PHYSICAL REVIEW D, VOLUME 58, 064019

Neutron star transition to a strong-scalar-field state in tensor-scalar gravity
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Spherical neutron star models are studied within tensor-scalar theories of gravity. Particularly, it is shown
that, under some conditions on the second derivative of the coupling function and on the star’'s mass, for a
given star there exist two strong-scalar-field solutions as well as the usual weak-field one. This last solution
happens to be unstable and a star, becoming massive enough to allow for all three solutions, evolves to reach
one of the strong field configurations. This transition is dynamically computed and it appears that the star
radiates away the difference in energy between both statiesv 10 3Mc?) as gravitational radiation. Since
part of the energy {10 ®Mc?) is injected into the star as kinetic energy, the velocity of the star’s surface
can reach up to ICc. The waveform of this monopolar radiation is shown as well as the oscillations
undergone by the star. These oscillations are also studied within the slowly rotating approximation, in order to
estimate an order of magnitude of the resulting quadrupolar radid8®556-282198)00218-3

PACS numbs(s): 04.40.Dg, 04.30.Db, 04.56h, 04.80.Cc

I. INTRODUCTION The logarithmic derivative of the coupling functi@{¢) is
a(), present in Eq(1.3). It represents the field-dependent
Tensor-scalar theories have been studied in many worksoupling strength between matter and the scalar field. Here-
(see, e.g.[1]) as natural generalizations of Einstein’s generalafter, it is assumed that this coupling strength function con-
relativity, representing the low-energy limit of superstring tains no large dimensionless parameter, and hence the class
theories([2] and [3]). They describe gravity by the usual of coupling functions is well represented by an affine one,
spin-2 field @,,,) combined with one or several spin-0 fields depending on two parametefsee[4]). If ¢, denotes the
(¢). In this paper, only one scalar field will be considered,asymptotic value of the scalar fieldyg=a(¢y) and Bg
with no self-coupling(potentia). In that case, the most gen- = da(¢)/dp, can be chosérto parametrizex(¢):
eral tensor-scalar theory is given by the action

a(e)=apt BoX(¢— o). (1.9
SZ(l&TG*)ﬂf d*xV =9, (R, —20573,09,¢) Brans-Dicke theory is obtained fg@,=0, on the opposite,
5 . even ifag=0 (andBy# 0), the scalar field can exhibit some
+Sul¥Ym,a% ()91, (1.)  nonperturbative effects in neutron stafstrong gravity,

. . . .—._when By is lower than some critical valueabout—5, de-
whgre all guaniltles Wlt_h asterisks are r_eIaFed to the _E'n'pending on the mass of the staFhis phenomenon has been
stein metric” g,,: G, is the bare gravitational coupling gescribed if4] and[5] as “spontaneous scalarization,” by
constant,R, =g{"R},, the curvature scalar for this metric, analogy with the spontaneous magnetization of ferromagnets
andg, =det(g},,). The termS;, denotes the action of matter, below the Curie temperature. The aim of this paper is to
represented by the field¥,,, which is coupled to the determine under which conditions a neutron star shows such
“Jordan-Fierz” metricﬁwzaz(@)gzv; all quantities with a  spontaneous scalar field and how can the dynamical transi-

tilde are related to this metric. That means that all nongravition be. Resulting gravitational radiation will also be dis-
tational experiments measure this metric, although the fiel@ussed. The organization is as follows: Section Il delimits
equations of the theory are better formulated in the Einsteiithe parameter space for nonperturbative effects to appear and

one. By varyingS, one obtains sets a maximal value fgB,, Sec. Ill shows computed evo-
lution of unstable stars, during which gravitational radiation
L1 . 87G, _, is emitted(Sec. IV). Finally, Sec. V gives some concluding
AW §ngR* =20,9d,0—9,,95"d,0d,¢+ TT’”’ remarks.
1.2

II. CONDITIONS FOR SPONTANEOUS SCALARIZATION

Hg, ¢=—47G,a(e)T, (3 In all this section, spherical symmetry is assuni#ds

will not be the case in Sec. IV)Band the coupling function

where the Einstein-frame stress-energy tens®L” .t the form(1.5) will be considered throughout all the paper.

=2(—g*) "2sS,/59}, is related to the physical ong/*”
=2(—9) Y265,/59,,,, by

u 4, \Fpu ¢, is then redundant witk, and does not represent a parameter
Te,=a ()T . (1.9 for the theory.
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It gives the following expression for the functiaf): Polytrope y=2.34
a(go):eao(‘P—<Po)+,30/2(<P—<Po)2, (2.1) T T T T ,

so thata( o) = 1. As stated abovep, enters the theory only 20 mb\ecgq*.\g“““"‘?“s' o -

as a boundary condition for the scalar field, but not as a = unE

parameter of the theory. 1.6 ,

Spontaneous

A. Coordinate and variable choices E: 12} Scalarization
s

Following [6], space-time is decomposed on spacelike hy-
persurfaces within the-81 formalism, with the radial gauge
and polar slicing. The metrigzv takes the form

ds?=—N2(r,t)dt>+ A?(r,t)dr’+r3(d 6%+ sir? 6d¢?).

0.0 1 1 1 1 1
(2.2 2150 -130 -11.0 -90 -70 -50 -3.0

. . . . B

All coordinates are expressed in the Einstein-frame, and as- ’
terisks are omitted. However, “physical” quantities will of- FIG. 1. Zone of spontaneous scalarization of general-relativistic

ten be written in the Fierz metric and noted with a tilde. neutron star solutions in the baryonic maddg)-8, plane, for

Neutron star matter is modeled as a perfect fluid EOS1. The zone lies inside solid lines, the horizontal line at
2.23M, represents the maximal mass for neutron stars in general
T,,=(e+p)u,u,+pg,,, relativity. Since the curve is parametrized by stars’ central density

(ng), it has been continued for unstable configuratitthin dotted
whereu,, is the 4-velocity of the fluide is the total energy line) for which dMg /dng<<0. See Sec. Il B for more explanations.

density(including rest massin the fluid frame, ang is the . )
pressure. The description of the fluid is completed by thderent stiffnesses of matter and, on the other hand, their nu-
equation of state, not depending on temperatooéd mattey ~ merical behavior allows for good accuracy in the results.

e=e(ng), B. Maximal B, parameter for spontaneous scalarization

When considering static solutions of Edq$.2), (1.3 for

with ng being the baryonic density in the fluid frame. This ' e .
assumption consists in neglecting the strong and wea ol—O,there may EXIS.I two types of splgtlons. one “gq"’
eing the same as in general relativity, apd- constant

nuclear interaction processes and assuming matter is at equi~ i ) .
librium for these processes. This is, of course, not valid for_ #°’ the scalar charge ‘3f the star is thus nu_II, two solutions
B-equilibrium, but as it has been shown [#}, the effects of where|p—o|~1 at star's center, they are images of each
weak nuclear interactions on the hydrodynamics of a neutroftNEr bY@ — — ¢+ 2¢,, and have the same global character-

star collapse are negligible. Finally, tloeordinate velocity Issig(;ss r'gatgsose cases, the scalar charge is of the order of the

's defined as The first type of solutioiwhich will be noted weak-field
dr u' solution always exists, whereas the second dmalled
V= —=—, strong-field solutiojp requires that the amount of baryons in
dt ° the star(its baryonic mas#g) be larger than some critical
] value, depending on thg, parameter. This result has been
and the Lorentz factor of the fluid as obtained by Damour and Esposito-Feed[4], Fig. 2 and
A \2]-12 Table 1) and Haradd[11], Table 1. Using the same equa-
= 1_(_\/) } tion of state as these two workEOSJ), static weak-field
N solutions were computed for increasing baryonic masses and

) ] _ checked against spontaneous scalarization. Since imxghe
The equations for the fields and matter variables are those af g case the transition has an infinite slo@f. Fig. 1 of

[6] and are solved the same way, by the same numericgly)) it is possible to draw the curvi ¢t as a function of
code. There will be four equations of stdEE0S used in this Bo; the results are displayed in Fig. 1. The curve is param-

work: EOS1, a polytropg p=Knomg(ng/ng)”] with y  etrized by stars’ central density, until it reaches its maximal
=2.34 and K=0.0195, mg=1.66x10"2" kg and n, value, corresponding to maximal mass (2R3 for general
=0.1 fm 3; EOS2, the same as above, but with-2 and  relativity). If this density is further increased, neutron stars
K=0.1; EOS3, Pandharipande equation of sta@malistic, configurations become hydrodynamically unstable, they
rather soft equation of state; sp& and[9] for properties  may, however, show spontaneous scalarization effects if
and EOS4, Bethe and Johnson equation of staalistic, their mass is above the dotted curve. For hydrodynamically
rather stiff equation of state; s¢@| and[10] for properties.  stable neutron staréheing below theMg=2.23Mg line),
These equations have been chosen because they describe difong-field solutions can develapsidethe solid curve. This
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36 i i i i model, he has shown that th&, parameter below which
3.2 | T2 Fannarpance ] instabilities of the scalar field develop, is little sensitive to
7 Dethe & Jonseon e the compactnessR{M) of the star aroundR/M =4 (Fig. 5

28 | unstable configurations

of his work). Section Il will show that these dynamical in-
stabilities are expression of the existence of strong-field so-
lutions.

C. Spontaneous scalarization whernyy#0

What has been stated in previous section was a result of
computations in the casg,=0. Behavior of neutron stars is
quite similar in the casey# =0, if we consider this param-
eter constrained by solar-system experimeisese[4] and

00 1 1 1 1 1
150 -130 -11.0 -90 -70 -50 =30 [12]) to:
By
a3<103. (2.4)
FIG. 2. Same as Fig. 1, but for EOS2, EOS3, and EQGs®é
Sec. I A. The most general conditions for spontaneous scalarization to

appear have been studied i3], using catastrophe theory.

is in accordance with previous work§4] and [11]) and  Namely, fora, verifying Eq. (2.4), there are still two kinds
shows that there exists a maximay parameter for sponta- of static solutions: one for which the scalar charge is of the
neous scalarization to occupg=—4.34). For—5.2<By  order of «y, the second onécontaining two different solu-
< —4.34, Fig. 1 shows that a star, which is close to its maxitjons, not equivalent this timefor which the scalar charge is
mal mass, does not exhibit spontaneous scalarization effectgf the order of unity. Some models of neutron stars are de-
whereas for the sam@, less massive stars do. An explana- scribed in Table | in order to compare models with same
tion to this could be that, for such stas 3p at their center number of baryons (1My), with Bo=—6 for all of them
becomes small or negative, therefore the simplified model o$o that spontaneous scalarization is likely to occur. One sees
static equations df5] shows no more “zero modes.” How- that solutions with high scalar charge are energetically more
ever, this cannot be the only reason, ieparameter should favorable than solutions with no or small charge; beside this,
also intervene. spontaneous scalarization mainly affects matter distribution

This study has been extended to other equations of staiaside the star, but very little global variables such as the
(EOS2 to 4 and the results are shown in Fig. 2. The mainmass and the radius. One should note that in the egse
result is that the maximal value @, for which spontaneous # 0, when the mass of the neutron star increases, the transi-
scalarization still occurs is independent from the equation ofion to spontaneous scalarization is smoothed and one has to

state used. Its value reads delimit the zone for spontaneous scalarization to hagpsn
max in Fig. 1) by looking for the existence of three solutions for
o = —4.34+0.01 (2.3 agiven amount of baryons. The study of the number of equi-

librium solutions and of their stability has been done, for
Since the equations of state used cover a very broad range BOS1, by Harad@13], using catastrophe theory. The same
stiffness and are, for two of them, results of realistic sceresults have been found here, using a static numerical code,
narios for dense matter, this limit can be considered as a vegnd have been extended to other equations of state, getting
strong one for compact stars. It can easily be interpreted witthus as a new result the maximal valuegy (2.3), compat-
the results of Harad@ll]: taking an incompressible fluid ible with spontaneous scalarization in thg=0 case.

TABLE I. Computed characteristics of different neutron stars oMlz5showing spontaneous scalariza-
tion effects(solutions 2,3,5, and)6r without (solutions 1 and ¥ The equation of stattEOSJ is described
in Sec. Il A, &y and B, are the coupling function parametétss), Rg,,, denotes star's radiuag(r =0) is the
central baryon densitgin units of nuclear density,r, .= 10*m ~3), Mg is thegfw-frame ADM massMg
the baryonic one, an@ the scalar charge. The code used for these results is a static one.

Rstar ng(r=0) Mg Mg w
Solution ag Bo (km] [Mnucl [Mo] [Mo] [Mo]
1 0 —6 13.2 3.9643 1.37803 1.50009 0
2 0 -6 13 5.3212 1.37322 1.50008 0.781
3 0 -6 13 5.3212 1.37322 1.50008 —0.781
4 102 -6 13.2 3.9742 1.37807 1.50007 —5.91x10 2
5 102 -6 13 5.3674 1.3719 1.50008 0.803
6 102 -6 13 5.2669 1.37452 1.50008 —0.757
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FIG. 3. Evolution of star’s radius for unstable initial equilibrium  FIG. 5. Evolution of star’s surface velocity for unstable initial
solution number 4Cf. Table ). equilibrium solution number 4Cf. Table ).
IIl. DYNAMICAL TRANSITION TO SPONTANEOUS stable when strong-scalar field solutions existedy., solu-
SCALARIZATION STATE tions 1 and 4 of Table)!

This study can be linked with the physical scenario of an

The conditions for spontaneous scalarization to appear argecreting neutron stafe.g., in an x-ray binary system
now well defined and the question is to know, for a fixedwhich passes the limit of the critical baryonic mass. When it
theory (i.e., ap, Bo, and the equation of stgtand a given is born, the star may be below this mass and thus either in a
amount of baryons, if the three equilibrium solutions aregeneral relativistic statéif «;=0) or in a “weak-scalar-
stable and what happens to the unstable ones. The first pdi¢ld” state. When it passes the critical baryonic mass, the
of this question has already been answered by Hafatla star will be in an unstable configuration. This kind of solu-
who did a semianalytical stability analysis of spherically tion was then numerically followed and the resulting evolu-
symmetric neutron stars in tensor-scalar theory; and byion is shown on Figs. 3—6, for radius, central density, sur-
Harada[13] using the catastrophe theory. He showed theface velocity, and central scalar field, beginning with the
development of unstable modes for weak-field solutionainstable solution number 4 of Table I. One sees that the star
which correspond to the possibility for spontaneous scalarundergoes a strong variation of its matter distribution, caused
ization. Here, the dynamical numerical code showed thdy the rapid raise of the scalar field, then behaves like a
same results. This code is described in more detaBlnthe  damped oscillator radiating away its kinetic energy through
main point being the fact that, thanks to pseudospectral tectmonopolar gravitational radiatiofsee Sec. IV Aand finally
nigues, it is precise enough to be sensitive to instabilitiessettles down to the strong-field statstatic solution 5 of
and to follow the evolution of the unstable star. The stabilityTable ). One can thus see, in the cagg# 0, the spontane-
results have been numerically checked, and the code showeds scalarization appearing dynamically. In the simulations,
that the weak-scalar-field equilibrium solutions were un-the star starting form the weak-field configuration, would

o i (]
0 o
— ol
? !
g el
ﬂ—tlo_ I
3 =
o
— & ©
8-
—
0
= R — O F
I (=]
R Pl
B[
o °
ﬂl_ —
L 1 . 1 ' i L 1 L 1 L 1

20 40 2 4 6
t [ ms] t [ ms]

FIG. 4. Evolution of star’'s central density for unstable initial FIG. 6. Evolution of star’s central scalar field value for unstable
equilibrium solution number 4Cf. Table ). initial equilibrium solution number 4Cf. Table ).
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settle down either to the positive strong-field stételution T T T
5) or to the negative onésolution §. The final dynamically |
evolved fields correspond to those obtained from a statics™ |
code within 1% of errofthe code indicates 3%, sg&]) and N
the baryonic mass is conserved up to 10

Such simulations have been done for various masses an g
coupling function parameters. Results were very similar: the &

Own

e E
|

weak-field state is always unstable when the two other:S? |
|
Il
|
|

strong-field states exist; these last solutions are both stable & =

Looking at the energies, one sees that the weak-field solutior g
is a local maximum, whereas spontaneous scalarizatior

states are local miniméven if the state having a scalar &

charge of the opposite sign te, is energetically less favor- SEL
able than the other one, see TableThe difference in en- 5 10 15 20
ergy is radiated away as monopolar gravitational waves in t [ms]

two steps. First, the largest pdgbout 99%) of the differ-

ence in energy between both states is radiated very rapidly FIG. 7. Evolution of star's kinetic energy defined as
when the scalar field grows to its new value; then, the rest of ;=54 =T (I'—1)er2dr, wheree is the total energy density of fluid,
the energy is put into the star as kinetic energy which igor unstable initial equilibrium solution number(€f. Table ).
dissipated slowly by the oscillations of the star and the

change they induce onto the scalar field. 1 r 1
This last point is studied in more detail. There is no rig- o(r,t)y=¢@ot+ —F| t— —) +O(— , 4.7
orous definition of the kinetic energy of a star in general r ¢ r?
relativity, however if one considers the kinetic enekfy, of
a particle of massn: and the interesting “scalar wave” which can be detected by
a gravitational wave detector, at a distandefrom the
Ep,=(T—1)mc, source, is then related  through:
I' being its Lorentz factor, then a good choicek, for a 2
star may be given by: h(t)= 5 aoF(t) (4.2
r=R
Ekm:J . 47T (T —1)er?dr, (3.1) [see Eq.(5.6) of [1], with a(¢g)=1]. The functionF(t)

(waveform) is plotted in Figs. 8 and 9, for the rapid variation
and the damped oscillations, respectively. The first step has a

with I'e replacingmc. Ey;, is thus computed the same way characterist'ic freqqency o200 Hz, whereas the second

as in[14].2 On Fig. 7 the evolution of this kinetic energy, One, lower in amplitude, has 3 kHz. These results depend

giving the good Newtonian limit, is plotted and shows well essentially on the star’s_mass. From these Wa\_/eforms, one

the damped behavigexponential decay Such neutron stars ¢an also deduce the radiated scalar energy, defined as:

are really damped oscillators, except for stars with masses

close to the critical onédescribed in Fig. Rwhich exhibit T T T T

no oscillations, but only exponential relaxation toward equi-

librium state. In any case, the maximal velocity reached by

star’s surface is of the order of 18c showing clearly that

the appearing strong scalar field has an important influenceg
N

1000

on the structure and the hydrodynamics of the star.

500

IV. GRAVITATIONAL EMISSION DURING THE \2/
TRANSITION

A. Monopolar component

Variation of the scalar field during the transition results in
an emission of monopolar gravitational waves. Far from the
star, the scalar field writes:

3 4 5
t [ ms]

FIG. 8. Scalar waveform resulting from the evolution of un-
°The additional Lorentz factor is due to the relativistic contractionstable initial equilibrium solution number @Cf. Table ), corre-
of space. sponding to the raise of the scalar field.
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' ' ' ' observed, with constraints on the,, 3, parameters taken
1 from solar system experimer(#], if the sources are situated
at a larger distance than a few 100 kpc. This excludes the

i | Virgo cluster galaxies and thus reduces the number of pos-
e sible sources.
S
iy B. Quadrupolar component
= % = . From Eq.(4.2) one sees that the amplitude of the wave

interacting with the detector is directly proportional 4.

Since cosmological argumengsl5| and[16]) indicate that
the parameter should have been driven to 0 by cosmo-
! . ! . logical evolution, monopolar waves described in the previ-
8 10 ous section can be “invisible” to gravitational detectors.
t [ ms] However, if one considers a slowly rotating neutron star,
which is very close to spherical symmetry, the oscillations of

FIG. 9. Scalar waveform resulting from the evolution of un- its surface(Figs. 3 and 5 will induce a modification of its

stable initial equilibrium solution number &f. Table ), corre-  quadrupolar momentum, the star will emitsua) quadrupo-

sponding to the damping of star’s oscillations. lar gravitational radiation, whose detection is not sensitive to
ap. This qualitative scenario should also hold for rapidly

cd [+=[dF\2 rotating neutron stars, but the aim of this section is to make

Escalzajo a) dt, (4.3 an order-of-magnitude crude estimate of the emitted quadru-

polar wave amplitude. The detection of such quadrupolar
waves, with no detection of monopolar ones, would give
solid constraints on the theory, indicating the possibility for
spontaneous scalarization and constrainigg

which is plotted in Fig. 10 as a function of time. The func-
tion F(t) is estimated at =300 km, sed6]. The radiated

amount correspondsvithin errorg to the difference between Therefore, the procedure is very simplified: at each time-

stat_ic cases 4 and 5 of Table I. On Fi_g. 1_0’ t_he star StilEtep of the dynamical integration, the star is supposed to be
radiates some energy after 10 ms: it is its kinetic energy 5 oquilibrium. As a slowly rotating star, it can be described
of Fig. 7. If one does nof[ consider this oscillatidméich are by the perturbation equations of Harfl&7] and Hartle and
small compared to the first raiséhe wave represents a tran- 11,,ner1g], which are second-order accurate in the angular

sition which is the inverse of that of neutron star collapse tc\/elocity. Their work starts from a spherically symmetric
a black hole, when the star is strongly scalarized. The scalal; e star, described in the same gauge as in this work,

field goes from the strong-field value to the asymptotic oneyich, is perturbed by the rotation. The resulting metric in-

¢o, Whereas in Fig. 8 it goes frofalmos} ¢, 10 its strong  g\yes several additional functions, proportional to angular
field value. Therefore, the amplitude of the wave res“”'ng\/elocity or to its square:

from a transition of a neutron star to a strong-scalar-field

state is very similar to that of a wave coming from a neutron 2

star collapse to a black hole. The discussion on this amplids’= —N?[1+2(hg+h,P,)]dt*+| 1+ FAZ(mO+ m,P3)
tude of the wave made 6] can be applied here to say that

the monopolar radiation from such events is unlikely to be Xdr2+r?[1+2(v,—hy)P,]
. : , . X[d#%+sir? 9(dp— wdt)?]+0(03), (4.9
Io .
X
©

with ) being star’s angular velocityy(r) the “angular ve-
locity of the local inertial frame,”A andN are defined in Eq.

- (2.2), P,=P,(cos¥) is the second Legendre polynomial and
hg,h,,my,my,v, are perturbation functions proportional to
Q2. From the asymptotic behavior of these last functions,
one can deduce the quadrupolar momentum. Since all the
quantities are computed at each time-step, from the matter
distribution and fields, one also knows the quadrupolar mo-
mentumQ of the star at each time-step. One then uses the

2
Escol [MOC ]
2x107% 4x1073

° , ! ‘ ) ‘ , ‘ | usual quadrupole formula to get the amplitude of the wave at
6 8 10 12 14 a distanced:
time [ms]
2
FIG. 10. Evolution of star's radiated energy defined in &), he(t)= 26, 4R : (4.5
for unstable initial equilibrium solution number(€f. Table ). ctd dt?
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The value obtained fo® from the simulation described in being —4.34. When these types of equilibrium solutions ex-
Sec. Il is ist, they are energetically more favorable than the weak-field
) ones, which are then unstable equilibria. A star which is in
d—Q~1032><f2kg-m2~s‘2 thg weak-ﬁeld. regiméwhen its mass is to onv to get “sca-
dt? ' larized”) can increase the mass by accretion and thus be-
come unstable. Then it undergoes evolution to the strong-
with f being the rotation frequency of the star, expressed irfield state radiating the difference of energy as monopolar
Hz. This yields gravitational wave; it also behaves like a damped oscillator,
(2 sincg a smgll fraction of the energy-(L0"*Mc?) i§ _put as
hrr~10 12X —. (4.6)  kinetic oscillating energy into the star. The transitions stud-
ied in this work are not likely to be observed through their
Sqravitational radiation, except if they are located close to us
(which severely decreases the number of possible sgurces

the interferometers currently under constructirhose de- Howgver, the kinetic energy put |r_1to the Sftar has an impor-
tection level is about 10 at these frequencigsthe source tant influence on the hydrodynamics and its effect must not

has to be situated closer than 10 pc, that is very close in odf€ neglected when considering the supernovae collapse to-
Galaxy. ward a neutron star: when the protoneutron star gets its final

compactness, the scalar field can develop and influence the
V. CONCLUSIONS ejection of the envelop. The future study of supernova col-
lapse and bounce, within the framework of tensor-scalar
Spontaneous scalarization effects appear in a restrictetheory could provide us with monopolar gravitational sig-
part of the (35,Mg) parameter space, depending on the equanals. These latter can give constraints on the tensor-scalar
tion of state used for neutron star matter. On the contrary, théheory space parameter, even if they are not detected, since
maximal By parameter which allows for spontaneous scalarin the case of a supernova, electromagnetic, or neutrino sig-
ization is quasi-independent of the equation of state, its valuaals are detected.

So, even if the highest value for the rotation frequency i
considered (2 kHz, sd@)), if this wave is to be detected by
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