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Variational principle in the algebra of asymptotic fields

O. W. Greenberg*
Center for Theoretical Physics, Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 24 March 1998; published 3 August 1998!

This paper proposes a variational principle for the solutions of quantum field theories, in which the ‘‘trial
functions’’ are chosen from the algebra of asymptotic fields, and illustrates this variational principle in simple
cases.@S0556-2821~98!01318-6#

PACS number~s!: 11.10.2z
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I. INTRODUCTION

The most used methods to find approximate solutions
quantum field theories are based on path integrals@1–5#.
They have many advantages; however the Hilbert space
particle structure of field theory are not evident from th
point of view. Fock space methods, such as the Tam
Dancoff approximation@6,7# and the discretized light con
quantization approximation~DLCQ! @8# place the Hilbert
space and particle structure of the theory in the forefro
however the covariance of the theory is not evident. T
functional Schro¨dinger picture allows intuitive guesses abo
the form of the solutions of a field theory to be incorporate
but this method also fails to be explicitly covariant.

Another method, less developed than those just m
tioned, is the expansion in normal-ordered asymptotic fie
the ‘‘Haag expansion’’ or ‘‘N-quantum approximation,
which applies directly only to theories without zero-ma
particles. In particular, it does not apply directly to gau
theories. Nonetheless, this method can be extended to g
theories; indeed it has been applied to quantum electro
namics. Using the Haag expansion, one works in the alge
of asymptotic fields, and can keep creation and annihila
parts of operators on the same footing, since one can ch
not to apply elements of the algebra to the vacuum, wh
terms with annihilation operators would annihilate t
vacuum and be lost. By contrast, in the Tamm-Dancoff
proximation, the annihilation parts destroy the vacuum a
disappear from the calculation. In addition to losing expli
Lorentz invariance, this asymmetric treatment of the ann
lation and creation parts of the fields destroys crossing s
metry. The DLCQ method also treats annihilation and c
ation operators asymmetrically; in addition, it suffers from
lack of explicit covariance. This complicates renormalizati
considerably.

Just as variational methods have been used in other
proaches to quantum field theory, this paper propose
variational principle based on the Haag expansion. Va
tional principles in quantum mechanics are powerful ways
go beyond perturbation theory. In quantum mechanics,
solutions lie in a Hilbert space of functions and the tr
functions are chosen from this space. For example, to
proximate the ground state, one can choose a wave func
c that depends on some parameters and determine the
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rameters by minimizing the ground state energy@9#. The
exact ground state energy will be less than the approxim
energy at the minimum. Many attempts have been mad
carry over this approach to quantum field theories. In fi
theory, the ground state wave function is replaced by
vacuum wave functional that can depend on functions
well as parameters. Minimizing the vacuum energy det
mines the functions and parameters and yields approxim
information about the solution of the theory@10–13#. This
approach is usually restricted to wave functionals closely
lated to Gaussians, because the necessary path integral
be done only in that case. Also, this approach does not
advantage of the particle spectrum that we expect to occu
quantum field theories. For a relativistic theory, for examp
the spectrum should consist of a vacuum of ener
momentum zero, one or more single-particle states~includ-
ing possible bound states! with various masses~here, as in
the rest of this paper, the analysis is restricted to cases w
out massless states!, and many-particle states whose energ
and momenta correspond to several massive particles.
particle structure can be put into a variational calculation
the outset by choosing to approximate the fields, rather t
the states, and by using an expansion in asymptotic fields
the interacting fields.~Alternatively, as given below, one ca
use generalized free fields in the expansion of the interac
fields andderive the fact that the fields in the expansion a
ordinary free fields.! Thus, in quantum field theory, assumin
completeness and irreducibility of the algebra of asympto
fields, one finds that the solutions lie in this algebra and
trial wave functions are replaced by trial operators cho
from this algebra. Haag@14# introduced the idea to use a
element in the algebra of asymptotic fields to represent
interacting field. It is fitting to call such a representation
‘‘Haag expansion.’’ Some applications of Haag expansio
are given in@15#. While a systematic approximation usin
terms with normal-ordered products having an arbitrar
high degree in asymptotic fields leads to amplitudes w
arbitrarily many momenta and becomes intractable, a va
tional trial operator in the algebra of asymptotic fields c
have infinite degrees, but still can be parametrized in a tr
table way. Section II formulates the variational principle a
proves that the minimum picks out the solution of the fie
theory. Section III illustrates the principle with the simple
cases: a free neutral scalar field of massm with the trial
operator chosen to be a generalized free field, and a
Dirac field where the trial operator is a free Dirac field. T
compare with the variational method using a vacuum fu
© 1998 The American Physical Society04-1
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tional, Sec. IV studies thef4 model in 111 and compares
the results in the lowest approximation with the results
@10#. To show how the principle works in cases where t
trial element has infinite degree, Sec. V applies the princ
to the gradient coupling model, which has a ‘‘nucleon
Dirac field coupled to a scalar ‘‘meson’’ field. In that cas
one can choose the trial operator for the nucleon field to
the product of an arbitrary function of a free scalar field a
a free nucleon field all at a single spacetime point and
trial operator for the meson field to be a free scalar fie
Section VI concludes with the outlook for future work.

II. THE VARIATIONAL PRINCIPLE

Using reasonable assumptions~in particular that no mass
less fields are present! and a physicist’s level of mathemat
cal rigor, one can show@16# that the asymptotic fields obe
the same Poincare´ transformation law as the interactin
fields. For example, for a scalar field,

U~a,L!fas~x!U~a,L!†5fas~Lx1a!, ~1!

LPSO(1,3), aPR4. For the general case,

U~a,A!c i
as~x!U~a,A!†5Di j ~A21!c j

as~Lx1a!, ~2!
on

io
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whereA in SL(2,C) is replaced byL in SO(3,1) for integer
spin fields. One can also show that the asymptotic fields o
free field commutation relations, for example, for a sca
field,

@fas~x!,fas~y!#25 iD~x2y;m2!, ~3!

where

iD~x,m2!5~2p!23E d4ke~k0!dm~k!exp~2 ik•x!,

dm~k!5d~k22m2! ~4!

is the Pauli-Jordan commutator function. These two con
tions, together with the requirement that the vacuum h
zero energy, imply that the generators of the Poincare´ group
are the free bilinear functionals of the asymptotic fields,
particular that~apart from a constant which is the vacuu
matrix element of the Hamiltonian! the Hamiltonian is di-
agonalized by the asymptotic fields:

P0[H5const1(
i

H f ree@f i
as#. ~5!

To see this, assumeH has an arbitrary expansion i
asymptotic fields:
H5F ~0!1(
j 51

n

F2 j
~1! Aj

in~0!1(
j 51

n

F1 j
~1! Aj

in~0!†

1(
s,t

F E d3k

2vk
[F22 s,t

~2! ~k!As
in~k!At

in~2k!exp~22ivkx
0!1F12 s,t

~2! ~k!As
in~k!†At

in~k!

1F11 s,t
~2! ~k!As

in~k!†At
in~2k!† exp~2ivkx

0!G
1 (

n.2

` E d3nk

Pvki

F ~n!~ki !:)
j

Aj
in~k i !

~ !:dS ( 6k i Dexp~ i 6vki
t6k i•xi !, vk5Ak21m2. ~6!
on

.

for
ar
Ain(k i)
() stands for either the creation or the annihilati

operator, normalized relativistically. From Eq.~3! and the
Fourier transform

f in~x!5~2p!23/2E d4kf̃ in~k!dm~k!exp~2 ik•x!, ~7!

f~ in !~k!dm~k!5u~k0!
Ain~k!

2vk
d~k02vk!

1u~2k0!
Ain~2k!†

2vk
d~k01vk!, ~8!

the commutation relations of the creation and annihilat
operators are

@Ain~k!,Ain †~ l!#252Ak21m2d~k2 l!. ~9!
n

The nonrelativistically normalized annihilation and creati
operators area( in)(k i)

()5(2Ek)
21/2Ain(k i)

(),Ek5k0.0. Put
the form forH into the infinitesimal form of Eq.~1!,

i @H,fas~x!#5]0fas~x!. ~10!

The commutation relation, Eqs.~3! or ~2!, say that a normal-
ordered term inH with n factors offas will contribute to a
term with n21 factors offas on the right-hand side of Eq
~10!. Since the right-hand side of Eq.~10! is linear in fas,
the only terms allowed inH are those withn50 or n52.
The n50 term is the vacuum energy, and becausefas is a
free field, then52 term is the free field Hamiltonian.

The Haag expansion of the interacting fields, stated
simplicity for a single neutral scalar field with only scal
bound states, is
4-2
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f~x!5 (
n50

`
1

n! (
j i

E (
j

d4nxi f
~n!~$x2xi%!:)

i 51

n

f j i

in~xi !:,

~11!

where thef j i

in include in fields for stable bound states,

there are any. The termf (0)5v is a constant that occurs fo
a scalar field when symmetry is broken. The term withf (1)

51 is just the in field with coefficient one to fix field
strength renormalization. In momentum space, the expan
is

f̃~k!5~2p!3/2vd~k!1f̃ in~k!dm~k!

1 (
n52

`
1

n! (
j
E f̃ ~n!~k1 , . . . ,kn!

3:)
i 51

n

f̃ j
in~ki !dmj

~ki !:dS k2( ki D)
i 51

n

d4ki ,

~12!

f (n)(x1 , . . . ,xn)5(2p)23/225n/2* f̃ (n)(k1 , . . . ,kn)exp(2i(ki

•xi)Pd4ki . Hermiticity of the field impliesf̃ (n)(k1 , . . . ,kn)
5 f̃ (n)* (2k1 , . . . ,2kn). Similar expansions hold for ou
fields. When this expansion is inserted into the Hamiltoni
the result is an infinite series of the form already given in E
~6!.

For a given Haag expansion, Eq.~12!, parametrized byv
and thef̃ (n)’s, theF (n)’s of Eq. ~6! are functionals ofv and
the f̃ (n)’s. From the discussion above, for the exact solut
F (n)50 for n51 and for alln.2, F (2)50 for the22 and
11 cases, andF12

(2) is the minimum. In other words, as jus
discussed, the Hamiltonian is the sum of free-field Hamil
nians for each in field, together with a constant term which
the vacuum matrix element ofH. The condition that the
Haag expansion diagonalizesH leads to an infinite set o
nonlinear integral equations inv and thef̃ (n)’s. A solution to
this set of equations is equivalent to the solution of the fi
theory in all sectors. In practice, it will be difficult to find a
exact solution. Variational methods can yield approxim
solutions. Many different conditions can be imposed on
F (n)’s to find an approximation solution from a variation
principle. One such condition is to minimize the sumQ
~with possible weighting factorsln) of the integral of the
absolute squares of the coefficients of the operator term

Q5l0uF ~0!u21l2uF2
~1!u21l1uF1

~1!u2

1l22E d3kuF22
~2! ~k,2k!u21l12E d3kuF12

~2! ~k,k!u2

1l11E d3kuF12
~2! ~k,2k!u2

1(
n

lnE ) d3ki uF ~n!~k1 , . . . ,kn!u2 ~13!
06500
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,
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n
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~here, to simplify the notation, I dropped the subscripts t
label the possibly different asymptotic fields!. The l’s are
arbitrary positive or vanishing numbers that can be chose
control the weight attached to each term. If the Haag exp
sion of the interacting field has a finite degree, the terms
the Hamiltonian of highest degrees in in-fields cannot po
bly vanish, so thel’s for such terms should be chosen
vanish. For infinite degree Haag expansions which rem
the restriction to weak coupling one can keep all thel’s
positive. For the exact solution all off-diagonal terms van
and the diagonal terms are minimum, so this principle giv
the exact solution of the theoryin all sectorsat the absolute
minimum if all thel’s are positive. If alll’s except the one
multiplying the a†a term for a bound state are chosen
vanish, this variational principle reduces to the quantum m
chanical one for the bound state. Another possible condi
is to minimize the integral of the absolute square of the
efficients:

E ) d3ki uF ~n!~k1 , . . . ,kn!u2, ~14!

for some set of values ofn and for each combination o
creation and annihilation parts of the operators. One can
choose to require that some set of sums of the positive te
in Eq. ~13! vanish. Each of these possibilities gives a set
equations for the solution of the variational principle. T
specific conditions one should impose in a given probl
should be chosen by experience.

III. APPLICATION TO THE FREE FIELD

The simplest case on which to test this variational pr
ciple is the free field. The Hamiltonian for a free neutr
scalar field is

H5
1

2 E d3x„ḟ21~¹f!21m2f2
…. ~15!

As a trial operator, choose a generalized free field,fg f f ,
whose two-point function has an unknown positive meas
r(k2). To avoid the trivial case wherer50, require
*0

`r(k2)dk2 to have a fixed positive value; the exact val
does not matter. Let the fieldfg f f be represented as the su
of a term,fdis(x;m2), with a discrete weight at massm2 and
a term with a continuous weights, fcon(x;s),

fg f f~x!5fdis~x;m2!1fcon~x;s!, ~16!

fdis~x;m2!5
1

~2p!3/2 E d3k

2Em~k!

3@A~k!e2 ik•x1A†~k!eik•x#,

k05Em~k!, ~17!

fcon~x;s!5
1

~2p!3/2 E dk2
d3k

2Ek~k!
@B~k;k2!e2 ik•x

1B†~k;k2!eik•x#,
4-3
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k05Ek~k!5Ak21k2. ~18!

The relativistically normalized commutation relations are

@A~k!,A†~ l !#252Em~k!d~k2l !, ~19!

@B~k;k2!,B†~ l ;l2!#252Ek~k!d~k2l !d~k22l2!s~k2!,
~20!

other commutators vanish. To find the minimum of the e
ergy of a given particle, one should minimize the coefficie
of the a†a term. The relations between the relativistica
~capital letters! and nonrelativistically~lower-case letters!
normalized operators are

A~k!5A2Em~k!a~k!, ~21!

B~k;k2!5A2Ek~k!b~k;k2!. ~22!

When the trial operatorfg f f is inserted into the free scala
Hamiltonian, the result is

H5Hdis1Hdis2con1Hcon , ~23!

Hdis5
1

2 E d3k

2Em~k!
„Em~k!21k21m2

…d~0!

1
1

2 E d3k

2Em~k!
$@„k21m22Em~k!2

…

3:a~k!a~2k!:e22iEm~k!t1H.c.#

12„Em~k!21k21m2
…:a†~k!a~k!:% ~24!

Hdis2con5E dl2d3k

2AEm~k!El~k!
@„2Em~k!El~k!1k21m2

…

3:a~k!b~2k;l2!:e2 i †Em~k!1El~k!‡x0

1„Em~k!El~k!1k21m2
…:b†~k;l2!

3a~k!:e2 i „Em~k!2El~k!…x0
1H.c.#, ~25!

Hcon5
1

2 E dk2d3k

2Ekk
„Ek~k!21k21m2

…s~k2!d~0!

1
1

2 E dk2dl2d3k

2AEk~k!El~k!
$@„2Ek~k!El~k!1k21m2

…

3:b~k;k2!b~2k;l2!:e2 i „Ek~k!1El~k!…x0
1H.c.#

12„Ek~k!El~k!1k21m2
…

3:b†~k;l2!b~k;k2!:e2 i „Ek~k!2El~k!…x0
%. ~26!

For the terms of the form 1~vacuum energy! or a†a ~particle
energy!, we must minimize the energy (2k21m2

1m2)/Ak21m2 with respect tom2, or, alternatively, mini-
mize the same energy written as@Em(k)21k21m2#/Em(k)
with respect toEm(k); for terms of the formaa or a†a† we
minimize the absolute value squared of the coefficient~since
06500
-
t

we want to bring the Hamiltonian to diagonal form!. For
terms of the formb†b, we must minimize the energy,

Ek~k!El~k!1k21m2

2AEk~k!El~k!
, ~27!

with respect tok2 andl2. For terms of the formb†a or a†b,
similar expressions have their minima fors concentrated at
k25m25m2. For terms of the formsaa, a†a†, ab, a†b†,
bb, andb†b†, the squares of the coefficients vanish form2

5m2 and s concentrated atk25m2. For the contributions
from fcon , the minimum occurs fors at k25m2. The net
result is that the minimum of the operator H occurs at

fg f f~x!5fdis~x;m2!,fcon50, ~28!

i.e., for a free field of the mass in the Lagrangian. This is
surprise. In general, for theories without massless fields
particles, we would assume free field form for the asympto
fields without doing a calculation.~Note that these result
require minimizing an expression that has dimensions of
ergy.!

If one assumes a free field in the corresponding calcu
tion of the Hamiltonian for the Dirac field theb†b andd†d
terms are diagonal in helicity, thebd andb†d† terms are not.
The minimum of the absolute valued squared coefficie
also yields the resultm25m2.

IV. APPLICATION TO THE f4 MODEL IN 1 11

A less trivial, but still elementary, example is thef4

theory in one space, one time dimension. This model w
studied recently using a variational method by Tiktopou
@10#. ~The literature on variational calculations can be trac
from @10–13#.! The example just below illustrates the vari
tional principle in the algebra of asymptotic fields for th
theory in the lowest non-trivial approximation, where th
calculations can be done easily by hand. Higher approxim
tions require symbolic manipulation programs that have b
developed usingREDUCE 3.5. We will report on the results of
higher approximations separately. The Lagrangian is

L5
1

2
~]mf•]mf2mu

2f2!2
l

4!
f4. ~29!

The Hamiltonian density is

H5
1

2
~ḟ21f8 21mu

2f2!1
l

4!
f4. ~30!

For a theory that has no massless particles or fields, the~on-
shell! asymptotic fields will be an irreducible set of operato
in which to expand the interacting field. The demonstrat
given above that the free asymptotic fields diagonalize
free Hamiltonian supports this expectation. The lowest va
tional ansatz is then

f~x!5v1f~ in !~x;m2!, ~31!
4-4
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where the constantv is a symmetry-breaking vacuum matr
element off that may occur due to radiatively-induced sym
metry breaking andf ( in) is a free field of unknown massm.
Substituting this ansatz and re-normal ordering, the Ham
tonian becomes

H5F 1
2 ~^ḟ0

2&1^f08
2&!1mu

2~v21^f0
2&!

1
l

4!
~v416v2^f0

2&13^f0
2&2!G

1F S mu
2v1

l

6
v3D1

l

2
v^f0

2&G :f0 :

1
1

2 H :ḟ0
21:f08

2:1Fmu
21

l

2
~v21^f0

2&!G :f0
2 :J

1
l

6
v:f0

3 :1
l

24
:f0

4 :, ~32!

wheref0 stands forf ( in)(0;m2). The vacuum matrix ele-
ment is just the first square bracket above. The coefficien
the term in (1/2):f0

2 : should be the square of the physic
massmv

2 , i.e.

mv
25mu

21
l

2
~v21^f0

2&!. ~33!

This is the gap equation in this approximation. Followi
Tiktopoulos, one can verify this below by minimizing th
vacuum energy density which is a functional of the ener
E(k), of the trial in-field quanta of momentak with respect
to this energy. Regulate the vacuum and other divergent
pressions with a momentum-space cut-off; the two-po
function is then

^f0~x!f0~y!&5
1

2p E
2L

L dk

2E~k!
e2 iE~k!x01kx1

. ~34!

Then

^ḟ0
2&5

1

4p E
2L

L

dkE~k!,

^f08
2&5

1

4p E
2L

L

dk
k2

E~k!
, ^f0

2&5
1

4p E
2L

L

dk
dk

E~k!
.

~35!

The vacuum energy density is

^H&5
1

8p E
2L

L dk

E~k!
„E~k!21k21mv

2
…1

1

2
mu

2v21
l

24
v4

1
l

16p
v2E

2L

L dk

E~k!
1

l

27p2 S E
2L

L dk

E~k! D 2

. ~36!

The minimum is given by
06500
l-

of

,

x-
t

d^H&

dE~k!
5

1

8p
S 12

k21mu
2

E~k!2 D 2
l

16p

v2

E~k!2

2
l

27p2 E
2L

L dk8

E~k8!

1

E~k!2

50. ~37!

After multiplying by 8pE(k)2, the result is the gap equation
so m25mv

2 as given by Eq.~33!.
Since the gap equation relates the physical massmv

2 ,
which should be finite, to the bare mass and the diverg
integrals cut-off atL, one can follow Tiktopoulos in intro-
ducing another finite mass,M , via

M25mu
21

l

8p E
2L

L dk

E~k!
. ~38!

This form of renormalization can replace the usual one, si
here only the mass is renormalized. As Tiktopoulos show
the gap equation then relates finite quantities,

mv
25M21

l

2
v21

l

8p
ln

M2

mv
2 . ~39!

The minimum of the vacuum energy density is

^H&5
1

4p E
2L

L

dkuku2
1

2l S M22
l

8p E
2L

L dk

Ak21m2D 2

1
1

8p
mv

21
l

24
v41

1

2
v2S M21

l

8p
ln

M2

mv
2 D

1
1

2l S M21
l

8p
ln

M2

mv
2 D 2

, ~40!

again in agreement with Tiktopoulos. Thus the present va
tional calculation leads to the same results as does tha
Tiktopoulos in the lowest approximation.This agreement
will not persist in higher approximations.Tiktopoulos adds
Gaussians to his vacuum functional in order to improve
approximation. The Haag expansion suggests a diffe
form of the higher-order terms, with higher-degree norm
ordered products of asymptotic fields, in the expansion of
interacting field. These are very different approximations
the in ~or out! fields are irreducible, then the Haag expansi
will approximate the exact solution in theories without ma
less fields. In higher approximations, the present variatio
method will place emphasis on minimizing the absolu
square of the coefficients of the non-quadratic terms inH
and on minimizing the coefficients of thea†a terms which
correspond to the energies of the asymptotic quanta.

V. APPLICATION TO THE DERIVATIVE COUPLING
MODEL IN 1 13

To illustrate a trial function that is of infinite degree, co
sider the derivative coupling model, with
4-5
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L5Z2c̄~ i ]”1g]”f2M !c1
1

2
~]mf•]mf2m2f2!,

~41!

wheref andc are renormalized fields. The Hamiltonian i

H5E d3x@Z2c̄~ ig j] j1gg j] jf1M !c

1 1
2 „ḟ

21~] jf!21m2f2
…#. ~42!

Assumef5f0 , c5: f (f0):c0 . The Hamiltonian becomes

H5E d3x@Z2c̄0: f ~f0!†:„i : f 8~f0!g j] jf0 :

1gg j] jf0 : f ~f0!:1 i : f ~f0!:g j] j1M : f ~f0!:…co

1 1
2 „ḟ0

21~] jf0!21m2f0
2
…#. ~43!

The first two terms in the bracket will cancel if

i f 81g f50, ~44!

where the fact that̂] jff&50 allows removing] jf0 from
the normal-ordered product in the first term. Field stren
renormalization of c requires f (0)51. The solution
of this is f (x)5exp(igx). Evaluation of :f (f0)†< f (f0):
using the Baker-Hausdorff-Campbell theorem giv
exp„g2^f(x)f(y)&… in the limit x→y for this product. This
determines

1

Z2
5 limx→yexp„g2^f~x!f~y!&…. ~45!

Thus the solution that reduces the Hamiltonian to free fi
form is

c~x!5:exp„igf0~x!…:c0~x!, ḟ~x!5f0~x!. ~46!

~Antisymmetrization of the Fermi fieldsc and c† above
complicates the calculation, but does not change the
come.!
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VI. OUTLOOK FOR FUTURE WORK

Much must be done to make this idea into a useful tool
field theory calculations. The method should be applied
examples with a finite number of terms in the Haag exp
sion that serves as the trial element. Calculations of ve
functions in an all-scalar relativistic model with the intera
tion f2x are ongoing. This method will be used to calcula
hydrogen bound states with the soft photon cloud taken
account for the charged particles. The full power of t
method will become apparent only when infinite degr
Haag expansions, parametrized in a tractable way, are u
The derivative coupling model discussed above is a triv
example of such a parametrization. As mentioned above,
soft photon cloud around a charged particle will be rep
sented using asymptotic fields in a later paper. Reali
models will be much more difficult to treat. We must als
confront the problem of the coupling of high-energy a
low-energy modes pointed out by Feynman@17#. The step to
non-Abelian gauge theories in which the confined fields
not have asymptotic fields will be the most difficult ste
Hopefully the case of electrodynamics, where the char
fields acquire a cloud of soft photons, which we believe
know how to treat using asymptotic fields, will serve as
stepping stone to the non-Abelian case.

ACKNOWLEDGMENTS

I am happy to thank Manoj Banerjee, Zacharia Chac
Vigdor Teplitz, and Ching-Hung Woo for helpful discus
sions. I am greatly indebted to George Tiktopoulos for e
tensive clarifications of his paper, as well as for helpful co
ments about a draft of this paper. I thank Shmuel Nussin
Daniel Phillips, and Joseph Sucher for useful suggesti
about an earlier version of this article. It is a pleasure
thank Yasuo Umino for many discussions about this wo
for the collaboration in developingREDUCEcodes, as well as
joint work on extensions to other problems. This work w
supported in part by a Semester Research Grant from
General Research Board of the University of Maryland a
by the National Science Foundation.
ro-
,’’

y:
ion
al
-

@1# M. E. Peskin and D. V. Schroeder,An Introduction to Quan-
tum Field Theory~Addison-Wesley, Reading, Massachuset
1995!.

@2# S. Weinberg,The Quantum Theory of Fields, Vol. I, Founda-
tions; Vol. II, Modern Applications~Cambridge University
Press, Cambridge, England, 1995, 1996!.

@3# R. P. Feynman, Rev. Mod. Phys.20, 367 ~1948!; R. P. Feyn-
man and A. R. Hibbs,Quantum Mechanics and Path Integra
~McGraw Hill, New York, 1965!.

@4# K. Wilson, Phys. Rev. D10, 2445~1974!.
@5# M. Creutz,Quarks, Gluons and Lattices~Cambridge Univer-

sity Press, Cambridge, England, 1983!.
@6# I. E. Tamm, J. Phys.~Moscow! 9, 449 ~1945!.
,
@7# S. M. Dancoff, Phys. Rev.78, 382 ~1950!.
@8# S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, ‘‘Quantum Ch

modynamics and Other Field Theories on the Light Cone
hep-ph/9705477.

@9# E. Merzbacher,Quantum Mechanics~Wiley, New York,
1961!.

@10# G. Tiktopoulos, Phys. Rev. D57, 6429~1998!.
@11# J. H. Yee, ‘‘Variational Approach to Quantum Field Theor

Gaussian Approximation and the Perturbative Expans
around It,’’ Proceedings of APCTP-ICTP Joint Internation
Conference~AIJIC 97! on Recent Developments in Nonpertu
bative Quantum Field Theory, Seoul, Korea, 1997~unpub-
lished!, hep-th/9707234.
4-6



e

si

tt.
s.

p

VARIATIONAL PRINCIPLE IN THE ALGEBRA OF . . . PHYSICAL REVIEW D 58 065004
@12# W. E. Brown and I. I. Kogan, ‘‘A Variational Approach to th
QCD Wavefunctional: Calculation of the QCDb-Function,’’
hep-th/9705136.

@13# I. I. Kogan and A. Kovner, Phys. Rev. D51, 1948~1995!; 52,
3719 ~1995!.

@14# R. Haag, K. Dan. Vidensk. Selsk. Mat. Fys. Medd.29, ~12!

~1955!.
@15# O. W. Greenberg, Phys. Rev.139, B1038~1965!; 156, 1742~E!

~1967!; O. W. Greenberg and R. Genolio,ibid. 150, 1070
~1966!; A. Raychaudhuri, Phys. Rev. D18, 4658~1978!; the-
sis, University of Maryland, 1977; O. W. Greenberg, S. Nus
nov, and J. Sucher, Phys. Lett.70B, 465~1977!; O. W. Green-
06500
-

berg, Prog. Theor. Phys. Suppl.86, 60 ~1986!; Phys. Rev. D
47, 331 ~1993!; O. W. Greenberg and P. K. Mohapatra,ibid.
34, 1136~1986!; O. W. Greenberg and L. Orr,ibid. 36, 1240
~1987!; O. W. Greenberg, R. Ray, and F. Schlumpf, Phys. Le
B 353, 284 ~1995!. Related work appears in F. Gross, Phy
Rev. 186, 1448 ~1969!; K. Johnson, Phys. Rev. D4, 1101
~1972!; M. Bander, Phys. Rev. Lett.47, 549 ~1981!; 47,
1419~E! ~1981!.

@16# O. W. Greenberg, Ph.D. thesis, Princeton, 1956.
@17# R. P. Feynman, inProceedings of the International Worksho

on Variational Calculations in Quantum Field Theory, edited
by L. Polley and D. E. L. Pottinger~World Scientific, Sin-
gapore, 1988!, p. 28.
4-7


