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Transmission of supersymmetry breaking from a four-dimensional boundary
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In the strong-coupling limit of the heterotic string theory constructed by Horˇava and Witten, an 11-
dimensional supergravity theory is coupled to matter multiplets confined to 10-dimensional mirror planes. This
structure suggests that realistic unification models are obtained, after compactification of 6 dimensions, as
theories of 5-dimensional supergravity in an interval, coupling to matter fields on 4-dimensional walls. Super-
symmetry breaking may be communicated from one boundary to another by the 5-dimensional fields. In this
paper, we study a toy model of this communication in which 5-dimensional super-Yang-Mills theory in the
bulk couples to chiral multiplets on the walls. Using the auxiliary fields of the Yang-Mills multiplet, we find
a simple algorithm for coupling the bulk and boundary fields. We demonstrate two different mechanisms for
generating soft supersymmetry breaking terms in the boundary theory. We also compute the Casimir energy
generated by supersymmetry breaking.@S0556-2821~98!07516-X#

PACS number~s!: 12.60.Jv, 04.50.1h, 11.25.Mj
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I. INTRODUCTION

In their recent investigation of the structure of strong
coupled heterotic string theory, Horˇava and Witten have in
troduced a new paradigm for models of unification@1–3#. To
construct the strong-coupling limit of the heterotic strin
they began from the 11-dimensional strong-coupling limit
the type IIA string theory. They compactified this model
S1/Z2 , that is, on an interval of lengthl bounded by mirror
~orientifold! planes. They then argued that a 10-dimensio
E8 super-Yang-Mills theory appears on each plane. The fi
structure is a set of twoE8 gauge theories on the mirro
planes, coupling to supergravity in the interior of the inte
val.

This arrangement had an immediate phenomenolog
advantage over the weakly coupledE83E8 heterotic string
theory @3#. When l was increased, the low-energy value
Newton’s constant decreased proportional to 1/l , while the
E8 gauge coupling remained fixed. Thus, by adjustment ol ,
one could arrange a unification of gauge and gravitatio
couplings. Choosing a large value ofl relative to the 11-
dimensional Planck scale justified the use of only fie
theoretic, and not intrinsically string-theoretic, degrees
freedom. At the same time, Horˇava and Witten obtained rea
sonable values for the gauge and gravitational couplings
values ofl not so large, in the sense that both of these sc
could be considered to be of the order of the grand unifi
tion scale of 231016 GeV inferred from the values of th
gauge couplings at low energy.

In a realistic phenomenology, 6 of the transverse 10
mensions should be compactified. Then one would obta
5-dimensional theory on an interval with mirror-plan
boundaries. Plausibly, this theory could be described a
5-dimensional supergravity field theory, perhaps with so
additional bulk supermultiplets, coupling to matter superm
tiplet fields on the walls. Ifl is the largest dimension in thi
geometry, it is reasonable that the theory should make s
in the limit in which l is taken to be nonzero while the finit
size of the 6-dimensional compactification space is ignor

Hořava and Witten introduced another very interest
0556-2821/98/58~6!/065002~14!/$15.00 58 0650
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idea on the nature of these compactifications. They poin
out that the matter theory could be at strong coupling on
boundary, and could break supersymmetry spontaneo
there. Then the supersymmetry-breaking effects could
communicated to the other boundary by 11- or
dimensional fields. In this way, the theory on one bound
would become the ‘‘hidden sector’’ for the phenomenolo
cal supersymmetry theory on the other boundary.

Hořava tried to make this mechanism of communicati
explicit by exhibiting a term in the 11-dimensional Lagran
ian which coupled the gaugino condensate on the bound
to the 3-form gauge fieldCABC of the bulk supergravity
theory @4#. He found that this term had a perfect-squa
structure

DL52
1

12k2 E d11xS ]11CABC

2
&

16p S k

4p D 2/3

x̄GABCxd~x11! D 2

, ~1!

wherex is the 10-dimensional gaugino and 8pk2 is the 11-
dimensional Newton constant. Horˇava argued that, if the
gaugino bilinear obtains a nonzero value, there is no solu
for CABC which is consistent with supersymmetry.

Hořava’s observations raise two interesting questions
principle. The first concerns the structure of Eq.~1!. We
might want to know how the delta function on the bounda
shown in Eq.~1! arises. The square of this term integrat
overx11 gives a factord~0! in the boundary Lagrangian. It is
a puzzling issue whether this term is reasonably included
a purely field-theoretic description of the Horˇava-Witten
compactification, or whether the presence of this term
plies that any such field-theoretic description is incomple

The second question comes from the fact that the com
nication between the two boundaries comes from the 3-fo
gauge field, a rather exotic agent. From the general form
the potential energy in supergravity, the 4-dimensio
theory which we would obtain by compactifying 6 dime
sions and then taking the limitl→0 must contain a direc
© 1998 The American Physical Society02-1
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coupling of the superpotentials on the two boundaries.
would like to know how this coupling arises, and how mu
of this coupling is present in the compactified theory bef
we take the limitl→0. In the standard approach to supe
symmetry breaking mediated by supergravity, this coupl
is the source of the soft supersymmetry-breaking mass te
for squarks and sleptons. It would be wonderful if the pr
ence of an extended fifth dimension had specific con
quences for the superparticle mass spectrum which coul
verified experimentally.

We have tried to find the answers to these questions
studying a toy model in which supergravity is replaced b
Yang-Mills supermultiplet. Consider, then, 5-dimension
super-Yang-Mills theory on an interval of lengthl bounded
by mirror planes, coupled to chiral multipletsf,f8 on the
4-dimensional boundaries. In the limitl→0, this theory must
have a potential energy with theD-term contribution

V5
g2

2
~Qf†f1Q8f8†f8!2, ~2!

whereg is the effective 4-dimensional coupling constant a
Q,Q8 are the gauge charges off,f8. So we can ask in this
system also how much of the coupling between bounda
which is required in the limitl→0 survives whenl is kept
nonzero. The related problem of coupling a 5-dimensiona
hypermultiplets to a superpotential on the boundary has b
studied previously by Sharpe@5#, but, we feel, without giv-
ing the insight that we are seeking.

A convenient strategy for coupling 5-dimensional sup
multiplets to a 4-dimensional boundary is to work with t
off-shell supermultiplets, including auxiliary fields. Und
straightforward dimensional reduction, 5-dimensional m
tiplets reduce to 4-dimensionalN52 supermultiplets. A mir-
ror plane, or orientifold, obtained by aZ2 identification has
lower supersymmetry, and so on such a plane a
dimensional multiplet should reduce to a 4-dimensionalN
51 supermultiplet. Nevertheless, if we have the correct o
shell multiplet, we can couple it straightforwardly to 4
dimensional fields on the boundary.

In Sec. II, we will present the necessary formalism
coupling a 5-dimensional super-Yang-Mills multiplet to a
orientifold boundary. We will identify the off-shell 4
dimensional supermultiplet which couples to the bound
fields and use this multiplet to construct the 4-dimensio
boundary Lagrangian. In Sec. III, we will discuss the role
the d~0! terms which appear in this Lagrangian, illustratin
our conclusions by some explicit one- and two-loop calcu
tions.

In Sec. IV, we will use the formalism that we have dev
oped to discuss the communication of supersymmetry bre
ing from one boundary to the other. We will first analyze t
case in which supersymmetry is spontaneously broken b
Fayet-Iliopoulos term on one boundary. Then we will pres
a more involved example in which supersymmetry is co
municated by loop diagrams which span the fifth dimensi

If supersymmetry is spontaneously broken, the vacu
energy can be nonzero. In general, the vacuum energy
contain a term, called the Casimir energy@6#, which depends
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on the separation of the two boundaries. In the eventual
plication to supergravity, this dependence is needed to fix
size of the compact geometry. Though the case of
dimensional Yang-Mills theory is simpler than that of supe
gravity in several respects, it is still interesting to compu
the Casimir energy for this case. In Sec. V, we evaluate
energy for the models of the communication
supersymmetry-breaking studied in Sec. IV and note
similarities of the two computations.

In Secs. III through V, we will be carrying out weak
coupling perturbation theory computations in the nonren
malizable 5-dimensional Yang-Mills theory. Our attitude t
ward this nonrenormalizability is a pragmatic one; we will
pleased if quantities of physical interest turn out to
ultraviolet-finite at the leading order of perturbation theo
That will be true in our explicit calculations of the scal
mass term and the Casimir energy. Presumably, the hig
order corrections to these computations are cutoff-depen
and are regulated by the underlying string theory. In t
paper, we will not be concerned with effects beyond t
leading nontrivial order.

Finally, in Sec. VI, we will discuss the relation of ou
formalism to Horˇava’s analysis and give an explanation
the coupling shown in Eq.~1!.

Our approach to the Horˇava-Witten theory complement
the many attempts to understand the structure of this the
by direct analysis of the 11-dimensional Lagrangian. Gene
properties of the strong-coupling limit of the heterotic stri
theory have been discussed in@7–9#. More explicit studies of
the compactification of the Horˇava-Witten theory have bee
discussed recently by several groups. Some of these ana
@10–14# have emphasized the connection to the venera
mechanism of supersymmetry breaking in string theory
E8 gaugino condensation@15#, while others@16,17# have re-
lied on the Scherk-Schwarz mechanism@18# in the bulk to
provide a new source of supersymmetry breaking. Brax
Turok @19# have contributed an observation on the possibi
of large hierarchies in the 5-dimensional geometry, if all
the relevant 5-dimensional fields can be made massive.
hope that the methods of analysis that we introduce h
when generalized to supergravity, will clarify the many po
sible sources of supersymmetry breaking which may cont
ute in the Horˇava-Witten approach to unification.

II. BULK AND BOUNDARY SUPERMULTIPLETS

In this section, we will set up the formalism for couplin
5-dimensional super-Yang-Mills theory to an orientifo
boundary. The 5-dimensional Yang-Mills multiplet contai
a vector fieldAM, a real scalar fieldF, a gauginol i .

In this paper, capitalized indicesM ,N run over 0,1,2,3,5,
lower-case indicesm run over 0,1,2,3, andi ,a are internal
SU~2! spinor and vector indices, withi 51,2, a51,2,3. We
use a timelike metrichMN5diag(1,21,21,21,21) and
take the following basis for the Dirac matrices:

gM5XS 0 sm

s̄m 0 D ,S 2 i 0

0 i D C, ~3!
2-2
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TRANSMISSION OF SUPERSYMMETRY BREAKING FROM . . . PHYSICAL REVIEW D 58 065002
wheresm5(1,sW ), s̄m5(1,2sW ). Though it is conventiona
in the literature to use raised and lowered spinor indices,
find it less confusing to write out explicitly the 232 and 434
charge conjugation matrices

c52 is2, C5S c 0

0 cD . ~4!

In 5-dimensional supersymmetry, it is convenient to
write 4-component Dirac spinors as symplectic-Majora
spinors, Dirac fermions which carry an SU~2! spinor index
and satisfy the constraints

c i5ci j Cc̄ jT. ~5!

A symplectic-Majorana spinor can be decomposed into
dimensional chiral spinors according to

c i5S fL
i

fR
i D ~6!

wherefL,R
i are two-component spinors connected by

fL
i 5ci j cfR

j* , fR
i 5ci j cfL

j* . ~7!

Symplectic-Majorana spinorsc i ,x i satisfy the identity

c̄ igM
¯gPx j52cikcjl x̄ lgP

¯gMck, ~8!

including the minus sign from fermion interchange.
In this notation, the 5-dimensional Yang-Mills multiplet

extended to an off-shell multiplet by adding an SU~2! triplet
Xa of real-vauled auxiliary fields@26#. Write the members of
the multiplet as matrices in the adjoint representation of
gauge group:AM5AMAtA, etc. The supersymmetry transfo
mation laws are

djA
M5 i j̄ igMl i

djF5 i j̄ il i

djl
i5~sMNFMN2gMDMF!j i2 i ~Xasa! i j j j

djX
a5 j̄ i~sa! i j gMDMl j2 i @F,j̄ i~sa! i j l j #, ~9!

where the symplectic-Majorana spinorj i is the supersymme
try parameter,DMF[]MF2 i @AM ,F# ~and similarly for
DMl), andsMN[ 1

4 @gM,gN#.
Now we would like to project this structure down to

4-dimensionalN51 supersymmetry transformation actin
on fields on the orientifold wall. In a field theory descriptio
an orientifold atx550 is described by imposing the boun
ary condition on bulk fieldsa(x,x5)

a~xm,x5!5Pa~xm,2x5! ~10!

where P is an intrinsic parity equal to61. The quantum
numberP must be assigned to fields in such a way tha
leaves the bulk Lagrangian invariant. Then fields ofP5
21 vanish on the walls but have nonvanishing derivativ
06500
e

-
a

-

e

t

s

]5a. Note that, sinceA5 vanishes on the boundary,]55D5
on the boundary and]5a is gauge-covariant.

Let jL
1 be the supersymmetry parameter of theN51 su-

persymmetry transformation on the wall. Then theP assign-
ments of the fields in the bulk supermultiplet are determin
as follows:

P511 P521

j jL
1 jL

2

AM Am A5

F - F ~11!
l i lL

1 lL
2

Xa X3 X1,2

On the wall atx550, the supersymmetry transformation~9!
reduces to the following transformation of the even-par
states generated byjL

1 :

djA
m5 i jL

1†s̄mlL
12 ilL

1†s̄mjL
1

djlL
15smnFmnjL

12 i ~X32]5F!jL
1

djX
35jL

1†s̄mDmlL
12 i jL

1†c]5lL
2* 1H.c.

dj]5F52 i jL
1Tc]5lL

22 i jL
1†c]5lL

2* .
~12!

The last two equations imply

dj~X32]5F!5jL
1†s̄mDmlL

11H.c. ~13!

These are just the transformation laws for anN51 4-
dimensional vector multiplet@27#, with Am, lL

1 , and
(X32]5F) transforming as the vector, gaugino, and aux
iary D fields.

The appearance of the quantity]5F in the auxiliary field
should not be a surprise. It is the expectation value of t
quantity that breaks supersymmetry in Scherk-Schw
mechanism@18#. Thus,]5F should appear in the order pa
rameter of supersymmetry breaking.

Now it is obvious how to couple the 5-dimensional gau
multiplet to 4-dimensional chiral multiplets on the bounda
We write the Lagrangian as

S5E d5xHL51(
i

d~x52xi
5!L4i J , ~14!

where the sum includes the walls atxi
550,l . The bulk La-

grangian should be the standard one for a 5-dimensio
super-Yang-Mills multiplet,

L55
1

g2 S 2
1

2
tr~FMN!21tr~DMF!2

1tr~ l̄ igMDMl!1tr~Xa!22tr~ l̄@F,l#! D , ~15!

with tr@ tAtB#5dAB/2. The bulk fields should be constraine
to satisfy the boundary conditions~10! at the walls. Since the
2-3
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EUGENE A. MIRABELLI AND MICHAEL E. PESKIN PHYSICAL REVIEW D 58 065002
supersymmetry generated byjL
1 relates fields with the sam

boundary conditions, thisN51 supersymmetry is an invari
ance of Eq.~15! under the constraint.

The boundary Lagrangian should have the standard f
of a four-dimensional chiral model built from supermulti
lets (f,cL ,F). Here and in the rest of the paper, it is impo
tant to distinguish boundary chiral scalar fields, which
will label by f, from the bulk scalar fieldF. The explicit
form of this boundary Lagrangian is

L45Dmf†Dmf1cL
†i s̄mDmcL1F†F

2& i ~f†lL
TccL1c†clL* f!1f†Df, ~16!

with Dm5(]m2 iAm), and with the gauge fields (Am ,lL ,D)
replaced by the boundary values of the bulk fie
(Am ,lL

1 ,X32]5F). The boundary LagrangianL4 is invari-
ant by itself under anN51 supersymmetry transformation o
the boundary fields and the supersymmetry transforma
~12! of the bulk fields. Thus, the complete action~14! is N
51 supersymmetric.

In principle, we could add to Eq.~14! additional terms
involving a four-dimensional integral of the boundary valu
of the vector fields, or terms coupling the chiral fields
higher ]5 derivatives of the vector fields at the bounda
These terms would correspond to contributions that are m
singular at the boundary that the ones we have conside
For our present purposes, we only point out that these te
are not necessary for supersymmetry, and we neglect t
from here on. We will show in explicit calculations that th
terms we have written suffice to give amplitudes which co
verge to the correct 4-dimensional limits asl→0.

With the action~14!, the boundary scalar fieldf at x5

50 couples to the auxiliary fieldX3 through the terms

E d5xH 1

g2 tr~X3!21d~x5!f†~X32]5F!fJ . ~17!

The fieldF is a dynamical field in the interior, butX3 is an
auxiliary field and may be integrated out. This gives
boundary Lagrangian of the form

E d4xH 2f†~]5F!f2
1

2
~f†tAf!2d~0!J . ~18!

Thus, our formalism does contain singular terms prop
tional to d~0! on the boundary, which arise naturally fro
integrating out the auxiliary fields. In principle, the comple
description of the orientifold wall in string theory could co
tain additional couplings involving higher derivatives]5 of
the bulk fields and representing a finite thickness and a sh
of the wall. However, the Lagrangian we have written, w
the d~0! but no additional singular terms, is a complete
self-consistent supersymmetric system.

III. BULK AND BOUNDARY PERTURBATION THEORY

In the previous section, we have found that singular ter
proportional tod~0! on the boundary arise naturally whe
bulk and boundary fields are coupled supersymmetrica
06500
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What is still unclear is whether these terms can lead to s
sible results when one performs computations in this theo
or whether these terms signal the breakdown of a pu
field-theoretic description. We believe that these singu
terms do make sense at the field theory level. Their role i
provide counterterms which are necessary in explicit cal
lations to maintain supersymmetry. In this section, we w
illustrate this conclusion with some explicit calculations
perturbation theory.

As a first, simplest, example, consider the scattering a
plitude for scalars on a wall. The Feynman diagrams cont
uting to the processfa1fb→fc1fd are shown in Fig. 1.
The propagator of a free massless bulk field is

^a~x,x5!a~y,y5!&5E
k5

i

k22~k5!2 e2 ik•~x2y!~eik5~x52y5!

1Peik5~x51y5!!, ~19!

where

E
k5

5E d4k

~2p!4

1

2l (
k5

, ~20!

with k5 summed over the valuespm/ l , m5 integer. Here
and in the rest of our discussion,k represents a the 4
dimensional momentum components ofkM.

The sum of diagrams in Fig. 1 is given by

iM~fa1fb→fc1fd!

52 ig2tca
A tdb

A S 1

2l (
k5

~k5!2

~pc2pa!22~k5!2 1d~0!

2
1

2l (
k5

~pc1pa!•~pd1pb!

~pc2pa!22~k5!2 D 1~c↔d!. ~21!

If we represent

d~0!5
1

2l (
k5

15
1

2l (
k5

k22~k5!2

k22~k5!2 , ~22!

the first two terms have a neat cancellation and we find
finite result

FIG. 1. Feynman diagrams contributing to the scattering proc
ff→ff.
2-4
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iM~fa1fb→fc1fd!

52 ig2tca
A tdb

A S 1

2l (
k5

~pc2pa!22~pc1pa!•~pd1pb!

~pc2pa!22~k5!2 D
1~c↔d!

52 ig2tca
A tdb

A S 1

2l (
k5

22u

t2~k5!2D 1~c↔d!. ~23!

If l→0 with the dimensionless couplingg2/ l fixed, the terms
with k5Þ0 become negligible. Then we recover the sca
particle scattering amplitude of a 4-dimensionalN51 super-
symmetric gauge theory.

As a second example, consider the self-energy of the
lar f, computed at the one-loop level. By supersymme
the f cannot obtain a mass in perturbation theory, but i
interesting to see explicitly how the cancellation occurs. T
Feynman diagrams for thef self-energy are shown in Fig. 2
The first four diagrams all involve one field that propaga
in four dimensions and one field that propagates in the fi
dimension. Thus, ifp is the external 4-momentum, all o
these diagrams will have the structure

2 iM 2~p2!5g2tAtAE
k5

1

k22~k5!2

1

~p2k!2 N~k,k5,p!,

~24!

whereN is a polynomial in momenta. Using the represen
tion ~22!, we can bring the last diagram into this form
well. Then the five diagrams give contributions

N52~2p2k!214~p2k!224k•~k2p!

1~k5!21„k22~k5!2
…

50. ~25!

Here thed~0! term enters quite explicitly as a counterter

FIG. 2. Feynman diagrams contributing to thef self-energy at
one-loop order.
r

a-
,
s
e

s
h

-

which cancels the singular behavior of theF exchange dia-
gram and thus allows the complete cancellation required
supersymmetry.

To prepare for the next section, it will be useful to illu
trate one more cancellation required by supersymme
Consider the renormalization of the mass of a scalarf on
one wall due to loop diagrams involving the supermultip
on the other wall. This mass shift is given by the sum of t
two-loop diagrams shown in Fig. 3. In our discussion
these diagrams, we will assign the chiral fieldsf at x550 to
the representationR of the gauge group, and we will assig
the fieldsf8 at x55 l to the representationR8.

The diagrams of Fig. 3 form a gauge-invariant set. W
might characterize them as the diagrams of orderg4N, where
N is the number of matter multiplets on the second wa
Thus, by supersymmetry, their sum must vanish.

It is not difficult to see this explicitly. Since we are inte
ested in the shift of thef mass term, we can set the extern
momentum equal to zero. Then letq be the loop momentum

of the matter loop on the wall atx55 l , Let (k,k5) and (k,k̂5)
be the momenta carried by the two propagators of the ga
multiplet that connect the two walls. These momenta
quantized, with

k55pn/ l , k̂55pn̂/ l , ~26!

but the integersn and n̂ are summed over independentl
sincek5 is not conserved in the interaction of bulk fields wi
the walls. Then all of the diagrams shown in Fig. 3 can
written in the form

FIG. 3. Feynman diagrams contributing to the mass shift o
scalarf on one wall due to loop effects of the supermultiplet on t
other wall.
2 iM 25 ig4C2~R!C~R8!E
q
E

k55

N~k,k5,k̂5,q!

~k2!„k22~k5!2
…„k22~ k̂5!2

…~q2!„~q2k!2
…

, ~27!

065002-5
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where N is a polynomial in momenta,C(R8)dAB

5trR8@ tAtB# is the sum over the gauge quantum numbers
the multiplet atx55 l , the integral overq is a simple 4-
dimensional momentum integral, and

E
k55

5E d4k

~2p!4

1

2l (
n

1

2l (
n̂

43~21!n1n̂. ~28!

This expression includes thek5-dependence of the propag
tors, obtained by evaluating Eq.~19! at x550, y55 l .

To see that the diagrams of this set must cancel, i
easiest to compare this calculation to the corresponding t
loop mass renormalization in four dimensions. The diagra
on the first two lines of Fig. 3 contain, from the five
dimensional gauge multiplet, only the propagators of
fields Am and lL

1 which appear in a 4-dimensional gaug
multiplet. Thus, their contributions to the numerator polyn
mial N are exactly those of the corresponding diagrams i
dimensions. To treat the last three diagrams, we note
identity

05
1

2l (
k5

~21!n5
1

2l (
k5

~21!n
k22~k5!2

k22~k5!2 , ~29!

since the second term is a representation ofd(x5) evaluated
at x55 l . EachF propagator comes with a factor (k5)2, due
to the couplings~18! at each wall. The identity~29! allows
us to replace this (k5)2 by k2. Then each diagram gives th
same contribution to the numerator as the correspondin
dimensional diagram with theF replaced by aD-term inter-
action. Thus, the numerator polynomialN turns out to be
exactly the one that appears in the 4-dimensional calculat

At this point, we know that the integral~27! must vanish.
It is not difficult to evaluate the various contributions to t
numerator and to see that they cancel. In the Appendix,
give a formula for the numerator factorN from which this
can be verified explicitly.

IV. WALL TO WALL SUPERSYMMETRY BREAKING

We have now described and tested an explicit form for
coupling of 4-dimensional supermultiplets on the bound
to gauge supermultiplets in the bulk. Now we can use t
formalism to see how supersymmetry breaking on one w
is communicated to the other wall to provide so
supersymmetry-breaking terms. In this section, we will g
two examples of such communication, one through a dir
tree-level coupling and the other induced by loop effects

The simplest example of the communication of supersy
metry breaking is obtained in a theory in which the wall
x55 l contains no boundary matter fields. We choose
gauge group to be U~1! and write a Fayet-IliopoulosD term
on this boundary. With the identification of theD term given
in Sec. II, the following boundary action preservesN51
supersymmetry:

L45k~X32]5F!. ~30!
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Integrating out the auxiliary fieldX3 leads to ad~0! term
which is an irrelevant constant. The dynamicalF field is
affected by this term, in a manner that we can compute fr
the action

S5E d5xH 1

2g2 ~]MF!22k]5Fd~x52 l !J . ~31!

Varying this action with respect toF, we find that the Fayet-
Iliopoulos term induces a background expectation value oF
which depends only onx5 and satisfies the equation

1

g2 ]5
2^F&1k]5d~x52 l !50. ~32!

In solving this equation, we should remember that the geo
etry with mirror planes arose from a identification of poin
in a compactification ofx5 on a circle. Thus,̂F(x5)& must
be a periodic function ofx5 with period 2l and so]5F must
integrate to zero around the circle. This boundary condit
requires that we choose as the solution to Eq.~32!

]5^F&52g2kS d~x52 l !2
1

2l D . ~33!

Inserting this result into theD-term coupling on the wall at
x550, given by Eq.~17!, we find a scalar mass term give
by

Mf
2 5g2Q

k

2l
, ~34!

whereQ is the U~1! charge of the scalar field, with no cor
responding mass term induced for the fermions on the w
If the dynamics on the wall atx55 l gives aD-term of fixed
magnitude there, theF field transfers this across the fift
dimension to create a soft scalar mass term on the wa
x550.

One subtlety of the Fayet-Iliopoulos mechanism of sup
symmetry breaking is that the symmetry breakingD term
can sometimes be compensated by shifting the vacuum
pectations value of a scalar field. We can see a similar p
sibility here. Generalize the previous model to include s
eral chiral multipletsf i on the wall atx550, and additional
chiral multipletsf j on the wall atx55 l . ~As always, it is
important to distinguish between the boundary scalar fieldf
and the bulk fieldF.! Assign these multiplets the charge
Qi , Qj under the U~1! symmetry. In the most general situa
tion, all of the scalar fields might acquire vacuum expec
tion values. Then the Lagrangian forF will take the form
2-6
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S5E d5xH 1

2g2 „~X3!21~]MF!2
…

1S (
i

Qif i
†f i D ~X32]5F!d~x5!

1S k1(
j

Qjf j
†f j D ~X32]5F!d~x52 l !J . ~35!

For simplicity, we assume that thef i andf j are represented
only by vacuum expectation values that are independen
position on the walls. Then varying the action~35! with re-
spect toF gives an equation analogous to Eq.~32! whose
solution is

]5^F&52g2F S (
i

Qif i
†f i D S d~x5!2

1

2l D
1S k1(

j
Qjf j

†f j D S d~x52 l !2
1

2l D G . ~36!

This result reduces to Eq.~33! when we turn off the expec
tation values of thef i andf j . If we insert this expression
into Eq. ~35!, and also integrate out the auxiliary fieldX3,
the variousd~0! terms cancel, leaving behind

S5E d5xH 2
g2

4l S k1(
i

Qif i
†f i1(

j
Qjf j

†f j D 2J .

~37!

To minimize the vacuum energy, we must set the vario
vacuum expectation values to the supersymmetric condi

k1(
i

Qif i
†f i1(

j
Qjf j

†f j50, ~38!

if this is possible.
If the supersymmetric theory on the wall atx55 l breaks

supersymmetry spontaneously without inducing aD term, it
is necessary to go to a higher order in perturbation theor
find the supersymmetry-breaking communication. If sup
symmetry breaking causes a mass splitting among chira
permultiplets on the wall atx55 l , and these multiplets
couple to the gauge field in the bulk, then the diagra
shown in Fig. 3 induce a supersymmetry-breaking mass
scalars on the wall atx550. Since, in the scheme we a
studying, the particle number of a chiral multiplet atx550 is
conserved, this is the only soft supersymmetry-breaking t
that can be generated.

The generation of the scalar mass term in this exampl
very similar to that in ‘‘gauge-mediated’’ 4-dimension
models of supersymmetry breaking@20#. The same set o
diagrams appears, with only the difference that our ga
fields live in 5 dimensions.

To illustrate the computation of these diagrams, we stu
the simplest multiplet which appears in models of gau
mediation. We introduce on the wall atx55 l two chiral su-
perfields (f8,f̄8) which transform under the gauge group
06500
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s
n

to
r-
u-

s
or

m

is

e

y
-

a vectorlike representation (R81R̄8). ~Recall that we are
using R to denote representation of the chiral fieldsf at l
50.) We give this multiplet a supersymmetric massm and
induce an additional mass term for the scalar fields from
vacuum expectation value of anF-term. Then the fermions
have a Dirac massm, while the bosons have a (mass)2 ma-
trix

M2S f8

f̄* 8
D 5S m2 m2x

m2x m2 D S f8

f̄* 8
D . ~39!

The eigenvectors of this matrix are speciesf18 , f28 in the
representationR8. Thus, we find the mass spectrum on t
wall at x55 l ,

m2~f18 !5m1
2 , m2~f28 !5m2

2 , m2~c8!5m2, ~40!

with m6
2 5m2(16x). This spectrum satisfies str@M2#50.

Our calculation will follow closely the discussion of gaug
mediated scalar masses in this model given by Martin@21#. It
is straightforward to generalize our calculation to models
supersymmetry breaking with nonvanishing supertra
However, in that case, the scalar masses induced by ga
mediation are cutoff-dependent even in 4 dimensions@22#.
Similar divergences appear also in the 5-dimensional ca

To compute the scalar mass, we repeat the calculatio
the diagrams in Fig. 3, now assigning to the particles in
loop the mass spectrum described in the previous paragr
As in the previous section, the identity~29! can be used to
replace (k5)2 by k2 in the numerator of the diagrams withF
exchange. Then the result reduces to a sum of two-loop
lar integrals, just as in the 4-dimensional case.

To write the result precisely, define@23#

~m1m2um3um4!5E ddk

~2p!d E ddq

~2p!d

1

k21m1
2

1

k21m2
2

3
1

q21m3
2

1

~q2k!21m4
2 ~41!

to be the Euclidean~Wick-rotated! scalar two-loop integral
with four propagators, and denote Euclidean scalar integ
with additional or fewer propagators by brackets with mo
or fewer labelsmi . In our calculation,k5 is summed over the
valuespn/ l ; denote the sum in Eq.~28! as

@A#5
1

2l (
n

1

2l (
n̂

43~21!n1n̂A~k5,k̂5!. ~42!

The basic scalar integral shown in Fig. 4 is then written

@~k5k̂5um1um2!#. ~43!

Finally, though a term withk2 in the numerator can be re
duced to scalar integrals, it is more convenient to retain
factor under the integral in Eq.~41!. By abuse of notation,
we will write a term with k2 in the numerator as, for ex
ample,@k2(k5k̂5um2um3)#.
2-7
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EUGENE A. MIRABELLI AND MICHAEL E. PESKIN PHYSICAL REVIEW D 58 065002
Using the notation, the scalar mass due to the diagram
Fig. 3 is

mf
2 52g4C2~R!C~R8!@k2R14S#, ~44!

where

R5~k5k̂5um1um1!1~k5k̂5um2um2!12~k5k̂5um1um2!

14~k5k̂5umum!24~k5k̂5um1um!24~k5k̂5um2um!

S5m1
2 $~k5k̂5um1um1!2~k5k̂5um1um!%

2m2$~k5k̂5umum!2~k5k̂5um1um!%

1m2
2 $~k5k̂5um2um2!2~k5k̂5um2um!%

2m2$~k5k̂5umum!2~k5k̂5um2um!%. ~45!

This expression is full of cancellations which reflect the fa
that the answer vanishes when the mass spectrum is s
symmetric. To evaluate this answer more explicitly, we m
perform the sums overk5 and k̂5 and then carry out the two
four-dimensional integrals.

The sums can be performed conveniently using a stan
trick from finite temperature field theory. Write a conto
integral representation

1

2l (
n

2~21!n
1

k21~k5!25 R dk5

2p

2eik5l

e2ik5l21

1

k21~k5!2 ,

~46!

where the contour encloses the poles of the integrand ak5

5pn/ l . Draw the contour as a line from left to right jus
below the real axis and another line from right to left ju
above this axis. Push the first line down and pick up the p
at k552 ik; push the second line up and pick up the pole
k55 ik. We find two identical contributions which sum to

1

k

1

sinh kl
. ~47!

This manipulation can be performed separately on each
the propagators joining the two walls.

FIG. 4. The basic integral which appears in the two-loop c
tribution to the scalar field mass.
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At the same time, the scalar integrals over the momen
q can be evaluated explicitly. Define the functio
b(k2,m1

2 ,m2
2) by

E ddq

~2p!d

1

q21m1
2

1

~q2k!21m2
2

5
1

~4p!d H 2

e
2g2b~k2,m1

2 ,m2
2!1O~e!J ~48!

for d542e. When we evaluate the loop integrals on t
wall in Eq. ~45!, the divergent terms cancel and we are l
with differences of these scalar functions,

R→R~k2!5b~k2,m1
2 ,m1

2 !1b~k2,m2
2 ,m2

2 !

12b~k2,m1
2 ,m2

2 !14b~k2,m2,m2!24b~k2,m1
2 ,m2!

24b~k2,m2
2 ,m2!

S→S~k2!5m1
2 $b~k2,m1

2 ,m1
2 !2b~k2,m1

2 ,m2!%

2m2$b~k2,m2,m2!2b~k2,m1
2 ,m2!%

1m2
2 $b~k2,m2

2 ,m2
2 !2b~k2,m2

2 ,m2!%

2m2$b~k2,m2,m2!2b~k2,m2
2 ,m2!%. ~49!

If we then define

P~k2!5k2R~k2!14S~k2!, ~50!

then the combination of these two tricks brings Eq.~44! into
the form of an integral overk. Since this integral is spheri
cally symmetric, we can replaced4k52p2dkk3 and write
Eq. ~44! as

mf
2 52S g2

~4p!2D 2

C2~R!C~R8!

3E
0

`

dkk
1

sinh2kl
P~k2!. ~51!

The functionP(k2) is elementary, and it is not difficult to
work out its asymptotic behavior for large and for smallk2.
We present these formulas in the Appendix. It is relevant t
P(k2);k2 ask2→0, so thatP(k2) is a field-strength renor-
malization@24# ~as the notation is meant to suggest!. As k2

→`, P(k2); log(k2/m2)/k2. With this information, one can
work out the asymptotic behaviors ofmf

2 .
For small l , we might expect to go back the the 4

dimensional situation. Formally, takingl→0 in Eq. ~47!
turns this expression into

2

2l

1

k2 , ~52!

which is thek550 term in the sum~46!. Using the explicit
asymptotic behavior ofP(k2), we can see that the integra
~51! remains well-defined in this limit. Thus, the manipul

-
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TRANSMISSION OF SUPERSYMMETRY BREAKING FROM . . . PHYSICAL REVIEW D 58 065002
tion is permitted and the result formf
2 becomes just the 4

dimensional gauge-mediation result with the replacemen

S g2

~4p!2D 2

→S g2

~4p!2D 2 1

l 2 . ~53!

We will write out this result explicitly below. Note thatg2/ l
is the effective 4-dimensional gauge coupling obtained
simple dimensional reduction.

Another way to derive this result is to show that, forl

→0, all terms in the sum overk5 and k̂5 are explicitly sup-
pressed by the factorl 2 except for the term withk55 k̂5

50. Again, the asymptotic behaviorP(k2);1/k2 is neces-
sary to complete this argument.

For largel , the hyperbolic sine in the denomination of E
~51! cuts off the integrand at very smallk. Thus, we can find
the asymptotic behavior by replacingP(k2) by its leading
term for smallk2, which is proportional tok2. This gives a
result proportional to

S g2

~4p!2D 2 1

l 4 . ~54!

Working out all of the details~with the help of some
formulas from the Appendix!, we find, asml→0, the 4-
dimensional form@21,25#

mf
2 52C2~R!C~R8!S g2

~4p!2D 2 m2

l 2

3H 2~11x!F log~11x!22Li2S x

11xD
1

1

2
Li2S 2x

11xD G1~x↔2x!J , ~55!

where Li2(x) is the dilogarithm, and, asml→`,

mf
2 52C2~R!C~R8!S g2

~4p!2D 2 1

l 4 z~3!

3H 3

2 F41x22x2

x2 log~11x!2
42x

x G
1~x↔2x!J . ~56!

In both of these expressions, the quantity in brackets tend
x2 as x→0. We see that the induced soft supersymme
breaking mass term crosses over from the 4-dimensiona
havior to a smaller functional form asl becomes larger than
1/m. In Fig. 5, we graph the form of the mass term as
function of l for the illustrative valuex50.3.

There is another way to understand the behavior of
scalar mass term forml large. If m is large, we can conside
the inner loop in Fig. 4 to contract to a point. More precise
because the functionP(k2) is proportional tok2 when k is
small, this loop gives the pointlike operator (2¹2) acting on
the two propagators which run from one wall to the oth
06500
y

to
y
e-

a

e

,

.

The remaining one-loop integral may be evaluated in Euc
ean coordinate space. There is one small subtlety to n
The representation of Eq.~19! in Euclidean coordinate spac
is

^a~x,x5!a~y,y5!&

5
1

8p2 (
m

S 1

@~x2y!21~x52y512ml!2#3/2

1P
1

@~x2y!21~x51y512ml!2#3/2D , ~57!

with m summed over all integers. When this expression
evaluated with one end atx55 l and the other aty550, we
find ~for P511)

^a~x,l !a~0,0!&5
1

8p2 (
m

2

@x21~2m11!2l 2#3/2. ~58!

Then the evaluation ofmf
2 involves the expression

I 5(
m,m̂

E d4x
2

8p2@x21~2m11!2l 2#3/2

3~2¹2!
2

8p2@x21~2m̂11!2l 2#3/2
, ~59!

containing two propagators which run from a point 0 on t
wall at x550 to a pointx on the wall atx55 l . By combining
the two denominators with a Feynman parameter, it is
difficult to do the integral explicitly and then sum overm and
m̂. The result is

I 5
3

16p2 z~3!
1

l 4 . ~60!

Multiplying this by the coefficient ofk2 in P(k2), we find
again the result~56!. This presentation explains the physic
origin of the 1/l 4 behavior of the diagrams.

FIG. 5. Behavior of the induced supersymmetry breaking m
for scalars atx550 as a function ofl . We plot mf

2 in units of
2C2(R)C(R8)@g2/(4p)2)2)•(m2/ l 2)].
2-9
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V. CASIMIR ENERGY

At the same time that supersymmetry breaking on
wall at x55 l induces soft supersymmetry-breaking terms
other parts of the theory, it also creates a nonzero vacu
energy. We are particularly interested in the part of this
ergy which depends onl—the Casimir energy@6#—since
this term will eventually form a part of the balance whic
determines the physical value ofl . In this section, we will
compute the Casimir energy due to the two mechanism
supersymmetry breaking discussed in the previous sec
We find it interesting that these calculations run almost
parallel to the calculations of the induced scalar mass te

Consider first the case of a Fayet-IliopoulosD-term on
the boundary atx55 l . The coupling of this term to the bulk
fields is described by the Lagrangian~31!, plus a term pro-
portional tod~0! resulting from integrating outX3. Since Eq.
~31! is quadratic inF, we can integrate this field out explic
itly. Using the propagator~33!, the coupling ofF to the
boundary leads to

Se f f5E d5xd~x52 l !•
1

2
kS 2

g2k

2l D , ~61!

plus an l -independent term proportional tod~0!. Thus, we
find for the Casimir energy per 4-dimensional volume,

EC /V451
g2k2

4l
. ~62!

If there areD-terms on both boundaries, or if the fieldsf i
on the two boundaries obtain expectation values as in
~35!, the sum of the twoD terms appears in place ofk in Eq.
~62!. If the two D terms are equal and opposite, the Casim
energy vanishes. Also, as we observed already in Eq.~37!,
the d~0! terms from integrating outX3 andF precisely can-
cel. Thus, in this case, the vacuum energy remains jus
zero, as expected from the supersymmetry of the situatio

In the case in which the spectrum atx55 l violates super-
symmetry but there is no inducedD term, the Casimir energy
must be generated by radiative corrections. The leading c
tribution comes from the diagrams shown in Fig. 6. The
diagrams involve a closed loop on the boundary atx55 l and
a propagator from the 5-dimensional Yang-Mills theo
which winds around the compactified direction.

Though perhaps it is not completely obvious from t
beginning, the structure of the diagrams in Fig. 6 is ve
similar to that of the diagrams in Fig. 3. As in the previo
section, we will describe the calculation for the ca
str@M2#50.

FIG. 6. Feynman diagrams contributing to the Casimir ene
due to loop effects of the supermultiplet on the wall atx55 l .
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In the diagrams of Fig. 6, we have only one sum overk5.
Thus, define for this section

@B#5
1

2l (
n
B~k5!. ~63!

Then the Casimir energy resulting from this set of diagra
can be written in terms of Euclidean scalar two-loop in
grals as

EC /V45
1

2
g2dGC~R8!@k2RC14SC#, ~64!

wheredGC(R8)5trR8@ tAtA#, and

RC5~k5um1um1!1~k5um2um2!12~k5um1um2!

14~k5umum!24~k5um1um!24~k5um2um!

SC5m1
2 $~k5um1um1!2~k5um1um!%2m2$~k5umum!

2~k5um1um!%m2
2 $~k5um2um2!2~k5um2um!%

2m2$~k5umum!2~k5um2um!%. ~65!

The inner loop of each of these two-loop integrals can
evaluated explicitly, giving the same functionsR(k2),
S(k2), P(k2) that we saw earlier in Eqs.~49! and ~50!.

Again we can simplify the sum overk5 using the contour
trick from finite temperature field theory. Write

1

2l (
n

1

k21~k5!25 R dk5

2p

1

e2ik5l21

1

k21~k5!2 , ~66!

where the contour encloses the poles of the integrand ak5

5pn/ l . Draw the contour as a line from left to right jus
below the real axis and another line from right to left ju
above this axis. Push the first line down and pick up the p
at k552 ik. For the contour integral on the line above th
axis, replace

1

e2ik5l21
5212

1

e22ik5l21
. ~67!

In the second term, push the contour up and pick up the p
at k55 ik. These manipulations convert Eq.~66! to the form

1

k

1

e2kl21
1E

2`

` dk5

~2p!
. ~68!

The second term in Eq.~68! is independent ofl ; it represents
the contribution to the vacuum energy of the 4-dimensio
wall in an infinite 5-dimensional volume. Equivalently, from
the point of view of propagators in coordinate space, t
term is the contribution of the propagators that go from

y

2-10
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TRANSMISSION OF SUPERSYMMETRY BREAKING FROM . . . PHYSICAL REVIEW D 58 065002
wall back to the wall without winding aroundx5. In any
event, this term does not contribute to the Casimir ene
and we may drop it.

After these manipulations, the Casimir energy~64! takes
the form

EC /V452
1

2 S g2

~4p!4DdGC~R8!

3E
0

`

dkk2
1

e2kl21
P~k2!, ~69!

whereP(k2) is the same field strength renormalization fun
tion that appeared in Eq.~51!.

As in the previous section, we can analyze the two-lo
integral in the limits of small and largel . Consider first the
limit l→0. If we formally take the limit of smalll in Eq.
~69!, we obtain a divergent integral

EC /V4;2E
0

`

dk
k

l

1

k2 log k2. ~70!

Thus, unlike the case ofmf
2 , the contributions to the Casimi

energy are dominated by large values ofk2. The estimate

E
0

`

dkk2
1

e2kl21

1

k2 log k2;
1

2l
log2

1

ml
~71!

and the asymptotic formula forP(k2) given in the Appendix
gives a precise formula for the smalll behavior:

EC /V452
1

2 S g2

~4p!4DdGC~R8!

3
4m4x2

l
log2

1

ml
. ~72!

For largel , the analysis can be done along the same line
those we used formf

2 . The denominator of Eq.~69! cuts off
the integrand for smallk2. Thus, we can replaceP(k) by its
leading term ask2→0. With this approximation, the integra
is easily evaluated, and we obtain

EC /V452
1

2 S g2

~4p!4DdGC~R8!z~5!
1

l 5

3H 3

2 F41x22x2

x2 log~11x!2
42x

x G
1~x↔2x!J . ~73!

Comparing Eqs.~72! and ~73!, we see the same crossov
that we found previously from Eqs.~55! to ~56!. In Fig. 7,
we graph the form of the Casimir energy as a function ol
for the illustrative valuex50.3.

As in the previous section, the behavior of the Casim
energy for largel is studied most easily in Euclidean coo
dinate space. Ifl or m is large, the inner loop of each two
06500
y,

-

p

as

r

loop diagram can be contracted to a local operator prop
tional to (2¹2). Then the Casimir energy is proportional
an expression in which this operator acts on a propag
which runs around the compact direction. More specifica
the Casimir energy is proportional to

J5(
m

~2¹2!
1

8p2
„x21~ml!2

…

3/2U
x50

, ~74!

where the sum overm runs over all integers exceptm50.
This expression evaluates to

J5
3

32p2 z~5!
1

l 5 . ~75!

Multiplying this by the coefficient ofk2 in P(k2), we return
to the result~73!.

Both of the individual contributions to the Casimir energ
that we found in this section are monotonic inl . We find it
interesting, though, that these two contributions have op
site signs. Thus, it is possible that, in a realistic theory,
could find balancing contributions to the Casimir energy t
stabilize the value ofl at a nonzero value.

VI. HOŘ AVA’S SUPERSYMMETRY-BREAKING
STRUCTURE

Now that we have analyzed mechanisms for supersym
try breaking in our toy model, it is interesting to ask wheth
this sheds light on the mechanism of supersymmetry bre
ing in string theory proposed by Horˇava@4#. We can see the
connection by making a dimensional reduction of Horˇava’s
system from 11 to 5 dimensions, taking the compact 6
mensions to be a Calabi-Yau manifold. Under this reducti
the boundary gaugino condensate becomes a 4-dimens
scalar gaugino bilinear on the boundary. The relevant co
ponents of the 3-form gauge field in the bulk are those t
multiply the the~3,0! or ~0,3! forms of the Calabi-Yau space

CABC~x,x5,y!5c~x,x5!VABC~y!1¯ . ~76!

These components form two complex 5-dimensional fie
which belong to a hypermultiplet in the bulk. Thus, we c
try to recover Horˇava’s coupling of the bulk and boundar

FIG. 7. Behavior of the Casimir energy as a function ofl . We
plot (EC /V4) in units of 1

2 dGC(R8)@g2/(4p)4].
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fields by considering the coupling of a hypermultiplet in t
bulk to chiral fields on the boundary.

We can analyze this problem using arguments simila
those in Sec. II. The five-dimensional hypermultiplet cons
of a pair of complex scalarsAi , a Dirac fermionx, and a pair
of complex auxiliary fieldsFi . Under supersymmetry the
transform as follows@26#:

djA
i52&e i j j̄ jx

djx51& igM]MAie i j j j1&Fij i

djF
i52& i j̄ igM]Mx. ~77!

To carry out the orientifold projection, we must cons
tently assign paritiesP to the various fields and impose th
boundary conditions~10!. Here is a consistent set of assig
ments which givesN51 supersymmetry on the wall:

P511 P521

j jL
1 jL

2

Ai A1 A2 ~78!
x xL xR

Fi F1 F2

As in Sec. II, we project out the odd-parity states and c
sider the supersymmetry on the boundary generated byjL

1 .
The transformations~78! specialize to

djA
15&jL

1TxL

djxL5& ism]mA1jL
1* 2&]5A2jL

11&F1jL
1

djF
15 i&jL

1†s̄m]mxL1&jL
1†]5xR

dj]5A25&jL
1†]5xR . ~79!

These transformations imply that

dj~F12]5A2!5& i jL
1†s̄m]mxL . ~80!

ThenA1, xL , (F12]5A2) transform as the complex scala
chiral fermion, and auxiliary field components of a fou
dimensionalN51 chiral multiplet.

We can use this set of fields to write a coupling of t
bulk hypermultiplet to chiral superfields on the boundary.
particular, the boundary theory might have a superpoten
which depends on the boundary chiral fieldsf i and the
boundary value of the fieldA1. The superpotential term the
includes the boundary action

L45~F12]5A2!
dW

dA1 1¯ . ~81!

If we integrate out the auxiliary fieldF1 and write the result-
ing action in 5 dimensions, we arrive at the structure
06500
o
s

-

al

L55u]MA2u22d~x5!F]5A2
dW

dA1 1H.c.G1~d~x5!!2UdW

dA1U.
~82!

If we identify A2 with the scalar component ofCABC shown
in Eq. ~76! and (dW/dA1) with the E8 gaugino condensate
this reproduces the perfect-square structure~1! found by
Hořava @2,4#.

From here, we could go on to discuss the communicat
of supersymmetry breaking. If we simply assume a fix
value of the gaugino condensate and solve forA2 as in Eq.
~33!, we find a universal gaugino mass proportional to 1/l , as
in @10–12#. This leads to conventional supergravity-mediat
supersymmetry breaking scenario. It would be very intere
ing to know whether there are other possibilities. In partic
lar, it would be interesting to find a perturbative hierarchy
soft supersymmetry-breaking terms similar to the one t
we discussed in Sec. IV. To search for such possibilities,
necessary to understand the general coupling of boun
matter fields to supergravity. We are currently investigat
that question.

VII. CONCLUSION

In this paper, we have shown how easy it is to constr
consistent couplings of five-dimensional supermultiplets
matter multiplets on orientifold walls by analyzing the tran
formation properties of the associated auxiliary fields. W
applied this method to some simple models with bulk a
boundary fields and exhibited several possibilities for
communication of supersymmetry breaking from one wall
the other. We hope that this method will generalize to sup
gravity and allow a more complete understanding of the
persymmetry breaking and its phenomenology in
Hořava-Witten approach to unification.
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APPENDIX: MORE ABOUT THE TWO-LOOP
SELF-ENERGY

In this appendix, we will give some further details of th
two-loop self-energy calculations discussed in Secs. III a
IV.

As we explained in Eq.~27!, our strategy for computing
the diagrams shown in Fig. 3 began with bringing each d
gram into the form
2-12
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M252g4C2~R!C~R8!E
q
E

k55

N~k,k5,k̂5,q!

~k2!„k22~k5!2
…„k22~ k̂5!2

…~q22m1
2!„~q2k!22m2

2
…

~A1!
.
th

e
er
om

ul

h
.
nd

-

s

rived

all

. V
for the m1 , m2 appropriate to the inner loop of the diagram
We now give the contributions of the various diagrams to
numerator polynomialN. In the following formula, we write
the contributions toN as a sum, following the order of th
diagrams in Fig. 3, although properly each separate t
should receive the appropriate particle masses in the den
nator. The expression is given for the mass spectrum~40!
considered in Sec. IV; for the analysis of Sec. III, one sho
set all masses equal to zero. With this explanation,

N52„k•~2q2k!…222~q22m1
2 1q22m2

2 !k2

22~2q2k!2k218~q22m1
2 1q22m2

2 !k2

14~q•~q2k!k222q•k~q2k!•k2m2k2!

28k2
„q•~q2k!22m2

…116k2k•~q2k!12k21010.

~A2!

If we set all masses equal to zero, this expression vanis
after the use of theq↔(k2q) symmetry of the denominator
With nonzero masses, some simple rearrangements a
Euclidean rotation bring the expression formf

2 into the form
~44!.

In our analysis of Eq.~44!, we made use of the self
energy integralb(k2,m1

2 ,m2
2) defined by Eq.~48!. We can

write b more explicitly as

b~k2,m1
2 ,m2

2!5E
0

`

dx log„x~12x!k2

1xm1
21~12x!m2

2
…

5A logF ~A1B1!~A1B2!

~A2B1!~A2B2!G
1B2logm1

21B1logm2
222, ~A3!

where
06500
e

m
i-

d

es

a

A5Fk412k2~m1
21m2

2!1~m1
22m2

2!2

4k4 G1/2

~A4!

and

B15
k21m1

22m2
2

2k2 , B25
k21m2

22m1
2

2k2 . ~A5!

From b(k2,m1
2 ,m2

2), we can compute the combination
R(k2), S(k2), P(k2) defined in Eqs.~49! and ~51!. We
evaluate these expressions using the mass spectrum de
from Eq. ~40!. It is straightforward to work out the
asymptotic behavior of these functions for large and sm
values ofk2. For P(k2), we find, asm2k2→0,

P~k2!5k2F41x22x2

x2 log~11x!111~x↔2x!G1O~k4!,

~A6!

and asm2k2→`,

P~k2!5
4m4

k2 Fx2log
k2

m22~x213x12!log~11x!

2x21~x↔2x!G1O~k24!. ~A7!

The computation of the Casimir energy reported in Sec
is very similar to the computation ofmf

2 and, in particular,
uses the same auxiliary functionP(k2).
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