing the
vacuum energy density which is a functional of the energy, 1, N, of o A M2
E(k), of the trial in-field quanta of momentawith respect T Mt ozu vt Mo+ %'”mz
to this energy. Regulate the vacuum and other divergent ex- v
pressions with a momentum-space cut-off; the two-point , N | M2\ 2
function is then tox M+ gin z) (40)
(do(X) do(y))= > fA _dk e iElx+ld (34 again in agreement with Tiktopoulos. Thus the present varia-
27 J-x 2E(K) tional calculation leads to the same results as does that of
Tiktopoulos in the lowest approximatio.his agreement
Then will not persist in higher approximationg.iktopoulos adds

Gaussians to his vacuum functional in order to improve his
‘9 approximation. The Haag expansion suggests a different
(¢0)= A fﬁAdkE(k)' form of the higher-order terms, with higher-degree normal-
ordered products of asymptotic fields, in the expansion of the
interacting field. These are very different approximations. If
(b6 2)— — f — <¢0)— — f the in(or ou? fields are irreducible, then the Haag expansion
E(k) E(k) will approximate the exact solution in theories without mass-
(35 less fields. In higher approximations, the present variational
method will place emphasis on minimizing the absolute
square of the coefficients of the non-quadratic termg+in
A dk 1 N and on minimizing the coefficients of thea terms which
J =0 ——(E(K)2+ K2+ m2)+ m2v2+ —v* correspond to the energies of the asymptotic quanta.

The vacuum energy density is

1

(=g 24

N fA dk UA dk )2 V. APPLICATION TO THE DERIVATIVE COUPLING
2 (36)

16V L Bl T 72| ) B MODEL IN 1 +3

To illustrate a trial function that is of infinite degree, con-
The minimum is given by sider the derivative coupling model, with
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VI. OUTLOOK FOR FUTURE WORK

_ 1
L=Z(i0+9bp—M) g+ = (3, 9" p—mP¢?),
24(10+90 4 2( w0 $=m47) Much must be done to make this idea into a useful tool for

(4)  field theory calculations. The method should be applied to
examples with a finite number of terms in the Haag expan-

where ¢ and ¢ are renormalized fields. The Hamiltonian is sion that serves as the trial element. Calculations of vertex

_ . functions in an all-scalar relativistic model with the interac-

H =f X[ Zy(i Y+ gy d p+ M)y tion ¢?x are ongoing. This method will be used to calculate
hydrogen bound states with the soft photon cloud taken into

+ 1 (P2 + (9 )2+ m2¢?)]. (42) account for the charged particles. The full power of the

method will become apparent only when infinite degree
Assumed= ¢, y=:f(bo):1)o. The Hamiltonian becomes Haag expansions, parametrized in a tractable way, are used.
The derivative coupling model discussed above is a trivial
example of such a parametrization. As mentioned above, the
soft photon cloud around a charged patrticle will be repre-
- i o sented using asymptotic fields in a later paper. Realistic
+9Y' P o f(do): +i:T(do): ¥ ¢ +M:f(ho):)tho models will be much more difficult to treat. We must also

H=f X[ Zo 00 (o) (21 (o) 71 o

10 2 L2 2,2 confront the problem of the coupling of high-energy and
+ 2 (¢o" + (9 o)+ M ). (43 low-energy modes pointed out by Feynnijad]. The step to
The first two terms in the bracket will cancel if non-Abelian gauge_the_orles n which the conflr_le_d fields do
not have asymptotic fields will be the most difficult step.
if +gf=0, (44)  Hopefully the case of electrodynamics, where the charged

. , fields acquire a cloud of soft photons, which we believe we
where the fact tha{d' ¢¢)=0 allows removingd' ¢, from  know how to treat using asymptotic fields, will serve as a
the normal-ordered product in the first term. Field strengthstepping stone to the non-Abelian case.
renormalization of ¢ requires f(0)=1. The solution
of this is f(x)=exp(gx). Evaluation of f(¢o)":: f(¢o):
using the Baker-Hausdorff-Campbell theorem gives ACKNOWLEDGMENTS
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