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Plane-symmetric cosmology with relativistic hydrodynamics
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A numerical code, developed for cosmology and to investigate fully nonlinear behavior in the plane-
symmetric Einstein equations, is described in detail. The field equations are solved self-consistently with the
general relativistic hydrodynamical conservation equations, using artificial viscosity methods for shock cap-
turing and an ideal fluid stress-energy tensor with a cosmological constant. Several tests of the code are
presented, including anisotropically expanding vacuum and isotropically expanding de Sitter, dust-filled and
radiation-filled cosmologies, gravitational waves in flat and anisotropically expanding background models,
sub- and super-horizon scale density perturbations in an expanding FLRW background, and both Newtonian
and relativistic shock tube evolutions. Also discussed is a gauge drift instability that can appear in near-
geodesic evolutions of density perturbations when the dynamical time scale of collapse becomes smaller than
the cosmological expansion rate.@S0556-2821~98!00918-7#

PACS number~s!: 04.25.Dm, 47.75.1f, 95.30.Lz, 98.80.Hw
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I. INTRODUCTION

Einstein’s equations form a complex system of high
nonlinear hyperbolic and elliptic partial differential equ
tions. For all the progress in recent years in finding solutio
to the classical field equations, many basic issues regar
the nonlinear gravitational field and its cosmological con
quences remain unresolved. Our understanding is com
cated even further with the addition of matter sources
more elaborate models of the Universe. As general relati
tic effects can play a significant role in astrophysical a
cosmological processes it is important to account for non
ear interactions between the gravitational field, ma
sources, and the cosmological ‘‘background,’’ especially
strong field regimes, over scales comparable to the hor
size, and at early epochs when cosmological models ca
curvature dominated. For example, inflationary scalar fie
@1,2#, strong gravitational waves@3#, element nucleosynthe
sis @4#, and high order cosmic microwave backgrou
~CMB! anisotropies@5,6#, are intrinsically nonlinear phe
nomenon and require full and self-consistent solutions to
Einstein equations. Moreover, a new generation of wave
tectors are anticipated to observe gravitational waves be
too long. Because waves will likely have originated in r
gions with highly dynamic and nonlinear gravitational field
it is essential to study the strong as well as the weak fi
regimes, together with evolving matter structures in a c
mological framework.

The complexity of the coupled Einstein-matter system
motivated the development of a numerical code to solve
general equations without recourse to any simplifying line
ized assumptions. Although the code is specialized to pla
symmetry it can be used to simulate a wide range of phys
conditions in inhomogeneous spacetimes containing an i
gas or in vacuum. It is written in a general fashion and c
easily be applied to expanding cosmological as well
asymptotically flat or Minkowski background spacetime
This paper may be considered as the fourth in a ‘‘series’’
0556-2821/98/58~6!/064010~12!/$15.00 58 0640
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Anninos, Centrella and Matzner@7,8,3#, which were them-
selves motivated by the earlier work of Centrella and Wils
@9,10#. The first paper in the ‘‘series’’@7# dealt exclusively
with the initial value problem for vacuum plane-symmetr
cosmologies, describing the numerical techniques and s
nonlinear solutions to the momentum and Hamiltonian c
straint equations. The second paper@8# focused on solving
the vacuum evolution equations, while the third@3# applied
this code to discuss the nonlinear propagation of grav
tional waves in expanding universes. However, these res
were limited to vacuum spacetimes and without the full d
namical degrees of freedom allowed by plane symmetry.

This work extends the capabilities of previous generat
codes and the improvements are described here in detail.
major advances are the generalization to a non-diagonal
ric, allowing for e1 and e3 polarizations of gravity waves
and a more general class of background cosmological m
els. ~Because of the imposed symmetries, the previous w
was limited to onlye1 wave states and the ‘‘degenerate
Kasner and flat space background models.! Also added are a
cosmological constant, hydrodynamic fluid sources with
bust shock capturing capability, and a more general se
slicing conditions that allow for asymptotically flat spac
times as well as cosmologies with periodically identifi
boundaries. The code can be used for studies of Friedm
Robertson-Lemaıˆtre-Walker~FLRW! models with arbitrarily
large amplitude and long wavelength perturbations, la
curvature anisotropies including generalized Kasner mod
and strong field dynamics of gravitational wave, density
radiation dominated fluctuations.

Although this paper describes a general approach to s
ing the Einstein and relativistic hydrodynamics equations
is worth pointing out an alternative approach that has pro
especially convenient for plane symmetric cosmologies,
in particular the vacuum Gowdy models@11#. In this class of
spacetimes, the Einstein equations decouple into dynam
equations for the wave amplitudes and easily solved c
straints@11–13#, which can be evolved using either conve
© 1998 The American Physical Society10-1
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PETER ANNINOS PHYSICAL REVIEW D 58 064010
tional time explicit schemes or a symplectic different
equation solver@14,15#. However, the methodology reporte
in this paper may be applied easily to more generic cos
logical models, where it is not clear whether a conveni
variable choice exists.

The remainder of this paper is organized as follows: E
stein’s equations are written out in the 311 or Arnowitt-
Deser-Misner~ADM ! form in Sec. II, together with the hy
drodynamic conservation equations and gauge functions
prescription for setting up initial data is described in Sec.
The numerical methods, boundary conditions, gauge slicin
and choice of timesteps are summarized in Sec. IV. Sev
benchmark tests designed to confirm the robustness of
code for a wide variety of physical processes are presente
Sec. V, along with discussions of a gauge drift instabil
that can show up rather dramatically in evolutions of dens
perturbations. This work is summarized in Sec. VI.

II. BASIC EQUATIONS

The general spacetime metric can be written as

ds25~2a21b ib
i !dt212b idxidt1g i j dxidxj , ~1!

in the standard 311 or ADM @16# formulation, wherea and
b i are the lapse function and shift vector respectively, a
g i j is the spatial 3-metric. The Einstein equations amoun
four constraints,

~3!R1K22Ki j K
i j 516pGrH , ~2!

¹ i~Ki j 2g i j K !58pGsj , ~3!

twelve evolution equations,

] tg i j 522aKi j 1Lbg i j , ~4!

] tKi j 52¹ i¹ ja

1aF ~3!Ri j 22KikK j
k1KKi j

28pGS si j 2
1

2
sg i j 1

1

2
rHg i j D G1LbKi j , ~5!

and four kinematical or coordinate conditions for the lap
and shift vector that can be specified arbitrarily. Here,

Lbg i j 5¹ ib j1¹ jb i , ~6!

LbKi j 5bk¹kKi j 1Kik¹ jb
k1Kk j¹ ib

k, ~7!

and¹ i is the spatial covariant derivative with respect tog i j ,
(3)Ri j is the spatial Ricci tensor,K is the trace of the extrin-
sic curvatureKi j , G is the gravitational constant, andrH ,
sj , s andsi j are the matter source terms as seen by obser
at rest in the time slices. The units are such thatc5G51,
and the usual convention is adopted whereby greek~latin!
indices refer to 4~3!-dimensional quantities.

The shift vector is set to zero, henceLbg i j 5LbKi j 50.
Several options are implemented for the lapse function,
06401
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cluding geodesic (a51), algebraic, maximal, mean curva
ture, and harmonic slicing. The algebraic condition takes
form

a5F~xi !G~g!, ~8!

where F(xi) is an arbitrary function of the spatial coord
nates specified at the initial time, andG(g) is a dynamic
function of the determinant of the 3-metric. This conditio
has the advantage of simplicity and, for certain choices oG
@i.e., those with the behaviorG(g)→0 asg→0# also mim-
ics maximal slicing in its singularity avoidance properti
@17#. However, Eq.~8! can also be used for even more ge
eral ~non-singularity avoiding! slicings to preserve, for ex
ample, the longitudinal gauge for cosmological perturbatio
as discussed in Sec. V D. The maximal slicing equation
derived by taking the trace of Eq.~5!,

¹ i¹ ia5a@Ki j K
i j 14pG~rH1s!#1b i¹ iK2] tK, ~9!

and settingK5] tK50. Mean curvature slicing also solve
Eq. ~9! but assumesK5K(t), which can either be specifie
in advance or determined by imposing a boundary condit
on the lapse function after solving Eq.~9! for the quantity
a/] tK @10,8#. This slicing condition is the most natural on
for cosmology as it foliates homogeneous cosmologi
spacetimes with surfaces of homogeneity. The harmonic s
ing condition is derived by imposing the harmonic conditi
on the time coordinate, leading to the evolution equation

] ta52a2K, ~10!

for which the initial value of the lapse is arbitrary.
The stress-energy tensor for an ideal fluid and a cos

logical constantL is

Tmn5rhumun1Pgmn2
L

8pG
gmn , ~11!

wheregmn is the 4-metric,h511e1P/r is the relativistic
enthalpy of an ideal fluid, ande, P, r andum are the specific
internal energy~per unit mass!, pressure, rest mass densi
and four-velocity of the fluid. Defining

u52nmum5au05~11uiui !
1/2

5S 12
ViV

i

a2 D 21/2

, ~12!

as the generalization of the special relativistic Lorentz fac
the source terms in Eqs.~2!–~5! can be written in terms of
the fluid variables as

rH5nmnnTmn5rhu22P1
L

8pG
, ~13!

si52g i
mnnTmn5rhuui , ~14!

si j 5g i
mg j

nTmn5rhuiuj1Pg i j 2
L

8pG
g i j , ~15!
0-2
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with

s5si
i53P1rh~u221!2

3L

8pG
, ~16!

and nm5(1,2b i)/a is the time-like normal congruence t
the spatial hypersurfaces.

The hydrodynamics equations are derived from the n
malization of the 4-velocityumum521, the conservation o
baryon number¹m(rum)50, the conservation of stress
energy ¹mTmn50, and an equation of stateP5P(r,e),
which for an ideal gas isP5(G21)E/W5(G21)re,
whereG is the adiabatic index andW is defined below. The
resulting equations can be written in flux conservative fo
as @18#

]D

]t
1

]~DVi !

]xi 50, ~17!

]E

]t
1

]~EVi !

]xi 1P
]W

]t
1P

]~WVi !

]xi 50, ~18!

]Si

]t
1

]~SiV
j !

]xj 2
SmSn

2S0

]gmn

]xi 1A2g
]P

]xi 50, ~19!

where

W5A2gu0, ~20!

D5Wr, ~21!

E5Wre, ~22!

Si5Wrhui , ~23!

Vi5ui /u0, ~24!

andg is the determinant of the 4-metric. The system of E
~17!–~24! are complimented by two additional expressio
for Vi andW that are convenient for numerical computatio
Defining

M5Wrh5E1D1PW, ~25!

the momentum can be expressed asSm5Mum , and S0 is
computed from the normalization of the four-velocitySmSm
52M2. The coordinate velocity then becomesVi5Si /S0

with V051. Also, the time component of the four-veloci
u0 can be calculated from the normalization conditi
umum5u0VmSm /M521, and used to derive the followin
expression forW:

W5
2AuguM

SmVm . ~26!

All of the above equations are valid for general, mul
dimensional, vacuum and ideal fluid spacetimes. Howe
the work presented in this paper is specialized to plane s
06401
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metry and all variables are functions only of one spatial
mension~taken to be thez-axis! and time, with a spatial
3-metric

g i j 5S gxx gxy 0

gxy gyy 0

0 0 gzz

D , ~27!

and extrinsic curvature

Ki j 5S Kxx Kxy 0

Kxy Kyy 0

0 0 Kzz

D . ~28!

The metric~27! generalizes previous treatments@9,10,7,8,3#
of plane-symmetric spacetimes by including a nondiago
component to model both polarization states of gravitatio
waves. This more general metric also accommodate
broader range of background anisotropic cosmological m
els, as each of the nonvanishing components can be ini
ized and evolved without restrictions but for the Hamiltoni
and momentum constraints.

III. INITIAL DATA

The constraint equations~2! and ~3! are solved using
York’s @19# conformal prescription to obtain proper initia
data for evolution. The method introduces a conformal tra
formation of the 3-metricg i j 5f4ĝ i j , trace-free momentum
componentsAi j 5Ki j 2g i j K/35f210Âi j , and matter source
termssi5f210ŝi andrH5f2nr̂H , wheren.5 for unique-
ness of solutions to the elliptic equation~29! below @19#.
Further decomposing the free momentum variables i
transverse and longitudinal componentsÂi j 5Â

*
i j 1( l̂ w) i j ,

the Hamiltonian and momentum constraints can be written

¹̂ i¹̂
if2

R̂

8
f1

1

8
Âi j Â

i j f272
1

12
K2f512pGr̂Hf52n50,

~29!

~¹̂ j ¹̂
jw! i1

1

3
¹̂ i~¹̂ jw

j !1R̂j
i wj2

2

3
f6¹̂ iK28pGŝi50,

~30!

where the longitudinal part ofÂi j is

~ l̂ w! i j 5¹̂ iwj1¹̂ jwi2
2

3
ĝ i j ¹̂kw

k, ~31!

and the transverse part satisfies¹̂ j Â*
i j 5Â

* j
j 50. Also, ¹̂ i is

the spatial covariant derivative evaluated with the conform
3-metricĝ i j , R̂i j is the corresponding conformal Ricci tens
and R̂5ĝ i j R̂i j is its trace. Equations~29! and ~30!, which
form a coupled nonlinear set of elliptic equations, are solv
using an iterative procedure. The two equations can, h
ever, be decoupled if either a maximal (K5] tK50) or
mean curvature@K5K(t)# slicing condition is assumed.
0-3
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An additional complication is introduced by the hydrod
namic variables due to the intrinsic coupling through t
boost factor~12!. Neglecting the cosmological constant, t
conformal form of Eq.~13! can be expanded as

r̂H5 r̂û21~ ê1 P̂!û22 P̂, ~32!

wheree5re. In order to provide some control over the in
tial hydrodynamic data, and to easily reconstruct the phys
variables, the conditionu25û2 is imposed, where

u2511
SiS

i

~D1E1PW!2

511
sis

i

u2~r1e1P!2 . ~33!

This condition is satisfied for an ideal gas withP5(G
21)e and the same conformal scaling of the density a
internal energy,r5f28r̂ and e5f28ê, i.e. n58 in Eq.
~29!. In cases wheresi50, and for an ideal gas in whichP
}e}rG, the conditionu25û2 can still be maintained by set
ting r5f2nr̂ and e5f2Gnê with n.5 ~but arbitrary oth-
erwise! to preserve motion along a constant adiabat
shock-free flows@20#.

In formulating a parametric procedure to solve the init
value problem, two basic situations are considered:si50
and siÞ0. In the former case, the longitudinal part of th
momentum data can be set to zero assuming thatK is also
homogeneous. It is then only necessary to enforce the tr

verse and trace-free~TT! conditions,¹̂ j Â
i j 5Â i

i 50. For the

* *

pa

tr

s

lu
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cases in which siÞ0, a flat space conformal metri
(ĝ i j 5d i j ) is assumed so that the momentum constraint~30!
reduces to

]2wz

]z2 56pGŝz1
f6

2

]K

]z
, ~34!

for one-dimensional perturbations along thez axis, and

~ l̂ w! i j 5S 2
2

3
]zw

z 0 0

0 2
2

3
]zw

z 0

0 0
4

3
]zw

z

D . ~35!

Additional free elements can be added to the transverse
menta by noting that

Â
*
xx5a1~ t !2 f ~ t,z!, ~36!

Â
*
yy5a2~ t !1 f ~ t,z!, ~37!

Â
*
zz52a1~ t !2a2~ t !, ~38!

Â
*
xy5g~ t,z! ~39!

satisfy the TT conditions for arbitrarya1 , a2 , f andg, pro-
vided ĝ i j 5d i j ~although equivalent expressions can be d
rived for nonflat conformal metrics!. The general free mo-
menta data then become
Âi j 5S a1~ t !2 f ~ t,z!2 2
3 ]zw

z~ t,z! g~ t,z! 0

g~ t,z! a2~ t !1 f ~ t,z!2
2

3
]zw

z~ t,z! 0

0 0 2a1~ t !2a2~ t !1 4
3 ]zw

z~ t,z!

D . ~40!
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For conformally flat backgrounds~e.g. the FLRW solutions!,
the trace-free momenta are zero and these classes of s
times can be initialized simply by settinga15a250. Aniso-
tropic background spacetimes~e.g. the Kasner solutions! can
also be modeled by a proper choice of the conformal me
and transverse momentum functionsa1 anda2 , as shown in
Table I. Furthermore, cosmological perturbations can be
up in the convenient longitudinal~or conformal-Newtonian!
gauge using the York procedure by defining the free data

ĝ i j 5d i j , Âi j 50, and specifyingr, si , a, and K with Eqs.
~67!, ~68!, ~69!, and~70! respectively.

After choosingÂ
*
i j from Eqs.~36!–~39!, and solving Eqs.

~34! and ~35! for ( l̂ w) i j , Âi j is reconstructed from Eq.~40!,
and the conformal factorf from Eq. ~29!. The initial value
problem is completed by iterating the process until the so
ce-

ic

et

as

-

tion for f converges to one part in 1010. The initial data is
thus parametrized by the homogeneous background pa
eters~a1 anda2! and the scalar~f or r! and tensor~f andg!

mode functions. The form ofÂ
*
i j , together with a flat con-

formal metric, suggests that the tensor mode perturbat
are a superposition of leftward and rightward traveli
waves, which are initially exactly out of phase.

An important cosmological length scale that should
considered when setting up initial data is the particle horiz
size ~in comoving coordinates! along the axis of inhomoge
neity, which is approximated by

LH5E
0

t dt

Agzz

5
t

12p3

1

Agzz

or
2

H0
Aa. ~41!
0-4
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TABLE I. Solutions to four different classes of homogeneously expanding spacetimes.L, r, e, K, g i j and
Ai j are the cosmological constant, fluid density, fluid internal energy~per unit volume!, trace of extrinsic
curvature tensor, spatial 3-metric, and the trace-free momentum tensor. In all cases, a diagonal me
unit lapse are assumed. The anisotropy parameters in the Kasner solutions satisfy the conditio( i pi

5( i pi
251 arising from the Hamiltonian constraint.

Spacetime L r e K g i j ( i 5 j ) Ai j ( i 5 j )

de Sitter L 0 0 2A3L eA4L/3t 0

Kasner 0 0 0 21/t (t/t0)2pi St0t D
2pi11S123pi

3t0
D

FLRW/dust 0 1/(6pGt2) 0 22/t (t/t0)4/3 0
FLRW/radiation 0 0 3/(32pGt2) 23/(2t) t/t0 0
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The above result is valid for a metric componentgzz}t2p3 in
the anisotropic models, orgzz5a(t)2}t4/3 with a present day
Hubble parameterH0 in the dust-filled FLRW spacetimes
The significance of this scale is particularly evident in t
Kasner wave~64! and FLRW density~67! solutions. For
perturbation wavelengthsl@LH , the density and metric
fluctuations remain essentially constant. Forl!LH , the os-
cillatory behavior of plane waves is recovered, as is
Zel’dovich @21# solution in which the matter perturbation
grow asdr/r}a.

A second important scale parameter, say for a baryo
fluid composed of hydrogen gas, is the Jeans mass

MJ5S pkBGTK

mpG D 3/2

r21/2, ~42!

wherekB , mp , andTK are the Boltzmann’s constant, proto
mass, and gas temperature in degrees kelvin. The co
sponding comoving Jeans lengthLJ[(MJ /rc)

1/3, whererc
represents the average density in comoving coordinates,
tates the scale at which pressure forces balance the
gravity. It is convenient to combine the two length sca
into a single dimensionless parameter

LJ

LH
'~GTK!1/231026, ~43!

where the background cosmological density for the
FLRW modelr5r053H0

2/8pGa3 is assumed in Eq.~42!.
As an example, consider a baryonic fluid in the observed
post-recombination Universe. At sufficiently early tim
~redshifts greater than around 100!, the fluid is coupled to the
cosmic microwave background radiation~CMBR! so thatT
}(11z) andLJ /LH;(11z)1/231026, where herez repre-
sents the cosmological redshift. At smaller redshifts, the
recombines and decouples from the photon field to cool a
batically T}(11z)3(G21), resulting in LJ /LH;(11z)
31027 for a monotonic ideal gas with adiabatic indexG
55/3. In any case, a pressure-free solution is a good
proximation for the baryons in the observed cosmologi
perturbative regime at scalesl@1025LH .
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IV. NUMERICAL METHODS

The z axis is discretized with uniform grid spacing an
the evolved variables are centered either at the zone e
~the velocityVz and momentumSz vectors! or zone centers
~all other scalar or tensor variables!. Periodic, specified and
flat ~vanishing first derivative! boundary conditions are sup
ported in the evolutions. A two-step Lax-Wendroff schem
@22# that is second order accurate in time and space is im
mented to integrate the Einstein equations~4!,~5! and the
harmonic lapse equation~10!, using a variable timestep pro
cedure. Although the Lax-Wendroff method is genera
more diffusive than the standard leapfrog used in referen
@8,3# and typically requires slightly greater grid resolution
achieve comparable accuracy~as measured by the dampin
and dispersion rates of gravitational waves!, this is more than
offset by the convenience of maintaining all the variables
the same time levels since increasing grid resolution is no
issue in plane symmetry if the code is convergent. Furth
more, the Lax-Wendroff scheme is likely to be more sta
for problems involving strong field gradients. The hydrod
namic equations~17!–~19! are solved with time-explicit
methods together with operator splitting, artificial viscos
for shock capturing@10,23#, second order van Leer mono
tonic interpolation@24#, and an option for consistent trans
port @25#. The numerical methods are not discussed here
any great detail since they can be found in the indica
references. However, the order in which the various sou
terms are updated can affect the numerical accuracy.
following order has been determined to produce the des
convergence rate, assuming an appropriate initial data se
already been specified:

Compute timestepDt from Eq. ~46!,
Evolve g i j using Eq.~4!,
Compute components of the Ricci tensor(3)Ri j ,
Evolve Ki j using Eq.~5! as a single source update,
Solve for K either byKn115Kn1DtK̇ for mean curva-

ture slicing, settingK50 for maximal slicing, or more gen
erally constructingK from the trace of the evolvedKi j ,

Evolve hydrodynamic variables:
Normalize velocity Vz5Sz/S0 using SmSm52M2 and

Eq. ~25!,
Solve for the relativistic boost factorW from Eq. ~26!,
Compute artificial viscosityQ5Qav(D1E1PW)(DVz)2,
0-5
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PETER ANNINOS PHYSICAL REVIEW D 58 064010
whereQav is a constant typically equal to 3 for the approx
mate number of zones used to capture shocks,

UpdateSz in Eq. ~19!, accounting for the gravitationa
acceleration terms,

UpdateSz in Eq. ~19!, accounting for the pressure acce
eration and viscosity terms,

UpdateE in Eq. ~18!, accounting for the compression
heating,Ẇ and artificial viscosity terms,

UpdateD, E andSz in Eqs.~17!, ~18! and~19!, account-
ing for the transport terms,

Construct the ADM matter source termsrH , sj , si j ands
from Eqs.~13!–~16!.

Solve for the lapse function either by settinga51 for
geodesic slicing, evolving Eq.~10! for harmonic slicing, or
solving Eq. ~9! for maximal slicing ~with K̇50! or for a
more general specified slicing condition, i.e. mean curvat
with K(t). Mean curvature slicing can be applied either
specifying K̇ beforehand, or by allowing the evolution t
determineK̇ by imposing a boundary condition ona such
that a51 at the grid edges@10,8#.

The above sequence is repeated twice in the two-
Lax-Wendroff scheme, which is written schematically for t
metric evolution equations as

g i
n11/25

1

2
~g i 21

n 1g i 11
n !22a i

nKi
nS Dt

2 D , ~44!

g i
n115g i

n22a i
n11/2Ki

n11/2~Dt !, ~45!

where the tensor index notation has been dropped here
that subscripts label the spatial zones and superscripts
cate the temporal levels.

Although the evolved data are not constrained to sat
either the momentum or Hamiltonian equations~except ini-
tially!, the residuals of Eqs.~2! and~3! are evaluated during
the evolutions to verify the accuracy of solutions and to c
firm the proper convergence behavior. In solving the ellip
equations for the Hamiltonian constraint and lapse functi
the differential equations are discretized to form anN3N
matrix of equations, whereN is the number of zones alon
thez axis. The resulting algebraic equations are solved us
a tridiagonal algorithm in the case of Dirichlet boundary co
ditions. For periodic boundary conditions, a variant of t
tridiagonal algorithm@8# is implemented to introduce an ad
ditional pass through the matrix solve and eliminate the c
ner elements arising from periodicity.

The timestep is defined as the minimum constraint aris
from considerations of the light speed, sound speed, fl
velocity, cosmological expansion rate, and the magnitude
the artificial viscosity coefficient to maintain stability i
shock flows. Since the timesteps can be nonuniform, an
ditional constraint is placed so thatDt does not vary by more
than 10% per timestep. In summary,

Dt5minH CltDzAgzz

a
,

Cex

aK
,

CexK

K̇
,
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CcsDz

AGP/r
,
CcsDz

Vz
,

CcsDz

4QavDV
,1.13DtoldJ , ~46!

whereaK52] t(Ag)/Ag is a measure of the relative rate o
change of the 3-volume element, and the expressionCexK/K̇
is used in place ofCex /aK for the expansion constraint i
the spacetime is foliated by mean curvature slicings. T
coefficientsClt , Cex andCcs are constants representing th
light speed, expansion, and sound speed Courant fac
Typical values areClt50.05, Cex50.005 andCcs50.4.

V. CODE TESTS

Several benchmark tests of the code are presented in
section. The various tests are chosen to calibrate the co
performance on a number of different physical problem
including evolutions of isotropically and anisotropically e
panding universes, shock generating fluid flows, grav
tional waves in flat and expanding backgrounds, and cos
logical matter perturbations. The convergent nature of
results is stressed in each case.

A. Homogeneous cosmologies

Assuming a diagonal metric of the form

ds252dt21A~ t !dx21B~ t !dy21C~ t !dz2, ~47!

and setting the spatial derivatives to zero and the coordin
and fluid flow lines normal to the spatial hypersurfaces,
homogeneous, but anisotropic, Einstein equations reduc

Ä

A
5

Ȧ2

2A2 2
ȦḂ

2AB
2

ȦĊ

2AC
18pG~r1e2P!12L, ~48!

B̈

B
5

Ḃ2

2B2 2
ȦḂ

2AB
2

ḂĊ

2BC
18pG~r1e2P!12L,

~49!

C̈

C
5

Ċ2

2C2 2
ȦĊ

2AC
2

ḂĊ

2BC
18pG~r1e2P!12L, ~50!

where dots indicate time derivatives. Additional equatio
are provided by the Hamiltonian constraint~or first integral!

ȦḂ

AB
1

ȦĊ

AC
1

ḂĊ

BC
532pG~r1e!14L, ~51!

and the mean curvature slicing condition~with a51!

K̇5
Ȧ2

4A2 1
Ḃ2

4B2 1
Ḋ2

4D2 14pG~r1e13P!2L. ~52!

Also,

r5r0~ABC!21/2, ~53!

e5e0W2G5e0~ABC!2G/2 ~54!
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are solutions to the mass and energy conservation equa
~17! and ~18! with constants of integrationr0 ande0 .

The following four spacetimes are considered: expon
tially expanding deSitter cosmology withLÞ0 and r5e
50; anisotropic vacuum Kasner spacetime withp351/2 and
L5r5e50; dust dominated FLRW model withL5e50
and rÞ0; and radiation dominated FLRW model withL
5r50 and P5e/3Þ0. The various analytic solutions ar
summarized in Table I. The absolute relative errors betw
the numerical and analytic solutions, ie.unumerical-analyticu/
analytic, are plotted in Fig. 1 for each model as a function
the Courant factorCf , defined asDt5Cf3(Cex ,Clt), and
Cex50.005 andClt50.05 are the expansion and light spe
coefficients mentioned in Sec. IV. The errors are calcula
at timest530t0 , t5106t0 , t5106t0 , and t5104t0 , where
t051 is the initial time, corresponding to fractional chang
in proper length scales of roughlye10, 104, 103 and 102

along thez axis for the de Sitter, dust FLRW, radiatio
FLRW, and (p351/2) Kasner tests respectively. As e
pected, the errors scale to second convergent order (Dt)2.

B. Shock tube

To test the shock capturing algorithms and the ability
the code to evolve a rarefaction wave, two shock tube pr
lems are considered: one Newtonian, the other special r
tivistic. In these problems, a~hot, cold! gas is set up to the
~left, right! with no initial bulk fluid motion. The partition
separating the two gases is removed att5t051. The head of
the rarefaction wave then propagates into the denser ga
the local sound speed and a compression wave travels
the lower density gas, forming a shock front. This proble
tests the ability of the code to evolve the three dynam
components of the gas: the rarefaction wave, the contact
continuity, and the shock.

FIG. 1. Results from convergence studies of four different
mogeneous spacetimes: isotropic exponentially expanding de S
isotropic dust-driven FLRW, isotropic radiation-driven FLRW, a
anisotropic Kasner~with p351/2!. The absolute relative errors
unumerical-analyticu/analytic, are plotted as a function of the Co
rant factorCf defined in the text. The numerical solutions conver
as expected with a scaling (Dt)2.
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The initial data for the Newtonian case ise5(2.5,0.25)
and r5(105,0.1253105), and for the relativistic casee
5(20,1027) and r5(10,1), where the two numbers spec
fied for each variable refer to the left and right states resp
tively. In both calculations, the adiabatic index isG55/3, the
artificial viscosity coefficient isQav53, and the grid size is
set to unity and resolved by 400 zones. The relatively la
densities in the Newtonian case are required to set up a t
modynamically nonrelativistic flow such thate/r5e!c2,
wherec is the unit light speed. The Newtonian calculatio
shown in Fig. 2, results in maximum errors of 0.6%, 0.1
and 0.3% for the density, velocity and pressure respectiv
For the relativistic calculation in Fig. 3, maximum errors
17%, 1.4% and 5.9% are found in the density, velocity a
pressure. Increasing the artificial viscosity constant impro
the agreement at the shock front, especially in the more r
tivistic flows as considered here.@The maximum velocity in
Fig. 3 reachesVz/c50.72, corresponding to a Lorentz boo
factor of W5(12V2)21/251.44.# In this case, a value o
Qav510 reduces the differences across the shock front
roughly 50% in the density.

C. Gravitational waves

1. Minkowski background

Gravitational wave perturbations with both polarizatio
are expressed in the flat background and TT gauge as

-
er,

FIG. 2. Comparison of the Newtonian shock tube evoluti
~filled circles! with the analytic solution~solid lines!. The initial
data ise5(2.5,0.25) andr5(105,0.1253105) for the ~left, right!
states. The adiabatic index isG55/3, the artificial viscosity con-
stant isQav53, and the grid is resolved with 400 zones.
0-7
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g i j 5S 12 f g 0

g 11 f 0

0 0 1
D , ~55!

where f and g are functions of the wave-like coordinatesz
6t, and much smaller than unity. To linear order inf andg,
K50 and the trace-free momenta become

Ai j 52
1

2a S 2 ḟ ġ 0

ġ ḟ 0

0 0 0
D . ~56!

The code tests are performed with two different data set

f 5 f 1 sinS 2p

L
~z2t1t0! D

2 f 1 sinS 2p

L
~z1t2t0! D , ~57!

FIG. 3. Comparison of the relativistic shock tube evoluti
~filled circles! with the analytic solution~solid lines!. The initial
data ise5(20,1027) andr5(10,1) for the~left, right! states. The
adiabatic index isG55/3, the artificial viscosity constant isQav
53, and the grid is resolved with 400 zones. The maximum fl
velocity Vz/c50.72 corresponds to a relativistic Lorentz factor
W51.44.
06401
g5g1 sinS 2p

L
~z2t1t0! D

2g1 sinS 2p

L
~z1t2t0! D , ~58!

with grid sizeL51, and

f 5 f 1e2~z2zc2t1t0!2/s2
2 f 1e2~z2zc1t2t0!2/s2

, ~59!

g5g1e2~z2zc2t1t0!2/s2
2g1e2~z2zc1t2t0!2/s2

,
~60!

with grid sizeL510, pulse widths50.05L, and initial cen-
tered positionzc5L/2. Both tests have wave amplitudesf 1
5g151024 and are run to a final timet f53.3t0 . The first
data set represents a standing wave solution, and the se
is composed of two oppositely traveling Gaussian pul
with equal amplitudes but opposite signs.

Figure 4 shows the Gaussian pulse results at the in
t051 ~solid line! and finalt53.3t0 ~filled and open circles!
times, comparing to the corresponding analytic solutio
~dotted and dashed lines!. At the final time plotted, the pulse
have moved outward from the center of the grid where th
were located att5t0 and had exactly canceled to a flat initi
metric. Figure 5 shows the relative errors~as a function of
grid resolution! in f andg for both data sets. The errors sca
with (Dt)2 and (Dz)2 as expected.

2. Kasner background

A prescription for setting up initial wave data in a gene
anisotropic background was described in Sec. III. Conside
here are perturbations of an anisotropic Kasner model@26#

d

FIG. 4. Spatial profiles of linear gravitational pulse waves w
both polarizations. The initial data~solid line! consists of two op-
positely traveling Gaussian pulses with amplitude61024, centered
at the middle of the grid where they exactly cancel themselves
The final solutions for2 f ~open circles! and g ~filled circles! are
shown at timet53.3t0 , wheret051 is the initial time, along with
the corresponding analytic solutions~dashed and dotted lines!.
0-8
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ds252dt21S t

t0
D 2p1

dx21S t

t0
D 2p2

dy21S t

t0
D 2p3

dz2,

~61!

wheret0 is an arbitrary scaling constant and the exponentpi

are subject to the constraintsp11p21p35p1
21p2

21p3
251.

In this case, the inhomogeneous metric can be written
form analogous to Eq.~55!

ds252dt21t4/3~11 f 1!dx2

1t4/3~12 f 1!dy21t22/3dz2, ~62!

where the specific choicep15p252/3 and p3521/3 has
been made for the exponents andf 1(t,z) is a perturbation
function representinge1 polarized waves propagating alon
the z axis. Assuming a spatial dependence of the formf 1
5 f (t)sin(kz), the Einstein equations reduce to

d2f

dt2
1

1

t

d f

dt
1t2/3k2f 50, ~63!

with solution

f 15 f 1
~0!J0S 3

4
kt4/3D sin~kz!, ~64!

where f 1
(0) is a constant andJ0(x) is the Bessel function o

order zero. In the short wavelength limit, Eq.~64! reduces to

f 15 f 1
~0!A 8

3pk S 1

t D
2/3

cosS 3

4
kt4/32

p

4 D sin~kz!, ~65!

and the solution decays liket22/3 as the background mode
expands.

FIG. 5. Convergence study of the errors found in evolving l
earized gravity waves of both polarization states. Results from
different data sets are shown: sinusoidal standing waves and o
sitely traveling Gaussian pulses. Both initial data sets are defi
with wave amplitudes of 1024. The errors are computed at timet
53.3t0 , where t051 is the initial time, and scale as (Dt)2 and
(Dz)2.
06401
a

For the code test, the wave number is set tok52p/L and
the grid lengthL to one-third of the horizon size, using 10
zones to resolve the domain. The rate of decay found in
numerical calculations is compared to the analytic predict
in Fig. 6, where the quantityugxx2ḡxxu/ḡxx is plotted for the
perturbation amplitude, andḡxx is the homogeneous back
ground value. The numerical and analytic results ag
nicely in both the amplitude and oscillation frequencies.

D. Cosmological density perturbations

The metric for pressure-free density perturbations in
expanding flat universe is written in the longitudinal gau
as @27#

ds252~112F!dt21a2~122F!d i j dxidxj , ~66!

wherea5(3H0t/2)2/3 is the cosmological scale factor,H0 is
the present-day Hubble constant,F(z) is a time independen
~for the growing modes! function defining the Newtonian
gravitational potential,

r5r0S 11
2a

3H0
2 ¹z

2F22F D , ~67!

sz5
gzzSz

Ag
52

H0

4pG
a27/2¹zF52

1

12pG
gzz¹zK,

~68!

are the matter density and momentum respectively, andr0

53H0
2/(8pGa3) is the background average density. The im

plied slicing condition

a511F, ~69!

K523H0a23/2~12F!, ~70!

-
o
o-
d

FIG. 6. The maximum value ofugxx2ḡxxu/ḡxx , whereḡxx is the
average background value, is plotted as a function of time for gr
tational waves traveling through the Kasner model withp15p2

52/3 andp3521/3. The absolute value of the wave amplitud
shown to 25 oscillation periods, decays as predicted by the ana
result t22/3 ~solid line!.
0-9
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PETER ANNINOS PHYSICAL REVIEW D 58 064010
can be maintained to perturbation order by a trivial extens
of the algebraic condition~8! with G(g)51, or by solving
Eq. ~9! with K̇ computed from Eq.~70!. However, as dis-
cussed in the following paragraphs, maintaining this ga
condition can be problematic in numerical evolutions.

Two tests of density evolutions, characterized by the
moving perturbation wavelength in relation to the comovi
horizon scaleLH52Aa/H0 , are presented in this sectio
For perturbations with wavelengthl@LH , the relative den-
sity fluctuations freeze as they are coupled to the expan
background. Forl!LH , linear perturbations can grow an
matter collapses at the rateDr/r}a}t2/3, as suggested by
Eq. ~67!.

Figure 7 shows the relative errors ingzz and r, and the
absolute difference errors inSz as a function of grid resolu
tion for the super-horizon (l@LH) scale perturbations. Th
initial data is a sine wave perturbation in the potentialF
5F0 sin(2pz/L), with F051025 and comoving grid sizeL
5103LH . The errors are evaluated at timet5106t0 corre-
sponding toL/LH;10 after thez axis expands by a factor o
104 in proper length, and scale as (Dt)2 and (Dz)2. The
apparent larger errors inSz are attributed to plotting the ab
solute~and not relative! differences between the analytic an
numerical solutions, sinceSz is a sinusoidal perturbation
around zero. Scaling the results by the amplitude of osc
tions in Sz ~which grow asa3/2}t!, the momentum errors
become smaller than those in the density. The results
super-horizon scale perturbations are robust and not e
cially sensitive to slicing or gauge errors, even though th
perturbations are nonlinear in the sense that they coupl
the background expansion. However, for perturbatio
smaller than the horizon scale, the numerical evolutions
susceptible to gauge drift instabilities. In particular, evo

FIG. 7. Convergence study of the errors found in evolvi
super-horizon scale perturbations in the flat density domina
FLRW model. The initial data is a sine wave perturbation w
amplitude 1025 in the gravitational potential and comoving wav
length l5103LH , whereLH is the horizon length. The errors ar
computed at timet5106t0 after the universe has expanded a fac
of 104 along thez axis andL/LH;10. The displayed errors are th
relative normalized differences forgzz and D, and the absolute
differences inSz . The errors scale as (Dt)2 and (Dz)2.
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tions in which the slicing condition is fixed by some analy
~geodesic or near-geodesic! prescription, i.e. by explicitly
enforcing Eqs.~69! and ~70!, are unstable.

The metric componentgzz is shown in Fig. 8 from five
different simulations of sub-horizon scale perturbationsl
!LH) using 100 zones and the following methods to co
pute the gauge variables:

Case~A!—Specifyinga using Eq.~69! and reconstructing
K from the evolvedg i j andKi j ,

Case~B!—Specifyinga andK using Eqs.~69! and ~70!,
Case~C!—Solving Eq.~9! for a and reconstructingK,
Case~D!—Solving Eq.~9! for a and specifyingK using

Eq. ~70!,
Case~E!—Similar to ~C!, but also implementing a varian

of the ‘‘K-driver’’ method @28,29#.
The same sinusoidal perturbation form and amplitude

used as in the super-horizon calculations, but with wa
length l5LH at the initial time t051. Unlike the super-
horizon case, fluctuations at sub-horizon scales can grow
the point where particle trajectories cross, or form shocks
a pressure fluid. An estimate for the time of collapse is
rived by setting the amplitude of the density perturbati
~67! to unity. This gives

tcoll5t0S x2

2p2F0
D 3/2

, ~71!

where the comoving wavelength is parametrized byl
5xLH at t5t0 and, for the prescribed initial data,tcoll;4
3105t0 . To assure the solutions remain in the linear regi
for the code tests, the evolutions are terminated att5103t0
whenl;1021LH .

d

r

FIG. 8. Results from five different simulations of sub-horizo
scale perturbations in the flat density dominated FLRW model. T
initial data is a sine wave perturbation with an amplitude 1025 in
the gravitational potential and a comoving wavelengthl5LH

which is resolved with 100 zones. The solutions for (gzz

2ḡzz)/ḡzz are shown at timet5103t0 whenL/LH;1021. The evo-
lutions are unstable for cases~A! and ~B! in which the lapse func-
tion is fixed to a predetermined slicing condition that approxima
geodesic slicing.
0-10
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As shown by Fig. 8, the evolutions are unstable for b
cases~A! and~B! which specify an analytic form for a laps
function approximating geodesic slicing. When the lapse
allowed to vary during the spacetime evolution, the Euler
observers can accelerate in response to changes in the
geometry~whether physical or numerical! and the solutions
stabilize. Although significant differences can be observ
between the analytic and numerical results in Fig. 8,
stable numerical solutions in cases~C! and ~D! are conver-
gent, as demonstrated in Fig. 9 where the normalized de
tions in gzz are plotted at three different grid resolutions f
the case~D!. Figure 10 shows that the errors ingzz converge
to zero quadratically in both time and space. The conv
gence study is performed on the metric componentgzz since

FIG. 9. Sub-horizon scale perturbations in the metric funct

(gzz2ḡzz)/ḡzz at time t5103t0 for the flat density dominated
FLRW model. Results from four different resolution grids a
shown for case~D! in Fig. 8 and found to converge quadratically
the analytic solution.

FIG. 10. Convergence study of the errors ingzz, the metric
component most susceptible to the gauge instability. Also show
the residual of the Hamiltonian constraint. Both curves scale q
dratically with resolution to the analytic solution and zero, resp
tively. The errors are shown for the stable case~D! in Fig. 8.
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it displays this gauge drifting behavior most prominantly.
fact, gxx , gyy , r and Sz are not visibly affected and the
continue to match the perturbation solution nicely, ev
when gzz develops the noise evident in Fig. 8. The Ham
tonian constraint residual~2! is also plotted in Fig. 10 to
confirm that errors in the Hamiltonian converge to zero q
dratically as expected.

Finally, the case~E! in Fig. 8 is similar to case~C! except
Eq. ~9! is solved after replacingK̇ with

K̇5K̇* 2c0~K2K* !, ~72!

where K* is the ‘‘target’’ value defined by Eq.~70!. As
observed in Fig. 8, this method tends to driveK exponen-
tially to K* over a characteristic time scale determined
the coefficientc0 . To prevent the solutions from changin
too rapidly, which can result in unstable evolutions,c0 is
scaled relative to the Courant timestep asc051023/Dt. This
procedure has proven to be effective in dealing with gau
drifting and numerical errors in simulations of asympto
cally flat spacetimes when the maximal slicing conditi
K50 is imposed@28,29#. Here, of course, spacetime cann
be globally foliated withK50 slices since the models ar
expanding, and one can, in general, expectK to vary signifi-
cantly over the dynamical time scales. As a result, althou
the procedure is effective in maintaining the slicing con
tion ~69! and~70!, significant cell-to-cell oscillations can re
sult during the evolutions, especially ifK is driven to the
target too rapidly in comparison to either the dynamical c
lapse or cosmological expansion time scales.

VI. SUMMARY

A numerical code has been developed as a tool to inv
tigate fully nonlinear behavior in the coupled Einstein fie
and hydrodynamic matter equations for plane-symme
cosmological spacetimes. It has been tested against a va
of analytic solutions, including vacuum anisotropically e
panding cosmologies,L-, dust- and radiation-driven isotro
pic spacetimes, gravitational waves in flat and anisotro
cally expanding backgrounds, sub- and super-horizon s
density perturbations in FLRW models, and both Newton
and relativistic shock tube evolutions to test the shock c
turing routines. The code was demonstrated to be sec
order accurate in both time and space, with errors that s
as (Dt)2 and (Dz)2 for the smooth field evolutions. Al-
though the evolutions are carried out in an unconstrai
manner, the Hamiltonian and momentum constraints are
nitered during the evolutions to verify convergence and
degree to which the Einstein equations are satisfied in g
eral nonlinear calculations.

An important improvement over the previous treatme
in references@9,10,7,8,3# is the generalization to a nondiago
nal metric with arbitrary components restricted only by t
Hamiltonian and momentum constraints. This allows
both e1 ande3 polarized gravitational waves, and for mo
general classes of anisotropic and inhomogeneous cos

n

is
a-
-
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logical models to be investigated. Additional features inclu
a cosmological constant allowing for de Sitter spacetim
hydrodynamic ideal fluid sources, a broader selection of s
ing conditions, and more general boundary conditions to s
port periodically identified cosmologies as well as asympt
cally flat spacetimes. The code is robust enough to mo
nonlinear behavior in the gravitational field, as well as
highly dynamic flows of the matter component and their
. D

nd
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teraction. Results from strong field nonlinear studies will
presented in future papers.
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