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The 3-level leapfrog time integration algorithm is an attractive choice for numerical relativity simulations
since it is time symmetric and avoids non-physical damping. In Newtonian problems without velocity depen-
dent forces, this method enjoys the advantage of long term stability. However, for more general differential
equations, whether ordinary or partial, delayed onset numerical instabilities can arise and destroy the solution.
A known cure for such instabilities appears to have been overlooked in many application areas. We give an
improved cure~‘‘deloused leapfrog’’! that both reduces memory demands@important for (311)-dimensional
wave equations# and allows for the use of adaptive time steps without a loss in accuracy. We show both that
the instability arises and that the cure we propose works in highly relativistic problems such as tightly bound
geodesics, spatially homogeneous spacetimes, and strong gravitational waves. In the gravitational wave test
case~polarized waves in a Gowdy spacetime! the deloused leapfrog method was five to eight times less CPU
costly at various accuracies than the implicit Crank-Nicholson method, which is not subject to this instability.
@S0556-2821~98!07818-7#

PACS number~s!: 04.25.Dm, 04.30.Nk, 95.30.Sf
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I. INTRODUCTION

Numerical relativity comprises the dynamical solution
the Einstein equations on a computer, allowing the const
tion of spacetimes that cannot be studied by purely anal
methods. A major application of numerical relativity is th
modeling of astrophysical sources of gravitational radiat
such as binary black hole@1# or neutron star inspiral@2#, and
nonspherical stellar collapse@3#. The continued developmen
of gravitational wave detectors, with the expectation t
ground-based interferometers such as the Laser Interfero
ric Gravitational Wave Observatory~LIGO! @4#, VIRGO @5#
and GEO600@6# will begin taking data in a few years, give
these studies a high priority. Numerical relativity is also im
portant for studying the dynamics of pure gravitation
waves@7#, inhomogeneous cosmologies@8#, the behavior of
cosmological singularities@9,10#, and critical behavior in
general relativity@11#.

All of these endeavors require accurate numerical al
rithms to correctly model the physics of curved spacetim
Simulations in three spatial dimensions plus time are exp
sive in terms of both CPU usage and memory requireme
and thus demand numerical methods that are efficient in b
these regards. Memory limits, however, are less elastic in
short term than CPU time constraints. Thus a three-level
ond order algorithm may be more appropriate than a fas
high order algorithm which can only be implemented
smaller problems. Also, modeling the inspiral of bina
black holes or neutron stars requires evolving the system
0556-2821/98/58~6!/064022~14!/$15.00 58 0640
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many orbital periods, so that numerical algorithms with lo
term stability and freedom from unphysical damping are
sential.

Leapfrog methods are often used for the time integrat
of equations in numerical relativity and other branches
computational physics. The 3-level leapfrog method has
important property of being symplectic. In the context of
Hamiltonian system for which the differential equation ha
symplectic structure~conjugate pairing of coordinates an
momenta!, this means that the difference equations also h
such a structure and the integration step in the differe
equations is a canonical transformation. With a symplec
integrator, all the Lagrangian integral invariants, includi
phase space volume, are exactly conserved by the integra
scheme. Since the leapfrog method is time symmetric
maintains good conservation of physically conserved qua
ties @12–14#, it has a well-deserved reputation in the conte
of Newtonian mechanics. Unfortunately this reputation
generally not merited when velocity dependent forces
met. In the integration of systems with such forces, t
scheme is well-known to be susceptible to numerical ins
bility ~e.g.,@15–19#, and references therein!, even under con-
ditions where local linearization analysis anticipates stabil
This instability occurs in the integration of both ordinary a
partial differential equations and, in the case of partial d
ferential equations, is independent of the mesh size used
the spatial discretization@17#.

An understanding of the origin of this instability wa
given by Sanz-Serna@17# who pointed out that the leapfro
© 1998 The American Physical Society22-1
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scheme approximates not merely the intended differen
equation system but a larger ‘‘augmented’’ system conta
ing additional, nonphysical, parasitic modes. Since the le
frog method is symplectic as applied to the augmented
tem @20#, the advantages of symplectic methods~see@12#!
would be attained to the extent that the parasitic modes
main zero numerically, as they do in an exact solution of
augmented system@21#. Aoyagi and Abe@18,22# identified
the diagnostic symptom of this instability as a sawtooth
cillation or alternation of values between odd and even st
of the integration, and supplied a cure—a Runge-Ku
smoother to suppress this oscillation. Subsequent work@19#
shows these phenomena in ordinary differential equatio
where the delayed onset of this instability is clearly appare

We have studied the use of the 3-level leapfrog metho
numerical relativity. In this work~see also@21#!, we extend
the ideas of Aoyagi and collaborators for removing the u
stable parasitic modes, yielding an algorithm that reduces
number of time levels of data that must be stored by
code, allows the timestep to be changed, and thus is b
suited to long-term integration of large scale numerical s
tems. Although we concentrate on the ADM 311 formalism
for numerical relativity, our methods are quite general a
thereby applicable to a wide range of problems in compu
tional physics. Section II describes the source of the 3-le
leapfrog instability. Section III presents our algorithm
dubbed ‘‘deloused leapfrog,’’ for removing instabilities th
may arise in 3-level leapfrog integrations. In Sec. IV, w
summarize the 311 formalism of numerical relativity and in
Sec. V introduce three simple classes of GowdyT3 space-
times. In Sec. VI, we use these models as relativistic testb
for the deloused leapfrog technique and evaluate the num
cal efficiency of deloused leapfrog by comparing its co
effectiveness with those of the staggered leapfrog and Cr
Nicholson techniques. A summary and discussion of
results of the stability and efficiency tests of the delous
leapfrog technique is given in Sec. VII.

II. THE 3-LEVEL LEAPFROG INSTABILITY

We begin by considering the system of differential equ
tions

dz

dt
5F~z,t !. ~1!

Although we use a system ofordinary differential equations
@Eqs.~1!# to describe the leapfrog instability and its cure
this section and the next, the techniques we outline ap
equally well to systems ofpartial differential equations in
which the time integration is carried out using the leapfr
method; see Sec. VI below. The 3-level leapfrog discreti
tion of this system is

z̃n125 z̃n12F~ z̃n11,t n11!Dt, ~2!

where we assume a constant timestepDt between time levels
n and n11. The distinction betweenz in the differential
equation andz̃ in the difference equation is a warning th
06402
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the relationship is not as straightforward as first appears.
discretization given in Eqs.~2! hasO(Dt2) accuracy and is a
3-level method, in that knowledge of data on time levelsn
and n11 is needed to compute the result on time leven
12. The 3-level leapfrog algorithm@Eqs. ~2!# is symplectic
and time reversible, which means that it provides a Ham
tonian ~damping free! model of an underlying Hamiltonian
differential equation system@12,14#.

Equations ~1! arise in many physical applications i
which z comprises both position and velocity dataz
5(rW,vW ). For example, the motion of a particle of massm

under the action of a forcefW5maW is given by the set of
equations

drW

dt
5vW

~3!

dvW

dt
5aW ,

where rW is the position vector of the particle. The 3-lev
leapfrog discretization of Eqs.~3! gives

rWn115rWn2112vW nDt
~4!

vW n115vW n2112aW nDt.

For a particle moving in a Newtonian gravitational fieldaW n

5aW n(rWn) and the system given by Eqs.~4! is stable and thus
suitable for long time integrations. However, if there are s
called ‘‘velocity dependent forces’’ in which aW n

5aW n(rWn,vW n), such as arise for a particle moving under t
influence of a magnetic field or a general relativistic gravi
tional field, the 3-level leapfrog scheme@Eqs. ~4!# can be-
come unstable. As we shall explain below, nonphysical pa
sitic modes can arise during the time integration a
eventually destroy the numerical solution.

Notice that the leapfrog algorithm@Eqs. ~2!# gives the
value of z̃n12 at, say, the even time leveln12 in terms of
the value z̃n at the even leveln and the source term
F( z̃n11,tn11) at the odd leveln11. It also requires the
specification of initial data at two time levels,z̃0 and z̃1,
which is twice as much as the original first-order different
equation system requires. This doubling of initial conditi
specifications is the clue to the fact that this numerical al
rithm usingz̃ has twice as many degrees of freedom as d
the physical system where states are specified byz. The al-
gorithm can be expressed, with a change of notation,
writing the solution at the even timesteps asz̃2n5x2n and at
the odd timesteps asz̃2n115y2n11. With this, Eqs.~2! be-
come

x2n125x2n12F~y2n11,t2n11!Dt
~5!

y2n135y2n1112F~x2n12,t2n12!Dt.
2-2



d
olu

-

o

ee

e

b

r
-
-

fu
f
s-

vol-
inal
tary

of
ap-
In

r-

ff
or

he
rog
to
n.

at
aug-
-

t
d
ing

rm
ably

ra-
in

the
be-

e to

ent

qs.

a-
n-
ed.

a-

itic
ca-
in

STABLE 3-LEVEL LEAPFROG INTEGRATION IN . . . PHYSICAL REVIEW D 58 064022
Sanz-Serna@17# ~concisely summarized in@23#! notes that
Eqs.~5! can be considered to be a consistent single-step
cretization of a larger system of equations for the even s
tions x and the odd solutionsy,

dx

dt
5F~y,t !

~6!

dy

dt
5F~x,t !,

with timestep 2Dt. Equations~6! are known as the aug
mented system@17,23#.

If z is a solution of Eqs.~1!, it gives a solution of Eqs.~6!,
the augmented system, asx5z and y5z. In general, how-
ever, other~unphysical! solutions will be possible. Since
these unphysical, parasitic solutions can arise as valid s
tions to the augmented difference system of Eqs.~5!, the
3-level leapfrog integrator alone cannot distinguish betw
them and the physical solutions.

Since the physical solutions of Eqs.~6! have x5y it is
natural to define

x5z1w, y5z2w, ~7!

so that thew measure the parasitic deviations from the d
sired physical solutionsz. One can rewrite Eqs.~7! in finite
difference form, using the definitions preceding Eqs.~5!, as

z̃n5zn1~21!nwn. ~8!

The solutionz̃n to the leapfrog difference system@Eqs. ~2!#
thus contains both physicalzn and parasitic modeswn. With
this notation, the augmented differential equations can
written as@19#

2
dz

dt
5F~z2w,t !1F~z1w,t !,

~9!

2
dw

dt
5F~z2w,t !2F~z1w,t !.

We note that when these are expanded in powers ofw one
has

dz

dt
5F~z,t !1O~w2!,

~10!

dw

dt
52DF~z,t !•w1O~w3!

whereDF is the matrix of partial derivatives]Fi /]zj .
The second of Eqs.~10!, ignoring the cubic and highe

terms, is a linear equation~in w! which from the time depen
dence inDF„z(t),t… easily gives rise to parametric amplifi
cation@24# leading to growth of the parasitic modesw. Such
parametric amplification was clearly diagnosed in a use
example@18#. A still stronger argument for the growth o
parasitic modes~without the above linear perturbation a
06402
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sumptions! had been given earlier by Sanz-Serna@17,23#
based on his proof that the leapfrog scheme preserves
ume in the augmented state space even when the orig
system is not Hamiltonian. Sanz-Serna has an elemen
example,dz/dt5z2, z(0)521, with a two dimensionalzw
augmented phase space~Fig. 1 in @17#!; this shows all the
qualitative features of the delayed onset instability typical
numerical catastrophes that generally result from using le
frog in nonlinear systems with velocity dependent forces.
this example,everysolution diverges (z→`) if at any point
wÞ0, althoughz→0 as t→` for the physicalw50 solu-
tion. Numerical experiments with leapfrog follow the dive
gent solutions of this analytical example sincewÞ0 at some
point arises either from imperfect initial conditions, roundo
error, or discretization error. Hence, nonlinear interaction
parametric amplification of linear interaction between t
physical and parasitic modes of the solution to the leapf
difference system@Eqs.~2!# can cause the parasitic mode
grow to the point where it destroys the numerical solutio

However, if the augmented difference system@Eqs.~2! or
~5!# decouples, no such instability occurs. To illustrate wh
it means for these equations to decouple, consider the
mented difference system for Eqs.~4!, in the absence of ve
locity dependent forces. In that case one can letx5(rW,uW ) and
y5(qW ,vW ) to find that the~even rW, odd vW ) system does no
couple to the~odd qW , evenuW ) system. Thus the augmente
difference system consists of two interlaced, noninteract
copies~evenrW, odd vW ) and ~odd qW , evenuW ) of the physical
system. Each of these two systems is of the Newtonian fo
where the leapfrog scheme has shown itself to be remark
stable.

Thus, as mentioned above, in a 3-level leapfrog integ
tion of Eqs.~3! stability can generally only be anticipated
the absence of velocity dependent forces. In this case,
parasitic mode is generally still present as the difference
tween two interlaced numerical solutions of Eqs.~3!, but will
remain small unless the physical system is highly sensitiv
small differences in initial conditions~i.e., chaotic!. Note
that it is customary, in the absence of velocity depend
forces, to omit theqW and uW variables from the integration
scheme, yielding the staggered leapfrog scheme~see below!.
Alternatively, in a code based on Eqs.~2!, one could in this
case solve for two independent solutions approximating E
~1! based on distinct initial conditions for (rW,vW ) and for
(qW ,uW ).

A stable 3-level leapfrog integration of a system of equ
tions containing ‘‘velocity dependent forces’’ can be mai
tained if the growth of the parasitic mode can be controll
When a constraintw50 is adjoined to Eqs.~9! they reduce
to the original physical system of Eq.~1!. This constraint,
when imposed initially, is preserved by the differential equ
tion system~9! sincew50 givesdw/dt50. But in numerical
implementations errors will inevitably introduce nonzerow.
The cure proposed by Aoyagi and Abe@18,22# is to reimpose
the constraintw50 as necessary to suppress the paras
mode. Their method for doing so is based on the identifi
tion of w via its signature even-odd timestep alternation
2-3
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NEW, WATT, MISNER, AND CENTRELLA PHYSICAL REVIEW D58 064022
sign, which is evident in Eq.~8!. As noted in @21#, this
method is very efficient since, from the power series exp
sions in Eqs.~10!, the parasitic modesw need merely be
suppressed to single precision accuracy to assure that the
not contaminate the physical solutionz in double precision.
We will return to the cure in Sec. III below.

Note that the instability under discussion here is not
lated to the ‘‘mesh-drifting’’ instability inherent to non
dissipative leapfrog integrations of partial differential equ
tions @25#. As has been emphasized above, the 3-le
leapfrog instability can arise in integrations of both ordina
and partial differential equations and results from the tem
ral, not spatial, discretization of the method.

To demonstrate this instability, we have used the 3-le
leapfrog method to numerically integrate the geodesic eq
tions for a particle moving on a circular orbit of radiusr 0 in
the Schwarzschild spacetime. In the limitr 0@M , we recover
the usual Newtonian equations of motion@Eqs. ~3!#. In this
case, the leapfrog method produced a circular orbit that
stable for ten thousand orbital periods~before we terminated
the run!. However, asr 0 is decreased, general relativist
effects give rise to terms that behave like velocity-depend
forces and the integrator fails to maintain a stable evoluti
Figure 1 shows the results of the geodesic integration for
caser 0510M . The particle orbit shown in Fig. 1~a! initially
appears to be stable; eventually the instability manifests
the solutions on the even and odd timesteps diverge. Fig
1~b! shows the magnitude of the particle’s position vector
a function of time; again the even and odd solutions clea
diverge as the parasitic mode grows to destructive lev
Although the parasitic mode is present from the beginning
the calculation, it takes a number of orbits before it grows
noticeable levels; the instability then grows catastrophica
causing the integration to crash after about six orbits.

Two other integration methods~whose efficiency we will

FIG. 1. The numerical integration of the geodesic equations
a particle in the Schwarzschild spacetime using the 3-level leap
technique. The geodesic equation was solved in rectangular co
nates from a 3D Hamiltonian~see @21#!. The particle was given
initial conditions such that it should remain on a circular orbit
radiusr 0510M and have an orbit period of 199M . In each frame,
the data is plotted on every twenty-third timestep (Dt50.1M ). The
instability manifests as the solutions on odd~circles! and even~tri-
angles! timesteps diverge. Although the integrator appears to
stable at early times, the parasitic mode is present from the be
ning, on a much smaller scale than is used in these plots.
integrator failed and the code crashed after;6 orbital periods.~a!
The particle orbit in thex-y plane.~b! The magnitude of the parti
cle’s position vector as a function of time.
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compare with that of our deloused leapfrog algorithm in S
VI !, the staggered leapfrog and Crank-Nicholson techniqu
do not suffer from the instability present in the 3-level lea
frog algorithm. In both cases this happens because neithe
these algorithms augments the phase space~or state space! of
the problem by adding new degrees of freedom not found
the physical system. To illustrate this, we will continue
use the integration of Eqs.~3! as the example upon which w
base our outline of these integration algorithms.

As mentioned above, the even and odd degrees of f
dom in Eqs.~3! can be writtenx5(rW,uW ) andy5(qW ,vW ). But
when the force law letsaW 5aW (rW) be calculated independentl
of vW , the (rW,vW ) pair of variables are not coupled to the (qW ,uW )
pair, so this second pair can be dropped from the numer
algorithm. This leads to the methodology of the stagge
leapfrog algorithm, which defines the variables it evolves
alternating time levels only. A staggered leapfrog integrat
of Eqs.~3! would, for example, evaluate onlyrW at even steps
and onlyvW at odd steps. It is then customary to renumber
steps so that the even steps are integer values, the odd
half integer:

rWn115rWn1vW n11/2Dt,
~11!

vW n13/25vW n11/21aW n11Dt,

where the constantDt is the difference between two con
secutive integer~or half-integer! time levels@25#. The initial
conditions are specified by giving (rW0,vW 1/2). This method is
time-symmetric and symplectic and thus avoids nonphys
damping@12,13#. Here, with velocity independent Newton
ian forces, one has a 2-level method.@I.e., only thevW com-
ponents are used in updating therW ’s, and only therW compo-
nents in updating thevW ’s.# This leapfrog method gives
second order accuracy at the same computational cost a
first order Euler method.

When aW depends onvW as well asrW, a method such as
extrapolation @e.g., vW n115(3/2)vW n11/22(1/2)vW n21/2] is
needed to calculatevW at the integer~or even! levels; this
generally destroys the time-symmetric nature of the al
rithm and leads to errors in conserved quantities.

The Crank-Nicholson technique is an iterative integrat
algorithm@26#. For the system given in Eqs.~3!, the iteration
cycle is initialized by setting

rWn115rWn, vW n115vW n. ~12!

Then data at the half integer levelsn11 is determined via

rWn11/25
1

2
~rWn111rWn!,

~13!

vW n11/25
1

2
~vW n111vW n!.
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Next, the values of the data at leveln11 are updated ac
cording to

rWn115rWn1vW n11/2Dt,
~14!

vW n115vW n1aW n11/2Dt,

whereaW n11/2 has been computed based on the data given
Eqs. ~13!. The steps given by Eqs.~13! and ~14! are then
repeated until the relative differences of the values of eac
the components ofrWn11 andvW n11 between adjacent iteratio
cycles have each converged to the desired level of accur
This method requires the specification of initial datarW0 and

vW 0. It has accuracyO(Dt2); it is time symmetric if the itera-
tion converges to machine precision.

Both the staggered leapfrog and the Crank-Nicholson
gorithms avoid the instability arising from an augment
phase space. One sees in each case that there is a
physical pair of values at each timestep. These
(rWn,vW n11/2) for staggered leapfrog and (rWn,vW n) for Crank-
Nicholson. Other quantities such asvW n11 in staggered leap
frog or the half integer values in Crank-Nicholson are te
porary variables computed from the physical data. Thus
extraneous degrees of freedom, like thew quantities in 3-
level leapfrog, appear.

III. DELOUSED LEAPFROG

The instability in the 3-level leapfrog scheme is idea
eliminated with a technique that retains as much of the s
plectic character of the 3-level scheme as possible. Aoy
and Abe@18,22# give such a prescription to remove the pa
sitic modes before they grow large enough to destroy
calculation. This method relies on the Runge-Kutta~RK!
method@25# and is called the RK smoother.~The usual RK
algorithm is fourth order; however, Aoyagi and Abe do n
state what order RK scheme is used in their smoother.! They
compare it to a less effective second order smoother s
gested by a colleague. We have extended the work of Aoy
and Abe to produce a second order algorithm which requ
less storage and also allows the use of adaptive~i.e., not
constant in time! timestepsDt ~see also@21#!. We term the
3-level method with this improved smoother ‘‘deloused lea
frog,’’ since it removes the parasitic modes from the calc
lation. In this section, we give the algorithm for this delous
leapfrog method. Ref.@21# discusses its properties in Hami
tonian problems with applications to highly noncircular a
highly relativistic geodesics. Those applications use
adaptive timestep our delousing routine allows.

The prescription for a delousing step to remove the pa
sitic modes uses a second order Runge-Kutta~RK2! algo-
rithm. ~The usual RK algorithm is fourth order.! Our algo-
rithm proceeds as follows. Referring to the 3-lev
discretization in Eq.~4!, we assume that data is available
~say! an odd leveln and an even leveln21. First, use RK2
to evolve the data a half-step backward from the odd leven
and a half-step forward from the even leveln21:
06402
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Step~1! use RK2 withdt52 1
2 Dt

to get rWodd
n21/2, vW odd

n21/2 from rWn,vW n,

Step~2! use RK2 withdt51 1
2 Dt

to get rWeven
n21/2,vW even

n21/2 from rWn21,vW n21,

where, for example,rWodd
n21/2 represents data on leveln2 1

2 that
comes from the odd leveln. We now have data from both
odd and even solutions at the same time leveln2 1

2 . Equa-
tions ~7! are then utilized to obtain the datarWn21/2 andvW n21/2

that contain only the physical mode:

Step~3! set rWn21/25 1
2 (rWeven

n21/21rWodd
n21/2),

vW n21/25 1
2 ~vW even

n21/21vW odd
n21/2!.

With the parasitic mode thus eliminated at leveln2 1
2 ~i.e.,

with the constraintw50 enforced!, we now use RK2 to step
the data a half-step forward and backward:

Step~4! use RK2 withdt851 1
2 Dt8

to get rWn,vW n from rWn21/2,vW n21/2,

Step~5! use RK2 withdt852 1
2 Dt8

to get rWn21,vW n21 from rWn21/2,vW n21/2.

Since RK2 does not suffer from the leapfrog instability~for
the same reason as that given in the preceding section fo
stability of the staggered leapfrog and Crank-Nichols
methods!, no parasitic mode is introduced by its use. W
this ‘‘deloused’’ data at levelsn and n21, which contain
only the physical modes, the 3-level leapfrog integration
resumed. This prescription can be coded so that no more
three levels of data forrW and vW need be kept in memory a
any one time, which is an important consideration when i
applied to 311 dimensional partial differential equations.

Steps~4! and ~5! of this procedure can also be used
start the integration. With initial data specified~e.g., at t
50) as values forrW1/2,vW 1/2, this procedure providesrW0,vW 0

and rW1,vW 1 to start the 3-level algorithm of Eqs.~2!.
Notice that the timesteps6 1

2 Dt8 used in steps~4! and~5!
to bring the deloused data from leveln2 1

2 to levelsn and
n21 are not required to be the same as the timesteps6 1

2 Dt
used in steps~1! and ~2!. This is an improvement on the
method of Aoyagi and Abe@18,22# and allows the system
timestep to be changed whenever delousing is perform
with the integration restarted in a time symmetric manner
this paper, all our runs were carried out using const
timesteps; see, however, Ref.@21# for an example of adaptive
timesteps applied to highly eccentric particle orbits.

The deloused leapfrog method is not strictly symplec
because the delousing steps are taken using RK2, whic
not a symplectic method, and the suppression step~3! does
not preserve volume in the augmented phase space. S
delousing steps can in principle be rare, and ideally do
2-5
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disturb the physical solution@when theO(w2) terms in Eqs.
~10! are beyond machine precision#, the failure here of the
time symmetric and symplectic properties possessed by
~2! could have negligible impact.

To determine when a delousing step is needed, the gro
of the parasitic mode is monitored. Since Eq.~7! shows that
this parasitic mode changes sign on each time leveln, we
look for this alternate timestep oscillation in some quan
that characterizes the system. The detection of such an o
lation in the quantity monitored triggers a call to the delou
ing module, which then removes the parasitic mode. T
goal is to monitor a quantity that manifests the instability
detectable levels early enough, so that it can be elimina
before it dominates the integration. The best quantity to
for the delousing trigger varies from problem to problem a
also depends on what level of parasitic mode one is will
to tolerate in the solution~see further discussion in Secs. V
and VII!.

Figure 2 shows the results of our deloused leapfrog in
gration of the same particle equations of motion as in Fig
The delousing trigger chosen in this case was an oscilla
in a quantity based upon the actiondJ5 1

2 (pdq2qdp) of
Hamiltonian mechanics:

DJ5 1
2 ~pW n1pW n21!•~rWn2rWn21!

2 1
2 ~rWn1rWn21!•~pW n2pW n21!

5rWn
•pW n212pW n

•rWn21, ~15!

where rW and pW are the particle’s position and momentu
vectors, respectively. The use of this trigger initiated a
lousing step about once every 405 timesteps. The orbit
stable for the duration of our simulation, about ten thousa
orbits.

FIG. 2. Same as Fig. 1 except that the integration was car
out using the deloused leapfrog method. The orbit is now stable
the;10 000-orbit duration of the simulation. The timestep was
same as that used in Fig. 1, but the data is plotted only every 2
timesteps. Note that even though only;1 point per orbit~each
orbit is approximately 2000 timesteps! are shown, there are ove
10 000 points plotted in the figure. Both odd and even solutions
directly on top of each other, filling out the orbit track. The delou
ing module was applied on average once every 405 timest
hence this figure was produced at a 2 percent increase in CPU co
per orbit over the simulation shown in Fig. 1.
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IV. THE 3 11 FORMALISM OF NUMERICAL
RELATIVITY

The development of the deloused leapfrog algorithm
scribed in the preceding section was motivated by our sea
for a stable and efficient time integration technique th
could be utilized in CPU and memory intensive, general re
tivistic simulations of the orbital stability of binary neutro
stars. This section briefly summarizes the 311 form of the
Einstein equations upon which such numerical relativ
simulations are based. Here we consider only vacuum sp
times; however, our results apply to models with sources
well.

The Einstein field equations of general relativity a
Gmn58pTmn , where Gmn and Tmn are the Einstein and
stress energy tensors, respectively@27#. We setTmn50 ~as is
the case for vacuum spacetimes!, G5c51 and our conven-
tion is such that Greek indices run from 0 to 3, Latin indic
run from 1 to 3, and repeated raised and lowered indices
summed over. The numerical solution of the Einstein eq
tions is facilitated by the Arnowitt-Deser-Misner~ADM ! de-
composition@27,28#, which divides four dimensional space
time into a series of three dimensional, spacelike slices
are connected by one dimensional, timelike curves. T
‘‘3 11’’ split transforms the Einstein equations into two se
the evolution equations, which govern temporal changes
the gravitational field variables, and the constraint equatio
which the field variables must satisfy on each spacelike sl

The general form of the metric in the ADM formalism

ds252~adt!21gi j ~dxi1b idt!~dxj1b jdt!. ~16!

The vacuum evolution equations for the three-metricgi j and
the extrinsic curvatureKi j are~see, e.g.,@29# and references
therein!

gi j ,t522aKi j 1Dib j1D jb i , ~17!

and

Ki j ,t52DiD ja1b lDlKi j 1Kil D jb
l1Kl j Dib

l

1a@Ri j 22Kil K j
l 1KKi j #, ~18!

where t is coordinate time, commas denote partial deriv
tives,K5Ki

i , andDi andRi j are the covariant derivative an
Ricci tensor, respectively, formed from the three-metricgi j .
The lapsea and the shift vectorb i are freely specifiable and
define the coordinate conditions under whichgi j andKi j are
evolved. The right-hand side of Eq.~17! may be a function
of gi j , as dependence ongi j arises through the covarian
derivative operation whenb i is nonzero or whena is chosen
to depend ongi j ; moreover, the right-hand side of Eq.~18!
is always a function ofKi j . Thus ‘‘velocity dependent
forces’’ are generally present in this system of equations
therefore 3-level leapfrog integrations of them will suff
from the instability described in Sec. II.

The set of constraint equations is comprised of the Ham
tonian constraint

R2Ki j K
i j 1K250, ~19!
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e
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e
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whereR5Ri
i , and momentum constraints

D j~Ki j 2gi j K !50. ~20!

When the field variables and coordinate conditions for
spacetime are functions of time only, the Einstein equati
@Eqs. ~17! and ~18!# governing the evolution of vacuum
spacetimes become ordinary differential equations:

dgi j

dt
522aKi j , ~21!

dKi j

dt
5a~KKi j 22Kil K j

l !. ~22!

This simplified set of equations is the basis of the toy co
discussed in Sec. VI A.

V. GOWDY T3 SPACETIMES

In this section, we introduce the GowdyT3 spacetimes
and then describe three classes of these spacetimes
which exact evolution solutions are known and which
have used as relativistic testbeds for the deloused leap
technique~see Sec. VI.!.

The GowdyT3 spacetimes are solutions of the vacuu
Einstein equations@Eqs. ~17! and ~18!# on the 3-torus, in
which plane gravitational waves are contained within an
panding universe@30#. Solutions of Gowdy’s equations hav
been used for studying the nature of the initial cosmolog
singularity@9,10#, and, as is the case in this work, for testin
numerical codes for solving Einstein’s equations@31#.

The GowdyT3 metric can be written

ds25e~l2t!/2~2e2tdt21dz2!1etdw2, ~23!

where

dw25eP~dx1Q dy!21e2Pdy2. ~24!

This form that appears in@10# is there attributed to Moncrie
@32#, whose exploitation of the harmonic map@33,34# char-
acter of the associated Einstein equations could sug
many equivalent forms. The Gowdy coordinatest, l, s, d,
and u from @10# have here been written as2t, 2l, x, y,
andz. The change in the signs of the time coordinatet and
of l signify that time increases as the universe expands
most earlier work, the emphasis on the study of the ini
singularity dictated a time coordinate that increased as
universe contracted. The metric parametersl, P, andQ are
functions ofz andt only and are periodic inz.

We found the use of an alternate time variable

t5et ~25!

convenient in that it here makes the~coordinate! velocity of
propagation of gravitational waves constant. This means
with a fixed spatial discretization sizeDz the Courant con-
dition will call for a fixed timestepDt and thus makes the
evolution easier to follow numerically. With this time coo
dinate, the Gowdy metric@Eq. ~23!# becomes
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ds25t21/2el/2~2dt21dz2!1tdw2. ~26!

With an ingenious parametrization of the metric similar
Eq. ~24!, Gowdy found that the vacuum Einstein evolutio
equations could be written in terms ofP andQ alone. With
the metric in the form of Eq.~26!, these become

P,tt1t21Pt2P,zz2e2P~Q,t
22Q,z

2 !50, ~27!

Q,tt1t21Qt2Q,zz12~P,tQ,t2P,zQ,z!50, ~28!

with the constraint equations specifyingl:

l ,z52t~P,zP,t1e2PQ,zQ,t!, ~29!

l ,t5t@P,t
21P,z

2 1e2P~Q,t
21Q,z

2 !#. ~30!

A. Kasner universe in power-law form

When the metric parametersP andQ are set to zero, the
Gowdy metric@Eq. ~26!# reduces to the simple diagonal form

ds25t21/2el/2~2dt21dz2!1t~dx21dy2!. ~31!

This form of the metric represents a homogeneous, an
tropically expanding universe with no gravitational wav
and is equivalent to the form of an axisymmetric Kasn
metric @35# with a different time coordinate. A compariso
of Eqs. ~16! and ~31! yields the following analytic solution
for the time evolution of the diagonal components of t
field variables (gi j 5Ki j 50 for iÞ j ) and coordinate condi-
tions:

g115g225t, g335t21/2, ~32!

K115K2252 1
2 t1/4, K335

1
4 t25/4, ~33!

b i50, ~34!

and

a5Ag335t21/4, ~35!

where we have used Eq.~17! to determineKi j in terms of
gi j ,t, b i , and a, and have setl, a constant in this case, t
zero.

B. Kasner universe in exponential form

We can write the metric for the same Kasner unive
with a different time coordinate in an exponential form

ds252etdt21e2t/3dx21e2t/3dy21e2t/3dz2, ~36!

which is essentially the Gowdy metric given in Eq.~23! with
P5Q5l50. A comparison of Eqs.~36! and~16! gives the
following analytic solution forgii (t) and Kii (t) (gi j 5Ki j
50 for iÞ j ) and the coordinate conditions:

g115g225e2t/3, g335e2t/3, ~37!

K115K2252 1
3 et/6, K335

1
6 e25t/6, ~38!
2-7
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b i50, ~39!

and

a5Ag5Ag11•g22•g335et/2, ~40!

whereg5det(gij) and we have once again used Eq.~17! to
determineKi j .

C. Polarized waves in an expanding universe

The Gowdy metric@Eq. ~26!# with Q set to zero,

ds25t21/2el/2~2dt21dz2!1t~ePdx21e2Pdy2!, ~41!

represents the spacetime of an expanding universe conta
polarized gravitational waves propagating in thez-direction.
With this metric, the evolution equations@Eqs.~27! and~28!#
reduce to a single linear equation forP:

P,tt1t21P,t2P,zz50. ~42!

The constraint equations become

l ,z52tP,zP,t ~43!

and

l ,t5t~P,t
21P,z

2 !. ~44!

The general solution to Eq.~42! is a sum of terms of the
form Z0(2pnt)cos(2pnz) andZ0(2pnt)sin(2pnz), wheren
is an integer~assuming periodicity of 1 inz) and Z0 is a
linear combination of the Bessel functionsJ0 and Y0 . We
have chosen to study the spacetime based on the parti
solution

P5J0~2pt !cos~2pz!. ~45!

A comparison of the metrics given in Eqs.~16! and~41! then
yields the following exact solution for the time evolution
the diagonal components of the field variables (gi j 5Ki j 50
for iÞ j ) and coordinate conditions:

g115teP, g225te2P, g335t21/2el/2, ~46!

K1152 1
2 t1/4e2l/4eP~11tP,t!,

K2252 1
2 t1/4e2l/4e2P~12tP,t!,

K335
1
4 t21/4el/4~ t212l ,t!, ~47!

b i50, ~48!

and

a5Ag335t21/4el/4, ~49!

where we have again used Eq.~17! to determineKi j . This
set of equations is completed by an expression forl, which
can be derived by using Eq.~45! in conjunction with Eqs.
~43! and ~44!:
06402
ing
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l522ptJ0~2pt !J1~2pt !cos2~2pz!

12p2t2@J0
2~2pt !1J1

2~2pt !#

2 1
2 $~2p!2@J0

2~2p!1J1
2~2p!#22pJ0~2p!J1~2p!%.

~50!

VI. NUMERICAL RELATIVITY SIMULATIONS

We have used the classes of Gowdy spacetimes discu
in Sec. V as testbeds for numerical relativity simulatio
using the deloused leapfrog, staggered leapfrog, and Cr
Nicholson time integration techniques discussed in Sec
We have carried out these simulations using two types
codes, toy codes@which solve the Einstein equations Eq
~21! and~22! for spatially homogeneous spacetimes# and the
ADM code developed by the Binary Black Hole~BBH!
Grand Challenge Alliance@36,1# @which solves the full
vacuum Einstein equations Eqs.~17! and~18! in three spatial
dimensions#. In this section, we present the results of the
runs plus efficiency analyses that compare the numerical
effectiveness of the various time integration schemes.

A. Toy code simulations

The vacuum Einstein equations for spatially homog
neous metrics reduce to the set of ordinary differential eq
tions ~21! and ~22!. These are similar in form to the set o
equations~3!, with the three-metricgi j replacingrW and the
extrinsic curvatureKi j replacingvW . Note that, as in the cas
of the full Einstein equations@Eqs.~17! and~18!#, the system
of Eqs. ~21! and Eqs.~22! generally contains ‘‘velocity-
dependent forces,’’ and thus 3-level leapfrog integrations
these equations will be inherently unstable. We have c
structed toy codes to solve these equations using each o
integration methods discussed in Sec. II. The 3-level le
frog toy code is based on the discretization in Eqs.~4!, with
the delousing module based on steps~1!–~5! outlined in Sec.
III. The staggered leapfrog toy code is based on the disc
zation in Eqs.~11!; in this method we use the extrapolatio
Ki j

n115(3/2)Ki j
n11/22(1/2)Ki j

n21/2 to obtain Ki j on the full
integer levels@37#. Although this extrapolation is accurate t
second order inDt, it is not time symmetric. Finally, the
Crank-Nicholson toy code is based on the discretization
Eqs.~12!–~14!.

A toy code simulation of the Kasner universe in powe
law form from Sec. V A was the initial testbed numeric
relativity problem to which we applied the deloused leapfr
technique. To demonstrate the need for the delousing m
fication of the standard 3-level leapfrog technique, we fi
carried out a run with the standard 3-level leapfrog techniq
itself. Equations~32!–~35! provide both the initial conditions
for this simulation~begun att51 and run with a timestep
Dt50.1) and the means to measure its accuracy via a c
parison between the analytically and numerically determin
values of the field variables. Specifically, we use

eg5F(
i 51

3 S gii

gii
an 21D 2G1/2

~51!
2-8
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STABLE 3-LEVEL LEAPFROG INTEGRATION IN . . . PHYSICAL REVIEW D 58 064022
as a measure of a simulation’s accuracy. Here the ana
values of the diagonal componentsgii @given in this case by
Eq. ~32!# are denoted asgii

an . Another quantity useful in
determining the quality of the integration is the size of t
normalized residual of the vacuum Hamiltonian constra
@Eq. ~19!#

Hnorm5
uR1K22Ki j K

i j u

uRu1Ki
jK j

i
. ~52!

Ri
i5R50 for the spatially homogeneous Gowdy spacetim

The results of the 3-level leapfrog simulation are presen
in Fig. 3. Panels~a! and ~b! of this figure display both the
analytical~solid lines! and numerical~dots! solutions for the
field variable componentsg11(t) and K11(t), respectively;
panels~c! and~d! show the accuracy measuresHnorm(t) and
eg(t), respectively. The separate even and odd timestep
merical solutions, characteristic of the leapfrog instabil
described in Sec. II@cf. Eq.~8!#, are clearly visible in all four
panels of Fig. 3 as two dotted branches representing the
merical solution. The fact that these two dotted branches
indeed alternate timestep oscillations of the numerical s
tion is evident in the inset of Fig. 3~a!, which is an enlarge-
ment of the numerical solution ofg11 for 37.9,t,39.2. In

FIG. 3. The results of the unstable 3-level leapfrog toy co
integration of a Kasner universe in power-law form are presen
here. The numerical~dots, with every other pair of even and od
timestep values plotted! and analytical~solid lines! solutions for
g11(t) andK11(t) are given in panels~a! and ~b! respectively. The
inset in panel~a! is an enlargement of the numerical solution f
g11(t) in the range 37.9,t,39.2, in which all data points hav
been plotted and connected with dashed lines to emphasize the
alternate timestep oscillations of this unstable solution. The num
cal accuracy measuresHnorm(t) andeg(t) are shown in panels~c!
and~d!, respectively; for the sake of clarity, only every other pair
even and odd timestep values has been plotted.
06402
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this inset every value ofg11 has been plotted with an ‘‘x’’
and consecutive values have been connected by dashed

A toy code integration starting with the same initial co
ditions as the 3-level leapfrog run depicted in Fig. 3 was a
performed with the deloused leapfrog technique. The trig
chosen to initiate the delousing steps in this run was a cha
in the sign of the slope ofHnorm(t); such a sign change i
indicative of the alternate timestep oscillations discussed
the preceding paragraph. The results of this integration
given in Fig. 4. Panels~a! and ~b! of this figure display the
analytical ~solid lines! and numerical~‘‘x’’s ! solutions for
g11(t) andK11(t), respectively; the solid lines in panels~c!
and~d! represent log„Hnorm(t)… andeg(t), respectively. The
regular behavior of the evolved quantities shown in Fig
demonstrates that the delousing steps successfully rem
the parasitic mode from the solutions for the field variabl
producing an evolution that was stable for the duration of
integration. We ran the deloused code a factor of 25 tim
longer than the duration of the catastrophically unstable
level leapfrog simulation.

Note that in general it is possible to evolve components
gi j or Ki j using the constraint equations@Eqs.~19!, ~20!# in
place of one or more of the evolution equations@Eqs. ~17!,
~18!#. For integrations of spatially homogeneous spacetim
only the Hamiltonian constraint is meaningful in this conte
In order to investigate the stability of such constrained e
lutions, we performed 3-level leapfrog toy code simulatio
of the Kasner universe in exponential form in which we r
placed the evolution equation forK33 @Eq. ~22! with i 5 j
53# with Eq. ~19!. ThusK33 was calculated in terms of th

e
d

rge
ri-

FIG. 4. This figure depicts the stable deloused leapfrog,
code integration begun with the same initial conditions as the
stable 3-level leapfrog simulation presented in Fig. 3. The num
cal ~‘‘x’’s, with every 201st point plotted! and analytical~solid line!
solutions for g11(t) and K11(t) are given in panels~a! and ~b!,
respectively. The accuracy measures log„Hnorm(t)… and eg(t) are
shown in the lower panels~c! and ~d!, respectively.
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evolved quantitiesK11 andK22 by imposing the Hamiltonian
constraint. These constrained runs still suffered from the
stability under discussion. However, the times at which
simulations became catastrophically unstable were alm
two and a half times longer than in the corresponding unc
strained runs.

We also carried out integrations of this model using
staggered leapfrog and Crank-Nicholson techniques. Th
runs were all stable, as expected.

Efficiency analysis of toy code runs

The efficiency of a stable integration technique is also
important factor to consider in evaluating numerical me
ods. Here, we consider the efficiency of a technique to be
accuracy level it maintains for a particular numerical co
Since the evaluation of the right-hand sides of the discreti
equations@e.g., Eqs.~4!, ~11!, and ~14! for the set of equa-
tions ~3!# is generally the most expensive operation in ter
of CPU time, we define the cost of an integration to be
number of times the right-hand sides are computed.

The results of our efficiency comparison for the toy co
simulations of the Kasner universe in power-law form a
displayed in Fig. 5. For this comparison, we ran simulatio
with each of the three stable integration methods; in th
simulations the initial conditions and evolution duration we
identical but the constant timestep used during the sim
tionsDt was varied from run to run. We used the value ofeg
at the end of the simulation as the accuracy measure. The
panel of Fig. 5 gives the final values of log(eg) as a function
of log(Dt) and demonstrates that all three techniques
second-order accurate@i.e., the slope of log(eg) versus
log(Dt) for each method is;2#. The right panel of Fig. 5
gives the final values of log(eg) as a function of the numeri
cal cost~measured by the number of times bothdgi j /dt and
dKi j /dt are computed! and provides the most informativ
picture of the efficiency of the different techniques. The a

FIG. 5. The results of the efficiency analysis of toy code sim
lations of a Kasner universe in power-law form, represented by
metric given in Eq.~31!, carried out with different integration tech
niques are shown here. The final values of log(eg) are plotted versus
log(Dt) in the left panel and versus log(cost) in the right pan
Values from Crank-Nicholson runs are marked with ‘‘x’’s, tho
from deloused leapfrog runs are marked with triangles, and th
from staggered leapfrog runs are marked with squares. The co
defined as the number of times the right-hand sides of the
cretized equations are evaluated. The slopes of straight line
through data in~a! are;2, indicating that the numerical technique
are all accurate to second-order inDt.
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erage number of iterations per timestep for the Cra
Nicholson runs ranged between two and three@for a conver-
gence criterion of 1.031028; see Sec. II#. The total number
of delousing steps performed during the deloused leap
runs ranged from 153 to 181. Note that each delousing s
adds eight calls to the cost of the integration since it requ
four calls to the RK2 routine~see Sec. III!, which in turn
computesdgi j /dt anddKi j /dt twice. Panel~b! shows that,
for simulations of this simple, spatially invariant spacetim
Crank-Nicholson is the most efficient of the three integrato
We have used least-squares analysis to fit the best stra
lines to the data points shown in Fig. 5~b!. This analysis led
to the following relationship foreg(cost):

eg510bg costmg. ~53!

The values of the parametersbg and mg for these fits are
given for each integrator in Table I.

We have also done an efficiency comparison of th
three integration techniques for toy code simulations of
Kasner universe in exponential form; the results are show
Fig. 6. The outcome of the efficiency tests for these simu
tions is quite different from that based on the Kasner u
verse in power-law form of Fig. 5. Figure 6~b! shows that for
relatively low to moderate cost and accuracy demands,
staggered leapfrog method is the most cost effective te
nique in this case; however, the deloused leapfrog metho
more efficient when high accuracy levels are required. T
higher average number of iterations per timestep required
these Crank-Nicholson runs, which ranged from three
Dt50.0016 to seven forDt50.1, may account for the rever
sal in its relative cost effectiveness from the simulations
the power-law form~Fig. 5!. The number of delousing step
taken during the deloused leapfrog runs ranged from 1
for Dt50.0016 to 422 forDt50.1. Thus the deloused leap
frog method had to work harder to maintain stable integ

-
e

.

se
is

s-
fit

TABLE I. Parameters for fits to accuracy versus cost data
Fig. 5.

Method bg mg

Deloused leapfrog 6.6 22.0
Crank-Nicholson 6.8 22.2

Staggered leapfrog 6.7 22.0

FIG. 6. The same quantities and notation as in Fig. 5, but for
code simulations of a Kasner universe in exponential form,
scribed by the metric of Eq.~36!.
2-10
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STABLE 3-LEVEL LEAPFROG INTEGRATION IN . . . PHYSICAL REVIEW D 58 064022
tions of this universe in exponential form than in power-la
form. We have again used least squares analysis to
straight lines to the data in Fig. 6~b! and produce a relation o
the form of Eq.~53!; this relation is parameterized by th
values ofbg andmg given in Table II.

B. ADM code simulations

Our study of the deloused leapfrog method stems fr
our search for an efficient technique capable of perform
numerically stable simulations of the orbital dynamics of
nary neutron stars. Because such simulations require the
lution of the full Einstein equations, we wanted to test t
deloused leapfrog integrator in conjunction with the code
plan to use to do these simulations, the ADM code develo
by the BBH Alliance@36,1#. This second-order accurate cod
currently solves the vacuum Einstein equations on a Ca
sian grid and provides the user the choice of utilizing eit
the standard 3-level leapfrog or Crank-Nicholson integrat
techniques. We have added the capability of using the
loused leapfrog integrator to the BBH Alliance’s ADM cod
and have used it to perform simulations of a Kasner~homo-
geneous Gowdy! expanding spacetime with the power-la
coordinate condition of Sec. V A and of the expandi
Gowdy spacetime with polarized gravitational waves of S
V C. Of course this code, like the toy code, was ignorant
Gowdy’s ingenuity which, through parametrizations lik
g115teP, can reduce some of the Einstein equations to lin
equations. The Einstein equations are coded in terms of
gi j andKi j as shown in Eqs.~17! and~18!; the chosen coor-
dinate conditions wereb i50 and a5Ag33. They involve
not only the polynomial nonlinearities manifest in the
equations, but also the nonlinearities implied througha and
through the inverse metric when indices are raised or co
riant derivatives or curvatures are computed.

The preliminary testbed used in our ADM code runs w
a simulation identical to the toy code runs of the Kasn
power-law metric. The development of the instability in t
ADM code’s 3-level leapfrog run replicated its developme
in the toy code run. The ADM code’s deloused leapfrog r
successfully removed this instability in the same manne
in the toy code run, with the delousing steps triggered at
same temporal intervals in both simulations.

To test the behavior of the deloused leapfrog method
partial differential equations with spatially varying terms, w
carried out simulations of the polarized Gowdy spacetime
Sec. V B. Equations~45!–~50! yield both initial conditions
for simulations of this spacetime and exact solutions w
which to compare the results of such simulations.

TABLE II. Parameters for fits to accuracy versus cost data
Fig. 6.

Method bg mg

Deloused leapfrog 11 23.1
Crank-Nicholson 9.0 22.6

Staggered leapfrog 5.8 21.9
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Our ADM code polarized Gowdy simulations began at
51 and were run with periodic boundary conditions over t
interval 2 1

2 <z< 1
2 and a grid spacingDz51/62. Because

the vacuum Einstein equations are partial differential eq
tions, the size of the timestep that can be taken in the in
gration is restricted by the Courant condition@25#, which
ensures that information cannot propagate across more th
single grid zone in one timestep. For the polarized Gow
metric of Eq.~41!, this condition is equivalent to enforcin
Dt5CDz, whereDz is the ~uniform! grid spacing and the
Courant factorC,1. In the runs presented here, we cho
C50.3. The initial ADM code simulation was performe
with the 3-level leapfrog integrator and, as expected, w
unstable. The results of the integration are presented in F
7 and 8. The evolution of the value ofg11 at the center of the
grid is shown in panel~a! of Fig. 7; panels~b!, ~c!, and~d! of
this figure display, respectively,H̄norm(t), ēg(t), and ēt(t).
Here bars denote~spatial! averages over the grid.H̄norm(t) is
computed by dividing the spatial average of the numerato
Eq. ~52! by the spatial average of the denominator of E
~52!. The additional measure of the accuracy of the simu
tion, et , is defined by

et~x,y,t !5t21ut2@g11~x,y,x!g22~x,y,x!#1/2u. ~54!

The usefulness ofet as an error estimate arises because,
cording to the analytic solution of Eq.~46!, g11g225t2.

The separate even and odd timestep solutions, indica
of the instability, can clearly be seen in the plots
H̄norm(t), ēg(t), and ēt(t); however, the separate solution

n

FIG. 7. The results of the unstable 3-level leapfrog ADM co
integration of the expanding universe containing polarized grav
tional waves are presented here. The numerical~dots, with every
fourth pair of even and odd timestep data points plotted! and ana-
lytical ~solid line! solutions forg11(t) at the grid center are given in

panel~a!. The numerical accuracy measuresH̄norm , ēg , andēt are
plotted as functions of time in panels~b!, ~c!, and~d!, respectively;
again, only every fourth pair of even and odd timestep values
been plotted.
2-11
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are not yet visible in the plot ofg11 at t55.8. As shown in
Fig. 8, they do appear ing11 at the grid center later in the
evolution, as the instability begins to overwhelm the comp
tation.

We then evolved the same polarized Gowdy initial d
with the ADM code using the deloused leapfrog integrat
BecauseH̄norm(t) and ēg(t) oscillated in our simulations o
this spacetime, they were not used as a basis for the tri
that initiated the delousing steps.@These fluctuations are du
to the complex oscillatory nature ofgi j andKi j in this space-
time and arenot related to the alternate timestep oscillatio
caused by the instability; in fact, such fluctuations are a
present in the Crank-Nicholson simulations of this spa
time.# Instead, becauseēt behaved monotonically@see Fig.
9~d!#, a change in the sign of its temporal slope was used
the delousing trigger. As can be seen in Fig. 9, the remo
of the parasitic mode during the delousing steps taken in
simulation eliminated the presence of large alternate time
oscillations and allowed for a stable integration.

Efficiency analysis of ADM code runs

We have also used simulations of this polarized Gow
spacetime to evaluate the efficiency of the deloused leap
algorithm. However, in this case its performance could o
be compared with that of the Crank-Nicholson technique
the staggered leapfrog method has not been implemente
the ADM code.~The reason for this is that the memory r
quirements of the staggered leapfrog method would exc

FIG. 8. The extended evolution of the metric componentg11, at
the grid center, from the unstable 3-level leapfrog simulation p
sented in Fig. 7 is shown here. The notation is the same as th
panel ~a! in Fig. 7 ~except that every other pair of even and o
timestep values is plotted!, but the duration of the evolution ha
been extended to exhibit the growth of the parasitic mode, as
denced by the appearance of the even and odd timestep branch
the numerical solution.
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those of the other two methods if adaptive mesh refinem
were to be used.! In this efficiency comparison,Dz andDt
are reduced in tandem from run to run, withC held constant
at 0.3. The value ofēt at the end of the simulations was use
as the measure of accuracy upon which to base the efficie
analysis in this case.

The results of this analysis are displayed in Fig. 10. T
left panel of this figure gives the final value ofēt as a func-
tion of the grid spacingDz, which was varied from 1/126 to

-
of

i-
s of

FIG. 9. This figure depicts the stable deloused leapfrog, AD
code integration begun with the same initial conditions as the
stable 3-level leapfrog simulations shown in Figs. 7 and 8. T
numerical~‘‘x’’s, with every eleventh point plotted! and analytical
~solid line! solutions forg11(t) at the center of the grid are given i
panel ~a!. Panels~b!, ~c!, and ~d! present the evolutions of the

accuracy measuresH̄norm , ēg , andēt , respectively.

FIG. 10. The results of the efficiency analysis of ADM cod
simulations of an expanding universe containing polarized grav
tional waves, represented by the metric of Eq.~41!, are shown here.

The final values of log(ēt) are plotted as a function of the logarithm
of the grid spacingDz (Dt50.3Dz) in the left panel and as a func
tion of the logarithm of the numerical cost in the right panel. T
angles mark the data points from deloused leapfrog runs; ‘‘x
mark those from Crank-Nicholson runs. Straight lines fit throu
data points in the left panel have slope;2, indicating that the
numerical techniques are both accurate to second-order inDt.
2-12
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1/62 to 1/30. Straight lines fit through these data points h
slopes;2; this demonstrates the second-order accurac
the deloused leapfrog and Crank-Nicholson methods.
right panel contains a plot ofēt versus cost and indicates th
the deloused leapfrog integrations of this spacetime w
about five to eight times more efficient than those carried
with the Crank-Nicholson technique. The average numbe
iterations per timestep for the Crank-Nicholson runs ran
from five for Dz51/126 to eight forDz51/30. The total
number of delousing steps taken was relatively constan
the three deloused leapfrog runs~six for Dz51/126; five for
Dz51/62; and six forDz51/30). The least squares straig
line fits to the data in Fig. 10~b! can be transformed, in thi
case, to relations of the form

et510bt costmt; ~55!

the parametersbt andmt determined by these fits are give
in Table III.

VII. CONCLUSIONS

The purpose of this paper is to alert the community to
existence of the instability inherent in standard 3-level le
frog integrations of Einstein’s equations and to demonst
that the proposed delousing modification to the standard
gorithm can efficiently cure this instability. To this end, w
have used three classes of testbed solutions. In Sec. III
show calculations of highly relativistic circular geodesic o
bits calculated in Cartesian coordinates. In Sec. VI, we sh
evolutions of homogeneous expanding cosmologies and
larized gravitational waves in an expanding Gowdy spa
time. In all of these cases, the deloused leapfrog algori
removed parasitic modes from the numerical solution of
Einstein equations that were excited to instability in tra
tional 3-level leapfrog simulations of these spacetimes,
thus allowed for their stable evolution.

The numerical efficiency~i.e., the accuracy level main
tained for a particular numerical cost! of the deloused leap
frog integrator was compared to the efficiencies of two ot
stable integration methods, staggered leapfrog and Cr
Nicholson. We have defined numerical cost as the numbe
times the right-hand sides of both Einstein evolution eq
tions ~i.e., gi j ,t andKi j ,t) are computed during a simulation
Thus cost in this case is a measure of a simulation’s C
expense. Note that all of the simulations presented in
paper were carried out with constant timesteps.

The first testbed for this efficiency analysis was a toy co
†which solves the spatially invariant Einstein equations@Eqs.
~21! and ~22!#‡ simulation of a spatially homogeneou
Gowdy spacetime yielding a Kasner universe. With the

TABLE III. Parameters for fits to accuracy versus cost data
Fig. 10.

Method bt mt

Deloused leapfrog 4.8 22.1
Crank-Nicholson 9.6 22.8
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ordinate condition choicea5Ag33 this gives a power-law
analytic solution for the metric components. For this simp
problem, Crank-Nicholson was the most efficient of the
tegrators~see Fig. 5!. The results were different, howeve
when the testbed was changed to a toy code simulation o
same Kasner universe with a different time coordinate cho
a5Ag5Ag11•g22•g33, yielding in the analytic solution an
exponentialform for the metric components. In that case, t
staggered and deloused leapfrog techniques were more
effective~see Fig. 6!, as the rapid evolution of the spacetim
caused the iterative Crank-Nicholson technique to requir
larger number of iterations per timestep.

The final testbed used in our efficiency analysis wa
simulation of an expanding Gowdy spacetime containing
larized gravitational waves. These simulations required
solution of the complete vacuum Einstein equations a
were carried out with the BBH Alliance’s ADM code@36,1#,
in which the standard~unstable! 3-level leapfrog and the
~stable! Crank-Nicholson integration methods had previou
been implemented. We modified this code to allow the use
the deloused leapfrog scheme. Because the staggered
frog method has not been implemented in the ADM code,
efficiencies of only the Crank-Nicholson and deloused le
frog integrators were evaluated in this case. The delou
leapfrog integrations of this spacetime were five to eig
times more cost effective than the Crank-Nicholson runs~see
Fig. 10!.

Thus, the results of our testbed simulations indicate t
the deloused leapfrog algorithm is an effective and effici
cure for the 3-level leapfrog instability. Further evaluation
this algorithm, via its use in more complex problems in n
merical relativity, such as a contracting Gowdy universe c
taining unpolarized gravitational waves, and other fiel
would serve to confirm the robustness of the method
provide insight into its cost effectiveness in different nume
cal scenarios.

One aspect of the deloused leapfrog algorithm that has
potential to alter the conclusions of such efficiency analy
is the choice of delousing trigger. Based on our experien
we suspect that choice of a trigger which initiates anexces-
sivenumber of delousing steps will degrade the accuracy
a simulation to some degree. If this is the case, a decrea
the average interval between delousing steps would not o
increase the cost of the run, but would also decrease its
merical accuracy somewhat. On the other hand, an incre
in the delousing interval would allow the parasitic mode
the numerical solution to grow to higher levels. For examp
had a change in the sign of the temporal slope ofg11(t) been
used as the delousing trigger in the deloused leapfrog si
lation of the polarized Gowdy spacetime, the parasitic mo
would likely have grown to a greater extent between delo
ing intervals, as its presence became sizable ing11(t) rather
late in the evolution~see Figs. 7 and 8!. Thus the choice of
delousing trigger may involve a trade-off between the loss
some degree of accuracy introduced into the computation
the delousing steps and the degree to which the para
mode is permitted to grow between these steps.

In conclusion, we have demonstrated that the delou
leapfrog algorithm permits the stable numerical evolution
simple vacuum spacetimes. In addition, our results sug
2-13
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that deloused leapfrog may be a better integration techn
than the Crank-Nicholson technique to employ in comp
numerical relativity simulations, as this new algorithm w
more cost effective than the Crank-Nicholson method in
simulation of a spatially varying spacetime.
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