
PHYSICAL REVIEW D, VOLUME 58, 064023
Evidence for an oscillatory singularity in generic U„1… symmetric cosmologies onT33R
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A long standing conjecture by Belinskii, Lifshitz, and Khalatnikov that the singularity in generic gravita-
tional collapse is locally oscillatory is tested numerically in vacuum, U~1! symmetric cosmological spacetimes
on T33R. If the velocity term dominated~VTD! solution to Einstein’s equations is substituted into the
Hamiltonian for the full Einstein evolution equations, one term is found to grow exponentially. This generates
a prediction that oscillatory behavior involving this term and another~which the VTD solution causes to decay
exponentially! should be observed in the approach to the singularity. Numerical simulations strongly support
this prediction.@S0556-2821~98!08818-3#

PACS number~s!: 04.20.Dw, 04.20.Cv, 95.30.Sf, 98.80.Hw
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I. INTRODUCTION

An important open question in classical general relativ
is the nature of the singularities that form in generic grav
tional collapse. The singularity theorems of Penrose@1#,
Hawking @2,3#, and others@4,5# prove that some type of sin
gular behavior must arise in generic gravitational collapse
reasonable matter. However, these theorems do not prov
description of the singular behavior that results. Many diff
ent types of singular behavior arise in known solutions
Einstein’s equations. However, known explicit solutions te
to be characterized by simplifying symmetries. This mea
that singular behaviors found in such examples need no
characteristic of those of generic collapse. In the 1960s,
linskii, Khalatnikov, and Lifshitz~BKL ! @6–10# claimed to
have shown that, in the approach to the singularity, e
spatial point of a generic solution behaves as a sepa
vacuum, Bianchi type IX~mixmaster @11#! homogeneous
cosmology. Mixmaster cosmologies collapse as an infin
sequence of Bianchi type I~Kasner@12#! spacetimes with a
known relationship between one Kasner and the next@9,13#.
Examinations of the BKL arguments@14# and attempts to
provide a more rigorous basis for their claims@15# have until
recently yielded little evidence one way or the other for th
validity.

In the past decade, work has begun aimed at underst
ing the singularity and the approach to it in spatially inh
mogeneous cosmologies@16–18#. If Einstein’s equations are
truncated by ignoring all terms with spatial derivatives a
keeping all terms with time derivatives~for some more or
less natural choice of spacetime slicing!, the velocity term
dominated~VTD! solutions are found. If an inhomogeneo
spacetime is asymptotically VTD~AVTD !, the evolution to-
ward the singularity at~almost! every spatial point come
arbitrarily close to one of the VTD solutions@16,19#. It has
been proven that polarized Gowdy cosmologies@20,21# and
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more general polarizedT2-symmetric models@22# are
AVTD @16,23#. The main extra feature in generic Gowd
models compared to polarized ones is the presence of
nonlinear terms in the Hamiltonian which yields the dynam
cal Einstein equations. In an AVTD spacetime, these m
become exponentially small as the singularity is approach
But this requirement is only consistent with the form of t
VTD solution if a spatially dependent parameter of the VT
solution lies in a restricted range at~almost! every spatial
point. The numerical studies demonstrate that the nonlin
terms act as potentials to drive the parameter into the con
tent range@24#. Very recently, it has been proven that gene
Gowdy solutions with a consistent value of this parame
are AVTD @25#.

Recently, Weaveret al. @26# have extended the Gowd
model by inclusion of a magnetic field~and change of spatia
topology fromT3 to the solv-twisted torus@27#!. This model
is an inhomogeneous generalization of the magnetic Bian
type VI0 homogeneous cosmology which is known to exhi
mixmaster behavior@28,29#. The magnetic field causes
third nonlinear term to be present. This term grows for p
cisely that range of VTD parameter which makes the origi
two vacuum Gowdy nonlinear terms exponentially sma
This prediction of local Mixmaster oscillations is observed
numerical simulations of the full Einstein equations. Th
study provided the first support in inhomogeneous cosmo
gies for the BKL claim.

To further explore this issue, we have generalized to
study of vacuum spacetimes onT33R with one spatial U~1!
symmetry@30#. While such models are, of course, not g
neric solutions to Einstein’s equations, they are considera
more complex than any previously considered for this p
pose. Application of the methods previously described
Gowdy models leads to the predictions that~1! polarized
U~1! symmetric cosmologies should be AVTD@31# and ~2!
generic U~1! models should have an oscillatory singularit
Numerical simulations have previously provided strong s
port for the predicted AVTD singularity in polarized U~1!
models@32#. Here we shall discuss the support we have o
© 1998 The American Physical Society23-1
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tained for the local oscillatory nature of the singularity
generic U~1! models.

Unlike all previous cases discussed in this progr
@18,24,26,32#, numerical difficulties require an introductio
of spatial averaging~data smoothing! at each time step to
prevent numerical instability. This averaging destroys c
vergence of the solution with increasing spatial resolut
~see@33#!. The need for spatial averaging can be traced to
growth of spiky features seen and discussed in the Go
models@18,24#. These features also~as the bounces in mix
master itself@34#! make it necessary to explicitly enforce th
Hamiltonian constraint. If this is not done, qualitatively i
correct behavior will result. We shall argue in this paper th
despite the need for spatial averaging and our simple a
braic method of enforcement of only the Hamiltonian co
straint, the qualitative behavior of the numerical simulatio
is correct. We believe we have demonstrated that the sin
larity in generic U~1! symmetric cosmologies is spacelik
local, and oscillatory. Evidence for this is that the oscil
tions and their correlation with the exponential growth
certain nonlinear terms in Einstein’s equations are indep
dent of spatial resolution and choice of initial data.

A brief review of generic U~1! models, their VTD solu-
tion, and the prediction of oscillatory behavior are given
Sec. II. In Sec. III we describe the numerical issues a
results. Discussion is given in Sec. IV.
-
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II. THE MODEL

As discussed in more detail elsewhere@32#, U~1! symmet-
ric cosmologies onT33R are described by the metric

ds25e22w$2e2Le24tdt21e22teLeabdxadxb%

1e2w~dx31badxa!2, ~1!

wherew,ba ,z,x,L are functions of spatial variablesu, v and
time t, sums are overa,b5u,v, and

eab5
1

2 F e2z1e22z~11x!2 e2z1e22z~x221!

e2z1e22z~x221! e2z1e22z~12x!2G ~2!

is the conformal metric of theu-v plane. A canonical trans
formation replaces the twistsba and their conjugate mo
mentaea with the twist potentialv and its conjugate momen
tum r @30,32#. The dynamical variablesw and v are
respectively related to the amplitude for the1 and3 polar-
izations of gravitational waves and propagate in a ba
ground spacetime described byz, x, andL. Our coordinate
choice (N5eL, zero shift! does not significantly restrict the
generality of these models@30#. Einstein’s evolution equa-
tions ~in vacuum! are found from the variation of@32#
H5E E dudvH

5E E dudvS 1

8
pz

21
1

2
e4zpx

21
1

8
p21

1

2
e4wr 22

1

2
pL

2 12pLD
1e22tE E dudvH ~eLeab!,ab2~eLeab!,aL,b1eL@~e22z!,ux,v2~e22z!,vx,u#

12eLeabw,aw,b1
1

2
eLe24weabv,av,bJ

5HK1HV5E E dudvHK1E E dudvHV , ~3!
h

where$p,r ,px ,pz ,pL% are, respectively, canonically conju
gate to$w,v,x,z,L%. The constraints are

H 05H22pL50 ~4!

and

Hu5pzz,u1pxx,u1pLL,u2pL ,u1pw,u1rv,u

1
1

2
$@e4z2~11x!2#px2~11x!pz%,v

2
1

2
$@e4z1~12x2!#px2xpz%,u50, ~5!
Hv5pzz,v1pxx,v1pLL,v2pL ,v1pw,v1rv,v

2
1

2
$@e4z2~12x!2#px1~12x!pz%,u

1
1

2
$@e4z1~12x2!#px2xpz%,v50. ~6!

The VTD solution has been given elsewhere@32#. Here we
shall consider only the limit ast→` of this solution.~Recall
that the VTD solution is found by eliminating all terms wit
spatial derivatives from Einstein’s equations.! The limiting
VTD solution is
3-2
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EVIDENCE FOR AN OSCILLATORY SINGULARITY IN . . . PHYSICAL REVIEW D 58 064023
z52vzt, x5x0 , pz524vz , px5px
0 ,

w52vwt, v5v0 , p524vw , r 5r 0,

L5L01~22vL!t, pL5vL ~7!

wherevz , vw , x0 , px
0 , v0 , r 0, L0 , andvL.0 are functions

of u andv but independent oft. ~The sign ofvL is fixed to
ensure collapse.!

We now use the method of consistent potentials~MCP!
@17# to determine the consistency of the VTD solution w
the full Einstein equations. Ast→`, consistency requires
that all terms other than those which yield Eq.~7! should
become exponentially small. Rather than consider the eq
tions, we shall examine the Hamiltonian density which ge
erates them. Possible inconsistencies could arise from
nonlinear terms in Eq.~3! containing exponential factors
These same exponentials would, of course, be present in
stein’s equations. We first notice that the Gowdy-like ter
@18#

Vz5
1

2
px

2e4z, V15
1

2
r 2e4w ~8!

in HK become, in the limit oft→`, upon substitution of Eq
~7!

Vz→
1

2
px

2e24vzt, V1→
1

2
r 2e24vwt ~9!

and are exponentially small only ifvz.0 andvw.0. ~As in
the Gowdy case@24#, non-generic behavior can arise at is
lated spatial points wherepx and/orr vanish.!

The complicated terms inH containing the spatial deriva
tives have only two types of exponential behavior. All b
one of the terms inHV have a factor

e~22t1L22z! ~10!

~if we assumevz.0, all components ofeab are dominated by
e22z) which becomes

'e~2vL12vz!t ~11!

in the VTD limit. The remaining term is

V25
1

2
e22t1Le24weabv,avb ~12!

which becomes, upon substitution of Eq.~7!,

V2'F~x,¹v!e~2vL12vz14vw!t, ~13!

whereF is some function. The coefficients oft in Eqs.~11!
and ~13! are restricted by the VTD form of the Hamiltonia
constraint~ast→`)

H 0'2
1

2
vL

2 12vz
212vw

2'0, ~14!
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obtained by substitution of Eq.~7! into Eq.~4!. As discussed
in @32#, Eq. ~14! implies thatvL.2vz so that Eq.~11! de-
cays exponentially forvz.0 for anyvw . On the other hand
for V2 to become exponentially small withvz andvw.0, we
require vL

2 .(2vz14vw)2 which is inconsistent with Eq.
~14!. Since there is no way to makeV1 and V2 both expo-
nentially small with the same value ofvw , the MCP predicts
that eitherV1 or V2 will always grow exponentially.~Again,
non-generic behavior can result at isolated spatial po
where the coefficient ofV2 happens to vanish.!

To refine this prediction, considervz@uvwu. Substitution
in Eq. ~14! yields

vL'2vz1
vw

2

vz
, ~15!

which shows that

V2'e4vwtF~x,¹v!, V1'r 2e24vwt. ~16!

Thus we expectV1 and V2 to act as potentials for thew
degree of freedom with a bounce off either potential caus
the sign ofvw to change. The remaining variables will follow
the VTD solution with parameters which change at eve
bounce inw. Thus we predict that oscillations in thew degree
of freedom will occur at~almost! every spatial point with
different values ofvw and coefficients ofV1 andV2 .

Note that in polarized U~1! models,v5r 50 so that the
oscillations of Eq.~16! should be absent. Polarized U~1!
models should thus be AVTD. This is precisely what h
been found in numerical simulations of these models@32#.

III. RESULTS AND NUMERICAL ISSUES

In order to test the predictions of the previous section,
performed numerical simulations of the Einstein evoluti
equations obtained from the variation of Eq.~3!. We use a
symplectic PDE solver which has been described in gr
detail elsewhere@18,32,35–39#. In our previous study of po-
larized U~1! models, we demonstrated convergence of
solutions at the expected order with increasing spatial re
lution. Unfortunately, the re-introduction of thev degree of
freedom leads to the growth of spiky features absent in
polarized case. The origin of the spiky features is discus
elsewhere@24# but is related to the non-generic behavior
isolated spatial points. The spiky features which our meth
easily treat in one spatial dimension@18# cannot be modeled
sufficiently well in two spatial dimensions to prevent n
merical instability. However, these instabilities can be su
pressed in two ways. First, the simulations are begun at
'10 or so to reduce the influence ofHV from Eq. ~3!. ~This
has the disadvantage, as in homogeneous mixmaster sp
times@40#, of increasing the time interval between bounce!
Second, at every time step, all ten variables are replace
their spatial ‘‘average.’’ Any functionf (u,v) is replaced by
3-3
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f̄ ~u,v !5c0f ~u,v !1(
i 51

5

ci@ f ~u1 iDu,v !1 f ~u,v1 iDv !

1 f ~u2 iDu,v !1 f ~u,v2 iDv !24 f ~u,v !# ~17!

where c051, c154867/38 400, c2521067/28 800, c3
521237/691 200,c45787/345 600, c5531/691 200 and
Du, Dv are the grid spacings. This scheme is sixth-or
accurate~i.e. the difference betweenf̄ (u,v) and f (u,v) is
seventh order in the grid spacings—actually eighth order
to symmetry!. Wheref (u,v) is smooth, the averaging has n
effect. However, it does spread out grid scale size spiky
tures. This scheme is based upon, but differs from, one g
by Norton @39#. Unfortunately, the averaging process d
stroys the convergence seen in the polarized case~by exami-
nation of the deviation of the Hamiltonian and momentu
constraints from zero@33#!, as can be determined by addin
averaging to polarized U~1! simulations. We shall argue late
that despite the absence of convergence in this sense
qualitative behavior is still independent of spatial resolutio
We shall further argue that the correct qualitative behavio
sufficient to determine the nature of the singularity in gene
U~1! models.

In Sec. II, we showed that the behavior of the potentials
HV was restricted by the VTD limit of the Hamiltonian con
straint ~14!. This means that it is essential to preserve
Hamiltonian constraint during the simulation. Failure to p
serveH 050 means thatpL would have thewrong depen-
dence onpz and p. This could change the sign of the coe
ficient of t in Eq. ~13!. While solving the constraints initially
is sufficient analytically, there is no way to guarantee that
differenced form of the constraints is preserved during a
merical simulation of the Einstein evolution equation
While in the polarized U~1! case, the constraints can be se
to converge to zero@32#, this is no longer true in generi
U~1! simulations with spatial averaging. To preserve the c
rect relationships amongvL , vz , andvw from Eq. ~14!, we
therefore solveH 050 ~4! for pL.0 algebraically at each
time step. We note that this is the precise analog of
procedure used in mixmaster itself@34#. However, spatial
averaging must be performed on this newpL which then
yields a ~small! non-zero value forH 0. If we assume that
pL5pL

true1D is the measured value, then Eq.~14! can be
linearized in the errorD and solved to yield

D52
H 0

pL
, ~18!

whereH 0 is the measured, erroneous value of the Ham
tonian constraint. Substitution ina52vL12vz14vw , the
coefficient oft in V2 , yields a measured and true value f
a. If the productaa true is positive everywhere for allt, the
errors due to averaging cannot have changed the qualita
behavior since that just depends on the sign ofa. Examina-
tion of the simulation data showsaa true.0 at ~almost! all
spacetime points. Occasionally, early in the simulation, a
isolated points—in space and time—will show a sign chan
due to this error.
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The momentum constraints~5! and~6! are freely evolved
and do not remain especially small. However, they cont
only spatial derivatives. Errors in the momentum constrai
would therefore generate errors in the spatial dependenc
the variables at a given time but not in their qualitative tim
dependence at each spatial point. A measure of the const
convergence vst is shown in Fig. 1. The freely evolvedHu
(Hv'Hu) is actually larger at finer spatial resolution. Th
may be attributed to the larger spatial gradients observe
finer spatial resolution@24#. On the other hand, the error i
the Hamiltonian constraint is converging to zero.

The restricted initial value solution for generic U~1! mod-
els has been described elsewhere@32#. To solve the momen-
tum constraints, we setpz5px5w,a5v,a50 and pL

5ceL. For c.0 sufficiently large, this allows the Hamil
tonian constraint to be solved algebraically forp ~case A! or
r ~case B!. Four functions,x, z, L, andr ~case A! or p ~case
B!, may be freely specified. The detailed values used in
numerical simulations are given in the figure captions. Wh
we shall present results for only two sets of initial data, t
results are typical of all initial data and may be regarded
be characteristic of generic initial data.

FIG. 1. Convergence testing of constraints. The average va
of the momentum constraintHu ~broken line! and Hamiltonian con-
straintH 0 ~solid line! are displayed vst for generic vacuum U~1!
symmetric model simulations with 2562 ~nothing! and 5122 ~tri-
angles! spatial grid points.~See Fig. 2 for initial data.!

FIG. 2. Oscillatory behavior at a typical spatial grid point. Th
potentialsV1 and V2 and w are shown vst for a simulation with
1282 spatial grid points. The initial data areL5sinu sin v, x5z
5cosu cosv, w5v50, pL514eL, r 510 cosu cosv, and pz

5px50. The Hamiltonian constraint is solved forp. The initial
value oft is 10.
3-4
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EVIDENCE FOR AN OSCILLATORY SINGULARITY IN . . . PHYSICAL REVIEW D 58 064023
Figures 2–4 show the behavior ofw, V1 , andV2 for three
spatial resolutions for case A initial data. In all cases,
behavior is exactly as predicted in Sec. II. Figure 5 show
typical evolution for case B initial data, again showing t
predicted behavior. For the simulation of Fig. 3, the rema
ing variablesv, z, x, and L vs t are shown at the sam
spatial point in Fig. 6. Here we see approximate VTD beh
ior in v, z, andL with parameters changing at the times
thew bounces. While the behavior ofx does not appear to b
as predicted, we note from Eqs.~7!, ~10!, and~12! that only
the behaviors ofz andL are important to the local dynamic
since only they appear in the arguments of exponentials
nally, we display ‘‘movie frames’’ ofHV(u,v) andw(u,v)
vs t in Figs. 7 and 8. SinceHV is shown on a logarithmic
scale andw on a linear one, Fig. 7 is dominated byV2 , while
Fig. 8 indicates the behavior on a logarithmic scale ofV1 .
The predicted behavior that eitherV1 or V2 but not both be
large is clearly seen in Figs. 7 and 8. The bounces inw occur
at different spatial points at different times. This eventua
will lead to an increasingly complex spatial structure@41#.

IV. DISCUSSION

Numerical simulations of generic U~1! models demon-
strate that the evolution toward the singularity is local a
oscillatory due to the alternate exponential growth and de
of V1 and V2 . This behavior requires that the time depe
dence of the coefficients ofV1 andV2 and the coefficients o

FIG. 3. Oscillatory behavior at a typical spatial grid point. T
same initial data as in Fig. 2 but with 2562 spatial grid points.

FIG. 4. Oscillatory behavior at a typical spatial grid point. T
same initial data as in Fig. 2 but with 5122 spatial grid points.
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t in the approximate forms ofV1 andV2 be negligible~i.e.,
act on a much slower time scale! compared to the exponen
tial time dependence obtained from the VTD solution. T
qualitative behavior seen in the simulations indicates t
this requirement is met~almost! everywhere sufficiently
close to the singularity. Exceptional behavior at isolated s
tial points similar to that found in simpler models@24,26#
cannot be studied with the current numerical code. Exc
tional behavior arises at isolated spatial points because
of the exponential potentials which causes the generic be
ior is absent. While we believe we have identified the corr
exponential behavior, the data we have on spatial dep
dence at a given time is probably not sufficiently reliable
conclusions about ‘‘higher order’’ effects.

The explanation for the local nature of the evolution
easy to obtain. From the metric~1!, we see that the distanc
D l traveled by a light ray away from the singularity fromt
5` to t5t0 ~coordinate horizon size! is

D l' È t0
eL/21z2tdt, ~19!

where the VTD limit ofeab has been used. Simulations dem
onstrate that the VTD solution may be used in Eq.~19! to
give D l→0 for the coordinate horizon size@21# as t0→`.
Since the horizon size is decreasing, the spatial points
unable to communicate with each other. But such commu
cation occurs through changing spatial derivatives. If
communication can occur, the spatial derivative contain
terms must be dynamically unimportant.

The primary question then is the extent to which the n
merical results presented here are believable as evidenc
the oscillatory nature of the singularity. It is easy to sho
e.g., by comparing polarized U~1! simulations with and with-
out spatial averaging, that spatial averaging ruins conv
gence tests. Furthermore, non-zero values of the momen
constraints~5! and ~6! indicate the presence of errors in th
variables and their spatial derivatives.~Since rescaling the
coordinates by a constant yields rescaled values of the
straints without changing the behavior of the solutions, o
cannot attach any significance to the actual magnitude of

FIG. 5. Oscillatory behavior at a typical spatial grid point. Th
same as Fig. 2 but with Case B initial data:L5sinu sin v, x5z
5cosu cosv, w5v50, pL54eL, p5cosu cosv, and pz5px

50. The Hamiltonian constraint is solved forr . The initial value of
t is 10.
3-5
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BEVERLY K. BERGER AND VINCENT MONCRIEF PHYSICAL REVIEW D58 064023
constraint violation.! Both sources of error—spatial avera
ing and constraint violation—principally affect details of th
spatial dependence of the variables at a given time. Comp
son of simulations at different spatial resolutions~and with
quite different initial data! shows that the qualitative tim
dependence at fixed spatial points is not affected by th
errors. This is shown in Fig. 9 wherew is shown on a line
u5v with u,vP@0,p# vs t for three different spatial resolu
tions. While the features appear narrower at finer spa
resolution ~see @24# for a similar phenomenon in Gowd
models!, the time development of the simulations is rema
ably consistent and independent of resolution. Figure
shows the final time step forw for two different spatial reso-
lutions. While the spatial dependence is quantitatively diff
ent, it is qualitatively quite similar. We also see in Figs.
and 12, that the correlation betweenV1 andV2 seen at single
spatial points in Figs. 2–6 occurs everywhere. Figure
shows log10 V1 and log10 V2 on the line u5v with u,v
P@0,2p# vs t. Clearly, one potential grows as the other d
cays at all spatial points. Figure 12 shows the final time s
for V1 , V2 , andw on the lineu5v with u,vP@0,p#. Given

FIG. 6. Behavior of~a! L andz, ~b! v, and~c! x in the simu-
lation of Fig. 3.
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this same oscillatory behavior in all the simulations and
explanation for it in terms of the VTD solution given in Se
II, it is probable that we have correctly described the nat
of the generic singularity in this class of models.

This does not mean that it is unimportant to improve t
numerical treatment. Better numerics will yield more acc

FIG. 7. Movie frames of log10HV(u,v) at ~from right to left
and top to bottom! t514.9, 19.8, 24.7, 29.6, 34.5, 39.5, 44.4, 49
54.2. The range of values is230 ~black! to 3 ~white!. The simula-
tion of Fig. 3 provided the data.

FIG. 8. Movie frames ofw(u,v) at the same values oft as in
Fig. 7, taken from the same simulation. The range of value is227
~black! to 3.8 ~white! on a linear scale.
3-6
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EVIDENCE FOR AN OSCILLATORY SINGULARITY IN . . . PHYSICAL REVIEW D 58 064023
rate spatial dependence of the metric variables. We expe
see ever narrowing spatial structure as in Gowdy@24# and
magnetic Gowdy@26# models caused by non-generic valu
at isolated spatial points. This can also yield precise data
analysis of the local dynamics to characterize the ‘‘high
order’’ effects due to spatial inhomogeneity. It might al
become possible to observe and characterize any othe
ceptional behavior that might arise at isolated spatial poi

There are several possibilities for numerical improv
ment. First among these is to incorporate into the algorit
the fact that a known explicit solution exists for the boun
~scattering! off an exponential potential. The symplectic a
gorithm divides the Hamiltonian for a system into two
more subHamiltonians with explicit exact solutions for th
equations of motion. The standard division ofH is into ki-
netic (HK) and potential (HV) pieces. Including a dominan
exponential wall fromHV in HK has yielded tens of orders o
magnitude of improvement in speed while maintaining m

FIG. 9. The influence of spatial resolution. The variablew on the
line u5v for u,vP@0,p# ~vertical axis! is shown for t
P@10,53.5# ~horizontal axis!. The simulations of Figs. 2~top!, 3,
and 4~bottom! are shown. The gray scale is similar to that in Fig.

FIG. 10. The variablew is shown for the lineu5v for u,v
P@0,p# at t553.5 for a simulation with 2562 spatial grid points
~broken line! and 5122 spatial grid points. These are the same sim
lations as in Figs. 3 and 4, respectively.
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chine level precision in the ordinary differential equatio
~ODE’S! of spatially homogeneous mixmaster models@34#.
The current U~1! code usesHK andHV Eq. ~3! as the sub-
Hamiltonians. However, one could treat

H w
~1!5

1

8
p21

1

2
eLeabe4wv,av,b ~20!

or

H w
~2!5

1

8
p21

1

2
r 2 e4w ~21!

as a separate subHamiltonian depending on which ofV1 ,V2
is the larger. The absence ofpL , pz , and r from Eq. ~20!
means that the equations fromH w

(1) are exactly solvable~as,
obviously are those fromH w

(2) .) While in the ODE case, the
main advantage was found in the ability to take huge ti
steps, for the U~1! case, it will be the improved accuracy o
the bounce solution. Another area of improvement is in s
tial differencing. The current code uses fourth- and six
order accurate representations of first and second deriva
due to Norton@39#. These are designed to minimize th
growth of grid scale wavelength instabilities. However, wh
applied to the Gowdy model, this scheme appears to be
stable than the original one@18# based on variation of a dif-

.

-

FIG. 11. Log10V1 ~left! and log10 V2 ~right! for the lineu5v for
u,vP@0,2p# ~vertical axis! and tP@10,59# ~horizontal axis! are
shown on the same scale. The simulation of Fig. 3 is used.

FIG. 12. The final time step of Fig. 11 is shown for log10 V1

~broken line!, log10 V2 ~thick solid line!, andw ~thin solid line!. The
horizontal axis is the lineu5v for u,vP@0,p#
3-7
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ferenced form of the Hamiltonian. We also note that spec
methods have been tried but have not proven to be usefu
third place for numerical improvement would be to solve
three constraints rather than just the Hamiltonian constra
Of course, one naturally wonders if adaptive mesh refi
ment~AMR! might yield improvements in accuracy and st
bility. Studies to date have shown that increasing spa
resolution yields only small improvements in stability. Th
is probably due to the fact that finer resolution only giv
better representation of spiky features—showing them to
narrower and steeper than they appear at coarser resolu
In the Gowdy simulations, however, it was noticed that,
any given simulation, there is a threshold spatial resolut
If the resolution is coarser than that, the code will blow
before the AVTD regime is reached everywhere. It is the
fore possible that we have not yet reached this threshol
the U~1! case and thus would be helped by AMR. Howev
in the generic U~1! models, there is no AVTD regime. Thu
it is not clear if any spatial resolution could yield a simul
tion which could run indefinitely without crashing.

As a final note, we remark that the local nature of t
n-

,

o
.
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U~1! evolution ~as well as the other cases we have studi!
has two major implications:

~1! The use of cosmological boundary conditions
merely a convenience since they do not affect the local
havior. Any collapse of a system with one spatial killing fie
to a spacelike singularity should be local and oscillatory.

~2! Qualitative answers on the nature of the singularity
not require fine spatial resolutions. This means that the z
killing field case should be tractable numerically. Work o
this case is in progress.
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