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General relativistic corrections to the Sagnac effect
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The difference in travel time of corotating and counterrotating light waves in the field of a central massive
and spinning body is studied. The corrections to the special relativistic formula are worked out in a Kerr field.
An estimation of numeric values for the Earth and satellites in orbit around it show that a direct measurement
is on the order of concrete possibiliti§&§0556-282(98)06616-§

PACS numbd(s): 04.20.Jb, 04.80.Cc

[. INTRODUCTION and ring laser$2] allowing unprecedented precisions in in-
terferometric and frequency shift measurements. The great
The fact that the round trip time for a light ray moving accuracy of these measurements poses the problem of higher
along a closed patfthanks to suitably placed mirrgravhen  order corrections to Eq(l), which have been sought for,
its source is on a turntable varies with the angular speefl  usually in the special relativistic approach. It seems, how-
the platform may be thought classically as obvious. Furtherever, not to be unreasonable to consider also general relativ-
more that time, for a givew, will be different if the beam is istic effects due to the fact that the “turntable” is massive or
corotating or counterrotating: longer in the former casethat the observer is orbiting a massive and rotating body.
shorter in the latter. This difference in times, when superim-This is precisely the scope of the present paper. A previous
posing the two oppositely rotating beams, leads to a phaseork with an aim similar to this was published by Cohen and
difference with consequent interference phenomena or, in thilashhoon [20]; they worked in parametrized post-
case of standing waves, to a frequency shift and ensuintyewtonian (PPN first order approximations and obtained
beats. According to Stedmdn] this phenomenon was an- results consistent with those presented in this paper.
ticipated by Lodge at the end of the 19th century and by Section Il contains the derivation of the delay in returning
Michelson at the beginning of the 20th. Experiments werego the starting point for a pair of oppositely rotating light
actually performed by Harre$4,3], without being aware of beams in a Kerr field, in the case of an equatorial trajectory
what he observed, and by Sagnd¢in 1913 and the inter- of the rotating observer. Both exact and approximated results
ference effect we are speaking of was since named after hinare obtained. In Sec. Il the case of a polar trajectory is
Sagnac was looking for an ether manifestation and his apreated. Section IV specializes the formulas for a freely fall-
proach was entirely classical, but a special relativistic explaing observer(circular equatorial orbjt Section V presents
nation was soon found giving, to lowest orderdnthe same some numerical estimates of the corrections to the usual Sa-
formula for the time lag between the two light beams gnac effect, due to the mass and angular momentum of the
Earth. Finally Sec. VI contains a short discussion of the pos-

S sibility to measure some of the calculated corrections.
or= 4? w. (1)

Sis the area of the projection of the closed path followed by Il. SAGNAC EFFECT ON A MASSIVE ROTATING BODY

the waves to contour the platform, orthogonal to the rotation The Kerr metric describes a rotating black hdetually a
axis,c is the speed of light, and is the rotational velocity of rotating ring singularity. We begin studying it because it
the source or receiver. The phenomenon is manifested fallows for some exact results and, when suitably approxi-
any kind of waves, including matter waves. The Sagnac efmated, may be used to describe the gravitational field around
fect has indeed been tested for light, x r§g$ and various a rotating massive body. The Kerr line element in Boyer-
types of matter waves, such as Cooper gdifsneutrong 7], Lindquist space-time coordinates[i21]

Cd" atoms[8], and electron$3]. A lot of different deduc-
tions of Eq.(1) have been given all showing the universal

2 2 212
character of the phenomenon; examples are R6f9—17. _r"—2G(M/c)r+alc

2
(cdt—gsin20d¢)

Basically the Sagnac effect is a consequence of the break of r’+(a%/c?)cos6
the univocity of simultaneity in rotating system%8]: this 5
was recognized very early and has also had a direct experi- Sirfe 5 a®
mental verification using identical atomic clocks slowly - 2+ (a2/c?)coh re+ 2 d¢—adt
transported around the wor[d9].
The Sagnac effect has found a variety of applications both r2+(a%/c?)cofo
for practical purposes and fundamental physics, especially - > > 2
after the generalized introduction, after the 1960’s, of lasers r°—2G(M/cr+a‘lc

a2
r’+ — cos6 |de>.
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Here M is the (asymptoti¢ mass of the source aralis the R2—2G(M/c?®)R+a?/c? a \?
ratio between the angular momentuhand the mass: R2 1- 2@
J 1 a’\ o al?
a=—. - = 2| ———| =
M R [( R+ =) ¢l =0 (4)

Everything is seen and measured from its effects far awajow w is an unknown; solving Eq4) for it one finds two
from the black hole, where space-time is practically flat.  values:

1
=T 222+ 2G(MIc*R)a%+ R?

A. Equatorial effect QO

Let us now assume that the source or receiver of two
oppositely directed light beams is moving around the rotat-
ing black hole which generates the gravitational field, along
a circumference on the equatorial plane. Suitably placed mir-
rors send back to their origin both beams after a circular trif}— is actually negative wheR exceeds the Schwarzschild

2

M a M
X Zngﬁaic E2+R2—2c3€zR. (5)

about the central hole. limit 2G(M/c?). _
In this caser = R=const andd= /2; the line element is The rotation angles for light are then
OISZ_R2—2G(|\/|/c2)R+ a?/c? -y 2 $.=0Q.t. (6)
a R? cdt=cd¢ Eliminatingt between Eqs(2) and (6),
1 ) a? 2 _Q:
—ﬁz R +Eg d(j)—adt (/)i—w—o(f)o.

Let us then assume that the rotation is uniform, so that th&/ow we proceed by applying the geometrical four-
rotation angle of the source or observer is dimensional approach that may be found in REf4,22,18§.
The first intersection of the world lines of the two light rays

$o= wqt. (2)  with the one of the orbiting observer after the emission at
timet=0 is when

Then
¢+ = ¢O+27T=
R?—2G(M/c?)R+a?/c? a |2
ds’= R? ( ~ 2% b_=po— 21,
1 a®\ o al? €.,
—@[ R+ —O—E ](cdt)z. &) 0.
7@‘)02 ¢Oi 2’7T
For light moving along the same circular path it must be
ds=0 which happens when Solving for ¢,
27w 27wg
bo+=+ ==+ 0

Q.—wo  {1[a%c2+2G(M/c*R)a’+ R H[2G(M/c?R)a+c\a% c2+ R2— 2G(M/c?)R] — wo}

The proper time of the rotating observer is deduced from(Bgcalling in Eq.(2):

M a?
dr= \/< R2—2GgR+g

Finally, integrating betweeg,_ and ¢,. , we obtain the Sagnac delay

, M a? a 2 , a?
o= R —ZG?R-F? 1—?0)0 —|| R +—2

or explicitly [using Eq.(7)]

a
1-=Sw
20
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4 (a’RZ+2GMa’+R3c*) wy—2c’GMa

oT

®

CcR V1-(2/R)G(M/c?) +4G(M/c*R)aw,—[a2/c*+2G(M/cPR)a2+ (R¥c?) Jwd

This result has some features which are typical of a KeriThe quantitydr, doubles the Sagnac delay due to the Lense
geometry. We see, for instance, that the delay is zero wheand Thirring precession, i.e., to the pure drag by the rotating

the angular speed of the orbiting observer is

B 2c’GMa
a?RE+2GMa2+R3c?
(GM/c?R)(alR?)
1+ 2(GM/c?R)(a%/c’R?) +a®/c?R?

Wn

and provideda+ 0.

mass.

B. Approximations

As we have seen, the deduction of exact results in a Kerr
metric, at least in the special conditions we assumed, is
rather straightforward, but of course in most cases many
terms in the equations are very small. This means that a
series of approximations are in order, though it is not neces-
sary to introduce them from the very beginning as others did

This is the velocity of the “locally nonrotating observ- [28,29. _
ers” of the Kerr geometryi23]. these are equivalent to the ~ Let us first assume th@= woR/c<1, consequently de-
static (with respect to distant starsobservers of the Veloping Eq.(8) in powers ofg and retaining only terms up

Schwarzschild geometry for which no Sagnac effect would© the second order. The result is
be present either.

. ' " . T a
Vice versa when the observer keeps a fixed position with 5. _g__ gm
respect to distant starsof=0) a time lag, hence a Sagnac 'R [1-(2R)G(M/c?)]Y?
effect, is still present, again under the condition thatO. 47R 22 GM
The time lag is + s 1t 5 —2——| B
c[1-(2/R)G(M/c9)] R°c c’R

5 5 8 GM a

T(w=0=0Tg=— 8T ——

(=0 770 ¢*R V1-2(GM/C?R)
G J

=—8mr—— :
c’R V1-2(GMI/C?R)

Cohen and Mashhod[20] found the first order approxima-

tion of this same result, which they actually calculated for a
static observer sending a pair of light beams in opposite di-
rections along a closed triangular circuit, rather than along a X

circumference.

GMa 1+a?/c?R? — (2/IR)(GM/c?)

—12
TR~ [1-(2R)G(MIcD) ]
(9) or
o 5r 4 a® GM
T=0T —2——
O [1-(2R)G(M/cA)T2 | T R%2 T ¢?R

RA GMa 3 ﬂz
c’R 1-(2/R)G(M/c?)

The delay(9) is nothing else than the gravitational ana- ) _ _
logue of the Bohm-Aharonov effe24]. In fact the Sagnac _ NOW assume also that= GM/c“R<1. To first order ine
effect is a sort of inertial Bohm-Aharonov effdd0,25 and 1S

what we found is an exact expression for a rotating ring
singularity, whereas Ref26] gives an approximated but not

simpler result.

pree—8 et amn| 14 2
R R Rarocly

Now recalling the Lense-Thirring effect one has a preces-

sion velocity[17,2,27 which, in our geometry and notation,

for an equatorial observer is

GJ
w = .
We see that
w 7R2
5TQ:8£

c2 J1-2(GMI/c?R)’

+

R R
—-8m—+127—
C C

a2
1+ - 2)‘|6ﬂ

2

1+

a
— 127~ )6[32.
C

R?c?
If a/Rcis at least as small as

Sr=— 8 aetdm (14 127GM —— g2
T= gae WE( E),B 7 ﬁﬂ
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explicitly and callingé7g the usual Sagnac effect For light it is of courseds=0 which happens when
eV oM OM 8 RZ—2GMR+az 2—a’sirfg
57‘——87Tac4—R+47TE 1+C2_R ,8—127704—Ra,8 2 2 c —a“si
2 2 2
GM  RGM GM a 2, 8 ) (d”) _
S =M R5M LMa —|R?+ = cogd| | —| =0.
=OT1g 87TaC4R+47TC2 o2 wo— 127R o Czwo c? dt
(10 Solving for the angular speed we find that it is no longer
evidencing the angular momentum constant:
GJ R GM GJ do  VJ[R2—2G(M/c?)R+ (a2/c?)]c?— a%sirtg
=075~ 8T ——t4T— —wo— — wg. —==
67=0Tg 87TC4R 477'(:2 =2 wo—127R = 0 at R+ (a2/c?)co2d

11

The usual Sagnac effect is recovered when the terms containiS differential equation is easily solvable whe/c*R®
ing GM and J are negligible. On the other side, a second<1: To first order and assumirig=0 when =0,
order correction ian (B?) is present only if the angular
momentum of the source is considered. R

In these approximations the terms containihgoincide t= PPy
with the first order(in J) corrections to the Schwarzschild c[1-2G(M/cR)]
field. This fact allows us to apply the formulas to the simple 2 2
case of a rotating spherical object whose radiuBqjs Now + aq1-4G(M/c'R)]
the angular momentum may be expressed-as(),, where 2¢R[1-2G(M/c?R)]%?
O is the rotational velocity of the sphere ahds its mo-
ment of inertia. If, just to fix ideas, we assume the object t0 o
have uniform density, one has o

7}
f co<6'de’,
0

| = o R5—2MR2 t= R 0
~ 15PN 5 Mo c[1-2G(M/c2R) ]2
Hence the value foa is approximately aZ[1-4G(M/c?R)]
+— 5 3/2(0050 sin 6+ 6),
5 4cPR[1-2G(M/c?R)]

and finally
Then for a fixed observer looking at the Earth from the dis-
tanceR it comes out that

a - Cc
R . [1-4G(M/c?R)]
64 ,Gp RS0, 16 GM R3 c[1-2G(M/c?R)]Y2  4c®R[1-2G(M/c?R)]%?
57’02__ _4 = =T 4 T 0-
15 C R 5 C R . 32[1—4G(M/CZR)] r(ze)
Sl .
Ill. POLAR (CIRCULAR ) ORBIT 8c3R[1-2G(M/c?R)]%?

It may be interesting to study a circular trajectory con- ) ) )
touring the central mass passing over the poles also. In thidt the same time the rotating observer describes the ahgle
case it is agaim =R, but now ¢=const and, retaining uni- While light travels an angle 2= 6, (+ for the corotating

form motion, #= wqt. Then beam,— for the counterrotating one
_R2—2G(M/c2)R+a2/c2C20It2 b0 R . a[1-4G(M/c?R)]
R%+ (a%/c?)cof(wot) wo | c[1-2G(M/c®R)]¥?  4c®R[1-2G(M/c?R)]¥?
Sirf(wot) ) a’[1-4G(M/c?R)]
- dt? X (27 ) * sin(26,).
R2+(az/02)0052(w0t) (2m O) 8C3R[1—2G(M/C2R)]3/2 n( 0)
a_2
— | R2+ — Cog(wot)lwgdtz- (120  Assume, as we did already, a low speed observer and we
expect ¥, to be little enough for sin(@)=26,. Then
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6o R a’[1-4G(M/c?R)] a’[1-4G(M/c?’R)]
wo | c[1-2G(M/c®R)]¥?  4cR[1-2G(M/c?R)]%?

T 4c3R[1-2G(M/c?R) 32 °
Solving for 6, one obtains two results,

2¢’R[1-2G(M/c?R)]+ 2 a?[1- (4AGM/c?R)]
ar .
(cPR/wp)[1-2G(M/c?R) ¥+ c?R1-2G(M/c?R) ]+ 3 a’[1- (4GM/C?’R)]

Finally the difference in round trip times as seen from an inertial reference firawalling the approximation already used for

the solution of this cagaesults in

60+ - 00_

t,—t_ _—wo
3+7B%2—6(GM/c?R

i 32 ( 5 )] [1-6(GM/c?R)+8(G2M?/c*R?)](a%/c’R?)
[1+B8°—2(GM/c“R)]

e [1-2(GM/c?R)3+[1-2(GM/c?R)]2B> o

m2 4[1-2(GM/c?R) >+

(13

For a=0 the usual relativistic Sagnac effect is recovered. For short enough time intervals the integrand may be ap-

To first order ine Eq. (13) becomes proximated as
C R® wo 3+7p7 @ . 8 GM 1-2G(M/c?R)+a?/c?R? a? | R2w2|™?
R T 1+ 8% ¢c?R?> 1+pB%2c°R 1+ a2/c?R2 -1 2R2| o2
and finally to first order ing, +0(t?)
R? a? M and, after integrati
o il , gration,
t, t_—7TC2 4+3C2R2+8C2R)w0 (14 .
_ o _ 1-2G(M/c?R) +a?/c?R? a? | R?w]
The correction for the moment of inertia of the source is 7= > s - > 5
interestingly independent from. It is indeed 1+a’/c’R c’R?) ¢
a? Adopting the usual approximations,
377—4w0,
’ 2
~ _ _ _R2_-
which for a sphere in nonrelativistic approximation is 7=\ 1-2G 2R R c2 t.
12 Rj
2_577ng(1)0. Then
2
In order to obtain what the rotating observer sees the re- 81y~ \/1_2(;“2/'__ sz_: (ty—t_)
sult must be expressed in terms of his proper time. This is c‘R c
done on the basis of E412):
and explicitly (first order inB and )
j [ R2—2G(M/c?)R+ (a2/c?)
T= 2 2
2 272 R a GM
R+ (a%/c?)co(wot) 51y~ _2(4+3 ——+4—— | wg
. 2 c cR cR
Sir?(wot) a
T2 2,2 2 T
RE+(@%c)cosi(wot) = Srs+ — (3a+ 4RGM)awyp. (15
c

R*+ — co§(wot)1 —O] dt.
c? c?

Comparing with the “equatorial” situation one has
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67— 0 8 G—M 3 —a2 (16 ) 1) +16 —G M (20)
T—Oo0T.=—87ra — 31T wA. T+=0Tg+ Ta .
P c¢’R et 0 - = ‘R
IV. GEODESICS V. NUMERICAL ESTIMATES

Now we specialize the previous results to a freely falling It is interesting to estimate numerical values for the cor-
observer: his orbit will then be geodesicuif is the velocity ~ rections in the case of the Earth as a central body. Now the
four-vector and™%, the Christoffel symbols, the equation of 'elevant data are
the geodetics isu*/ds+T1"% u®u”’=0, wheres coincides R.=6.37%1F m
with the observer’s proper time e - '

(_Zontinuing to use B_oyer-Lianuist coordinat(epneralii 0,=7.27x10"5 rad/s,
zation of Schwarzschild coordinajewe are interested in
constant radius orbits for which

M
G —=4.4x10"2% m,
r=R, c?

u'=0. a,=9.81x10° m?s.

From the geodesic equations and applying these conditions On the surface of the Earth and if the circular path of the
one obtains the¢anogular speed of the motion about the synight rays were the equator, the usual Sagnac delay would be
metry axisw=u®/u”; actually there are two different values _
for the two possible choices of the rotation with respect to 57s=4.12x10 " s. (2D)
the orientation of the angular momentum of the source
These angular velocities are in general complicated function
of ¢, this is no problem as long ag=const, i.e.,u’=0.
Considering this simplified situation and introducing the A=vé7s. (22)
Christoffel symbols appropriate to the Kerr metric, the rota-
tion speeds turn out to be Considering that for visible light~10'* Hz one has a
titanic shift of ~ 10" fringes. This number makes sense only
2aGMc+c?\3a’G’M?+ GMc*R® if the source has a coherence length as big as at least 123.6 m
= 2GM— c*R3 . which is much but not impossible. What actually matters,
however, is the value of Eq22) modulo an integer number,

. : o . ' which is of course a fraction of a fringe. The problem is that
Recalling now Eq(8) and using Eq(17) itis possible to find the knowledge ofA requires an accuracy of better than, say,

an exact expression for the time lag for a freely falling obJect1 part in 16 and this in turn depends mainly on the accuracy

In circular equatorial orbit. and stability of the parameters entering the expression of
It is, however, simpler to develop E(L7) up to first order y P 9 P

This quantity can be converted into a fringe shift multiplying
By the frequencw of the light as seen by the observer:

w +

. . 57’5.
in a/ck: The correction due to the pure mass contribution
47(Ry 1¢?)(GM, /c?)Q, , is 2.84<10 ¢ s, nine orders of
ahz:f /Gﬂ—iﬂa (19) magnitude smaller than the main term. The corresponding
S = c2R R2c2R fringe shift is~10 2.

The correction calling in the moment of inertia of the
Recalling Eq.(10) and introducing Eq(18) we end up with  planet at the lowest order if)., —8ma(GM/c*R), is
—1.89x10 %s. Again a~10 ? fringe shift. These shifts
are in principle observable, provided one could find the ref-

R GM GM GM a ; .
5rt=8wa7t4w— 1+ —= 2—+22— R erence pattern from wh|ch they should b_e measured, i.e., the
c'R c c°R c‘R  cRC value of A modulo an integer number. Finally the last cor-
rection in Eq.(10) —127(GM,/c®)R,a0?, is —6.76
_ 14775 ﬂ_l_ %a%. X 10728 overwhelmingly small.
c c?R c¢’R Let us now consider an orbiting geodetic observer and
assume, just to fix numbers, that its orbit radiusRis 7
Now the traditional Sagnac effect is x10° m. The main Sagnac term i€9), whose numeric
value is
STes= ii_j JGMR (19) 857¢=7.35x107% s. (23
The fringe shift is~10° and the necessary coherence length
SO we may write would be greater than-1000 m. Considering that one is
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now able to emit light pulses as short asl0 ° s or less, the gravitational field the corrections are indeed very tiny,
both Sagnac delay@1) and(23) could be measured directly but per se in the range of what current optical interference

as such. measurements allow, provided a convenient z¢fure”
The first correction to Eq(23) is 16ra,(GM,/c*R)  Sagnac termis experimentally fixed.
whose value is 4.1610 ¢s, i.e.,~10 2 fringes. If the When considering devices such as ring lasers, where

orbit is polar with the same radius and angular veloeity ~ Standing oppositely propagating waves form, the Sagnac

_ A ; time difference is automatically converted into a frequency
UR((LR)GM,  the corrections  are[see Eq. (19)] shift and in general a fractional frequency shift may well be

m/c*(3a’+4RGM)wg, ie., (w/c?)(3a5/R) VG(M&/R)  easier to measure than the equivalent fringe shift. Of course,
+4(m/c*)GMgG(M, /R). The value of the first term is  here the difficulty is in stabilizing standing electromagnetic
1.3910 *®s (~10"* fringes and that of the second is waves around the Earth, either in space or on the surface of
4.84x10*°s (~10* fringes. Considering the mass con- the planet. However, what is hard for light might not be so
tribution, the situation is a little bit better than for the equa-using radiowaves, provided their Sagnac effect was not re-
torial orbit. Furthermore, when the differen¢¥6) is evalu-  duced too much.

ated we obtain precisely 1.3910" *® s: this, as we said, is of ~ Apparently there is also the possibility to exploit the dif-
the order of 10 fringes. It is a very small value, but it is ference between clockwise and counterclockwise rotating

obtained comparing two experimental fringe patterns withoubbservers. In fact, considering E¢$9) and(20), we see that
any reference to the basic Sagnac effect.

GM
VI. DISCUSSION A(57)=57+—|5T_|=327Ta&—R.

Starting from the exact results for a Kerr metric and con-
sidering suitable approximations of them we have obtainedNumerically, for satellites orbiting the Earth &R=7
the corrections to the Sagnac effect that the mass and angularl0® m, one hasA(87)=5.8x10 2/, corresponding to a
momentum of a rotating object introduce. These are concemifference in the positions of the interference patterns of
tually important, evidencing and strengthening the analogy-10~*2 fringes: absolutely unperceivable. Summarizing we
between the Sagnac effect and the Bohm-Aharonov effectonclude that experiments to test the existence of the lowest
particularly relevant to this purpose is ti#&, of Eq. (9). order general relativistic corrections to the basic Sagnac ef-
Unfortunately, when considering the Earth as the source ofect we computed are in the range of feasibility.
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