
PHYSICAL REVIEW D, VOLUME 58, 064007
Quantum fields at any time
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The canonical quantum theory of a free field usingarbitrary foliations of a flat two-dimensional spacetime
is investigated. It is shown that dynamical evolution along arbitrary spacelike foliations is unitarily imple-
mented on the same Fock space as that associated with inertial foliations. It follows that the Schro¨dinger
picture exists for arbitrary foliations as a unitary image of the Heisenberg picture for the theory. An explicit
construction of the Schro¨dinger picture image of the Heisenberg Fock space states is provided. The results
presented here can be interpreted in terms of a Dirac constraint quantization of parametrized field theory. In
particular, it is shown that the Schro¨dinger picture physical states satisfy a functional Schro¨dinger equation
which includes a slice-dependentc-number quantum correction, in accord with a proposal of Kucharˇ. The
spatial diffeomorphism invariance of the Schro¨dinger picture physical states is established. Fundamental dif-
ficulties arise when trying to generalize these results to higher-dimensional spacetimes.
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I. INTRODUCTION

The Poincare´ invariant quantum theory of a free field is
for all practical purposes, completely understood@1,2,3#.
Most canonical quantization treatments are in the Heisenb
picture and focus on the behavior of quantum fields rela
to inertial foliations~i.e., foliations by flat time slices! of the
spacetime. In particular, the energy-momentum and ang
momentum of the quantum field are densely defined s
adjoint operators on a Fock space, which generate uni
dynamical evolution from one flat slice to another.

It is often assumed that the state of a quantum field in
spacetime can be defined atany time, that is, upon an arbi
trary spacelike hypersurface. Likewise, it is assumed that
can define unitary dynamical evolution along an arbitra
spacelike foliation of the spacetime. While such niceties
apparently unnecessary for a non-gravitational treatmen
particles and their interactions, they become interesting
not mandatory—when trying to implement some aspects
Einstein’s general theory of relativity in the quantum regim
In this context there are no preferred foliations of spacet
and general covariance requires that all spacelike foliati
should be allowed in the description of dynamics. Given
technical and conceptual complexities that arise in attem
to construct a quantum theory of gravitation, it is useful
eliminate the intricate effects of the gravitational interacti
and focus on the more limited—but still non-trivial—
interplay between quantum field theory and general cov
ance in a flat spacetime. Thus it is of interest to examine
quantum field theory in the context of an arbitrary spacel
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foliation of the Minkowskian background. In this paper w
focus our attention on two-dimensional spacetimes si
here the investigation can be completed using standard F
space methods, and many of the mathematical underpinn
for the investigation have already been developed in@4#. Our
primary concern is to establish whether operator evolut
from one arbitrary slice to another is unitarily implement
on the standard Fock space. If the evolution is unitary, th
the most straightforward assignation of quantum states
slices is via the unitary image of the states in the~slice in-
dependent! Fock space. If unitarity fails~as it seems to in
dimensions higher than 2!, it is an open question as to how
one may assign states to slices. We do not address this q
tion, other than hinting that the algebraic approach may
one way of addressing it.

Apart from the intrinsic interest of these issues from t
point of view of quantum field theory on arbitrary foliation
this investigation can be viewed in terms of a Dirac co
straint quantization of parametrized scalar field theory, s
as was considered by Kucharˇ @5#. The quantum parametrize
field theory, being a field theory possessing a diffeom
phism gauge group, is often studied as a model for so
issues that arise in quantum gravity. Indeed, in many ‘‘m
isuperspace’’ models of general relativity one can ident
the resulting reduced field theory with a parametrized fi
theory of one or more fields propagating on a fixed~often
flat! spacetime~see, e.g.,@9#!. Successful quantization o
these models thus requires one to construct a suitable q
tum parametrized field theory. In the usual approach to
nonical quantization of such diffeomorphism invariant fie
theories one aspires to use operator representatives o
classical constraint functions to define a Hilbert space
physical states. The imposition of the quantum constraint
viewed as defining unitary transformations of states co
sponding to evolution from one~arbitrary! spacelike slice to
© 1998 The American Physical Society07-1
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CHARLES G. TORRE AND MADHAVAN VARADARAJAN PHYSICAL REVIEW D 58 064007
another. Even for the parametrized theory of free fie
propagating upon a two-dimensional spacetime it has b
an open question whether such an approach can be r
ously implemented. We shall see that, in this case, the qu
tization can be completed in the desired fashion. On the o
hand, it turns out that a straightforward generalization
these methods to higher-dimensional models is not availa
Thus our investigation indicates that alternative approac
~e.g., algebraic approaches! to canonical quantization of gen
erally covariant field theories become necessary alread
the simplest models for canonical quantum gravity.

A succinct formulation of the problem addressed in t
paper can be presented in the context of the algebraic for
lation of the quantization of linear field theories on a fix
background spacetime, which is by now standard@3,22#. The
C* algebra of observables is traditionally taken to be
Weyl algebraA associated with the symplectic vector spa
of solutionsS to the field equations. Quantum states a
identified with positive linear functions onA. Given any pair
of Cauchy surfaces (S1 ,S2), there is a symplectic transfor
mation t:S→S which can be interpreted as classical tim
evolution from S1 to S2 . This symplectic transformation
defines an automorphism ofA which is naturally interpreted
as time evolution fromS1 to S2 in the Heisenberg picture
Now suppose that we associate a statev1 :A→C ~C denotes
the space of complex numbers! to the instant of time repre
sented byS1 . ~An interesting, potentially thorny issue i
how one explicitly prepares/determines such a state on
arbitrary slice. We hope to return to this question in futu
work.! By pull-back, the time evolution automorphism ca
be viewed as determining a new state,v2 , which is naturally
interpreted as the Schro¨dinger picture state at the instant
time defined byS2 . A natural question that arises is wheth
this dynamical evolution can be expressed in terms of a
tary transformation on a Hilbert space representation of
Weyl algebra. We will be considering a free field o
Minkowski spacetime, so we focus on the standard, Poinc´
invariant Fock representation of the Weyl algebra. Thus
question we wish to address in this paper is whether
automorphism ofA associated with a pair of arbitrar
Cauchy surfaces can be realized as a unitary transforma
on the Fock space representation ofA. Because we are re
stricting attention to free fields, the investigation of this iss
can be given a completely equivalent mathematical formu
tion in terms of unitary implementability of dynamical evo
lution of operator valued distributions corresponding
Cauchy data~canonical coordinates and momenta! along an
arbitrary foliation of spacetime by Cauchy surfaces. For f
fields, the spatially smeared canonical coordinates and
menta are observables in the sense that they are dense
fined self-adjoint operators on Fock space obtained by a
iting procedure from the Weyl observables. We must lea
open the physical issues regarding the sense in which
quantum field on an arbitrary hypersurface is to be int
preted, measured, etc. We should also point out that the
no compelling evidence to suggest that, for Poincare´ invari-
ant interacting field theories, there exist observables cor
sponding to spatially smeared Cauchy data. We prefe
formulate our investigation of free field theory in terms
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canonical coordinates and momenta for a couple of reas
~1! this is the formulation used in@5#, whose results we are
trying to extend;~2! in canonical quantum gravity, for which
this work is intended as a humble model, one formulates
quantization problem in terms of ‘‘observables’’ construct
from operator representatives of~functions of! Cauchy data
for the field equations.

Our investigation proceeds as follows. Using the stand
Fock space representation of a free scalar field on a t
dimensional flat spacetime we consider Heisenberg pic
field operators ~operator-valued distributions! associated
with arbitrary ~curved! spacelike slices. We ask whether th
evolution of field operators from one such slice to another
dictated by the field equations, is unitarily implemented
the Fock space. This issue, although formulated in the c
text of slice-dependent operators in the Heisenberg pictur
intimately connected with the existence of the Schro¨dinger
picture. In the Schro¨dinger picture, field operators are slice
independent and are associated with some fixed initial s
of the foliation. The dynamics are encoded in the slic
dependent state vectors which, presumably, satisfy a fu
tional Schro¨dinger equation, usually associated with t
names Tomonaga and Schwinger@6,7#; see also the book o
Dirac @8#. Given a foliation, if there exists a one-parame
family of unitary transformations which implement the o
erator evolution from slice to slice of the foliation, then th
Schrödinger picture is defined as the unitary image of t
Heisenberg picture. In this paper we show that such unit
transformations exist for a free, massless scalar field pro
gating on a flat spacetime with manifold structureR3S1,
and we investigate properties of the Schro¨dinger picture
quantum states. We thus largely complete the quantiza
program initiated in@5# by rigorously constructing the physi
cal quantum states in the Schro¨dinger picture. In so doing
we derive the anomaly potential, proposed in@5#, which ap-
pears in the quantum constraint equations as ac-number
quantum correction. With a rigorous construction of t
physical states in hand, it is now possible to investigate
detail various diffeomorphism invariance-related issues
quantum field theory. In this paper we answer the quest
to what extent are the physical states of the parametr
quantum field theory actually invariant under spatial diffe
morphisms? This invariance is usually assumed in
proaches to canonical quantization of diffeomorphism inva
ant field theories, but at least for the two-dimensional mod
such as considered here, spatial diffeomorphism invaria
is called into question by the quantum corrections wh
appear in the constraints.

Let us emphasize what we arenot doing in this paper. We
are not considering the effect of classical gravitational fie
on quantum matter fields, which is the subject of quant
field theory in curved spacetime. We are not consider
different quantization schemes in flat spacetime. The co
plex structure and Fock space that we use are the stan
ones associated with the timelike Killing vector field of th
Minkowski metric and are fixed once and for all. So, f
example, in this paper we do not~explicitly! consider slice-
dependent complex structures and Fock spaces. As m
tioned before, the simplest definition of slice-dependent s
7-2
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QUANTUM FIELDS AT ANY TIME PHYSICAL REVIEW D 58 064007
is as the unitary image of a Heisenberg picture state. We
not discuss how to measure/prepare such a state. We ho
return to this question in a future work. Finally, we do n
investigate the feasability or existence of other definitions
slice dependent states.

The outline of the paper is as follows. In Sec. II we su
marize the classical theory of a free scalar field onR3S1,
and we remind the reader of the standard Fock space q
tization of the theory in the Heisenberg picture. We prov
the relation to the framework of parametrized field theo
and its Dirac quantization as constructed in@5#. Finally, we
demonstrate the existence of the unitary transforma
which dictates evolution of operators from one time slice
another. In Sec. III, we construct the Schro¨dinger picture for
the theory and give an explicit construction of the Sch¨-
dinger picture states on an arbitrary time slice as unit
images of the Heisenberg states. We show that the Sc¨-
dinger picture states satisfy a functional Schro¨dinger equa-
tion which includes an embedding-dependent quantum
rection relative to the classical equation. Thisc-number
correction is related to the ‘‘anomaly potential’’ of@5#. Sec-
tion IV is devoted to the issue of spatial diffeomorphis
invariance of the solutions to the functional Schro¨dinger
equations. There we relate the factor ordering of the spa
projection of the Schro¨dinger equation to a version of th
Schwarzian derivative due to Segal@4#. This leads to an in-
terpretation of the spatially covariant ‘‘gauge’’ choice adv
cated by Kucharˇ for the anomaly potential. With this result i
hand we are able to show that the functional Schro¨dinger
equation implies spatial diffeomorphism invariance of phy
cal states in the Schro¨dinger representation. In Sec. V w
briefly consider generalizations of our results to massive
fields and to spacetimes with topologyR2. We also indicate
the fundamental difficulties inherent in generalizing our
sults to higher spacetime dimensions.

Notation. Classical fields are distinguished from the
quantum counterparts by adopting bold face type for
former@e.g.,f(x) is the quantum counterpart of the classic
field f(x)#. Inertial coordinates onR3S1 are TP(2`,`)
andXP@0,2p#, with respect to which the line element is

ds252dT21dX2. ~1!

We denote byT6
ªT6X the advanced and retarded nu

coordinates. Derivatives with respect toT6 are denoted with
the subscripts ‘‘,6’’ ~e.g., f ,15]f/]T1). On a generic
spacelike foliation we denote the spatial coordinate on a
of the foliation byxP@0,2p#. Spatial derivatives~with re-
spect to x) are denoted with the subscript ‘‘,x’’ @e.g.,
f ,x(x)5d f(x)/dx#. Leaves of the foliation are labeled by th
parametert. We define a foliation by specifying the parame
ric equations

Ta5Ta~ t,x!, ~2!

where the superscripta labels coordinates onR3S1, e.g.,
Ta5(T,X) or Ta5(T1,T2), and

T,x
1~ t,x!.0, T,x

2~ t,x!,0, ~3!
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T6~ t,2p!5T6~ t,0!62p. ~4!

A particular spacelike slice is determined by anembedding:

Ta5Ta~x!, ~5!

which can be identified with a leaft5t0 of a foliation via

Ta~x!5Ta~ t0 ,x!.

II. THE HEISENBERG PICTURE FOR A FREE MASSLESS
SCALAR FIELD ON R3S1

A. The classical theory

The massless scalar field onR3S1 satisfies the wave
equation

hf50, ~6!

⇒f~T1,T2!5f1~T1!1f2~T2!.
~7!

We expand the scalar field in modes as

f65
1

A2p
F1

2
~q1pT6!1

1

&

(
k51

` S 1

Ak
a~6 !ke

2 ikT6

1
1

Ak
a~6 !k* eikT6D G . ~8!

The real numbersq,p will be referred to as the zero modes
the field. The complex numbersa(1)k ,a(2)k and their com-
plex conjugatesa(1)k* ,a(2)k* are the familiar Fourier mode
coefficients~note thatk.0).

The field can be restricted to an embedding~i.e., a leaf of
a foliation! Ta5Ta(x), which results in the definition

f~x!ªf„Ta~x!…5f1
„T1~x!…1f2

„T2~x!…. ~9!

Given an embeddingTa(x), we also define

p~x!ªAgna¹afuTa5Ta~x! , ~10!

whereAg is the determinant of the 1-metric induced on t
spatial slice andna is the future-pointing unit normal to the
slice. Thusp(x) is the field momentum associated with th
given embedding. A simple computation shows that

p~x!5T,x
1~x!f,1„T

1~x!…2T,x
2~x!f,2„T

2~x!…. ~11!

The slice-dependent fields„f(x),p(x)… are Cauchy data
for Eq. ~6! and provide a canonical coordinate chart on t
phase space of solutions of the wave equation. The w
equation can be used to determine the evolution of the fie
„f(x),p(x)… from one arbitrary slice to another. This evolu
tion is encoded in the following functional evolution equ
tions:
7-3
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df~x!

dT6~x8!
56

p~x!6f,x~x!

2T,x
6~x!

d~x,x8!, ~12!

dp~x!

dT6~x8!
5

p~x8!6f,x~x8!

2T,x
6~x8!

]d~x,x8!

]x
. ~13!

In the context of a particular foliation,Ta5Ta(t,x), Eqs.
~12!, ~13! give the infinitesimal change of„f(x),p(x)… cor-
responding to evolution from the sliceTa(x,t) to the slice
Ta(x,t1dt) via

]f~x,t !

]t
5E

0

2p ]Ta~x8,t !

]t

df~x,t !

dTa~x8,t !
dx8, ~14!

]p~x,t !

]t
5E

0

2p ]Ta~x8,t !

]t

dp~x,t !

dTa~x8,t !
dx8. ~15!

This time evolution is a one-parameter family of canoni
transformations which we would like to carry over into un
tary transformations in the quantum theory. In particular,
shall deal with dynamical evolution along an arbitrary foli
tion connecting a fixed initial sliceT0

a(x) to a sliceTa(x).
Data onT0

a(x) will be denoted by„f0(x),p0(x)…. For sim-
plicity, we restrict attention to the case where the initial sl
of our foliation is flat, and corresponds toT50 with arc-
length parametrization. Thus

T0
1~x!52T0

2~x!5x, ~16!

and „f0(x),p0(x)… are Eqs.~9!, ~11! evaluated onT0
a(x).

Equations~12!, ~13! with initial data „f0(x),p0(x)… on the
initial slice given by Eq.~16! can be solved to give a uniqu
solution to Eq.~6!.

B. Quantum theory: The Hilbert space

We now consider the operatorsq,p,a(6)k ,a(6)k
† corre-

sponding to the classical quantitiesq,p,a(6)k ,a(6)k* . We re-
call the standard Hilbert space construction@5# on which the
only nontrivial commutation relations are

@q,p#5 iI, ~17!

@a~6 !k ,a~6 !l
† #5dklI, ~18!

whereI is the identity. The Hilbert spaceH of the theory is
a product of three Hilbert spaces:

H5F ~1 !
^F ~2 !

^L 2~R!, ~19!

where F (6) are the standard Fock spaces on which
a(6)k

† ,a(6)k operators are represented as creation and a
hilation operators.L 2(R) is the representation space for th
zero mode operators (q,p).

To illustrate our notation and conventions we recall t
standard construction of the Fock space associated with
‘‘ 1’’ operators. The vacuum stateu(1);0&PF (1) is such
that
06400
l

e

e
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a~1 !ku~1 !;0&50 ;k. ~20!

The normalizedN-particle states are generated fromu~1!;0&
by the action of the creation operators so that

u~1 !;nk1
. . . nkm

&ª
~a~1 !k1

† !nk1

Ank1
!

. . .
~a~1 !km

† !nkm

Ankm
!

u0&,

(
i 51

m

nki
5N. ~21!

The vectorsu(1);nk1
, . . . ,nkm

&;m,;$ki ,nki
, i 51, . . . ,m%

with u~1!;0& form an orthonormal basis forF (1). The action
of a(1)k on any state in this basis is obtained from Eqs.~18!,
~20!, ~21!.

The operatorsa(2)k ,a(2)k
† are represented in an identic

manner onF (2), while q,p are densely defined onL 2(R) in
the usual way. For our purposes, we find the moment
representation convenient:pc(p)5pc(p) and qc(p)
5 i (dc/dp).

We identify the operator-valued distributions correspon
ing to Eqs.~9!, ~11! by replacingp,q,a(6)k ,a(6)k* in these
expressions with the operatorsq,p,a(6)k ,a(6)k

† . Since the
classical evolution equations are linear, the operator val
distributionsf(x) and p(x) satisfy the corresponding evo
lution equations for operators in the Heisenberg picture.
Sec. II D we will show that the corresponding dynamic
evolution is unitarily implemented.

C. Relation to parametrized field theory and its Dirac
quantization

It is a simple matter to check that the quantum syst
described above is the same as that arising in the Heisen
picture constraint quantization of parametrized field the
developed in@5#. The only differences lie in our notation an
different normalizations for the quantities (a(6)k ,a(6)k* ) and
their quantum counterparts. We briefly summarize the tre
ment of @5# in our slightly different notation and conven
tions.

The phase space of a parametrized, free, massless, s
field on the Minkowskian cylinder consists of the embeddi
fields Ta(x), and their conjugate momentaPa(x),1 along
with the scalar fieldf(x) and its conjugate momentum
p(x). Corresponding to the diffeomorphism invariance
the parametrized theory, there are two constraints

C65P66
„p~x!6f,x~x!…2

4T,x
6~x!

'0, ~22!

1The notation for the classical embedding coordinates and t
conjugate momenta is an exception to our convention of deno
classical quantities by bold face type. This is to minimize confus
with the notation of@5# in which bold face type does not have th
same meaning as in this paper.
7-4
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QUANTUM FIELDS AT ANY TIME PHYSICAL REVIEW D 58 064007
which completely fix the embedding momenta in terms
the remaining fields. These constraints are first class~they
have strongly vanishing Poisson brackets! and indicate that
the embeddings can be viewed as ‘‘pure gauge.’’ The ph
space variables can be mapped via an embedding-depe
canonical transformation to a new set of phase space co
nates„P6(x),T6(x),p,q,a(6)k ,a(6)k* … via Eqs.~8!–~11! @5#.
The transformation leaves the embedding fields unchan
while the new embedding momenta are the constraint fu
tions:

P6~x!ªC6'0. ~23!

This transformation hinges upon the fact that the constr
functions Ca satisfy an Abelian Poisson algebra. In the
‘‘Heisenberg’’ variables, the constraints are therefore sim
the vanishing of the embedding momenta.

Based upon the Heisenberg variables just described,
chař implements the Dirac constraint quantization of the p
rametrized field theory in the Heisenberg picture as follow
In the quantum theory the operatorsq,p,a(6)k ,a(6)k

† are rep-
resented as in Sec. II B. The embedding fields act by mu
plication and the embedding momenta act by functional
ferentiation. The quantum constraints,

PauC&5
1

i

d

dTa uC&50, ~24!

then imply that the physical states are time independent,
is, independent of the embedding. The physical states
thus be identified with the embedding-independent F
states of Sec. II B. Thus, constraint quantization based u
the canonical variables„P6(x),T6(x),p,q,a(6)k ,a(6)k* …,
corresponds exactly to the canonical quantum theory in
Heisenberg picture outlined in Sec. II B.

From the point of view of Dirac quantization of param
etrized field theory, our primary goal in this paper is to r
cover the quantum theory in the Schro¨dinger picture. In par-
ticular, we aim to obtain physical states satisfying quant
constraints of the form

Ĉ6uC&50, ~25!

where Ĉ6 is a quantum version of the classical constra
function ~22!.

D. Unitarity of time evolution

For each embedding, the quantum fields„f(x),p(x)…
generate a*-algebra of observables via their canonical co
mutation relations@3#. In this section we show that the ob
servable algebras associated with different, arbitrary t
slices are unitarily equivalent. We do this by compari
„f(x),p(x)… and„f0(x),p0(x)… and building up the unitary
transformation relating these operator-valued distributions
each ofF (1), F (2) and L 2(R). To this end, expand the
fields „f(x),p(x)… and„f0(x),p0(x)… in Fourier series:
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f0~x!5
1

A2p
S q1

1

&

(
k51

`
1

Ak
@~a~1 !k1a~2 !k

† !e2 ikx

1~a~1 !k
† 1a~2 !k!e

ikx# D , ~26!

p0~x!5
1

A2p
S p2

i

&

(
k51

`

Ak@~a~1 !k2a~2 !k
† !e2 ikx

2~a~1 !k
† 2a~2 !k!e

ikx# D , ~27!

f~x!5
1

A2p
S q@T#1

1

&

(
k51

`
1

Ak
@~a~1 !k@T#

1a~2 !k
† @T# !e2 ikx1~a~1 !k

† @T#

1a~2 !k@T# !eikx# D , ~28!

p~x!5
1

A2p
S p@T#2

i

&

(
k51

`

Ak@~a~1 !k@T#

2a~2 !k
† @T# !e2 ikx2~a~1 !k

† @T#

2a~2 !k@T# !eikx# D , ~29!

where

a~6 !k@T#5
1

2pAk
E

0

2p

e6 ikxT,x
6

3F6
ip

&

6 (
n51

`

An~a~6 !ne2 inT6~x!

2a~6 !n
† einT6~x!!Gdx, ~30!

q@T#5q1
1

2p
pE

0

2p

T~x!dx

1
1

2p E
0

2p

dxS 1

&

(
n51

`
1

An
@a~1 !ne2 inT1~x!

1a~1 !n
† einT1~x!1a~2 !ne2 inT2~x!

1a~2 !n
† einT2~x!# D dx, ~31!

p@T#5p. ~32!

It is straightforward to verify at a purely algebraic lev
~that is, ignoring issues of domain!, that the commutation
7-5



f

o
ow
ita

ck
e

w
fo
s
le

or

s

he

ov

to

CHARLES G. TORRE AND MADHAVAN VARADARAJAN PHYSICAL REVIEW D 58 064007
relations between the variables~28!, ~29! are independent o
the embedding fields T6(x). In other words,
(q@T#,p@T#,a(6)k@T#,a(6)k

† @T#) have the non-vanishing
commutators given in Eqs.~17!, ~18!. The transformation

~q@T#,p@T#,a~6 !k@T#,a~6 !k
† @T# !↔~q,p,a~6 !k ,a~6 !k

† !
~33!

is a symplectic transformation which is a quantum analog
the canonical transformation mentioned in Sec. II C. We n
want to see that there is an embedding-dependent un
transformationU5U@T# onH such that

q@T#5U†qU, p5U†pU, a~6 !k@T#5U†a~6 !kU.
~34!

The basic theory of the unitary implementability on Fo
space of symplectic transformations on the vector spac
solutions to linear field equations is due to Shale@10#; see
also @11#. Because of the existence of the zero modes,
find it convenient to first decompose the symplectic trans
mation ~33! into two successive symplectic transformation
and then check that each transformation is unitarily imp
mentable. To this end, we view the transformation~33! as
being defined by the composition of the symplectic transf
mation

„I …

~q,p,a~6 !k ,a~6 !k
† !→~q,p,c~6 !k@T#,c~6 !k

† @T# !, ~35!

where

c~6 !k@T#56
1

2pAk
E

0

2p

e6 ikxT,x
6

3F (
n51

`

An~a~6 !ne2 inT6~x!

2a~6 !n
† einT6~x!!Gdx, ~36!

followed by the symplectic transformation
„II …

~q,p,c~6 !k@T#,c~6 !k
† @T# !→~q@T#,p,a~6 !k@T#,a~6 !k

† @T# !,
~37!

where

a~6 !k@T#5c~6 !k@T#6
ip

&

1

2pAk

3E
0

2p

e6 ikxT,x
6dx, ~38!

andq@T# is defined in Eq.~31!.
BecauseT1(x) and T2(x) each define diffeomorphism

of the circle @see Eqs.~3!, ~4!#, the transformation„I … in-
volves two copies of the ‘‘metaplectic representation’’ of t
group Diff(S1), which is discussed in@4#. It follows that the
06400
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transformation„I …, for each sign1 and2, arises as a unitary
transformationU I

(6)@T# on F (6) ~and the identity on the
zero mode sector of the Hilbert space!:

U I
~6 !†qUI

~6 !5q ~39!

U I
~6 !†pUI

~6 !5p ~40!

U I
~6 !†a~6 !kU I

~6 !5c~6 !k@T#. ~41!

The gist of the proof involves showing that the Bogolub
coefficients

Bmn
~6 !@T#57

1

2p
An

m

3E
0

2p

e6 imxT,x
6~x!einT6~x!dx, ~42!

are Hilbert-Schmidt type, i.e., satisfy

(
m,n51

`

uBmn
~6 !u2,`. ~43!

This latter result is guaranteed if the embedding is taken
be sufficiently smooth~see the Appendix!.

Next, it is straightforward to check that both

Zn
~6 !

ª

1

2pAn
E

0

2p

e7 inxT,x
6dx ~44!

and

z~6 !nª
1

2pAn
E

0

2p

einT6~x!dx ~45!

are rapidly decreasing functions ofn, that is, asn→`,
uZn

(6)u and uzn
(6)u vanish faster than any power of 1/n. For

details, see the Appendix. From this it follows thatU II@T#,
defined as

U II@T#5expH 2 i F p2

4p E
0

2p

T~x!dx2S p

&

(
n51

`

@c~1 !nZn
~1 !

1c~1 !n
† Zn

~1 !* 2c~2 !nZn
~2 !2c~2 !n

† Zn
~2 !* # D G J

5expH 2 i F p2

4p E
0

2p

T~x!dx

1S p

&

(
n51

`

@a~1 !nzn
~1 !* 1a~1 !n

† zn
~1 !1a~2 !nzn

~2 !*

1a~2 !n
† zn

~2 !# D G J , ~46!
7-6
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is a unitary operator on the Hilbert spaceH. U II implements
the transformation„II …:

U II
†qUII5q@T# ~47!

U II
†pUII5p ~48!

U II
†c~6 !k@T#U II5a~6 !k@T#. ~49!

The combined transformationU@T#5U I
(1)U I

(2)U II is the
unitary map implementing dynamical evolution from the in
tial spacelike embeddingT0

6(x)56x to the final spacelike
embeddingTa(x)5„T1(x),T2(x)….

III. THE SCHRÖ DINGER PICTURE

A. Schrödinger picture image of the Fock basis

A vector in the Hilbert space for the quantum field theo
is any normalizable superposition of the Fock basis vec
~see Sec. II B!. In the Heisenberg picture of dynamics, a
such vector can represent the state vectoruC&H of the system
for all time. Dynamical results depend upon specification
an embedding, and are expressed in terms of expecta
values of observables built from the embedding-depend
operator-valued distributions„f(x),p(x)… defined in Sec.
II D. In the Schrödinger picture, dynamical evolution is en
coded in embedding-dependent state vectorsuC@T#&S ac-
cording to the unitary mapping

uC@T#&S5U@T#uC&H , ~50!

and dynamical results are expressed in terms of operator
servables constructed from„f0(x),p0(x)….

In the last section we showed thatU@T# exists; here we
explicitly define this operator by giving its action on th
Fock basis of Sec. II B. To begin, we express the Fo
ground state~Heisenberg vacuum state! as

u0,c&5c~p! ^ u~1 !;0& ^ u~2 !;0&, ~51!

where cPL 2(R). The Schro¨dinger picture image of this
state is denoted byu0,c;T&:

u0,c;T&5U@T#u0,c&. ~52!

We note that

u0,c;T0&5u0,c&. ~53!

To evaluateu0,c;T& it is convenient to decomposeU as

U5VIIU I , ~54!

whereVII is the unitary operator

VII ªU IU IIU I
21, ~55!

and

U I5U I
~1 !U I

~2 ! . ~56!

Using Eq.~46! and Eqs.~39!–~41!,
06400
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VII@T#5expH 2 i F p2

4p E
0

2p

T~x!dx

2S p

&

(
n51

`

@a~1 !nZn
~1 !1a~1 !n

† Zn
~1 !* 2a~2 !nZn

~2 !

2a~2 !n
† Zn

~2 !* # D G J , ~57!

Our strategy is to first evaluateU Iu0,c& and then compute the
action ofVII on the resulting state. The vectorU Iu0,c& can be
computed from the observation that it is annihilated by

d~6 !kªU Ia~6 !kU I
† ~58!

5 (
n51

`

~a~6 !kna~6 !n1b~6 !kna~6 !n
† !, ~59!

where

a~6 !kn5
1

2p
An

k E
0

2p

eikT6~x!e7 inxdx ~60!

b~6 !kn52
1

2p
An

k E
0

2p

eikT6~x!e6 inxdx.

~61!

Let us note some important properties of these Bogolu
coefficients~see@4# for a more rigorous treatment of most o
these results!. First, note that the operatorsd(6)n can be ob-
tained from Eq. ~36! using the inverse diffeomorphism
(T6)21:

d~6 !n5c~6 !n@~T6!21#. ~62!

The coefficientsa (6)mn andb (6)mn satisfy the relations

(
k51

`

~a~6 !ika~6 ! jk* 2b~6 !ikb~6 ! jk* !5d i j , ~63!

(
k51

`

~a~6 !ikb~6 ! jk2b~6 !ika~6 ! jk!50, ~64!

which are equivalent to saying that the transformation„I … of
Sec. II D is symplectic. The coefficientsb (6)mn are Hilbert-
Schmidt

(
m,n51

`

ub~6 !mnu2,`; ~65!

this result is equivalent to Eq.~43!. The infinite arrays
a (6)mn admit inversesa (6)mn

21 which can be written as

a~6 !mn
21 5a~6 !nm* 2 (

k51

`

g~6 !mkb~6 !nk* , ~66!

where we have defined the Hilbert-Schmidt operators
7-7
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g~6 !mn5 (
k51

`

a~6 !mk
21 b~6 !kn . ~67!

It is straightforward to verify that, for any embedding
dependent function ofp, N(p,T),

U Iu0,c&5N~p,T!expH 2
1

2 (
k,l 51

`

@~g~1 !kla~1 !k
† a~1 !l

†

1g~2 !kla~2 !k
† a~2 !l

† !#J u0,c& ~68!

is annihilated byd(6)k for all k ~see@12# for some properties
of such a state!. SinceU I is trivial on the zero mode secto
~39!, ~40!, N(p,T) must be independent ofp. Thus

N~p,T!5N~T!, ~69!

and N(T) is determined, up to an embedding-depend
phase factor, by normalization to be

N~T!5eiL~T! det~12g~1 !
* g~1 !!

1/4

3det~12g~2 !
* g~2 !!

1/4, ~70!

whereL(T) is an arbitrary real-valued function of the em
bedding and we have used a matrix notation in whichg (6)
denotes the symmetric matrixg (6)mn . N(T) is well-defined
thanks to the fact thatg is Hilbert-Schmidt type.

It is now straightforward to compute the action ofVII ~57!
on ~68! to be

u0,c,T&5M ~p,T!expH (
k51

` F2 ip

&

~j~1 !ka~1 !k
†

1j~2 !ka~2 !k
† !2

1

2 (
k,l 51

`

~g~1 !kla~1 !k
† a~1 !l

†

1g~2 !kla~2 !k
† a~2 !l

† !G J u0,c&, ~71!

where

M ~p,T!5expH 2 i F p2

4p E
0

2p

T~x!dxG J
3expH p2

4 (
k51

`

@j~1 !kZk
~1 !

2j~2 !kZk
~2 !#J N~T! ~72!

with N(T) defined by Eq.~70! and

j~6 !kª(
l 51

`

a~6 !kl
21 z~6 !l . ~73!
06400
t

Note that the various sums and products in the express
above converge becauseg is Hilbert-Schmidt type andj,Z
are rapidly decreasing.

The vectoru0,c,T& serves as the vacuum~or ‘‘cyclic’’ !
vector for the Fock representation associated with the a
hilation and creation operatorsb(6)k andb(6)k

† where

b~6 !kªUa~6 !kU
† ~74!

5 i z~6 !k

p

&

1 (
n51

`

~a~6 !kna~6 !n1b~6 !kna~6 !n
† !. ~75!

This Fock space representation of the algebra of creation
annihilation operators and zero modes is unitarily equival
to the representation onH we used originally. By repeatedly
applying the creation operatorsb(6)k

† to u0,c,T&, and allow-
ing c to range over an orthonormal basis forL 2(R), we
obtain an orthonormal basis$uei(T)&% for the Hilbert space
H. This basis is just the Schro¨dinger picture unitary image o
the original orthonormal basis of states used in the Heis
berg picture. From the point of view of the parametrized fie
theory description of@5# and Sec. II C, the embedding
independent Fock states are the ‘‘physical states’’ of
Dirac quantization based upon the Heisenberg variables.
physical states of the Dirac quantization in the Schro¨dinger
picture are obtained as the unitary image of the Heisenb
physical states. The~pure! physical states in the Schro¨dinger
picture are thus obtained by taking finite-norm superpo
tions of the basis$uei(T)&% for H that we described above
The Dirac quantization of the parametrized field theory of@5#
in the Schro¨dinger picture is thereby completed. Howeve
we would still like to see explicitly how the physical state
satisfy the quantum constraints in the Schro¨dinger picture.
This is our next topic.

B. Functional Schrödinger equation

The Schro¨dinger picture states constructed in the last s
section are determined by a choice of embedding. In
subsection we consider the change induced in these state
a variation of the embedding. In particular, we derive a fun
tional Schro¨dinger equation that describes the evolution
the state vector from one slice to another of an arbitr
spacelike foliation. This functional Schro¨dinger equation is
the quantum constraint equation arising in the Dirac qua
zation of parametrized field theory in the Schro¨dinger pic-
ture.

To begin, we consider the embedding dependence of
Schrödinger vacuum state given in Eqs.~71!, ~70!, ~72!. We
want to consider the change induced in this state by an
finitesimal change in the embeddingTa(x). With this result
in hand, it is straightforward to compute the correspond
results for the basis$uei(T)&%. Evidently, we need to com
pute the functional derivatives ofj (6)k , g (6)mn , and Zk

(6)

with respect toTa(x). To display the results of the compu
tation it is convenient to present the Fourier modes of
functional derivatives. We define
7-8
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d~6 !n5E
0

2p

einT6~x!
d

dT6~x!
dx. ~76!

Direct computation yields

d~6 !ng~7 !lm50, ~77!

d~6 !nj~7 !k50, ~78!

d~6 !nZ~7 !k50, ~79!

d~6 !ng~6 !lm50 for n>0, ~80!

d~6 !ng~6 !lm52 i (
j 51

unu21

Aj un1 j ua~6 !l j
21 Fa~6 !un1 j um*

2 (
q51

`

b~6 !un1 j uq* g~6 !qmG for n,0,

~81!

d~6 !nj~6 !k50 for n>0, ~82!

d~6 !nj~6 !k5 iAunua~6 !kunu
21

1 i (
j 51

unu21

Aj un1 j ua~6 !k j
21 F z~6 !un1 j u*

1 (
q51

`

b~6 !un1 j uq* j~6 !qG for n,0, ~83!

d~6 !nZ~6 !k56 iAn a~6 !nk for n.0, ~84!

d~6 !nZ~6 !k50 for n50, ~85!

d~6 !nZ~6 !k57 iAunub~6 !unuk* for n,0. ~86!

It is now a simple matter to applyd (6)n to the state
u0,c,T& as written in Eqs.~71!, ~70!, ~72!. The result is a
sum of four terms acting onu0,c,T&:

d~6 !nu0,c,T&5$P~6 !n1Q~6 !n1R~6 !n1S~6 !n%u0,c,T&,
~87!

whereP(6)n is a term proportional to the identityI arising
from the derivative ofN(T),

P~6 !n5d~6 !n„log N~T!…I; ~88!

Q(6)n is quadratic inp,

Q~6 !n5
p2

4 H 2 i S 1

2p E
0

2p

einT6~x!dxD
1 (

k51

`

@d~6 !nj~1 !kZ~1 !k1j~1 !kd~6 !nZ~1 !k

2d~6 !nj~2 !kZ~2 !k2j~2 !kd~6 !nZ~2 !k#J ; ~89!
06400
R(6)n is bilinear inp anda†,

R~6 !n52
ip

&

(
k51

`

~d~6 !nj~1 !ka~1 !k
† 1d~6 !nj~2 !ka~2 !k

† !;

~90!

andS(6)n is quadratic ina†,

S~6 !n52
1

2 (
k,l 51

`

~d~6 !ng~1 !kla~1 !k
† a~1 !l

†

1d~6 !ng~2 !kla~2 !k
† a~2 !l

† !. ~91!

The explicit forms of these terms can be obtained by s
stituting Eqs.~77!–~86!. In particular, it follows immediately
that, forn>0,

Q~6 !n52 i
p2

4
dn0 , ~92!

R~6 !n50, ~93!

S~6 !n50. ~94!

We now want to compare these results with the action
u0,c,T& of the Schro¨dinger picture Hamiltonian. We there
fore digress for a moment to define this Hamiltonian.

The classical dynamical evolution equations~12!–~15! are
generated by the Hamiltonian

H5E
0

2p 1

4 H ]T1~x,t !

]t
„T,x

1~x,t !…21@p~x!1f,x~x!#2

2
]T2~x,t !

]t
„T,x

2~x,t !…21@p~x!2f,x~x!#2J dx.

~95!

Quantum mechanically, the Hamiltonian~95! can be made
well-defined ~i.e., densely defined, self-adjoint! for any
choice of Ta(x,t) by normal-ordering with respect to th
creation and annihilation operators and (a†,a). ~This feature
does not seem to generalize to higher-dimensional mod
see Sec. V!. In this way the normal-ordered Hamiltonian
denoted by :H:, generates the Heisenberg equations of m
tion

i
]f~x!

]t
5@f~x!,:H:#, ~96!

i
]p~x!

]t
5@p~x!,:H:# ~97!

associated with an arbitrary spacelike foliationTa(x,t). Be-
cause the foliation is arbitrary, the Heisenberg equati
shown above are equivalent to a set of functional Heisenb
equations,

i
df~x!

dT6~x8!
5@f~x!,H6~x8!# ~98!
7-9
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i
dp~x!

dT6~x8!
5@p~x!,H6~x8!#, ~99!

where

H6~x!56
:„p~x!6f ,x~x!…2:

4T,x
6~x!

. ~100!

It is important to keep in mind that normal ordering
essentially a renormalization prescription that discards an
finity. It is still possible to renormalize by a finite amoun
This possibility corresponds to the freedom to add multip
of the identity operator to the Hamiltonian without disturbin
the Heisenberg equations of motion. As we shall see,
finite renormalization is needed to define dynamical evo
tion of the state vector along an arbitrary foliation.

Recalling the time evolution operatorU@T#, and the usual
correspondence between the Schro¨dinger picture and the
Heisenberg picture, it follows that the time evolution of sta
vectors is~up to the possible addition of multiples of th
identity! controlled by the Schro¨dinger Hamiltonian,

HSªU@T#:H:U†@T#, ~101!

and Schro¨dinger Hamiltonian densities,

HS6~x!ªU@T#H6~x!U†@T#. ~102!

From the definition~75! of the operatorsb(6)k andb(6)k
† , it

is straightforward to verify thatHS andHS6 are the same
functions ofb(6)k andb(6)k

† that :H: andH6 are functions
of a(6)k anda(6)k

† . In particular, the Schro¨dinger Hamilto-
niansHS andHS6 are normal-ordered in theb, b† operators.

We now return to our derivation of the functional Schr¨-
dinger equation satisfied byu0,c,T&. To this end, we con-
sider the action of the operatorsHS6(x) on u0,c,T&. Again,
we introduce Fourier modes:

h~6 !n5E
0

2p

einT6~x!HS6~x!dx. ~103!

These Fourier modes are Virasoro operators~familiar from
string theory! built from theb, b† operators:

h~6 !05
p2

4
1 (

k51

`

k~b~6 !k
† b~6 !k!, ~104!

and, forn.0,

h~6 !n52 iAn

2
pb~6 !n1 (

k51

`

Ak~k1n!b~6 !k
† b~6 !k1n

2
1

2 (
k51

n21

Ak~n2k!b~6 !kb~6 !n2k , ~105!

h~6 !2n5h~6 !n
† . ~106!
06400
n-
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We now compute the action ofh(6)n on u0,c,T& in order
to compare with Eq.~87!. To begin we note that, becaus
this state is the vacuum associated with the (b(6)n ,b(6)n

† )
operators, we have

h~6 !nu0,c,T&5dn0

p2

4
u0,c,T& n>0. ~107!

Using Eqs.~77!–~83!, ~87!–~91! we see that

F1

i
d~6 !n1h~6 !n1 i „d~6 !nlog N~T!…IG u0,c,T&50, n>0.

~108!

Thus, up to addition of a multiple of the identity to th
Schrödinger Hamiltonian, we have obtained the expec
functional Schro¨dinger equation forn>0.

In order to compute the action ofh(6)2n5h(6)n
† on

u0,c,T& we expand the (b(6)n ,b(6)n
† ) operators in terms of

the (a(6)n ,a(6)n
† ) operators using the Bogolubov transfo

mation ~75! and apply the resulting operator tou0,c,T&. At
this point it is convenient to take note of the identities

a~6 !kl
21 5a~6 !lk* 2(

r 51

`

b~6 !lr* g~6 !rk , ~109!

(
k51

`

a~6 !kl
21 Zk57S z~6 !l* 1 (

k51

`

b~6 !lk* j~6 !kD . ~110!

We get four types of terms:

h~6 !n
† u0,c,T&5~P~6 !n1Q~6 !n1R~6 !n1S~6 !n!u0,c,T&.

~111!

HereP(6)n is proportional to the identityI,

P~6 !n52
1

2 (
j 51

n21

(
r 51

`

Aj ~n2 j !b~6 ! j r* a~6 !r ,n2 j
21 I,

~112!

Q(6)n is quadratic inp,

Q~6 !n5
p2

2 HAnz~6 !n* 1An(
l 51

`

b~6 !nl* j~6 !l

1 (
k51

n21

Ak~n2k!F1

2
z~6 !k* (

l 51

`

b~6 !n2k,l* j~6 !l

1
1

2
z~6 !n2k* (

l 51

`

b~6 !k,l* j~6 !l1
1

2
z~6 !k* z~6 !n2k*

1
1

2 (
l ,m51

`

b~6 !kl* b~6 !n2k,m* j~6 !lj~6 !mG J . ~113!

R(6)n is bilinear inp anda(6)n
† :
7-10
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R~6 !n5 iAn

2
p(

j 51

` S a~6 !n j* 2(
r 51

`

b~6 !nr* g~6 !r j D a~6 ! j
†

1
i

&

p(
j 51

`

(
k51

n21

Ak~n2k!a~6 ! j
† a~6 ! jk

21

3H z~6 !n2k* 1(
l 51

`

b~6 !n2k,l* j~6 !lJ . ~114!

Finally, S(6)n is quadratic ina(6)k
† :

S~6 !n52
1

2 (
l ,m51

`

(
k51

n21

Ak~n2k!Fa~6 !kl* a~6 !n2k,m*

2(
r 51

`

b~6 !kr* a~6 !n2k,l* g~6 !rm

2(
r 51

`

b~6 !n2k,r* a~6 !k,l* g~6 !rm

1 (
r ,s51

`

b~6 !kr* b~6 !n2k,s* g~6 !rl g~6 !smGa~6 !l
† a~6 !m

† .

~115!

We now compareQ(6)n , R(6)n , S(6)n with Q(6)n ,
R(6)n , S(6)n ; we find that

Q~6 !n5 iQ~6 !2unu ~116!

R~6 !n5 iR~6 !2unu ~117!

S~6 !n5 iS~6 !2unu . ~118!

Combining our results, we have for alln

F1

i
d~6 !n1h~6 !n1A~6 !nIG u0,c,T&50, ~119!

where

A~6 !n5 i „d~6 !nlog N~T!…, when n>0, ~120!

5 i „d~6 !nlog N~T!…

1
1

2 (
j 51

n21

(
r 51

`

Aj un1 j ub~6 ! j r* a~6 !r ,unu2 j
21

when n,0. ~121!

This equation is equivalent to

F1

i

d

dTa~x!
1HSa~x!1Aa~x!IG u0,c,T&50, ~122!

where

A6~x!5
1

2p
T,x

6~x! (
n52`

`

e2 inT6~x!A~6 !n . ~123!
06400
The presence of thec-number contributionAa to the
Schrödinger picture image of the normal-ordered Heisenb
Hamiltonian was proposed by Kucharˇ in @5#. Its presence is
needed to ensure the integrability of Eq.~122! given the
appearance of an anomaly~Schwinger terms! in the algebra
of the operatorsHa(x). As such, following Kucharˇ, we refer
to Aa as the ‘‘anomaly potential.’’ The form ofAa as a
functional of embeddings is not uniquely determined beca
of the freedom to specifyL@T# in Eq. ~70!. The results of@5#
imply that the phaseL@T# can be chosen to put the anoma
potential into the following local, spatially covariant form
@16#:

A65
1

24p F7
1

2
~T,x

6!211„~T,x
6!21Kx…,xG , ~124!

where

Kx5
1

2 FT,xx
2

T,x
2 2

T,xx
1

T,x
1 G ~125!

is the mean extrinsic curvature of the embedding multipl
by the square root of the determinant of the metric induc
on the embedded circle.

Having derived the functional Schro¨dinger equation satis
fied by the Schro¨dinger image of the Heisenberg vacuu
state, it now is easy to see that the basis$uei(T)&% described
in Sec. III A also satisfies the same equation. This follo
from the fact that the operatorsp, b(6)k , b(6)k

† , k
51,2, . . . satisfy

Fp,
1

i

d

dTa~x!
1HSa~x!1Aa~x!IG50, ~126!

and

Fb~6 !k ,
1

i

d

dTa~x!
1HSa~x!1Aa~x!IG50

5Fb~6 !k
† ,

1

i

d

dTa~x!
1HSa~x!1Aa~x!IG . ~127!

The states$uei(T)&% thus define a basis of solutions to th
functional Schro¨dinger equation.

Finally, we emphasize that the functional Schro¨dinger
equation~122! can be viewed as the quantum constraint
the Dirac quantization of parametrized field theory in t
Schrödinger picture. As predicted in@5#, the factor ordering
of this constraint is quite non-trivially related to that of no
mal ordering in the (a†,a) operators. Note also that the op
erators (p,b†,b) used to build the physical states are ‘‘Dira
observables;’’ as shown in Eqs.~126! and ~127! they com-
mute with quantum constraint operators.

IV. SPATIAL DIFFEOMORPHISMS

In the quantum theory of generally covariant systems o
often partitions the constraint equations of the theory i
dynamical constraints~the ‘‘super-Hamiltonian constraint,’’
the ‘‘Wheeler-DeWitt equation’’! and gauge constraints~the
7-11
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‘‘super-momentum constraint,’’ the ‘‘diffeomorphism con
straint’’!. The physical states constructed in Sec. III A sati
the functional Schro¨dinger equation~122!, which governs
the propagation of the state vector from hypersurface to
persurface in spacetime. As described in Sec. II C this eq
tion can be interpreted as representing a quantization of
constraints which arise in the Hamiltonian description o
parametrized field theory. If Eq.~122! is projected along the
normal to the embeddingTa(x) then we obtain an analog o
the Wheeler-DeWitt equation, which governs the change
the state as time is pushed forward along the normal to
embedding. If we project this equation tangentially to t
embeddingTa(x), then we get

F1

i
T,x

a d

dTa 1H~S!x1AxG uC~T!&50, ~128!

where

H~S!x5T,x
aH~S!a , ~129!

and

Ax5T,x
aAa . ~130!

Normally, this gauge constraint is viewed as enforcing so
kind of spatial diffeomorphism invariance of the state vect
Indeed, the analog of this equation in canonical quant
gravity is usually interpreted as saying that wave functions
the metric representation depend only upon diffeomorph
equivalence classes of the spatial metric@13#. Alternatively,
in the loop representation of canonical quantum gravity,
analog of Eq.~128! is interpreted as saying that wave fun
tions only depend upon diffeomorphism equivalence clas
of closed curves~knots, links, etc.! @14,15#. Here we would
like to relate Eq.~128! to the action of spatial diffeomor
phisms in quantum parametrized field theories. In particu
we would like to see how/if one can maintain the interpre
tion of Eq.~128! as enforcing spatial diffeomorphism invar
ance at the quantum level. The issue is not trivial given
factor ordering used to defineH(S)x and, in particular, given
the c-number termAx which appears in Eq.~128!.

We will present two results. First we show that the pha
freedom„L@T# in Eq. ~70!… can be used to cast Eq.~128!
into the form

F1

i
T,x

a d

dTa 1hxG uC~T!&50, ~131!

where

hx5:p0~f0!,x :, ~132!

is a particular ordering of the Schro¨dinger picture momen-
tum density for the field, and the field operatorsf0(x) and
p0(x) are defined in Eqs.~26!, ~27!. By definition, the op-
eratorhx is normal ordered in the (a†,a) creation and anni-
hilation operators. Second, we show Eq.~131! can be inter-
preted as indicating that the physical states constructe
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Sec. III A are invariant under an action of the group of~spa-
tial! diffeomorphisms of the circle.

To begin, we note thatH(S)x is, up to operator ordering
the Schro¨dinger momentum density in Eq.~132!. As a con-
sequence, the difference betweenH(S)x(x) and hx(x) is a
‘‘ c-number’’ functional of the embeddings,s@T#(x):

H~S!x5hx1sI. ~133!

A direct computation of thisc-number is straightforward bu
not immediately enlightening. We computes@T#(x) indi-
rectly as follows. Because of Eq.~133!, the variation of
H(S)x with respect to the embeddingTa(x) is a multiple of
the identity which is related tos@T# via

dH~S!x@T#~x!

dTa~y!
5

ds@T#~x!

dTa~y!
I. ~134!

We take the expectation value of this operator relation in
Schrödinger vacuum stateu0,c,T&. Using the Schro¨dinger
equation~122! we can put the expectation value in the for

ds@T#~x!

dTa~y!
5 iT ,x

b ~x!^0,cu@Hb~x!,Ha~y!#u0,c&

2 i
d

dTa~y!
^0,cuT,x

b ~x!Hb~x!u0,c&.

~135!

The right-hand side of Eq.~135! can be evaluated usin
results of Kucharˇ @5#. As usual, we will compute in null
coordinates; we have@16#

ds@T#~x!

dT6~y!
56

1

24p
T,x

6~x!$d ,x~x,y!

1]x@„T,x
6~x!…21]x~„T,x

6~x!…21

3d ,x~x,y!!#%. ~136!

It is a straightforward exercise to solve the functional diffe
ential equation~136!; we get

s@T#5
1

24p F1

2
~T,x

1!22
3

2
~T,x

1!22~T,xx
1 !21~T,x

1!21T,xxx
1

2
1

2
~T,x

2!21
3

2
~T,x

2!22~T,xx
2 !22~T,x

2!21T,xxx
2 G ,

~137!

where we have eliminated an integration constant by tak
into account the boundary condition thats@T#50 when
Ta(x)5T0

a(x).
As mentioned in Sec. II D, the dynamical evolution

field operators arises via two copies of the metaplectic r
resentation of the group of diffeomorphisms of the circle.
noted in@4#, this representation is closely related to a vers
of the Schwarzian derivative. The Schwarzian derivative
fined in @4# is a non-linear third-order differential operato
7-12
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mapping diffeomorphisms of the circle into functions on t
circle. It is defined on diffeomorphismsf :S1→S1 via

S~ f !5
1

12

f-
f 8

2
1

8 S f 9

f 8D
2

1
1

24
@~ f 8!221#. ~138!

The difference between the two different orderings of
Schrödinger momentum densities can therefore be expres
in terms of the Schwarzian derivative as

s@T#5
1

2p
@S~T1!2S~T2!#. ~139!

From the result~137!, it is now easy to show that, for a
appropriate choice ofL@T# in Eq. ~70!, we can turn Eq.
~128! into Eq. ~131!, i.e.,

Ax@T#1s@T#50. ~140!

Indeed, the local, spatially covariant choice of ‘‘gauge’’ a
vocated by Kucharˇ in @5# leads precisely to Eq.~140!. This is
easily verified using Eq.~124!, and then using the relatio
between the extrinsic curvature and the embeddings~125!.
We thus get an interpretation of Kucharˇ’s covariant choice of
gauge: In this gauge the anomaly potential exactly comp
sates for the difference in factor ordering between the Sc¨-
dinger momentum densityH(S)x appearing in Eq.~122! and
the naive Schro¨dinger momentum density~132!.

Given an appropriate choice of phaseL@T# in Eq. ~70!,
we can assume that the spatial projection of the functio
Schrödinger equation takes the form~131!. We now show
that this equation implies spatial diffeomorphism invarian
of the Schro¨dinger picture physical states. Although th
could be demonstrated directly in the Fock representation
have been using for the non-zero modes of the field, we
instead place our discussion in the Schro¨dinger coordinate
representation since that is the representation one usually
in mind in such discussions. We now digress to describe
representation.

The Schro¨dinger representation we shall use is a natu
extension to infinitely many degrees of freedom of an ana
gous representation for the harmonic oscillator. Becaus
the absence of an infinite-dimensional generalization of
usual translationally invariant Lebesgue measure, we u
Gaussian measuredm to define the Hilbert space inner prod
uct @2,18#. So, the Hilbert spaceH of states is defined as
space of functionalsC5C@Q# of a scalar fieldQ(x) on a
circle. We assume that the scalar field lies in the funct
space which is the topological dual to the space of smo
functions on the circle. ThusQ(x)PS 8, the space of distri-
butions on the circle~see, e.g.,@17#!. It is convenient to work
with the Fourier modes ofQ(x). We have

Q~x!5 (
n52`

`

Qne2 inx, ~141!

and, sinceQ(x) is real,

Qn5Q2n* . ~142!
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The scalar product~•,•! onH is that associated with the
Gaussian measuredm@Q# on the space of fieldsQ(x) with
covariance (1/p)(2d2/dx2)21/2 for the non-zero modes o
Q(x). The zero modeQ0 gets the standard translational
invariant measuredQ0 . So, for example, if we conside
wave functions depending upon a finite number of mod
say,$Qn ,unu<N%, we have

~C,F!5E C* @Q#F@Q#dQ0

3 ) !

n52N

N u2nu1/2

p1/2 e2unuQnQ2ndQn . ~143!

Here the star on the product symbol indicates one sho
omit n50. The Hilbert space inner product based upon
Gaussian measuredm@Q# arises formally as the limit of Eq
~143! asN→`.

Because we use the measuredm@Q#, the wave functions
C@Q# cannot be quite interpreted as probability amplitud
in the traditional way. Note, for example, that the Fo
vacuum u0,c& in this representation is simply given by th
wave functionC@Q#5c(Q0), wherecPL2(R). In general,
if the wave function is given byC5C@Q#, the probability
P@Q# for measuring the fieldf(x) and obtaining a value~in
an infinitesimal neighborhood of! Q(x) is given by

P@Q#5C* @Q#C@Q#dm@Q#. ~144!

Inclusion of the Gaussian measure in Eq.~144! is essential
for the probability interpretation of the wave functions.

Keeping in mind that the Heisenberg picture fields on
initial slice X0

a(x), namely „f0(x),p0(x)…, are the Schro¨-
dinger picture fields, we expand these operators as

f0~x!5
1

A2p
(

n52`

`

fne2 inx, ~145!

p0~x!5
1

A2p
(

n52`

`

pneinx. ~146!

The Fourier representatives (fn ,pn) of the Schro¨dinger pic-
ture operators„f0(x),p0(x)… are to satisfy the commutatio
relations

@fn ,pm#5 idn,m , ~147!

and the Hermiticity requirements

fn
†5f2n and pn

†5p2n . ~148!

The basic operators (fn ,pn) are represented on wave fun
tions as

fnC@Q#5QnC@Q#, ~149!

pnC@Q#5
1

i S ]C@Q#

]Qn
2unuQ2nC@Q# D . ~150!

The creation and annihilation operators are represented
7-13
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a~6 !nC@Q#5
1

A2n

]C

]Q7n
~151!

a~6 !n
† C@Q#52

1

A2n

]C

]Q6n
1A2nQ7nC.

~152!

The Schro¨dinger representation described here is unita
equivalent to the Fock representation@2,18#.

It is now a simple matter to express the Schro¨dinger mo-
mentum density~132! as a differential operator-valued dis
tribution on a suitable dense domain of functionsC@Q#. We
get

hx~x!C@Q#52
1

2p (
n,m52`

`

ei ~n2m!xmQm

]C@Q#

]Qn

2
1

2p (
n51

`

(
m51

n

m~n2m!@einxQ2~n2m!Q2m

2e2 inxQn2mQm#C@Q#. ~153!

We now consider an action of the spatial diffeomorphi
group Diff(S1) on state vectors in this representation. L
f :S1→S1 be a diffeomorphism of the circle. In coordinate
f is represented by a smooth mapx→ f (x) with a smooth
inverse, satisfying

f ~2p!5 f ~0!12p. ~154!

We consider the usual pull-back action of spatial diffeom
phisms on the fieldQ(x):

Q~x!→~ f * Q!~x!ªQ„f ~x!…. ~155!

This action induces an action of Diff(S1) on the Fourier
modes:

Qn→~ f * Q!nª (
m52`

`

JnmQm , ~156!

where

Jnm5
1

2p E
0

2p

einxe2 im f~x! dx. ~157!

In order to interpret Eq.~131! we need the infinitesimal form
of this action. Consider a 1-parameter familyf l of spatial
diffeomorphisms and define

V~x!ªS d fl~x!

dl D
l50

5 (
n52`

`

Vne2 inx, ~158!

dQnªS d~ f l* Q!n

dl D
l50

. ~159!

It is easy to see that

dQn52 i (
m52`

`

mVn2mQm . ~160!
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Let us now define an operatordV which provides the in-
finitesimal action of a one parameter family of spatial diffe
morphismsf l generated byV on functionalsC@Q#:

dVC@Q#5S dC@ f l* Q#

dl D
l50

. ~161!

If we also define

hx~V!5E
0

2p

hx~x!V~x!dx, ~162!

then, using Eq.~153!, it is easily verified that

hx~V!C@Q#5
1

i
dVC@Q#1F@Q#C@Q#, ~163!

where

F@Q#52 (
n51

`

(
m51

n

m~n2m!@VnQ2~n2m!Q2m

2V2nQn2mQm#. ~164!

We remark that the infinite sum inF@Q# converges for suf-
ficiently smoothV(x). From Eq. ~163! we see thathx(V)
would generate the action of spatial diffeomorphisms
wave functionsC@Q# if not for the presence of the term
F@Q#. This extra term simply reflects the presence of t
Gaussian measure in Eq.~143!. The role ofF@Q# is to guar-
antee thathx(V) generates the action of spatial diffeomo
phisms on the probability~144!. Indeed, we have the identit

dVP5$@ ihx~V!C#* C1C* @ ihx~V!C#%dm. ~165!

Next we recall that a functionalF@T# of the embeddings
changes under an infinitesimal spatial diffeomorphism via

S dF@Ta+ f l#

dl D
l50

5E
0

2p dF

dTa~x!
T,x

a ~x!V~x!dx.

~166!

Because of Eq.~165!, the spatial projection of the functiona
Schrödinger equation, given in Eq.~131!, then implies that
the probabilities occurring on a given embedding are inva
ant under orientation preserving spatial diffeomorphism
More precisely, associated with a physical state vector, s
as Eq.~71!, there is a wave function

C5C@Q,T# ~167!

which defines the probabilityP@Q,T# for a measurement o
the fieldf(x) on the circle embedded asTa5Ta(x) to result
in Q(x):

P@Q,T#5C* @Q,T#C@Q,T#dm@Q#. ~168!

The probabilityP@Q,T# is spatially diffeomorphism invari-
ant: If f :S1→S1 is an orientation-preserving diffeomor
phism, then
7-14
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P@Q,T#5P@ f * Q,T+ f #. ~169!

The result~169! is checked as follows. Because any tw
orientation preserving diffeomorphisms of the circle can
connected by a one parameter family of such diffeom
phisms, it suffices to consider a one parameter family
diffeomorphisms in Eq.~169! and check that

S dP@ f l* Q,T+ f l#

dl D
l50

50. ~170!

Using Eqs.~166!, ~165!, and~131!, Eq. ~170! follows.
We note that while Eq.~131! depends upon the choice o

phaseL@T#, the result~169! is independent of such a choic
of phase. This is, of course, due to the fact that the ph
factor does not contribute to the probability. Viewing th
state of a quantum system as the totality of probability d
tributions for the outcome of any and all measurements m
on an ensemble of identically prepared systems, we thus
clude that the functional Schro¨dinger equation~122! enforces
spatial diffeomorphism invariance of states in the Sch¨-
dinger representation of the Schro¨dinger picture.

Physically speaking, there is little else to discuss rega
ing the role of spatial diffeomorphisms in the space of Sch¨-
dinger picture physical states. Mathematically, there ar
few other interesting issues. In particular, while the pro
abilities are spatially diffeomorphism invariant in the sen
of Eq. ~169!, in the present representation neither the m
suredm@Q# nor the wave functionsC@Q,T# satisfying Eq.
~122! are separately invariant under the spatial diffeom
phism transformation

~Q,T!→~ f * Q,T+ f !. ~171!

This is because the representation we are working in is
signed to render the initial field operators~the Schro¨dinger
picture field operators! diagonal and keep in a simple form
the representation of the (a†,a) creation and annihilation
operators as well as the representation of the Fock vac
u0,c&. From the point of view of the parametrized fie
theory of@5#, this representation is tailored to the Heisenbe
picture quantization in which physical states are embedd
independent and the action of spatial diffeomorphisms
trivial on the field variables:

~Q,T!→~Q,T+ f !. ~172!

Presumably, there exists a representation in which
wave functionals and measure are separately invariant u
the action of spatial diffeomorphisms that naturally arise
the Schro¨dinger picture quantization of parametrized fie
theory @5#:

~Q,T!→~ f * Q,T+ f !. ~173!

We will explore this representation of the quantum fie
theory elsewhere.

V. GENERALIZATIONS

There are a number of ways one might try to genera
the results presented in the previous sections. Here we br
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discuss partial results pertaining to such generalizations;
tails will appear elsewhere. The generalizations that we c
sider include: inclusion of nonzero mass, massive and m
less fields on flat spacetimes diffeomorphic toR3R, and
higher-dimensional generalizations of these models.

We begin by presenting a generic form for the Bogolub
coefficient relevant for a discussion of unitary impleme
ability of dynamical evolution along an arbitrary foliation
We consider a free scalar fieldf propagating on a flat (n
11)-dimensional spacetimeM . We assume thatM'R
3S, where eitherS5Rn or S5Tn (Tn is then-torus!. We
assumef satisfies the Klein-Gordon equation

~h2m2!f50. ~174!

Let Ta andxi denote inertial coordinates onM and arbitrary
coordinates onS, respectively. An embeddingT:S→M of a
Cauchy surface is represented byn11 functions ofn vari-
ables:

Ta5Ta~x!. ~175!

The induced metric and future pointing unit normal of a sli
embedded byTa(x) are denoted byg i j andna, respectively.
Creation and annihilation operators (ap

† ,ap), are labeled by
the wave vectorp for plane waves. This vector takes o
discrete or continuous values whenS5Tn or S5Rn. Dy-
namical evolution from an initial sliceT0

a(x) to a final slice
Ta(x) can be viewed as a symplectic transformation on
space of solutions to Eq.~174!. Consequently, there is a co
responding Bogolubov transformation of the creation and
nihilation operators. If we choose the initial embedding to
flat with Cartesian coordinates,Ta(x)5(0,xi), the mixing
between creation and annihilation operators is controlled
the coefficients:

bk,p5
1

Av~k!v~p!
E „Agnaka1v~p!…

3e2 i „p•x1kaTa~x!…dnx. ~176!

Here v(k)5Auku21m2 and ka5„2v(k),k…. We have
dropped an irrelevant overall numerical factor in Eq.~176!.

The Bogolubov coefficients~176! define an operatorb on
the one particle Hilbert space that underlies the Fock sp
Unitary implementability of dynamical evolution fromT0

a(x)
to Ta(x) requiresb to be Hilbert-Schmidt. We have seen th
this is so whenS5S1 andm50 ~there we had to also tak
account of zero modes!. With compact spatial sections, th
Hilbert-Schmidt condition only involves the ultraviolet be
havior of b, and one therefore expects that, forS5S1, b is
Hilbert-Schmidt even whenmÞ0. This is indeed the case
We can prove that dynamical evolution along arbitra
spacelike foliations is unitarily implemented whenM5R
3S1 for any value of the massm. When M5R3R the
massless case is rather similar to the case studied in det
the previous sections. In particular, we can show that
ultraviolet behavior ofb does not spoil the Hilbert-Schmid
property provided the embeddings are asymptotically fl
However, one encounters an infrared divergence if one u
the usual Schwartz space as the space of test functions
7-15
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expect that this case can nevertheless be handled wit
appropriate choice of test functions for operator valued d
tributions representing the scalar field@2#. Likewise, we ex-
pect the operatorb for a massive field onM5R3R to be
well-behaved in the infrared and ultraviolet for evolution i
volving asymptotically flat spacelike slices. Consequen
we conjecture that our results for a massless, free, scalar
on R3S1 generalize to any free field on a flat two
dimensional spacetime. In particular, we expect that dyna
cal evolution along arbitrary spacelike foliations is unitar
implemented for free fields on flat spacetimesM5R3S1

and along asymptotically flat spacelike foliations ofM5R
3R.

The situation in higher dimensions is not nearly so sim
as it is for two-dimensional spacetimes. Itis possible to ob-
tain unitary evolution on the Fock space for free fields
higher dimensions if one restricts attention to special clas
of foliations. For example, dynamical evolution along a f
liation obtained by dragging an arbitrary spacelike sl
along the integral curves of a Killing vector field can b
shown to be unitarily implementable. However, using t
stationary phase approximation, we have estimated Eq.~176!
for the caseS5Tn and found thatb is not Hilbert-Schmidt
for a generic embeddingTa(x). This means that dynamica
evolution along arbitrary spacelike foliations isnot unitarily
implemented in the usual Poincare-invariant Fock repres
tation for free fields on flat spacetime. A related difficulty
that the smeared energy-momentum densities do not hav
particle number eigenstates~e.g., the Fock vacuum! in their
domain~this point has already been noted in@19#!. This fact
would explain the divergent Schwinger terms that are
countered when computing the algebra of energy-momen
tensors@20#. We remark that an analogous situation arises
current algebra@21#.

It is an interesting open question to find a Hilbert spa
quantization of free fields on flat spacetime of dimens
greater than two which yields the correct physical results
dynamical evolution along foliations by flat slices and whi
also allows for dynamical evolution along more general
liations. In particular, the standard apparatus of Hilbert sp
and unitary time evolution does not seem adequate to
with quantization of parametrized field theory models
quantum gravity in spacetime dimensions greater than tw
is well-known that analogous difficulties arise in the co
struction of quantum field theories in curved spacetim
where generically there are no preferred foliations availa
for the purposes of canonical quantization. In this ca
progress can be made by using algebraic methods of qu
zation~see, e.g.,@22#!, and it is likely that such methods ca
be fruitfully applied to the class of problems we are cons
ering here. Thus, even in the simplest context of free field
flat spacetime, our results suggest that one is forced to a
don ‘‘traditional’’ approaches to quantization of genera
covariant theories in favor of the more flexible algebraic~or
other! approaches.
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APPENDIX

In this appendix we show that the matrixBmn
(1) satisfies the

Hilbert-Schmidt condition~43!.
SinceT1(x) is a diffeomorphism of the circle, it can b

used as a coordinate. PutT1(x)2T1(0)5u and definex to
be the inverse function tou, that is,x(u)ªx. Then

Bmn
~1 !52

1

2p
An

m
einT1~0!

3E
0

2p

eimx~u!1 inudu. ~A1!

For anytP@0,1#, the function

x t~u!ªtx~u!1~12t !u ~A2!

is also a diffeomorphism. Witht5m/(m1n),

Bmn
~1 !52

1

2p
An

m
einT1~0!

3E
0

2p

ei ~m1n!x t~u!du. ~A3!

Put x t(u)5y and denote the inverse function tox t as w t .
Then

Bmn
~1 !52

1

2p
An

m
einT1~0!

3E
0

2p

ei ~m1n!y
dw t

dy
dy. ~A4!

On integrating by partsk times,

Bmn
~1 !52

i k

2p
An

m
~m1n!2keinT1~0!

3E
0

2p

ei ~m1n!y
dk11w t

dyk11 dy, ~A5!

which gives the estimate

uBmn
~1 !u<~n1m!2kAn

m

3supH U dk11w t

dyk11 U:0<y<2p,0<t<1J . ~A6!

~Note that for sufficiently smooth embedding
sup$udk11w t /dyk11u% exists.! Clearly Eq. ~A6! suffices to
show thatBmn

(1) is Hilbert-Schmidt type.
Similar considerations, involving appropriate integratio

by parts, suffice to show thatBmn
(2) ,a (6)mn , andb (6)mn are

Hilbert-Schmidt type and thatZn
(6) and z (6)n are rapidly

decreasing inn.
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