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An action for black hole membranes
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The membrane paradigm is the remarkable view that, to an external observer, a black hole appears to behave
exactly like a dynamical fluid membrane, obeying such pre-relativistic equations as Ohm’s law and the Navier-
Stokes equation. It has traditionally been derived by manipulating the equations of motion. Here we provide an
action formulation of this picture, clarifying what underlies the paradigm and simplifying the derivations.
Within this framework, we derive previous membrane results, and extend them to dyonic black hole solutions.
We discuss how it is that an action can produce dissipative equations. Using a Euclidean path integral, we
show that familiar semi-classical thermodynamic properties of black holes also emerge from the membrane
action. Finally, in a Hamiltonian description, we establish the validity of a minimum entropy production
principle for black holes.@S0556-2821~98!00616-X#

PACS number~s!: 04.70.Bw, 04.70.Dy
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I. INTRODUCTION

The event horizon of a black hole is a peculiar object: i
a mathematically defined, locally undetectable boundary
surface-of-no-return inside which light cones tip over a
‘‘time’’ becomes spatial@1#. Otherwise natural description
of physics often have trouble accommodating the horizon
the most primitive example, the familiar Schwarzschild m
ric has a coordinate singularity there. Theories of fields t
extend to the horizon face the additional challenge of hav
to define boundary conditions on a surface that is infinit
red-shifted, has a singular Jacobian, and possesses a n
vector which is also tangential. These considerations m
induce one to believe that black hole horizons are fundam
tally different from other physical entities.

On the other hand, further work has established a g
variety of analogies between the horizon and more famil
pre-relativistic bodies. In addition to the famous four laws
black hole thermodynamics@2–5#, which are global state
ments, there is also a precise local mechanical and ele
dynamic correspondence. In effect, it has been shown@6–10#
that an observer who remains outside a black hole perce
the horizon to behave according to equations that descri
fluid bubble with electrical conductivity as well as shear a
bulk viscosities. Moreover, it is possible to define a set
local surface densities, such as charge or energy-momen
which inhabit the bubble surface and which obey conser
tion laws. Quite remarkably, a general-relativisticallyexact
calculation then leads, for arbitrary non-equilibrium bla
holes, to equations for the horizon which can be precis
identified with Ohm’s law, the Joule heating law, and t
Navier-Stokes equation.

These relations were originally derived for the mathem
cal, or true, event horizon. For astrophysical application
became more convenient to consider instead a ‘‘stretc
horizon,’’ a ~211!-dimensional time-like surface locate
slightly outside the true horizon. Because it has a n
singular induced metric, the stretched horizon provide
0556-2821/98/58~6!/064011~12!/$15.00 58 0640
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more tractable boundary on which to anchor external fie
outside a complicated boundary layer, the equations gov
ing the stretched horizon are to an excellent approxima
@11,12# the same as those for the true horizon. This view o
black hole as a dynamical time-like surface, or membra
has been called the membrane paradigm@13#.

Most of the mentioned results have been derived thro
general-relativistic calculations based on various intuit
physical arguments. In this paper, we show that the grav
tional and electromagnetic descriptions of the membrane
be derived systematically, directly, and more simply fro
the Einstein-Hilbert or Maxwell actions. Aside from the a
peal inherent in a least action principle, an action formu
tion is a unifying framework which is easily generalizab
and has the advantage of providing a bridge to thermo
namics and quantum mechanics~see@14# for related work!.
In a follow-up paper, we exploit these advantages to evalu
some effects of the back-reaction of Hawking radiation
the spacetime geometry@15#.

The key idea in what follows is that, since~classically!
nothing can emerge from a black hole, an observer who
mains outside a black hole cannot be affected by the dyn
ics inside the hole. Hence the equations of motion ough
follow from varying an action restricted to the external un
verse. However, the boundary term in the derivation of
Euler-Lagrange equations does not in general vanish on
stretched horizon as it does at the boundary of spacetime
order to obtain the correct equations of motion, we must a
to the external action a surface term that cancels this resi
boundary term. The membrane picture emerges in interp
ing the added surface term as electromagnetic and gra
tional sources residing on the stretched horizon.

In the rest of this paper, we examine individually th
boundary terms for the electromagnetic, gravitational, a
axidilaton cases. We also discuss dissipation and prov
thermodynamic and Hamiltonian descriptions. We use lo
ercase indices for four-dimensional tensor indices and up
case indices for the two-dimensional tensors that occ
© 1998 The American Physical Society11-1
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space-like sections of the horizon. We use geometrized u
(G[c[1), and a spacetime metric with positive signatu
(2111). Our sign conventions are those of Misne
Thorne, and Wheeler~MTW! @16#, with the exception of the
extrinsic curvature which we define to have a positive tra
for a convex surface.

II. HORIZON PRELIMINARIES

In this section, we fix our conventions, first in words, th
in equations. Through every point on the true horizon th
exists a unique null generatorl a which we may parameteriz
by some regular time coordinate whose normalization we
to equal that of time-at-infinity. Next, we choose a time-li
surface just outside the true horizon. This is the stretc
horizon,H, whose location we parameterize bya!1 so that
a→0 is the limit in which the stretched horizon coincid
with the true horizon. We will always take this limit at th
end of any computation. Since many of the useful interm
diate quantities will diverge as inverse powers ofa, we
renormalize them by the appropriate power ofa. In that
sense,a plays the role of a regulator.

For our purposes, the principal reason for preferring
stretched horizon over the true horizon is that the metric o
time-like—rather than null—surface is nondegenerate, p
mitting one to write down a conventional action. Generica
~in the absence of horizon caustics!, a one-to-one correspon
dence between points on the true and stretched horizon
always possible via, for example, ingoing null rays th
pierce both surfaces~see@12# for details!.

We can take the stretched horizon to be the world-tube
a family of time-like observers who hover just outside t
true horizon. These nearly light-like ‘‘fiducial’’ observers a
pathological in that they suffer an enormous proper accel
tion and measure quantities that diverge asa→0. However,
although we take the mathematical limit in which the tr
and stretched horizons conflate, for physical purposes
proper distance of the stretched horizon from the true h
zon need only be smaller than the length scale involved
given measurement. In that respect, the stretched hori
although a surrogate for the true horizon, is actually m
fundamental than the true horizon, since measurements a
stretched horizon constitute real measurements that an e
nal observer could make and report, whereas accessing
quantity measured at the true horizon would entail the
server’s inability to report back his or her results.

We take our fiducial observers to have world linesUa,
parameterized by their proper time,t. The stretched horizon
also possesses a space-like unit normalna which for consis-
tency we shall always take to be outward-pointing. Mo
over, we choose the normal vector congruence on
stretched horizon to emanate outwards along geodesics
define a by requiring thataUa→ l a and ana→ l a; hence
aUa and ana are equal in the true horizon limit. This i
nothing more than the statement that the null generatorl a is
both normal and tangential to the true horizon, which is
defining property of null surfaces. Ultimately, though, it w
be this property that will be responsible for the dissipat
behavior of the horizons. The 3-metric,hab , on H can be
06401
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written as a 4-dimensional tensor in terms of the spacet
metric and the normal vector, so thathb

a projects from the
spacetime tangent space to the 3-tangent space. Similarly
can define the 2-metric,gAB , of the space-like section ofH
to which Ua is normal, in terms of the stretched horizo
3-metric andUa, thus making a 21111 split of spacetime.
We denote the 4-covariant derivative by¹a , the 3-covariant
derivative byua, and the 2-covariant derivative byiA. For a
vector in the stretched horizon, the covariant derivatives
related byhd

c¹cw
a5wud

a 2Kd
cwcn

a whereKb
a[hb

c¹cn
a is the

stretched horizon’s extrinsic curvature, or second fundam
tal form. In summary,

l 250 ~2.1!

Ua5S d

dt D a

, U2521, lim
a→`

aUa5 l a ~2.2!

n2511, ac5na¹anc50, lim
a→`

ana5 l a ~2.3!

hb
a5gb

a2nanb , gb
a5hb

a1UaUb5gb
a2nanb1UaUb

~2.4!

Kb
a[hb

c¹cn
a, Kab5Kba , Kabn

b50 ~2.5!

wceH⇒hd
c¹cw

a5wud
a 2Kd

cwcn
a⇒¹cw

c5wuc
c 1wcac5wuc

c .
~2.6!

The last expression relates the covariant divergence as
ated with gab to the covariant divergence associated w
hab .

For example, the Reissner-Nordstro¨m solution has

ds252S 12
2M

r
1

Q2

r 2 D dt2

1S 12
2M

r
1

Q2

r 2 D 21

dr21r 2dV2, ~2.7!

so that a stretched horizon at constantr would have

a5S 12
2M

r
1

Q2

r 2 D 1/2

, ~2.8!

Ua52a~dt!a , ~2.9!

and

na51a21~dr !a . ~2.10!

III. ACTION FORMULATION

To find the complete equations of motion by extremizi
an action, it is not sufficient to set the bulk variation of th
action to zero: one also needs to use the boundary conditi
Here we take our Dirichlet boundary condition to bedf
50 at the boundary of spacetime, wheref stands for any
field.
1-2
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AN ACTION FOR BLACK HOLE MEMBRANES PHYSICAL REVIEW D58 064011
Now since the fields inside a black hole cannot have
classical relevance for an external observer, the physics m
follow from varying the part of the action restricted to th
spacetime outside the black hole. However, this external
tion is not stationary on its own, because boundary con
tions are fixed only at the singularity and at infinity, but n
at the stretched horizon. Consequently, we rewrite the t
action as

Sworld5~Sout1Ssurf!1~Sin2Ssurf!, ~3.1!

where nowdSout1dSsurf[0, which implies also thatdSin
2dSsurf50. The total action has been broken down into tw
parts, both of which are stationary on their own, and wh
do not require any new boundary conditions.

The surface term,Ssurf, corresponds to sources, such
surface electric charges and currents for the Maxwell act
or surface stress tensors for the Einstein-Hilbert action.
sources are fictitious: an observer who falls through
stretched horizon will not find any surface sources and
fact, will not find any stretched horizon. Furthermore, t
field configurations inside the black hole will be measured
this observer to be entirely different from those posited
the membrane paradigm. On the other hand, for an exte
fiducial observer the source terms are a very useful artifi
their presence is consistent with all external fields. This s
ation is directly analogous to the method of image charge
electrostatics, in which a fictitious charge distribution
added to the system to implement, say, conducting boun
conditions. By virtue of the uniqueness of solutions to Po
son’s equation with conducting boundary conditions,
electric potential on one—and only one—side of the bou
ary is guaranteed to be the correct potential. An obse
who remains on that side of the boundary has no way
telling through the fields alone whether they arise throu
the fictitious image charges or through actual surfa
charges. The illusion is exposed only to the observer w
crosses the boundary to find that not only are there
charges, but the potential on the other side of the bounda
quite different from what it would have been had the ima
charges been real.

In the rest of this section, we shall implement Eq.~3.1!
concretely in important special cases.

A. The electromagnetic membrane

The external Maxwell action is

Sout@Aa#5E d4xA2gS 2
1

16p
F21J•AD , ~3.2!

whereF is the electromagnetic field strength. Under var
tion, we obtain the inhomogeneous Maxwell equations

¹bFab54pJa, ~3.3!

as well as the boundary term

1

4pE d3xA2hFabnadAb , ~3.4!
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whereh is the determinant of the induced metric, andna is
the outward-pointing space-like unit normal to the stretch
horizon. We need to cancel this term. Adding the surfa
term

Ssurf@Aa#51E d3xA2h js•A, ~3.5!

we see that we must have

j s
a51

1

4p
Fabnb . ~3.6!

The surface 4-current,j s
a , has a simple physical interpreta

tion. We see that its time-component is a surface charges,
that terminates the normal component of the electric fi
just outside the membrane, while the spatial componentsjWs,
form a surface current that terminates the tangential com
nent of the external magnetic field:

E'52UaFabnb54ps ~3.7!

BW i
A5eB

Aga
BFabnb54p~ jWs3n̂!A. ~3.8!

It is characteristic of the membrane paradigm thats and jWs
are local densities, so that the total charge on the black h
is the surface integral ofs over the membrane, taken at som
constant universal time. This is in contrast to the total cha
of a Reissner-Nordstro¨m black hole, which is a global char
acteristic that can be defined by an integral at spatial infin

From Maxwell’s equations and Eq.~3.6!, we obtain a con-
tinuity equation for the membrane 4-current which, for
stationary hole, takes the form

]s

]t
1¹W 2• jWs52Jn, ~3.9!

where ¹W 2• jWs[(ga
Aj s

a) iA is the two-dimensional divergenc
of the membrane surface current, and2Jn52Jana is the
amount of charge that falls into the hole per unit area per u
proper time, t. Physically, this equation expresses loc
charge conservation in that any charge that falls into
black hole can be regarded as remaining on the membr
the membrane is impermeable to charge.

The equations we have so far are sufficient to determ
the fields outside the horizon, given initial conditions outsi
the horizon. A plausible requirement for initial conditions
the horizon is that the fields measured by freely falling o
servers~FFO’s! at the stretched horizon be finite. There b
ing no curvature singularity at the horizon, inertial observ
who fall through the horizon should detect nothing out of t
ordinary. In contrast, the fiducial observers~FIDO’s! who
make measurements at the membrane are infinitely acc
ated. Their measurements, subject to infinite Lorentz boo
are singular. For the electromagnetic fields we have, withg
the Lorentz boost and using orthonormal coordinates,

Eu
FIDO'g~Eu

FFO2Bf
FFO!, Bf

FIDO'g~Bf
FFO2Eu

FFO!,
~3.10!
1-3
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MAULIK K. PARIKH AND FRANK WILCZEK PHYSICAL REVIEW D 58 064011
Bu
FIDO'g~Bu

FFO2Ef
FFO!, Ef

FIDO'g~Ef
FFO2Bu

FFO!,
~3.11!

or, more compactly,

EW i
FIDO5n̂3BW i

FIDO. ~3.12!

That is, the regularity condition states that all radiation in
normal direction is ingoing; a black hole acts as a perf
absorber. Combining the regularity condition with Eq.~3.8!
and dropping the FIDO label, we arrive at

EW i54p jWs . ~3.13!

That is, black holes obey Ohm’s law with a surface resis
ity of r54p'377 V. Furthermore, the Poynting flux is

SW 5
1

4p
~EW 3BW !52 j s

2rn̂. ~3.14!

We can integrate this over the black hole horizon at so
fixed time. However, for a generic stretched horizon, we c
not time-slice using fiducial time as different fiducial obse
ers have clocks that do not necessarily remain synchroni
Consequently we must use some other time for slicing p
poses, such as the time at infinity, and then include in
integrand a~potentially position-dependent! factor to convert
the locally measured energy flux to one at infinity. With
clever choice of the stretched horizon, however, it is poss
to arrange that all fiducial observers have synchroni
clocks. In this case, two powers ofa, which is now the lapse
are included in the integrand. Then, for some given unive
time, t, the power radiated into the black hole, which is a
the rate of increase of the black hole’s irreducible mass
given by

dM irr

dt
52E a2SW •dAW 51E a2 j s

2r dA. ~3.15!

That is, black holes obey the Joule heating law, the same
that also describes the dissipation of an ordinary Ohmic
sistor.

B. The gravitational membrane

We turn now to gravity. The external Einstein-Hilbert a
tion is

Sout@gab#5
1

16pE d4xA2gR1
1

8p R d3xA6h K1Smatter,

~3.16!

whereR is the Ricci scalar andK is the trace of the extrinsic
curvature, and where for convenience we have chosen
field variable to be the inverse metricgab. The surface inte-
gral of K is only over the outer boundary of spacetime, a
not over the stretched horizon. It is required in order to o
tain the Einstein equations because the Ricci scalar con
second order derivatives ofgab . When this action is varied
the bulk terms give the Einstein equations
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2
gabR58pTab . ~3.17!

We are interested, however, in the interior boundary te
This comes from the variation of the Ricci tensor. We no
that

gabdRab5¹a@¹b~dgab!2gcd¹a~dgcd!#, ~3.18!

wheredgab52gacgbddgcd. Gauss’ theorem now gives

E d4xA2g~gabdRab!

52E d3xA2hnahbc@¹c~dgab!2¹a~dgbc!#, ~3.19!

where the minus sign arises from choosingna to be outward-
pointing. Applying the Leibniz rule, we can rewrite this as

E d4xA2g~gabdRab!

5E d3xA2hhbc@¹a~nadgbc!2dgbc¹a~na!

2¹c~nadgab!1dgab¹c~na!]. ~3.20!

Now, in the limit that the stretched horizon approach
the null horizon, the first and third terms on the right-ha
side vanish:

E d3xA2hhbc@¹a~nadgbc!2¹c~nadgab!#50.

~3.21!

A proof of this identity is given in the Appendix. WithKba

5hbc¹cn
a, the variation of the external action is

dSout@gab#5
1

16pE d3xA2h~Khab2Kab!dgab.

~3.22!

Since the expression in parentheses contains only stret
horizon tensors, the normal vectors in the variationdgab

5dhab1dnanb1nadnb contribute nothing. As in the elec
tromagnetic case, we add a surface source term to the a
to cancel this residual boundary term. The variation of
required term can therefore be written as

dSsurf@hab#52
1

2E d3xA2htsabdhab. ~3.23!

We shall see later that this variation is integrable; i.e.,
action with this variation exists. Comparison with Eq.~3.22!
yields the membrane stress tensor

ts
ab51

1

8p
~Khab2Kab!. ~3.24!
1-4
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AN ACTION FOR BLACK HOLE MEMBRANES PHYSICAL REVIEW D58 064011
Now just as a surface charge produces a discontinuity in
normal component of the electric field, a surface stress t
creates a discontinuity in the extrinsic curvature. The relat
between the discontinuity and the source term is given by
Israel junction condition@16#,

ts
ab5

1

8p
~@K#hab2@K#ab!, ~3.25!

where@K#5K12K2 is the difference in the extrinsic cur
vature of the stretched horizon between its embedding in
external universe and its embedding in the spacetime inte
to the black hole. Comparing this with our result for th
membrane stress tensor, Eq.~3.24!, we see that

K2
ab50, ~3.26!

so that the interior of the stretched horizon molds itself in
flat space. The Einstein equations, Eq.~3.17!, can be rewrit-
ten via the contracted Gauss-Codazzi equations@16# as

ts ub
ab 52hc

aTcdnd . ~3.27!

Equations~3.24! and ~3.27! taken together imply that the
stretched horizon can be thought of as a fluid membra
obeying the Navier-Stokes equation. To see this, recall
as we senda to zero, bothaUa and ana approachl a, the
null generator at the corresponding point on the true horiz
Hence, in this limit we can equateaUa andana, permitting
us to write the relevant components ofKb

a , in terms of the
surface gravity,g, and the extrinsic curvature,kB

A , of a
space-like 2-section of the stretched horizon:

Uc¹cn
a→a22l c¹cl

a[a22gHl a

⇒KU
U52g, KU

A5ga
AKb

aUb50, ~3.28!

wheregH[ag is the renormalized surface gravity at the h
rizon, and

gA
c ¹cn

b→a21gA
c ¹cl

b⇒KA
B5gA

aKa
bgb

B5a21kA
B ,

~3.29!

wherekAB is the extrinsic curvature of a space-like 2-secti
of the true horizon,

kAB[gA
dl Bid5

1

2
£l agAB , ~3.30!

where £l a is the Lie derivative in the direction ofl a. We can
decomposekAB into a traceless part and a trace,kAB5sAB
1 1

2 gABu, wheresAB is the shear andu the expansion of the
world lines of nearby horizon surface elements. Then

ts
AB5

1

8pF2sAB1gABS 1

2
u1gD G . ~3.31!

But this is just the equation for the stress of a tw
dimensional viscous Newtonian fluid@17# with pressurep
5g/8p, shear viscosityh51/16p, and bulk viscosityz5
21/16p. Hence we may identify the horizon with a two
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dimensional dynamical fluid, or membrane. Note that, unl
ordinary fluids, the membrane has negative bulk viscos
This would ordinarily indicate an instability against gene
perturbations triggering expansion or contraction. It can
regarded as reflecting a null hypersurface’s natural tende
to expand or contract@10#. Below we shall show how for the
horizon this particular instability is replaced with a differe
kind of instability.

Inserting theA-momentum densitytsa
bgA

aUb5ts A
U [pA

into the Einstein equations, Eq.~3.27!, we arrive at the
Navier-Stokes equation

£tpA52¹Ap1z¹Au12hsA iB
B 2TA

n , ~3.32!

where £tpA5]pA /]t is the Lie derivative~which is the
general-relativistic equivalent of the convective derivativ!
with respect to proper time, and2TA

n52gA
aTa

cnc is the flux
of A-momentum into the black hole.

Inserting theU-momentum ~energy! density ts b
a UaUb

[S52u/8p gives

£tS1uS52pu1zu212hsABsAB1Tb
anaUb,

~3.33!

which is the focusing equation for a null geodesic cong
ence@18#. We might now suspect that if the analogy wi
fluids extends to thermodynamics, then Eq.~3.33!, as the
equation of energy conservation, must be the heat tran
equation@17# for a two-dimensional fluid. Writing the expan
sion of the fluid in terms of the area,DA, of a patch,

u5
1

DA

dDA

dt
, ~3.34!

we see that we can indeed rewrite Eq.~3.33! as the heat
transfer equation~albeit with an additional relativistic term
on the left!

TS dDS

dt
2

1

g

d2DS

dt2 D 5~zu212hsABsAB1Tb
anaUb!DA,

~3.35!

with T the temperature andS the entropy, provided that the
entropy is given by

S5h
kB

\
A, ~3.36!

and the temperature by

T5
\

8pkBh
g, ~3.37!

whereh is some proportionality constant.
Thus, the identification of the horizon with a fluid mem

brane can be extended to the thermodynamic domain. No
theless, the membrane is an unusual fluid. The focus
equation itself, Eq.~3.33!, is identical in form to the equation
of energy conservation for a fluid. However, because
energy density,S, is proportional to the expansion,S5
1-5
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MAULIK K. PARIKH AND FRANK WILCZEK PHYSICAL REVIEW D 58 064011
2u/8p, one obtains a nonlinear first-order differential equ
tion for u which has no counterpart for ordinary fluids. Th
crucial point is that, owing to the black hole’s gravitation
self-attraction, the energy density is negative, and the s
tion to the differential equation represents a horizon t
grows with time. For example, the source-free solution w
a time-slicing for which the horizon has constant surfa
gravity is

u~ t !5
2g

11S 2g

u~ t0!
21Deg~ t02t !

. ~3.38!

Because of the sign of the exponent, this would represen
ever-expanding horizon ifu(t0) were an initial condition; the
area of the horizon, which is related tou by u
5(d/dt)lnAg , expands exponentially with time. To avo
this runaway, one must impose ‘‘teleological boundary co
ditions’’ ~that is, final conditions! rather than initial condi-
tions. Hence, the horizon’s growth is actually acausal;
membrane expands to intercept infalling matter that is ye
fall in @13#. This is because the membrane inherits the glo
character of the true horizon: the stretched horizon covers
true horizon whose location can only be determined by tra
ing null rays into the infinite future. In fact, the left-hand sid
of the heat transfer equation, Eq.~3.35!, is of the same form
as that of an electron subject to radiation reaction; the ac
sality of the horizon is therefore analogous to the p
acceleration of the electron.

At this classical level, using only the equations of motio
the parameterh in Eq. ~3.36! is undetermined. However
because we have an action we hope to do better, since
normalization in the path integral is now fixed. By means
a Euclidean path integral, we should actually be able to
rive the Bekenstein-Hawking entropy, including the coe
cient h, from the membrane action. We do this in a la
section.

C. The axidilaton membrane

Another advantage of the action formulation is that it
easily generalized to arbitrary fields. For example, we
extend the membrane paradigm to include the basic field
quantum gravity. Here we use the tree-level effective act
obtained from string theory after compactification to fo
macroscopic dimensions. This action is a generalization
the classical Einstein-Hilbert-Maxwell action to which it r
duces when the axidilaton,l, is set toi /16p. The action is

S@l,l̄,Aa ,gab#

5E d4xA2gS R

16p
2

u]lu2

2l2
2

1
i

4
~lF1

2 2l̄F2
2 !D ,

~3.39!

whereR is the four-dimensional Ricci curvature scalar,F6

[F6 i F̃ are the self- and anti-self-dual electromagnetic fi
strengths, andl[l11 il25a1 ie22f is the axidilaton, with
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a the axion andf the dilaton. Solutions to the equations
motion arising from this action include electricall
~Reissner-Nordstro¨m! and magnetically charged black hole
@19,20#, as well as their duality-rotated cousins, dyonic bla
holes@21#, which carry both electric and magnetic charge

The equations of motion are

¹aS ]al

l2
2 D 1 i

u]lu2

l2
3

2
i

2
F2

2 50 ~3.40!

and

¹a~lF1
ab2l̄F2

ab!50, ~3.41!

besides the Einstein equations.
As before, we require the external action to vanish on

own. Integration by parts on the axidilaton kinetic term lea
to a variation at the boundary,

E d3xA2hF dlS na]al̄

2l2
2 D 1dl̄S na]al

2l2
2 D G , ~3.42!

wherena is again chosen to be outward-pointing. To can
this, we add the surface term

Ssurf5E d3xA2h~lq̄1lq̄!, ~3.43!

so that

q52
na]al

l2
2

. ~3.44!

To interpret this, we note that the kinetic term inl is
invariant under globalSL(2,R) transformations of the form

l→
al1b

cl1d
, ad2bc51, ~3.45!

which are generated by Peccei-Quinn shifts,l1→l11b, and
duality transformations,l→21/l. The Peccei-Quinn shift
of the axion can be promoted to a classical local symmetr
yield a Nöther current:

JP2Q
a 52

1

2l2
2 ~]al1]al̄ !. ~3.46!

Therefore, under a Peccei-Quinn shift,

dSsurf5E d3xA2hdl~q1q̄!5E d3xA2hdl~naJP2Q
a !.

~3.47!

The sum of theq andq̄ terms induced at the membrane, E
~3.44!, is the normal component of the Peccei-Quinn curre
Hence, at the membrane,

~hb
aJP2Q

b ! ua52FF̃2¹a@~q1q̄!na#. ~3.48!
1-6
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That is, the membrane term¹a@(q1q̄)na# augments the dy-
onic FF̃ term as a source for the three-dimensional Pec
Quinn current,hb

aJP2Q
b , at the membrane.

The membrane is again dissipative with the Peccei-Qu
charge accounting for the dissipation in the usuala→0
limit. The local rate of dissipation is given by the bulk stre
tensor at the membrane:

TabU
anb5

1

16p

]al]bl̄1]al̄]bl

2l2
2

Uanb→
l2

2uqu2

16p
.

~3.49!

In addition, the presence of the axidilaton affects the el
tromagnetic membrane.~The gravitational membrane is un
affected since the surface terms come from the Ricci sc
which has no axidilaton factor.! The electromagnetic curren
is now

j s
a522i ~lF1

ab2l̄F2
ab!nb . ~3.50!

The surface charge is therefore

s54~l2E'1l1B'!, ~3.51!

and the surface current is

jWs54~l2n̂3BW i2l1n̂3EW i!, ~3.52!

which, by the regularity of the electromagnetic field, E
~3.12!, satisfies

S j s
u

j s
fD 54S l2 l1

2l1 l2
D S Eu

EfD . ~3.53!

The conductivity is now a tensor. When the axion is abse
the resistivity is

r5
1

4l2
. ~3.54!

The inverse dependence onl2 is to be expected on dimen
sional grounds. The pure dilaton action can be derived fr
Kaluza-Klein compactification of pure gravity in five dimen
sions, where the fifth dimension is curled into a circle
radiuse22f5l2. In five dimensions, withc[1, resistance
~and hence resistivity for a two-dimensional resistor such
the membrane! has dimensions of inverse length. Using t
regularity condition, Eq.~3.12!, the rate of dissipation, for a
stretched horizon defined to have uniform lapsea with re-
spect to time at infinity,t, is

dM irr

dt
52E a2SW •dAW 5E 4a2l2Ei

2dA5E a2
l2

4ulu4
jWs

2dA,

~3.55!

which is the Joule heating law in the presence of an axid
ton.
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IV. DISSIPATION

Given that the bulk equations of motion are manifes
symmetric under time-reversal, the appearance of diss
tion, as in Joule heating and fluid viscosity, might seem m
terious, all the more so since it has been derived from
action.

The procedure, described here, of restricting the action
some region and adding surface terms on the boundary o
region cannot be applied with impunity to any arbitrary r
gion: a black hole is special. This is because the region o
side the black hole contains its own causal past; an obse
who remains outside the black hole is justified in neglect
~indeed, is unaware of! events inside. However, even ‘‘pas
sufficiency’’ does not adequately capture the requireme
for our membrane approach. For instance, the past light c
of a spacetime point obviously contains its own past, but
observer in this light cone must eventually leave it. Rath
we define the notion of a future dynamically closed set:

A setS in a time-orientable globally hyperbolic spacetim
(M ,gab) is future dynamically closedif J2(S)5S, and if,
for some foliation of Cauchy surfacesS t parameterized by
the values of some global time function, we have th
;t0;pP(SùS t0

);(t.t0)'qP„I 1(p)ùSùS t….

That is, S is future dynamically closed if it contains it
own causal past and if from every point inS it is possible for
an observer to remain inS. Classically, the region outside th
true horizon of a black hole is dynamically closed. So too
the region on one side of a null plane in flat space; this is
the infinite-mass limit of a black hole. The region outside t
stretched horizon is strictly speakingnot dynamically closed
since a signal originating in the thin region between t
stretched horizon and the true horizon can propagate out
yond the stretched horizon. However, in the limit that t
stretched horizon goes to the true horizon,a→0, this region
becomes vanishingly thin so that in this limit, which is in an
case assumed throughout, we are justified in restricting
action.

The breaking of time-reversal symmetry comes from
definition of the stretched horizon; the region exterior to t
black hole does not remain future dynamically closed un
time-reversal. In other words, we have divided spaceti
into two regions whose dynamics are derived from two d
ferent simultaneously vanishing actions,d(Sout1Ssurf)
5d(Sin2Ssurf)50. Given data on some suitable achron
subset we can, for the exterior region, predict the future
not the entire past, while, inside the black hole, we c
‘‘postdict’’ the past but cannot determine the entire futu
Thus, our choice of the horizon as a boundary implici
contains the irreducible logical requirement for dissipatio
that is, asymmetry between past and future.

Besides the global properties that logically permit one
write down a time-reversal asymmetric action, there is als
local property of the horizon which is the proximate cau
for dissipation, namely that the normal to the horizon is a
tangential to the horizon. Without this crucial property—
which manifests itself as the regularity condition, or t
identification of the stretched horizon extrinsic curvatu
with intrinsic properties of the true horizon—there wou
1-7
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MAULIK K. PARIKH AND FRANK WILCZEK PHYSICAL REVIEW D 58 064011
still be surface terms induced at the stretched horizon, bu
dissipation.

The regularity condition imposed at the boundary is n
an operator identity, but a statement about physical states
tangential electromagnetic fields as measured by a fidu
observer must be ingoing. Such a statement is not rigoro
true. For any given value ofa5(122M /r )1/2, there is a
maximum wavelength,lmax, for outgoing modes that ar
invisible to the observer:

lmax5
r 22M

S 12
2M

r D 1/2→2Ma. ~4.1!

Dissipation occurs in the membrane paradigm because
finite but very high-frequency modes that are invisible to
fiducial observer are tacitly assumed not to exist. The re
larity condition amounts to a coarse-graining over the
modes. It is conceivable that for a theory with benign ult
violet behavior, the amount of information lost is finite. Ei
stein gravity is not such a theory, but one may ask abstra
whether an effective horizon theory could exist at a quant
level @22,23#. Quantum effects cause the black hole to em
radiation. In order to preserve time-evolution unitarity, w
might require the emitted radiation to be correlated with
interior state of the black hole. In this case, the membr
viewpoint remains valid only as a classical description, sin
quantum-mechanically the external universe receives in
mation from the black hole in the form of deviations of th
radiation from thermality; the crucial premise that the o
side universe is emancipated from the internal state of
black hole is violated. It is important to emphasize, howev
that correlations between the radiation and the horizon it
do not preclude the membrane paradigm. Indeed, the
that the Bekenstein-Hawking entropy is proportional to
surface area of the black hole suggests that, even at the q
tum level, an effective horizon theory may not be unfeasib

V. THERMODYNAMICS

To make contact with thermodynamics, we perform
analytic continuation to imaginary time,t5 i t , so that the
path integral of the Euclideanized action becomes a parti
function. For a stationary hole, regularity~or the removal of
a conical singularity! dictates a periodb5*dt52p/gH in
imaginary time@24#, wheregH is the surface gravity; for a
Schwarzschild hole,b58pM . This is the inverse Hawking
temperature in units where\5c5G5kB51. The partition
function is then the path integral over all Euclidean metr
which are periodic with period 2p/gH in imaginary time.
Since the dominant contribution to the path integral com
from the classical solution, we can evaluate the partit
function in a stationary phase approximation:

Z5E DgE
abexpS 2

1

\
~Sout

E @gE
ab#1Ssurf

E @hE
ab# ! D

'expS 2
1

\
~Sout

E @gE cl
ab #1Ssurf

E @hE cl
ab # ! D . ~5.1!
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The external action itself can be written asSout5Sbulk
1S` , whereSbulk is zero for a black hole alone in the un
verse. The boundary termS` is the integral of the extrinsic
curvature of the boundary of spacetime. In fact, a term p
portional to the surface area at infinity can be included inS`

without affecting the Einstein equations since the metric
held fixed at infinity during variation. In particular, the pro
portionality constant can be chosen so that the action for
of spacetime is zero for Minkowski space:

S`5
1

8pE d3xA2h@K#, ~5.2!

where@K# is the difference in the trace of the extrinsic cu
vature at the spacetime boundary for the metricgab and the
flat-space metrichab . With this choice, the path integral ha
a properly normalized probabilistic interpretation. The E
clideanized value ofS` for the Schwarzschild solution is
then @24#

S`
E5 lim

r→`

1

8p
~232p2M !F ~2r 23M !22r S 12

2M

r D 1/2G
514pM2. ~5.3!

To obtain an explicit action for the membrane, we mu
integrate its variation, Eq.~3.23!:

dSsurf@hab#52
1

16pE d3xA2h~Khab2Kab!dhab.

~5.4!

We see that

Ssurf@hab#5E d3xA2h~Babh
ab2b! ~5.5!

is a solution, provided that the~undifferentiated! source
terms areBab5(11/16p)Kab andb5(21/16p)K. This ac-
tion has the form of surface matter plus a negative cosm
logical constant in three dimensions. The value of the me
brane action for a solution to the classical field equation
then

Ssurf@hcl
ab#51

1

8pE d3xA2hclKcl . ~5.6!

To evaluate this, we can take our fiducial world-linesUa

to be normal to the isometric time-slices of consta
Schwarzschild time. The stretched horizon is then a surf
of constant Schwarzschildr . Hence a5(122M /r )1/2, u
50, andK5g1u5g, the unrenormalized surface gravity o
the stretched horizon. Inserting these into Eq.~5.6!, we find
that the Euclidean action is

Ssurf
E 5 lim

r→r H

1

8p
S E 2dt Da4pr 2g52pr H

2524pM2,

~5.7!
1-8
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AN ACTION FOR BLACK HOLE MEMBRANES PHYSICAL REVIEW D58 064011
where r H52M is the black hole’s radius, andgH5ag
51/4M is its renormalized surface gravity.

The Euclidean membrane action exactly cancels the
ternal action, Eq.~5.3!. Hence the entropy is zero! Tha
however, is precisely what makes the membrane parad
attractive: to an external observer, there is no black hol
only a membrane—and so neither a generalized entropy
a strictly obeyed second law of thermodynamics. The
tropy of the outside is simply the logarithm of the number
quantum states of the matter outside the membrane.
number decreases as matter leaves the external system
through and be dissipated by the membrane. When all ma
has fallen into the membrane, the outside is in a sin
state—vacuum—and has zero entropy, as above.

To recover the Bekenstein-Hawking entropy, we m
then use not the combination of external and membrane
tions, which gave the entropy of the external system, but
combination of theinternal and membrane actions,

ZB-H5E DgE
abexpS 2

1

\
~Sin

E@gE
ab#2Ssurf

E @hE
ab# ! D ,

~5.8!

where now Ssurf is subtracted@see Eq. ~3.1!#. With Sin

5*d4xA2gR50, the partition function for a Schwarzschil
hole in the stationary phase approximation is

ZB-H'expS 2
1

\
~14pM2! D , ~5.9!

from which the Bekenstein-Hawking entropy,SB-H , imme-
diately follows:

SB-H5bS M1
lnZB-H

b D58pM S M2
1

8pM
4pM2D5

1

4
A,

~5.10!

which is the celebrated result.
For more general stationary~Kerr-Newman! holes, the

Helmholtz free energy contains additional ‘‘chemical pote
tial’’ terms corresponding to the other conserved quantit
Q andJ,

F5M2TS2FQ2VJ, ~5.11!

where F5Q/r 1 and V5J/M , where r 1 is the Boyer-
Lindquist radial coordinate at the horizon. For a charg
hole, the action also contains electromagnetic terms. The
face electromagnetic term, Eq.~3.5!, has the value
(1/4p)*d3xA2hFabAanb . However, in order to have a
regular vector potential, we must gauge transform it toAa
5(Q/r 2F)¹at which vanishes on the surface. Hence, t
surface action is again given by the gravitational term, wh
has the Euclideanized valueSsurf

E 52pr 1
2 . It is easy to

verify using Eq.~5.11! that this again leads to a black ho
entropy equal to one-fourth of the horizon surface area
an external entropy of zero.

For nonstationary black holes, the extrinsic curvature a
includes a term for the expansion of the horizon,K5g1u.
Inserting this into the surface action enables us to calcu
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the instantaneous entropy as matter falls into the memb
in a nonequilibrium process. Of course, like the horizon
self, the entropy grows acausally.

VI. HAMILTONIAN FORMULATION

The equations of motion can equally well be deriv
within a Hamiltonian formulation. This involves first sin
gling out a global time coordinate,t, for the external uni-
verse, which is then sliced into space-like surfaces,S t , of
constantt. We can write, in the usual way,

ta[S d

dtD
a

5aUa2va, ~6.1!

whereUa is the unit normal toS t , U2521, anda and
2va are Wheeler’s lapse and shift, respectively, withva

5dxa/dt the ordinary 3-velocity of a particle with world-line
Ua. For convenience we choose the stretched horizon to
surface of constant lapse so thata, which goes to zero at the
true horizon, serves as the stretched horizon regulator.
external Hamiltonian for electrodynamics, obtained from t
Lagrangian via a Legendre transform and written in ordin
three-dimensional vector notation, is

Hout@f,AW ,pW #5
1

4pES t

d3xA 3g S 1

2
a~EW •EW 1BW •BW !

1vW •~EW 3BW !2f~¹W •EW ! D , ~6.2!

where 3gab is the 3-metric onS t , f[2Aata is the scalar
potential,AW a[3ga

bAb is the three-dimensional vector pote

tial, andpW a[2A 3gEW a its canonical momentum conjugate
Note thatEa5FabUb is the co-moving electric field;EW and
BW above refer to the fields measured by a fiducial obser
with world-line Ua. Finally, the scalar potential is nondy
namical; its presence in the Hamiltonian serves to enfo
Gauss’ law as a constraint. The equations of motion are n
determined by Hamilton’s equations and the constraint:

dH

dpW
5AẆ ,

dH

dAW
52pẆ ,

dH

df
50. ~6.3!

In the bulk these equations are simply Maxwell’s equatio
but, because of the inner boundary, the usually discar
surface terms that arise during integration by parts now n
to be canceled. It is easy to show then that the above e
tions hold only if additional surface terms are added to
Hamiltonian:

H5Hout2E d2xAg j s•A. ~6.4!

For Maxwell’s equations to be satisfied in the bulk, the s
face terms are once again the surface charges and cur
necessary to terminate the normal electric and tangen
magnetic fields at the stretched horizon. Thus, the memb
paradigm is recovered.
1-9
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However, it is perhaps more interesting to proceed i
slightly different fashion. Instead of adding new terms,
can use the external Hamiltonian to prove the validity o
principle of minimum heat production. Such a princip
which holds under rather general circumstances for stat
ary dissipative systems, holds for black holes also in sligh
nonstationary situations.

Now the time derivative of the external Hamiltonian
not zero, again because of the inner boundary. We can
Hamilton’s equations to substitute expressions for the t
derivative of the field and its momentum conjugate. Ham
ton’s equations are

AẆ 52aEW 1vW 3BW 2¹W f ~6.5!

EẆ 5¹W 3~aBW 1vW 3EW !, ~6.6!

so that, making repeated use of the vector identity

¹W •~VW 3WW !5WW •~¹W 3VW !2VW •~¹W 3WW !, ~6.7!

we find that the energy loss is

2Ḣ52
1

4pE d2xAg@ n̂•~aEW i3aBW i!

1vW •~E'aEW i1B'aBW i!#. ~6.8!

So far, we have used only Hamilton’s equations. It rema
however, to implement the constraint. Hence we may reg
2Ḣ as a functional of the Lagrange multiplier,f. We there-
fore have

2
dḢ

df
52

d

dt

dH

df
50. ~6.9!

That is, the equations of motion follow from minimizing th
rate of mass increase of the black hole with respect to
scalar potential. This is an exact statement; we now sh
that this reduces to a minimum heat production principle i
quasi-stationary limit. Now we note that the first law of bla
hole thermodynamics allows us to decompose the m
change into irreducible and rotational parts:

dM

dt
5

dQ

dt
1VH

dJ

dt
, ~6.10!

whereVH is the angular velocity at the horizon, andJ is the
hole’s angular momentum. SinceuvW u→VH at the horizon, we
see that the second term on the right in Eq.~6.8! corresponds
to the torquing of the black hole. When this is small, we m
approximate the mass increase as coming from the first
reducible term. Hence, in the quasi-stationary limit, for
slowly rotating black hole, the black hole’s rate of mass
crease is given by the dissipation of external energy. Inv
ing the regularity condition, Eq.~3.12!, then gives

D@f#51
1

4pE d2xAg ~aEW i!
2,

dD

df
50, ~6.11!
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where aEW i is given by Eq.~6.5!. This is the principle of
minimum heat production: minimizing the dissipation fun
tional leads to the membrane equation of motion.

We observe that we could have anticipated this answ
The numerical value of the Hamiltonian is the total energy
the system as measured at spatial infinity~assuming an as
ymptotically flat spacetime!. The time derivative is then sim
ply the rate, as measured by the universal time of dist
observers, that energy changes. The rate of decrease o
ergy is the integral of the Poynting flux as measured by lo
observers, multiplied by two powers ofa, one power to con-
vert local energy to energy-at-infinity and one power to co
vert the rate measured by local clocks to the rate measure
infinity. Thus we can immediately define a dissipation fun
tional:

D@f#[2
1

4pE d2xAg n̂•~EW H3BW H!, ~6.12!

where the subscriptH denotes that a power ofa has been
absorbed to renormalize an otherwise divergent fidu
quantity.

In this manner, we can easily write down the dissipati
functional for gravity for which time-differentiating the
Hamiltonian is a much more laborious exercise. The lo
rate of energy transfer is given by the right-hand side of
heat transfer equation, Eq.~3.35!. The Hamiltonian for grav-
ity satisfies two constraint equations with the lapse and s
vector serving as Lagrange multipliers. Since the membr
picture continues to have a gauge freedom associated
time-slicing, the constraint equation associated with the la
is not implemented. This implies that the dissipation is
functional only of the shift. Hence we have

D@vA#5E d2xAg~zuH
2 12hsH

2 1a2Tb
anaUb!,

~6.13!

where again the two powers ofa have been absorbed t
render finite the quantities with the subscriptH. Extremizing
D with respect tovA leads to the membrane equations
motion, enforcing the gauge constraint or, equivalen
obeying the principle of minimum heat production.

VII. CONCLUSION

We have derived the equations for the membrane p
digm of black holes from an action principle directly b
demanding that both terms in Eq.~3.1! be extremized sepa
rately. This brings advantages of conceptual unity and e
of generalization over the traditional approach of manipu
ing the equations of motion. Specifically, the derivati
makes it clear why a membrane picture, including dissipat
behavior, is possible. A fundamental advantage of having
action principle is the guidance it offers for quantization—
property we used to fix the constant in the Bekenste
Hawking formula.
1-10
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APPENDIX

In this appendix, we shall prove that Eq.~3.21! is zero in
the limit that the stretched horizon approaches the true h
zon. In that limit, ana→ l a. We shall make liberal use o
Gauss’ theorem, the Leibniz rule, and the fact thathabnb
th

tiv

an

06401
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5Kabnb50. In order to use Gauss’ theorem, we note th
since the ‘‘acceleration’’ac[nd¹dnc of the normal vector
~not to be confused with the fiducial accelerationUd¹dUc)
is zero, the 4-covariant divergence and the 3-covariant div
gence of a vector in the stretched horizon are equal,
~2.6!.

Now, variations in the metric that are in fact merely gau
transformations can be set to zero. Using a vectorva where
va vanishes on the stretched horizon, we can gauge away
variations in the normal direction so thatdgab→dhab . Then
the left-hand side of Eq.~3.21! becomes
E d3xA2hhbc@¹a~nadhbc!2¹c~nadhab!#

5E d3xA2h@¹a~hbcnadhbc!2~¹ahbc!nadhbc2¹c~hbcnadhab!1~¹ch
bc!nadhab#

5E d3xA2h@¹a~hbcnadhbc!1~ncab1nbac!dhbc2~hbcnadhab! uc2hbcnadhabac2Knbnadhab2abnadhab#

~usinghbc5gbc2nbnc, Kab51ha
c¹cnb, and¹cw

c5wuc
c 1wcac for wceH!

5E d3xA2h@¹a~hbcnadhbc!2Knbnadhab# ~using Gauss’ theorem, andac50!

5E d3xA2hF¹aS hbc
a

a
nadhbcD2K@d~nbnahab!2nahabdnb2nbhabdna#G

→E d3xA2h¹aS hbc
1

a
l adhbcD ~usinghabn

b50, andana→ l a!

5E d3xA2hS hbc
1

a
l adhbcD

ua

50. ~A1!
c.
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