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A numerical code, developed for cosmology and to investigate fully nonlinear behavior in the plane-
symmetric Einstein equations, is described in detail. The field equations are solved self-consistently with the
general relativistic hydrodynamical conservation equations, using artificial viscosity methods for shock cap-
turing and an ideal fluid stress-energy tensor with a cosmological constant. Several tests of the code are
presented, including anisotropically expanding vacuum and isotropically expanding de Sitter, dust-filled and
radiation-filled cosmologies, gravitational waves in flat and anisotropically expanding background models,
sub- and super-horizon scale density perturbations in an expanding FLRW background, and both Newtonian
and relativistic shock tube evolutions. Also discussed is a gauge drift instability that can appear in near-
geodesic evolutions of density perturbations when the dynamical time scale of collapse becomes smaller than
the cosmological expansion raf&0556-282(98)00918-7

PACS numbsgs): 04.25.Dm, 47.75tf, 95.30.Lz, 98.80.Hw

[. INTRODUCTION Anninos, Centrella and Matznér,8,3], which were them-
selves motivated by the earlier work of Centrella and Wilson
Einstein’s equations form a complex system of highly[9,10]. The first paper in the “series]7] dealt exclusively
nonlinear hyperbolic and elliptic partial differential equa- with the initial value problem for vacuum plane-symmetric
tions. For all the progress in recent years in finding solutiong£osmologies, describing the numerical techniques and some
to the classical field equations, many basic issues regardimgpnlinear solutions to the momentum and Hamiltonian con-
the nonlinear gravitational field and its cosmological consestraint equations. The second pap8} focused on solving
guences remain unresolved. Our understanding is complthe vacuum evolution equations, while the thig] applied
cated even further with the addition of matter sources andhis code to discuss the nonlinear propagation of gravita-
more elaborate models of the Universe. As general relativistional waves in expanding universes. However, these results
tic effects can play a significant role in astrophysical andwere limited to vacuum spacetimes and without the full dy-
cosmological processes it is important to account for nonlinhamical degrees of freedom allowed by plane symmetry.
ear interactions between the gravitational field, matter This work extends the capabilities of previous generation
sources, and the cosmological “background,” especially incodes and the improvements are described here in detail. The
strong field regimes, over scales comparable to the horizomajor advances are the generalization to a non-diagonal met-
size, and at early epochs when cosmological models can bic, allowing for e, andey polarizations of gravity waves
curvature dominated. For example, inflationary scalar fieldand a more general class of background cosmological mod-
[1,2], strong gravitational wavels], element nucleosynthe- els. (Because of the imposed symmetries, the previous work
sis [4], and high order cosmic microwave backgroundwas limited to onlye, wave states and the “degenerate”
(CMB) anisotropies[5,6], are intrinsically nonlinear phe- Kasner and flat space background modeldso added are a
nomenon and require full and self-consistent solutions to theosmological constant, hydrodynamic fluid sources with ro-
Einstein equations. Moreover, a new generation of wave debust shock capturing capability, and a more general set of
tectors are anticipated to observe gravitational waves beforgicing conditions that allow for asymptotically flat space-
too long. Because waves will likely have originated in re-times as well as cosmologies with periodically identified
gions with highly dynamic and nonlinear gravitational fields, boundaries. The code can be used for studies of Friedmann-
it is essential to study the strong as well as the weak fielRobertson-Leméne-Walker(FLRW) models with arbitrarily
regimes, together with evolving matter structures in a coslarge amplitude and long wavelength perturbations, large
mological framework. curvature anisotropies including generalized Kasner models,
The complexity of the coupled Einstein-matter system hasnd strong field dynamics of gravitational wave, density or
motivated the development of a numerical code to solve theadiation dominated fluctuations.
general equations without recourse to any simplifying linear-  Although this paper describes a general approach to solv-
ized assumptions. Although the code is specialized to plandng the Einstein and relativistic hydrodynamics equations, it
symmetry it can be used to simulate a wide range of physicak worth pointing out an alternative approach that has proven
conditions in inhomogeneous spacetimes containing an idealspecially convenient for plane symmetric cosmologies, and
gas or in vacuum. It is written in a general fashion and carin particular the vacuum Gowdy modéglkl]. In this class of
easily be applied to expanding cosmological as well aspacetimes, the Einstein equations decouple into dynamical
asymptotically flat or Minkowski background spacetimes.equations for the wave amplitudes and easily solved con-
This paper may be considered as the fourth in a “series” bystraints[11-13, which can be evolved using either conven-
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tional time explicit schemes or a symplectic differential cluding geodesic 4=1), algebraic, maximal, mean curva-
equation solvef14,15. However, the methodology reported ture, and harmonic slicing. The algebraic condition takes the
in this paper may be applied easily to more generic cosmaoform
logical models, where it is not clear whether a convenient )
variable choice exists. a=F(x")G(y), 8

The remainder of this paper is organized as follows: Ein- o ) ) ) )
stein’s equations are written out in therd or Amowitt-  WhereF(x') is an arbitrary function of the spatial coordi-
Deser-MisnefADM) form in Sec. II, together with the hy- nates specified at the initial time, ar@(y) is a dynamic
drodynamic conservation equations and gauge functions. Anction of the determinant of the 3-metric. This condition
prescription for setting up initial data is described in Sec. I11.has the advantage of simplicity and, for certain choices of
The numerical methods, boundary conditions, gauge slicings!-€-, those with the behavids(y) -0 asy—0] also mim-
and choice of timesteps are summarized in Sec. IV. SeverdfS maximal slicing in its singularity avoidance properties
benchmark tests designed to confirm the robustness of tHd7]- However, Eq(8) can also be used for even more gen-
code for a wide variety of physical processes are presented @@l (non-singularity avoidingslicings to preserve, for ex-
Sec. V, along with discussions of a gauge drift instability2mple, the longitudinal gauge for cosmological perturbations
that can show up rather dramatically in evolutions of density2S discussed in Sec. V D. The maximal slicing equation is
perturbations. This work is summarized in Sec. VI. derived by taking the trace of E¢p),
1. BASIC EQUATIONS V'Via=a[K;jK'+47G(py+9) ]+ B'ViK—9K, (9)
and settingk =9;K=0. Mean curvature slicing also solves
Eq. (9) but assume& =K(t), which can either be specified

ds?=(—a?+ B8 dt?+2B;dxXdt+y,;dxdx, (1) inadvance or determined by imposing a boundary condition
on the lapse function after solving E¢Q) for the quantity

in the standard 3 1 or ADM [16] formulation, wherex and  a/4,K [10,8]. This slicing condition is the most natural one
B' are the lapse function and shift vector respectively, andor cosmology as it foliates homogeneous cosmological
vij is the spatial 3-metric. The Einstein equations amount tapacetimes with surfaces of homogeneity. The harmonic slic-
four constraints, ing condition is derived by imposing the harmonic condition
on the time coordinate, leading to the evolution equation

The general spacetime metric can be written as

GR+K2-K;K'l=16wGpy, 2
o ) da=—a’K, (10
Vi(KN=9"K)=87G¢d, 3
for which the initial value of the lapse is arbitrary.
twelve evolution equations, The stress-energy tensor for an ideal fluid and a cosmo-
logical constantA is

dvyij=—2aKij+ Lgyij 4
A
(?tKij:_ViVja TMV:phU’uUV‘i‘ PgMV_%gMV’ (11)
+a| OR; — 2K K+ KK whereg,,, is the 4-metrich=1+ €+ P/p is the relativistic

enthalpy of an ideal fluid, and P, p andu,, are the specific
internal energy(per unit masg pressure, rest mass density

-87G +LgKij, (5 and four-velocity of the fluid. Defining

1 1
Sij = 5%t 5 PHYj

and four kinematical or coordinate conditions for the lapse u n,ue=au™=(1+uu)

and shift vector that can be specified arbitrarily. Here, (VAVAREE:
= ( 1-—=| (12
Lgyij=ViBjtV;Bi, (6) “«
as the generalization of the special relativistic Lorentz factor,
LgKii = BV (K + Ky V; B4+ K Vi 8%, (7) g b

the source terms in Eq$2)—(5) can be written in terms of

andV; is the spatial covariant derivative with respectyp, the fluid variables as

(3)R;; is the spatial Ricci tensoK is the trace of the extrin- A

sic curvatureK;;, G is the gravitational constant, ang, pH=n“n”TW=phu2— P+ ——, (13)
', s ands;; are the matter source terms as seen by observers 87G

at rest in the time slices. The units are such tatG=1,

and the usual convention is adopted whereby gréetin) $=—yn"T,=phuy, (14
indices refer to &3)-dimensional quantities.
The shift vector is set to zero, hen =LK =0. v
@i = LKij Sij =YY Tuy=phuu;+ Py — 8.G Vi (15

Several options are implemented for the lapse function, in-
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with metry and all variables are functions only of one spatial di-
mension (taken to be thez-axis) and time, with a spatial
3A 3-metric
s \=3P+ph(u>-1)— —— 8.G’ (16)

_ Yxx  Yxy 0
and n“:_(l,— B')! a is the time-like normal congruence to yi=| Yy Yy o], (27
the spatial hypersurfaces. 0 0 v

Y4

The hydrodynamics equations are derived from the nor-
malization of the 4-velocity“u,= —1, the conservation of 5,4 extrinsic curvature
baryon numberV ,(pu*)=0, the conservation of stress-

energy V,T#"=0, and an equation of state=P(p,e), Kix Ky O
which for an ideal gas isP=(I"-1)E/W=(T"—1)pe, e K 0 29)
whereT is the adiabatic index and/ is defined below. The 1j oYy '
resulting equations can be written in flux conservative form 0 0 K
as[18] . . :
The metric(27) generalizes previous treatmef€10,7,8,3
D DV of plane-symmetric spacetimes by including a nondiagonal
W-i- 0 a7 component to model both polarization states of gravitational
waves. This more general metric also accommodates a
i i broader range of background anisotropic cosmological mod-
JE '?(_EV_) pﬂv+ M: ' (18)  €ls, as each of the nonvanishing components can be initial-
gt ox at X' ized and evolved without restrictions but for the Hamiltonian
s (svi) s 5 and momentum constraints.
S d Y 99,40 d
T 28 \/—_gW—O, (19 IIIl. INITIAL DATA
where The constraint equation&) and (3) are solved using
York’s [19] conformal prescription to obtain proper initial
W= g0, (200  data for evolution. The method introduces a conformal trans-
formation of the 3-metricy;; = ¢4§/ij , trace-free momentum
D=Wp, (21)  componentAl =K'l — yliK/3= ¢ 1Al and matter source
termss = ¢~ 1%’ andpy= ¢ "py, Wheren>5 for unique-
E=Wpe, (22)  ness of solutions to the elliptic equatid®9) below [19].
Further decomposing the free momentum variables into
Si=Wphu;, (23 transverse and longitudinal componer®d=All + (Tw)!,
o the Hamiltonian and momentum constraints can be written as
Vi=u'/u®, (24)
R 1. 1
andg is the determinant of the 4-metric. The system of Eqs.V;V'¢— g9t gA Allgp=7— 2K2q§5+ 27Gpydp° "=

(17)—(24) are complimented by two additional expressions
for V! andW that are convenient for numerical computation.
Defining

(29

(VjVJW)'+§V'(ijl)+R}WJ—§¢6V'K—87TG‘S'=O,

M=Wph=E+D+PW, (25) 0

the momentum can be expressed$s=Mu,, and S, is
computed from the normalization of the four -velocyS,
=—M?2. The coordinate velocity then becom¥$= S/

o A oAl a2 s
with V7=1. Also, the time component of the four-velocity (Iw)'=vV'wl+Vviw'— 3 Y1V, WK, (31
0

where the longitudinal part oA'l is

u’ can be calculated from the normalization condition
u,u*=u’v#S, /IM=—1, and used to derive the following Ca A -
expression fol: and the transverse part satisflegA] = A} ¥j=0. Also, V; is
the spatlal covarlant derivative evaluated with the conformal
- \/@M 3- metrmyIJ » Rjj is the corresponding conformal Ricci tensor
W= SHYZ (26) and R= 7”R is its trace. Equation$29) and (30), which

form a coupled nonlinear set of elliptic equations, are solved
All of the above equations are valid for general, multi- using an iterative procedure. The two equations can, how-
dimensional, vacuum and ideal fluid spacetimes. Howeverever, be decoupled if either a maximaK € ¢;K=0) or
the work presented in this paper is specialized to plane synmean curvatur¢K =K(t)] slicing condition is assumed.
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An additional complication is introduced by the hydrody- cases in whichs'#0, a flat space conformal metric

namic variables due to the intrinsic coupling through the(a,i:gij) is assumed so that the momentum constréaog
boost factor(12). Neglecting the cosmological constant, the reduces to

conformal form of Eq.(13) can be expanded as
PPW? . % oK
pu=pO2+ (64 P)02—P, (32 o2 ~6mCSt 5 o (34

wheree=pe. In order to provide some control over the ini- for one-dimensional perturbations along thexis, and
tial hydrodynamic data, and to easily reconstruct the physical 5

variables, the condition?=0? is imposed, where _ §pyzwz 0 0
Si
u?=1+ S i Tl — 0 _2 0
(D+E+PW) (Iw)! = 39w - (3H
5 33 4w
+ Wprerp)2’ (33 0 0 39w

This condition is satisfied for an ideal gas with= (T Additional free elements can be added to the transverse mo-
—1)e and the same conformal scaling of the density andnenta by noting that

internal energyp=¢ 8 ande=¢ %, i.e. n=8 in Eq. .

(29). In cases whers' =0, and for an ideal gas in which Al=ay(t)—f(t,2), (36)
xeuxp’, the conditionu?=Uu? can still be maintained by set-

p & wi . AYY=a,(t)+f(1,2), 3
ting p=¢ "p ande= ¢ "e with n>5 (but arbitrary oth- » =2 +1(t2) (37)
erwise to preserve motion along a constant adiabat for AZZ— _ _
shock-free flowg20]. « = —ay(t)—ay(t), (38
In formulating a parametric procedure to solve the initial A:y: g(t.2) (39

value problem, two basic situations are considerge:0
ands'#0. In the former case, the longitudinal part of the satisfy the TT conditions for arbitramy; , a,, f andg, pro-

momentum data can be set to zero assuming khat also  yigeq yij=&; (although equivalent expressions can be de-
homogeneous. It is then only necessary to enforce the trangyeq for nonflat conformal metrigs The general free mo-
verse and trace-fre@ T) conditions,V;A}=A, ;=0. Forthe menta data then become

ay () —f(t,2)— 5 9 w¥(t,2) 9(t,2) 0
2
Al = g(t,z) ay(t)+f(t,2)— §aZwZ(t,z) 0 _ (40)
0 0 —ay(t)—ay(t)+ 3 I,wi(t,z)

For conformally flat backgroundg.g. the FLRW solutions  tion for ¢ converges to one part in 10 The initial data is

the trace-free momenta are zero and these classes of spatieds parametrized by the homogeneous background param-
times can be initialized simply by settirg =a,=0. Aniso-  eters(a; anda,) and the scalaf¢ or p) and tensoff andg)
tropic background spacetimés.g. the Kasner solutionsan  mode functions. The form oAl , together with a flat con-
also be modeled by a proper choice of the conformal metri¢ormal metric, suggests that the tensor mode perturbations
and transverse momentum functicansanda,, as shown in are a superposition of leftward and rightward traveling
Table I. Furthermore, cosmological perturbations can be sewaves, which are initially exactly out of phase.

up in the convenient longitudingbr conformal-Newtonian An important cosmological length scale that should be
gauge using the York procedure by defining the free data a@_onsi_dered wh_en setting up initial data is the pa_rticle horizon
a,i, =5, Aii=0, and specifying, s, @, andK with Egs. size (in comoving coordinatgsalong the axis of inhomoge-

(67), (68), (69), and(70) respectively. neity, which is approximated by
After choosingAi,f from Egs.(36)—(39), and solving Egs.
(34) and (35) for (Iw)", All is reconstructed from Ed40), ¢ dt ¢ 1
and the conformal factog$ from Eq. (29). The initial value b= =1= or o~ VJa. (41
problem is completed by iterating the process until the solu- 0 NYzz P3 Vvz, 0
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- TABLE I. Solutions to four different classes of homogeneously expanding spacefimes, K, v;; and
A"l are the cosmological constant, fluid density, fluid internal enépgy unit volume, trace of extrinsic
curvature tensor, spatial 3-metric, and the trace-free momentum tensor. In all cases, a diagonal metric and
unit lapse are assumed. The anisotropy parameters in the Kasner solutions satisfy the coBRgditions
ZEip?: 1 arising from the Hamiltonian constraint.

Spacetime A p e K v (i=]) Al (i=])
de Sitter A 0 0 —\3A e AR 0
1o\ 1/1-3p;
Kasner 0 0 0 — 1t (t/te) 2 (_0) ( p')
t 3t
FLRW/dust 0  U(&rGt?) 0 —21t (t/t)*3 0
FLRW/radiation 0 0 3/(32Gt3)  —3/(2t) t/to 0
The above result is valid for a metric componegiet2Ps in IV. NUMERICAL METHODS

the anisotropic models, or,,= a(t)?=t*3with a present day

Hubble parameteH, in the dust-filled FLRW spacetimes. h Thezl a>(<j|s |s.d||35|cret|zed W':h u(rjufqgln g”? tipacmg andd
The significance of this scale is particularly evident in the € evolved variables are centered either at the zone edges

Kasner wave(64) and FLRW density(67) solutions. For (the velocityV* and momentun§, vectorsg or zone centers
perturbation wavelengtha>L,,, the density and metric (all other scalar or tensor variabje®eriodic, specified and
fluctuations remain essentially constant. RegL,,, the os- flat (var)ishing first d_erivativ)eboundary conditions are sup-
cillatory behavior of plane waves is recovered, as is the?Orted in the evolutions. A two-step Lax-Wendroff scheme
Zel'dovich [21] solution in which the matter perturbations [22] thatis second order accurate in time and space is imple-

grow asédp/pa. mented to integrate the Einstein equatigqd$(5) and the
A second important scale parameter, say for a baryonifarmonic lapse equatioi0), using a variable timestep pro-
fluid composed of hydrogen gas, is the Jeans mass cedure. Although the Lax-Wendroff method is generally

more diffusive than the standard leapfrog used in references
[8,3] and typically requires slightly greater grid resolution to
achieve comparable accuras measured by the damping
and dispersion rates of gravitational wayehis is more than
offset by the convenience of maintaining all the variables at
the same time levels since increasing grid resolution is not an
> , issue in plane symmetry if the code is convergent. Further-
mass, and gas temperature in degrees kﬁ;\"n' The COM@rore, the Lax-Wendroff scheme is likely to be more stable
sponding comoving Jeans length=(M,/pc)™, whereép.  ¢or problems involving strong field gradients. The hydrody-
represents the average density in comoving coordinates, digimic equations(17)—(19) are solved with time-explicit
tates the scale at which pressure forces balance the seffiethods together with operator splitting, artificial viscosity
.grawty.'lt is cpnven]ent to combine the two length scalesiy, ghock capturind 10,23, second order van Leer mono-
into a single dimensionless parameter tonic interpolation[24], and an option for consistent trans-
port [25]. The numerical methods are not discussed here in
L, any great detail since they can be found in the indicated
L—%(FTK)”ZX 1078, (43 references. However, the order in which the various source
H terms are updated can affect the numerical accuracy. The
following order has been determined to produce the desired
where the background cosmological density for the flatonvergence rate, assuming an appropriate initial data set has
FLRW modelp=po=3H2/87Gad is assumed in Eq42).  already been specified:
As an example, consider a baryonic fluid in the observed or Compute timestepit from Eq. (46),
post-recombination Universe. At sufficiently early times EVolve y; using Eq.(4), o
(redshifts greater than around 20the fluid is coupled to the ~ Compute components of the Ricci tens8iR;;,
cosmic microwave background radiaticBMBR) so thatT EvolveKj; using Eq.(5) as a single source update,
*(1+2) andL,/Ly~(1+2)¥2x 108, where herez repre- Solve forK either byK"*1=K"+ AtK for mean curva-
sents the cosmological redshift. At smaller redshifts, the gature slicing, settingK=0 for maximal slicing, or more gen-
recombines and decouples from the photon field to cool adizerally constructing< from the trace of the evolvel;; ,
batically Te(1+2)3T~Y, resulting in Ly/Ly~(1+2) Evolve hydrodynamic variables:
X107 for a monotonic ideal gas with adiabatic ind€&x Normalize velocity V?=S%S° using S,$*=—M? and
=5/3. In any case, a pressure-free solution is a good apzq. (25),
proximation for the baryons in the observed cosmological Solve for the relativistic boost factW from Eq. (26),
perturbative regime at scalas>10 °L,. Compute artificial viscosityQ = Q,, (D+E+PW)(AV?)?,

kel Ty | 32
J=<—”B K) -, (42

m,G

wherekg, m,, andTg are the Boltzmann'’s constant, proton
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whereQ,, is a constant typically equal to 3 for the approxi- Codz Codz  CeAz
mate number of zones used to capture shocks, , ; L IX Atggt,  (46)
Update S, in Eq. (19), accounting for the gravitational NIPlp' V2 " 4Q,AV

acceleration terms, , .
UpdatesS, in Eg. (19), accounting for the pressure accel- WhereaK = —d,(1/y)/\/y is a measure of the relative rate of

eration and viscosity terms, change of the 3-volume element, and the expres@@f(/l(
UpdateE in Eq. (18), accounting for the compressional is used in place of.,/aK for the expansion constraint if

heating,W and artificial viscosity terms, the spacetime is foliated by mean curvature slicings. The
UpdateD, E andS, in Egs.(17), (18) and(19), account-  coefficientsCy;, C., andCs are constants representing the

ing for the transport terms, light speed, expansion, and sound speed Courant factors.

Construct the ADM matter source termpg, s', s; ands ~ Typical values ar&;;=0.05, C¢x=0.005 andC¢s=0.4.
from Eqgs.(13)—(16).
Solve for the lapse function either by settimg=1 for V. CODE TESTS

geoglesm slicing, evoIV|-ng qu.o? for harm_omc slicing, or Several benchmark tests of the code are presented in this

solving Eq. (9) for .’T‘ax'm.a.' shcmg(yynh .K:O) orfor a  gection. The various tests are chosen to calibrate the code’s

more general specified slicing condition, i.e. mean curvaturg e tormance on a number of different physical problems,

with K(1). Mean curvature slicing can be applied either byincluding evolutions of isotropically and anisotropically ex-

specifying K beforehand, or by allowing the evolution to panding universes, shock generating fluid flows, gravita-

determineK by imposing a boundary condition am such tional waves in flat and expanding backgrounds, and cosmo-

thata=1 at the grid edgefl0,8]. logical matter perturbations. The convergent nature of the
The above sequence is repeated twice in the two-stefesults is stressed in each case.

Lax-Wendroff scheme, which is written schematically for the

metric evolution equations as A. Homogeneous cosmologies

1 At Assuming a diagonal metric of the form
2_
N =S+ %“+1)—2ai”*<i”(7>, (44) d=—d2+ A1) dx2+B(t)dy?+ C(t)dZ,  (47)

i1 n 12 1/ and seFting the_ spatial derivatives to zero and the coordinate
Yi =y 2a KAL), (45 and fluid flow lines normal to the spatial hypersurfaces, the
homogeneous, but anisotropic, Einstein equations reduce to

where the tensor index notation has been dropped here, so .

i i ints indi-A A2 AB  AC
that subscripts label the spatial zones and superscripts indi-A _ A™ _ +87G(p+e—P)+2A, 49)

cate the temporal levels. A 2A? 2AB 2AC
Although the evolved data are not constrained to satisfy
either the momentum or Hamiltonian equatidegcept ini- B B2 AB BC
tially), the residuals of Eqg2) and(3) are evaluated during B~ 2BZ 2AB ﬁ+8WG(P+e— P)+2A,
the evolutions to verify the accuracy of solutions and to con- (49)

firm the proper convergence behavior. In solving the elliptic

equations for the Hamiltonian constraint and lapse function, & 62 AC BC

the differential equations are discretized to form Mux N —=r— s = s5=~187G(p+e—P)+2A, (50
matrix of equations, wherBl is the number of zones along C 2C° 2AC 2BC

thez axis. The resulting algebraic equations are solved using

a tridiagonal algorithm in the case of Dirichlet boundary con-yhere dots indicate time derivatives. Additional equations

ditions. For periodic boundary conditions, a variant of the,ye provided by the Hamiltonian constraior first integral
tridiagonal algorithn{8] is implemented to introduce an ad-

ditional pass through the matrix solve and eliminate the cor- AB AC BC
ner elements arising from periodicity. AB + Ac + BC— 327G(p+e)+4A, (51
The timestep is defined as the minimum constraint arising

from considerations of the light speed, sound speed, fluid,q the mean curvature slicing conditiomith a=1)
velocity, cosmological expansion rate, and the magnitude of

the artificial viscosity coefficient to maintain stability in A2 B2 D2
shock flows. Since the timesteps can be nonuniform, an ad- K= WJF @+ W+47TG(p+ e+3P)—A. (52
ditional constraint is placed so that does not vary by more
than 10% per timestep. In summary, AlSO
_ -1/2
Ao CitdZVgs; Cex Cel p=po(ABC)™ %, (53
a oK' oK e=e,W '=e,(ABC) "2 (54)
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FIG. 1. Results from convergence studies of four different ho-
mogeneous spacetimes: isotropic exponentially expanding de Sitter, 3.0
isotropic dust-driven FLRW, isotropic radiation-driven FLRW, and mg
anisotropic Kasnerwith p;=1/2). The absolute relative errors, % 00
|[numerical-analytiganalytic, are plotted as a function of the Cou- 2
rant factorC; defined in the text. The numerical solutions converge 8
as expected with a scaling\{)>. 210
are solutions to the mass and energy conservation equations 0.0 . L

' 1 L
00 02 04 06 08 10

(17) and (18) with constants of integratiop, ande,. 7

The following four spacetimes are considered: exponen-
tially expanding deSitter cosmology with+#0 and p=e
=0; anisotropic vacuum Kasner spacetime with+ 1/2 and
A=p=e=0; dust dominated FLRW model with=e=0  data ise=(2.5,0.25) andp=(10°,0.125< 1) for the (left, right)
and p#0; and radiation dominated FLRW model with states. The adiabatic index I5=5/3, the artificial viscosity con-
=p=0 and P=¢e/3#0. The various analytic solutions are stant isQ,,=3, and the grid is resolved with 400 zones.
summarized in Table I. The absolute relative errors between
the numerical and analytic solutions, jpumerical-analyti¢

FIG. 2. Comparison of the Newtonian shock tube evolution
(filled circles with the analytic solution(solid lineg. The initial

The init(i)%l data foroéhe Newtonian case és-(2.5,0.25)
: L ; nd p=(10°,0.125x10°), and for the relativistic case
analytic, are plotted in Fig. 1 for each model as a function Ofi(zo,lW) and p=(10,1), where the two numbers speci-

the Courant factoC;, defined asAt=C;X (C.y,Cy), and . d . )
C...=0.005 andC,,— 0.05 are the expansion and light Speed(g‘ed for each variable refer to the left and right states respec

ffici ioned in S h lcul ively. In both calculations, the adiabatic indeXis-5/3, the
coefficients mentioned in Sec. IV. The errors are calculated yiicia viscosity coefficient i€Q,,= 3, and the grid size is

at timest=30to, t= 10°t,, t:106t01 andt= 10‘_1t0- where  get to unity and resolved by 400 zones. The relatively large
to=1 is the initial time, corresponding to fractional changesgensities in the Newtonian case are required to set up a ther-
in proper length scales of roughly®®, 10f, 10° and 16 modynamically nonrelativistic flow such thatp=e<c?,
along thez axis for the de Sitter, dust FLRW, radiation wherec is the unit light speed. The Newtonian calculation,
FLRW, and (3=1/2) Kasner tests respectively. As ex- shown in Fig. 2, results in maximum errors of 0.6%, 0.1%
pected, the errors scale to second convergent ok ( and 0.3% for the density, velocity and pressure respectively.
For the relativistic calculation in Fig. 3, maximum errors of
17%, 1.4% and 5.9% are found in the density, velocity and
i _ . pressure. Increasing the artificial viscosity constant improves
To test the shock capturing algorithms and the ability ofihe agreement at the shock front, especially in the more rela-
the code to evolve a rarefaction wave, two shock tube probgyistic flows as considered hergThe maximum velocity in
lems are considered: one Newtonian, the other special relq_—ig_ 3 reache®/?/c=0.72, corresponding to a Lorentz boost
tivistic. In these problems, ¢hot, cold gas is set up to the ¢5.tor of W=(1-V2)~Y2=1.44] In this case, a value of

(left, right) with no initial bulk fluid motion. The partition Q.,= 10 reduces the differences across the shock front by
separating the two gases is removedt-at,=1. The head of rouvghly 50% in the density.

the rarefaction wave then propagates into the denser gas at
the local sound speed and a compression wave travels into
the lower density gas, forming a shock front. This problem
tests the ability of the code to evolve the three dynamical
components of the gas: the rarefaction wave, the contact dis- Gravitational wave perturbations with both polarizations
continuity, and the shock. are expressed in the flat background and TT gauge as

B. Shock tube

C. Gravitational waves

1. Minkowski background
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FIG. 4. Spatial profiles of linear gravitational pulse waves with
both polarizations. The initial dateolid line) consists of two op-
positely traveling Gaussian pulses with amplitud&0™*, centered
at the middle of the grid where they exactly cancel themselves out.
The final solutions for—f (open circles andg (filled circles are
shown at timet=3.3,, wherety=1 is the initial time, along with
the corresponding analytic solutiofdashed and dotted lines

(27
g=01 sm(T(z—H—to)

(2
—01 sm(T(zH—to)),

(58)
(filled circles with the analytic solutionsolid lineg. The initial
data ise= (20,10 7) andp=(10,1) for the(left, right) states. The . L
adiabatic index isS"=5/3, the artificial viscosity constant i§,,  With grid sizeL=1, and
=3, and the grid is resolved with 400 zones. The maximum fluid
velocity V¥/c=0.72 corresponds to a relativistic Lorentz factor of f=f,e" 2% 0%’ _f g-(z-2tt-10%0?  (5g)
W=1.44.
1-f g o0 g=gie” I g e (), (60)
Y= g 1+f O, (55
0 0 1 with grid sizeL =10, pulse widtho=0.09_, and initial cen-

wheref andg are functions of the wave-like coordinates
*t, and much smaller than unity. To linear orderfiandg,
K=0 and the trace-free momenta become

—f
g
0

g O
f O (56)
00
The code tests are performed with two different data sets:
27
f= fl SiN| T(Z_t+t0)

2w
_fl Sin(T(Z+t_to)), (57)

tered positionz.=L/2. Both tests have wave amplitudés
=g,=10"% and are run to a final timg=3.3,. The first

data set represents a standing wave solution, and the second
is composed of two oppositely traveling Gaussian pulses
with equal amplitudes but opposite signs.

Figure 4 shows the Gaussian pulse results at the initial
to=1 (solid line) and finalt=3.3, (filled and open circlgs
times, comparing to the corresponding analytic solutions
(dotted and dashed lingg\t the final time plotted, the pulses
have moved outward from the center of the grid where they
were located at=t, and had exactly canceled to a flat initial
metric. Figure 5 shows the relative errdes a function of
grid resolution in f andg for both data sets. The errors scale
with (At)? and (Az)? as expected.

2. Kasner background

A prescription for setting up initial wave data in a general
anisotropic background was described in Sec. Ill. Considered
here are perturbations of an anisotropic Kasner mp2&
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FIG. 5. Convergence study of the errors found in evolving lin-  FIG. 6. The maximum value &y, ,— Yxl/ vxx, Wherey, is the
earized gravity waves of both polarization states. Results from twaverage background value, is plotted as a function of time for gravi-
different data sets are shown: sinusoidal standing waves and oppgational waves traveling through the Kasner model with=p,
sitely traveling Gaussian pulses. Both initial data sets are definee:2/3 andp;=—1/3. The absolute value of the wave amplitude,
with wave amplitudes of 10%. The errors are computed at tirhe  shown to 25 oscillation periods, decays as predicted by the analytic
=3.3ty, wheret,=1 is the initial time, and scale as\{)? and  resultt 23 (solid line).

(A2)2.
For the code test, the wave number is sdt+2#/L and
o (t)PL [t 1) 2P the grid lengthL to one-third of the horizon size, using 100
ds’=—dt*+ t dx“+ to dy“+ t dz, zones to resolve the domain. The rate of decay found in the

(61) numerical calculations is compared to the analytic prediction
in Fig. 6, where the quantitlyy,,— v,/ ¥xx iS plotted for the

wheret, is an arbitrary scaling constant and the expongnpts perturbation amplitude, ang,, is the homogeneous back-

are subject to the constraingg + p,+ps=p3+p5+ps=1. ground value. The numerical and analytic results agree

In this case, the inhomogeneous metric can be written in &icely in both the amplitude and oscillation frequencies.

form analogous to Eq55)

D. Cosmological density perturbations

ds?= —dt?+t¥3(1+f;)dx? _ _ o
The metric for pressure-free density perturbations in an
+t43(1—f)dy?+t23%d 2, (62)  expanding flat universe is written in the longitudinal gauge
as[27]
where the specific choicp;=p,=2/3 andp;=—1/3 has o
been made for the exponents afi{t,z) is a perturbation ds’=—(1+2®)dt*+a’(1-2d)5;dxdx, (66)
function representing, polarized waves propagating along
the z axis. Assuming a spatial dependence of the fdgm
=f(t)sink2, the Einstein equations reduce to

wherea= (3H,t/2)?" is the cosmological scale factdi, is
the present-day Hubble constadt(z) is a time independent
(for the growing modegsfunction defining the Newtonian

d?f 1 df 032 gravitational potential,
W‘F?a‘*'t kf=0, (63) 2a
p=pol 1+ == V2 -2 |, (67)
with solution ° 3HG *
3 7S, H 1
f,=12J —kt4’3)si kz), 64 2V X 0 apg e
b4 i ) ST VT T e YK

wheref(lo) is a constant andy(x) is the Bessel function of (68
order zero. In the short wavelength limit, EG4) reduces to  are the matter density and momentum respectively, @nd
=3H§/(87-rG a%) is the background average density. The im-
f 0 | 8 plied slicing condition
L N3k

L) cod 2ket- T sinka), (65
n co Zt -7 sin(kz), (65
a=1+®, (69
and the solution decays like %2 as the background model
expands. K=—3H,a ¥(1-®d), (70)
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FIG. 8. Results from five different simulations of sub-horizon
3cale perturbations in the flat density dominated FLRW model. The
initial data is a sine wave perturbation with an amplitude 3L
the gravitational potential and a comoving wavelengthk L,
which is resolved with 100 zones. The solutions fof,[

— v,/ v,, are shown at timé= 10, whenL/L4~10" . The evo-
lutions are unstable for casé&) and (B) in which the lapse func-
tion is fixed to a predetermined slicing condition that approximates
geodesic slicing.

FIG. 7. Convergence study of the errors found in evolving
super-horizon scale perturbations in the flat density dominate
FLRW model. The initial data is a sine wave perturbation with
amplitude 10° in the gravitational potential and comoving wave-
lengthA=1C°L,,, whereL, is the horizon length. The errors are
computed at timé=10Pt, after the universe has expanded a factor
of 10* along thez axis andL/L,~ 10. The displayed errors are the
relative normalized differences foy,, and D, and the absolute
differences inS,. The errors scale as\t)? and (Az)2.

can be maintained to perturbation order by a trivial extensionions in which the slicing condition is fixed by some analytic
of the algebraic conditiori) with G(y)=1, or by solving  (geodesic or near-geodekiprescription, i.e. by explicitly
Eg. (9) with K computed from Eq(70). However, as dis- enforcing Eqs(69) and(70), are unstable.
cussed in the following paragraphs, maintaining this gauge The metric componeny,, is shown in Fig. 8 from five
condition can be problematic in numerical evolutions. different simulations of sub-horizon scale perturbatioks (
Two tests of density evolutions, characterized by the co<<Ly) using 100 zones and the following methods to com-
moving perturbation wavelength in relation to the comovingpute the gauge variables:
horizon scaleL,=2+a/H,, are presented in this section.  Case(A)—Specifyinga using Eq.(69) and reconstructing
For perturbations with wavelengtts>L,, the relative den- K from the evolvedy;; andK;;,
sity fluctuations freeze as they are coupled to the expanding Case(B)—Specifyinga andK using Eqgs.(69) and(70),
background. FOh<L,, linear perturbations can grow and  Case(C)—Solving Eq.(9) for « and reconstructings,
matter collapses at the rafep/pcaxt?? as suggested by  Case(D)—Solving Eq.(9) for @ and specifyingk using
Eq. (67). Eq. (70),
Figure 7 shows the relative errors 3, and p, and the Case(E)—Similar to (C), but also implementing a variant
absolute difference errors @8, as a function of grid resolu- of the “K-driver” method[28,29.
tion for the super-horizon\>L) scale perturbations. The  The same sinusoidal perturbation form and amplitude are
initial data is a sine wave perturbation in the potentfal used as in the super-horizon calculations, but with wave-
=d, sin(2nz/L), with ®,=10"° and comoving grid siz&  length A=L,; at the initial timeto,=1. Unlike the super-
=10’L,. The errors are evaluated at tirhe 10°t, corre-  horizon case, fluctuations at sub-horizon scales can grow to
sponding td_/L 4~ 10 after thez axis expands by a factor of the point where particle trajectories cross, or form shocks in
10* in proper length, and scale aat)? and (Az)%. The @ pressure fluid. An estimate for the time of collapse is de-
apparent larger errors i8, are attributed to plotting the ab- rived by setting the amplitude of the density perturbation
solute(and not relativedifferences between the analytic and (67) to unity. This gives
numerical solutions, sinc&, is a sinusoidal perturbation
around zero. Scaling the results by the amplitude of oscilla- ( X2 )3/2
to ,

2772(130 (71)

tions in S, (which grow asa®?ct), the momentum errors teoll=
become smaller than those in the density. The results for

super-horizon scale perturbations are robust and not espe-

cially sensitive to slicing or gauge errors, even though theswhere the comoving wavelength is parametrized by
perturbations are nonlinear in the sense that they couple te XLy at t=t, and, for the prescribed initial datg,,~4

the background expansion. However, for perturbations<10t,. To assure the solutions remain in the linear regime
smaller than the horizon scale, the numerical evolutions arér the code tests, the evolutions are terminatet=at0’t,

susceptible to gauge drift instabilities. In particular, evolu-whenx~10"1L.
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0.00016 ' T ' it displays this gauge drifting behavior most prominantly. In
fact, yxx, vy, p @andS, are not visibly affected and they

0.00012 ¢ ] continue to match the perturbation solution nicely, even
0.00008 [ ] when y,, develops the noise evident in Fig. 8. The Hamil-
tonian constraint residugR) is also plotted in Fig. 10 to
g 0.00004 confirm that errors in the Hamiltonian converge to zero qua-
g dratically as expected.
2 0.00000 Finally, the cas€E) in Fig. 8 is similar to cas€C) except
‘:g -0.00004 | Eq. (9) is solved after replacing with
analytic .
-0.00008 [ ——~ 200 zones 1
---- 100 C —K* _
oozt S C S o K=K*—co(K—K*), (72
20.00016 £ ' ' ' T _ ,
0.0 0.5 1.0 , 1.5 20 where K* is the “target” value defined by Eq(70). As

observed in Fig. 8, this method tends to drikeexponen-
FIG. 9. Sub-horizon scale perturbations in the metric functiontially to K* over a characteristic time scale determined by
(Y27~ 29! v, at time t=10%, for the flat density dominated the coefficientc,. To prevent the solutions from changing
FLRW model. Results from four different resolution grids are too rapidly, which can result in unstable evolutioms, is
shown for caséD) in Fig. 8 and found to converge quadratically to scaled relative to the Courant timestepcgs: 10 3/At. This
the analytic solution. procedure has proven to be effective in dealing with gauge
drifting and numerical errors in simulations of asymptoti-
As shown by Fig. 8, the evolutions are unstable for bothcally flat spacetimes when the maximal slicing condition
caseqA) and(B) which specify an analytic form for a lapse K=0 is imposed28,29. Here, of course, spacetime cannot
function approximating geodesic slicing. When the lapse ide globally foliated withK=0 slices since the models are
allowed to vary during the spacetime evolution, the Euleriarexpanding, and one can, in general, expgecto vary signifi-
observers can accelerate in response to changes in the logaintly over the dynamical time scales. As a result, although
geometry(whether physical or numerigahnd the solutions the procedure is effective in maintaining the slicing condi-
stabilize. Although significant differences can be observedion (69) and(70), significant cell-to-cell oscillations can re-
between the analytic and numerical results in Fig. 8, thesult during the evolutions, especially K is driven to the
stable numerical solutions in casé®) and (D) are conver- target too rapidly in comparison to either the dynamical col-
gent, as demonstrated in Fig. 9 where the normalized devidapse or cosmological expansion time scales.
tions in y,, are plotted at three different grid resolutions for

the casdD). Figure 10 shows that the errorsjn, converge VI. SUMMARY
to zero quadratically in both time and space. The conver- . .
gence study is performed on the metric compongatsince A numerical code has been developed as a tool to inves-

tigate fully nonlinear behavior in the coupled Einstein field
and hydrodynamic matter equations for plane-symmetric
cosmological spacetimes. It has been tested against a variety

102 L ] of analytic solutions, including vacuum anisotropically ex-
panding cosmologies\-, dust- and radiation-driven isotro-
10° F 1 pic spacetimes, gravitational waves in flat and anisotropi-

cally expanding backgrounds, sub- and super-horizon scale

10" .

-4

107 ¢ 3 density perturbations in FLRW models, and both Newtonian
§ 100 [ O—O metricy, 1 anq relativistic shock tube evolutions to test the shock cap-
] G—=8 Hamiltonian turing routines. The code was demonstrated to be second

10° [ ] order accurate in both time and space, with errors that scale

as (At)?2 and (Az)? for the smooth field evolutions. Al-

107 ¢ E though the evolutions are carried out in an unconstrained
. manner, the Hamiltonian and momentum constraints are mo-
0¥ 3 nitered during the evolutions to verify convergence and the

o , degree to which the Einstein equations are satisfied in gen-
100 eral nonlinear calculations.
Number of zones An important improvement over the previous treatments
FIG. 10. Convergence study of the errors yg,, the metric  in reference$9,10,7,8,3is the generalization to a nondiago-
component most susceptible to the gauge instability. Also shown i§al metric with arbitrary components restricted only by the
the residual of the Hamiltonian constraint. Both curves scale quaHamiltonian and momentum constraints. This allows for
dratically with resolution to the analytic solution and zero, respecbothe, ande, polarized gravitational waves, and for more
tively. The errors are shown for the stable cé®¢in Fig. 8. general classes of anisotropic and inhomogeneous cosmo-
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logical models to be investigated. Additional features includeteraction. Results from strong field nonlinear studies will be

a cosmological constant allowing for de Sitter spacetimespresented in future papers.

hydrodynamic ideal fluid sources, a broader selection of slic-
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