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No time machine construction in open 211 gravity with timelike total energy-momentum
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~Received 23 March 1998; published 26 August 1998!

It is shown that in (211)-dimensional gravity an open spacetime with timelike sources and total energy
momentum cannot have a stable compactly generated Cauchy horizon. This constitutes a proof of a version of
Kabat’s conjecture and shows, in particular, that not only a Gott time machine cannot be formed from
processes such as the decay of a single cosmic string as has been shown by Carrollet al., but that, in a precise
sense, a time machine cannot be constructed at all.
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I. INTRODUCTION AND OVERVIEW

Partly because of the possibility that topological defe
such as cosmic strings may have been formed in the e
universe, and also because of the fact that it had already
noted that some solutions in 211 gravity corresponding to
spinless particles do not have closed timelike curves~CTC! if
the total energy momentum (EM ) is timelike @1,2#, Gott’s
solution @3# has stimulated work discussing whether or n
this spacetime is physically reasonable. The relation betw
cosmic strings and 211 particles comes from the proper
that the spacetime of an infinitely long and stationary ga
cosmic string asymptotically tends to Minkowski spacetim
with a deficit angle@4#, and in the cases of interest the core
small enough that one can consider just Minkowski with
conical singularity~none of these properties holds for gau
but supermassive@5# or global strings@6#!. Thus, Gott’s so-
lution approximates the spacetime of two infinitely long p
allel gauge cosmic strings, but it can also be thought of as
spacetime of two~spinless! particles in 211. The first ob-
jections to Gott’s spacetime were due to the belief that it
not have an associated initial value problem, and to the
that its totalEM is timelike, in some similarity with tachyon
@7#. Approximately at the same time, Cutler showed that
Gott’s spacetime there are regions withoutCTC; in particular,
in these regions there are achronal, edgeless, nonasym
cally null surfaces, so that it can be thought that the spa
time evolves from an initial data in any of these surfaces@8#
~these surfaces must be suitably chosen, in this sense se
@9#!. The apparent analogy with tachyons comes from
fact that parallel transport of vectors around a Gott pair is
same as for a tachyon, but this is not true for parallel tra
port of spinors@10#, basically because a Gott pair satisfi
the dominant energy condition~also the weak and stron
ones! while a tachyon does not. Therefore, spatialEM must
not necessarily be considered as unphysical~for more discus-
sions onCTC in 211 gravity and on the nontachyonic cha
acter of a Gott pair, see@11#!. But then it remains intriguing
that all known exact solutions describing spinless partic
do not haveCTC if their total EM is timelike @1–3#. Kabat
has suggested that this is a general feature, specifically,
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spacetimes with spinless particles and timelike totalEM do
not haveCTC @12#. To this we should add that ’t Hooft ha
shown that although a Gott pair can be produced from ini
data with timelikeEM momentum in a compact surface,
‘‘crunch’’ will occur before the appearance ofCTC @13#.

Time machine constructions have been associated
compactly generated Cauchy horizons~CGCH! @14,15#. This
is, on one side, because if for certain initial data on a surf
S a domain of dependence without a Cauchy horizon is
tained, and changing the data in a compact region ofS a
Cauchy horizon appears, beyond whichCTC exist, then it is
compactly generated. On the other side, in certain points
CGCH ~the so called base points! strong causality is vio-
lated. In this work we will follow this approach and take th
question of whether a time machine can be constructed in
211 open spacetime with timelike totalEM as equivalent to
asking whether such a spacetime can have a CGCH.
answer will be negative.

Note that working with a CGCH we get rid of a difficult
present in other formulations of Kabat’s conjecture. Th
arises from the fact that it is nota priori obvious that, in a
spacetime withCTC, a foliation in surfaces in which ‘‘matter
contributes positively’’ exists, so that one can calculate
total EM via holonomy, without ‘‘counting matter more tha
once.’’ Specifically: we are interested in spacetimes aris
from initial data, i.e., of the formD1(S) whereS is a simply
connected, noncompact, closed, achronal and edgeless
face and its future domain of dependence~a stably causal
region! is denoted byD1(S). The dominant energy condi
tion, i.e., thatTabt

a is a future directed timelike or null vec
tor for all future directed timelike or nullta, choosingta as
the normal toS, ensures that totalEM is independent of time
~a conserved quantity! and of the foliation. If there exists a
Cauchy horizon,H1(S), then the definition can be extende
to the horizon if the matter ‘‘crosses it,’’ e.g., assuming th
there are no lightlike sources; specifically, thatTabt

b is fu-
ture directed and timelike for all future directed timeliketa

~DECa!. In this work we will assume this energy conditio
but without requiring thatTabt

b is future directed~DECb!,
since in a CGCH the weak energy condition~WEC! is vio-
lated @15#.

There are some previous results in connection with K
bat’s conjecture: Seminara and Menotti have shown, ass
© 1998 The American Physical Society18-1
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ing additional rotational symmetry and the WEC, that
there are noCTC at infinity then there are noCTC at all @16#;
Headrick and Gott have shown that if aCTC is deformable to
infinity, then the holonomy of theCTC itself cannot be time-
like, except for a rotation of 2p @11#. Nevertheless, in a
noncompact CGCH the WEC is violated and the first res
is not related to time machine construction in the sense m
precise above, while the total holonomy of aCTC is in prin-
ciple not related to the totalEM , due to the problem men
tioned in the preceding paragraph.

In Sec. II and Sec. III we will summarize and discu
some known results that are crucial in our proof, which w
be given in Sec. IV.

II. COMPACTLY GENERATED CAUCHY HORIZONS

Since in Sec. IV we will analyze the dynamics of a CGC
in 211, we need here to recall some properties of Cau
horizons, obtained in 311 gravity, but equally applicable to
211 gravity. LetS be a~partial! Cauchy surface forD1(S),
an orientable, time orientable spacetime with a futu
Cauchy horizonH1(S). Then the following is true.

~1! H1(S) is compact ifS is compact~see, for instance
@17,18#!.

~2! H1(S) is differentiable everywhere except in a set
zero measure. We will assume implicitly differentiabili
of the horizon each time it is needed. That is, we w
assume, e.g., that the set of nondifferentiability is n
dense~in this sense, see@19#!.

~3! H1(S) is generated by null geodesics that are comp
in the past but may be incomplete in the future@17,18#.
Let us denote them, generically, byb(s,x):I3H1(S)
→H1(S), with I some interval ofR ands some affine
parameter and, unless otherwise stated, we always
to generators directed to the past.

~4! H1(S) is defined as compactly generated if all the
geodesics enter some compact, connected regionK and
remain there forever. That is, for eachxPH1(S), there
existss0 such thatb(s,x)PK for s>s0 @14,15#.

~5! In a noncompact CGCH the WEC is violated, i.e., the
exist points inK in which Tabk

akb,0 , with ka the
tangent to the generators@15#.

~6! The base set,BPH1(S), is defined as the set of termina
accumulation points of null generators. It can be se
thatB is nonempty~this follows from the completenes
of the generators in the past and the compactness ofK),
that strong causality is violated inB ~also from the com-
pleteness of the generators in the past!, and thatB is
comprised by future and past inextendible null gene
tors contained inB, although not necessarily close
~‘‘fountains’’ ! @14# ~as we will see in the last section, th
last statement does not hold in 211).

III. TOTAL MASS IN 2 11

From now on we will assume that the spacetime is op
and that the totalEM is timelike. Carrollet al. have shown
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that in such spacetimes, if they are composed of~spinless!
particles, there cannot exist any subsystem with spatialEM
@10#. In particular, a Gott time machine cannot be created
of the decay of a single cosmic string because there is
enough energy for that@20#. In principle this property is not
obtained as a partial result in the version of Kabat’s conj
ture that we prove here, since a Gott pair satisfies the W
and, indeed, it can explicitly be seen that it does not hav
CGCH @8#. We mention it because a slight generalization
crucial in our proof. So, we need here to summarize
analysis given in@10#.

Suppose, then, that the matter is composed by parti
~assuming implicitly, in this way, the DECa!. The totalEM
as defined by holonomies is constructed starting from
trivial loop in S ~at constant but arbitrary time! and deform-
ing it until it encircles all the particles. In the process, t
corresponding holonomic operator describes a curve~let us
call it g) in the Lie group , which starts at the indentit
~corresponding to the trivial loop! and finishes at the tota
EM . We remark that~up to similarity transformations! the
total EM does not depend on the way in which the deform
tion is carried out, althoughg does not share this property
and is therefore not unique.

Coordinates for the double covering ofSO(2,1),
SU(1,1), can be chosen by decomposing every element
rotation through angleu followed by a boost of rapidityz
and direction defined by the polar angle (c1u)/2. In these
coordinates, the metric ofSU(1,1) ~naturally given by the
structure constants! is

ds252
1

4
cosh

z

2
du21

1

4
dz21

1

4
sinh

z

2
dc2, ~1!

which shows thatSU(1,1) has the geometry of anti–de Sitt
spacetime. A conformal diagram of~the universal covering
of! this spacetime is shown in Fig. 1, with one dimensi
suppressed andj[4 tan21(ez/2)2p. Systems with timelike
~spacelike! total EM lie in region II ~III !.

Since we have assumed that the totalEM is timelike, the
corresponding holonomic operator is equivalent~through a
similarity transformation! to a rotation through a certain
angle u total , which is defined as the total mass. Since t
topology ofS is assumed to beR 2 and ~it is assumed that!
the initial data are geodesically complete,

u total5E
S
KdA<2p, ~2!

whereK is the Gaussian curvature, the equality and inequ
ity follow from the Gauss-Bonnet and Cohn-Vossen the
rems, respectively.

At this point we remark that the matter need not be co
posed of particles~if it is not, the loop must encircle the
support ofTab or be deformed to infinity if this support is no
compact! and that the same analysis holds if one just
sumes DECa. This condition implies thatg is timelike and
future directed, a condition that in turn implies that no su
system can have spacelikeEM ; since, if g crosses from re-
8-2
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NO TIME MACHINE CONSTRUCTION IN OPEN 211 . . . PHYSICAL REVIEW D 58 064018
gion II to region III, it cannot return back to region II an
lead to timelike totalEM , as we did assume~see@10# for
further details!.

We should also remember that Seminara and Men
have explicitly shown~without using the causal structure o
anti–de Sitter spacetime, or the Gauss-Bonnet and Co
Vossen theorems! similar properties@21#. Specifically, that
in an open spacetime with timelike totalEM satisfying DECa
the mass increases as the loop encircles more and more
ter and if, having reached the total mass of 2p, more matter
is encircled then the totalEM turns null or spacelike.

Now recall that there is already a ‘‘standard’’ formulatio
for asymptotic flatness in 211, with analogues to the
Arnowitt-Deser-Misner~ADM ! @22# and Bondi masses@23#.
In the Hamiltonian formulation it is required that asympto
cally the spacetime approaches that of a~spinless! particle,
i.e., Minkowski with a deficit angle: this angle defines t
‘‘ADM’’ mass. Note that for such a spacetime the total h
lonomy of a loop that is deformed to infinity is equivalent
a rotation through an angle which coincides with the defi
angle, so the ‘‘ADM’’ mass coincides with that defined v
holonomies. It was emphasized in@22# that in 211, in con-

FIG. 1. A conformal diagram of the universal covering
SO(2,1).
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trast to 311, the total mass is not only bounded from belo
but also from above. This was noted in a Hamiltonian fo
mulation, in which case the total mass must be strictly l
than 2p and it was argued that it is not a feature arising fro
such formulation analyzing the limit of a particle’s spacetim
when the mass approaches and subsequently exceeds 2p, in
which case the conical structure becomes cylindrical a
subsequently geodesically incomplete. What we want to
mark is that, on account of Eq.~2!, and the discussion tha
preceded it, if geodesically completeness is assumed,
the total mass is effectively bounded, it must be<2p. Let us
also remark that not every compact system is asymptotic
flat in the sense described in@23#, since a spacetime with
spacelike or null totalEM is not, even if it hasTab with
compact support and thus curvature of compact support~the
Weyl tensor vanishes identically in 211).

Let us assume now that DECb holds. Theng is timelike
but not necessarily future directed and there are some su
ties that we need to discuss. Firstly, we shall assume tha
total mass is non-negative. Therefore, near the identityg can
be chosen non past directed by simply choosing the p
where the loop is initially expanded as one in which there
non negative mass. Now note that without assuming DE
the reasoning that led to the non existence of subsyst
with spacelikeEM is, in principle, no longer true~see Fig.
2!. We shall overcome this difficulty by imposing that, on

FIG. 2. When the WEC is violatedg is past directed, and can
cross from region II to region III and turn back to region II, havin
thus timelike totalEM and subsystems with spacelikeEM .
8-3
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MANUEL H. TIGLIO PHYSICAL REVIEW D 58 064018
that g has been chosen non past directed at the identit
remains in region II.

IV. THE PROOF

Considering the previous sections, the proof of the v
sion of Kabat’s conjecture we give here reduces to show
that open 211 spacetimes with a CGCH must have a su
system with null or spacelikeEM , or timelike EM of mass
zero or 2p. Imposing timelike totalEM and the DECb, we
will have arrived at a contradiction, except for the last tw
cases, which will turn out to be unstable, in an appropri
sense. Such a subsystem is, precisely, that encircled by
closed null geodesic whose existence we will now prove

So, in 211, not only strong but also stable causality
violated: the base set necessarily contains at least one c
null geodesicC. The proof follows from the Poincare´-
Bendixon-Schwartz theorem@24# applied to the dynamica
system defined by the past directed null generatorsb(s,x) in
the two-dimensional compact manifoldK. We start by not-
ing some properties of this dynamical system:~1!K is posi-
tively invariant~this results from the definition ofK); ~2! the
past directed generatorsb(s,x) in K exist globally~they are
complete in the past, and we are always referring to
direction in time!; ~3! from completeness of the generators
the past, there are no fixed points, i.e., there does not e
xPK such thatb(s,x)5x;s.

The first item allows us to think of our dynamical syste
as one in a compact manifold. The second item allows u
introduce what is usually called the ‘‘v limit set’’ of a point
mPK. This set is defined as the set of pointsxPK such that
the generator passing throughm satisfies: for every open
neighborhoodO of x and everys0 ~in the domain in which
they are defined! there existss.s0 such thatb(s,m)PO.
The ‘‘v limit set ofK’’ is, similarly, defined as the union o
the v limit sets of allyPK. That is, thev limit set ofK is
by definition the base setB. With this in mind, we shall
replacev by B.

The Poincare´-Bendixon-Schwartz theorem shows the fo
lowing: let K be a compact, connected, orientable two
mensional manifold withkaPT(K) and complete orbits
such that, formPK, B(m) contains no fixed points~our
dynamical system does satisfy these conditions!. Then either
B(m)5K5T 2, or B(m) is a closed orbitC, and b(s,m)
winds towardsC, whereT 2 is the torus, a manifold withou
boundary, excluded in our case. Thus we have a closed
geodesicC.

In the proof of the Poincare´-Bendixon-Schwartz theorem
the 2-dimensionality ofK is crucial. Indeed, although no
related to the failure of this theorem or the properties
CGCH in 211 gravity, it has been emphasized that~in 3
11) the base points are not, in general, made up by clo
null geodesics~‘‘fountains’’ ! @25#.

We will now show that theEM encircled byC is spatial,
null or timelike of mass zero or 2p. For that purpose con
sider an arbitrary base pointpPC, and an orthonormal bas
$va%PTp . Parallel transport of such a base around the looC
defines a new orthonormal base$Va%PTp , related to the
previous one by a proper Lorentz transformationL:$va%
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→$Va%, whose equivalence class defines theEM encircled by
C. In particular, let us take a base such that the tangent ve
to C at p, ka, belongs to$va%. C being a geodesic,ka is
parallel transported and, since it is a nonbroken geodesicKa

~defined byLka5Ka) is proportional toka, i.e.,Ka5lka. In
other words,ka is an eigenvector ofL. It is straightforward
to see that ifL is timelike it has no null eigenvector, excep
whenL is the identity, in which case the eigenvalue is ob
ously 1 and all the vectors are eigenvectors. WhenL is null
it has exactly one null eigenvector, with eigenvalue 1 a
when it is spatial it has two null eigenvectors, with eigenv
ues l1.1 and l251/l1, so the first is attractive and th
second repulsive. Then, the situation is different from 311,
because in that caseL defines a map on the~past! sphere of
null directions, and every orientation preserving map on
sphere has at least one fixed point, so that in 311 every
proper Lorentz transformation has at least one fixed null
rection @26#. On the other hand, a homeomorphism on t
circle which preserves orientation has a fixed point if
rotation numberis zero@27#; in particular for rotations this
number coincides with the angle of rotation, so one recov
that if L is timelike it has null eigenvectors if it is the iden
tity.

The point is that, applying the analysis of the previo
paragraph to the closed null geodesicC, we have shown tha
theEM it encircles is spatial, null or timelike of mass zero
2p. Although it is not related to our proof, remember th
the eigenvalue cannot be,1 because otherwise it can b
shown that there would beCTC in D1(S) @15# ~see also
Proposition 6.4.4 of@18#!, a stably causal region. So, whe
theEM encircled byC is spacelike the corresponding eige
value isl5l2.1.

Summarizing, if the totalEM is timelike and DECb holds,
there are no subsystems with null or spacelikeEM . Thereby,
the EM encircled byC can only be timelike of mass zero o
2p. If we had supposed DECa we would have been able

FIG. 3. This shows an example where a subsystem hasp
mass, butg can be slightly deformed to rule out this possibility.
8-4
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NO TIME MACHINE CONSTRUCTION IN OPEN 211 . . . PHYSICAL REVIEW D 58 064018
discard the case of zero mass becauseC would encircle a
simply connected flat~vacuum1 the identical vanishing of
the Weyl tensor! region and thus causally well behave
However, since WEC is violated, zero mass does not ne
sarily correspond to vacuum. Nevertheless, both cases,
systems with zero or 2p mass, are unstable, in the sense t
in every neighborhood~with the Lie group manifold topol-
ogy! of these points all timelike elements do not have fix
null directions~these two points belong to the boundary
region II!. By slightly altering the distribution of masses~or
g, equivalently! there will be no subsystem with 0 or 2p
mass; see Fig. 3.

V. FINAL REMARKS

Carroll et al. have shown, from energy consideration
that a Gott time machine cannot be constructed
(211)-dimensional open gravity with timelike sources a
total energy momentum. In this paper we have shown tha
a precise sense, a time machine cannot be constructed a
providing a proof of a suitable version of Kabat’s conjectu

Note that it makes sense to talk about totalEM of a time
machine: this quantity remains unalterated if the initial d
is changed in a compact region ofS, since it is defined by a
loop that encircles~in particular! such a region.
s.

n.
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The proof is constructive in some aspects, e.g., it sho
the existence of closed null geodesics in a CGCH, a prop
which is interesting in its own.

In a noncompact CGCH the WEC is violated, the know
classical fields obey this condition but they do not wh
quantized~even in Minkowski!, although an averaged ver
sion, the averaged null energy condition, has been prove
hold in some cases@28#. Therefore, it can be said that i
order to create a time machine quantum matter is nee
and it is natural to ask whether the laws of physics allowCTC

or a CGCH. There have been different and opposite con
sions to this question~see, for instance,@15,29#! and it seems
reasonable to say that it will be difficult to have a comple
answer within semiclassical gravity since not even the us
quantum field theory can be extended fromD1(S) to the
base set of a CGCH@14#.

ACKNOWLEDGMENTS

The author would like to thank R. J. Gleiser, J. Pullin, a
G. A. Raggio for encouraging this work and helpful sugge
tions which improved its presentation, and CONICO
for financial support. This work was supported in part
grants from the National University of Co´rdoba, and from
CONICOR, and CONICET~Argentina!.
n-

s

@1# S. Deser, R. Jackiw, and G.’t Hooft, Ann. Phys.~N.Y.! 152,
220 ~1984!.

@2# H. Waelbroeck, Gen. Relativ. Gravit.23, 219 ~1991!.
@3# R. J. Gott III, Phys. Rev. Lett.66, 1126~1991!.
@4# D. Garfinkle, Phys. Rev. D32, 1323~1985!.
@5# P. Laguna and D. Garfinkle, Phys. Rev. D40, 1011~1989!.
@6# G. W. Gibbons, M. E. Ortiz, and F. R. Ruiz, Phys. Rev. D39,

1546 ~1989!; D. Harari and P. Sikivie,ibid. 37, 3438 ~1988!;
R. Gregory, Phys. Lett. B215, 663 ~1988!; A. G. Cohen and
D. B. Kaplan,ibid. 215, 67 ~1988!.

@7# S. Deser, R. Jackiw, and G.’t Hooft, Phys. Rev. Lett.68, 267
~1991!.

@8# C. Cutler, Phys. Rev. D45, 487 ~1992!.
@9# A. Ori, Phys. Rev. D44, R2214~1991!.

@10# S. M. Carroll, E. Farhi, A. H. Guth, and K. D. Olum, Phy
Rev. D50, 6190~1994!.

@11# M. P. Headrick and J. R. Gott III, Phys. Rev. D50, 7244
~1994!.

@12# D. N. Kabat, Phys. Rev. D46, 2720~1992!.
@13# G.’t Hooft, Class. Quantum Grav.9, 1335 ~1992!; 10, 1023

~1993!.
@14# B. S. Kay, M. J. Radzikowski, and R. M. Wald, Commu

Math. Phys.183, 533 ~1997!.
@15# S. W. Hawking, Phys. Rev. D46, 603 ~1992!.
@16# P. Menotti and D. Seminara, Ann. Phys.~N.Y.! 240, 203
~1996!.

@17# R. M. Wald, General Relativity~The University of Chicago
Press, Chicago, 1984!.

@18# S. W. Hawking and G. F. R. Ellis,The Large Scale Structure
of Spacetime~Cambridge University Press, Cambridge, E
gland, 1976!.

@19# P. T. Crhusciel and J. Isenberg, gr-qc/9401015.
@20# S. M. Carroll, E. Farhi, and A. H. Guth, Phys. Rev. Lett.68,

263 ~1992!; 68, 3368~E! ~1992!.
@21# P. Menotti and D. Seminara, Phys. Lett. B301, 25 ~1993!; 307,

404~E! ~1993!.
@22# A. Ashtekar and M. Varadarajan, Phys. Rev. D50, 4944

~1994!.
@23# A. Ashtekar, J. Bicak, and B. Schmidt, Phys. Rev. D55, 669

~1997!.
@24# A. Schwartz, Am. J. Math.85, 453 ~1963!.
@25# P. T. Crhusciel and G. J. Galloway, gr-qc/9611032.
@26# R. Penrose and W. Rindler,Spinors and Spacetime~Cam-

bridge University Press, Chicago, 1984!.
@27# R. L. Devaney,An Introduction to Chaotic Dynamical System

~Addison-Wesley, Reading, MA, 1985!.
@28# R. M. Wald and U. Yurtsever, Phys. Rev. D44, 403~1991!; G.

Klinkhammer,ibid. 43, 2542~1991!.
@29# S. W. Kim and K. S. Thorne, Phys. Rev. D43, 3929~1991!.
8-5


