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Scaling of curvature in subcritical gravitational collapse
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We perform numerical simulations of the gravitational collapse of a spherically symmetric scalar field. For
those data that just barely do not form black holes we find the maximum curvature at the position of the central
observer. We find a scaling relation between this maximum curvature and distance from the critical solution.
The scaling relation is analogous to that found by Choptuik for the black hole mass for those data that do
collapse to form black holes. We also find a periodic wiggle in the scaling exponent.@S0556-2821~98!09118-8#

PACS number~s!: 04.25.Dm, 04.20.Dw, 04.40.2b, 04.70.Bw
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I. INTRODUCTION

Choptuik has found scaling phenomena in gravitatio
collapse@1#. He numerically evolves a one parameter fam
of initial data for a spherically symmetric scalar field coupl
to gravity. Some of the data collapse to form black ho
while others do not. There is a critical value of the parame
separating those data that form black holes from those
do not. The critical solution~the one corresponding to th
critical parameter! has the property of periodic self simila
ity: after a certain amount of logarithmic time the profile
the scalar field repeats itself with its spatial scale shrunk.
parameters slightly above the critical parameter the mas
the black hole formed scales like (p2p* )g wherep is the
parameter,p* is its critical value andg is a universal scaling
exponent that does not depend on which family is be
evolved. Numerical simulations of the critical gravitation
collapse of other types of spherically symmetric matter w
subsequently performed. These include complex scalar fi
@2#, perfect fluids@3#, axions and dilatons@4#, and Yang-
Mills fields @5#. In addition scaling has been found in th
collapse of axisymmetric gravity waves@6#, and in a pertur-
bative analysis of fluid collapse with no symmetries@7#.
Thus scaling seems to be a generic feature of critical gr
tational collapse. In some of these systems the critical s
tion has periodic self-similarity while in other systems it h
exact self-similarity.

These phenomena were discovered numerically, so
would like to have an analytic explanation for why syste
that just barely undergo gravitational collapse behave in
way. An explanation of the scaling of black hole mass w
provided by Koike, Hara, and Adachi@8#. These authors as
sume that the critical solution is exactly self-similar and h
exactly one unstable mode. Exact self-similarity means
the critical solution has a homothetic Killing vector, i.e.
vector fieldj such thatLjgab522gab . Let coordinates be
chosen so thatj5]/]t. Then the unstable mode grows asekt

for some constantk. The result of Ref.@8# is that the black
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hole mass scales as (p2p* )g whereg51/k.
The results of Ref.@8# were extended to the case of pe

odic self-similarity by Gundlach@9# and by Hod and Piran
@10#. Here, the assumptions are that the critical solution
periodically self-similar and has exactly one unstable mo
Periodic self-similarity means that there is a diffeomorphi
z and a numberD such thatz* (gab)5e22Dgab . Let coordi-
nates be chosen so thatz is the transformationt→t1D with
the other coordinates remaining constant. Then the unst
mode grows asekt multiplied by a function that is periodic in
t. ~Here againk is a constant.! The result is still a scaling
relation for black hole mass; but it is more complicated th
a linear relation. A graph of lnM vs ln(p2p* ) is no longer a
straight line; but is instead the sum of a linear function an
periodic function. The slope of the linear function is aga
g51/k and the period of the periodic function isD/(2g).
The scaling relation for black hole mass in scalar field c
lapse was originally thought to be linear@1# because the ad
ditional ‘‘wiggle’’ is small. This small wiggle was found
numerically by Hod and Piran@10#.

Any proposed analytic explanation of a numerically o
served phenomenon needs to be tested. Perhaps the bes
test is to ask what other phenomena are predicted by
explanation and then to see whether those phenomena o
One remarkable property of the derivations in Refs.@8–10#
is their generality. The only property of black hole mass th
is used is that it is a global property of the spacetime and
dimensions of length. Furthermore, the derivations apply
well to solutions that do not collapse to form black holes
to those that do: the only assumption needed is that the in
data be near data that lead to the critical solution.

Therefore, it is a consequence of the explanation of R
@8–10# that other scaling relations exist in near-critical co
lapse, even in the case where no black hole forms. This i
contrast to the case of phase transitions, where scaling
havior occurs only on one side of the critical parameter. F
the case of a periodically self-similar critical solution, th
scaling relation should have a wiggle with periodD/(2g).
For the case where no black hole forms, the field collap
for a while and then disperses. Therefore, at the position
the central observer, the scalar curvature should gr
achieve some maximum valueRmax and then approach zer
© 1998 The American Physical Society24-1
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at late times. ThisRmax is a characteristic of the spacetim
and has dimensions of length22. Therefore, one would ex
pect that a graph of lnRmax vs ln(p*2p) should be a curve
with average slope22g ~whereg is the same constant tha
occurs in the black hole mass scaling relation! and a wiggle
with periodD/(2g).

In order to test the explanation of Refs.@8–10#, this paper
presents the results of numerical investigations which
plore whetherRmax obeys exactly this sort of scaling relatio
We have performed numerical simulations of the collapse
a family of initial data for a spherically symmetric scal
field. The data were chosen to be near the critical solut
but with p,p* so that no black hole forms. For eac
evolved spacetime in the family we findRmax, the maximum
scalar curvature at the central observer. We then plot lnRmax
vs ln(p*2p) and show that the resulting curve is a straig
line with a periodic wiggle, where the slope of the line
22g and the period of the wiggle isD/(2g). Section II
briefly presents the numerical method used. The results
presented in Sec. III. Section IV contains a discussion
some of the implications of the results of these studies.

II. NUMERICAL METHOD

The numerical method used is that of Garfinkle@11#. This
method is a modification of an earlier method due to Go
wirth and Piran@12#, which is in turn based on analytica
work by Christodoulou@13#. The matter is a massless, min
mally coupled scalar field, with both scalar field and met
spherically symmetric. In addition to the usual area coor
nate r and angular coordinates, we use a null coordinatu
defined to be constant along outgoing light rays, and equa
proper time of the central observer atr 50. Instead of di-
rectly using the matter fieldf, it is convenient to work with
the quantityh[(]/]r )(rf). Due to the spherical symmetry
the metric is completely determined by the matter. This
made explicit as follows: for any functionf (u,r ) define

f̄ ~u,r ![
1

r E
0

r

f ~u, r̃ !dr̃. ~1!

Then define the quantityg by

g~u,r ![expS 4pE
0

r dr̃

r̃
@h~u, r̃ !2h̄~u, r̃ !#2D . ~2!

Then the metric is given by

ds252gdu~ ḡdu12dr !1r 2dV2, ~3!

wheredV2 is the usual unit two-sphere metric. Define t
operator

D[
]

]u
2

1

2
ḡ

]

]r
. ~4!

D is essentially the derivative operator along in-going lig
rays. The evolution equation forh is
06402
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1

2r
~g2ḡ!~h2h̄!. ~5!

The numerical treatment of these equations is as follo
givenh at some timeu, the quantitiesh̄, g, andḡ are evalu-
ated in turn, with the integrations done using Simpson’s ru
This is quite accurate, except nearr 50. For the region near
r 50 we use a Taylor series method: first we fit the values
h nearr 50 to a straight line and thus evaluate the quan

h1[
]h

]r U
r 50

. ~6!

Near r 50 the quantitiesh̄, g, andḡ are then given by

h̄5h2
1

2
h1r 1O~r 2!, ~7!

g511
p

2
h1

2r 21O~r 3!, ~8!

ḡ511
p

6
h1

2r 21O~r 3!. ~9!

@Note: Eqs.~8! and ~9! correct an error in Ref.@11#.# The
value of the scalar curvature atr 50 is given by

R~u,0!522ph1
2. ~10!

Equation~5! can be regarded as a set of decoupled o
nary differential equations for the value ofh along each in-
going light ray. These equations are used to determine
evolution ofh for one time step, and then the whole proce
is continued until the scalar field either forms a black hole
disperses. The critical solution is found by a binary search
p parameter space to find the boundary between those
that form black holes and those that do not. Sinceh is
evolved along ingoing light rays, the spatial scale of the g
shrinks as the evolution proceeds. With the outermost g
point chosen to be the light ray that hits the singularity of t
critical solution, the grid shrinks at the same rate as the s
tial features of the scalar field. These features are there
resolved throughout the evolution.

III. RESULTS

All runs were done with 300 spatial gridpoints. The co
was run in quadruple precision on Dec alpha workstatio
and in double precision on a Cray YMP8. The initial data f
the scalar field was chosen to be of the form

f~0,r !5pr2 exp@~r 2r 0!2/s2#. ~11!

Herep is our parameter, andr 0 ands are constants. This is
the family which was evolved in@11#, where the value of the
critical parameterp* was found. Here we evolve this famil
for 100 values ofp,p* , chosen equally spaced in ln(p*
4-2
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SCALING OF CURVATURE IN SUBCRITICAL . . . PHYSICAL REVIEW D 58 064024
2p). During each evolution, we keep track of the behavior
the scalar curvature atr 50 and thus find the maximum of it
absolute valueRmax.

Figure 1 shows a graph of lnRmax vs ln(p*2p). In the
figure, each point is the result of one evolution. The poi
were fit to a five parameter curve that is a straight line plu
sine wave.~Both the figures and the curve fitting were do
with KaleidaGraph.! Figure 1 also shows this curve. How
ever, because of the large number of data points and
goodness of the fit, the curve is indistinguishable from
data points.

The parameters of the fit are the slope and intercept of
line, and the amplitude, period and phase of the sine wa
To examine the goodness of the fit, the data and the fit
plotted in Fig. 2 with the straight line piece of the fit su
tracted from both of them. Here, we see that the fit is go
but not exact. Indeed there is no reason for the fit to be ex
the function should be periodic with periodD/(2g) and
therefore a sum of sine waves of periodD/(2gn) for integer
n. In addition, inaccuracies in the numerical evolution of t
spacetime contribute some ‘‘noise’’ to the data points.

Of particular interest are the slope of the line and
period of the sine wave. It is not clear what error should
attributed to the parameters of the fit. While there is an e
that can be obtained formally from the fitting process, th

FIG. 1. lnRmax is plotted vs ln(p*2p). The result is a line with
slope22g and a periodic wiggle with periodD/(2g).

FIG. 2. The data and the fitted curve of Fig. 1 are plotted w
the straight line piece of the fitted curve removed from both.
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may be additional errors due to inaccuracies of the numer
evolution algorithm itself. Using three significant figures, w
find that the slope of the line is20.747 and the period of the
sine wave is 4.63. The values ofg andD given in Ref.@9# are
g50.37460.001 andD53.445360.0005. These number
give rise to 22g520.74860.002 and D/(2g)54.61
60.01. Thus it is clear that the slope of the line is22g and
the period of the sine wave isD/(2g). That is, as expected
Rmax scales like (p* 2p)22g with a periodic wiggle of pe-
riod D/(2g).

IV. DISCUSSION

Our paper considers the behavior of only one sort of c
vature: scalar curvature at the position of the central
server. Clearly there are other sorts of curvature that
could treat. The quantitiesuRabRabu1/2 and uRabcdRabcdu1/2

would also be expected to scale like (p* 2p)22g. In the case
of spherical symmetry, and evaluated on the world line of
central observer, these quantities yield nothing new. All
them are proportional toh1

2. This is what one would expect
since in spherical symmetry the gravitational field has
degrees of freedom of its own, and the Ricci tensor j
depends quadratically on the gradient of the scalar fie
However, there is no need to restrict consideration to
world line of the central observer. One could also consi
the maximum value of the scalar curvature~or any of these
other curvatures! over the whole spacetime. In this proje
we chose the world line of the central observer mostly
convenience, since it is very easy to evaluate the scalar
vature there. We do not expect the results to differ much
instead we find the maximum of the scalar curvature over
whole spacetime, since in a spherically symmetric colla
we would expect the spacetime maximum of the scalar c
vature to occur at or near the world line of the central o
server.

The situation is different in the case of collapse witho
spherical symmetry. Here there is no central observer an
the spacetime maximum of curvature is the appropri
quantity to consider.~Though in the case of axisymmetr
with equatorial plane reflection symmetry there is a prefer
observer.! Choptuik scaling has been shown to occur in t
collapse of vacuum, axisymmetric gravity waves@6#. It
would be interesting to see whether curvature scaling ta
place in this situation. Of course, since the spacetimes
vacuum,R and RabRab vanish. Therefore, the appropria
quantity to consider is the spacetime maximum
uRabcdRabcdu1/2. We would expect this quantity to scale lik
(p* 2p)22g ~with a small periodic wiggle! for those space-
times that just barely do not collapse to form black holes
would also be of interest to investigate the gravitational c
lapse of an axisymmetric scalar field and look for scaling
the spacetime maxima ofR and uRabRabu1/2 as well as
uRabcdRabcdu1/2.

Although we would expect that a quantity with dime
sions of length would scale asup2p* ug, it is known that in
some cases this does not occur. Hod and Piran@14# have
performed a numerical simulation of the collapse of a sph
cally symmetric charged scalar field. Here the black ho
4-3
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formed have charge as well as mass. Since charge has
of length, one might expect that near the critical soluti
charge scales as (p2p* )g. Instead, the charge vanishe
faster: like (p2p* )2g. ~This scaling is explained in Refs
@14,15#.! Thus a simple consideration of the dimensions o
quantity is not sufficient, in all cases, to predict the scaling
that quantity. It would be interesting to know which quan
ties can be expected to scale as their dimensions would
gest, and which behave anomalously. In any case, some
of scaling behavior can be expected for many different qu
tu
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tities, both in spacetimes that barely form black holes and
those that barely do not.
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