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Evidence for an oscillatory singularity in generic (1) symmetric cosmologies ofr3x R
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A long standing conjecture by Belinskii, Lifshitz, and Khalatnikov that the singularity in generic gravita-
tional collapse is locally oscillatory is tested numerically in vacuurtl,) dymmetric cosmological spacetimes
on T3XR. If the velocity term dominatedVTD) solution to Einstein’s equations is substituted into the
Hamiltonian for the full Einstein evolution equations, one term is found to grow exponentially. This generates
a prediction that oscillatory behavior involving this term and anottubich the VTD solution causes to decay
exponentially should be observed in the approach to the singularity. Numerical simulations strongly support
this prediction[S0556-282(198)08818-3

PACS numbsg(s): 04.20.Dw, 04.20.Cv, 95.30.5f, 98.80.Hw

I. INTRODUCTION more general polarizedl2-symmetric models[22] are
AVTD [16,23. The main extra feature in generic Gowdy

An important open question in classical general relativity : :
. : " : ) .. >models compared to polarized ones is the presence of two
is the nature of the singularities that form in generic gravita-

tional collapse. The singularity theorems of Penrése nonlinear terms in the Hamiltonian which yields the dynami-

Hawking[2,3], and otherg4,5] prove that some type of sin- cal Einstein equat_ions. In an AVTD_space_tim_e, these must
gular behavior must arise in generic gravitational collapse Ogecome exponentially small as the singularity is approached.

reasonable matter. However. these theorems do not provid ut this requirement is only consistent with the form of the
: ' P D solution if a spatially dependent parameter of the VTD

description of the singular behavior that results. Many dlffer—SOlution lies in a restricted range @imos) every spatial

ent types of singular behavior arise in known solutions to_ . . : )
Einstein’s equations. However, known explicit solutions tendpomt. The numerical studies demonstrate that the nonlinear

terms act as potentials to drive the parameter into the consis-

to be characterized by simplifying symmetries. This Mean3ent rangd24]. Very recently, it has been proven that generic

that singular behaviors found in such examples need not b8owd solutions with a consistent value of this parameter
characteristic of those of generic collapse. In the 1960s, Be- y P

o . P . are AVTD [25].
linskii, Khalatnlkov,' and Lifshitz(BKL) [6—10].cla|me:d to Recently, Weaveet al. [26] have extended the Gowdy
have shown that, in the approach to the singularity, each

: . . . odel by inclusion of a magnetic fieldnd change of spatial
spatial point of a generic solution behaves as a separaie 3 : :
vacuum, Bianchi type IX(mixmaster[11]) homogeneous 'opolqu fromT= to the soIv-tvvllste.d torug27)). This ”.‘Od?" .
cosmology. Mixmaster cosmologies collapse as an infinite> 3" inhomogeneous generalization ‘?f the magnetic B'a_”‘?h'
sequence of Bianchi type(Kasner[12]) spacetimes with a type Vi homogengous cosmology which _|s kpown to exhibit
known relationship between one Kasner and the f@xd3. ~ Mixmaster behaviof28,29. The magnetic field causes a
Examinations of the BKL argumenfd4] and attempts to tr_nrd nonlinear term to be present. Th|.s term grows for. pre-
provide a more rigorous basis for their claifd$] have until ~ Cisely that range of VTD parameter which makes the original
recently yielded little evidence one way or the other for theirtwo vacuum Gowdy nonlinear terms exponentially small.
validity. This prediction of local Mixmaster oscillations is observed in
In the past decade, work has begun aimed at understandumerical simulations of the full Einstein equations. This
ing the singularity and the approach to it in spatially inho-study provided the first support in inhomogeneous cosmolo-
mogeneous cosmologi¢s6—18. If Einstein’s equations are gies for the BKL claim.
truncated by ignoring all terms with spatial derivatives and To further explore this issue, we have generalized to the
keeping all terms with time derivativegor some more or study of vacuum spacetimes @i x R with one spatial (1)
less natural choice of spacetime slicinthe velocity term  symmetry[30]. While such models are, of course, not ge-
dominated(VTD) solutions are found. If an inhomogeneous neric solutions to Einstein’s equations, they are considerably
spacetime is asymptotically VTDAVTD), the evolution to-  more complex than any previously considered for this pur-
ward the singularity atalmos) every spatial point comes pose. Application of the methods previously described for
arbitrarily close to one of the VTD solutior}46,19. It has  Gowdy models leads to the predictions tha} polarized
been proven that polarized Gowdy cosmolodi28,21 and  U(1) symmetric cosmologies should be AVT31] and(2)
generic W1) models should have an oscillatory singularity.
Numerical simulations have previously provided strong sup-
*Email address: berger@oakland.edu port for the predicted AVTD singularity in polarized(l
TEmail address: moncrief@hepvms.physics.yale.edu models[32]. Here we shall discuss the support we have ob-
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tained for the local oscillatory nature of the singularity in Il. THE MODEL
generic U1) models. . . .
Unlike all previous cases discussed in this program. As d|scus§ed n n310re detail elsgwhém], U(D) SV”.‘met'
[18,24,26,32 numerical difficulties require an introduction ric cosmologies o™X R are described by the metric
of spatial averagingdata smoothingat each time step to B B B
prevent numerical instability. This averaging destroys con- ds’=e 2¢{—e*'e”*dr’+e 2 e e,ydxdx’}
vergence of the solution with increasing spatial resolution 200 43 a\2
(se€[33]). The need for spatial averaging can be traced to the ETAXT B’ @
growth of spiky features seen and discussed in the Gowd
models[18,24]. These features ald@s the bounces in mix-
master itself34]) make it necessary to explicitly enforce the
Hamiltonian constraint. If this is not done, qualitatively in- 27| 27 > 27 272
correct behavior will result. We shall argue in this paper that, 1 [ €7Te (147 eFte (x*—1)
despite the need for spatial averaging and our simple alge-  €ab=7% e?+e ?4(x?—1) e*’*+e ?%(1—x)? (2
braic method of enforcement of only the Hamiltonian con-
straint, the qualitative behavior of the numerical simulations
is correct. We believe we have demonstrated that the singus the conformal metric of tha-v plane. A canonical trans-
larity in generic Y1) symmetric cosmologies is spacelike, formation replaces the twist8, and their conjugate mo-
local, and oscillatory. Evidence for this is that the oscilla-mentae® with the twist potentialy and its conjugate momen-
tions and their correlation with the exponential growth oftum r [30,32. The dynamical variablesp and « are
certain nonlinear terms in Einstein’s equations are indepen-espectively related to the amplitude for theand X polar-
dent of spatial resolution and choice of initial data. izations of gravitational waves and propagate in a back-
A Dbrief review of generic 1) models, their VTD solu- ground spacetime described byx, andA. Our coordinate
tion, and the prediction of oscillatory behavior are given inchoice (N=e", zero shiff does not significantly restrict the
Sec. Il. In Sec. lll we describe the numerical issues andjenerality of these model80]. Einstein’s evolution equa-
results. Discussion is given in Sec. IV. tions (in vacuum are found from the variation d32]

H=jf dudvH

1., 1 1.1 1
— TR2 T abz2n82, T2, T Abe2 T2
ff dudv(8pz+2e pit gP*+ 5eMr 2pA+2pA)

+e*27J J dudv

1
+2ete®p, 0+ > eAe““Peabw,aw,b]

%herecp,ﬁa ,Z,X,A are functions of spatial variables v and
time 7, sums are ovea,b=u,v, and

(eAeab)yab_ (eAeab)aaA1b+ eA[(eizz)vuX!v_ (e722),vxlu]

:HK+HV:f f dudUHK"‘f f dUdUHv, (3)
T
where{p,r,py,p;,Ps} are, respectively, canonically conju- Hy=PsZ,y + PXopy +PAN,, = PA s T PP T T,
gate to{¢,w,X,z,A}. The constraints are N
HO=1H—2p,=0 (4) _E{[e“_(1_X)2]px+(1_x)pz}vu
and 1 4 2
+ 5{[8 2+ (1=Xx5)Ipx—XPz},, =0. (6)

Hu=P2Ziut PxXuT PAA = PA T PPt T o,y

The VTD solution has been given elsewh¢82]. Here we
shall consider only the limit ag— o of this solution.(Recall
that the VTD solution is found by eliminating all terms with
spatial derivatives from Einstein’s equation$he limiting
VTD solution is

1
+ 516" = (1432 Ipx= (1+X)p},

1
— S{Te%+ (1= Ip,— XPahu=0, 5)
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zZ=—v,m, X=Xg, P;=—4v,, Px=p2, pbtained by sub;titutjon of Eq7) into Eq.(4). As discussed
in [32], Eq. (14) implies thatv ,>2v, so that Eq.(11) de-

o=—v,7, w=wy, p=—4dv,, I= (0 cays exponentially fov,>0 .for anyv,,. Qn the other hand,
for V, to become exponentially small with, andv ,>0, we

A=Ag+(2=v))7, PrA=UL (7)  require vi>(2v,+4v »)? which is inconsistent with Eq.

(14). Since there is no way to maké, andV, both expo-
wherev,, Uy X0, pg, wg, ro, A, andv , >0 are functions nentially small with the same value O[D, the MCP predicts
of u andv but independent of. (The sign ofv , is fixed to  that eitherV; or V, will always grow exponentially(Again,
ensure collapsg. non-generic behavior can result at isolated spatial points

We now use the method of consistent potentiACP)  where the coefficient 0¥, happens to vanish.

[17] to determine the consistency of the VTD solution with ~ To refine this prediction, consider,>|v |. Substitution
the full Einstein equations. As— o, consistency requires in Eq. (14) yields
that all terms other than those which yield E@) should

become exponentially small. Rather than consider the equa- 2
tions, we shall examine the Hamiltonian density which gen- N Ve

) . X . : VpA=20,+ —, (15
erates them. Possible inconsistencies could arise from the v,

nonlinear terms in Eq(3) containing exponential factors.

These same exponentials would, of course, be present in Ein-

stein’s equations. We first notice that the Gowdy-like termswhich shows that
[18]

1 1 Vo~e® e F(x,Vo), Vi=~rZe % (16)
V,== p2e¥, V,==re* (8)
z 2 X ! 1 2

. _ o o Thus we expecV, andV, to act as potentials for the
in Hy become, in the limit ofr— o, upon substitution of Eq.  degree of freedom with a bounce off either potential causing

(7 the sign ofv, to change. The remaining variables will follow
the VTD solution with parameters which change at every
Vo E pZe~4zm Vs E r2e=4v,t 9) bounce ing. Thus we predict that oscillations_in the_degre_ze
27X ’ ! of freedom will occur at(almos) every spatial point with

different values ob, and coefficients o¥/; andV,.

and are exponentially small only #,>0 andv ,>0. (As in Note that in polarized (1) models,o=r=0 so that the
the Gowdy cas¢24], non-generic behavior can arise at iso- oscillations of Eq.(16) should be absent. Polarized(1y
lated spatial points whene, and/orr vanish) models should thus be AVTD. This is precisely what has

The complicated terms iH containing the spatial deriva- been found in numerical simulations of these moda®.
tives have only two types of exponential behavior. All but

one of the terms irt{,, have a factor

Ill. RESULTS AND NUMERICAL ISSUES
e(*ZTJrA*ZZ) (10)
In order to test the predictions of the previous section, we
(if we assume,>0, all components of,, are dominated by performed numerical simulations of the Einstein evolution

e~ ?%) which becomes equations obtained from the variation of H8). We use a
symplectic PDE solver which has been described in great

~elTvat2vl)7 (1)  detail elsewher§l18,32,35-3% In our previous study of po-
larized U1) models, we demonstrated convergence of the
in the VTD limit. The remaining term is solutions at the expected order with increasing spatial reso-

lution. Unfortunately, the re-introduction of the degree of

Vv zle*ZT*Ae*“‘/’eab (12 freedom leads to the growth of spiky features absent in the
272 @ra®b polarized case. The origin of the spiky features is discussed
elsewherd 24] but is related to the non-generic behavior at
which becomes, upon substitution of E@), isolated spatial points. The spiky features which our methods
easily treat in one spatial dimensipt8] cannot be modeled
Vo=F(x,Vo)elTvatzravgr, (13 sufficiently well in two spatial dimensions to prevent nu-

merical instability. However, these instabilities can be sup-
whereF is some function. The coefficients ofin Egs.(11)  pressed in two ways. First, the simulations are begum at
and(13) are restricted by the VTD form of the Hamiltonian ~ 10 or so to reduce the influence &, from Eq. (3). (This
constraint(as 7— ) has the disadvantage, as in homogeneous mixmaster space-
times[40], of increasing the time interval between bounges.
Second, at every time step, all ten variables are replaced by

1
O _ —.2 2 2
H vit2vzt2v,=0, (14 their spatial “average.” Any functiorf(u,v) is replaced by

2
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5

_ ""]0.007
f(u,v)=cof(u,v)+21 clf(u+iAu,v)+f(u,v+iAv) ]

2000 t i
10.004

| K

+f(u—iAu,v)+f(u,v—iAv)—4f(u,v)] (17

where c,=1, c¢,=4867/38 400, c,=—1067/28 800, c; H
=-—1237/691 200, c,=787/345 600, c5=31/691 200 and
Au, Av are the grid spacings. This scheme is sixth-order

accurate(i.e. the difference betweef(u,v) and f(u,v) is 900 | —S=me | 0001
seventh order in the grid spacings—actually eighth order due 800 Lottt N ’
to symmetry. Wheref(u,v) is smooth, the averaging has no 20 30
effect. However, it does spread out grid scale size spiky fea-
tures. This scheme is based upon, but differs from, one given FIG. 1. Convergence testing of constraints. The average values
by Norton [39]. Unfortunately, the averaging process de- of the momentum constraifit,, (broken ling and Hamiltonian con-
stroys the convergence seen in the polarized @asexami-  straint° (solid line) are displayed vs for generic vacuum (1)
nation of the deviation of the Hamiltonian and momentumsymmetric model simulations with 25@nothing and 512 (tri-
constraints from zerg33]), as can be determined by adding angle$ spatial grid points(See Fig. 2 for initial data.
averaging to polarized (1) simulations. We shall argue later
that despite the absence of convergence in this sense, the The momentum constraints) and(6) are freely evolved
qualitative behavior is still independent of spatial resolution.and do not remain especially small. However, they contain
We shall further argue that the correct qualitative behavior inly spatial derivatives. Errors in the momentum constraints
sufficient to determine the nature of the singularity in generiovould therefore generate errors in the spatial dependence of
U(1) models. the variables at a given time but not in their qualitative time
In Sec. I, we showed that the behavior of the potentials independence at each spatial point. A measure of the constraint
Hy was restricted by the VTD limit of the Hamiltonian con- convergence vs is shown in Fig. 1. The freely evolveH,,
straint (14). This means that it is essential to preserve thg(,~%,) is actually larger at finer spatial resolution. This
Hamiltonian constraint during the simulation. Failure to pre-may be attributed to the larger spatial gradients observed at
serve’°=0 means thap, would have thewrong depen- finer spatial resolutiofi24]. On the other hand, the error in
dence onp, andp. This could change the sign of the coef- the Hamiltonian constraint is converging to zero.
ficient of 7in Eq. (13). While solving the constraints initially The restricted initial value solution for generi¢1) mod-
is sufficient analytically, there is no way to guarantee that theels has been described elsewhi@2]. To solve the momen-
differenced form of the constraints is preserved during a nutum constraints, we sep,=p,=¢,,=w,,=0 and p,
merical simulation of the Einstein evolution equations.=ce". For c>0 sufficiently large, this allows the Hamil-
While in the polarized 1) case, the constraints can be seentonian constraint to be solved algebraically fotcase A or
to converge to zer$32], this is no longer true in generic r (case B. Four functionsy, z, A, andr (case A or p (case
U(1) simulations with spatial averaging. To preserve the corB), may be freely specified. The detailed values used in the
rect relationships among, , v,, andv, from Eq.(14), we  numerical simulations are given in the figure captions. While
therefore solvel{°=0 (4) for p,>0 algebraically at each we shall present results for only two sets of initial data, the
time step. We note that this is the precise analog of theesults are typical of all initial data and may be regarded to
procedure used in mixmaster its¢B4]. However, spatial be characteristic of generic initial data.
averaging must be performed on this n@w which then
yields a(small non-zero value forH°. If we assume that
pA=pi"+ A is the measured value, then Ed4) can be
linearized in the erroA and solved to yield

u

A
~1log 'V
10
HO (P ]

- 1-15
A oy (19 ]
where H° is the measured, erroneous value of the Hamil-
tonian constraint. Substitution ia=—v,+2v,+4v,, the
coefficient of 7 in V,, yields a measured and true value for
a. If the productaa'™® is positive everywhere for alt, the
errors due to averaging cannot have changed the qualitative £ 2. Oscillatory behavior at a typical spatial grid point. The

behavior since that just depends on the signuoExamina-  potentialsV; andV, and ¢ are shown vsr for a simulation with
tion of the simulation data showsa™°>0 at (almos) all 128 spatial grid points. The initial data are=sinusinv, x=z

spacetime points. Occasionally, early in the simulation, a few=cosu cosv, ¢=w=0, p,=14e®, r=10 cosucosv, and p,
isolated points—in space and time—uwill show a sign change=p,=0. The Hamiltonian constraint is solved for The initial
due to this error. value of 7is 10.

a3 230
70
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FIG. 3. Oscillatory behavior at a typical spatial grid point. The  FIG. 5. Oscillatory behavior at a typical spatial grid point. The
same initial data as in Fig. 2 but with Z56patial grid points. same as Fig. 2 but with Case B initial data:=sinusinv, x=z
=cosucosv, p=w=0, py=4e®, p=cosucosv, and p,=p,
=0. The Hamiltonian constraint is solved fior The initial value of

Figures 2—4 show the behavior ¢f V., andV, for three ic 10

spatial resolutions for case A initial data. In all cases, the’
behavior is exactly as predicted in Sec. Il. Figure 5 shows a . . o
typical evolution for case B initial data, again showing theT"t1 the appror:qnlwate fc;rms N;Iandvz bz ?egt]kl:g|ble(|.e.,

predicted behavior. For the simulation of Fig. 3, the remain-2¢t ON @ Much slowertime scaieomparea 1o the exponen-
ing variablesw, z, x, and A vs r are shown at the same tial time dependence obtained from the VTD solution. The

spatial point in Fig. 6. Here we see approximate VTD behavgualitative behavior seen in the simulations indicates that

or in o, 2, and A with parameters changing at the times of Gt Sy IEEC = MERRES BRI e e
the ¢ bounces. While the behavior gfdoes not appear to be 9 Y. P P

as predicted, we note from Eq@), (10), and(12) that only tial points simil_ar to _that found in simpler_modd]§4,26]

the behaviors of and A are important to the local dynamics cannot be SFUd'ed. with the current nu_merlc_al code. Excep-

since only they appear in the arguments of exponentials Fl.t_|onal behavior arises at |solate_d spatial points because one

nally, we dispiay “movie frames” ofHy(u,v) and e(u,v) " of the exponential potentials which causes the generic behav-
] V l ]

vs 7in Figs. 7 and 8. Sincét, is shown on a logarithmic ior is absent. While we believe we have identified the correct

scale andp on a linear one, Fig. 7 is dominated Wy, while exponential behavior, the data we have on spatial depen-
Fig. 8 indicates the behavior on a logarithmic scaleVef dence at a given time is probably not sufficiently reliable for

The predicted behavior that eith@g or V, but not both be conclusions about “higher order” effects.

| is cloarl in Fias. 7 and 8. The b X The explanation for the local nature of the evolution is
arge Is ciearly seen In Figs. /£ and o. 1ne bounces atcur easy to obtain. From the metrit), we see that the distance
at different spatial points at different times. This eventually

. . . ; Al traveled by a light ray away from the singularity from
will lead to an increasingly complex spatial struct{ifd]. — o t0 7= 7, (coordinate horizon sizds

IV. DISCUSSION Al %f Pgh2tzrg (19

[

Numerical simulations of generic () models demon-

strate that the evolution toward the singularity is local and, hare the VTD limit ofe... has been used. Simulations dem-
oscillatory due to the alternate exponential growth and decay i ate that the VTD gglution may be Ljsed in E19) to

gf Vi ar]ldr\]/? TTFS _beha\(;:ror redquiresc;chﬁt the ]Eifmg depefn'give Al—0 for the coordinate horizon sif@1] as ro— .
ence of the coefficients of; andV, and the coefficients of - gj,ce the horizon size is decreasing, the spatial points are

unable to communicate with each other. But such communi-

o cation occurs through changing spatial derivatives. If no
] communication can occur, the spatial derivative containing
terms must be dynamically unimportant.
] The primary question then is the extent to which the nu-
log 10V merical results presented here are believable as evidence for
£1-16 the oscillatory nature of the singularity. It is easy to show,
] e.g., by comparing polarized(l) simulations with and with-
out spatial averaging, that spatial averaging ruins conver-
gence tests. Furthermore, non-zero values of the momentum
constraintg5) and (6) indicate the presence of errors in the
variables and their spatial derivative§ince rescaling the
coordinates by a constant yields rescaled values of the con-

FIG. 4. Oscillatory behavior at a typical spatial grid point. The straints without changing the behavior of the solutions, one
same initial data as in Fig. 2 but with F18patial grid points. cannot attach any significance to the actual magnitude of the

1 -8

1-24
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FIG. 7. Movie frames of log, Hy(u,v) at (from right to left

40.008 54.2. The range of values is30 (black to 3 (white). The simula-
] tion of Fig. 3 provided the data.

and top to bottomr=14.9, 19.8, 24.7, 29.6, 34.5, 39.5, 44.4, 49.3,

10

30

J0.004

this same oscillatory behavior in all the simulations and the
explanation for it in terms of the VTD solution given in Sec.
I, it is probable that we have correctly described the nature
of the generic singularity in this class of models.

This does not mean that it is unimportant to improve the
numerical treatment. Better numerics will yield more accu-

T

FIG. 6. Behavior of(a) A andz, (b) w, and(c) x in the simu-
lation of Fig. 3.

constraint violation. Both sources of error—spatial averag-
ing and constraint violation—principally affect details of the
spatial dependence of the variables at a given time. Compari
son of simulations at different spatial resolutidiamd with
quite different initial data shows that the qualitative time
dependence at fixed spatial points is not affected by thes¢*
errors. This is shown in Fig. 9 whekg is shown on a line l‘\‘\
3 3

u=v with u,v €[0,7] vs 7 for three different spatial resolu- ¥
tions. While the features appear narrower at finer spatial(
resolution (see [24] for a similar phenomenon in Gowdy |

shows the final time step fap for two different spatial reso-
lutions. While the spatial dependence is quantitatively differ-
ent, it is qualitatively quite similar. We also see in Figs. 11
and 12, that the correlation betwe¥n andV, seen at single
spatial points in Figs. 2—6 occurs everywhere. Figure 11
shows logg V1 and logg V, on the lineu=v with u,v
€[0,27] vs 7. Clearly, one potential grows as the other de- FIG. 8. Movie frames ofp(u,v) at the same values afas in
cays at all spatial points. Figure 12 shows the final time stefFig. 7, taken from the same simulation. The range of value 29
for V,, V,, ande on the lineu=v with u,v e[0,7]. Given  (black to 3.8 (white) on a linear scale.

)
/
0'.

;..u'\‘
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=30 =20 =10 0

FIG. 11. LoggV; (left) and log, V, (right) for the lineu=uv for
u,v €[0,27] (vertical axig and 7e[10,59 (horizontal axi$ are
shown on the same scale. The simulation of Fig. 3 is used.

chine level precision in the ordinary differential equations
FIG. 9. The influence of spatial resolution. The variaplen the (ODE'S) of spatially homogeneous mixmaster moded].

line u=v for uwe[0m] (vertical axis is shown for 1he current W1) code uses{x and’Hy Eq. (3) as the sub-

€[10,53.5 (horizontal axis. The simulations of Figs. 2op), 3, ~ Hamiltonians. However, one could treat

and 4(bottom) are shown. The gray scale is similar to that in Fig. 8. 1 1

Hﬁpl)=§ p2+ EeAeabe““’w,aw,b (20)

rate spatial dependence of the metric variables. We expect to

see ever narrowing spatial structure as in Goy2§] and

magnetic Gowdyf 26] models caused by non-generic values

at isolated spatial points. This can also yield precise data for @ ) > 4

analysis of the local dynamics to characterize the “higher- Hy =gp toroe” (21

order” effects due to spatial inhomogeneity. It might also

become possible to observe and characterize any other exs a separate subHamiltonian depending on whic¥,0¥/,

ceptional behavior that might arise at isolated spatial pointss the larger. The absence pf, p,, andr from Eq. (20)
There are several possibilities for numerical improve-means that the equations fraiY) are exactly solvabléas,

ment. First among these is to incorporate into the algorithrq_.,bvious|y are those fror{ .) \7Vhi|e in the ODE case, the

the fact that a known explicit solution exists for the bouncemain advantage was four‘1Pd in the ability to take huge time

(scattering off an exponential potential. The symplectic al- steps, for the (1) case, it will be the improved accuracy of

gorithm divide; th_e Hamiltonian_ for a system into two OF the bounce solution. Another area of improvement is in spa-
more subHamiltonians with explicit exact solutions for the'rtial differencing. The current code uses fourth- and sixth-
equations of motion. The standard divisiontfis into ki- 4 4er accurate representations of first and second derivatives
netic (Hy) and potential Kiy) pieces. Including a dominant 4,6 t5 Norton[39]. These are designed to minimize the
exponential wall fromH,, in Hy has yielded tens of orders of g.6\yth of grid scale wavelength instabilities. However, when
magnitude of improvement in speed while maintaining Ma-gnplied to the Gowdy model, this scheme appears to be less
stable than the original orjd 8] based on variation of a dif-

FIG. 10. The variablep is shown for the lineu=v for u,v

e[0,7] at r=53.5 for a simulation with 256spatial grid points FIG. 12. The final time step of Fig. 11 is shown for lgy/,
(broken ling and 512 spatial grid points. These are the same simu-(broken ling, log;o V, (thick solid ling, ande (thin solid ling. The
lations as in Figs. 3 and 4, respectively. horizontal axis is the linei=v for u,v e[0,7]
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ferenced form of the Hamiltonian. We also note that spectral(1) evolution (as well as the other cases we have studied
methods have been tried but have not proven to be useful. Aas two major implications:
third place for numerical improvement would be to solve all (1) The use of cosmological boundary conditions is
three constraints rather than just the Hamiltonian constrainmerely a convenience since they do not affect the local be-
Of course, one naturally wonders if adaptive mesh refinehavior. Any collapse of a system with one spatial killing field
ment(AMR) might yield improvements in accuracy and sta-to a spacelike singularity should be local and oscillatory.
bility. Studies to date have shown that increasing spatial (2) Qualitative answers on the nature of the singularity do
resolution yields only small improvements in stability. This not require fine spatial resolutions. This means that the zero
is probably due to the fact that finer resolution only giveskilling field case should be tractable numerically. Work on
better representation of spiky features—showing them to béhis case is in progress.
narrower and steeper than they appear at coarser resolution.
In the. Gowdy S|m.ulat|ons, h_owever, it was not|_ced that, for ACKNOWLEDGMENTS
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