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Scaling of curvature in subcritical gravitational collapse
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We perform numerical simulations of the gravitational collapse of a spherically symmetric scalar field. For
those data that just barely do not form black holes we find the maximum curvature at the position of the central
observer. We find a scaling relation between this maximum curvature and distance from the critical solution.
The scaling relation is analogous to that found by Choptuik for the black hole mass for those data that do
collapse to form black holes. We also find a periodic wiggle in the scaling expd&&m56-282(98)09118-§

PACS numbgs): 04.25.Dm, 04.20.Dw, 04.46b, 04.70.Bw

I. INTRODUCTION hole mass scales ap{ p*)? wherey=1/«.
The results of Ref[8] were extended to the case of peri-
Choptuik has found scaling phenomena in gravitationabdic self-similarity by Gundlach9] and by Hod and Piran
collapse[1]. He numerically evolves a one parameter family[10]. Here, the assumptions are that the critical solution is
of initial data for a spherically symmetric scalar field coupledperiodically self-similar and has exactly one unstable mode.
to gravity. Some of the data collapse to form black holesPeriodic self-similarity means that there is a diffeomorphism
while others do not. There is a critical value of the parametet and a numbeA such that’* (g,,) =€ ?*ga,. Let coordi-
separating those data that form black holes from those thatates be chosen so thais the transformation—t+ A with
do not. The critical solutiorithe one corresponding to the the other coordinates remaining constant. Then the unstable
critical parameterhas the property of periodic self similar- mode grows as*' multiplied by a function that is periodic in
ity: after a certain amount of logarithmic time the profile of t. (Here againk is a constan}. The result is still a scaling
the scalar field repeats itself with its spatial scale shrunk. Forelation for black hole mass; but it is more complicated than
parameters slightly above the critical parameter the mass &f linear relation. A graph of IM vs In(p—p*) is no longer a
the black hole formed scales like{ p*)” wherep is the straight line; but is instead the sum of a linear function and a
parameterp* is its critical value andy is a universal scaling periodic function. The slope of the linear function is again
exponent that does not depend on which family is beingy=1/x and the period of the periodic function is/(2v).
evolved. Numerical simulations of the critical gravitational The scaling relation for black hole mass in scalar field col-
collapse of other types of spherically symmetric matter werdapse was originally thought to be linefd] because the ad-
subsequently performed. These include complex scalar fieldditional “wiggle” is small. This small wiggle was found
[2], perfect fluids[3], axions and dilaton$4], and Yang- numerically by Hod and Pirafi0].
Mills fields [5]. In addition scaling has been found in the  Any proposed analytic explanation of a numerically ob-
collapse of axisymmetric gravity wavés], and in a pertur- served phenomenon needs to be tested. Perhaps the best such
bative analysis of fluid collapse with no symmetrigd.  test is to ask what other phenomena are predicted by the
Thus scaling seems to be a generic feature of critical graviexplanation and then to see whether those phenomena occur.
tational collapse. In some of these systems the critical soluOne remarkable property of the derivations in R¢&-10]
tion has periodic self-similarity while in other systems it hasis their generality. The only property of black hole mass that
exact self-similarity. is used is that it is a global property of the spacetime and has
These phenomena were discovered numerically, so ondimensions of length. Furthermore, the derivations apply as
would like to have an analytic explanation for why systemswell to solutions that do not collapse to form black holes as
that just barely undergo gravitational collapse behave in thiso those that do: the only assumption needed is that the initial
way. An explanation of the scaling of black hole mass waslata be near data that lead to the critical solution.
provided by Koike, Hara, and Adacf8]. These authors as- Therefore, it is a consequence of the explanation of Refs.
sume that the critical solution is exactly self-similar and hag8-1(Q] that other scaling relations exist in near-critical col-
exactly one unstable mode. Exact self-similarity means thaapse, even in the case where no black hole forms. This is in
the critical solution has a homothetic Killing vector, i.e. a contrast to the case of phase transitions, where scaling be-
vector field§ such thatl.g,,= — 29, . Let coordinates be havior occurs only on one side of the critical parameter. For
chosen so thag=g/dt. Then the unstable mode growsef$  the case of a periodically self-similar critical solution, the
for some constank. The result of Ref[8] is that the black scaling relation should have a wiggle with periad(2v).
For the case where no black hole forms, the field collapses
for a while and then disperses. Therefore, at the position of
*Email address: garfinkl@vela.acs.oakland.edu the central observer, the scalar curvature should grow,
"Email address: gcd@chandra.bgsu.edu achieve some maximum vall®,,,, and then approach zero
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at late times. ThiRR,,,, IS a characteristic of the spacetime 1 — —

and has dimensions of length Therefore, one would ex- Dh= 2r (9—g)(h—h). ®

pect that a graph of IR, Vs In(p* —p) should be a curve

with average slope-2y (wherey is the same constant that  The numerical treatment of these equations is as follows:

occurs in the black hole mass scaling relatiand a wiggle givenh at some timay, the quantitiest_l, 9, andaare evalu-

with period A/(2y). , , ated in turn, with the integrations done using Simpson'’s rule.
In order to test the explanation of Ref8~10), this paper g s quite accurate, except near 0. For the region near

presents the results of numerical investigations which exX: _ \ve use a Taylor series method: first we fit the values of

plore whetheRp, obeys exgctly Fhis sort of scaling relation. P nearr =0 to a straight line and thus evaluate the quantity
We have performed numerical simulations of the collapse o

a family of initial data for a spherically symmetric scalar oh

field. The data were chosen to be near the critical solution, hi=— . (6)
but with p<p* so that no black hole forms. For each M=o

evolved spacetime in the family we firR},,,, the maximum _ _

scalar curvature at the central observer. We then pl&,Jn ~ Nearr=0 the quantitied, g, andg are then given by
vs In(p* —p) and show that the resulting curve is a straight
line with a periodic wiggle, where the slope of the line is
—2vy and the period of the wiggle iA/(27y). Section Il
briefly presents the numerical method used. The results are
presented in Sec. lll. Section IV contains a discussion of -
some of the implications of the results of these studies. g=1+ 5 hfr2+ o(rd), (8

_ 1
h=h—§hﬂ+ou§, (7

Il. NUMERICAL METHOD o -
— 2.2 3
The numerical method used is that of GarfinKld]. This g=1+ 6 hir®+0(r). ©)
method is a modification of an earlier method due to Gold-
wirth and Piran[12], which is in turn based on analytical [Note: Egs.(8) and (9) correct an error in Ref{11].] The
work by Christodouloy13]. The matter is a massless, mini- value of the scalar curvature gt 0 is given by
mally coupled scalar field, with both scalar field and metric
spherically symmetric. In addition to the usual area coordi- R(u,0)= —27h?, (10
nater and angular coordinates, we use a null coordinate
defined to be constant along outgoing light rays, and equal to Equation(5) can be regarded as a set of decoupled ordi-
proper time of the central observer iat 0. Instead of di- nary differential equations for the value bfalong each in-
rectly using the matter fiel@, it is convenient to work with  going light ray. These equations are used to determine the
the quantityh=(d/Jr)(r ¢). Due to the spherical symmetry, evolution ofh for one time step, and then the whole process
the metric is completely determined by the matter. This isis continued until the scalar field either forms a black hole or
made explicit as follows: for any functiof{u,r) define disperses. The critical solution is found by a binary search of
p parameter space to find the boundary between those data
that form black holes and those that do not. Sitcéds
evolved along ingoing light rays, the spatial scale of the grid
shrinks as the evolution proceeds. With the outermost grid-
Then define the quantity by point chosen to be the light ray that hits the singularity of the
critical solution, the grid shrinks at the same rate as the spa-
rdr o tial features of the scalar field. These features are therefore
g(u,r)zexp( 47-rj0 ? [h(u,r)—h(u,r)]z) . (2 resolved throughout the evolution.

ﬂmmséﬁﬂmh&. (1)

Then the metric is given by lll. RESULTS

_ All runs were done with 300 spatial gridpoints. The code
ds*=—gdu(gdu+2dr)+r2dQ?, (3)  was run in quadruple precision on Dec alpha workstations
and in double precision on a Cray YMP8. The initial data for
whered()? is the usual unit two-sphere metric. Define thethe scalar field was chosen to be of the form
operator

d(0r)=pr? exd (r—rq)? o?]. (12)
—Jd
95 (4)

N| =

J
D=2 Herep is our parameter, and, and o are constants. This is
the family which was evolved ifiL1], where the value of the
D is essentially the derivative operator along in-going lightcritical parametep* was found. Here we evolve this family

rays. The evolution equation fdr is for 100 values ofp<p#*, chosen equally spaced in p(
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may be additional errors due to inaccuracies of the numerical
evolution algorithm itself. Using three significant figures, we
find that the slope of the line is 0.747 and the period of the
sine wave is 4.63. The values pandA given in Ref[9] are
v=0.374-0.001 andA=3.4453-0.0005. These numbers
give rise to —2y=-0.748-0.002 and A/(2y)=4.61
+0.01. Thus it is clear that the slope of the lined®2y and

the period of the sine wave i§/(2y). That is, as expected,
Rmax Scales like p* —p)~2” with a periodic wiggle of pe-

~
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riod A/(27).

IV. DISCUSSION

In- (p*-p) Our paper considers the behavior of only one sort of cur-

vature: scalar curvature at the position of the central ob-
server. Clearly there are other sorts of curvature that one
could treat. The quantitiefR3°R,,|Y? and |R3C9R, ;.42
fWould also be expected to scale likex(— p) ~2”. In the case
of spherical symmetry, and evaluated on the world line of the
central observer, these quantities yield nothing new. All of

Figure 1 shows a graph of Ry, Vs In(p*—p). In the them are proportional th{. This is what one would expect,

figure, each point is the result of one evolution. The pointsSNce in spherical symmetry the gravitational field has no
were fit to a five parameter curve that is a straight line plus &€grees of freedom of its own, and the Ricci tensor just
sine wave (Both the figures and the curve fitting were donedepenOIS quadra_tlcally on the gradl_ent of t_he sc_alar field.
with KaleidaGraph. Figure 1 also shows this curve. How- However, there is no need to restrict consideration to the
ever. because of fhe large number of data points; and th orld line of the central observer. One could also consider
goodness of the fit, the curve is indistinguishable from the"€ Maximum value of the scalar curvatyce any of these
data points. other curvaturesover 'the whole spacetime. In this project
The parameters of the fit are the slope and intercept of th&/€ chose the world line of the central observer mostly for

line, and the amplitude, period and phase of the sine waveonvenience, since it is very easy to evaluate the scalar cur-

To examine the goodness of the fit, the data and the fit aryature there. We do not expect the results to differ much if

plotted in Fig. 2 with the straight line piece of the fit sub- instead we find the maximum of the scalar curvature over the
tracted from both of them. Here, we see that the fit is good"/10l€ Spacetime, since in a spherically symmetric collapse

but not exact. Indeed there is no reason for the fit to be exact/e Would expect the spacetime maximum of the scalar cur-
the function should be periodic with periai/(2y) and vature to occur at or near the world line of the central ob-
therefore a sum of sine waves of peridd(2yn) for integer ser¥ﬁr. tuation is diff tin th £ coll ithout
n. In addition, inaccuracies in the numerical evolution of the € Situation 1S direrent in the case or collapse withou
spacetime contribute some “noise” to the data points spherical symmetry. Here there is no central observer and so

Of particular interest are the slope of the line and thethe spacetime maximum of curvature is the appropriate

period of the sine wave. It is not clear what error should peduantity to consider(Though in the case of axisymmetry

attributed to the parameters of the fit. While there is an erro}"’ith equatorial plane reflection symmetry there is a preferred

that can be obtained formally from the fitting process, thereObserveﬁ' Choptuik scallng has begn shovyn to occur in the
collapse of vacuum, axisymmetric gravity wavgs]. It

would be interesting to see whether curvature scaling takes

FIG. 1. InR,4is plotted vs Inp* —p). The result is a line with
slope—2v and a periodic wiggle with period/(27y).

—p). During each evolution, we keep track of the behavior o
the scalar curvature at=0 and thus find the maximum of its
absolute valudR .

04 ——
: ] place in this situation. Of course, since the spacetimes are
08 “ /"‘ IL"\ ﬂ ] vacuum,R and R®"R,, vanish. Therefore, the appropriate
02 F ] quantity to consider is the spacetime maximum of
" R max f “ f [ \: |R3PCAR, .42 We would expect this quantity to scale like

o1 F

- line

\§ (p* —p) 27 (with a small periodic wigglefor those space-
] times that just barely do not collapse to form black holes. It
would also be of interest to investigate the gravitational col-
lapse of an axisymmetric scalar field and look for scaling in
the spacetime maxima oR and |R3°R,,|'? as well as

0t

,.//"’(

0.1 |

MEWER
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03 f

2 | RadeRabcd| 1/2.
04 L . B e s Although we would expect that a quantity with dimen-
40 % . (p‘f_‘;) 28 2% sions of length would scale &p—p*|?, it is known that in

some cases this does not occur. Hod and Pjdal} have
FIG. 2. The data and the fitted curve of Fig. 1 are plotted withperformed a numerical simulation of the collapse of a spheri-
the straight line piece of the fitted curve removed from both. cally symmetric charged scalar field. Here the black holes
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formed have charge as well as mass. Since charge has uniises, both in spacetimes that barely form black holes and in
of length, one might expect that near the critical solutionthose that barely do not.

charge scales asp{p*)?. Instead, the charge vanishes
faster: like p—p*)2?. (This scaling is explained in Refs.
[14,15.) Thus a simple consideration of the dimensions of a
guantity is not sufficient, in all cases, to predict the scaling of This work was partially supported by NSF Grant No.
that quantity. It would be interesting to know which quanti- PHY-9722039 and by a Cottrell College Science Award of
ties can be expected to scale as their dimensions would suesearch Corporation to Oakland University. Some of the
gest, and which behave anomalously. In any case, some s@vmputations were performed at the Ohio Supercomputer
of scaling behavior can be expected for many different quancenter.
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