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No time machine construction in open 21 gravity with timelike total energy-momentum
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It is shown that in (2-1)-dimensional gravity an open spacetime with timelike sources and total energy
momentum cannot have a stable compactly generated Cauchy horizon. This constitutes a proof of a version of
Kabat's conjecture and shows, in particular, that not only a Gott time machine cannot be formed from
processes such as the decay of a single cosmic string as has been shown byeCalrrbllt that, in a precise
sense, a time machine cannot be constructed at all.
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. INTRODUCTION AND OVERVIEW spacetimes with spinless particles and timelike t&tdl do
not havecTtc [12]. To this we should add that 't Hooft has
Partly because of the possibility that topological defectsshown that although a Gott pair can be produced from initial
such as cosmic strings may have been formed in the earlyata with timelike€M momentum in a compact surface, a
universe, and also because of the fact that it had already beep,nch” will occur before the appearance afrc [13].
noted that some solutions int2l gravity corresponding 10 Time machine constructions have been associated with

spinless particles do not have cIo:seo! tim_elike culieax) if compactly generated Cauchy horizd@GCH) [14,15. This
the total energy momentumel) is timelike [1,2], Gott's s one side, because if for certain initial data on a surface

sqlutlon [3]. hag sUmuIated work discussing whet'her or nOtS a domain of dependence without a Cauchy horizon is ob-
this spacetime is physically reasonable. The relation between

' . . tained, and changing the data in a compact regiors @t
cosmic strings and 21 particles comes from the property Cauchv hori b d whiche exist. then it i
that the spacetime of an infinitely long and stationary gauge auchy norizon appears, beyond wniehe exist, tnen It 1S
cosmic string asymptotically tends to Minkowski spacetimecompaCtIy generated. On the ot'her side, in certgln pomlts ofa
with a deficit angld4], and in the cases of interest the core is C6CH (the so called base pointstrong causality is vio-
small enough that one can consider just Minkowski with alated._ln this work we WI|| follow thIS approach and take t_he
conical singularitynone of these properties holds for gaugeduestion of whether a time machine can be constructed in an
but supermassivib] or global stringg6]). Thus, Gott's so- 2+ 1 open spacetime with timelike totéM as equivalent to
lution approximates the spacetime of two infinitely long par-asking whether such a spacetime can have a CGCH. The
allel gauge cosmic strings, but it can also be thought of as thanswer will be negative.
spacetime of twdspinles$ particles in 2+1. The first ob- Note that working with a CGCH we get rid of a difficulty
jections to Gott’s spacetime were due to the belief that it didoresent in other formulations of Kabat's conjecture. This
not have an associated initial value problem, and to the fadtrises from the fact that it is n@t priori obvious that, in a
that its totaléM is timelike, in some similarity with tachyons spacetime witrcTc, a foliation in surfaces in which “matter
[7]. Approximately at the same time, Cutler showed that incontributes positively” exists, so that one can calculate the
Gott’s spacetime there are regions withaut; in particular,  total EM via holonomy, without “counting matter more than
in these regions there are achronal, edgeless, nonasymptodirce.” Specifically: we are interested in spacetimes arising
cally null surfaces, so that it can be thought that the spacerom initial data, i.e., of the fornD *(S) whereS is a simply
time evolves from an initial data in any of these surfa@&s connected, noncompact, closed, achronal and edgeless sur-
(these surfaces must be suitably chosen, in this sense see afsoe and its future domain of dependen@estably causal
[9]). The apparent analogy with tachyons comes from theeegion is denoted byD *(S). The dominant energy condi-
fact that parallel transport of vectors around a Gott pair is thdion, i.e., thatT,,t* is a future directed timelike or null vec-
same as for a tachyon, but this is not true for parallel transtor for all future directed timelike or nuli®, choosingt® as
port of spinors[10], basically because a Gott pair satisfiesthe normal taS, ensures that tot&M is independent of time
the dominant energy conditiofalso the weak and strong (a conserved quantityand of the foliation. If there exists a
ones while a tachyon does not. Therefore, spafisd must  Cauchy horizonH *(S), then the definition can be extended
not necessarily be considered as unphysicalmore discus- to the horizon if the matter “crosses it,” e.g., assuming that
sions oncTcin 2+ 1 gravity and on the nontachyonic char- there are no lightlike sources; specifically, tiggt® is fu-
acter of a Gott pair, s 1]). But then it remains intriguing ture directed and timelike for all future directed timelité
that all known exact solutions describing spinless particlesDEC3g. In this work we will assume this energy condition
do not havectc if their total EM is timelike [1-3]. Kabat  but without requiring thafl ,,t® is future directed DECb),
has suggested that this is a general feature, specifically, thaince in a CGCH the weak energy conditiGWEC) is vio-

lated[15].
There are some previous results in connection with Ka-
*Electronic address: tiglio@fis.uncor.edu bat's conjecture: Seminara and Menotti have shown, assum-
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ing additional rotational symmetry and the WEC, that if that in such spacetimes, if they are composedspinless
there are neTC at infinity then there are noTc at all [16]; particles, there cannot exist any subsystem with spéatiél
Headrick and Gott have shown that itac is deformable to  [10]. In particular, a Gott time machine cannot be created out
infinity, then the holonomy of theTc itself cannot be time- of the decay of a single cosmic string because there is not
like, except for a rotation of 2 [11]. Nevertheless, in a enough energy for thd20]. In principle this property is not
noncompact CGCH the WEC is violated and the first resulbbtained as a partial result in the version of Kabat's conjec-
is not related to time machine construction in the sense madere that we prove here, since a Gott pair satisfies the WEC
precise above, while the total holonomy ofacis in prin-  and, indeed, it can explicitly be seen that it does not have a
ciple not related to the totafM, due to the problem men- CGCH[8]. We mention it because a slight generalization is
tioned in the preceding paragraph. crucial in our proof. So, we need here to summarize the
In Sec. Il and Sec. Il we will summarize and discussanalysis given irf10].
some known results that are crucial in our proof, which will  Suppose, then, that the matter is composed by particles
be given in Sec. IV. (assuming implicitly, in this way, the DEGaThe totaléEM
as defined by holonomies is constructed starting from a
trivial loop in S (at constant but arbitrary timeind deform-
ing it until it encircles all the particles. In the process, the
Since in Sec. IV we will analyze the dynamics of a CGCH corresponding holonomic operator describes a cileteus
in 2+1, we need here to recall some properties of Cauchgall it y) in the Lie group , which starts at the indentity
horizons, obtained in 3 1 gravity, but equally applicable to (corresponding to the trivial logpand finishes at the total
2+1 gravity. LetS be a(partia) Cauchy surface fob *(S), EM. We remark thatup to similarity transformationsthe
an orientable, time orientable spacetime with a futuretotal EM does not depend on the way in which the deforma-
Cauchy horizor{ *(S). Then the following is true. tion is carried out, althougl does not share this property,
and is therefore not unique.
Coordinates for the double covering o$0(2,1),
[17;18)'_ _ _ _ SU(1,1), can be chosen by decomposing every element in a
(2) 7 7(5) is differentiable everywhere except in a set of ,4ti0n through angle foliowed by a boost of rapidity
zero measure. We will assume implicitly differentiability 54 girection defined by the polar anglg+ 6)/2. In these

of the horizon each time it is needgd. Th&_‘t i.S_' we Will coordinates, the metric afU(1,1) (naturally given by the
assume, e.g., that the set of nondifferentiability is notstrycture constaniss

dense(in this sense, se 9]).

(3) H*(S) is generated by null geodesics that are complete 1 l 1 1 ¢
in the past but may be incomplete in the fut(it&,1§. ds?=— Zcoshz—d02+ Zd§2+ ZSiNhiddfz, 1)
Let us denote them, generically, i8(s,x):ZXH *(S)

N ) . .
—H " (5), with T some mterval_ Ok ands some affine which shows thaU (1,1) has the geometry of anti—de Sitter
parameter and, unless otherwise stated, we always ref

Shacetime. A conformal diagram éhe universal coverin
to generators directed to the past. b g ah g

; , , ) of) this spacetime is shown in Fig. 1, with one dimension
4 HT(S) is defined as compactly generated if a_II thesesuppressed anaEMan—l(eg/z)_W_ Systems with timelike
geodesics enter some compact, connected refgiamd

, ' (spacelike total EM lie in region 11 (111).
remain there forever. That is, for eagl: 1 " (S), there Since we have assumed that the tdlisl is timelike, the
existssy such thatB(s,x) e K for s=s, [14,15. corresponding holonomic operator is equivaléhrough a
(5) In a noncompact CGCH the WEC is violated, i.e., theresimilarity transformation to a rotation through a certain
exist points ik in which To,k®k"<0 , with k? the  angle 6,5, which is defined as the total mass. Since the
tangent to the generatof$5]. topology of S is assumed to b& ? and (it is assumed that
(6) The base sef3e H*(S), is defined as the set of terminal the initial data are geodesically complete,
accumulation points of null generators. It can be seen
that B is nonempty(this follows from the completeness
of the generators in the past and the compactne#s) of rotal= JEKdA$27T, 2
that strong causality is violated i (also from the com-
pleteness of the generators in the paand thatB is
comprised by future and past inextendible null genera:
tors contained inB, although not necessarily closed
(“fountains”) [14] (as we will see in the last section, the
last statement does not hold irt+2).

Il. COMPACTLY GENERATED CAUCHY HORIZONS

(1) H*(S) is compact ifS is compact(see, for instance,

whereK is the Gaussian curvature, the equality and inequal-
ity follow from the Gauss-Bonnet and Cohn-Vossen theo-
rems, respectively.

At this point we remark that the matter need not be com-
posed of particledif it is not, the loop must encircle the
support ofT 4, or be deformed to infinity if this support is not
compact and that the same analysis holds if one just as-
sumes DECa. This condition implies thatis timelike and

From now on we will assume that the spacetime is operuture directed, a condition that in turn implies that no sub-
and that the totafM is timelike. Carrollet al. have shown system can have spaceli€d; since, if y crosses from re-

lll. TOTAL MASS IN2 +1

064018-2



NO TIME MACHINE CONSTRUCTION IN OPEN 21. .. PHYSICAL REVIEW D 58 064018

4
P N
2n I1I
2n
-
spacelike energy
momentum
6
timelike energy
momentum
0 -
tachyonic matter
0 0 I
0 27
3
FIG. 2. When the WEC is violateg is past directed, and can
cross from region Il to region Il and turn back to region Il, having
thus timelike totalEM and subsystems with spacelik#.
0 2n .

_ trast to 3+ 1, the total mass is not only bounded from below

g but also from above. This was noted in a Hamiltonian for-

FIG. 1. A conformal diagram of the universal covering of mulation, in _Wh'Ch case the toFa_I mass must be s_tr_lctly less

50(2,1). than 27 and it was argued that it is not a feature arising from

such formulation analyzing the limit of a particle’s spacetime
gion Il to region lll, it cannot return back to region Il and when the mass approaches and subsequently exceeds 2
lead to timelike totaléM, as we did assumésee[10] for  which case the conical structure becomes cylindrical and
further details. subsequently geodesically incomplete. What we want to re-
We should also remember that Seminara and Menottingrk js that, on account of E¢2), and the discussion that
have explicitly showr(without using the causal structure of yreceded it, if geodesically completeness is assumed, then
anti-de Sitter spacetime, or the Gauss-Bonnet and Cohfipe (oa) mass is effectively bounded, it mustb@ar. Let us

Vossen theorerr)?mﬂartr?:ppelr.ﬂesgzg‘.ﬂ Sp(f_lelgally[,)érg:at also remark that not every compact system is asymptotically
IN an open spacetime with imelike towll Sa isfying a flta\t in the sense described [23], since a spacetime with
the mass increases as the loop encircles more and more mgﬁacelike or null totaM is not. even if it hasT.. with

d ab

ter and if, having reached the total mass af,2nore matter
: ) . compact support and thus curvature of compact sugpiuet
is encircled then the totalM turns null or spacelike. . ) ; )

Weyl tensor vanishes identically in+21).

Now recall that there is already a “standard” formulation o

for asymptotic flatness in 21, with analogues to the L€t US assume now that DECb holds. Theis timelike
Arnowitt-Deser-MisneADM) [22] and Bondi mass€23]. put not necessarily fut_ure dlrec_ted and there are some subtle-
In the Hamiltonian formulation it is required that asymptoti- ti€S that we need to discuss. Firstly, we shall assume that the
cally the spacetime approaches that afspinless particle, total mass is non-negative. Therefore, near the idemtitan

i.e., Minkowski with a deficit angle: this angle defines the Pe chosen non past directed by simply choosing the point
“ADM” mass. Note that for such a spacetime the total ho- Where the loop is initially expanded as one in which there is
lonomy of a loop that is deformed to infinity is equivalent to non negative mass. Now note that without assuming DECa
a rotation through an angle which coincides with the deficitthe reasoning that led to the non existence of subsystems
angle, so the “ADM” mass coincides with that defined via with spacelikeEM s, in principle, no longer trué¢see Fig.
holonomies. It was emphasized[i22] that in 241, in con-  2). We shall overcome this difficulty by imposing that, once
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that y has been chosen non past directed at the identity, it
remains in region Il. 27[

IV. THE PROOF 6 II1

Considering the previous sections, the proof of the ver-
sion of Kabat's conjecture we give here reduces to showing
that open 2-1 spacetimes with a CGCH must have a sub-
system with null or spacelikéM, or timelike EM of mass slightly deform ¥ and
zero or 2r. Imposing timelike totakM and the DECb, we there Is no CGCH
will have arrived at a contradiction, except for the last two e
cases, which will turn out to be unstable, in an appropriate
sense. Such a subsystem is, precisely, that encircled by the 27[
closed null geodesic whose existence we will now prove.

So, in 2+1, not only strong but also stable causality is
violated: the base set necessarily contains at least one closed 0 I
null geodesicC. The proof follows from the Poincare

Bendixon-Schwartz theoreif24] applied to the dynamical 0 n

system defined by the past directed null genergBggsx) in £

the two-dimensional compact manifold. We start by not- _

ing some properties of this dynamical syste{hiX is posi- FIG. 3. This shows an example where a subsystem has 2

tively invariant(this results from the definition d€); (2) the ~ Mass buty can be slightly deformed to rule out this possibility.
past directed generatof{s,x) in K exist globally(they are
complete in the past, and we are always referring to this—{V%}, whose equivalence class defines &M encircled by
direction in timg; (3) from completeness of the generators inC. In particular, let us take a base such that the tangent vector
the past, there are no fixed points, i.e., there does not exisd C at p, k? belongs to{v?}. C being a geodesid¢® is
x e IC such thatB(s,x) =xVs. parallel transported and, since it is a nonbroken geodkSic,
The first item allows us to think of our dynamical system (defined byLk?=K?) is proportional tak?, i.e.,K#=Ak?. In
as one in a compact manifold. The second item allows us tother wordsk? is an eigenvector of. It is straightforward
introduce what is usually called thew'limit set” of a point  to see that ifL is timelike it has no null eigenvector, except
me K. This set is defined as the set of poirts /C such that  whenL is the identity, in which case the eigenvalue is obvi-
the generator passing through satisfies: for every open ously 1 and all the vectors are eigenvectors. Whea null
neighborhood? of x and everys, (in the domain in which it has exactly one null eigenvector, with eigenvalue 1 and
they are definedthere existss>sy such thatB(s,m)e ©.  when it is spatial it has two null eigenvectors, with eigenval-
The “w limit set of K is, similarly, defined as the union of ues\;>1 and\,=1/\;, so the first is attractive and the
the w limit sets of ally e K. That is, thew limit set of L is  second repulsive. Then, the situation is different from13
by definitionthe base ses. With this in mind, we shall because in that cade defines a map on thgpas) sphere of
replacew by B. null directions, and every orientation preserving map on the
The PoincareéBendixon-Schwartz theorem shows the fol- sphere has at least one fixed point, so that in13every
lowing: let X be a compact, connected, orientable two di-proper Lorentz transformation has at least one fixed null di-
mensional manifold withk®e T(K) and complete orbits, rection[26]. On the other hand, a homeomorphism on the
such that, forme K, B(m) contains no fixed pointgsour circle which preserves orientation has a fixed point if its
dynamical system does satisfy these conditiomben either  rotation numberis zero[27]; in particular for rotations this
B(m)=K=T?, or B(m) is a closed orbitC, and B(s,m) number coincides with the angle of rotation, so one recovers
winds towardsC, where7? is the torus, a manifold without that if L is timelike it has null eigenvectors if it is the iden-
boundary, excluded in our case. Thus we have a closed nuiity.
geodesid_. The point is that, applying the analysis of the previous
In the proof of the PoincarBendixon-Schwartz theorem paragraph to the closed null geodeSjave have shown that
the 2-dimensionality ofC is crucial. Indeed, although not the&M it encircles is spatial, null or timelike of mass zero or
related to the failure of this theorem or the properties of27r. Although it is not related to our proof, remember that
CGCH in 2+1 gravity, it has been emphasized tlist 3 ~ the eigenvalue cannot b€l because otherwise it can be
+ 1) the base points are not, in general, made up by closeshown that there would beTc in D *(S) [15] (see also
null geodesicg"“fountains™) [25]. Proposition 6.4.4 0f18]), a stably causal region. So, when
We will now show that the€M encircled byC is spatial, the éEM encircled byC is spacelike the corresponding eigen-
null or timelike of mass zero or2. For that purpose con- value iSA=A,>1.
sider an arbitrary base poipte C, and an orthonormal base =~ Summarizing, if the totafM is timelike and DECb holds,
{v® eT,. Parallel transport of such a base around the Gop there are no subsystems with null or spaceliké. Thereby,
defines a new orthonormal bag¥® T, related to the the &M encircled byC can only be timelike of mass zero or
previous one by a proper Lorentz transformatibr{v?} 2. If we had supposed DECa we would have been able to
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discard the case of zero mass becafissould encircle a The proof is constructive in some aspects, e.g., it shows
simply connected flatvacuum-+ the identical vanishing of the existence of closed null geodesics in a CGCH, a property
the Weyl tensor region and thus causally well behaved. Which is interesting in its own.

However, since WEC is violated, zero mass does not neces- In @ noncompact CGCH the WEC is violated, the known
sarily correspond to vacuum. Nevertheless, both cases, suplassical fields obey this condition but they do not when
systems with zero or 2 mass, are unstable, in the sense thaguantized(even in Minkowsk], although an averaged ver-

in every neighborhoodwith the Lie group manifold topol- Sion, the averaged null energy condition, has been proven to
ogy) of these points all timelike elements do not have fixedhold in some casef28]. Therefore, it can be said that in
null directions(these two points belong to the boundary of order to create a time machine quantum matter is needed,
region ). By slightly altering the distribution of massésr ~ and it is natural to ask whether the laws of physics alne

v, equivalently there will be no subsystem with 0 orm2 or a CGCH. There have been different and opposite conclu-
mass; see Fig. 3. sions to this questiofsee, for instancg15,29) and it seems

reasonable to say that it will be difficult to have a complete
V. FINAL REMARKS answer within semiclassical gravity since not even the usual
quantum field theory can be extended frd@n' (S) to the
Carroll et al. have shown, from energy considerations, base set of a CGCHL4].
that a Gott time machine cannot be constructed in
(2+1)-dimensional open gravity with timelike sources and
total energy momentum. In this paper we have shown that, in
a precise sense, a time machine cannot be constructed at all, The author would like to thank R. J. Gleiser, J. Pullin, and
providing a proof of a suitable version of Kabat's conjecture.G. A. Raggio for encouraging this work and helpful sugges-
Note that it makes sense to talk about taf of a time  tions which improved its presentation, and CONICOR
machine: this quantity remains unalterated if the initial datafor financial support. This work was supported in part by
is changed in a compact region 8f since it is defined by a grants from the National University of @toba, and from
loop that encirclesin particulay such a region. CONICOR, and CONICETArgenting.
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