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The membrane paradigm is the remarkable view that, to an external observer, a black hole appears to behave
exactly like a dynamical fluid membrane, obeying such pre-relativistic equations as Ohm’s law and the Navier-
Stokes equation. It has traditionally been derived by manipulating the equations of motion. Here we provide an
action formulation of this picture, clarifying what underlies the paradigm and simplifying the derivations.
Within this framework, we derive previous membrane results, and extend them to dyonic black hole solutions.
We discuss how it is that an action can produce dissipative equations. Using a Euclidean path integral, we
show that familiar semi-classical thermodynamic properties of black holes also emerge from the membrane
action. Finally, in a Hamiltonian description, we establish the validity of a minimum entropy production
principle for black holes|S0556-282(198)00616-X]

PACS numbdis): 04.70.Bw, 04.70.Dy

I. INTRODUCTION more tractable boundary on which to anchor external fields;
outside a complicated boundary layer, the equations govern-

The event horizon of a black hole is a peculiar object: it ising the stretched horizon are to an excellent approximation
a mathematically defined, locally undetectable boundary, 811,17 the same as those for the true horizon. This view of a
surface-of-no-return inside which light cones tip over andblack hole as a dynamical time-like surface, or membrane,
“time” becomes spatia[1]. Otherwise natural descriptions has been called the membrane paradjdsi.
of physics often have trouble accommodating the horizon; as Most of the mentioned results have been derived through
the most primitive example, the familiar Schwarzschild met-general-relativistic calculations based on various intuitive
ric has a coordinate singularity there. Theories of fields thaphysical arguments. In this paper, we show that the gravita-
extend to the horizon face the additional challenge of havingional and electromagnetic descriptions of the membrane can
to define boundary conditions on a surface that is infinitelybe derived systematically, directly, and more simply from
red-shifted, has a singular Jacobian, and possesses a norrta Einstein-Hilbert or Maxwell actions. Aside from the ap-
vector which is also tangential. These considerations mighpeal inherent in a least action principle, an action formula-
induce one to believe that black hole horizons are fundamertion is a unifying framework which is easily generalizable
tally different from other physical entities. and has the advantage of providing a bridge to thermody-

On the other hand, further work has established a greatamics and quantum mechanicee[14] for related work.
variety of analogies between the horizon and more familiar]n a follow-up paper, we exploit these advantages to evaluate
pre-relativistic bodies. In addition to the famous four laws ofsome effects of the back-reaction of Hawking radiation on
black hole thermodynamici2-5], which are global state- the spacetime geometf{5].
ments, there is also a precise local mechanical and electro- The key idea in what follows is that, sindelassically
dynamic correspondence. In effect, it has been sH@mi(] nothing can emerge from a black hole, an observer who re-
that an observer who remains outside a black hole perceiverains outside a black hole cannot be affected by the dynam-
the horizon to behave according to equations that describeias inside the hole. Hence the equations of motion ought to
fluid bubble with electrical conductivity as well as shear andfollow from varying an action restricted to the external uni-
bulk viscosities. Moreover, it is possible to define a set ofverse. However, the boundary term in the derivation of the
local surface densities, such as charge or energy-momenturBuler-Lagrange equations does not in general vanish on the
which inhabit the bubble surface and which obey conservastretched horizon as it does at the boundary of spacetime. In
tion laws. Quite remarkably, a general-relativisticadlyact  order to obtain the correct equations of motion, we must add
calculation then leads, for arbitrary non-equilibrium blackto the external action a surface term that cancels this residual
holes, to equations for the horizon which can be preciselypoundary term. The membrane picture emerges in interpret-
identified with Ohm’s law, the Joule heating law, and theing the added surface term as electromagnetic and gravita-
Navier-Stokes equation. tional sources residing on the stretched horizon.

These relations were originally derived for the mathemati- In the rest of this paper, we examine individually the
cal, or true, event horizon. For astrophysical applications iboundary terms for the electromagnetic, gravitational, and
became more convenient to consider instead a “stretchedxidilaton cases. We also discuss dissipation and provide
horizon,” a (2+1)-dimensional time-like surface located thermodynamic and Hamiltonian descriptions. We use low-
slightly outside the true horizon. Because it has a nonercase indices for four-dimensional tensor indices and upper-
singular induced metric, the stretched horizon provides @ase indices for the two-dimensional tensors that occupy
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space-like sections of the horizon. We use geometrized unitsritten as a 4-dimensional tensor in terms of the spacetime
(G=c=1), and a spacetime metric with positive signaturemetric and the normal vector, so thiad projects from the
(—+++). Our sign conventions are those of Misner, spacetime tangent space to the 3-tangent space. Similarly, we
Thorne, and WheelgMTW) [16], with the exception of the can define the 2-metriey,g, of the space-like section 6
extrinsic curvature which we define to have a positive tracao which U? is normal, in terms of the stretched horizon

for a convex surface. 3-metric andU?, thus making a 21+1 split of spacetime.
We denote the 4-covariant derivative By, the 3-covariant
Il HORIZON PRELIMINARIES derivative by|a, and the 2-covariant derivative . For a

vector in the stretched horizon, the covariant derivatives are
In this section, we fix our conventions, first in words, thenrelated byhgV .w?=wfy— Kgw,n® whereKg=hgV n?is the
in equations. Through every point on the true horizon ther&tretched horizon’s extrinsic curvature, or second fundamen-
exists a unique null generattt which we may parameterize tal form. In summary,
by some regular time coordinate whose normalization we fix

to equal that of time-at-infinity. Next, we choose a time-like 12=0 (2.9

surface just outside the true horizon. This is the stretched

horizon,H, whose location we parameterize by<1 so that Ua= (i) 2 U2=_1 lim aU2=|a 2.2

a—0 is the limit in which the stretched horizon coincides dr/’ " '

with the true horizon. We will always take this limit at the

end of any computation. Since many of the useful interme- n?=+1, a®=n3V,n°=0, liman?=I2 (2.3

diate quantities will diverge as inverse powers ®f we a—

renormalize them by the appropriate power ®f In that

senseg plays the role of a regulator. t=gp—n%n,, yi=hi+UU,=g5—nn,+U%U,
For our purposes, the principal reason for preferring the (2.9

stretched horizon over the true horizon is that the metric on a

time-like—rather than null—surface is nondegenerate, per- Ki=h§Ven?,  Kap=Kpa, Kgpn®=0 (2.9

mitting one to write down a conventional action. Generically
(in the absence of horizon caustica one-to-one correspon- W eH=hgV w2=wy—Kgqw n®=V w=w[ +wa.=wf.
dence between points on the true and stretched horizons is (2.6
always possible via, for example, ingoing null rays that
pierce both surfacesee[12] for details.

We can take the stretched horizon to be the world-tube o
a family of time-like observers who hover just outside the 2b- . . .
true horizon. These nearly light-like “fiducial” observers are For example, the Reissner-Nordstrsolution has
pathological in that they suffer an enormous proper accelera-

The last expression relates the covariant divergence associ-
ted with g, to the covariant divergence associated with

2
tion and measure quantities that divergenas 0. However, d<2=— ( 1— ﬂ_,_ Q_ dt2
although we take the mathematical limit in which the true re
and stretched horizons conflate, for physical purposes the 1
roper distance of the stretched horizon from the true hori- oM Q?
proper distance of the stretched horizon from the true ho 1o R gr2e 12002 2.7
zon need only be smaller than the length scale involved in a r r2 ' '

given measurement. In that respect, the stretched horizon,

although a surrogate for the true horizon, is actually moreso that a stretched horizon at constantould have
fundamental than the true horizon, since measurements at the

stretched horizon constitute real measurements that an exter- 2M  Q? vz

nal observer could make and report, whereas accessing any a=|1- T+ r_2 ) (2.9
guantity measured at the true horizon would entail the ob-

server’s inability to report back his or her results. U= —a(dt),, 2.9

We take our fiducial observers to have world lings,
parameterized by their proper time, The stretched horizon g4
also possesses a space-like unit nornfalvhich for consis-
tency we shall always take to be outward-pointing. More- ny=+a 1(dr),. (2.10
over, we choose the normal vector congruence on the
stretched horizon to emanate outwards along geodesics. We
define @ by requiring thataU?—12 and an®—1?; hence
aU? and an? are equal in the true horizon limit. This is To find the complete equations of motion by extremizing
nothing more than the statement that the null genetdte  an action, it is not sufficient to set the bulk variation of the
both normal and tangential to the true horizon, which is theaction to zero: one also needs to use the boundary conditions.
defining property of null surfaces. Ultimately, though, it will Here we take our Dirichlet boundary condition to be
be this property that will be responsible for the dissipative=0 at the boundary of spacetime, whepestands for any
behavior of the horizons. The 3-metrig,,, on H can be field.

Ill. ACTION FORMULATION
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Now since the fields inside a black hole cannot have anywhereh is the determinant of the induced metric, anftlis
classical relevance for an external observer, the physics muttie outward-pointing space-like unit normal to the stretched
follow from varying the part of the action restricted to the horizon. We need to cancel this term. Adding the surface
spacetime outside the black hole. However, this external aderm
tion is not stationary on its own, because boundary condi-

tions are fixed only at the singularity and at infinity, but not _ J' 3, [Thi
at the stretched horizon. Consequently, we rewrite the total Ssud Aa] =+ | d*XV=his-A, @9
action as
we see that we must have
Sworld= (Sout™ Ssur) + (Sin— Ssurd)» (3.1 1
_ S ji=+-—F3n,. (3.6
where now §S, i+ S, =0, which implies also thats;, s 4

— 6Sg,= 0. The total action has been broken down into two

parts, both of which are stationary on their own, and whichThe surface 4-currenfl, has a simple physical interpreta-

do not require any new boundary conditions. tion. We see that its time-component is a surface charge,
The surface term$,;, corresponds to sources, such asthat terminates the normal component of the electric field

surface electric charges and currents for the Maxwell actionyst outside the membrane, while the spatial componggts,

or surface stress tensors for the Einstein-Hilbert action. Thﬁ)rm a surface current that terminates the tangentia| compo-
sources are fictitious: an observer who falls through theyent of the external magnetic field:

stretched horizon will not find any surface sources and, in

fact, will not find any stretched horizon. Furthermore, the E, =—U,F®n =470 (3.7
field configurations inside the black hole will be measured by
this observer to be entirely different from those posited by gﬁ*: eayBFny=4m(fsxn)A. (3.9

the membrane paradigm. On the other hand, for an external

fiducial observer the source terms are a very useful artifice; s characteristic of the membrane paradigm thamndf
S

their presence is consistent with all external fields. This situy o |9cal densities, so that the total charge on the black hole

ation is directly analogous to the method of image charges irig the surface integral af over the membrane, taken at some

electrostatics, in Wh'Ch. a fictitious charge dls.tr|but|on IS constant universal time. This is in contrast to the total charge
added to the system to implement, say, conducting boundaré{f a Reissner-Nordstro black hole, which is a global char-

conditions. By virtue of the uniqueness of solutions to Pois-aristic that can be defined by an integral at spatial infinity.

son’s equation with conducting boundary conditions, the .0m Maxwell’s equations and E(8.6), we obtain a con-

electric potential on one—and only one—side of the boundy; vy equation for the membrane 4-current which, for a
ary is guaranteed to be the correct potential. An observe tationary hole, takes the form

who remains on that side of the boundary has no way o
telling through the fields alone whether they arise through Jo . .

the fictitious image charges or through actual surface E+V2'j5: =J", (3.9
charges. The illusion is exposed only to the observer who

crosses the boundary to find that not only are there no here V.. "= (A3 is the two-di ional di
charges, but the potential on the other side of the boundary ynere v, 1s=(7als)ja is the two-dimensional divergence

n__ 17a ;
quite different from what it would have been had the imagemc the membrane surface current, ard"=—J"n, is the

charges been real. amount qf charge thaF falls into_ the hole_ per unit area per unit
In the rest of this section, we shall implement E§.1) proper time, 7. P_hyspally, this equation EXpresses local
concretely in important special cases. charge conservation in that any chgrge that falls into the
black hole can be regarded as remaining on the membrane:
the membrane is impermeable to charge.
The equations we have so far are sufficient to determine
The external Maxwell action is the fields outside the horizon, given initial conditions outside
1 the horizon. A plausible requirement for initial conditions at
_ 4 2 the horizon is that the fields measured by freely falling ob-
S"”‘[Aa]_f d x\/—_g( “16m' +‘]'A>’ 32 serversFFO'S at the stretched horizon be finite. There be-
ing no curvature singularity at the horizon, inertial observers
whereF is the electromagnetic field strength. Under varia-who fall through the horizon should detect nothing out of the
tion, we obtain the inhomogeneous Maxwell equations ordinary. In contrast, the fiducial observeisIDO’s) who
make measurements at the membrane are infinitely acceler-

A. The electromagnetic membrane

VpFaP=47J2, (3.3 ated. Their measurements, subject to infinite Lorentz boosts,
are singular. For the electromagnetic fields we have, with
as well as the boundary term the Lorentz boost and using orthonormal coordinates,
1 FIDO__ FFO_ FF FIDO__ FFO_ =FF
2| xVTREnn,, @4 EUTETTBO. BESvEED,
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BI;IDO% Y(BZFO_ EI;FO), EI;IDO% 7( EI;FO_ B';FO) ’

(3.11

or, more compactly,

(3.12

That is, the regularity condition states that all radiation in the
normal direction is ingoing; a black hole acts as a perfect

absorber. Combining the regularity condition with £§.8)

PHYSICAL REVIEW D 58 064011

1
Rab_ EgabRZSWTab' (317}

We are interested, however, in the interior boundary term.
This comes from the variation of the Ricci tensor. We note
that

gabgRab: Va[vb( 0Gap) — ngVa( 99ca) 1, (3.18

where 89,,= — 92.05499°%. Gauss’ theorem now gives

and dropping the FIDO label, we arrive at

(3.13 f d*x\— (g 6Rqp)

That is, black holes obey Ohm’s law with a surface resistiv-
ity of p=4m7~377 Q. Furthermore, the Poynting flux is

E|‘=4WFS.

. f xR V(8000 — Va(S0p0)], (319

-

S= %(éx B)=—j2pn. where the minus sign arises from choosirigo be outward-

pointing. Applying the Leibniz rule, we can rewrite this as

f d'x /= g(g?6R,)

(3.19

We can integrate this over the black hole horizon at some
fixed time. However, for a generic stretched horizon, we can-
not time-slice using fiducial time as different fiducial observ-
ers have clocks that do not necessarily remain synchronized.
Consequently we must use some other time for slicing pur-
poses, such as the time at infinity, and then include in the
integrand apotentially position-dependéerfactor to convert (3.20
the locally measured energy flux to one at infinity. With a

clever choice of the stretched horizon, however, it is possible Now, in the limit that the stretched horizon approaches
to arrange that all fiducial observers have synchronizeghe null horizon, the first and third terms on the right-hand
clocks. In this case, two powers af which is now the lapse, side vanish:

are included in the integrand. Then, for some given universal
time, t, the power radiated into the black hole, which is also
the rate of increase of the black hole’s irreducible mass, is
given by

=f d*x/=hh*V 4(n*8gpc) — 89pcVa(n?)

- Vc(naégab) + 5gabvc(na)] .

f Aox PV o(N8ge) — Vo(N®8G1)]=0.
(3.21)

A proof of this identity is given in the Appendix. Witk "2

d Mirr _
=hP°V n?, the variation of the external action is

i —f azé-d/&=+f azjgp dA. (3.15
That is, black holes obey the Joule heating law, the same law
that also describes the dissipation of an ordinary Ohmic re-

1
35l 81 1o | XV (KhayKao) 50
sistor.

(3.22

Since the expression in parentheses contains only stretched
horizon tensors, the normal vectors in the variatiégf®

= 6h3"+ 6n?nP+n2sn® contribute nothing. As in the elec-
tromagnetic case, we add a surface source term to the action
to cancel this residual boundary term. The variation of the
required term can therefore be written as

B. The gravitational membrane

We turn now to gravity. The external Einstein-Hilbert ac-
tion is

1 1
Soul 92°]= Ef d*x\—gR+ oy f# d3x=h K+ Spaten
(3.19

whereR is the Ricci scalar anH{ is the trace of the extrinsic
curvature, and where for convenience we have chosen the
f|e|d Variab'e to be the inverse metrgfb_ The Surface inte_ We Sha” see Ia.ter that th|S Variation iS integrable; i.e., an
gra| of K is on|y over the outer boundary of Spacetime, anda'ction with this variation exists. Compal’ison with EQZZ)

not over the stretched horizon. It is required in order to ob-Yields the membrane stress tensor

tain the Einstein equations because the Ricci scalar contains
second order derivatives of,,,. When this action is varied,

the bulk terms give the Einstein equations

1
8Sq,f h3P]=— 5 J d®x\/— htg,,oh?P. (3.23

1
8=+ g (Kh®—K®). (3.29
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Now just as a surface charge produces a discontinuity in thdimensional dynamical fluid, or membrane. Note that, unlike
normal component of the electric field, a surface stress terrordinary fluids, the membrane has negative bulk viscosity.
creates a discontinuity in the extrinsic curvature. The relatiorThis would ordinarily indicate an instability against generic
between the discontinuity and the source term is given by theerturbations triggering expansion or contraction. It can be
Israel junction conditiorj16], regarded as reflecting a null hypersurface’s natural tendency
to expand or contra¢il0]. Below we shall show how for the
horizon this particular instability is replaced with a different
kind of instability.

Inserting the A-momentum densitytsgyf\ub=tSUAE A
where[K]=K. —K_ is the difference in the extrinsic cur- jnto the Einstein equations, Eq3.27), we arrive at the
vature of the stretched horizon between its embedding in thRjavier-Stokes equation
external universe and its embedding in the spacetime internal
to the black hole. Comparing this with our result for the E mp=—Vap+ gVA6+2na§ HB—TR, 3.32
membrane stress tensor, Eg§.24), we see that

1
tsP=g - ([KIN—[K]*), (3.29

where £ma=dmald7 is the Lie derivative(which is the
K3P=0, (3.26 general-relativistic equivalent of the convective derivative
o _ ~with respect to proper time, and TA= — yaTan, is the flux
so that the interior of the stretched horizon molds itself intogf A-momentum into the black hole.

flat space. The Einstein equations, E817), can be rewrit- Inserting the U-momentum (energy density t2,U,U"
ten via the contracted Gauss-Codazzi equatjas$ as =3 =— 9/8 gives

b _ d
tg‘b— _hgTC Ng. (32D £72+ 022 _pa_;r_ §02+ 27]0’ABO’AB+Tgnan,

Equations(3.24) and(3.27 taken together imply that the (333

stretched horizon can be thought of as a fluid membraneyhich is the focusing equation for a null geodesic congru-

obeying the Navier-Stokes equation. To see this, recall thaince[18]. We might now suspect that if the analogy with

as we sendr to zero, bothaU® and an® approach®, the  fluids extends to thermodynamics, then E8.33, as the

null generator at the corresponding point on the true horizonequation of energy conservation, must be the heat transfer

Hence, in this limit we can equateU® and @n?, permitting  equatior{17] for a two-dimensional fluid. Writing the expan-

us to write the relevant components K, in terms of the  sjon of the fluid in terms of the areAA, of a patch,

surface gravity,g, and the extrinsic curvatureky, of a

space-like 2-section of the stretched horizon: - 1 dAA
AA dr’

(3.39
UV nP—a 2V J2=a ?gyl?
we see that we can indeed rewrite £§.33 as the heat

Uu_ A_ _Apayb_
=Kg=-0, Ky=7KsU =0, (3.28 transfer equatiorfalbeit with an additional relativistic term

wheregy = ag is the renormalized surface gravity at the ho- on the lefy
eon. e daS_1d'as 6>+ 2 ABL TN UP)AA
— — = n ,
YaVen®—a” 1YVl = KR= YaKayp=a k3, dr g g | (0 TEToRer T TN
(3.29 (3.39
wherekg is the extrinsic curvature of a space-like 2-sectionwith T the temperature andl the entropy, provided that the
of the true horizon, entropy is given by
d 1 kg
Kag=7al Bld=> Ejayap, (3.30 S= ’7%’0" (3.39

where £ is the Lie derivative in the direction ¢f. We can  and the temperature by
decompose,g into a traceless part and a traégg=oag

+ 3 yagf, Whereo g is the shear and the expansion of the T fi
world lines of nearby horizon surface elements. Then

- 87Tk3179’ (337

1

the=— —¢

S 8w

(3.3 where » is some proportionality constant.

: ' Thus, the identification of the horizon with a fluid mem-
brane can be extended to the thermodynamic domain. None-

But this is just the equation for the stress of a two-theless, the membrane is an unusual fluid. The focusing

dimensional viscous Newtonian fluid7] with pressurep equation itself, Eq(3.33), is identical in form to the equation

=g/8, shear viscosityp=1/16w, and bulk viscosity,= of energy conservation for a fluid. However, because the

—1/167. Hence we may identify the horizon with a two- energy density,%, is proportional to the expansiort,=

1
AB ,AB §6+g
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—0/87, one obtains a nonlinear first-order differential equa-a the axion andp the dilaton. Solutions to the equations of
tion for # which has no counterpart for ordinary fluids. The motion arising from this action include electrically
crucial point is that, owing to the black hole’s gravitational (Reissner-Nordstm) and magnetically charged black holes
self-attraction, the energy density is negative, and the soly-19,20, as well as their duality-rotated cousins, dyonic black
tion to the differential equation represents a horizon thaholes[21], which carry both electric and magnetic charge.
grows with time. For example, the source-free solution with The equations of motion are

a time-slicing for which the horizon has constant surface

ravity is PN IN? i
gy Va<—2) A Tea g (3.40
2 )\2 2
29
o(t)= 5 338 g
1+ 0tg —1)e9<to—t>
(to) Va(AF2P—\F2) =0, (3.4

. (3.42

(3.49

Because of the sign of the exponent, this would represent algesides the Einstein equations
ever-expanding horizon #i(ty) were an initial condition; the a ' . : .
. . ) As before, we require the external action to vanish on its

area of the horizon, which is related t&@ by 6 . T L
— (d/dn)Inyy d tially with ti T id own. Integration by parts on the axidilaton kinetic term leads
_.( 7)InVy, expan s_exponen lally with ime. 10 avold 4, 5 \ariation at the boundary,
this runaway, one must impose “teleological boundary con-
ditions” (that is, final conditionsrather than initial condi- a a
: o . : N N
tions. Hence, the horizon’s growth is actually acausal; the d3x+/—hl| &\ 5|+ O\ 5
membrane expands to intercept infalling matter that is yet to 2\5 2\5
fall in [13]. This is because the membrane inherits the global A ) o
character of the true horizon: the stretched horizon covers th¥heren® is again chosen to be outward-pointing. To cancel
true horizon whose location can only be determined by trackthis, we add the surface term
ing null rays into the infinite future. In fact, the left-hand side
of the heat transfer equation, H8.35, is of the same form Ssurf:f d3x\—h(Ag+\q), (3.43
as that of an electron subject to radiation reaction; the acau-
sality of the horizon is therefore analogous to the pre- that
acceleration of the electron. So tha

At this classical level, using only the equations of motion, a
the parameterp in Eq. (3.36 is undetermined. However, q=— Nad )‘_
because we have an action we hope to do better, since the )\g
normalization in the path integral is now fixed. By means of
a Euclidean path integral, we should actually be able to de- To interpret this, we note that the kinetic term Anis
rive the Bekenstein-Hawking entropy, including the coeffi-invariant under globaSL(2,R) transformations of the form
cient », from the membrane action. We do this in a later
section. \ an+b
e
ch+d’

ad—bc=1, (3.45

C. The axidilaton membrane . . .
which are generated by Peccei-Quinn shifts;»\;+b, and

Another advantage of the action formulation is that it isduality transformationsh — — 1/\. The Peccei-Quinn shift

easily generalized to arbitrary fields. For example, we cany the axion can be promoted to a classical local symmetry to
extend the membrane paradigm to include the basic fields %field a Nédher current:

guantum gravity. Here we use the tree-level effective action
obtained from string theory after compactification to four 1 o
macroscopic dimensions. This action is a generalization of Jp_g=— =5 (*N+N). (3.46
the classical Einstein-Hilbert-Maxwell action to which it re- A3
duces when the axidilaton,, is set toi/16sr. The action is . )
Therefore, under a Peccei-Quinn shift,
S[)\u)\uAmgab] .
) R oA i R 5ssurf=f d3x\/—h5)\(q+q)=f Ay —hoN(ndE_q).
ZJ dxV-g 16_77_2_)\;+Z()‘F+_M:—) , (3.47
(3.39  The sum of they andaterms induced at the membrane, Eq.
(3.44), is the normal component of the Peccei-Quinn current.
whereR is the four-dimensional Ricci curvature scal@r, Hence, at the membrane,

=F=iF are the self- and anti-self-dual electromagnetic field ab ~ — .
strengths, and =\, +i\,=a+ie 2% s the axidilaton, with (hgdp_g)ja= —FF =V [(g+q)n?]. (3.48
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That is, the membrane terf,[ (q+ q)n?] augments the dy- IV. DISSIPATION
onic FF term as a source for the three-dimensional Peccei- Given that the bulk equations of motion are manifestly
Quinn current,thE,_Q, at the membrane. symmetric under time-reversal, the appearance of dissipa-

The membrane is again dissipative with the Peccei-Quiniion, as in Joule heating and fluid viscosity, might seem mys-
charge accounting for the dissipation in the usaab0  terious, all the more so since it has been derived from an
limit. The local rate of dissipation is given by the bulk stressaction.

tensor at the membrane: The procedure, described here, of restricting the action to
some region and adding surface terms on the boundary of the

NEY 2|42 region cannot be applied with impunity to any arbitrary re-
Tabuanb:i Jah Ioh + Gak dp b_, M2ldl ) gion: a black hole is special. This is because the region out-
167 2)\3 167 side the black hole contains its own causal past; an observer

(3.49  who remains outside the black hole is justified in neglecting
(indeed, is unaware pkvents inside. However, even “past
In addition, the presence of the axidilaton affects the elecsufficiency” does not adequately capture the requirements
tromagnetic membrangThe gravitational membrane is un- for our membrane approach. For instance, the past light cone
affected since the surface terms come from the Ricci scalagf a spacetime point obviously contains its own past, but an
which has no axidilaton factrThe electromagnetic current observer in this light cone must eventually leave it. Rather,
is now we define the notion of a future dynamically closed set:

A setSin a time-orientable globally hyperbolic spacetime
(M,ga.p) is future dynamically closedf J7(S)=S, and if,
for some foliation of Cauchy surfac&s, parameterized by
the values of some global time function, we have that

That is, S is future dynamically closed if it contains its
own causal past and if from every point&it is possible for
. " o " o an observer to remain 8. Classically, the region outside the
Js=4(AnXBj—\nXE), (352 true horizon of a black hole is dynamically closed. So too is
. ] o the region on one side of a null plane in flat space; this is just
which, by the regularity of the electromagnetic field, Eq.tne infinite-mass limit of a black hole. The region outside the

ja=—2i(\F3—\F3)n,,. (3.50

The surface charge is therefore

and the surface current is

(3.12, satisfies stretched horizon is strictly speakimgt dynamically closed
4 ) since a signal originating in the thin region between the
Is| A2 M\|(E stretched horizon and the true horizon can propagate out be-
2T\ =a N\ E?) (3.53 yond the stretched horizon. However, in the limit that the

stretched horizon goes to the true horizen; 0, this region

the resistivity is case assumed throughout, we are justified in restricting the
action.
1 The breaking of time-reversal symmetry comes from the
p= 4—)\2 (3.59 definition of the stretched horizon; the region exterior to the

black hole does not remain future dynamically closed under
The inverse dependence ag is to be expected on dimen- time-reversal. In other words, we have divided spacetime
into two regions whose dynamics are derived from two dif-

sional grounds. The pure dilaton action can be derived fron?erent simultaneously vanishing actionsy(Sy,+ )
Kaluza-Klein compactification of pure gravity in five dimen- — 8(S— Seu) =0 Givyen data or? some suital?)llne ;S:Lﬁfronal
in™ Ssurf) — Y-

sions, where the fifth dimension is curled into a circle of _ . ; .
radiuse™ 24=\,. In five dimensions, withc=1, resistance subset we can, for the exterior region, predict the future but
(and hence resistivity for a two-dimensional resistor such aQOt ”‘? ?nnre past, while, inside the_ black hole_, we can
the membranehas dimensions of inverse length. Using the postdict” the past . cannot determine the entire fu_tu_re.
regularity condition, Eq(3.12), the rate of dissipation, for a Thus,. our ch_0|ce Of. the hqnzon as a boundary_ 'm.p"‘?'“y
stretched horizon defined to have uniform lagswvith re- contglns the irreducible logical requirement for dissipation,
spect to time at infinityt, is that is, asymmetry between past and future.

P yh Besides the global properties that logically permit one to
write down a time-reversal asymmetric action, there is also a
_f azé-dA=J4a2)\2E2dA=f o2 A2 i 2dA local property of the horizon which is the proximate cause

I 4|\ |* s for dissipation, namely that the normal to the horizon is also

(3.55 tangential to the horizon. Without this crucial property—

which manifests itself as the regularity condition, or the

which is the Joule heating law in the presence of an axidilaidentification of the stretched horizon extrinsic curvature
ton. with intrinsic properties of the true horizon—there would

dMirr:
dt
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still be surface terms induced at the stretched horizon, but no The external action itself can be written 8g,= Syuk
dissipation. +S,, whereS, is zero for a black hole alone in the uni-
The regularity condition imposed at the boundary is notverse. The boundary ter®, is the integral of the extrinsic
an operator identity, but a statement about physical states: aurvature of the boundary of spacetime. In fact, a term pro-
tangential electromagnetic fields as measured by a fiducigortional to the surface area at infinity can be include8&.in
observer must be ingoing. Such a statement is not rigoroushyithout affecting the Einstein equations since the metric is
true. For any given value ofe=(1—2M/r)2 there is a held fixed at infinity during variation. In particular, the pro-
maximum wavelength) ., for outgoing modes that are portionality constant can be chosen so that the action for all

invisible to the observer: of spacetime is zero for Minkowski space:
r—2m 1
)\maX:(T/?HZM «. (41) Sm:%f d3X _h[K], (52)
= V
r

where[ K] is the difference in the trace of the extrinsic cur-

Dissipation occurs in the membrane paradigm because théture at the spacetime boundary for the megrjg and the
finite but very high-frequency modes that are invisible to theflat-space metriey,,. With this choice, the path integral has
fiducial observer are tacitly assumed not to exist. The regua properly normalized probabilistic interpretation. The Eu-
larity condition amounts to a coarse-graining over thesetlideanized value ofS,, for the Schwarzschild solution is
modes. It is conceivable that for a theory with benign ultra-then[24]
violet behavior, the amount of information lost is finite. Ein-
stein gravity is not such a theory, but one may ask abstractly
whether an effective horizon theory could exist at a quantum
level [22,23. Quantum effects cause the black hole to emit
radiation. In order to preserve time-evolution unitarity, we =+47M2. (5.3
might require the emitted radiation to be correlated with the
interior state of the black hole. In this case, the membrane To obtain an explicit action for the membrane, we must
viewpoint remains valid only as a classical description, sincéntegrate its variation, E¢(3.23:
guantum-mechanically the external universe receives infor-
mation from the black hole in the form of deviations of the 1
radiation from thermality; the crucial premise that the out- S h**] =~ Ef V= h(Khap—Kap) 57",
side universe is emancipated from the internal state of the (5.4
black hole is violated. It is important to emphasize, however,
that correlations between the radiation and the horizon itsefNve see that
do not preclude the membrane paradigm. Indeed, the fact
that the Bekenstein-Hawking entropy is proportional to the ab 3 ab
surface area of the black hole suggests that, even at the quan- Ssu h*°] = f d X\/__h(Babh —b) (5.9
tum level, an effective horizon theory may not be unfeasible.
is a solution, provided that théundifferentiategl source

V. THERMODYNAMICS terms areB,,= (+ 1/167)K,, andb=(—1/167)K. This ac-
tion has the form of surface matter plus a negative cosmo-
nIogical constant in three dimensions. The value of the mem-
liliqrane action for a solution to the classical field equations is

en

8

r—o

1 1/2
SE=Iim—(—32w2M)[(2r—3M)—2r(1—T) }

To make contact with thermodynamics, we perform a
analytic continuation to imaginary time;=it, so that the
path integral of the Euclideanized action becomes a partitio
function. For a stationary hole, regularitgr the removal of
a conical singularity dictates a periofB= fdr=2w/gy in 1
imaginary time[24], wheregy is the surface gravity; for a Seud h3P]=+ —f d3xy—hgKyg. (5.6
Schwarzschild hole=8mM. This is the inverse Hawking 8w
temperature in units where=c=G=kg=1. The partition . L .
function is then the path integral over all Euclidean metrics To evaluate this, we can take our fiducial world-ling$

which are periodic with period #/gy in imaginary time. to be normal to the isometric time-slices of constant

Since the dominant contribution to the path integral comesSChwarZSCh”d time. The stretched horizon is then a surface

H — _ 1/2
from the classical solution, we can evaluate the partitionOf constant Schwarzschild. Hence a=(1-2M/r)"* 6

PR ; Lo =0, andK =g+ 6=, the unrenormalized surface gravity of
function in ionary ph roximation: ' s ) ) .
unctio a stationary phase approximatio the stretched horizon. Inserting these into Exi6), we find

that the Euclidean action is

1 SsEurfI lim g j —dr a47Tng: _ 7TI'H2: —47TM2,
%exr< - %(Sgut[ggbcl]+55Eur{hgbcl]))_ (5.1) r—ry .

1
z= f Dgébexr{ — 7 (SSlgE’1+ SEm[héb]))
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where ry=2M is the black hole’s radius, andy=ag  the instantaneous entropy as matter falls into the membrane
=1/4M is its renormalized surface gravity. in a nonequilibrium process. Of course, like the horizon it-
The Euclidean membrane action exactly cancels the exself, the entropy grows acausally.
ternal action, Eq.(5.3). Hence the entropy is zero! That,
however, is precisely what makes the membrane paradigm VI. HAMILTONIAN FORMULATION
attractive: to an external observer, there is no black hole— ) . }
only a membrane—and so neither a generalized entropy nor_ 1he equations of motion can equally well be derived
a strictly obeyed second law of thermodynamics. The enyv!thln a Hamlltonla_n formula’qon. This involves first sin-
tropy of the outside is simply the logarithm of the number of9ling out a global time coordinate, for the external uni-
quantum states of the matter outside the membrane. Thierse, which is then sliced into space-like surfaces, of
number decreases as matter leaves the external system to feé@nstant. We can write, in the usual way,
through and be dissipated by the membrane. When all matter q\a
has fallen into the membrane, the outside is in a single taE(_) =alU2—p?, (6.1)
state—vacuum—and has zero entropy, as above. dt
To recover the Bekenstein-Hawking entropy, we must . .
then use not the combination of extern%l and rFr?:ambrane ag\_/hereua is the unit normal ta,, U?=—1, anda and

- , : ) )

tions, which gave the entropy of the external system, but the 8 ajié?tl’\:v hezllers Igpsel a_rt1d ?h'ﬁ’ rte_slpect_|t\r/]ely, mﬁ

combination of theénternal and membrane actions, La X € orcinary 5-veloctty of a particie with worid-iine
U®. For convenience we choose the stretched horizon to be a

1 surface of constant lapse so thgtwhich goes to zero at the
ZB—HZJ Dg%bexp( - g(sﬁi[ggb]—sfur{hgb])), true horizon, serves as the stretched horizon regulator. The
(5.9 external Hamiltonian for electrodynamics, obtained from the
Lagrangian via a Legendre transform and written in ordinary
where now Sy, is subtracted[see Eq.(3.1)]. With S,  three-dimensional vector notation, is
= [d*x\/—gR=0, the partition function for a Schwarzschild

hole in the stationary phase approximation is Houl &, A, 7]= %f d3x\/3—g(%a(l§ E+B-B)
%

1
Zg. ~exp(——(+4w|v|2)), (5.9 I ..
B-H h +v~(E><B)—¢(V-E)), 6.2
from which the Bekenstein-Hawking entrop$s., imme- 3 . ] .
diately follows: where °g,y, is the 3-metric onX;, ¢=—A,t? is the scalar
potential,,&aE 3gabAb is the three-dimensional vector poten-

SB-HZIB( M + InZB'H) —87M ( M — L47TM 2) :lA, tial, and 7= — \/?’—gEa its canonical momentum co[ljugate.
B 87M ‘}5 1 Note thatE®=F2PU, is the co-moving electric fieldE and
(5.10 B above refer to the fields measured by a fiducial observer
which is the celebrated result. with world-line U2. Finally, the scalar potential is nondy-
For more general stationariKerr-Newman holes, the namical; its presence in the Hamiltonian serves to enforce
Helmholtz free energy contains additional “chemical poten-Gauss’ law as a constraint. The equations of motion are now
tial” terms corresponding to the other conserved quantitiesgdetermined by Hamilton’s equations and the constraint:
Q andJ,

SH - 6H . 6H
F=M-TS-®Q-QJ, (5.11) S ZTT™ 5—¢=0- (6.3
where ®=Q/r, and 1=J/M, wherer, is the Boyer- Jon the bulk these equations are simply Maxwell’s equations

Lindquist radial coordinat_e at the horizon.. For a charge ut, because of the inner boundary, the usually discarded
hole, the action also pontalns electromagnetic terms. The SUurface terms that arise during integration by parts now need
face electromagnetic term, Eq3.5, has the value

to be canceled. It is easy to show then that the above equa-
3 _ ab H . . L.

(1/4m) [d°x—hF®Asn;, . However, in order to have a ions hold only if additional surface terms are added to the

regular vector potential, we must gauge transform i\f0 5 miltonian:

=(Q/r—®)V,t which vanishes on the surface. Hence, the

surface action is again given by the gravitational term, which 5 )

has the Euclideanized valugt,~=—=r2 . It is easy to H:Hout_f d?x\y js-A. (6.4)

verify using Eq.(5.11) that this again leads to a black hole

entropy equal to one-fourth of the horizon surface area an&or Maxwell's equations to be satisfied in the bulk, the sur-

an external entropy of zero. face terms are once again the surface charges and currents
For nonstationary black holes, the extrinsic curvature alsmecessary to terminate the normal electric and tangential

includes a term for the expansion of the horiz&rs g+ 6. magnetic fields at the stretched horizon. Thus, the membrane

Inserting this into the surface action enables us to calculatparadigm is recovered.
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However, it is perhaps more interesting to proceed in vhere o) is given by Eq.(6.5). This is the principle of
slightly different fashion. Instead of adding new terms, weminimum heat production: minimizing the dissipation func-
can use the external Hamiltonian to prove the validity of ational leads to the membrane equation of motion.
principle of minimum heat production. Such a principle, e observe that we could have anticipated this answer.
which holds under rather general circumstances for stationfhe numerical value of the Hamiltonian is the total energy of
ary diss_ipative s_yste_ms, holds for black holes also in slightlyhe system as measured at spatial infiffagsuming an as-
nonstationary situations. ymptotically flat spacetime The time derivative is then sim-

Now the time derivative of the external Hamiltonian is ply the rate, as measured by the universal time of distant
not zero, again because of the inner boundary. We can usshservers, that energy changes. The rate of decrease of en-
Hamilton's equations to substitute expressions for the timeyrgy is the integral of the Poynting flux as measured by local
derivative of the field and its momentum Conjugate. Ham”'observersy mu|t|p||ed by two powers af one power to con-

ton’s equations are vert local energy to energy-at-infinity and one power to con-
- oL L vert the rate measured by local clocks to the rate measured at
A=—aE+vXB-V¢ (6.9 infinity. Thus we can immediately define a dissipation func-
. tional:
E=VX(aB+uvXE), (6.6)
1 A s
so that, making repeated use of the vector identity D[¢]=— EJ d?xyy n-(EyXBy), (6.12
V- (VXW)=W- (VX V)=V (VXW), (6.7)
where the subscriptl denotes that a power af has been
we find that the energy loss is absorbed to renormalize an otherwise divergent fiducial
1 quantity.
T A (aEix oB In.thls manner, we can eas.lly WI:Ite dqwn thg d'ISSIpa'[IOI’I
H 477,[ d x\/§[n (aByx aBy) functional for gravity for which time-differentiating the

R R . Hamiltonian is a much more laborious exercise. The local
+v-(E aEj+B aB))]. (6.8) rate of energy transfer is given by the right-hand side of the
L _ . heat transfer equation, E€B.35. The Hamiltonian for grav-

So far, we have used only Hamilton’s equations. It remainsyy sarisfies two constraint equations with the lapse and shift
however, to implement the constraint. Hence we may regargecior serving as Lagrange multipliers. Since the membrane
—H as a functional of the Lagrange multiplies, We there-  picture continues to have a gauge freedom associated with
fore have time-slicing, the constraint equation associated with the lapse
, is not implemented. This implies that the dissipation is a
oH  d éH _o 69 functional only of the shift. Hence we have
8¢  dt 5¢ 6.9

That is, the equations of motion follow from minimizing the D[UA]:I dzxﬁ(§9ﬁ+2ngﬁ+ azTgnan),
rate of mass increase of the black hole with respect to the 6.13
scalar potential. This is an exact statement; we now show '

that this reduces to a minimum heat production principle in a

quasi-stationary limit. Now we note that the first law of black where again the two powers af have been absorbed to
hole thermodynamics allows us to decompose the magg&nder finite the quantities with the subsciipt Extremizing

change into irreducible and rotational parts: D with respect tov” leads to the membrane equations of
motion, enforcing the gauge constraint or, equivalently,
dM dQ dJ obeying the principle of minimum heat production.
dt dt dt
where(}y is the angular velocity at the horizon, adds the VIl. CONCLUSION
hole’s angular momentum. Singe|— Q4 at the horizon, we We have derived the equations for the membrane para-

see that the second term on the right in E8) corresponds  digm of black holes from an action principle directly by
to the torquing of the black hole. When this is small, we maydemanding that both terms in E(.1) be extremized sepa-
approximate the mass increase as coming from the first, irately. This brings advantages of conceptual unity and ease
reducible term. Hence, in the quasi-stationary limit, for aof generalization over the traditional approach of manipulat-
slowly rotating black hole, the black hole’s rate of mass in-ing the equations of motion. Specifically, the derivation
crease is given by the dissipation of external energy. Invokmakes it clear why a membrane picture, including dissipative
ing the regularity condition, Eq3.12), then gives behavior, is possible. A fundamental advantage of having an
action principle is the guidance it offers for quantization—a

_ 2y [~ BN\2 _ property we used to fix the constant in the Bekenstein-
DL#]=+ 477J dxy (aB))”, oo 0, (611 Hawking formula.
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APPENDIX Now, variations in the metric that are in fact merely gauge
In this appendix, we shall prove that E§.21) is zero in transformations can be set to zero. Using a vecfowhere
the limit that the stretched horizon approaches the true horiv® vanishes on the stretched horizon, we can gauge away the
zon. In that limit, an®—12, We shall make liberal use of variations in the normal direction so thég,,— oh,,. Then
Gauss’ theorem, the Leibniz rule, and the fact thdtn, the left-hand side of Eq3.21) becomes

|| TR (o0~ Tty
= f d3x\—h[V 4(hPn3shy,.) — (V .hP9)n@shy— Vo(hPendsh,) + (V hPC)n2sh,, ]

= f A3\ = h[V4(hPn?8hy,) + (nfaP+nPa®) shy— (hP°n2Sh,p) | — hPn2h,pa. — KnPn?sh,p—an@sh,y ]

(usingh®®=gP°~n®n°, K,,= +hgVcny,, andV we=wf,+wea, for weeH)
=f d3x\—h[V,(h*nsh,) —KnPn2sh,,] (using Gauss’ theorem, armd=0)
:J d3x\/—h[Va( hbcgnaéhbc) K[ 8(n°nah,,) — n2h,, sn—nbh_, sn?]
1 .
ﬂj d3x\/—hVa<hb°;I36hbc) (usingh,,n°=0, andan®—1?)

1
= f d3x\— h( hb°;|a5hbc)
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