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The 3-level leapfrog time integration algorithm is an attractive choice for numerical relativity simulations
since it is time symmetric and avoids non-physical damping. In Newtonian problems without velocity depen-
dent forces, this method enjoys the advantage of long term stability. However, for more general differential
equations, whether ordinary or partial, delayed onset numerical instabilities can arise and destroy the solution.
A known cure for such instabilities appears to have been overlooked in many application areas. We give an
improved cure(“deloused leapfrog’j that both reduces memory demarndsportant for (3+1)-dimensional
wave equationfsand allows for the use of adaptive time steps without a loss in accuracy. We show both that
the instability arises and that the cure we propose works in highly relativistic problems such as tightly bound
geodesics, spatially homogeneous spacetimes, and strong gravitational waves. In the gravitational wave test
case(polarized waves in a Gowdy spacetintee deloused leapfrog method was five to eight times less CPU
costly at various accuracies than the implicit Crank-Nicholson method, which is not subject to this instability.
[S0556-282(198)07818-1

PACS numbsg(s): 04.25.Dm, 04.30.NKk, 95.30.5f

I. INTRODUCTION many orbital periods, so that numerical algorithms with long
term stability and freedom from unphysical damping are es-
Numerical relativity comprises the dynamical solution of sential.
the Einstein equations on a computer, allowing the construc- Leapfrog methods are often used for the time integration
tion of spacetimes that cannot be studied by purely analytiof equations in numerical relativity and other branches of
methods. A major application of numerical relativity is the computational physics. The 3-level leapfrog method has the
modeling of astrophysical sources of gravitational radiationmportant property of being symplectic. In the context of a
such as binary black ho[d] or neutron star inspirdR], and  Hamiltonian system for which the differential equation has a
nonspherical stellar collap$8]. The continued development symplectic structurgconjugate pairing of coordinates and
of gravitational wave detectors, with the expectation thatmomentg, this means that the difference equations also have
ground-based interferometers such as the Laser Interferomestich a structure and the integration step in the difference
ric Gravitational Wave Observatof{IGO) [4], VIRGO [5]  equations is a canonical transformation. With a symplectic
and GEO60Q6] will begin taking data in a few years, gives integrator, all the Lagrangian integral invariants, including
these studies a high priority. Numerical relativity is also im-phase space volume, are exactly conserved by the integration
portant for studying the dynamics of pure gravitationalscheme. Since the leapfrog method is time symmetric and
waves|[ 7], inhomogeneous cosmologifg], the behavior of maintains good conservation of physically conserved quanti-
cosmological singularitie$9,10], and critical behavior in ties[12-14, it has a well-deserved reputation in the context
general relativity[ 11]. of Newtonian mechanics. Unfortunately this reputation is
All of these endeavors require accurate numerical algogenerally not merited when velocity dependent forces are
rithms to correctly model the physics of curved spacetimemet. In the integration of systems with such forces, this
Simulations in three spatial dimensions plus time are expenscheme is well-known to be susceptible to numerical insta-
sive in terms of both CPU usage and memory requirementsility (e.g.,[15-19, and references thergjreven under con-
and thus demand numerical methods that are efficient in bottlitions where local linearization analysis anticipates stability.
these regards. Memory limits, however, are less elastic in th&€his instability occurs in the integration of both ordinary and
short term than CPU time constraints. Thus a three-level segartial differential equations and, in the case of partial dif-
ond order algorithm may be more appropriate than a fasteferential equations, is independent of the mesh size used for
high order algorithm which can only be implemented onthe spatial discretizatiofiL7].
smaller problems. Also, modeling the inspiral of binary An understanding of the origin of this instability was
black holes or neutron stars requires evolving the system fagiven by Sanz-Serngl7] who pointed out that the leapfrog
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scheme approximates not merely the intended differentiahe relationship is not as straightforward as first appears. The
equation system but a larger “augmented” system containdiscretization given in Eq$2) has®(At?) accuracy and is a
ing additional, nonphysical, parasitic modes. Since the leap3-level method, in that knowledge of data on time levels
frog method is symplectic as applied to the augmented sysand n+1 is needed to compute the result on time lenel
tem [20], the advantages of symplectic methddse[12])  +2. The 3-level leapfrog algorithifEgs. (2)] is symplectic
would be attained to the extent that the parasitic modes reand time reversible, which means that it provides a Hamil-
main zero numerically, as they do in an exact solution of theonian (damping fre¢ model of an underlying Hamiltonian
augmented systerf21]. Aoyagi and Abe[18,27 identified  differential equation systefi2,14.

the diagnostic symptom of this instability as a sawtooth os- Equations (1) arise in many physical applications in
cillation or alternation of values between odd and even stepwhich z comprises both position and velocity data

of the integration, and supplied a cure—a Runge-Kutta_ (1 ;). For example, the motion of a particle of mags

smoother to suppress this _osmllquon. Sgbsequ_ent W](. under the action of a forcé=ua is given by the set of
shows these phenomena in ordinary differential equations .

. S equations
where the delayed onset of this instability is clearly apparent.

We have studied the use of the 3-level leapfrog method in

numerical relativity. In this worksee alsd21]), we extend ﬂ:l;

the ideas of Aoyagi and collaborators for removing the un- dt 3)
stable parasitic modes, yielding an algorithm that reduces the

number of time levels of data that must be stored by the dv .

code, allows the timestep to be changed, and thus is better a=a,

suited to long-term integration of large scale numerical sys-

tems. Although we concentrate on the ADM-3 formalism

for numerical relativity, our methods are quite general an(fvherer is the position vector of the particle. The 3-level

thereby applicable to a wide range of problems in computa—eapfrog discretization of Eqe3) gives

tional physics. Section Il describes the source of the 3-level

Fn+l_ “n—1 o
leapfrog instability. Section Ill presents our algorithm, F=rtT 4 20 At (4)
dubbed “deloused leapfrog,” for removing instabilities that . R .
may arise in 3-level leapfrog integrations. In Sec. IV, we " l=p"" 14 2a"At.

summarize the 3 1 formalism of numerical relativity and in

Sec. V introduce three simple classes of Gowidyspace- For a particle moving in a Newtonian gravitational fieifl
times. In Sec. VI, we use these models as relativistic testbeds gn(n) and the system given by Eqd) is stable and thus
for the deloused leapfrog technique and evaluate the numergyjtaple for long time integrations. However, if there are so-

cal efficiency of deloused leapfrog by comparing its cost- “ ; yo N
effectiveness with those of the staggered leapfrog and Cranl?—a!ed velocity - dependent forces” in  whicha

Nicholson techniques. A summary and discussion of the- a'(r",v"), such as arise for a particle moving under the
results of the stability and efficiency tests of the delousednfluence of a magnetic field or a general relativistic gravita-

leapfrog technique is given in Sec. VII. tional field, the 3-level leapfrog schenjEgs. (4)] can be-
come unstable. As we shall explain below, nonphysical para-

sitic modes can arise during the time integration and
eventually destroy the numerical solution.
We begin by considering the system of differential equa- Notice that the leapfrog algorithifEgs. (2)] gives the
tions value of 2"*? at, say, the even time level+2 in terms of
the valuez" at the even leveln and the source term
%:F(z,t). (1) F@E""L,t""1) at the odd leveln+1. It also requires the
dt specification of initial data at two time levelg® and 7!,
which is twice as much as the original first-order differential

[Egs.(1)] to describe the leapfrog instability and its cure in equa_ti_on _syste_m requires. This doubling O.f initial c_ondition
this section and the next, the techniques we outline appl)?peuflcauons is the clue to the fact that this numerical algo-
equally well to systems opartial differential equations in fithm usingz has twice as many degrees of freedom as does
which the time integration is carried out using the leapfrogthe physical system where states are specified. the al-
method; see Sec. VI below. The 3-level leapfrog discretizadorithm can be expressed, with a change of notation, by

Il. THE 3-LEVEL LEAPFROG INSTABILITY

Although we use a system ofdinary differential equations

tion of this system is writing the solution at the even timestepsz%=x>" and at
the odd timesteps a&"*t=y?"*1. With this, Egs.(2) be-
En+2=2n+2F(En+1,tn+l)At, (2) come
where we assume a constant timesi¢between time levels X2+ 2=x2N4 2F(y2n 1 g2 LAt
n and n+1. The distinction betweea in the differential ®)
equation and in the difference equation is a warning that y2N 8=yt 1y o (x2NH2 120 2) At,

064022-2



STABLE 3-LEVEL LEAPFROG INTEGRATION N . .. PHYSICAL REVIEW D 58 064022

Sanz-Serndl17] (concisely summarized if23]) notes that sumption$ had been given earlier by Sanz-SefiZ,23
Egs.(5) can be considered to be a consistent single-step dissased on his proof that the leapfrog scheme preserves vol-
cretization of a larger system of equations for the even soluume in the augmented state space even when the original

tionsx and the odd solutiong, system is not Hamiltonian. Sanz-Serna has an elementary
q example,dz/dt=2z?, z(0)=—1, with a two dimensionatw
_X:F(y t) augmented phase spaffeig. 1 in [17]); this shows all the
dt '

6) qualitative features of the delayed onset instability typical of
numerical catastrophes that generally result from using leap-
ﬂ —F(x,t) frog in nonlinear systems with velocity dependent forces. In
dt e this examplegverysolution divergesZ— o) if at any point
w#0, althoughz—0 ast—o for the physicalw=0 solu-
tion. Numerical experiments with leapfrog follow the diver-
gent solutions of this analytical example singe 0 at some
point arises either from imperfect initial conditions, roundoff
error, or discretization error. Hence, nonlinear interaction or
lP_arametric amplification of linear interaction between the

tions to the augmented difference system of E@, the physical and parasitic modes of the solution to the leapfrog

3-level leapfrog integrator alone cannot distinguish betweeffifference systgn[\Eqs.(Z).] can cause the para§itic modg to
them and the physical solutions. grow to the point where it destroys the numerical solution.

Since the physical solutions of Eg) havex=y it is However, if the augmgnted q'ifference systE';Eqs.(Z) or
natural to define (5)] decouples, no such instability occurs. To illustrate what
it means for these equations to decouple, consider the aug-
X=Z+WwW, Yy=z—Ww, (7) mented difference system for Edqd), in the absence of ve-

- o locity dependent forces. In that case one carx#e(F, J) and
so that thew measure the parasitic deviations from the de- :(~ ~) to find that the(event, odd ~) svstem does not
sired physical solutiong. One can rewrite Eq<7) in finite y={av ' v) sy

difference form, using the definitions preceding E@®, as ~ couple to the(odd g, evenu) system. Thus the augmented
difference system consists of two interlaced, noninteracting
="+ (—1)"W". (8)  copies(evenr, oddv) and(odd g, evenu) of the physical
system. Each of these two systems is of the Newtonian form
The solutionz" to the leapfrog difference systefigs.(2)]  where the leapfrog scheme has shown itself to be remarkably
thus contains both physical and parasitic modes”. With ~ stable.

this notation, the augmented differential equations can be Thus, as mentioned above, in a 3-level leapfrog integra-
written as[19] tion of Egs.(3) stability can generally only be anticipated in

the absence of velocity dependent forces. In this case, the
z parasitic mode is generally still present as the difference be-
2qi ~Fz=wh+Fz+w), tween two interlaced numerical solutions of E(®, but will
) remain small unless the physical system is highly sensitive to
dw small differences in initial conditionsi.e., chaoti¢. Note
ZazF(z—w,t)—F(erw,t). that it is customary, in the absence of velocity dependent
forces, to omit theﬁ and U variables from the integration
We note that when these are expanded in powens ohe  Scheme, yielding the staggered leapfrog schesee below.
has Alternatively, in a code based on Ed®), one could in this
case solve for two independent solutions approximating Egs.

(1) based on distinct initial conditions forr v) and for
10 (@u).
(10 A stable 3-level leapfrog integration of a system of equa-
tions containing “velocity dependent forces” can be main-
tained if the growth of the parasitic mode can be controlled.
When a constraimv=0 is adjoined to Eqs(9) they reduce
whereDF is the matrix of partial derivativesF;/dz; . to the original physical system of E§l). This constraint,
The second of Eqg10), ignoring the cubic and higher when imposed initially, is preserved by the differential equa-
terms, is a linear equatigim w) which from the time depen- tion system9) sincew= 0 givesdw/dt=0. But in numerical
dence inDF(z(t),t) easily gives rise to parametric amplifi- implementations errors will inevitably introduce nonzevo
cation[24] leading to growth of the parasitic modes Such  The cure proposed by Aoyagi and AHEB,22 is to reimpose
parametric amplification was clearly diagnosed in a usefuthe constraintw=0 as necessary to suppress the parasitic
example[18]. A still stronger argument for the growth of mode. Their method for doing so is based on the identifica-
parasitic modegwithout the above linear perturbation as- tion of w via its signature even-odd timestep alternation in

with timestep At. Equations(6) are known as the aug-
mented systemil7,23.

If zis a solution of Eqs(1), it gives a solution of Eq¥6),
the augmented system, &s-z andy=2z. In general, how-
ever, other(unphysical solutions will be possible. Since
these unphysical, parasitic solutions can arise as valid sol

dz_ 5
T F(zt)+O(w?),

dw
gt =~ DF(zt)-w+ O(w?)
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15 B v— "o compare with that of our deloused leapfrog algorithm in Sec.
10 |- 12.0 17 4 Even Steps : VI), the staggered leapfrog and Crank-Nicholson techniques,
s 100 e(: do not suffer from the instability present in the 3-level leap-
= (L s : frog algorithm. In both cases this happens because neither of
- b T osor these algorithms augments the phase spacstate spadef
= - the problem by adding new degrees of freedom not found in
B TR the physical system. To illustrate this, we will continue to
'15_15'_10' _|5 ' é ' 5' ' 1|() . 00 e 7 1w s Use the integration of Eq€3) as the example upon which we
WM M base our outline of these integration algorithms.

As mentioned above, the even and odd degrees of free-
FIG. 1. The numerical integration of the geodesic equations fordom in Egs.(3) can be writterx= (F J) andy= (ﬁ z;). But

a particle in the Schwarzschild spacetime using the 3-level leapfro hen the f | leta=a() b lculated ind dentl
technique. The geodesic equation was solved in rectangular coordi- ?n e force law leta=a(r) be calculated independently

nates from a 3D Hamiltoniaisee[21]). The particle was given Of v, the (r,v) pair of variables are not coupled to the, ()

initial conditions such that it should remain on a circular orbit of pair, so this second pair can be dropped from the numerical
radiusr,=10M and have an orbit period of 188. In each frame, algorithm. This leads to the methodology of the staggered
the data is plotted on every twenty-third timestégg£0.1M). The  leapfrog algorithm, which defines the variables it evolves on
instability manifests as the solutions on o@ircles and eventri-  alternating time levels only. A staggered leapfrog integration

angles timesteps diverge. Although the integrator appears to p‘bf Egs.(3) would, for example, evaluate onfyat even steps

stable at early times, the parasitic mode is present from the begin- > .
ning, on a much smaller scale than is used in these plots. Thgnd onlyv at odd steps. Itis then customary to renumber the

integrator failed and the code crashed aftes orbital periods(a) steps so that the even steps are integer values, the odd steps

The particle orbit in thex-y plane.(b) The magnitude of the parti- half integer:
cle’s position vector as a function of time.
Fn+1:|7n+l;’n+l/2At'
sign, which is evident in Eq(8). As noted in[21], this (11)
method is very efficient since, from the power series expan- . N .
sions in Eqgs.(10), the parasitic modes need merely be p"tIR2=y T2y gntIA¢,

suppressed to single precision accuracy to assure that they do
not contaminate the physical solutiarin double precision. where the constanit is the difference between two con-
We will return to the cure in Sec. Il below. secutive integefor half-integey time levels[25]. The initial

Note that the instability under discussion here is not regngitions are specified by givingf‘( 51/2)_ This method is
lated to the “mesh-drifting” instability inherent to non- ime_symmetric and symplectic and thus avoids nonphysical

Qissipative leapfrog integrations of _partial differential €qua-gamping[12,13. Here, with velocity independent Newton-
tions [25]. As has been emphasized above, the 3-Ieve;an forces, one has a 2-level methétie., only theg com-
leapfrog instability can arise in integrations of both ordinary ' ) R - only thev
and partial differential equations and results from the tempoPOnents are used in upgatlng thie, and only ther compo-
ral, not spatial, discretization of the method. nents in updating thes’s.] This leapfrog method gives

To demonstrate this instability, we have used the 3-levebecond order accuracy at the same computational cost as the
leapfrog method to numerically integrate the geodesic equdirst order Euler method.
tions for a particle moving on a circular orbit of radiugin When a depends orv as well asr, a method such as
the Schwarzschild_ spacetime. In the Iirq';»M, We recover  eyiranolation [e.g., Jn+l:(3/2)5n+1/2_(1/2)5n—1/2] is
the usual Newtonian equations of motifigs. (3)]. In this needed to calculate at the integer(or even levels; this
case, the leapfrog method produced a circular orbit that Was_ erally destrovs the time-s n?metric nature of t,he al0o-
stable for ten thousand orbital periogdsefore we terminated 9 y y ne-sy L 9

: - .. rithm and leads to errors in conserved quantities.
the run. However, asr, is decreased, general relativistic . . ) : S _
S . ) The Crank-Nicholson technique is an iterative integration

effects give rise to terms that behave like velocity-dependent . X X . )

: . o .~ algorithm[26]. For the system given in Eq&3), the iteration
forces and the integrator fails to maintain a stable evolu'uonC cle is initialized by settin
Figure 1 shows the results of the geodesic integration for the” y 9
caser,=10M. The particle orbit shown in Fig.(&) initially
appears to be stable; eventually the instability manifests as
the solutions on the even and odd timesteps diverge. Figure
1(b) shows the magnitude of the particle’s position vector asThen data at the half integer leveis- 1 is determined via
a function of time; again the even and odd solutions clearly

>

Fn+1:|7n, Un+1:l;n_ (12)

diverge as the parasitic mode grows to destructive levels. R 1 . .
Although the parasitic mode is present from the beginning of rnt = E(V”HJF r",
the calculation, it takes a number of orbits before it grows to (13
noticeable levels; the instability then grows catastrophically,
causing the integration to crash after about six orbits. on+l2_ E(JnJrl_H;n)
Two other integration methodsvhose efficiency we will 2 '
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Next, the values of the data at level 1 are updated ac- Step(1) use RK2 withét=— 1At
cording to . _ L.
to get rhga’?, vt from r"o",
I?n-%—l:IZ’n_*_ "n+1/2At’ ]
v (14)  Step(2) use RK2 withst=+ 3 At
v i=pN4ant2A, to get rl V2 5012 from -1 Y
wherea"* 12 has been computed based on the data given byhere, for examplerg i represents data on levet- 3 that
Egs. (13). The steps given by Eq$13) and (14) are then comes from the od(_:i level. We now hgve datalfrom both
repeated until the relative differences of the values of each opdd and even solutions at the same time lavel;. Equa-
the components af"* andu™* ! between adjacent iteration tions(7) are then utilized to obtain the dat& 2 andy"~ 2
cycles have each converged to the desired level of accuractfat contain only the physical mode:

This method requires the specification of initial dafaand

v°. It has accuracy)(At?); it is time symmetric if the itera-
tion converges to machine precision. pn-V2= L (g2, pn-1i2

Both the staggered leapfrog and the Crank-Nicholson al- 2\7even = odd /-
gorithms avoid the instability arising from an augmentedyjity the parasitic mode thus eliminated at levet § (i.e.,
phase space. One sees in each case that there is a singlgn the constraintv=0 enforced, we now use RK2 to step
physical pair of values at each timestep. These arg,o gata a half-step forward and backward:
(r",v"*?) for staggered leapfrog and™v") for Crank-

Nicholson. Other quantities such a8 !in staggered leap-

frog or the half integer values in Crank-Nicholson are tem-
porary variables computed from the physical data. Thus no
extraneous degrees of freedom, like tlwequantities in 3- : P LAy
level leapfrog, appear. Step(5) use RK2 withét' = —5At

n—1/2_1,-n—-1/2, “n—1/
Step(3) setr" =3 (repen toad )

Step(4) use RK2 witht’ =+ FAt’

to get r",v" from r"-12 "2

to get r"~ 1"t from "2 n12
Ill. DELOUSED LEAPFROG
, N . Since RK2 does not suffer from the leapfrog instabilifigr
_The instability in the 3-level leapfrog scheme is ideally \he same reason as that given in the preceding section for the

eliminated with a technique that retains as much of the SYMgtapility of the staggered leapfrog and Crank-Nicholson
plectic character of the 3-level scheme as possible. Aoya%ethods, no parasitic mode is introduced by its use. With
and Abe[18,22 give such a prescription to remove the para-yis «geloused” data at levels andn—1, which contain
sitic modes before they grow large enough to destroy they the physical modes, the 3-level leapfrog integration is

calculation. This method relies on the Runge-KURK) g med. This prescription can be coded so that no more than
method[25] and is called the RK smoothegiThe usual RK ~ - .
three levels of data for andv need be kept in memory at

algorithm is fourth order; however, Aoyagi and Abe do not ; o . ; . .
state what order RK scheme is used in their smootfdrey any one time, Wh.'Ch IS an |mport_ant 90n5|de_rat|on when itis
compare it to a less effective second order smoother sug"lpplled to 31l dlmenS|o[1aI partial differential equations.
gested by a colleague. We have extended the work of Aoyagi Steps(é}) and (5) of th.'s prppedure can a!sp be used to
and Abe to produce a second order algorithm which require tart the mtegrauop. VY'th |n!t|al data spemﬂe@.g.,ﬁ aEt
less storage and also allows the use of adaptiee, not =0) as values for " this procedure provides’,v°
constant in timg timestepsAt (see alsd21]). We term the andr®,u? to start the 3-level algorithm of Eq&2).
3-level method with this improved smoother “deloused leap- Notice that the timesteps 3At’ used in step$4) and(5)
frog,” since it removes the parasitic modes from the calcu-to bring the deloused data from levet ; to levelsn and
lation. In this section, we give the algorithm for this delousedn— 1 are not required to be the same as the timestepAt
leapfrog method. Ref21] discusses its properties in Hamil- used in stepg1) and (2). This is an improvement on the
tonian problems with applications to highly noncircular andmethod of Aoyagi and Ab¢18,22 and allows the system
highly relativistic geodesics. Those applications use theimestep to be changed whenever delousing is performed,
adaptive timestep our delousing routine allows. with the integration restarted in a time symmetric manner. In
The prescription for a delousing step to remove the parathis paper, all our runs were carried out using constant
sitic modes uses a second order Runge-K(RK2) algo- timesteps; see, however, RE21] for an example of adaptive
rithm. (The usual RK algorithm is fourth orderOur algo-  timesteps applied to highly eccentric particle orbits.
rithm proceeds as follows. Referring to the 3-level The deloused leapfrog method is not strictly symplectic
discretization in Eq(4), we assume that data is available onbecause the delousing steps are taken using RK2, which is
(say an odd levelh and an even levet— 1. First, use RK2 not a symplectic method, and the suppression &¢mloes
to evolve the data a half-step backward from the odd lavel not preserve volume in the augmented phase space. Since
and a half-step forward from the even levet 1: delousing steps can in principle be rare, and ideally do not
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15 10010 IV. THE 3 +1 FORMALISM OF NUMERICAL
(@) | ® Odd Steps (b)

4 Even Steps RELATIVITY

10
10.005 —

- The development of the deloused leapfrog algorithm de-
10000 | scribed in the preceding section was motivated by our search
for a stable and efficient time integration technique that
-10 could be utilized in CPU and memory intensive, general rela-
P N N N 9.990 I B tivistic simulations of the orbital stability of binary neutron
A5 100505 10 0s 0 100000 200000 stars. This section briefly summarizes theé B form of the

M v Einstein equations upon which such numerical relativity

FIG. 2. Same as Fig. 1 except that the integration was carrie§imulations are based. Here we consider only vacuum space-

out using the deloused leapfrog method. The orbit is now stable fofimes; however, our results apply to models with sources as
the ~ 10 000-orbit duration of the simulation. The timestep was theWell.
same as that used in Fig. 1, but the data is plotted only every 2001 The Einstein field equations of general relativity are
timesteps. Note that even though onlyl point per orbiteach G,,=8#T,,, whereG,, and T,, are the Einstein and
orbit is approximately 2000 timestejpare shown, there are over stress energy tensors, respecti@y]. We setT,,=0 (as is
10 000 points plotted in the figure. Both odd and even solutions liche case for vacuum spacetime&=c=1 and our conven-
directly on top of each other, filling out the orbit track. The delous-tion is such that Greek indices run from 0 to 3, Latin indices
ing module was applied on average once every 405 timestepsun from 1 to 3, and repeated raised and lowered indices are
hence this figure was producetiaa2 percent increase in CPU cost summed over. The numerical solution of the Einstein equa-
per orbit over the simulation shown in Fig. 1. tions is facilitated by the Arnowitt-Deser-MisnékDM ) de-
composition[27,28, which divides four dimensional space-

disturb the physical solutiofwhen the®(w?) terms in Egs. time into a series of three dimensional, spacelike slices that
are connected by one dimensional, timelike curves. This

10) are beyond machine precisiprthe failure here of the X ; X ) .
(10 y P ib “3 + 1" split transforms the Einstein equations into two sets:

time symmetric and symplectic properties possessed by Eqs: ) . ; :
(2) could have negligible impact. ﬁ1e evolution equations, which govern temporal changes in

To etermine e a delousing step i e e grow ALCnalfeld uaribles and e consrant cquatns,
of the parasitic mode is monitored. Since Ef. shows that P '

this parasitic mode changes sign on each time levelve The general form of the metric in the ADM formalism is

look for this alternate timestep oscillation in some quantity ds?= — (adt)2+gi;(dX + B'dt)(dx + gidt).  (16)

that characterizes the system. The detection of such an oscil-

lation in the quantity monitored triggers a call to the delous-The vacuum evolution equations for the three-megrjcand

ing module, which then removes the parasitic mode. Thehe extrinsic curvatur;; are(see, e.g.[29] and references

goal is to monitor a quantity that manifests the instability attherein

detectable levels early enough, so that it can be eliminated

before it dominates the integration. The best quantity to use gij,.= —2aK;;+D;B;j+D;B;, (17)

for the delousing trigger varies from problem to problem and

also depends on what level of parasitic mode one is wiIIingand

:)ngol\?lrlz)a.te in the solutiosee further discussion in Secs. VI Ky o= — DiDja+B'D|Kij + KnDjﬁ'+ Ky D, g

Figure 2 shows the results of our deloused leapfrog inte- +a[Rii — 2K; K! +KK;i 1, (18

gration of the same particle equations of motion as in Fig. 1. . J .

The delousing trigger chosen in this case was an oscillatioyheret is coordinate time, commas denote partial deriva-

in a quantity based upon the actiod=3(pdq—qdp) of  tives,K=K!, andD; andR; are the covariant derivative and

Hamiltonian mechanics: Ricci tensor, respectively, formed from the three-metjc
The lapsex and the shift vectop' are freely specifiable and
define the coordinate conditions under whghandK;; are

5
0

y/M

-5
9.995 [—

I|I|I|I|I|I
r’'M

AJ=1(p"+p" . (r"—r""1 evolved. The right-hand side of E4L7) may be a function
T SR TP of gj, as dependence ogy; arises through the covariant
=z (r"+r" ) (p=p" o) derivative operation wheg' is nonzero or whem is chosen

to depend org;; ; moreover, the right-hand side of EG.8)

is always a function ofK;;. Thus *“velocity dependent
forces™ are generally present in this system of equations and
. . therefore 3-level leapfrog integrations of them will suffer
wherer and p are the particle’s position and momentum from the instability described in Sec. Il.

vectors, respectively. The use of this trigger initiated a de- The set of constraint equations is comprised of the Hamil-
lousing step about once every 405 timesteps. The orbit wagnian constraint

stable for the duration of our simulation, about ten thousand B

orbits. R-K;;KI+K?=0, (19

:I?n_r'jnfl_ﬁn.f’nfl’ (15)
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whereR=R!, and momentum constraints ds?=t"Y%eM(—dt®+dZ) + tdw?. (26)

D;(K'—g"K)=0. (20 With an ingenious parametrization of the metric similar to

' . . . Eq. (24), Gowdy found that the vacuum Einstein evolution
When the field variables and coordinate conditions for theequations could be written in terms BfandQ alone. With

spacetime are functions of time only, the Einstein equationg,o metric in the form of Eq(26), these become
[Egs. (17) and (18)] governing the evolution of vacuum '

spacetimes become ordinary differential equations: P’tt+t*1pt_ P, eZP(Q,Zt— Q’ZZ) =0, (27)
i 2ak,, 21 Qutt Q- Qu+2(P.Q—P.Q)=0, (28
with the constraint equations specifying
%: a(KKi; = 2K Kj). (22 \,=2t(P P +e%Q,Q), (29)
This simplified set of equations is the basis of the toy codes N =t[P3+P%+e?P(Q3+ Q)] (30

discussed in Sec. VI A.

A. Kasner universe in power-law form

V. GOWDY T® SPACETIME .
GO SPAC S When the metric parametePsandQ are set to zero, the

In this section, we introduce the Gowdy’ spacetimes Gowdy metrid Eq. (26)] reduces to the simple diagonal form
and then describe three classes of these spacetimes, for PR 5 ) )
which exact evolution solutions are known and which we ds’=t" YMNH—dt?+dZ) +t(dx*+dy?). (31)
have used as relativistic testbeds for the deloused leapfr

technique(see Sec. V). OPhis form of the metric represents a homogeneous, aniso-

. . tropically expanding universe with no gravitational waves

3

Eingt];nGgV\Ld;;gn;Eage(t'lr%ezr?ﬁ158%“82”;:](3{?;&/:?#mand is equivalent to the form of an axisymmetric Kasner
q gs- ' metric [35] with a different time coordinate. A comparison

which plane gravitational waves are contained within an eXf Egs. (16) and (31) yields the following analytic solution

panding univers¢30]. Solutions of Gowdy’s equations have ‘or the time evolution of the diagonal components of the

been used for studying the nature of the initial cosmological. X ok S ) -
singularity[9,10], and, as is the case in this work, for testing tIEId variables @;;=K;;=0 fori+j) and coordinate condi

numerical codes for solving Einstein’'s equati¢B4]. 1ons:
The GowdyT3 metric can be written O11=Gar=1, gss:t—l/z, (32)
—aN=7)2( _ 274 2 2 T 2 B
dSZ e ( e dT +dZ )+e dw , (23) K]_]_: K22: _ %tl/4, K33: %t 5/4’ (33)
where 5=0 (34
2_ P + 24 e~ Pdv2.
dw =e"(dx+Q dy)-+e~"dy (29 and
This form that appears ifL0] is there attributed to Moncrief _
a= @:t 1/4, (35)

[32], whose exploitation of the harmonic mgg3,34] char-

acter of the associated Einstein equations could sugges . .
many equivalent forms. The Gowdy coordinates\, o, 3, Wthere we have used E@L7) to determineK;; in terms of

and 6 from [10] have here been written asz, —X, X, y, gij.» B, anda, and have sek, a constant in this case, to

andz. The change in the signs of the time coordinatend Zero.
of A signify that time increases as the universe expands; in ) ] _
most earlier work, the emphasis on the study of the initial B. Kasner universe in exponential form
singularity dictated a time coordinate that increased as the \We can write the metric for the same Kasner universe
universe contracted. The metric parameter®, andQ are  with a different time coordinate in an exponential form
functions ofz and 7 only and are periodic im.

We found the use of an alternate time variable ds’= —e'dt?+eRdx?+e*Pdy’+e RdZ,  (36)

t=e" (25)  which is essentially the Gowdy metric given in Eg3) with
P=Q=\=0. A comparison of Eqg36) and(16) gives the
convenient in that it here makes theoordinatg velocity of  following analytic solution forg;;(t) and K;;(t) (9i;=K;;
propagation of gravitational waves constant. This means that 0 fori+j) and the coordinate conditions:
with a fixed spatial discretization sizkz the Courant con-

dition will call for a fixed timestepAt and thus makes the 011=020=6"", gg—e 5, (37)
evolution easier to follow numerically. With this time coor-
dinate, the Gowdy metrifEg. (23)] becomes Ki=Ky=—3e,  Kg=te 56 (38

064022-7
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B'=0, (39
and
a=g=\011- 92 gzz=¢€'2, (40)

whereg=det(@;) and we have once again used Etj7) to
determinek; .

C. Polarized waves in an expanding universe
The Gowdy metridEg. (26)] with Q set to zero,

ds?=t"Y2eM(—dt?+ dZ?) +t(ePdx®+e Pdy?), (41)

PHYSICAL REVIEW D58 064022

A=—27tdo(27t)d (27t)cOS(27Z)
+ 2727 J5(2rt) + I3(27t) ]
—H{(2m)I(2m)+Ii(2m)]—2mIo(2m)I1(2m)}.
(50

VI. NUMERICAL RELATIVITY SIMULATIONS

We have used the classes of Gowdy spacetimes discussed
in Sec. V as testbeds for numerical relativity simulations
using the deloused leapfrog, staggered leapfrog, and Crank-
Nicholson time integration techniques discussed in Sec. Il.
We have carried out these simulations using two types of

represents the spacetime of an expanding universe containimgdes, toy codefwhich solve the Einstein equations Egs.

polarized gravitational waves propagating in thdirection.
With this metric, the evolution equatiofggs.(27) and(28)]
reduce to a single linear equation fer

Putt P —P,,=0. (42)
The constraint equations become
N ,=2tP P, (43
and
N (=t(P3+P?). (44)

The general solution to Eq42) is a sum of terms of the
form Zy(2mnt)cos(2m2) and Zy(2mnt)sin(2mn2), wheren
is an integer(assuming periodicity of 1 irz) andZ, is a
linear combination of the Bessel functiodg and Y,. We

(21) and(22) for spatially homogeneous spacetirhaad the
ADM code developed by the Binary Black Hol@BH)
Grand Challenge Alliancg36,1] [which solves the full
vacuum Einstein equations Eq47) and(18) in three spatial
dimension% In this section, we present the results of these
runs plus efficiency analyses that compare the numerical cost
effectiveness of the various time integration schemes.

A. Toy code simulations

The vacuum Einstein equations for spatially homoge-
neous metrics reduce to the set of ordinary differential equa-
tions (21) and (22). These are similar in form to the set of

equations(3), with the three-metrig;; replacingr and the

extrinsic curvaturek;; replacingJ. Note that, as in the case
of the full Einstein equationgEqgs.(17) and(18)], the system
of Egs. (21) and Egs.(22) generally contains ‘“velocity-

have chosen to study the spacetime based on the particuldgpendent forces,” and thus 3-level leapfrog integrations of

solution
P=Jy(27t)cog27z). (45

A comparison of the metrics given in Eq46) and(41) then

yields the following exact solution for the time evolution of

the diagonal components of the field variablgg € K;;=0
for i#j) and coordinate conditions:

gu=te’, gp=te ", ggp=t V%e? (46)
Ky=— 3t MeP(1+tP ),
Koo=— 3t Me P(1-tP ),
Ks =—t 1/4 )‘/4(t 1_ —Ny), (47)
B'=0, (48)
and
a=\/g_33=t_1/4e}‘/4, (49)

where we have again used H4.7) to determineK;; . This
set of equations is completed by an expressiomforhich
can be derived by using E@45) in conjunction with Egs.
(43) and (44):

these equations will be inherently unstable. We have con-
structed toy codes to solve these equations using each of the
integration methods discussed in Sec. Il. The 3-level leap-
frog toy code is based on the discretization in Eg$, with

the delousing module based on sté€ps-(5) outlined in Sec.

lll. The staggered leapfrog toy code is based on the discreti-
zation in Egs.(11); in this method we use the extrapolation
KTt t=(3/2)K " 2= (1/2)Kf ¥ to obtainK;; on the full
mteger Ievelz{37] Although this extrapolation is accurate to
second order iMt, it is not time symmetric. Finally, the
Crank-Nicholson toy code is based on the discretization in
Egs.(12)—(14).

A toy code simulation of the Kasner universe in power-
law form from Sec. V A was the initial testbed numerical
relativity problem to which we applied the deloused leapfrog
technique. To demonstrate the need for the delousing modi-
fication of the standard 3-level leapfrog technique, we first
carried out a run with the standard 3-level leapfrog technique
itself. Equationg32)—(35) provide both the initial conditions
for this simulation(begun att=1 and run with a timestep
At=0.1) and the means to measure its accuracy via a com-
parison between the analytically and numerically determined
values of the field variables. Specifically, we use

112
(51
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FIG. 3. The results of the unstable 3-level leapfrog toy code E|G. 4. This figure depicts the stable deloused leapfrog, toy
integration of a Kasner universe in power-law form are presente¢ode integration begun with the same initial conditions as the un-
here. The numericaldots, with every other pair of even and odd staple 3-level leapfrog simulation presented in Fig. 3. The numeri-
timestep values plottedand analytical(solid lineg solutions for ¢4 (“x”s, with every 201st point plotteland analyticalsolid line)
011(t) andKy4(t) are given in panelga) and(b) respectively. The  gg|utions forgyy(t) and Ky4(t) are given in panel$a) and (b),
inset in panel(a) is an enlargement of the numerical solution for respectively. The accuracy measures(kg,(t)) and ey (t) are
g14(t) in the range 37.8t<39.2, in which all data points have ghown in the lower panel&) and (d), respectively.
been plotted and connected with dashed lines to emphasize the large

alternate timestep oscillations of this unstable solution. The numeri- ]

cal accuracy measurés,o(t) ande,(t) are shown in paneler)  this inset every value of;; has been plotted with an “x”

and(d), respectively; for the sake of clarity, only every other pair of and consecutive values have been connected by dashed lines.

even and odd timestep values has been plotted. A toy code integration starting with the same initial con-
ditions as the 3-level leapfrog run depicted in Fig. 3 was also

as a measure of a simulation’s accuracy. Here the analytigerformed with the deloused leapfrog technique. The trigger
values of the diagonal componergs [given in this case by chosen to initiate the delousing steps in this run was a change
Eq. (32)] are denoted ag?". Another quantity useful in [N the sign of the slope offn,r(1); such a sign change is
determining the quality of the integration is the size of theindicative qf the alternate timestep oscnlauqng dlscussed in
normalized residual of the vacuum Hamiltonian constraintn€ Préceding paragraph. The results of this integration are
[Eq. (19] given in Fig. 4. FfanelQa) and (b) c_>f this figure dls_play the
analytical (solid lineg and numerical(*x"s ) solutions for
011(t) andK4(t), respectively; the solid lines in pandis
and(d) represent lofH orm(t)) andey(t), respectively. The
regular behavior of the evolved quantities shown in Fig. 4
demonstrates that the delousing steps successfully removed
_ the parasitic mode from the solutions for the field variables,
Ri=R=0 for the spatially homogeneous Gowdy spacetimesproducing an evolution that was stable for the duration of the
The results of the 3-level leapfrog simulation are presenteéhtegration. We ran the deloused code a factor of 25 times
in Fig. 3. Panelda) and (b) of this figure display both the longer than the duration of the catastrophically unstable 3-
analytical(solid lineg and numericaldots solutions for the level leapfrog simulation.

field variable componentg,;(t) and K;(t), respectively; Note that in general it is possible to evolve components of
panels(c) and(d) show the accuracy measunds,m(t) and  g;; or K;; using the constraint equatiofigs. (19), (20)] in
gy(t), respectively. The separate even and odd timestep nylace of one or more of the evolution equatid&sys. (17),
merical solutions, characteristic of the leapfrog instability(18)]. For integrations of spatially homogeneous spacetimes,
described in Sec. [Icf. Eq.(8)], are clearly visible in all four only the Hamiltonian constraint is meaningful in this context.
panels of Fig. 3 as two dotted branches representing the nlR order to investigate the stability of such constrained evo-
merical solution. The fact that these two dotted branches areitions, we performed 3-level leapfrog toy code simulations
indeed alternate timestep oscillations of the numerical soluef the Kasner universe in exponential form in which we re-
tion is evident in the inset of Fig.(8), which is an enlarge- placed the evolution equation fd€;; [Eq. (22) with i=]
ment of the numerical solution @, for 37.9<t<39.2. In  =3] with Eq. (19). ThusK3; was calculated in terms of the

RHKZ— KK

= 1 (52)
ORI+ KK
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0 y y 0 g y TABLE |. Parameters for fits to accuracy versus cost data in
(a) 5 o (b) Fig. 5.
o a a a
-2 o A -2 A o 4
> o 4 x > x* o Method by my
[ A ) a
K] g K] <" 8
R I o S R S Deloused leapfrog 6.6 -2.0
L . x & Crank-Nicholson 6.8 -22
Crank—] on — X'
-6f X delonsed lasptrog - A -6 X Staggered leapfrog 6.7 -2.0
X staggered leaptrog — 0 ) ) X
-3 -2 -1 4 5 ]
log(At) log(cost)

erage number of iterations per timestep for the Crank-

FIG. 5. The results of the efficiency analysis of toy code simu-Nicholson runs ranged between two and tHifee a conver-
lations of a Kasner universe in power-law form, represented by thgience criterion of 1.8 10" 8; see Sec. |l The total number
metric given in Eq(31), carried out with different integration tech- of delousing steps performed during the deloused leapfrog
nigues are shown here. The final values of &pjére plotted versus  runs ranged from 153 to 181. Note that each delousing step
log(At) in the left panel and versus log(cost) in the right panel. adds eight calls to the cost of the integration since it requires
Values from Crank-Nicholson runs are marked with “x"s, those four calls to the RK2 routindsee Sec. I)l, which in turn
from deloused leapfrog runs are marked with triangles, and thoseomputesdgij /dt anddK;; /dt twice. Panekb) shows that,
from staggered leapfrog runs are marked with squares. The cost {§ gimulations of this simple, spatially invariant spacetime,
defined as the number of times the right-hand sides of the discrank-Nicholson is the most efficient of the three integrators.
cretized equations are evaluated. The slopes of straight lines fWe have used least-squares analysis to fit the best straight
through data ir(a) are~2, indicatir_lg that the numerical techniques lines to the data points shown in Figl. This analysis led
are all accurate to second-orderan. to the following relationship foey(cost):

evolved quantitie« ; andK,, by imposing the Hamiltonian e =10 cosfs. (53)
constraint. These constrained runs still suffered from the in- g

stability under discussion. However, the times at which therpe values of the parametebs and m, for these fits are
simulations became catastrophically unstable were almogjiven for each integrator in Table I. g

two_and a half times longer than in the corresponding uncon- \we nhave also done an efficiency comparison of these
strained runs. , , _ _ three integration techniques for toy code simulations of the
We also carried out integrations of this model using thek asner universe in exponential form; the results are shown in
staggered leapfrog and Crank-Nicholson techniques. Thesgy 6. The outcome of the efficiency tests for these simula-
runs were all stable, as expected. tions is quite different from that based on the Kasner uni-
verse in power-law form of Fig. 5. Figurdly shows that for
relatively low to moderate cost and accuracy demands, the
The efficiency of a stable integration technique is also arstaggered leapfrog method is the most cost effective tech-
important factor to consider in evaluating numerical meth-nique in this case; however, the deloused leapfrog method is
ods. Here, we consider the efficiency of a technique to be thenore efficient when high accuracy levels are required. The
accuracy level it maintains for a particular numerical cost.higher average number of iterations per timestep required by
Since the evaluation of the right-hand sides of the discretizethese Crank-Nicholson runs, which ranged from three for
equationde.g., Eqs.(4), (11), and(14) for the set of equa- At=0.0016 to seven foAt=0.1, may account for the rever-
tions (3)] is generally the most expensive operation in termssal in its relative cost effectiveness from the simulations of
of CPU time, we define the cost of an integration to be thethe power-law form(Fig. 5). The number of delousing steps
number of times the right-hand sides are computed. taken during the deloused leapfrog runs ranged from 1285
The results of our efficiency comparison for the toy codefor At=0.0016 to 422 foAt=0.1. Thus the deloused leap-
simulations of the Kasner universe in power-law form arefrog method had to work harder to maintain stable integra-
displayed in Fig. 5. For this comparison, we ran simulations
with each of the three stable integration methods; in these  of

Efficiency analysis of toy code runs

of o

(v)

o
simulations the initial conditions and evolution duration were (2) ° % e AxA

identical but the constant timestep used during the simula- o ox ° X

tionsAt was varied from run to run. We used the valueegf & _pf . X & of " x

at the end of the simulation as the accuracy measure. The le' & 2 X g T

panel of Fig. 5 gives the final values of leg) as a function . & * Crank-Hichotson - X ”Ag

of log(At) and demonstrates that all three techniques are | , *  asioused ioaptrog - 4] il Pol
second-order accuratfi.e., the slope of log{) versus X Tssered o 0 . . X
log(At) for each method is-2]. The right panel of Fig. 5 -3 1;;(“) - 3 log‘(*cost) S

gives the final values of logg) as a function of the numeri-
cal cost(measured by the number of times batf; /dt and FIG. 6. The same quantities and notation as in Fig. 5, but for toy
dKj; /dt are computedand provides the most informative code simulations of a Kasner universe in exponential form, de-
picture of the efficiency of the different techniques. The av-scribed by the metric of E|36).
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TABLE Il. Parameters for fits to accuracy versus cost data in
Fig. 6.

Method by mg
Deloused leapfrog 11 -3.1
Crank-Nicholson 9.0 —2.6
Staggered leapfrog 5.8 -1.9

tions of this universe in exponential form than in power-law
form. We have again used least squares analysis to fi
straight lines to the data in Fig(§ and produce a relation of
the form of Eq.(53); this relation is parameterized by the

values ofby andmy given in Table II. 1

B. ADM code simulations

Our study of the deloused leapfrog method stems from
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(b)

2

I
t

6

our search for an efficient technique capable of performing FIG. 7. The results of the unstable 3-level leapfrog ADM code
numerically stable simulations of the orbital dynamics of bi-integration of the expanding universe containing polarized gravita-
nary neutron stars. Because such simulations require the stienal waves are presented here. The numefidats, with every
lution of the full Einstein equations, we wanted to test thefourth pair of even and odd timestep data points plotet ana-
deloused leapfrog integrator in conjunction with the code weytical (solid line) solutions forg,,(t) at the grid center are given in
plan to use to do these simulations, the ADM code developedanel(a). The numerical accuracy measuitgom, €, ande, are
by the BBH Alliance[36,1]. This second-order accurate code plotted as functions of time in panels), (c), and(d), respectively;
currently solves the vacuum Einstein equations on a Carteagain, only every fourth pair of even and odd timestep values has
sian grid and provides the user the choice of utilizing eitheibeen plotted.
the standard 3-level leapfrog or Crank-Nicholson integration
techniques. We have added the capability of using the de- Our ADM code polarized Gowdy simulations begant at
loused leapfrog integrator to the BBH Alliance’s ADM code =1 and were run with periodic boundary conditions over the
and have used it to perform simulations of a Kasfhemo-  interval —3<z=<3 and a grid spacing\z=1/62. Because
geneous Gowdyexpanding spacetime with the power-law the vacuum Einstein equations are partial differential equa-
coordinate condition of Sec. VA and of the expandingtions, the size of the timestep that can be taken in the inte-
Gowdy spacetime with polarized gravitational waves of Secgration is restricted by the Courant conditi¢®5], which
V C. Of course this code, like the toy code, was ignorant ofensures that information cannot propagate across more than a
Gowdy’s ingenuity which, through parametrizations like Single grid zone in one timestep. For the polarized Gowdy
g1,=te", can reduce some of the Einstein equations to lineafetric of Eq.(41), this condition is equivalent to enforcing
equations. The Einstein equations are coded in terms of th&t=CAz, whereAz is the (uniform) grid spacing and the
g; andK;; as shown in Eq3(17) and(18); the chosen coor- Courant facto_rC__< 1. In the runs _preser_lted here, we chose
dinate conditions weres'=0 and a=\/gs; They involve C=0.3. The initial ADM <_:0de simulation was performed
not only the polynomial nonlinearities manifest in theseWith the 3-level leapfrog integrator and, as expected, was
equations, but also the nonlinearities implied througand ~ unstable. The results of the integration are presented in Figs.
through the inverse metric when indices are raised or coval and 8. The evolution of the value gf; at the center of the
riant derivatives or curvatures are computed. grid is shown in panela) of Fig. 7; panelgb), (c), and(d) of

The preliminary testbed used in our ADM code runs wasthis figure display, respectively o m(t), €4(t), ande(t).

a simulation |dentlcal to the toy code rUn.S of the K.asnerHere bars denot@pa’[ia} averages over the griﬁ_{norm(t) is
power-law metric. The development of the instability in the computed by dividing the spatial average of the numerator of
ADM code’s 3-level leapfrog run replicated its developmentgq, (52) by the spatial average of the denominator of Eq.

in the toy code run. The ADM code’s deloused leapfrog run(s2), The additional measure of the accuracy of the simula-
successfully removed this instability in the same manner agon, e,, is defined by

in the toy code run, with the delousing steps triggered at the
same temporal intervals in both simulations.

To test the behavior of the deloused leapfrog method for . )
partial differential equations with spatially varying terms, we The usefulness of; as an error estimate arises because, ac-
carried out simulations of the polarized Gowdy spacetime ofording to the analytic solution of E@46), g11g22=t*
Sec. V B. Equationg45)—(50) yield both initial conditions The separate even and odd timestep solutions, indicative
for simulations of this spacetime and exact solutions with@f the instability, can clearly be seen in the plots of
which to compare the results of such simulations. Hnorm(1), €4(t), ande(t); however, the separate solutions

ey, D)=t t—=[g12(X,y, ) 92(x,y,x)]¥4. (59
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) ) FIG. 9. This figure depicts the stable deloused leapfrog, ADM
FIG. 8. The extended evolution of the metric comporgnt at  ¢ode integration begun with the same initial conditions as the un-

the grid_ center, f_rom the unstable 3-Ieve|_|ea|_ofrog simulation prexiaple 3-level leapfrog simulations shown in Figs. 7 and 8. The
sented in Fig. 7 is shown here. The notation is the same as that ofymerical(“x”s, with every eleventh point plotteland analytical
panel(a) in Fig. 7 (except that every other pair of even and odd (so|id ling) solutions forgy,(t) at the center of the grid are given in

Limestept vacjlue(ejst is qutg%dtﬁut the :ihura;tit%n of the_t_evolut(ijon has panel (a). Panels(b), (c), and (d) present the evolutions of the
een extended to exhibit the growth of the parasitic mode, as evi: o — — .
denced by the appearance of the even and odd timestep branchesor o0 MeasurdSyom, €, ande;, respectively.
the numerical solution.

those of the other two methods if adaptive mesh refinement
are not yet visible in the plot ofy, att=5.8. As shown in were to be u_se@i.ln this efficiency comparisom\z and At

: ; : . are reduced in tandem from run to run, withheld constant

Fig. 8, they do appear ig,; at the grid center later in the — . .
evolution, as the instability begins to overwhelm the compu-t 0-3. The value o, at the end of the simulations was used

tation. as the measure of accuracy upon which to base the efficiency

We then evolved the same polarized Gowdy initial data@nalysis in this case. _ _ o
with the ADM code using the deloused leapfrog integrator. 1he results _Of f‘h's anglyms are displayed in Fig. 10. The
BecauseH ,orm(t) andey(t) oscillated in our simulations of 1€ft panel of this figure gives the final value efas a func-
this spacetime, they were not used as a basis for the triggdien of the grid spacing\z, which was varied from 1/126 to
that initiated the delousing sted3hese fluctuations are due

to the complex oscillatory nature gf; andKj; in this space- -1.0 - - - -10 .

time and arenot related to the alternate timestep oscillations (2) = a <« ()

caused by the instability; in fact, such fluctuations are also -'°f 1 —15¢

present in the Crank-Nicholson simulations of this space-33 3

time.] Instead, because, behaved monotonicalljsee Fig. E ! : E 20 : )

9(d)], a change in the sign of its temporal slope was used as  _, | ] sl ]
" P Crank—Nicholson — X " A X

the delousing trigger. As can be seen in Fig. 9, the removal

of the parasitic mode during the delousing steps taken in this  —s0 . . . : . . .
simulation eliminated the presence of large alternate timeste; %> ~2° 10;1(§z) e = gz;st) 4o 43
oscillations and allowed for a stable integration.

deloused leapfrog — A

FIG. 10. The results of the efficiency analysis of ADM code
simulations of an expanding universe containing polarized gravita-
i ) ) ) tional waves, represented by the metric of EHl), are shown here.

We have also used simulations of this polarized Gowdyrpe fing values of logf) are plotted as a function of the logarithm
spacgtlme to evaluatg thg eff|C|en_cy of the deloused leapfrog ihe grid spacing\z (At=0.3A7) in the left panel and as a func-
algorithm. However, in this case its performance could onlytion of the logarithm of the numerical cost in the right panel. Tri-
be compared with that of the Crank-Nicholson technique, agngles mark the data points from deloused leapfrog runs; “x’s
the staggered leapfrog method has not been implemented iark those from Crank-Nicholson runs. Straight lines fit through
the ADM code.(The reason for this is that the memory re- data points in the left panel have slope2, indicating that the
qguirements of the staggered leapfrog method would exceesumerical techniques are both accurate to second-ord&t.in

Efficiency analysis of ADM code runs
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TABLE lIl. Parameters for fits to accuracy versus cost data inordinate condition choicer= /g5 this gives a power-law

Fig. 10. analytic solution for the metric components. For this simple
problem, Crank-Nicholson was the most efficient of the in-
Method by my tegrators(see Fig. 5. The results were different, however,
Deloused leapfrog 48 o1 when the testbeql was Ch_anged_ to a toy code simqlation of_the
) : ' same Kasner universe with a different time coordinate choice
Crank-Nicholson 9.6 —-2.8

a=\g= 011022 93a Yielding in the analytic solution an
exponentiaform for the metric components. In that case, the

. . . . staggered and deloused leapfrog techniques were more cost
1/62 to 1/30. Straight lines fit through these data points hav ffective (see Fig. & as the rapid evolution of the spacetime

slopes~2; this demonstrates the second-order accuracy Ofsed the iterative Crank-Nicholson technique to require a
the deloused leapfrog and_Crank-N|choIson methods. Th?arger number of iterations per timestep.

right panel contains a plot @& versus cost and indicates that ~ The final testbed used in our efficiency analysis was a
the deloused leapfrog integrations of this spacetime wergimulation of an expanding Gowdy spacetime containing po-
about five to eight times more efficient than those carried oularized gravitational waves. These simulations required the
with the Crank-Nicholson technique. The average number ofolution of the complete vacuum Einstein equations and
iterations per timestep for the Crank-Nicholson runs rangedvere carried out with the BBH Alliance’s ADM cod&6,1],
from five for Az=1/126 to eight forAz=1/30. The total in which the standardunstable 3-level leapfrog and the
number of delousing steps taken was relatively constant ifstablé Crank-Nicholson integration methods had previously
the three deloused leapfrog rufsix for Az=1/126; five for been implemented. We modified this code to allow the use of

Az=1/62; and six forAz=1/30). The least squares straight the deloused leapfrog scheme. Because the staggered leap-
line fits to the data in Fig. 40) can be transformed, in this frog method has not been implemented in the ADM code, the

case, to relations of the form efficiencies of only the Crank-Nicholson and deloused leap-
frog integrators were evaluated in this case. The deloused
e,=10°t cosf™; (55) leapfrog integrations of this spacetime were five to eight

times more cost effective than the Crank-Nicholson rises

the parameterb, andm, determined by these fits are given Fig. 10.
in Table IIl. Thus, the results of our testbed simulations indicate that
the deloused leapfrog algorithm is an effective and efficient
cure for the 3-level leapfrog instability. Further evaluation of
this algorithm, via its use in more complex problems in nu-

The purpose of this paper is to alert the community to themerical relativity, such as a contracting Gowdy universe con-
existence of the instability inherent in standard 3-level leaptaining unpolarized gravitational waves, and other fields,
frog integrations of Einstein’s equations and to demonstratevould serve to confirm the robustness of the method and
that the proposed delousing modification to the standard aprovide insight into its cost effectiveness in different numeri-
gorithm can efficiently cure this instability. To this end, we cal scenarios.
have used three classes of testbed solutions. In Sec. Ill, we One aspect of the deloused leapfrog algorithm that has the
show calculations of highly relativistic circular geodesic or- potential to alter the conclusions of such efficiency analyses
bits calculated in Cartesian coordinates. In Sec. VI, we shovis the choice of delousing trigger. Based on our experience,
evolutions of homogeneous expanding cosmologies and pave suspect that choice of a trigger which initiatesexces-
larized gravitational waves in an expanding Gowdy spacesive number of delousing steps will degrade the accuracy of
time. In all of these cases, the deloused leapfrog algorithra simulation to some degree. If this is the case, a decrease in
removed parasitic modes from the numerical solution of thehe average interval between delousing steps would not only
Einstein equations that were excited to instability in tradi-increase the cost of the run, but would also decrease its nu-
tional 3-level leapfrog simulations of these spacetimes, andherical accuracy somewhat. On the other hand, an increase
thus allowed for their stable evolution. in the delousing interval would allow the parasitic mode in

The numerical efficiencyi.e., the accuracy level main- the numerical solution to grow to higher levels. For example,
tained for a particular numerical cosif the deloused leap- had a change in the sign of the temporal slopgaft) been
frog integrator was compared to the efficiencies of two othewsed as the delousing trigger in the deloused leapfrog simu-
stable integration methods, staggered leapfrog and Crankation of the polarized Gowdy spacetime, the parasitic mode
Nicholson. We have defined numerical cost as the number okould likely have grown to a greater extent between delous-
times the right-hand sides of both Einstein evolution equaing intervals, as its presence became sizablg;i(t) rather
tions (i.e., gj;: andKj; ;) are computed during a simulation. late in the evolutionsee Figs. 7 and)8Thus the choice of
Thus cost in this case is a measure of a simulation’s CPUWelousing trigger may involve a trade-off between the loss of
expense. Note that all of the simulations presented in thisome degree of accuracy introduced into the computation via

VII. CONCLUSIONS

paper were carried out with constant timesteps. the delousing steps and the degree to which the parasitic
The first testbed for this efficiency analysis was a toy codemode is permitted to grow between these steps.
[which solves the spatially invariant Einstein equatiffgs. In conclusion, we have demonstrated that the deloused

(2D and (22)]] simulation of a spatially homogeneous leapfrog algorithm permits the stable numerical evolution of
Gowdy spacetime yielding a Kasner universe. With the cosimple vacuum spacetimes. In addition, our results suggest
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that deloused leapfrog may be a better integration techniquand helpful discussions. We are grateful to the Binary Black
than the Crank-Nicholson technique to employ in complexHole Alliance (NSF ASC/PHY 938152-ARPA Supple-
numerical relativity simulations, as this new algorithm wasmented, R. Matzner Pffor making their ADM code avail-
more cost effective than the Crank-Nicholson method in ouble to us, and to Mijan Hug and Scott Klasky for helping us
simulation of a spatially varying spacetime. to learn how to run the code. This work was supported in
part by NSF grants PHY 9208914 and PHY 9722109 at
Drexel, and PHY 9700672 at the University of Maryland.
The numerical simulations using the ADM code were run at
We thank Matt Choptuik, Alex Dragt, Mijan Hug, Scott the Northeast Parallel Architectures CentdPAC) at Syra-
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