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Neutron star transition to a strong-scalar-field state in tensor-scalar gravity

Jérôme Novak
Département d’Astrophysique Relativiste et de Cosmologie, UPR 176 du C.N.R.S., Observatoire de Paris,

F-92195 Meudon Cedex, France
~Received 17 February 1998; published 27 August 1998!

Spherical neutron star models are studied within tensor-scalar theories of gravity. Particularly, it is shown
that, under some conditions on the second derivative of the coupling function and on the star’s mass, for a
given star there exist two strong-scalar-field solutions as well as the usual weak-field one. This last solution
happens to be unstable and a star, becoming massive enough to allow for all three solutions, evolves to reach
one of the strong field configurations. This transition is dynamically computed and it appears that the star
radiates away the difference in energy between both states~a few 1023M (c2) as gravitational radiation. Since
part of the energy (;1025M (c2) is injected into the star as kinetic energy, the velocity of the star’s surface
can reach up to 1022c. The waveform of this monopolar radiation is shown as well as the oscillations
undergone by the star. These oscillations are also studied within the slowly rotating approximation, in order to
estimate an order of magnitude of the resulting quadrupolar radiation.@S0556-2821~98!00218-5#

PACS number~s!: 04.40.Dg, 04.30.Db, 04.50.1h, 04.80.Cc
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I. INTRODUCTION

Tensor-scalar theories have been studied in many w
~see, e.g.,@1#! as natural generalizations of Einstein’s gene
relativity, representing the low-energy limit of superstrin
theories~@2# and @3#!. They describe gravity by the usua
spin-2 field (gmn) combined with one or several spin-0 field
(w). In this paper, only one scalar field will be considere
with no self-coupling~potential!. In that case, the most gen
eral tensor-scalar theory is given by the action

S5~16pG* !21E d4xA2g* ~R* 22g
*
mn]mw]nw!

1Sm@Cm ,a2~w!gmn* #, ~1.1!

where all quantities with asterisks are related to the ‘‘E
stein metric’’ gmn* : G* is the bare gravitational couplin
constant,R* 5g

*
mnRmn* the curvature scalar for this metric

andg* 5det(gmn* ). The termSm denotes the action of matte
represented by the fieldsCm , which is coupled to the
‘‘Jordan-Fierz’’ metricg̃mn5a2(w)gmn* ; all quantities with a
tilde are related to this metric. That means that all nongra
tational experiments measure this metric, although the fi
equations of the theory are better formulated in the Eins
one. By varyingS, one obtains

Rmn* 2
1

2
gmn* R* 52]mw]nw2gmn* g

*
rs]rw]sw1

8pG*
c4

Tmn* ,

~1.2!

hg
*
w524pG* a~w!T* , ~1.3!

where the Einstein-frame stress-energy tensorT
*
mn

52(2g* )21/2dSm /dgmn* is related to the physical one,T̃mn

52(2g̃)21/2dSm /dg̃mn , by

T
* n
m 5a4~w!T̃n

m . ~1.4!
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The logarithmic derivative of the coupling functiona(w) is
a(w), present in Eq.~1.3!. It represents the field-depende
coupling strength between matter and the scalar field. H
after, it is assumed that this coupling strength function c
tains no large dimensionless parameter, and hence the
of coupling functions is well represented by an affine on
depending on two parameters~see @4#!. If w0 denotes the
asymptotic value of the scalar field,a05a(w0) and b0
5]a(w0)/]w0 can be chosen1 to parametrizea(w):

a~w!5a01b03~w2w0!. ~1.5!

Brans-Dicke theory is obtained forb050, on the opposite,
even ifa050 ~andb0Þ0), the scalar field can exhibit som
nonperturbative effects in neutron stars~strong gravity!,
when b0 is lower than some critical value~about 25, de-
pending on the mass of the star!. This phenomenon has bee
described in@4# and @5# as ‘‘spontaneous scalarization,’’ b
analogy with the spontaneous magnetization of ferromag
below the Curie temperature. The aim of this paper is
determine under which conditions a neutron star shows s
spontaneous scalar field and how can the dynamical tra
tion be. Resulting gravitational radiation will also be di
cussed. The organization is as follows: Section II delim
the parameter space for nonperturbative effects to appear
sets a maximal value forb0, Sec. III shows computed evo
lution of unstable stars, during which gravitational radiati
is emitted~Sec. IV!. Finally, Sec. V gives some concludin
remarks.

II. CONDITIONS FOR SPONTANEOUS SCALARIZATION

In all this section, spherical symmetry is assumed~this
will not be the case in Sec. IV B!, and the coupling function
of the form~1.5! will be considered throughout all the pape

1w0 is then redundant witha0 and does not represent a parame
for the theory.
© 1998 The American Physical Society19-1
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It gives the following expression for the functiona(w):

a~w!5ea0~w2w0!1b0/2~w2w0!2
, ~2.1!

so thata(w0)51. As stated above,w0 enters the theory only
as a boundary condition for the scalar field, but not a
parameter of the theory.

A. Coordinate and variable choices

Following @6#, space-time is decomposed on spacelike
persurfaces within the 311 formalism, with the radial gauge
and polar slicing. The metricgmn* takes the form

ds252N2~r ,t !dt21A2~r ,t !dr21r 2~du21sin2 udf2!.
~2.2!

All coordinates are expressed in the Einstein-frame, and
terisks are omitted. However, ‘‘physical’’ quantities will o
ten be written in the Fierz metric and noted with a tild
Neutron star matter is modeled as a perfect fluid

T̃mn5~ ẽ1 p̃!ũmũn1 p̃g̃mn ,

whereũm is the 4-velocity of the fluid,ẽ is the total energy
density~including rest mass! in the fluid frame, andp̃ is the
pressure. The description of the fluid is completed by
equation of state, not depending on temperature~cold matter!

ẽ5ẽ~ ñB!,

with ñB being the baryonic density in the fluid frame. Th
assumption consists in neglecting the strong and w
nuclear interaction processes and assuming matter is at
librium for these processes. This is, of course, not valid
b-equilibrium, but as it has been shown by@7#, the effects of
weak nuclear interactions on the hydrodynamics of a neu
star collapse are negligible. Finally, thecoordinate velocity
is defined as

V5
dr

dt
5

ur

u0
,

and the Lorentz factor of the fluid as

G5F12S A

N
VD 2G21/2

.

The equations for the fields and matter variables are thos
@6# and are solved the same way, by the same nume
code. There will be four equations of state~EOS! used in this
work: EOS1, a polytrope@ p̃5Kñ0m̃B(ñB /ñ0)g# with g

52.34 and K50.0195, m̃B51.66310227 kg and ñ0
50.1 fm23; EOS2, the same as above, but withg52 and
K50.1; EOS3, Pandharipande equation of state~realistic,
rather soft equation of state; see@8# and @9# for properties!
and EOS4, Bethe and Johnson equation of state~realistic,
rather stiff equation of state; see@9# and@10# for properties!.
These equations have been chosen because they describ
06401
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ferent stiffnesses of matter and, on the other hand, their
merical behavior allows for good accuracy in the results.

B. Maximal b0 parameter for spontaneous scalarization

When considering static solutions of Eqs.~1.2!, ~1.3! for
a050, there may exist two types of solutions: one withgmn*
being the same as in general relativity, andw5constant
5w0, the scalar charge of the star is thus null; two solutio
where uw2w0u;1 at star’s center, they are images of ea
other byw→2w12w0, and have the same global characte
istics, in those cases, the scalar charge is of the order o
star’s mass.

The first type of solution~which will be noted weak-field
solution! always exists, whereas the second one~called
strong-field solution! requires that the amount of baryons
the star~its baryonic massMB) be larger than some critica
value, depending on theb0 parameter. This result has bee
obtained by Damour and Esposito-Fare`se ~@4#, Fig. 2 and
Table 1! and Harada~@11#, Table 1!. Using the same equa
tion of state as these two works~EOS1!, static weak-field
solutions were computed for increasing baryonic masses
checked against spontaneous scalarization. Since in thea0
50 case the transition has an infinite slope~Cf. Fig. 1 of
@4#!, it is possible to draw the curveMB

crit as a function of
b0; the results are displayed in Fig. 1. The curve is para
etrized by stars’ central density, until it reaches its maxim
value, corresponding to maximal mass (2.23M ( for general
relativity!. If this density is further increased, neutron sta
configurations become hydrodynamically unstable, th
may, however, show spontaneous scalarization effect
their mass is above the dotted curve. For hydrodynamic
stable neutron stars~being below theMB52.23M ( line!,
strong-field solutions can developinsidethe solid curve. This

FIG. 1. Zone of spontaneous scalarization of general-relativi
neutron star solutions in the baryonic mass (MB)-b0 plane, for
EOS1. The zone lies inside solid lines, the horizontal line
2.23M ( represents the maximal mass for neutron stars in gen
relativity. Since the curve is parametrized by stars’ central den

(ñB), it has been continued for unstable configurations~thin dotted

line! for which dMB /dñB,0. See Sec. II B for more explanation
9-2
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NEUTRON STAR TRANSITION TO A STRONG-SCALAR- . . . PHYSICAL REVIEW D 58 064019
is in accordance with previous works~@4# and @11#! and
shows that there exists a maximalb0 parameter for sponta
neous scalarization to occur (b0.24.34). For 25.2,b0
<24.34, Fig. 1 shows that a star, which is close to its ma
mal mass, does not exhibit spontaneous scalarization eff
whereas for the sameb0 less massive stars do. An explan
tion to this could be that, for such starsẽ23p̃ at their center
becomes small or negative, therefore the simplified mode
static equations of@5# shows no more ‘‘zero modes.’’ How
ever, this cannot be the only reason, theb0 parameter should
also intervene.

This study has been extended to other equations of s
~EOS2 to 4! and the results are shown in Fig. 2. The ma
result is that the maximal value ofb0 for which spontaneous
scalarization still occurs is independent from the equation
state used. Its value reads

b0
max524.3460.01. ~2.3!

Since the equations of state used cover a very broad rang
stiffness and are, for two of them, results of realistic s
narios for dense matter, this limit can be considered as a
strong one for compact stars. It can easily be interpreted w
the results of Harada@11#: taking an incompressible fluid

FIG. 2. Same as Fig. 1, but for EOS2, EOS3, and EOS4~see
Sec. II A!.
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model, he has shown that theb0 parameter below which
instabilities of the scalar field develop, is little sensitive
the compactness (R/M ) of the star aroundR/M54 ~Fig. 5
of his work!. Section III will show that these dynamical in
stabilities are expression of the existence of strong-field
lutions.

C. Spontaneous scalarization whena0Þ0

What has been stated in previous section was a resu
computations in the casea050. Behavior of neutron stars i
quite similar in the casea0Þ50, if we consider this param
eter constrained by solar-system experiments~see @4# and
@12#! to:

a0
2,1023. ~2.4!

The most general conditions for spontaneous scalarizatio
appear have been studied by@13#, using catastrophe theory
Namely, fora0 verifying Eq. ~2.4!, there are still two kinds
of static solutions: one for which the scalar charge is of
order of a0, the second one~containing two different solu-
tions, not equivalent this time! for which the scalar charge i
of the order of unity. Some models of neutron stars are
scribed in Table I in order to compare models with sa
number of baryons (1.5M (), with b0526 for all of them
so that spontaneous scalarization is likely to occur. One s
that solutions with high scalar charge are energetically m
favorable than solutions with no or small charge; beside t
spontaneous scalarization mainly affects matter distribu
inside the star, but very little global variables such as
mass and the radius. One should note that in the casea0
Þ0, when the mass of the neutron star increases, the tra
tion to spontaneous scalarization is smoothed and one ha
delimit the zone for spontaneous scalarization to happen~as
in Fig. 1! by looking for the existence of three solutions f
a given amount of baryons. The study of the number of eq
librium solutions and of their stability has been done, f
EOS1, by Harada@13#, using catastrophe theory. The sam
results have been found here, using a static numerical c
and have been extended to other equations of state, ge
thus as a new result the maximal value ofb0 ~2.3!, compat-
ible with spontaneous scalarization in thea050 case.
a-
TABLE I. Computed characteristics of different neutron stars of 1.5M ( showing spontaneous scalariz
tion effects~solutions 2,3,5, and 6! or without ~solutions 1 and 4!. The equation of state~EOS1! is described

in Sec. II A,a0 andb0 are the coupling function parameters~1.5!, Rstar denotes star’s radius,ñB(r 50) is the
central baryon density~in units of nuclear density, 1nnuc51044m 23), MG is thegmn* -frame ADM mass,MB

the baryonic one, andv the scalar charge. The code used for these results is a static one.

Solution a0 b0

Rstar

@km#
ñB(r 50)

@nnuc#
MG

@M (#
MB

@M (#
v

@M (#

1 0 26 13.2 3.9643 1.37803 1.50009 0
2 0 26 13 5.3212 1.37322 1.50008 0.781
3 0 26 13 5.3212 1.37322 1.50008 20.781
4 1022 26 13.2 3.9742 1.37807 1.50007 25.9131022

5 1022 26 13 5.3674 1.3719 1.50008 0.803
6 1022 26 13 5.2669 1.37452 1.50008 20.757
9-3
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III. DYNAMICAL TRANSITION TO SPONTANEOUS
SCALARIZATION STATE

The conditions for spontaneous scalarization to appear
now well defined and the question is to know, for a fix
theory ~i.e., a0, b0, and the equation of state! and a given
amount of baryons, if the three equilibrium solutions a
stable and what happens to the unstable ones. The first
of this question has already been answered by Harada@11#
who did a semianalytical stability analysis of spherica
symmetric neutron stars in tensor-scalar theory; and
Harada@13# using the catastrophe theory. He showed
development of unstable modes for weak-field solutio
which correspond to the possibility for spontaneous sca
ization. Here, the dynamical numerical code showed
same results. This code is described in more detail in@6#, the
main point being the fact that, thanks to pseudospectral te
niques, it is precise enough to be sensitive to instabilit
and to follow the evolution of the unstable star. The stabi
results have been numerically checked, and the code sho
that the weak-scalar-field equilibrium solutions were u

FIG. 3. Evolution of star’s radius for unstable initial equilibriu
solution number 4~Cf. Table I!.

FIG. 4. Evolution of star’s central density for unstable initi
equilibrium solution number 4~Cf. Table I!.
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stable when strong-scalar field solutions existed~e.g., solu-
tions 1 and 4 of Table I!.

This study can be linked with the physical scenario of
accreting neutron star~e.g., in an x-ray binary system!,
which passes the limit of the critical baryonic mass. When
is born, the star may be below this mass and thus either
general relativistic state~if a050) or in a ‘‘weak-scalar-
field’’ state. When it passes the critical baryonic mass,
star will be in an unstable configuration. This kind of sol
tion was then numerically followed and the resulting evo
tion is shown on Figs. 3–6, for radius, central density, s
face velocity, and central scalar field, beginning with t
unstable solution number 4 of Table I. One sees that the
undergoes a strong variation of its matter distribution, cau
by the rapid raise of the scalar field, then behaves lik
damped oscillator radiating away its kinetic energy throu
monopolar gravitational radiation~see Sec. IV A! and finally
settles down to the strong-field state~static solution 5 of
Table I!. One can thus see, in the casea0Þ0, the spontane-
ous scalarization appearing dynamically. In the simulatio
the star starting form the weak-field configuration, wou

FIG. 5. Evolution of star’s surface velocity for unstable initi
equilibrium solution number 4~Cf. Table I!.

FIG. 6. Evolution of star’s central scalar field value for unstab
initial equilibrium solution number 4~Cf. Table I!.
9-4



at

a
th
he
b
ti
tio
r

-

id
t
i

th

ig
ra

y
,

el

s

ui
b

n

in
th

by

n
as a
d
d
one

ion

s

,

n-

NEUTRON STAR TRANSITION TO A STRONG-SCALAR- . . . PHYSICAL REVIEW D 58 064019
settle down either to the positive strong-field state~solution
5! or to the negative one~solution 6!. The final dynamically
evolved fields correspond to those obtained from a st
code within 1% of error~the code indicates 3%, see@6#! and
the baryonic mass is conserved up to 1025.

Such simulations have been done for various masses
coupling function parameters. Results were very similar:
weak-field state is always unstable when the two ot
strong-field states exist; these last solutions are both sta
Looking at the energies, one sees that the weak-field solu
is a local maximum, whereas spontaneous scalariza
states are local minima~even if the state having a scala
charge of the opposite sign toa0 is energetically less favor
able than the other one, see Table I!. The difference in en-
ergy is radiated away as monopolar gravitational waves
two steps. First, the largest part~about 99%) of the differ-
ence in energy between both states is radiated very rap
when the scalar field grows to its new value; then, the res
the energy is put into the star as kinetic energy which
dissipated slowly by the oscillations of the star and
change they induce onto the scalar field.

This last point is studied in more detail. There is no r
orous definition of the kinetic energy of a star in gene
relativity, however if one considers the kinetic energyEkin

0 of
a particle of massm:

Ekin
0 5~G21!mc2,

G being its Lorentz factor, then a good choice ofEkin for a
star may be given by:

Ekin5E
r 50

r 5R

4pG~G21!ẽr 2dr , ~3.1!

with Gẽ replacingmc2. Ekin is thus computed the same wa
as in @14#.2 On Fig. 7 the evolution of this kinetic energy
giving the good Newtonian limit, is plotted and shows w
the damped behavior~exponential decay!. Such neutron stars
are really damped oscillators, except for stars with mas
close to the critical one~described in Fig. 2! which exhibit
no oscillations, but only exponential relaxation toward eq
librium state. In any case, the maximal velocity reached
star’s surface is of the order of 1022c showing clearly that
the appearing strong scalar field has an important influe
on the structure and the hydrodynamics of the star.

IV. GRAVITATIONAL EMISSION DURING THE
TRANSITION

A. Monopolar component

Variation of the scalar field during the transition results
an emission of monopolar gravitational waves. Far from
star, the scalar field writes:

2The additional Lorentz factor is due to the relativistic contract
of space.
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r 2D , ~4.1!

and the interesting ‘‘scalar wave’’ which can be detected
a gravitational wave detector, at a distanced from the
source, is then related toF through:

h~ t !5
2

d
a0F~ t ! ~4.2!

@see Eq.~5.6! of @1#, with a(w0)51]. The functionF(t)
~waveform! is plotted in Figs. 8 and 9, for the rapid variatio
and the damped oscillations, respectively. The first step h
characteristic frequency of;200 Hz, whereas the secon
one, lower in amplitude, has;3 kHz. These results depen
essentially on the star’s mass. From these waveforms,
can also deduce the radiated scalar energy, defined as:

FIG. 7. Evolution of star’s kinetic energy defined a

* r 50
r 5R4pG(G21)ẽr 2dr , whereẽ is the total energy density of fluid

for unstable initial equilibrium solution number 4~Cf. Table I!.

FIG. 8. Scalar waveform resulting from the evolution of u
stable initial equilibrium solution number 4~Cf. Table I!, corre-
sponding to the raise of the scalar field.
9-5
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Escal5
c3

G*
E

0

1`S dF

dt D
2

dt, ~4.3!

which is plotted in Fig. 10 as a function of time. The fun
tion F(t) is estimated atr 5300 km, see@6#. The radiated
amount corresponds~within errors! to the difference between
static cases 4 and 5 of Table I. On Fig. 10, the star s
radiates some energy aftert510 ms: it is its kinetic energy
of Fig. 7. If one does not consider this oscillations~which are
small compared to the first raise!, the wave represents a tran
sition which is the inverse of that of neutron star collapse
a black hole, when the star is strongly scalarized. The sc
field goes from the strong-field value to the asymptotic o
w0, whereas in Fig. 8 it goes from~almost! w0 to its strong
field value. Therefore, the amplitude of the wave result
from a transition of a neutron star to a strong-scalar-fi
state is very similar to that of a wave coming from a neutr
star collapse to a black hole. The discussion on this am
tude of the wave made in@6# can be applied here to say th
the monopolar radiation from such events is unlikely to

FIG. 9. Scalar waveform resulting from the evolution of u
stable initial equilibrium solution number 4~Cf. Table I!, corre-
sponding to the damping of star’s oscillations.

FIG. 10. Evolution of star’s radiated energy defined in Eq.~4.3!,
for unstable initial equilibrium solution number 4~Cf. Table I!.
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observed, with constraints on thea0 ,b0 parameters taken
from solar system experiments@4#, if the sources are situate
at a larger distance than a few 100 kpc. This excludes
Virgo cluster galaxies and thus reduces the number of p
sible sources.

B. Quadrupolar component

From Eq.~4.2! one sees that the amplitude of the wa
interacting with the detector is directly proportional toa0.
Since cosmological arguments~@15# and @16#! indicate that
the parametera0 should have been driven to 0 by cosm
logical evolution, monopolar waves described in the pre
ous section can be ‘‘invisible’’ to gravitational detector
However, if one considers a slowly rotating neutron st
which is very close to spherical symmetry, the oscillations
its surface~Figs. 3 and 5! will induce a modification of its
quadrupolar momentum, the star will emit~usual! quadrupo-
lar gravitational radiation, whose detection is not sensitive
a0. This qualitative scenario should also hold for rapid
rotating neutron stars, but the aim of this section is to ma
an order-of-magnitude crude estimate of the emitted qua
polar wave amplitude. The detection of such quadrupo
waves, with no detection of monopolar ones, would g
solid constraints on the theory, indicating the possibility f
spontaneous scalarization and constraininga0.

Therefore, the procedure is very simplified: at each tim
step of the dynamical integration, the star is supposed to
at equilibrium. As a slowly rotating star, it can be describ
by the perturbation equations of Hartle@17# and Hartle and
Thorne@18#, which are second-order accurate in the angu
velocity. Their work starts from a spherically symmetr
static star, described in the same gauge as in this w
which is perturbed by the rotation. The resulting metric
volves several additional functions, proportional to angu
velocity or to its square:

ds252N2@112~h01h2P2!#dt21S 11
2

r
A2~m01m2P2! D

3dr21r 2@112~v22h2!P2#

3@du21sin2 u~df2vdt!2#1O~V3!, ~4.4!

with V being star’s angular velocity,v(r ) the ‘‘angular ve-
locity of the local inertial frame,’’A andN are defined in Eq.
~2.2!, P25P2(cosu) is the second Legendre polynomial an
h0 ,h2 ,m0 ,m2 ,v2 are perturbation functions proportional t
V2. From the asymptotic behavior of these last functio
one can deduce the quadrupolar momentum. Since all
quantities are computed at each time-step, from the ma
distribution and fields, one also knows the quadrupolar m
mentumQ of the star at each time-step. One then uses
usual quadrupole formula to get the amplitude of the wave
a distanced:

hTT~ t !5
2G*
c4d

d2Q~ t !

dt2
. ~4.5!
9-6
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NEUTRON STAR TRANSITION TO A STRONG-SCALAR- . . . PHYSICAL REVIEW D 58 064019
The value obtained forQ from the simulation described in
Sec. III is

d2Q

dt2
;10323 f 2kg•m2

•s22,

with f being the rotation frequency of the star, expressed
Hz. This yields

hTT;102123
f 2

d
. ~4.6!

So, even if the highest value for the rotation frequency
considered (2 kHz, see@9#!, if this wave is to be detected b
the interferometers currently under construction~whose de-
tection level is about 10223 at these frequencies!, the source
has to be situated closer than 10 pc, that is very close in
Galaxy.

V. CONCLUSIONS

Spontaneous scalarization effects appear in a restri
part of the (b0,MB) parameter space, depending on the eq
tion of state used for neutron star matter. On the contrary,
maximalb0 parameter which allows for spontaneous sca
ization is quasi-independent of the equation of state, its va
ry

se
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being24.34. When these types of equilibrium solutions e
ist, they are energetically more favorable than the weak-fi
ones, which are then unstable equilibria. A star which is
the weak-field regime~when its mass is to low to get ‘‘sca
larized’’! can increase the mass by accretion and thus
come unstable. Then it undergoes evolution to the stro
field state radiating the difference of energy as monopo
gravitational wave; it also behaves like a damped oscilla
since a small fraction of the energy (;1025M (c2) is put as
kinetic oscillating energy into the star. The transitions stu
ied in this work are not likely to be observed through th
gravitational radiation, except if they are located close to
~which severely decreases the number of possible sourc!.
However, the kinetic energy put into the star has an imp
tant influence on the hydrodynamics and its effect must
be neglected when considering the supernovae collapse
ward a neutron star: when the protoneutron star gets its fi
compactness, the scalar field can develop and influence
ejection of the envelop. The future study of supernova c
lapse and bounce, within the framework of tensor-sca
theory could provide us with monopolar gravitational si
nals. These latter can give constraints on the tensor-sc
theory space parameter, even if they are not detected, s
in the case of a supernova, electromagnetic, or neutrino
nals are detected.
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