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General relativistic corrections to the Sagnac effect

A. Tartaglia*
Dipartimento Fisica, Politecnico, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

~Received 4 November 1997; published 10 August 1998!

The difference in travel time of corotating and counterrotating light waves in the field of a central massive
and spinning body is studied. The corrections to the special relativistic formula are worked out in a Kerr field.
An estimation of numeric values for the Earth and satellites in orbit around it show that a direct measurement
is on the order of concrete possibilities.@S0556-2821~98!06616-8#

PACS number~s!: 04.20.Jb, 04.80.Cc
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I. INTRODUCTION

The fact that the round trip time for a light ray movin
along a closed path~thanks to suitably placed mirrors! when
its source is on a turntable varies with the angular speedv of
the platform may be thought classically as obvious. Furth
more that time, for a givenv, will be different if the beam is
corotating or counterrotating: longer in the former ca
shorter in the latter. This difference in times, when super
posing the two oppositely rotating beams, leads to a ph
difference with consequent interference phenomena or, in
case of standing waves, to a frequency shift and ensu
beats. According to Stedman@1# this phenomenon was an
ticipated by Lodge at the end of the 19th century and
Michelson at the beginning of the 20th. Experiments w
actually performed by Harress@1,3#, without being aware of
what he observed, and by Sagnac@4# in 1913 and the inter-
ference effect we are speaking of was since named after
Sagnac was looking for an ether manifestation and his
proach was entirely classical, but a special relativistic exp
nation was soon found giving, to lowest order inv, the same
formula for the time lag between the two light beams

dt54
S

c2 v. ~1!

S is the area of the projection of the closed path followed
the waves to contour the platform, orthogonal to the rotat
axis,c is the speed of light, andv is the rotational velocity of
the source or receiver. The phenomenon is manifested
any kind of waves, including matter waves. The Sagnac
fect has indeed been tested for light, x rays@5#, and various
types of matter waves, such as Cooper pairs@6#, neutrons@7#,
Ca40 atoms@8#, and electrons@3#. A lot of different deduc-
tions of Eq.~1! have been given all showing the univers
character of the phenomenon; examples are Refs.@6,9–17#.
Basically the Sagnac effect is a consequence of the brea
the univocity of simultaneity in rotating systems@18#: this
was recognized very early and has also had a direct exp
mental verification using identical atomic clocks slow
transported around the world@19#.

The Sagnac effect has found a variety of applications b
for practical purposes and fundamental physics, espec
after the generalized introduction, after the 1960’s, of las
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and ring lasers@2# allowing unprecedented precisions in in
terferometric and frequency shift measurements. The g
accuracy of these measurements poses the problem of h
order corrections to Eq.~1!, which have been sought for
usually in the special relativistic approach. It seems, ho
ever, not to be unreasonable to consider also general rel
istic effects due to the fact that the ‘‘turntable’’ is massive
that the observer is orbiting a massive and rotating bo
This is precisely the scope of the present paper. A previ
work with an aim similar to this was published by Cohen a
Mashhoon @20#; they worked in parametrized pos
Newtonian ~PPN! first order approximations and obtaine
results consistent with those presented in this paper.

Section II contains the derivation of the delay in returni
to the starting point for a pair of oppositely rotating lig
beams in a Kerr field, in the case of an equatorial traject
of the rotating observer. Both exact and approximated res
are obtained. In Sec. III the case of a polar trajectory
treated. Section IV specializes the formulas for a freely fa
ing observer~circular equatorial orbit!. Section V presents
some numerical estimates of the corrections to the usual
gnac effect, due to the mass and angular momentum of
Earth. Finally Sec. VI contains a short discussion of the p
sibility to measure some of the calculated corrections.

II. SAGNAC EFFECT ON A MASSIVE ROTATING BODY

The Kerr metric describes a rotating black hole~actually a
rotating ring singularity!. We begin studying it because
allows for some exact results and, when suitably appro
mated, may be used to describe the gravitational field aro
a rotating massive body. The Kerr line element in Boy
Lindquist space-time coordinates is@21#

ds25
r 222G~M /c2!r 1a2/c2

r 21~a2/c2!cos2u
S cdt2

a

c
sin2udf D 2

2
sin2u

r 21~a2/c2!cos2u
F S r 21

a2

c2D df2adtG 2

2
r 21~a2/c2!cos2u

r 222G~M /c2!r 1a2/c2
dr2

2S r 21
a2

c2
cos2u D du2.
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A. TARTAGLIA PHYSICAL REVIEW D 58 064009
HereM is the ~asymptotic! mass of the source anda is the
ratio between the angular momentumJ and the mass:

a5
J

M
.

Everything is seen and measured from its effects far aw
from the black hole, where space-time is practically flat.

A. Equatorial effect

Let us now assume that the source or receiver of
oppositely directed light beams is moving around the ro
ing black hole which generates the gravitational field, alo
a circumference on the equatorial plane. Suitably placed m
rors send back to their origin both beams after a circular
about the central hole.

In this caser 5R5const andu5p/2; the line element is

ds25
R222G~M /c2!R1a2/c2

R2 S cdt2
a

c
df D 2

2
1

R2 F S R21
a2

c2Ddf2adtG2

.

Let us then assume that the rotation is uniform, so that
rotation angle of the source or observer is

f05v0t. ~2!

Then

ds25H R222G~M /c2!R1a2/c2

R2 S 12
a

c2 v0D 2

2
1

R2 F S R21
a2

c2D v0

c
2

a

cG2J ~cdt!2. ~3!

For light moving along the same circular path it must
ds50 which happens when
06400
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R222G~M /c2!R1a2/c2

R2 S 12
a

c2 v D 2

2
1

R2 F S R21
a2

c2D v

c
2

a

cG2

50. ~4!

Now v is an unknown; solving Eq.~4! for it one finds two
values:

V65
1

a2/c2 12G~M /c4R!a21R2

3S 2G
M

c2R
a6cAa2

c2 1R222G
M

c2 RD . ~5!

V2 is actually negative whenR exceeds the Schwarzschil
limit 2G(M /c2).

The rotation angles for light are then

f65V6t. ~6!

Eliminating t between Eqs.~2! and ~6!,

f65
V6

v0
f0 .

Now we proceed by applying the geometrical fou
dimensional approach that may be found in Refs.@11,22,18#.
The first intersection of the world lines of the two light ray
with the one of the orbiting observer after the emission
time t50 is when

f15f012p,

f25f022p,

i.e.,

V6

v
f05f062p.

Solving for f0 ,
f0657
2pv0

V62v0
57

2pv0

$1/@a2/c212G~M /c4R!a21R2#%$@2G~M /c2R!a6cAa2/c21R222G~M /c2!R#2v0%
. ~7!

The proper time of the rotating observer is deduced from Eq.~3! calling in Eq.~2!:

dt5AS R222G
M

c2 R1
a2

c2D S 12
a

c2 v0D 2

2F S R21
a2

c2D v0

c
2

a

c
G2 df0

Rv0
.

Finally, integrating betweenf02 andf01 , we obtain the Sagnac delay

dt5AS R222G
M

c2 R1
a2

c2D S 12
a

c2 v0D 2

2F S R21
a2

c2D v0

c
2

a

c
G2 f012f02

Rv0

or explicitly @using Eq.~7!#
9-2



GENERAL RELATIVISTIC CORRECTIONS TO THE . . . PHYSICAL REVIEW D 58 064009
dt5
4p

c6R

~a2Rc212GMa21R3c4!v022c2GMa

A12~2/R!G~M /c2!14G~M /c4R!av02@a2/c412G~M /c6R!a21~R2/c2!#v0
2

. ~8!
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This result has some features which are typical of a K
geometry. We see, for instance, that the delay is zero w
the angular speed of the orbiting observer is

vn5
2c2GMa

a2Rc212GMa21R3c4

52
~GM/c2R!~a/R2!

112~GM/c2R!~a2/c2R2!1a2/c2R2

and providedaÞ0.
This is the velocity of the ‘‘locally nonrotating observ

ers’’ of the Kerr geometry@23#. these are equivalent to th
static ~with respect to distant stars! observers of the
Schwarzschild geometry for which no Sagnac effect wo
be present either.

Vice versa when the observer keeps a fixed position w
respect to distant stars (v050) a time lag, hence a Sagna
effect, is still present, again under the condition thataÞ0.
The time lag is

dt~v50!5dt0528p
GM

c4R

a

A122~GM/c2R!

528p
G

c4R

J

A122~GM/c2R!
. ~9!

Cohen and Mashhoon@20# found the first order approxima
tion of this same result, which they actually calculated fo
static observer sending a pair of light beams in opposite
rections along a closed triangular circuit, rather than alon
circumference.

The delay~9! is nothing else than the gravitational an
logue of the Bohm-Aharonov effect@24#. In fact the Sagnac
effect is a sort of inertial Bohm-Aharonov effect@10,25# and
what we found is an exact expression for a rotating r
singularity, whereas Ref.@26# gives an approximated but no
simpler result.

Now recalling the Lense-Thirring effect one has a prec
sion velocity@17,2,27# which, in our geometry and notation
for an equatorial observer is

vLT52
GJ

c2R3
.

We see that

dt058
vLT

c2

pR2

A122~GM/c2R!
.
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The quantitydt0 doubles the Sagnac delay due to the Len
and Thirring precession, i.e., to the pure drag by the rota
mass.

B. Approximations

As we have seen, the deduction of exact results in a K
metric, at least in the special conditions we assumed
rather straightforward, but of course in most cases m
terms in the equations are very small. This means tha
series of approximations are in order, though it is not nec
sary to introduce them from the very beginning as others
@28,29#.

Let us first assume thatb5v0R/c!1, consequently de-
veloping Eq.~8! in powers ofb and retaining only terms up
to the second order. The result is

dt.28
p

c4R
GM

a

@12~2/R!G~M /c2!#1/2

1
4pR

c@12~2/R!G~M /c2!#3/2S 11
a2

R2c2 22
GM

c2R
Db

212p
GMa

c4R

11a2/c2R2 2~2/R!~GM/c2!

@12~2/R!G~M /c2!#5/2 b2

or

dt.dt01
4p

c@12~2/R!G~M /c2!#3/2 S 11
a2

R2c2
22

GM

c2R
D

3S Rb2
GMa

c3R

3

12~2/R!G~M /c2!
b2D .

Now assume also thate5GM/c2R!1. To first order ine
it is

dt.28
p

c2
ae14p

R

c S 11
a2

R2c2D b

1F28p
R

c
112p

R

c S 11
a2

R2c2D Geb

212p
a

c2 S 11
a2

R2c2D eb2.

If a/Rc is at least as small ase,

dt.28
p

c2
ae14p

R

c
~11e!b212pGM

a

c4R
b2
9-3
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A. TARTAGLIA PHYSICAL REVIEW D 58 064009
explicitly and callingdtS the usual Sagnac effect

dt.28pa
GM

c4R
14p

R

c S 11
GM

c2R
D b212p

GM

c4R
ab2

5dtS28pa
GM

c4R
14p

R

c2

GM

c2
v0212pR

GM

c4

a

c2
v0

2

~10!

evidencing the angular momentum

dt.dtS28p
GJ

c4R
14p

R

c2

GM

c2
v0212pR

GJ

c6
v0

2.

~11!

The usual Sagnac effect is recovered when the terms con
ing GM and J are negligible. On the other side, a seco
order correction inv0

2 (b2) is present only if the angula
momentum of the source is considered.

In these approximations the terms containingJ coincide
with the first order~in J) corrections to the Schwarzschil
field. This fact allows us to apply the formulas to the simp
case of a rotating spherical object whose radius isR0 . Now
the angular momentum may be expressed asJ5IV0 , where
V0 is the rotational velocity of the sphere andI is its mo-
ment of inertia. If, just to fix ideas, we assume the object
have uniform densityr, one has

I 5
8

15
rpR0

55
2

5
MR0

2.

Hence the value fora is approximately

a.
2

5
R0

2V0 .

Then for a fixed observer looking at the Earth from the d
tanceR it comes out that

dt0.2
64

15
p2

Gr

c4

R0
5V0

R
52

16

5
p

GM

c4

R0
2

R
V0 .

III. POLAR „CIRCULAR … ORBIT

It may be interesting to study a circular trajectory co
touring the central mass passing over the poles also. In
case it is againr 5R, but nowf5const and, retaining uni
form motion,u5v0t. Then

ds25
R222G~M /c2!R1a2/c2

R21~a2/c2!cos2~v0t !
c2dt2

2
sin2~v0t !

R21~a2/c2!cos2~v0t !
a2dt2

2FR21
a2

c2
cos2~v0t !Gv0

2dt2. ~12!
06400
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For light it is of courseds50 which happens when

S R222G
M

c2 R1
a2

c2D c22a2sin2u

2S R21
a2

c2 cos2u D 2S du

dt D
2

50.

Solving for the angular speed we find that it is no long
constant:

du

dt
56

A@R222G~M /c2!R1~a2/c2!#c22a2sin2u

R21~a2/c2!cos2u
.

This differential equation is easily solvable whena2/c2R2

!1. To first order and assumingt50 whenu50,

t.
R

c@122G~M /c2R!#1/2
u

1
a2@124G~M /c2R!#

2c3R@122G~M /c2R!#3/2 E0

u

cos2u8du8,

i.e.,

t.
R

c@122G~M /c2R!#1/2
u

1
a2@124G~M /c2R!#

4c3R@122G~M /c2R!#3/2
~cosu sin u1u!,

and finally

t.F R

c@122G~M /c2R!#1/2
1

a2@124G~M /c2R!#

4c3R@122G~M /c2R!#3/2Gu

1
a2@124G~M /c2R!#

8c3R@122G~M /c2R!#3/2
sin~2u!.

At the same time the rotating observer describes the anglu0
while light travels an angle 2p6u0 ~1 for the corotating
beam,2 for the counterrotating one!:

u0

v0
5F R

c@122G~M /c2R!#1/2
1

a2@124G~M /c2R!#

4c3R@122G~M /c2R!#3/2G
3~2p6u0!6

a2@124G~M /c2R!#

8c3R@122G~M /c2R!#3/2
sin~2u0!.

Assume, as we did already, a low speed observer and
expect 2u0 to be little enough for sin(2u0).2u0. Then
9-4
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u0

v0
5F R

c@122G~M /c2R!#1/2
1

a2@124G~M /c2R!#

4c3R@122G~M /c2R!#3/2G ~2p6u0!6
a2@124G~M /c2R!#

4c3R@122G~M /c2R!#3/2
u0

Solving for u0 one obtains two results,

u065p
2c2R2@122G~M /c2R!#1 1

2 a2@12~4GM/c2R!#

~c3R/v0!@122G~M /c2R!#3/27c2R2@122G~M /c2R!#7 1
2 a2@12~4GM/c2R!#

.

Finally the difference in round trip times as seen from an inertial reference frame~recalling the approximation already used f
the solution of this case! results in

t12t25
u012u02

v0

.p
R2

c2

4@122~GM/c2R!#21
@317b226~GM/c2R!#

@11b222~GM/c2R!#
@126~GM/c2R!18~G2M2/c4R2!#~a2/c2R2!

@122~GM/c2R!#31@122~GM/c2R!#2b2
v0 .

~13!
.

is

r
s

ap-
For a50 the usual relativistic Sagnac effect is recovered
To first order ine Eq. ~13! becomes

t12t2.p
R2

c2

v0

11b2 S 41
317b2

11b2

a2

c2R2
1

8

11b2

GM

c2R
D

and finally to first order inb,

t12t2.p
R2

c2 S 413
a2

c2R2
18

GM

c2R
D v0 . ~14!

The correction for the moment of inertia of the source
interestingly independent fromR. It is indeed

3p
a2

c4
v0 ,

which for a sphere in nonrelativistic approximation is

12

25
p

R0
4

c4
V0v0 .

In order to obtain what the rotating observer sees the
sult must be expressed in terms of his proper time. Thi
done on the basis of Eq.~12!:

t5E H R222G~M /c2!R1~a2/c2!

R21~a2/c2!cos2~v0t !

2
sin2~v0t !

R21~a2/c2!cos2~v0t !

a2

c2

2FR21
a2

c2
cos2~v0t !G v0

2

c2 J 1/2

dt.
06400
e-
is

For short enough time intervals the integrand may be
proximated as

F122G~M /c2R!1a2/c2R2

11a2/c2R2
2S 11

a2

c2R2D R2v0
2

c2 G 1/2

1O~ t2!

and, after integration,

t.F122G~M /c2R!1a2/c2R2

11a2/c2R2
2S 11

a2

c2R2D R2v0
2

c2 G 1/2

t.

Adopting the usual approximations,

t.A122G
M

c2R
2R2

v0
2

c2
t.

Then

dtp.A122G
M

c2R
2R2

v0
2

c2
~ t12t2!

and explicitly ~first order inb ande!

dtp.p
R2

c2 S 413
a2

c2R2
14

GM

c2R
D v0

5dtS1
p

c4
~3a214RGM!v0 . ~15!

Comparing with the ‘‘equatorial’’ situation one has
9-5
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A. TARTAGLIA PHYSICAL REVIEW D 58 064009
dt2dtp.28paG
M

c4R
23p

a2

c4
v0 . ~16!

IV. GEODESICS

Now we specialize the previous results to a freely falli
observer: his orbit will then be geodesic. Ifum is the velocity
four-vector andGnl

m the Christoffel symbols, the equation o
the geodetics is]um/]s1Gna

m uaun50, where s coincides
with the observer’s proper timet.

Continuing to use Boyer-Lindquist coordinates~generali-
zation of Schwarzschild coordinates! we are interested in
constant radius orbits for which

r 5R,

ur50.

From the geodesic equations and applying these condit
one obtains the angular speed of the motion about the s
metry axisv5uf/u0; actually there are two different value
for the two possible choices of the rotation with respect
the orientation of the angular momentum of the sour
These angular velocities are in general complicated funct
of u; this is no problem as long asu5const, i.e.,uu50.
Considering this simplified situation and introducing t
Christoffel symbols appropriate to the Kerr metric, the ro
tion speeds turn out to be

v65
2aGMc26c2A3a2G2M21GMc4R3

a2GM2c4R3
. ~17!

Recalling now Eq.~8! and using Eq.~17! it is possible to find
an exact expression for the time lag for a freely falling obj
in circular equatorial orbit.

It is, however, simpler to develop Eq.~17! up to first order
in a/cR:

v6.7
c

R
AG

M

c2R
2

2

R2

GM

c2R
a. ~18!

Recalling Eq.~10! and introducing Eq.~18! we end up with

dt6.8pa
GM

c4R
64p

R

c
S 11

GM

c2R
D SAGM

c2R
12

GM

c2R

a

cRD
.74p

R

c
AGM

c2R
116pa

GM

c4R
.

Now the traditional Sagnac effect is

dtS656
4p

c2
AGMR ~19!

so we may write
06400
ns
m-

o
.
s

-

t

dt6.dtS6116pa
GM

c4R
. ~20!

V. NUMERICAL ESTIMATES

It is interesting to estimate numerical values for the c
rections in the case of the Earth as a central body. Now
relevant data are

R% 56.373106 m,

V % 57.2731025 rad/s,

G
M %

c2
54.431023 m,

a% 59.813108 m2/s.

On the surface of the Earth and if the circular path of t
light rays were the equator, the usual Sagnac delay would

dtS54.1231027 s. ~21!

This quantity can be converted into a fringe shift multiplyin
by the frequencyn of the light as seen by the observer:

D5ndtS . ~22!

Considering that for visible lightn;1014 Hz one has a
titanic shift of ;107 fringes. This number makes sense on
if the source has a coherence length as big as at least 123
which is much but not impossible. What actually matte
however, is the value of Eq.~22! modulo an integer number
which is of course a fraction of a fringe. The problem is th
the knowledge ofD requires an accuracy of better than, sa
1 part in 108 and this in turn depends mainly on the accura
and stability of the parameters entering the expression
dtS .

The correction due to the pure mass contributi
4p(R% /c2)(GM% /c2)V % , is 2.84310216 s, nine orders of
magnitude smaller than the main term. The correspond
fringe shift is;1022.

The correction calling in the moment of inertia of th
planet at the lowest order inV % , 28pa(GM/c4R), is
21.89310216 s. Again a;1022 fringe shift. These shifts
are in principle observable, provided one could find the r
erence pattern from which they should be measured, i.e.,
value of D modulo an integer number. Finally the last co
rection in Eq. ~10! 212p(GM% /c6)R%aV %

2 , is 26.76
310228: overwhelmingly small.

Let us now consider an orbiting geodetic observer a
assume, just to fix numbers, that its orbit radius isR57
3106 m. The main Sagnac term is~19!, whose numeric
value is

dtS57.3531026 s. ~23!

The fringe shift is;108 and the necessary coherence leng
would be greater than;1000 m. Considering that one i
9-6
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GENERAL RELATIVISTIC CORRECTIONS TO THE . . . PHYSICAL REVIEW D 58 064009
now able to emit light pulses as short as;1029 s or less,
both Sagnac delays~21! and~23! could be measured directl
as such.

The first correction to Eq.~23! is 16pa% (GM% /c4R)
whose value is 4.16310216 s, i.e., ;1022 fringes. If the
orbit is polar with the same radius and angular velocityv0

51/RA(1/R)GM, the corrections are@see Eq. ~15!#

p/c4(3a214RGM)v0 , i.e., (p/c4)(3a%

2 /R)AG(M % /R)
14(p/c4)GM%

AG(M % /R). The value of the first term is
1.39310218 s (;1024 fringes! and that of the second i
4.84310215 s (;1021 fringes!. Considering the mass con
tribution, the situation is a little bit better than for the equ
torial orbit. Furthermore, when the difference~16! is evalu-
ated we obtain precisely 1.39310218 s: this, as we said, is o
the order of 1024 fringes. It is a very small value, but it i
obtained comparing two experimental fringe patterns with
any reference to the basic Sagnac effect.

VI. DISCUSSION

Starting from the exact results for a Kerr metric and co
sidering suitable approximations of them we have obtai
the corrections to the Sagnac effect that the mass and an
momentum of a rotating object introduce. These are conc
tually important, evidencing and strengthening the analo
between the Sagnac effect and the Bohm-Aharonov eff
particularly relevant to this purpose is thedt0 of Eq. ~9!.
Unfortunately, when considering the Earth as the source
i A

e

e

06400
-
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-
d
lar
p-
y
t:

of

the gravitational field the corrections are indeed very tin
but per se in the range of what current optical interferen
measurements allow, provided a convenient zero~‘‘pure’’
Sagnac term! is experimentally fixed.

When considering devices such as ring lasers, wh
standing oppositely propagating waves form, the Sag
time difference is automatically converted into a frequen
shift and in general a fractional frequency shift may well
easier to measure than the equivalent fringe shift. Of cou
here the difficulty is in stabilizing standing electromagne
waves around the Earth, either in space or on the surfac
the planet. However, what is hard for light might not be
using radiowaves, provided their Sagnac effect was not
duced too much.

Apparently there is also the possibility to exploit the d
ference between clockwise and counterclockwise rota
observers. In fact, considering Eqs.~19! and~20!, we see that

D~dt!5dt12udt2u532pa
GM

c4R
.

Numerically, for satellites orbiting the Earth atR57
3106 m, one hasD(dt)55.8310227, corresponding to a
difference in the positions of the interference patterns
;10213 fringes: absolutely unperceivable. Summarizing w
conclude that experiments to test the existence of the low
order general relativistic corrections to the basic Sagnac
fect we computed are in the range of feasibility.
s
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