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In the strong-coupling limit of the heterotic string theory constructed byakmrand Witten, an 11-
dimensional supergravity theory is coupled to matter multiplets confined to 10-dimensional mirror planes. This
structure suggests that realistic unification models are obtained, after compactification of 6 dimensions, as
theories of 5-dimensional supergravity in an interval, coupling to matter fields on 4-dimensional walls. Super-
symmetry breaking may be communicated from one boundary to another by the 5-dimensional fields. In this
paper, we study a toy model of this communication in which 5-dimensional super-Yang-Mills theory in the
bulk couples to chiral multiplets on the walls. Using the auxiliary fields of the Yang-Mills multiplet, we find
a simple algorithm for coupling the bulk and boundary fields. We demonstrate two different mechanisms for
generating soft supersymmetry breaking terms in the boundary theory. We also compute the Casimir energy
generated by supersymmetry breakif§0556-282198)07516-X

PACS numbg(s): 12.60.Jv, 04.56th, 11.25.Mj

[. INTRODUCTION idea on the nature of these compactifications. They pointed
out that the matter theory could be at strong coupling on one
In their recent investigation of the structure of strongly boundary, and could break supersymmetry spontaneously
coupled heterotic string theory, Fiora and Witten have in- there. Then the supersymmetry-breaking effects could be
troduced a new paradigm for models of unificatj@r-3]. To  communicated to the other boundary by 11- or 5-
construct the strong-coupling limit of the heterotic string, dimensional fields. In this way, the theory on one boundary
they began from the 11-dimensional strong-coupling limit ofwould become the “hidden sector” for the phenomenologi-
the type IIA string theory. They compactified this model on cal supersymmetry theory on the other boundary.
Sl/z,, that is, on an interval of lengthbounded by mirror Horava tried to make this mechanism of communication
(orientifold) planes. They then argued that a 10-dimensionagxplicit by exhibiting a term in the 11-dimensional Lagrang-
E; super-Yang-Mills theory appears on each plane. The finalan which coupled the gaugino condensate on the boundary
structure is a set of twdg gauge theories on the mirror to the 3-form gauge fieldC,gc Of the bulk supergravity
planes, coupling to supergravity in the interior of the inter-theory [4]. He found that this term had a perfect-square
val. structure
This arrangement had an immediate phenomenological

advantage over the weakly coupl&gdx Eg heterotic string Al=— 1 J dllx( 9iiC

theory[3]. When| was increased, the low-energy value of T 12«2 11~ABC

Newton’s constant decreased proportional tlh While the o3 )

Eg gauge coupling remained fixed. Thus, by adjustmert of _ 2 K T S(x1Y) (1)
one could arrange a unification of gauge and gravitational 167 | 4m| X' ABCX (x '

couplings. Choosing a large value Dbfrelative to the 11-
dimensional Planck scale justified the use of only field-wherey is the 10-dimensional gaugino andr&? is the 11-
theoretic, and not intrinsically string-theoretic, degrees ofdimensional Newton constant. Fawa argued that, if the
freedom. At the same time, Hewra and Witten obtained rea- gaugino bilinear obtains a nonzero value, there is no solution
sonable values for the gauge and gravitational couplings fofor C,gc Which is consistent with supersymmetry.
values ofl not so large, in the sense that both of these scales Horava’s observations raise two interesting questions of
could be considered to be of the order of the grand unificaprinciple. The first concerns the structure of Ef). We
tion scale of 2<10'® GeV inferred from the values of the might want to know how the delta function on the boundary
gauge couplings at low energy. shown in Eg.(1) arises. The square of this term integrated
In a realistic phenomenology, 6 of the transverse 10 dioverx!! gives a factor(0) in the boundary Lagrangian. It is
mensions should be compactified. Then one would obtain a puzzling issue whether this term is reasonably included in
5-dimensional theory on an interval with mirror-plane a purely field-theoretic description of the Hea-Witten
boundaries. Plausibly, this theory could be described as eompactification, or whether the presence of this term im-
5-dimensional supergravity field theory, perhaps with someplies that any such field-theoretic description is incomplete.
additional bulk supermultiplets, coupling to matter supermul- The second question comes from the fact that the commu-
tiplet fields on the walls. If is the largest dimension in this nication between the two boundaries comes from the 3-form
geometry, it is reasonable that the theory should make senguge field, a rather exotic agent. From the general form of
in the limit in which| is taken to be nonzero while the finite the potential energy in supergravity, the 4-dimensional
size of the 6-dimensional compactification space is ignoredtheory which we would obtain by compactifying 6 dimen-
Horava and Witten introduced another very interestingsions and then taking the limit—=0 must contain a direct
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coupling of the superpotentials on the two boundaries. Wen the separation of the two boundaries. In the eventual ap-
would like to know how this coupling arises, and how muchplication to supergravity, this dependence is needed to fix the
of this coupling is present in the compactified theory beforesize of the compact geometry. Though the case of 5-
we take the limitl—0. In the standard approach to super-dimensional Yang-Mills theory is simpler than that of super-
symmetry breaking mediated by supergravity, this couplinggravity in several respects, it is still interesting to compute
is the source of the soft supersymmetry-breaking mass ternthe Casimir energy for this case. In Sec. V, we evaluate this
for squarks and sleptons. It would be wonderful if the presenergy for the models of the communication of
ence of an extended fifth dimension had specific consesupersymmetry-breaking studied in Sec. IV and note the
quences for the superparticle mass spectrum which could k@milarities of the two computations.
verified experimentally. In Secs. lll through V, we will be carrying out weak-
We have tried to find the answers to these questions bgoupling perturbation theory computations in the nonrenor-
studying a toy model in which supergravity is replaced by amalizable 5-dimensional Yang-Mills theory. Our attitude to-
Yang-Mills supermultiplet. Consider, then, 5-dimensionalward this nonrenormalizability is a pragmatic one; we will be
super-Yang-Mills theory on an interval of lengttbounded pleased if quantities of physical interest turn out to be
by mirror planes, coupled to chiral multiplets, ¢’ on the ultraviolet-finite at the leading order of perturbation theory.
4-dimensional boundaries. In the linhit= 0, this theory must  That will be true in our explicit calculations of the scalar
have a potential energy with th2-term contribution mass term and the Casimir energy. Presumably, the higher-
order corrections to these computations are cutoff-dependent
g® " D and are regulated by the underlying string theory. In this
V=2(Qd'¢+Q"¢" )", (2)  paper, we will not be concerned with effects beyond the
leading nontrivial order.
whereg is the effective 4-dimensional coupling constant and ~ Finally, in Sec. VI, we will discuss the relation of our
Q.,Q’ are the gauge charges #f¢’. So we can ask in this formalism to Hoava’s analysis and give an explanation of
system also how much of the coupling between boundarie#'® coupling shown in Eq1).
which is required in the limit —0 survives wherl is kept Our approach to the Hava-Witten theory complements
nonzero. The related problem of coupling a 5-dimensional ofn® Many attempts to understand the structure of this theory
hypermultiplets to a superpotential on the boundary has beepy direct analysis of the 11-dimensional Lagrangian. General
studied previously by Shar(&], but, we feel, without giv- Properties of the strong-coupling limit of the heterotic string
ing the insight that we are seeking. theory have been discussed i+-9]. More explicit studies of
A convenient strategy for coupling 5-dimensional super-the compactification of the Heva-Witten theory have been .
multiplets to a 4-dimensional boundary is to work with the discussed recently by several groups. Some of these analysis
off-shell supermultiplets, including auxiliary fields. Under [10—14 have emphasized the connection to the venerable
straightforward dimensional reduction, 5-dimensional mul-mechanism of supersymmetry breaking in string theory by
tiplets reduce to 4-dimensionill=2 supermultiplets. A mir- Es gaugino condensatidil5], while others16,17] have re-
ror plane, or orientifold, obtained by 2, identification has liéd on the Scherk-Schwarz mechanihg] in the bulk to
lower supersymmetry, and so on such a plane a 5Provide a new source of supersymmetry breaking. Brax and
dimensional multiplet should reduce to a 4-dimensioNal Turok[19] have contributed an observation on the possibility

=1 supermultiplet. Nevertheless, if we have the correct off-Of large hierarchies in the 5-dimensional geometry, if all of
shell multiplet, we can couple it straightforwardly to 4- the relevant 5-dimensional fields can be made massive. We

dimensional fields on the boundary. hope that the_ methods of ana_lysis _that we introduce here,
In Sec. Il, we will present the necessary formalism forWhen generalized to supergravity, will clarify the many pos-

coupling a 5-dimensional super-Yang-Mills multiplet to an Siblé sources of supersymmetry breaking which may contrib-

orientifold boundary. We will identify the off-shell 4- Utein the Hoava-Witten approach to unification.

dimensional supermultiplet which couples to the boundary

fields and use thig multiplet to construct ;he 4-dimensional Il. BULK AND BOUNDARY SUPERMULTIPLETS

boundary Lagrangian. In Sec. Ill, we will discuss the role of

the 8(0) terms which appear in this Lagrangian, illustrating  In this section, we will set up the formalism for coupling

our conclusions by some explicit one- and two-loop calcula-5-dimensional super-Yang-Mills theory to an orientifold

tions. boundary. The 5-dimensional Yang-Mills multiplet contains
In Sec. IV, we will use the formalism that we have devel- a vector fieldAM, a real scalar fieldb, a gauginon'.

oped to discuss the communication of supersymmetry break- In this paper, capitalized indicéd,N run over 0,1,2,3,5,

ing from one boundary to the other. We will first analyze thelower-case indicesn run over 0,1,2,3, and,a are internal

case in which supersymmetry is spontaneously broken by 8U(2) spinor and vector indices, with=1,2, a=1,2,3. We

Fayet-lliopoulos term on one boundary. Then we will presenuse a timelike metricyyy=diag(1-1,—1,—1,—1) and

a more involved example in which supersymmetry is com-take the following basis for the Dirac matrices:

municated by loop diagrams which span the fifth dimension.

If supersymmetry is spontaneously broken, the vacuum 0 o™ /—i o
energy can be nonzero. In general, the vacuum energy will M=\ = ( _ ) 3)
contain a term, called the Casimir enef@y, which depends " 0)'\o i)
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where ™= (1,6), o™= (1,— ). Though it is conventional Jsa. Note that, sincé\® vanishes on the boundarys=Ds
in the literature to use raised and lowered spinor indices, wen the boundary andsa is gauge-covariant.

find it less confusing to write out explicitly thex2 and 4x4 Let & be the supersymmetry parameter of e 1 su-
charge conjugation matrices persymmetry transformation on the wall. Then thassign-
ments of the fields in the bulk supermultiplet are determined
c 0 as follows:
— i 2 — .
c=—io5, C= . 4
s o=y o) @
P=+1 P=-1
In 5-dimensional supersymmetry, it is convenient to re- 1 >
write 4-component Dirac spinors as symplectic-Majorana §M &L §L5
spinors, Dirac fermions which carry an 8) spinor index A AT A
and satisfy the constraints O - o (11
i 1 2
i i~ N A M
(p- :Clclpl . (5) NG X3 Xl,2
5_ B
A symplectic-Majorana spinor can be decomposed into 49N the wall ax>=0, the supersymmetry transformati®
dimensional chiral spinors according to reduces to the following transformation of the even-parity
' states generated ki :
o [bL _ _
P'= - (6) SAM=i & ™ —inTomel
f 1__ 1_; 3 1
where ¢, g are two-component spinors connected by SN =0 F €l —1(X° = d5P) &L
¢ =clcol, dr=clegl*. Y 3x3=glTo™D i\l —igl oA 2 + H.c.
Symplectic-Majorana spinoré', ' satisfy the identity S8:05® = —iETcagh2 —i gt Tcash 2 . -
— _ . 12
Py Pyl = = kel )P Mk, (8)
The last two equations imply
including the minus sign from fermion interchange. o
In this notation, the 5-dimensional Yang-Mills multiplet is 8e(X3—a5®)=¢Te™D AL+ HoC. (13

extended to an off-shell multiplet by adding an @Wtriplet

X2 of real-vauled auxiliary fieldg26]. Write the members of These are just the transformation laws for Bi=1 4-
the multiplet as matrices in the adjoint representation of thelimensional vector multiple27], with A™, A{, and
gauge groupAM =AMAtA etc. The supersymmetry transfor- (X3—ds®) transforming as the vector, gaugino, and auxil-

mation laws are iary D fields.
_ _ The appearance of the quantity® in the auxiliary field
5§AM=i§' YMAI should not be a surprise. It is the expectation value of this
quantity that breaks supersymmetry in Scherk-Schwarz
5§¢:i§)\i mechanisn{18]. Thus, ds® should appear in the order pa-
rameter of supersymmetry breaking.
SN = (oMNFyun— YDy d) € —i(X0®)1 & Now it is obvious how to couple the 5-dimensional gauge

multiplet to 4-dimensional chiral multiplets on the boundary.
5§Xa:?(0_a)ijyMDM)\j_i[q),El'(o.a)ij)\j], 9) We write the Lagrangian as

where the symplectic-Majorana spingris the supersymme- S= f d5x
try parameter,Dy®=dy®—i[Ay,P] (and similarly for
DM)\)i andUMNE%[YM!yN]'

Now we would like to project this structure down to a Where the sum includes the walls xt=0,. The bulk La-
4-dimensionalN=1 supersymmetry transformation acting grangian should be the standard one for a 5-dimensional
on fields on the orientifold wall. In a field theory description, super-Yang-Mills multiplet,
an orientifold atx®>=0 is described by imposing the bound-

Lo+ 6(5=x7) Lyt (14)

if ; : 1/ 1
ary condition on bulk fields(x,x>) ES:F( -3 tr(Fyyn) 2+ tr( Dy )2
a(x™x%) =Pa(x™ —x°) (10
NEYY 2 NT
where P is an intrinsic parity equal tot1. The quantum FU(N Y DyN) (X =tr(N[@,N]) ], (15

numberP must be assigned to fields in such a way that it
leaves the bulk Lagrangian invariant. Then fields Rt with tr[t*tB]= §*B/2. The bulk fields should be constrained
—1 vanish on the walls but have nonvanishing derivativego satisfy the boundary conditiori$0) at the walls. Since the
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supersymmetry generated 5& relates fields with the same ¢ b d ' b d~_ b
boundary conditions, thisl=1 supersymmetry is an invari- §A !
a ¢ : a ¢ ~a

ance of Eq(15) under the constraint. ¢
The boundary Lagrangian should have the standard form ) L ,

FIG. 1. Feynman diagrams contributing to the scattering process

dd— .

of a four-dimensional chiral model built from supermultip-
lets (¢, ,F). Here and in the rest of the paper, it is impor-

tant to distinguish boundary chiral scalar fields, which we
will label by ¢, from the bulk scalar fieldb. The explicit ~ What is still unclear is whether these terms can lead to sen-

form of this boundary Lagrangian is sible results when one performs computations in this theory,
o or whether these terms signal the breakdown of a purely
L4=Dpnd' D"+ lioc™D i +FTF field-theoretic description. We believe that these singular

terms do make sense at the field theory level. Their role is to
~V2i(¢p"\[cy +yTenf @)+ ¢'D¢, (160  provide counterterms which are necessary in explicit calcu-
. . . , lations to maintain supersymmetry. In this section, we will
with D= (dm~iAp), and with the gauge fieldh¢, A..D)  jjystrate this conclusion with some explicit calculations in
replacg:d by the boundary values of .the . bylk f'eldsperturbation theory.
(Am AL X°—35®). The boundary Lagrangiad, is invari- As a first, simplest, example, consider the scattering am-
ant by itself under all =1 supersymmetry transformation of pjityde for scalars on a wall. The Feynman diagrams contrib-
the boundary fields and the supersymmetry transformatiofting to the process,+ ¢p— ¢.+ ¢4 are shown in Fig. 1.
(12) of the bulk fields. Thus, the complete actit®) is N The propagator of a free massless bulk field is
=1 supersymmetric.
In principle, we could add to Eq.14) additional terms
involving a four-dimensional integral of the boundary values i .
of the vector fields, or terms coupling the chiral fields to (a(x,x5)a(y,y5))=f K= (K02 e Y (e
higher g5 derivatives of the vector fields at the boundary. K
These terms would correspond to contributions that are more + Peik5(x5+y5)), (19)
singular at the boundary that the ones we have considered.
For our present purposes, we only point out that these terms
are not necessary for supersymmetry, and we neglect the@here
from here on. We will show in explicit calculations that the
terms we have written suffice to give amplitudes which con-
verge to the correct 4-dimensional limits las 0. dk 1
With the action(14), the boundary scalar fielgp at x° Jk5:f @2m* 2l >
=0 couples to the auxiliary fielX® through the terms

ik5(x5—y5)

(20
k5

f dSX{—12tr(X3)2+5(x5)¢T(X3—a5d>)¢>]- (17)  with !(5 summed over the- valuegmll, m=integer. Here
g and in the rest of our discussiol, represents a the 4-
dimensional momentum componentsidft.

. - - . - . B 3 .
The field® is a dynamical field in the interior, b¢® is an The sum of diagrams in Fig. 1 is given by

auxiliary field and may be integrated out. This gives a
boundary Lagrangian of the form

L IM(¢at dp— pct da)
f d"'x[—¢T(ﬁ5®)¢—§(¢TtA¢)25(O)]- (18) Coaall (k°)?
=—Ig tCatdb ﬂ% (pc_pa)z_(k5)2+5(0)

Thus, our formalism does contain singular terms propor-
tional to 5(0) on the boundary, which arise naturally from 1 (Pe+Pa) - (Pa+ Po)
integrating out the auxiliary fields. In principle, the complete o7 52— (K5)2
description of the orientifold wall in string theory could con- & (Pe=pa)”=(K?)
tain additional couplings involving higher derivatives of
the bulk fields and representing a finite thickness and a shape
of the wall. However, the Lagrangian we have written, with If we represent
the &0) but no additional singular terms, is a completely
self-consistent supersymmetric system.

+(c—d). (21

1 1 o K=(k%?
5(0)=§E 1=§2 K= (K52 (22)
I1l. BULK AND BOUNDARY PERTURBATION THEORY K5 K>

In the previous section, we have found that singular terms
proportional to&0) on the boundary arise naturally when the first two terms have a neat cancellation and we find the
bulk and boundary fields are coupled supersymmetricallyfinite result
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FIG. 2. Feynman diagrams contributing to tieself-energy at

¢ ¢
/ \ + ‘e toa !
@ | @ Ag e to % A
one-loop order. It le ¢ le ¢ b o

iM(pat+ dp— Pt dg) FIG. 3. Feynman diagrams contributing to the mass shift of a
5 scalar¢ on one wall due to loop effects of the supermultiplet on the
— igA A iE (Pc=Pa)“—(Pct Pa) - (Pt Pp) other wall.
9 Tealdd) 27 43 (Pe—Pa) 2= (K52
which cancels the singular behavior of ttheexchange dia-
t(c—d) gram and thus allows the complete cancellation required by
1 ) supersymmetry.
_ s 20A LA E u . . . .
= —igteatap 272 (02 +(c—d). (23 To prepare for the next section, it will be useful to illus-
k trate one more cancellation required by supersymmetry.

If 1 —0 with the dimensionless couplirgf/! fixed, the terms ~ Consider the renormalization of the mass of a scalan
with k5#0 become negligible. Then we recover the scala®n€ wall due to loop diagrams involving the supermultiplet
particle scattering amplitude of a 4-dimensioha+ 1 super- 0N the other wall. This mass shift is given by the sum of the
symmetric gauge theory. two-loop diagrams shown in Fig. 3. In our discussion of
As a second example, consider the self-energy of the scahese diagrams, we will assign the chiral fielflat x°=0 to
lar ¢, computed at the one-loop level. By supersymmetrythe representatioR of the gauge group, and we will assign
the ¢ cannot obtain a mass in perturbation theory, but it isthe fields¢’ atx®=1 to the representatioR’.
interesting to see explicitly how the cancellation occurs. The The diagrams of Fig. 3 form a gauge-invariant set. We
Feynman diagrams for thé self-energy are shown in Fig. 2. might characterize them as the diagrams of ogdé, where
The first four diagrams all involve one field that propagatesy js the number of matter multiplets on the second wall.
in four .d|menS|ons'anq one field that propagates in the f'fthl'hus, by supersymmetry, their sum must vanish.
dlmenS|_on. Thus, _|fp is the external 4-momentum, all of It is not difficult to see this explicitly. Since we are inter-
these diagrams will have the structure ested in the shift of theé mass term, we can set the external
momentum equal to zero. Then kptbe the loop momentum

- 1 1 aP=1, Let (k,k% and (,k®
—iM2(p?)= ZtAtAJ N(Kk,K5.p). of the matter loop on the wall , Let (k,k®) and (,k>)
(P)=9 ks K°—(k>)*(p—k)* ( P) be the momenta carried by the two propagators of the gauge
(24 multiplet that connect the two walls. These momenta are

whereN is a polynomial in momenta. Using the representa—quam'zed’ with

tion (22), we can bring the last diagram into this form as
well. Then the five diagrams give contributions

Ko=an/l, KS=mnll, (26)
N=—(2p—k)*+4(p—k)?~4k-(k—p)
+(k%)%+ (K= (k)?) but the integers and n are summed over independently,

-0 25 sincek® is not conserved in the interaction of bulk fields with
' the walls. Then all of the diagrams shown in Fig. 3 can be

Here the&0) term enters quite explicitly as a counterterm written in the form

—iM2=ig4C2(R)C(R’)f (27)

f N(k,k% k%, q)
q k55(

K2) (K2~ (K%)2)(k2— (K®)?)(0?) ((q—K)?)
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where N is a polynomial in momenta,C(R")5"B Integrating out the auxiliary fiel&k® leads to as0) term
=trg [t*tB] is the sum over the gauge quantum numbers ofvhich is an irrelevant constant. The dynamichlfield is

the multiplet atx®=1, the integral overg is a simple 4- affected by this term, in a manner that we can compute from
dimensional momentum integral, and the action

| -] TK L LS a1 @9 1
ws ) (2mt2l F o214 ' szfd5x[2—gz(aMcp)2—KaSq>5(x5—|). (31)

This expression includes the-dependence of the propaga-

H : 5_ 5_
tors, obtained by evaluating EQL9) atx°=0, y*=I. Varying this action with respect @, we find that the Fayet-

To see that the diagrams of this set must cancel, it igji5hq10s term induces a background expectation valu® of
easiest to compare this calculation to the corresponding twQg i, depends only om® and satisfies the equation
loop mass renormalization in four dimensions. The diagrams

on the first two lines of Fig. 3 contain, from the five-
dimensional gauge multiplet, only the propagators of the 1

fields A, and \{ which appear in a 4-dimensional gauge — 93P+ ks S(x>—1)=0. (32
multiplet. Thus, their contributions to the numerator polyno- 9

mial N are exactly those of the corresponding diagrams in 4

dimensions. To treat the last three diagrams, we note th

identity Fn solving this equation, we should remember that the geom-

etry with mirror planes arose from a identification of points
L L 2 (52 in a compactification ok® on a circle. Thus{®(x°)) must
0= — 2 (—1)"=— 2 (—1)" — (k) (29) be a periodic function ox® with period 2 and sods® must
21 = 2l 43 k*—(k>)?" integrate to zero around the circle. This boundary condition
requires that we choose as the solution to €8)

since the second term is a representatiod(of) evaluated

atx®=|. Each® propagator comes with a factok)?, due 1

to the couplingg18) at each wall. The identity29) allows 2 5_1y_ —

us to replace thisk®)? by k2. Then each diagram gives the Is{P)=—g K( ST ) (33

same contribution to the numerator as the corresponding 4-

dimensional diagram with thé replaced by &-term inter-

action. Thus, the numerator polynomisl turns out to be Inserting this result into th®-term coupling on the wall at

exactly the one that appears in the 4-dimensional calculationx°=0, given by Eq.(17), we find a scalar mass term given
At this point, we know that the integré27) must vanish. by

It is not difficult to evaluate the various contributions to the

numerator and to see that they cancel. In the Appendix, we

give a formula for the numerator facttd from which this 2 o K

can be verified explicitly. M3=97Q 5, (34)

IV. WALL TO WALL SUPERSYMMETRY BREAKING
_ o whereQ is the U1) charge of the scalar field, with no cor-
We have now described and tested an explicit form for thgesponding mass term induced for the fermions on the wall.
coupling of 4-dimensional supermultiplets on the boundaryif the dynamics on the wall at®=1 gives aD-term of fixed
to gauge supermultiplets in the bulk. Now we can use thisnagnitude there, theé field transfers this across the fifth
formalism to see how supersymmetry breaking on one waljimension to create a soft scalar mass term on the wall at
is communicated to the other wall to provide softy5—q
supersymmetry-breaking terms. In this section, we will give  one subtlety of the Fayet-lliopoulos mechanism of super-
two examples of such communication, one through a direcgymmetry breaking is that the symmetry breakibgterm
tree-level coupling and the other induced by loop effects. can sometimes be compensated by shifting the vacuum ex-
The simplest example of the communication of supersympectations value of a scalar field. We can see a similar pos-
metry breaking is obtained in a theory in which the wall atsipjlity here. Generalize the previous model to include sev-
x>=I contains no boundary matter fields. We choose theya| chiral multipletsp; on the wall atx3=0, and additional
gauge group to be ) and write a Fayet-lliopouloB term  chijral multiplets ¢; on the wall atx®=1. (As always, it is
on this boundary. With the identification of tilterm given  important to distinguish between the boundary scalar figlds
in Sec. Il, the following boundary action preservlis=1  and the bulk field®.) Assign these multiplets the charges
supersymmetry: Qi, Qj under the W1) symmetry. In the most general situa-
tion, all of the scalar fields might acquire vacuum expecta-
L4=k(X3—95D). (30)  tion values. Then the Lagrangian fdr will take the form
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3 s |1 32 ) a vectorlike representatiorR(Jrﬁ’). (Recall that we are

S= | d% 297 (X7 (om®)%) using R to denote representation of the chiral fieldsat |

=0.) We give this multiplet a supersymmetric mamssand

T 3 5 induce an additional mass term for the scalar fields from the
+ EI Qidi ¢i)(x J5P) 5(x°) vacuum expectation value of ahterm. Then the fermions
have a Dirac mass, while the bosons have a (ma$sha-
trix
+ e+ Qj¢}¢j)(x3—asq>)5(x5—|)]. (35)
J . ¢/ m2 mZX ¢/
For simplicity, we assume that thg and ¢; are represented M g*' lmx m? 5*' ' (39

only by vacuum expectation values that are independent of

position on the walls. Then varying the acti@b) with re-  The eigenvectors of this matrix are specigs, ¢’ in the
spect to® gives an equation analogous to E§2) whose representatioR’. Thus, we find the mass spectrum on the
solution is wall at x°=1,

1 20 41y —m2 20 41y —m2 2007\ —m2
EiQimi)(é(xs)_ﬁ) M} )=m?, m(gl)=m2, m(y')=m’, (40

Is(P)=— 92{
with m2=m?(1+x). This spectrum satisfies pk1%]=0.
1 Our calculation will follow closely the discussion of gauge-
T 5_1y_ —

K+; Qj ¢ ¢J’) ( 50 =1) 2| ” (36) mediated scalar masses in this model given by Magt. It

is straightforward to generalize our calculation to models of
This result reduces to E¢33) when we turn off the expec- Supersymmetry breaking with nonvanishing supertrace.
tation values of thep; and ¢; . If we insert this expression However, in that case, the scalar masses induced by gauge-

into Eq. (35), and also integrate out the auxiliary fiexf, ~ mediation are cutoff-dependent even in 4 dimensii28.
the variouss8(0) terms cancel, leaving behind Similar divergences appear also in the 5-dimensional case.
2
K+Ei Qidl i+ Q ¢,’T¢j) } loop the mass spectrum described in the previous paragraph.
! As in the previous section, the identit29) can be used to
(37)

vacuum expectation values to the supersymmetric conditiofg” integrals, just as in the 4-dimensional case.
To write the result precisely, defif@3]

+

To compute the scalar mass, we repeat the calculation of
2
S= f d5x{ - ?l_l
replace k®)? by k? in the numerator of the diagrams with

the diagrams in Fig. 3, now assigning to the particles in the
To minimize the vacuum energy, we must set the variou€xchange. Then the result reduces to a sum of two-loop sca-

K+ Qi i+ 2 Qi =0, (39) d% dig 1 1
i i (mymy|mg|my) = (2m)0 (2m)0 k2+mf k2+m§
if this is possible. 1 1

If the supersymmetric theory on the wallx=1 breaks
supersymmetry spontaneously without inducinD a@erm, it

is necessary to go to a higher order in perturbation theory to . ) .
find the supersymmetry-breaking communication. If super® P€ the EuclideariWick-rotated scalar two-loop integral

symmetry breaking causes a mass splitting among chiral Sly\_/!th four_ propagators, and denote Euclidean scalar. integrals
permultiplets on the wall ax®=I, and these multiplets with additional or fewer propaga_ltorssl:_)y brackets with more
couple to the gauge field in the bulk, then the diagramé' fewer labelan; . In ourcalcqlatlonk is summed over the
shown in Fig. 3 induce a supersymmetry-breaking mass foraluesmn/l; denote the sum in Eq28) as
scalars on the wall at®>=0. Since, in the scheme we are
studying, the pa.rticle number of a chiral multiplebétz(? is [A]= i E i E 4X(—1)“+ﬁA(k5,R5). (42)
conserved, this is the only soft supersymmetry-breaking term 2l 2l
that can be generated.

The generation of the scalar mass term in this example i$he basic scalar integral shown in Fig. 4 is then written
very similar to that in “gauge-mediated” 4-dimensional

g gk, “

models of supersymmetry breakirig0]. The same set of [ (k%k®|my|m,)]. (43
diagrams appears, with only the difference that our gauge
fields live in 5 dimensions. Finally, though a term wittk? in the numerator can be re-

To illustrate the computation of these diagrams, we studyuced to scalar integrals, it is more convenient to retain this
the simplest multiplet which appears in models of gaugefactor under the integral in Eq41). By abuse of notation,
mediation. We introduce on the wall &t=1 two chiral su- we will write a term withk? in the numerator as, for ex-

perfields @', $’) which transform under the gauge group asample,[ k2(k®k®|m,|ms)].
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q At the same time, the scalar integrals over the momentum
g can be evaluated explicity. Define the function
b(k?,mi,m3) by

f ddq 1 1
(2m) g2+ m7 (q—k)Z+mj
1 2
k,ks\ /‘kﬁs =Wf;—y—b<k2,mi,m§>+ae) (48)

for d=4—¢€. When we evaluate the loop integrals on the

o ) ) wall in Eq. (45), the divergent terms cancel and we are left
FIG. 4. The basic integral which appears in the two-loop con-ith differences of these scalar functions
tribution to the scalar field mass. '

_ _ _ R—R(k¥)=b(k?,m? ,m?)+b(k&m? m?)
Using the notation, the scalar mass due to the diagrams of

Fig. 3 is +2b(k?,m? ,m?)+4b(k?,m?,m?) — 4b(k?,m? ,m?)
m2=—g*C,(R)C(R")[K*R+4S], (44) —4b(k?,m? ,m?)
where S—S(k?)=m2{b(k?,m> ,m?)—b(k?,m> ,m?)}
R=(k%k®m, |m. )+ (k°k®|m_|m_)+2(k%k®m, |m_) —m*{b(k? m?m*) —b(k?,m? ,m*)}
+ 4(K5KS| m|m) — 4(k5K5|m, | m) — 4(K5KS|m_|m) +m?{b(k?,m* ,m?)—b(k? m*,m?)}
—m?{b(k?,m?,m?)—b(k?,m?,m?)}. (49)

S§= mi{(k5R5|m+|m+)—(k5R5|m+|m)}
R R If we then define
—m?{(k°k®|m|m) — (k°k°|m_.[m)}
R . P(k?)=k?R(k?)+4S(k?), (50)
+m2{(k5k®m_|m_)— (k°k®|m_|m)}
o ses 55 then the combination of these two tricks brings E) into
—m*{(k°k>|m[m) — (k°k®>|m_|m)}. (45)  the form of an integral ovek. Since this integral is spheri-

_ o _ _ cally symmetric, we can replacd*k=27w2dkk® and write
This expression is full of cancellations which reflect the factgq (44) as

that the answer vanishes when the mass spectrum is super-

symmetric. To evaluate this answer more explicitly, we must g? \?
N 2 ’
perform the sums ovee® andk® and then carry out the two my,=2 W) C2(RIC(R)
four-dimensional integrals.
The sums can be performed conveniently using a standard * 5
trick from finite temperature field theory. Write a contour X fo dkksinhZH P(k%). (5)

integral representation
The functionP(k?) is elementary, and it is not difficult to

15
1 S -1y 1 d_k5 2e'1 1 work out its asymptotic behavior for large and for sl
21 < (=1) kZ+ (K52~ 27 2% _ 1 K2+ (k%)% We present these formulas in the Appendix. It is relevant that

46) P(k’)~Kk* ask’-0, so thatP(k?) is a field-strength renor-
malization[24] (as the notation is meant to sugge#s k?

where the contour encloses the poles of the integrand at —, P(k?)~log(k¥n?)/k%. With this information, one can
=mn/l. Draw the contour as a line from left to right just work out the asymptotic behaviors mﬁ,.
below the real axis and another line from right to left just For smalll, we might expect to go back the the 4-
above this axis. Push the first line down and pick up the polelimensional situation. Formally, taking—0 in Eq. (47)
atk®=—ik; push the second line up and pick up the pole atturns this expression into
kS=ik. We find two identical contributions which sum to
1
T2 (52

ST
~

1 1
k sinhkl” (47

which is thek®=0 term in the suni46). Using the explicit
This manipulation can be performed separately on each aisymptotic behavior oP(k?), we can see that the integral
the propagators joining the two walls. (52) remains well-defined in this limit. Thus, the manipula-
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tion is permitted and the result famfl, becomes just the 4-
dimensional gauge-mediation result with the replacement

g2 2 g2 21
((477)2 *(<4w>2> 12

We will write out this result explicitly below. Note thaf/|

(53

is the effective 4-dimensional gauge coupling obtained by

simple dimensional reduction.
Another way to derive this result is to show that, for

—0, all terms in the sum ovee® andk® are explicitly sup-

pressed by the factd® except for the term withk®=k®
=0. Again, the asymptotic behavid(k?)~ 1/k? is neces-
sary to complete this argument.

For largel, the hyperbolic sine in the denomination of Eq.
(51) cuts off the integrand at very sm&ll Thus, we can find
the asymptotic behavior by replacir(k?) by its leading
term for smallk?, which is proportional tk?. This gives a
result proportional to

9° |?1
(4m)?) 1%
Working out all of the detailqwith the help of some

formulas from the Appendjx we find, asml—0, the 4-
dimensional forn{21,25

(54)

2m2

o[
m3=2C,(R)C(R )((47)2) 2

X§2(1+x)|log(1+x)—2Li,

1+x

(55

+(X<—>—X)],

where Lb(X) is the dilogarithm, and, asl— o,

9

2 21

3
X2

+(X<—>—X)J.

4+x—2x? 4—x
Iog(1+x)—T

(56)

In both of these expressions, the quantity in brackets tends tga|| atx®

PHYSICAL REVIEW D 58 065002

0.20 : : :

0.15
NS

€ 0.10

0.05

FIG. 5. Behavior of the induced supersymmetry breaking mass
for scalars atx®=0 as a function ofl. We plot m¢ in units of
2C,(R)C(R")[ g% (4m)?)?) - (m/1?)].

The remaining one-loop integral may be evaluated in Euclid-
ean coordinate space. There is one small subtlety to note.
The representation of E¢19) in Euclidean coordinate space

is

(a(x,x)a(y.y>))

8’7T22

1
[(x—y)?+ (x°—y>+2ml)?]3?

1

P Xy T 5Ty 2mn A2

(57)

with m summed over all integers. When this expression is
evaluated with one end aP=1 and the other ay®=0, we
find (for P=+1)

2

(a(xNa00)=g 7 % rrmo gy (68
Then the evaluation crhﬁ) involves the expression
2
1=> f d*x
= 87X+ (2m+1)217]%7
2
X(—V?) (59)

87 x2+(2m+1)22]%2’

containing two propagators which run from a point 0 on the
=0 to a pointx on the wall ax®>=1. By combining

x* as x—0. We see that the induced soft supersymmetrythe two denominators with a Feynman parameter, it is not
breaking mass term crosses over from the 4-dimensional befifficult to do the integral explicitly and then sum overand

havior to a smaller functional form dsbecomes larger than

m. The result is

1/m. In Fig. 5, we graph the form of the mass term as a

function of| for the illustrative valuex=0.3.

There is another way to understand the behavior of the | =

scalar mass term fonl large. If m is large, we can consider

the inner loop in Fig. 4 to contract to a point. More precisely,

because the functioR(k?) is proportional tok? whenk is
small, this loop gives the pointlike operator §?) acting on

3 1
W§(3)|—4- (60)

Multiplying this by the coefficient ok? in P(k?), we find
again the resul(56). This presentation explains the physical

the two propagators which run from one wall to the other.origin of the 1/* behavior of the diagrams.
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In the diagrams of Fig. 6, we have only one sum dw&r

o ¢ n Thus, define for this section

I
I
¢l I ¢l
+ + + + O
> I
vt 1D
I

1
Bl= = B(k®). 63
A A A [B]= 57 2 B(k®) (63)
FIG. 6. Feynman diagrams contributing to the Casimir energyThen the Casimir energy resulting from this set of diagrams
due to loop effects of the supermultiplet on the walkét|. can be written in terms of Euclidean scalar two-loop inte-

grals as
V. CASIMIR ENERGY

At the same time that supersymmetry breaking on the
wall at x°=1 induces soft supersymmetry-breaking terms in
other parts of the theory, it also creates a nonzero vacuum
energy. We are particularly interested in the part of this eNyheredsC(R’) = tre [tAtA], and
ergy which depends oh—the Casimir energy6]—since
this term will eventually form a part of the balance which
determines the physical value bf In this section, we will
compute the Casimir energy due to the two mechanisms of +4(k%)m|m) — 4(k®|m, |m) — 4(k®|m_|m)
supersymmetry breaking discussed in the previous section.
We find it interesting that these calculations run almost in
parallel to the calculations of the induced scalar mass term.

1
EC/V4:§gszC(R’)[szc+4SC], (64)

Re=(k°Im,[m.)+(K°|m_|m_)+2(k°|m,|m_)

Sc=mZ{(k%Im., |m.) — (k®|m. |m)} —m?{(k®[m|m)

Consider first the case of a Fayet-lliopoulDsterm on — (KS|m. |m)ym2 {(K8|m_|m_) — (K¥|m_|m)}
the boundary ax®>=I. The coupling of this term to the bulk N
fields is described by the Lagrangi&Bl), plus a term pro- —m?{(k®|m|m)— (k®|m_|m)}. (65)

portional to&(0) resulting from integrating oux®. Since Eq.

(31) is quadratic ind, we can integrate this field out explic- The inner loop of each of these two-loop integrals can be
itly. Using the propagatof33), the coupling of® to the  evaluated explicitly, giving the same functiorR(k?),

boundary leads to S(k?), P(k?) that we saw earlier in Eq$49) and (50).
1 o2k . Again we can simplify the sum ovér using the contour
Seff:f d5xS(x5—1)- EK( _ 7) (61) trick from finite temperature field theory. Write
plus anl-independent term proportional #§0). Thus, we i > %: jE d_k5 : ;;L =, (66)
find for the Casimir energy per 4-dimensional volume, 21 57 ko (k) 2m g2k _q K+ (k)<
gZKZ

Ec/V,=+ (62) where the contour encloses the poles of the integrand at
4l =qn/l. Draw the contour as a line from left to right just
below the real axis and another line from right to left just

If there areD-terms on both boundaries, or if the fields  ahove this axis. Push the first line down and pick up the pole
on the two boundaries obtain expectation values as in Ecyt k5= —jk. For the contour integral on the line above the

(35), the sum of the tw® terms appears in place &fin Eq.  axis, replace

(62). If the two D terms are equal and opposite, the Casimir

energy vanishes. Also, as we observed already in(&q, 1 1

the &0) terms from integrating ouX® and® precisely can- —_— =1 (67)
cel. Thus, in this case, the vacuum energy remains just at e?k—1 e 211

zero, as expected from the supersymmetry of the situation.

In the case in which the spectrumx@=1 violates super- |n the second term, push the contour up and pick up the pole
symmetry but there is no induc&iterm, the Casimir energy atk®=ik. These manipulations convert E§6) to the form
must be generated by radiative corrections. The leading con-
tribution comes from the diagrams shown in Fig. 6. These 1 1 % dK®
diagrams involve a closed loop on the boundary®at| and ==t —.

a propagator from the 5-dimensional Yang-Mills theory ke™-1 = (2m)
which winds around the compactified direction.

Though perhaps it is not completely obvious from theThe second term in E468) is independent df; it represents
beginning, the structure of the diagrams in Fig. 6 is verythe contribution to the vacuum energy of the 4-dimensional
similar to that of the diagrams in Fig. 3. As in the previouswall in an infinite 5-dimensional volume. Equivalently, from
section, we will describe the calculation for the casethe point of view of propagators in coordinate space, this
st{M?]=0. term is the contribution of the propagators that go from the

(68)
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wall back to the wall without winding aroung®. In any I | ' | '
event, this term does not contribute to the Casimir energy,
and we may drop it. 0
After these manipulations, the Casimir enefgy) takes L |
the form >
LI(.I) _0 5 — —
Ec/V,4= 1(92 )dC(R) .
c/Va (4 ) G L -
© 1 ) -1.0 | I | 1
xf Ak —r— P(k?), (69 0 05 1.0 15
0 et -1 mQ

whereP(k?) is the same field strength renormalization func-  FIG. 7. Behavior of the Casimir energy as a functionl oive
tion that appeared in E¢51). plot (Ec/V4) in units of 3dsC(R")[g%/(4m)%].
As in the previous section, we can analyze the two-loop
integral in the limits of small and large Consider first the 100p diagram can be contracted to a local operator propor-

limit 1—0. If we formally take the limit of small in Eq.  tional to (—V?). Then the Casimir energy is proportional to
(69), we obtain a divergent integral an expression in which this operator acts on a propagator

which runs around the compact direction. More specifically,

w k1 the Casimir energy is proportional to
Ec/V,~— f dky 7 log k2. (70)
0 I=2 (-V?) 2= ! AT/ (74)
Thus, unlike the case @fi’,, the contributions to the Casimir m 8m (" +(mh9)*=|

energy are dominated by large valueskéf The estimate
where the sum ovem runs over all integers excepht=0.

o 1 1 1 1 This expression evaluates to
— 2~ log?—
J; dkkz—k—,—ez —1 2 l0g k2~ 5 log® — )
and the asymptotic formula fd?(k?) given in the Appendix I= 352 ¢(5) 15 (75

gives a precise formula for the smélbehavior:
Multiplying this by the coefficient ok? in P(k?), we return

E. IV, — g2 )d CRD to the result(?i_%). N o .
cira (4m)*) ¢ Both of the individual contributions to the Casimir energy
that we found in this section are monotoniclinWe find it
><4m x? |ngi (72) interesting, though, that these two contributions have oppo-
I m site signs. Thus, it is possible that, in a realistic theory, we

could find balancing contributions to the Casimir energy that
For largel, the analysis can be done along the same lines a&abilize the value of at a nonzero value.

those we used famzqs. The denominator of Eq69) cuts off
the integrand for smak?. Thus, we can replade(k) by its VI. HOR AVA'S SUPERSYMMETRY-BREAKING
leading term a%?— 0. With this approximation, the integral STRUCTURE
is easily evaluated, and we obtain
Now that we have analyzed mechanisms for supersymme-

g° try breaking in our toy model, it is interesting to ask whether
Ec/Va=-— (4m)? 7| deC(R’ )§(5) 1° this sheds light on the mechanism of supersymmetry break-
ing in string theory proposed by Fawva[4]. We can see the
3 [4+x—2x? | _4-x connection by making a dimensional reduction of &ar's
X132 X2 0g(1+x) X system from 11 to 5 dimensions, taking the compact 6 di-

mensions to be a Calabi-Yau manifold. Under this reduction,
the boundary gaugino condensate becomes a 4-dimensional
scalar gaugino bilinear on the boundary. The relevant com-
ponents of the 3-form gauge field in the bulk are those that
Comparing Egs(72) and (73), we see the same crossover multiply the the(3,0) or (0,3) forms of the Calabi-Yau space,
that we found previously from Eq$55) to (56). In Fig. 7,
we graph the form of the Casimir energy as a functior of Casc(X, X2, y)=c(X,X°) Qppc(y) +- - . (76)
for the illustrative valuex=0.3.

As in the previous section, the behavior of the CasimirThese components form two complex 5-dimensional fields
energy for largd is studied most easily in Euclidean coor- which belong to a hypermultiplet in the bulk. Thus, we can
dinate space. If or m is large, the inner loop of each two- try to recover Hoava’s coupling of the bulk and boundary

+<xﬁ—x)}. 73
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fields by considering the coupling of a hypermultiplet in the - , dW L[ dwW
bulk to chiral fields on the boundary. Ls=]dnA%?= 5(x%)| dsA gaL tHC +(8(x)) aAll"
We can analyze this problem using arguments similar to

those in Sec. II. The five-dimensional hypermultiplet consists (82)
of a pair of complex scalai', a Dirac fermiony, and a pair
of complex auxiliary fieldsF'. Under supersymmetry they If we identify A2

with the scalar component & shown
transform as follow$26]: P ABC

in Eq. (76) and @W/dA?®) with the Eg gaugino condensate,
this reproduces the perfect-square struct(te found by

SN =—V2el &y Horava[2,4].
S o From here, we could go on to discuss the communication
Spx=+V2iMauA'el g+ vaFE of supersymmetry breaking. If we simply assume a fixed
value of the gaugino condensate and solveAbras in Eq.
5§F‘ =—V2iE Moy x. (770 (33), we find a universal gaugino mass proportional 1o &5

in[10—17. This leads to conventional supergravity-mediated

To carry out the orientifold projection, we must consis- supersymmetry breaking scenario. It would be very interest-
tently assign paritie® to the various fields and impose the ing to know whether there are other possibilities. In particu-
boundary condition$10). Here is a consistent set of assign- lar, it would be interesting to find a perturbative hierarchy of

ments which givedN=1 supersymmetry on the wall: soft supersymmetry-breaking terms similar to the one that
we discussed in Sec. IV. To search for such possibilities, it is
P=+1 P=-1 necessary to understand the general coupling of boundary
1 ) matter fields to supergravity. We are currently investigating
3 &L L that question.
Al Al A? (79
X XL XR
F F F VIl. CONCLUSION

As in Sec. Il, we project out the odd-parity states a”fl CON- " |n this paper, we have shown how easy it is to construct
sider the supersymmetry on the boundary generategi by  consistent couplings of five-dimensional supermultiplets to

The transformation$78) specialize to matter multiplets on orientifold walls by analyzing the trans-
formation properties of the associated auxiliary fields. We

SAT=V2E Y, applied this method to some simple models with bulk and
boundary fields and exhibited several possibilities for the

SexL =V2i eI ALE —V2asAREL +VIFLE communication of supersymmetry breaking from one wall to

the other. We hope that this method will generalize to super-
gravity and allow a more complete understanding of the su-
persymmetry breaking and its phenomenology in the
Horava-Witten approach to unification.

8:F1= iV2E T oMoy +V2EL TIsxr

5§65A2:\Q56T&5XR . (79)
These transformations imply that ACKNOWLEDGMENTS
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particular, the boundary theory might have a superpotential
which depends on the boundary chiral fields and the

ThenA?l, x., (F1—dsA?) transform as the complex scalar,
chiral fermion, and auxiliary field components of a four-
dimensionalN=1 chiral multiplet.

boundary value of the field’. The superpotential term then APPENDIX: MORE ABOUT THE TWO-LOOP
includes the boundary action SELF-ENERGY
In this appendix, we will give some further details of the
1 5 AW two-loop self-energy calculations discussed in Secs. Il and
Lo=(F = 35A%) Trg+e . 8y O P 9y :

As we explained in Eq(27), our strategy for computing
If we integrate out the auxiliary fielB* and write the result- the diagrams shown in Fig. 3 began with bringing each dia-
ing action in 5 dimensions, we arrive at the structure gram into the form
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N(k,k® k% q)

- (Al)
55 (k%) (K*— (k)?)(k*— (k) )(9%—m}) ((a— k) >~ mp)

MZ:—g“cz<R>C<R'>Uk

for them,, m, appropriate to the inner loop of the diagram. k*+ 2k?3(mZ+m3) + (m2—m3)?] 2
We now give the contributions of the various diagrams to the A= e

numerator polynomiaN. In the following formula, we write

the contributions tdN as a sum, following the order of the

diagrams in Fig. 3, although properly each separate termnq

should receive the appropriate particle masses in the denomi-

nator. The expression is given for the mass spect(dén

considered in Sec. IV; for the analysis of Sec. lll, one should k2+m2—m3 k2+m3—m?
set all masses equal to zero. With this explanation, BlzT, BfT.

(A4)

(A5)

N=2(k-(2q—Kk))?—2(q?—m?2 +q?—m?)k?

From b(k?,m?,m3), we can compute the combinations

—2(29—k)2k?+8(g%>—m?2 +qg2—m? )k?
R(k?), S(k?), P(k?® defined in Egs.(49) and (51). We

+4(q-(q—k)k?—2q-k(q—k) - k—m?k?)
—8k?(q- (q—k)—2m?)+ 16k?k- (q— k) + 2k®+ 0+0.

(A2)  values ofk?. For P(k?), we find, asm?k®—0,

from Eqg. (40). It is straightforward to work out the

If we set all masses equal to zero, this expression vanishes
after the use of thg«— (k—q) symmetry of the denominator. 4+ x—2%2
With nonzero masses, some simple rearrangements and I%t(kz)zkz[—2 Iog(1+x)+1+(X<—>—x)}+O(k4),
Euclidean rotation bring the expression fn@ into the form X (A6)
(44).

In our analysis of Eq(44), we made use of the self-
energy integrab(k?,m?,m2) defined by Eq.(48). We can
write b more explicitly as

and asm?k?— oo,

4

5 A4m 2

2 2\ *
b(k?,m3,m3)= fo dx log(x(1—x)k? x%log W—(x2+3x+ 2)log(1+x)

+xme+(1—x)md)

X2+ (x> —X) [+ O(k™%). (A7)

(A+B;)(A+ Bz)}

=Ald AB ) (A—B,)

evaluate these expressions using the mass spectrum derived

asymptotic behavior of these functions for large and small

+Bylogm3+Bjlogm3—2,  (A3)

where

The computation of the Casimir energy reported in Sec. V

is very similar to the computation aﬁfi, and, in particular,

uses the same auxiliary functid?(k?).
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