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The canonical quantum theory of a free field usarbitrary foliations of a flat two-dimensional spacetime
is investigated. It is shown that dynamical evolution along arbitrary spacelike foliations is unitarily imple-
mented on the same Fock space as that associated with inertial foliations. It follows that their@ehro
picture exists for arbitrary foliations as a unitary image of the Heisenberg picture for the theory. An explicit
construction of the Schdinger picture image of the Heisenberg Fock space states is provided. The results
presented here can be interpreted in terms of a Dirac constraint quantization of parametrized field theory. In
particular, it is shown that the Sclitimger picture physical states satisfy a functional Sdmger equation
which includes a slice-dependestnumber quantum correction, in accord with a proposal of Kiciiae
spatial diffeomorphism invariance of the Sctlimger picture physical states is established. Fundamental dif-
ficulties arise when trying to generalize these results to higher-dimensional spacetimes.
[S0556-282(198)07816-3

PACS numbd(s): 04.20.Cv

I. INTRODUCTION foliation of the Minkowskian background. In this paper we
focus our attention on two-dimensional spacetimes since
The Poincarénvariant quantum theory of a free field is, here the investigation can be completed using standard Fock
for all practical purposes, completely understodd2,3. space methods, and many of the mathematical underpinnings
Most canonical quantization treatments are in the Heisenbermr the investigation have already been developgdnOur
picture and focus on the behavior of quantum fields relativgorimary concern is to establish whether operator evolution
to inertial foliations(i.e., foliations by flat time slicg=of the  from one arbitrary slice to another is unitarily implemented
spacetime. In particular, the energy-momentum and angulasn the standard Fock space. If the evolution is unitary, then
momentum of the quantum field are densely defined selfthe most straightforward assignation of quantum states to
adjoint operators on a Fock space, which generate unitarglices is via the unitary image of the states in thkce in-
dynamical evolution from one flat slice to another. dependentFock space. If unitarity failfas it seems to in
It is often assumed that the state of a quantum field in flatimensions higher than)2it is an open question as to how
spacetime can be defined aty time, that is, upon an arbi- one may assign states to slices. We do not address this ques-
trary spacelike hypersurface. Likewise, it is assumed that ongon, other than hinting that the algebraic approach may be
can define unitary dynamical evolution along an arbitraryone way of addressing it.
spacelike foliation of the spacetime. While such niceties are Apart from the intrinsic interest of these issues from the
apparently unnecessary for a non-gravitational treatment goint of view of quantum field theory on arbitrary foliations,
particles and their interactions, they become interesting—ifhis investigation can be viewed in terms of a Dirac con-
not mandatory—when trying to implement some aspects oftraint quantization of parametrized scalar field theory, such
Einstein’s general theory of relativity in the quantum regime.as was considered by Kuchi&]. The quantum parametrized
In this context there are no preferred foliations of spacetimdield theory, being a field theory possessing a diffeomor-
and general covariance requires that all spacelike foliationphism gauge group, is often studied as a model for some
should be allowed in the description of dynamics. Given thessues that arise in quantum gravity. Indeed, in many “mid-
technical and conceptual complexities that arise in attemptsuperspace” models of general relativity one can identify
to construct a quantum theory of gravitation, it is useful tothe resulting reduced field theory with a parametrized field
eliminate the intricate effects of the gravitational interactiontheory of one or more fields propagating on a fixeten
and focus on the more limited—but still non-trivial— flat) spacetime(see, e.g.[9]). Successful guantization of
interplay between quantum field theory and general covarithese models thus requires one to construct a suitable quan-
ance in a flat spacetime. Thus it is of interest to examine freeum parametrized field theory. In the usual approach to ca-
quantum field theory in the context of an arbitrary spacelikenonical quantization of such diffeomorphism invariant field
theories one aspires to use operator representatives of the
classical constraint functions to define a Hilbert space of
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another. Even for the parametrized theory of free fieldscanonical coordinates and momenta for a couple of reasons:
propagating upon a two-dimensional spacetime it has beefl) this is the formulation used ifb], whose results we are
an open question whether such an approach can be rigoirying to extend{2) in canonical quantum gravity, for which
ously implemented. We shall see that, in this case, the quarthis work is intended as a humble model, one formulates the
tization can be completed in the desired fashion. On the otheguantization problem in terms of “observables” constructed
hand, it turns out that a straightforward generalization offrom operator representatives @tinctions oj Cauchy data
these methods to higher-dimensional models is not availabléor the field equations.
Thus our investigation indicates that alternative approaches OQur investigation proceeds as follows. Using the standard
(e.g., algebraic approachéds canonical quantization of gen- Fock space representation of a free scalar field on a two-
erally covariant field theories become necessary already idimensional flat spacetime we consider Heisenberg picture
the simplest models for canonical quantum gravity. field operators (operator-valued distributiopsassociated

A succinct formulation of the problem addressed in thiswith arbitrary (curved spacelike slices. We ask whether the
paper can be presented in the context of the algebraic formwevolution of field operators from one such slice to another, as
lation of the quantization of linear field theories on a fixeddictated by the field equations, is unitarily implemented on
background spacetime, which is by now stand&@2]. The  the Fock space. This issue, although formulated in the con-
C* algebra of observables is traditionally taken to be thetext of slice-dependent operators in the Heisenberg picture, is
Weyl algebrad associated with the symplectic vector spaceintimately connected with the existence of the Sclmger
of solutions S to the field equations. Quantum states arepicture. In the Schidinger picture, field operators are slice-
identified with positive linear functions aA. Given any pair  independent and are associated with some fixed initial slice
of Cauchy surfaces¥,,2,), there is a symplectic transfor- of the foliation. The dynamics are encoded in the slice-
mation 7:5— S which can be interpreted as classical timedependent state vectors which, presumably, satisfy a func-
evolution from3, to 3,. This symplectic transformation tional Schrainger equation, usually associated with the
defines an automorphism of which is naturally interpreted names Tomonaga and Schwingér7]; see also the book of
as time evolution fron®, to X, in the Heisenberg picture. Dirac [8]. Given a foliation, if there exists a one-parameter
Now suppose that we associate a stajeA— C (C denotes family of unitary transformations which implement the op-
the space of complex numbeg® the instant of time repre- erator evolution from slice to slice of the foliation, then the
sented byS;. (An interesting, potentially thorny issue is Schralinger picture is defined as the unitary image of the
how one explicitly prepares/determines such a state on aHdeisenberg picture. In this paper we show that such unitary
arbitrary slice. We hope to return to this question in futuretransformations exist for a free, massless scalar field propa-
work.) By pull-back, the time evolution automorphism can gating on a flat spacetime with manifold structuRex St
be viewed as determining a new statg, which is naturally and we investigate properties of the Salinger picture
interpreted as the Schdimger picture state at the instant of quantum states. We thus largely complete the quantization
time defined by2,. A natural question that arises is whether program initiated irf5] by rigorously constructing the physi-
this dynamical evolution can be expressed in terms of a unieal quantum states in the Schinger picture. In so doing,
tary transformation on a Hilbert space representation of thave derive the anomaly potential, proposed 5, which ap-
Weyl algebra. We will be considering a free field on pears in the quantum constraint equations as-raumber
Minkowski spacetime, so we focus on the standard, Poincarquantum correction. With a rigorous construction of the
invariant Fock representation of the Weyl algebra. Thus thghysical states in hand, it is now possible to investigate in
guestion we wish to address in this paper is whether theletail various diffeomorphism invariance-related issues in
automorphism of A associated with a pair of arbitrary quantum field theory. In this paper we answer the question:
Cauchy surfaces can be realized as a unitary transformatido what extent are the physical states of the parametrized
on the Fock space representation4f Because we are re- quantum field theory actually invariant under spatial diffeo-
stricting attention to free fields, the investigation of this issuemorphisms? This invariance is usually assumed in ap-
can be given a completely equivalent mathematical formulaproaches to canonical quantization of diffeomorphism invari-
tion in terms of unitary implementability of dynamical evo- ant field theories, but at least for the two-dimensional models
lution of operator valued distributions corresponding tosuch as considered here, spatial diffeomorphism invariance
Cauchy datgcanonical coordinates and momenédong an is called into question by the quantum corrections which
arbitrary foliation of spacetime by Cauchy surfaces. For freeappear in the constraints.
fields, the spatially smeared canonical coordinates and mo- Let us emphasize what we amet doing in this paper. We
menta are observables in the sense that they are densely @ge not considering the effect of classical gravitational fields
fined self-adjoint operators on Fock space obtained by a limen quantum matter fields, which is the subject of quantum
iting procedure from the Weyl observables. We must leavdield theory in curved spacetime. We are not considering
open the physical issues regarding the sense in which thdifferent quantization schemes in flat spacetime. The com-
guantum field on an arbitrary hypersurface is to be interplex structure and Fock space that we use are the standard
preted, measured, etc. We should also point out that there @nes associated with the timelike Killing vector field of the
no compelling evidence to suggest that, for Poingavari-  Minkowski metric and are fixed once and for all. So, for
antinteracting field theories, there exist observables corre-example, in this paper we do n@xplicitly) consider slice-
sponding to spatially smeared Cauchy data. We prefer tdependent complex structures and Fock spaces. As men-
formulate our investigation of free field theory in terms of tioned before, the simplest definition of slice-dependent state
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is as the unitary image of a Heisenberg picture state. We do T=(t,2m)=T=(t,0)+ 2. 4

not discuss how to measure/prepare such a state. We hope to

return to this question in a future work. Finally, we do not A particular spacelike slice is determined by embedding

investigate the feasability or existence of other definitions of

slice dependent states. T*=T(x), (5)
The outline of the paper is as follows. In Sec. Il we sum-

marize the classical theory of a free scalar fieldR®S',  which can be identified with a leaf=t, of a foliation via

and we remind the reader of the standard Fock space quan-

tization of the theory in the Heisenberg picture. We provide T(x)=T%tg,X).

the relation to the framework of parametrized field theory

and its Dirac quantization as constructed %} Finally, we

demonstrate the existence of the unitary transformatiori!- THE HEISENBERG PICTURE FOR A FREE MASSLESS

which dictates evolution of operators from one time slice to SCALAR FIELD ON RxS!

another. In Sec. lll, we construct the Sctiimger picture for

the theory and give an explicit construction of the Sehro ] o

dinger picture states on an arbitrary time slice as unitary The massless scalar field dRx S" satisfies the wave

images of the Heisenberg states. We show that the Schr&quation

dinger picture states satisfy a functional Salinger equa-

A. The classical theory

tion which includes an embedding-dependent quantum cor- Hé=0, 6)
rection relative to the classical equation. Thisnumber R o o
correction is related to the “anomaly potential” B]. Sec- =HT T )= (T )+ (T7).

tion 1V is devoted to the issue of spatial diffeomorphism (7

invariance of the solutions to the functional Sdfirmer
equations. There we relate the factor ordering of the spatiaw
projection of the Schdinger equation to a version of the

e expand the scalar field in modes as

Schwarzian derivative due to Seddl. This leads to an in- .11 LT+ 1 D 1 e
terpretation ofvthe spatially covariant “gauge” choice advo- ¢ = V27 |2 (a+p Vi =1 \/Eafi“‘e

cated by Kuchafor the anomaly potential. With this result in

hand we are able to show that the functional Sdhnger 1 -

equation implies spatial diffeomorphism invariance of physi- + Waiki)kelk-r . (8)

cal states in the Schdinger representation. In Sec. V we

briefly consider generalizations of our results to massive fre

fields and to spacetimes with topolo&f. We also indicate _ .

the fundamental difficulties inherent in generalizing our re-N€ fi€ld. The complex numbeeg )., 3 and their com-

sults to higher spacetime dimensions. plex conjugatesa’, ), & are the familiar Fourier mode
Notation. Classical fields are distinguished from their coefficients(note thatk>0). _

quantum counterparts by adopting bold face type for the The field can be restricted to an embedding., a leaf of

former[e.g.,¢(x) is the quantum counterpart of the classical@ foliation) T*=T(x), which results in the definition

field ¢(x)]. Inertial coordinates olRx S are T e (—=,»)

g?’he real numberg,p will be referred to as the zero modes of

andX e[0,27], with respect to which the line element is H(X)=p(T*(x)= " (T"(x)+ " (T"(x)). (9
ds?= —dT2+dX2. (1)  Given an embedding“(x), we also define
We denote byT*:=T+X the advanced and retarded null (%) =YY bl e tary) (10

coordinates. Derivatives with respectTo are denoted with
the subscripts “t” (e.g., ¢ .=d¢/dT*). On a generic where [y is the determinant of the 1-metric induced on the
spacelike foliation we denote the spatial coordinate on a leadpatial slice andh is the future-pointing unit normal to the
of the foliation byxe[0,27r]. Spatial derivativegwith re-  slice. Thusar(x) is the field momentum associated with the
spect tox) are denoted with the subscript X', [e.g., given embedding. A simple computation shows that
f «(x)=df(x)/dx]. Leaves of the foliation are labeled by the
parametet. We define a foliation by specifying the paramet- a(X) =T (X) (TT(X)-T (X)) _(T~(x)). (11
ric equations
The slice-dependent fieldgp(x),#(x)) are Cauchy data
TE=T(t,x), (2 for Eq. (6) and provide a canonical coordinate chart on the
) ] phase space of solutions of the wave equation. The wave
where the superscript labels coordinates oRXS', e.g.,  equation can be used to determine the evolution of the fields

Te=(T,X) or T*=(T*,T7), and (¢(x),7(x)) from one arbitrary slice to another. This evolu-
. B tion is encoded in the following functional evolution equa-
Ti(t,x)>0, T,(t,x)<0, 3 tions:
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Sp(x) _ m(X)E (X )

STEx) T 2TEx O ), (12)
om(X) B (X' ) (X)) d6(X,X")

ST(x') 2Ty (x') ax (13

In the context of a particular foliationT*=T“(t,x), EQs.
(12), (13) give the infinitesimal change dip(x),#(x)) cor-
responding to evolution from the slicE*(x,t) to the slice
TY(x,t+dt) via

dd(X,t) (7 ITH(x",t) Sp(x,t) ,

ot _fo et p O (14
dm(X,t) (7 aT(x',t) dm(x,t) ,

at _fo o et X 19
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The normalizedN-particle states are generated fréf );0)
by the action of the creation operators so that

T T
(a(+)kl)nk1 (a(+)km)nkm

|(+);nk1---nkm>:: \/ﬁ \/F |0),
ke K

m
2 nk_=N.
=1

(21)

The vectors|(+);n, . .. M Y)Y M,V {ki,ny, i=1,... m}

with |(+);0) form an orthonormal basis foF("). The action
of a;y, on any state in this basis is obtained from EGS),
(20), (21).

The operatora(,)k,azr_)k are represented in an identical

This time evolution is a one-parameter family of canonicalmanner onF(~), while q,p are densely defined of%(R) in
transformations which we would like to carry over into uni- the usual way. For our purposes, we find the momentum
tary transformations in the quantum theory. In particular, werepresentation convenientpy(p)=py(p) and q(p)
shall deal with dynamical evolution along an arbitrary folia- =i(dy/dp).

tion connecting a fixed initial slic&g(x) to a sliceT*(x).
Data onTy(x) will be denoted by(¢y(X),7o(x)). For sim-

We identify the operator-valued distributions correspond-
ing to Egs.(9), (11) by replacingp,q,a(i)k,af‘t)k in these

plicity, we restrict attention to the case where the initial sliceexpressions with the operatogsp,a )k, Since the

of our foliation is flat, and corresponds =0 with arc-
length parametrization. Thus
To (x)==To (X)=x, (16)

and (¢o(x),m(x)) are Egs.(9), (11) evaluated onlg(x).
Equations(12), (13) with initial data (¢y(x), (X)) on the

initial slice given by Eq(16) can be solved to give a unique

solution to Eq.(6).

B. Quantum theory: The Hilbert space

We now consider the operatocgp,a(t)k,azrt)k corre-
sponding to the classical quantitig,a ), ,az‘t)k. We re-
call the standard Hilbert space constructjiéhon which the
only nontrivial commutation relations are

[a.p]=iZ, (17)

(&) ,a(Tzn]: ouZ, (18

whereZ is the identity. The Hilbert spack of the theory is
a product of three Hilbert spaces:

H=F e F e LR), (19

classical evolution equations are linear, the operator valued
distributions ¢p(x) and r(x) satisfy the corresponding evo-
lution equations for operators in the Heisenberg picture. In
Sec. IID we will show that the corresponding dynamical
evolution is unitarily implemented.

C. Relation to parametrized field theory and its Dirac
guantization

It is a simple matter to check that the quantum system
described above is the same as that arising in the Heisenberg
picture constraint quantization of parametrized field theory
developed if5]. The only differences lie in our notation and
different normalizations for the quantitiee(g)k,afi)k) and
their quantum counterparts. We briefly summarize the treat-
ment of [5] in our slightly different notation and conven-
tions.

The phase space of a parametrized, free, massless, scalar
field on the Minkowskian cylinder consists of the embedding
fields T%(x), and their conjugate momenf,(x),! along
with the scalar field¢(x) and its conjugate momentum
7(X). Corresponding to the diffeomorphism invariance of
the parametrized theory, there are two constraints

+ 2
o _p. T B00F

- 4T (%) 0 22)

where F(*) are the standard Fock spaces on which the
a{i)k,a(i)k operators are represented as creation and anni-
hilation operatorsZ 2(R) is the representation space for the

Zero n_10de operatorsq(p)_. ) The notation for the classical embedding coordinates and their
To illustrate our notation and conventions we recall theconjugate momenta is an exception to our convention of denoting

standard construction of the Fock space associated with thgassical quantities by bold face type. This is to minimize confusion

“ +” operators. The vacuum stai¢+);0) e F(*) is such
that

with the notation of/ 5] in which bold face type does not have the
same meaning as in this paper.
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which completely fix the embedding momenta in terms of
the remaining fields. These constraints are first classy
have strongly vanishing Poisson brackedsd indicate that
the embeddings can be viewed as “pure gauge.” The phase

space variables can be mapped via an embedding-dependent

canonical transformation to a new set of phase space coordi-
nates(P..(x), T*(x).P. 0,8 k. a{- ) via Eqs.(8)~(11) [5].
The transformation leaves the embedding fields unchanged,
while the new embedding momenta are the constraint func-
tions:

P.(x):=C.~0. (23
This transformation hinges upon the fact that the constraint
functions C,, satisfy an Abelian Poisson algebra. In these
“Heisenberg” variables, the constraints are therefore simply
the vanishing of the embedding momenta.

Based upon the Heisenberg variables just described, Ku-
charimplements the Dirac constraint quantization of the pa-
rametrized field theory in the Heisenberg picture as follows.
In the quantum theory the operatarp,a+ )« ,agi)k are rep-
resented as in Sec. Il B. The embedding fields act by multi-
plication and the embedding momenta act by functional dif-
ferentiation. The quantum constraints,

1 6
Pa"l,): I_ ST@

|¥)=0, (249

then imply that the physical states are time independent, that
is, independent of the embedding. The physical states can

PHYSICAL REVIEW D 58 064007

I i
¢0(X)_E at = 2

ﬁ[(auwag_)k)e"kx

thus be identified with the embedding-independent Fockvhere

states of Sec. Il B. Thus, constraint quantization based upon
the canonical variables(P.(x),T(X),p,d, &)k 8+ k)
corresponds exactly to the canonical quantum theory in the
Heisenberg picture outlined in Sec. Il B.

From the point of view of Dirac quantization of param-
etrized field theory, our primary goal in this paper is to re-
cover the quantum theory in the Sctiager picture. In par-
ticular, we aim to obtain physical states satisfying quantum
constraints of the form

C.|w)=0, (25)

where C.. is a quantum version of the classical constraint
function (22).

D. Unitarity of time evolution

For each embedding, the quantum fielgs(x),(x))
generate &-algebra of observables via their canonical com-
mutation relationg3]. In this section we show that the ob-
servable algebras associated with different, arbitrary time
slices are unitarily equivalent. We do this by comparing
(p(x),m(x)) and(¢o(X),7o(x)) and building up the unitary
transformation relating these operator-valued distributions on

+(aZ+)k+a()k)eikx]) : (26)
(x)= — | E VKI( e
X)=—|p—— a . —a e
o \/ﬂ p & [(ags)k (—)k
—(azrﬂk_a()k)eikx]) , (27)
B(X) L ([T]Jrli 1[( [T]
X)= — — —[(a
\/ﬁ q o= \/E (+)k
+al_ ), [The "™+ (al, [T]
+a W[ TDe* |, (28
(%) 1([T] ii&[( [T]
X)=— -— a
™ \/Z p \/i & (+)ki
—al_\[The ™—(al, ,[T]
—a()k[T])eikX]) : (29
1 G —
a(i)k[T]Zm fo e T;(
ip - _—
+ .+ —inT=(x)
X _\/Q_nzl \/ﬁ(a(i)ne
—a(T:)ne‘”Ti“)) dx, (30)
1 2m
arTi=a+ 5= Todx
1 (2= [1 & 1 _—
_ - _ —inT™(x)
- 2w fo dx(x/f ngl \/ﬁ[a(ﬂne
+a2‘+)neinT+(x)+a(_)ne—in'r*(x)
+al " ] |dx, (32
p[T]=p. (32

each of (), (=) and £2(R). To this end, expand the
fields (¢(x),7(x)) and (do(X), (X)) in Fourier series:

It is straightforward to verify at a purely algebraic level
(that is, ignoring issues of domajnthat the commutation
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relations between the variablé28), (29) are independent of transformatior(l), for each sign+- and—, arises as a unitary
the embedding fields T*(x). In other words, transformationU,(i’[T] on F&) (and the identity on the
(q[T],p[T],a(i)k[T],aL)k[T]) have the non-vanishing zero mode sector of the Hilbert spaice

commutators given in Eq$l7), (18). The transformation

Ui~ qui='=q (39
(AL TLPLTLac Wl T1ale ) d TD < (6,p, a0k ale )
33 Ui Ui =p (40)
is a symplectic transformation which is a quantum analog of
the canonical transformation mentioned in Sec. Il C. We now Ui M Ui =ca Wl T1. (41)

want to see that there is an embedding-dependent unital

r
transformationJ = U[T] on  such that ‘¥he gist of the proof involves showing that the Bogolubov

coefficients
p=UTpuy,

q[T]=U'qU, a(r)k[T]:UTa(r)kU-

(34) . 1 n

B(min)[T]: +5- \/:

The basic theory of the unitary implementability on Fock 2m NVm

space of symplectic transformations on the vector space of
solutions to linear field equations is due to Shilé]; see

also[11]. Because of the existence of the zero modes, we

find it convenient to first decompose the symplectic transfor- . . . .

mation (33) into two successive symplectic transformations,'® Hilbert-Schmidt type, i.e., satisfy

and then check that each transformation is unitarily imple- w

2 . R
xfo e ! ™TL(x)eT Mdx, (42)

mentable. To this end, we view the transformati@3) as 2 |B<i)|2<oo (43)
being defined by the composition of the symplectic transfor- m=1 " '
mation
) This latter result is guaranteed if the embedding is taken to
: . be sufficiently smootlisee the Appendix
(0,P, 8= )k, ) = (AP, C ol T1 e (e W[ T]), (39 Next, it is straightforward to check that both
where - 1 2
ASEES f e” ™ T dx 44
1 27 I : 2’7T\/H 0 X ( )
C(i)k[T] ==* J’ e TT
2k Jo " and
X n(ag.,,e "™ 1 o,
nzl \/_( (£)n g(t)n — J e|nT*(><)dX (45)
277\/ﬁ 0
—al. ") ldx, (36)  are rapidly decreasing functions of, that is, asn—c,

|z{*)| and|Z{")| vanish faster than any power ofnil/For

followed by the symplectic transformation

an

<q,p,cmkm,cL)k[T])a(q[T],p,a<:)k[T],aI+)k[T](>3,

details, see the Appendix. From this it follows tha[ T],
defined as

U||[T]:ex4 —i

2 o0
p 2 B p (+)
yp j T(x)dx (\fz nz,l [C(1ynZ,

0

where
ip 1 +Czr+)n2£1+)*_c(—)nz§1)_c;r)nZ%)*]>H
Al TI=CoWlT]lx— ——=
o TI=Cd T] - .
2 =eXp[—i 4—j T(x)dx
XJ etlkx-rl)’(dx' (38) 7 Jo
0 ,
p + B
andq[T] is defined in Eq(31). + 5 ngl [a<+)n§ff>*+a(+)n§ff)+a<-)n§f1 )*

BecauseT " (x) and T~ (x) each define diffeomorphisms
of the circle[see Egs(3), (4)], the transformatior(l) in-
volves two copies of the “metaplectic representation” of the + az)ngﬁf)]) 1 } , (46)
group Diff(S!), which is discussed if4]. It follows that the
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is a unitary operator on the Hilbert spake U, implements p? (2n
the transformatior(ll ): Vi [Tl=exp —i|— J T(x)dx
0

4
Ujiquy=d[T] (47) o=
_ | = (+) t (H)* _ (-)
UipUy=p (48) (1/2 n§=:1 (3G nn 8 nn A
Ulica i TIUp=a0 L T1. (49)
~al .z |1, 57
The combined transformatiod[ T]=U{"U{7U,, is the

unitary map implementing dynamical evolution from the ini-
tial spacelike embedding, (x)= =x to the final spacelike
embeddingT#(x) = (T (x), T~ (x)).

Our strategy is to first evaluaté,|0,i) and then compute the
action ofV,, on the resulting state. The vectdy|0,4) can be
computed from the observation that it is annihilated by

lll. THE SCHRO DINGER PICTURE dioykc=Ugage Uy (58)
A. Schrodinger picture image of the Fock basis o

A vector in the Hilbert space for the quantum field theory = 21 (a(t)kna<¢)n+,8(t)knagi)n), (59
&

is any normalizable superposition of the Fock basis vectors

(see Sec. Il B In the Heisenberg picture of dynamics, any \\hare

such vector can represent the state veior, of the system

for all time. Dynamical results depend upon specification of 1 n (2= .

an embedding, and are expressed in terms of expectation A(ykn= 5 \[Ef kT (eFinxgx (60)
values of observables built from the embedding-dependent 0

operator-valued distributiong#(x),m(x)) defined in Sec. 1 o ron

II D. In the Schralinger picture, dynamical evolution is en- Bisyn=—5— \ﬁ f kT (0 g=inxgy.

coded in embedding-dependent state vectdr$T])s ac- - 2w VK Jo

cording to the unitary mapping (62)

[W[Ts=U[T]|¥)y, (50) Let us note some important properties of these Bogolubov
coefficients(see[4] for a more rigorous treatment of most of
and dynamical results are expressed in terms of operator olhese resulis First, note that the operatog. ), can be ob-
servables constructed fro@y(x), mo(X)). tained from Eq.(36) using the inverse diffeomorphisms
In the last section we showed thd{ T] exists; here we (T*) 1
explicitly define this operator by giving its action on the

Fock basis of Sec. Il B. To begin, we express the Fock di+yn=C(+)n[ (TH) 1] (62)
ground statgHeisenberg vacuum statas o ) )
The coefficientsy(+ym, and B+ym, satisfy the relations
10.4)=¢(p)®|(+);0)®[(—);0), (51 .
where e £L2(R). The Schrdinger picture image of this kZl (@)@ )ik = Bi=)ikBle)i) = ij » (63
state is denoted by0,;T): -
10,45 T)=U[T][0,4). (52

kZl (a@(=)ikB+)jk— Bi+)ik®(+)jk) =0, (64)
We note that
which are equivalent to saying that the transformatignof

|0.4/:To)=10.4). (53 Sec. I D is symplectic. The coefficienf.)m, are Hilbert-
To evaluatd0,4;T) it is convenient to decompodé as Schmidt
U=Vv,u,, 54 S .
=t ( ) m%l |,8(i)mn|2<°c! (65)

whereV,, is the unitary operator
this result is equivalent to Eq43). The infinite arrays

. -1
Vip=UiUg U, (55 @(+ymn @dmit inverseS)z(;l)mn which can be written as
and o
-1 _ _
U=Ufu. (56) @@ on™ 2 Yemblome (69
Using Eq.(46) and Eqs(39—(41), where we have defined the Hilbert-Schmidt operators
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-1
Y(+)mn= k21 a(t)mkﬁ(t)kn- (67)

It is straightforward to verify that, for any embedding- | .

dependent function ob, N(p,T),
l oo
Ui[0.4)= N(p,T)exp{ 3 kzl [('y(+)kla2+)kazr+)l
(68)

+ ’}’(—)klaZ)kazn)]] |0,4)

is annihilated byd . for all k (see[12] for some properties

PHYSICAL REVIEW D 58 064007

Note that the various sums and products in the expressions
above converge becauseis Hilbert-Schmidt type and,Z

are rapidly decreasing.

The vector|0,i,T) serves as the vacuugor “cyclic” )

ctor for the Fock representation associated with the anni-
hilation and creation operatolg.-.,, and bzri)k where

beyk =Uac U7 (74)

]

P ,
=1 ((:)kEWLngl (@(=kn@(=)nt Bie)kn@(x)n)- (75

of such a state SinceU, is trivial on the zero mode sector, This Fock space representation of the algebra of creation and

(39), (40), N(p,T) must be independent @f. Thus

N(p,T)=N(T), (69

annihilation operators and zero modes is unitarily equivalent
to the representation oH we used originally. By repeatedly
applying the creation operatotﬁi)k t0 |0,4,T), and allow-

ing ¢ to range over an orthonormal basis f6%(R), we

and N(T) is determined, up to an embedding-dependenbbtain an orthonormal bas{$e;(T))} for the Hilbert space

phase factor, by normalization to be
N(T)=e"T det(1— v,y )™

xde(1—y¢ v )Y, (70)

where A(T) is an arbitrary real-valued function of the em-

bedding and we have used a matrix notation in whjgh,
denotes the symmetric matrix +yy,. N(T) is well-defined
thanks to the fact thay is Hilbert-Schmidt type.

It is now straightforward to compute the action\gf (57)
on (68) to be

k=1| v2

o

t t t
+§(,)ka(_)k)— 5 kzl (Y(+ KB+ )k@(+)

-
|0,1//,T)=M(p,T)exp{ z |:_p(§(+)kag+)k

+7(—)k|a(T-)ka(T_)|) ]|0,l//>, (72)
where
p2 2
M(p,T)zexp{—l[E fo T(x)dx }
X ex p_2 > L€zl
4 =1
—a)kz(k‘)]]N(T) (72
with N(T) defined by Eq(70) and
g(t)k:zlgl a(jl)klg(t)l' (73

‘H. This basis is just the Schilinger picture unitary image of
the original orthonormal basis of states used in the Heisen-
berg picture. From the point of view of the parametrized field
theory description off5] and Sec. Il C, the embedding-
independent Fock states are the “physical states” of the
Dirac quantization based upon the Heisenberg variables. The
physical states of the Dirac quantization in the Sdiviger
picture are obtained as the unitary image of the Heisenberg
physical states. Th@ure physical states in the Schiimger
picture are thus obtained by taking finite-norm superposi-
tions of the basig|e;(T))} for H that we described above.
The Dirac quantization of the parametrized field theor{df

in the Schrdinger picture is thereby completed. However,
we would still like to see explicitly how the physical states
satisfy the quantum constraints in the Schinger picture.
This is our next topic.

B. Functional Schradinger equation

The Schrdinger picture states constructed in the last sub-
section are determined by a choice of embedding. In this
subsection we consider the change induced in these states by
a variation of the embedding. In particular, we derive a func-
tional Schralinger equation that describes the evolution of
the state vector from one slice to another of an arbitrary
spacelike foliation. This functional Schdimger equation is
the quantum constraint equation arising in the Dirac quanti-
zation of parametrized field theory in the Scotimger pic-
ture.

To begin, we consider the embedding dependence of the
Schralinger vacuum state given in Eq§.1), (70), (72). We
want to consider the change induced in this state by an in-
finitesimal change in the embeddifig(x). With this result
in hand, it is straightforward to compute the corresponding
results for the basi§|e;(T))}. Evidently, we need to com-
pute the functional derivatives & -)x, y(+)mn, and Z(ki)
with respect toT“(x). To display the results of the compu-
tation it is convenient to present the Fourier modes of the
functional derivatives. We define
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S(+)n= f zwe‘“ﬁx)m% dx. (76)
0 (x)
Direct computation yields
O(+=nY()m=0, (77
O(=né=K=0, (78
Sl k=0, (79)
O(+nY(+ym=0 for n=0, (80)

[n[-1

(Y (=)m= =i 121 Vj|n+j|a(+l)|j|:a?+)n+j|m

_qzl ﬁfi)\nﬂ\q?’(t)qm for n<O,
(81
O(+yné+k=0 for n=0, (82
Sty w=iNINla by

In[-1

+i jzl Viln+j |a(+l)kj{g:(+)|n+j

+qu ﬂ?ﬁ)|n+”q§(t)q for n<0, (83
5(t>nz(t>k:ii N o+ for n>0, (84)
O(+nZ(+ k=0 for n=0, (85)

8o nZio = TFiNIN[B i for n<0.  (86)

It is now a simple matter to apply.), to the state
|04, T) as written in Eqs(71), (70), (72). The result is a
sum of four terms acting o[0,,T):

8+ )nl0 T)={Ps)nt Q= )nt R(+)n

where P+, is a term proportional to the identity arising
from the derivative oiN(T),

P(+)n=6(+)n(log N(T))Z; (89

Q(+)n is quadratic inp,

2 1 (2w .
Q(ﬂnz%[—i(z fo emT(X)dX)

+ kzl [ )n€ €+ )kt E+)kO+nZ(+)k

— O né(—WL(—k— 5()k5(+)nz()k]} ; (89

PHYSICAL REVIEW D 58 064007

R (+)n is bilinear inp anda’,

Rzyn=— Z S+ (+) ka(+ kT (= yné(- )ka( K

V2 K
(90
and S+, is quadratic ina,
_ Tt
Sten=— 2k|§: (Bo)n Yo KB+ i@+ )1
+6 Toal 91
(Y (—)KIB(— k(1) (92)

The explicit forms of these terms can be obtained by sub-
stituting Eqs(77)—(86). In particular, it follows immediately
that, forn=0,

2

Y
Q(i)n:_|z5no, (92
R(i)nzov (93
S(i)n:o (94)

We now want to compare these results with the action on
|04, T) of the Schrdinger picture Hamiltonian. We there-
fore digress for a moment to define this Hamiltonian.

The classical dynamical evolution equatidhg)—(15) are
generated by the Hamiltonian

H:J [‘ﬂ OO (1) () + b () T2
o 4

&T
( )(Tx(Xt)) La(x) = (¥

(99

Quantum mechanically, the Hamiltonidf5) can be made
well-defined (i.e., densely defined, self-adjojnfor any
choice of T*(x,t) by normal-ordering with respect to the
creation and annihilation operators arad (a). (This feature
does not seem to generalize to higher-dimensional models,
see Sec. ¥ In this way the normal-ordered Hamiltonian,
denoted by H:, generates the Heisenberg equations of mo-
tion

d

|ﬂ—[¢< x),:H:1, (96)
om(x)

e KU CORL H 97

associated with an arbitrary spacelike foliatibf(x,t). Be-
cause the foliation is arbitrary, the Heisenberg equations
shown above are equivalent to a set of functional Heisenberg
equations,

5¢(X)

| 5Tt—(X') (98)

=[¢(x),H-(x")]
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. om(X) We now compute the action & .y, on |0,4,T) in order
[ Ni—m:[ﬁ(x)!Hi(X,)L (99 to compare with Eq(87). To begin we note that, because
this state is the vacuum associated with the.(, ,b(Ti)n)
where operators, we have
H(m(X) * ¢ x(X)*: p?
=+ . h<n|0,4,TY)=8,0— |0,44,T) n=0. 10
HaX) = 2= (100 (=)n| 0, T)=no 4 0.4, T) (107

It is important to keep in mind that normal ordering is  Using Eqs.(77)—(83), (87)—(91) we see that
essentially a renormalization prescription that discards an in-
finity. It is still possible to renormalize by a finite amount. |1 .
This possibility corresponds to the freedom to add multiples i_a(i>“+h<i>n+'(5<i>“|09 N(T)Z||04,T)=0, n=0.
of the identity operator to the Hamiltonian without disturbing (1089
the Heisenberg equations of motion. As we shall see, this
finite renormalization is needed to define dynamical evolu-Thus, up to addition of a multiple of the identity to the

tion of the state vector along an arbitrary foliation. Schralinger Hamiltonian, we have obtained the expected
Recalling the time evolution operatbl{ T], and the usual functional Schrdinger equation fon=0.
correspondence between the Schinger picture and the In order to compute the action dﬁ(t)—n:hgt)n on

Heisenb_erg picture, it fO||OWS that t_h_e time evolgtion of state|o'{/,,-|-> we expand thek((:)n,bzi)n) operators in terms of
yectqrs is(up to the possmlg e_lddltlon of_mul_t|ples of the he (a(t)n’azrﬂn) operators using the Bogolubov transfor-
identity) controlled by the Schiinger Hamiltonian, mation (75) and apply the resulting operator ©,,T). At
this point it is convenient to take note of the identities

Hg:=U[T]:H:UT[T], (101)

and Schrdinger Hamiltonian densities, a(—il)klza?i)lk_zl Bl Yok (109
Hs () :=U[TIH.()UT]. (102

From the definition(75) of the operator® ., andb/..,, it kzl aAZ=7 gz*i)ptkgl Browéok|. (110

is straightforward to verify thaHg and Hg. are the same
functions ofb., and b(Ti)k that :H: andH.. are functions
of ai- and a(T:)k- In particular, the Schidinger Hamilto-
niansHg andHg. are normal-ordered in the, b' operators.

We now return to our derivation of the functional Schro
dinger equation satisfied by,y,T). To this end, we con-
sider the action of the operatotss. (x) on|0,,T). Again,
we introduce Fourier modes:

We get four types of terms:

hgi)n|oal/faT>:(P(t)n+Q(t)n+R(i)n+s(t)n)|0a'r//,T>-
(111

HereP ., is proportional to the identity,

2r . 10 S —— .
Nesyn= fo T 09, (x)dx. (103 Pen=—5 121 21 Vitn=1) Bl jraidn T,
(112
These Fourier modes are Virasoro operai@amiliar from ) o
string theory built from theb, b' operators: Q(+)n is quadratic inp,
P2 o p’ S
h(i)ozz-i-gl k(bgi)kb(i)k), (104 Q(+)n:7! \Eﬁ:)n"‘ \/ﬁlzl ﬁf:)mf(rn
n—-1 1 o

and, forn=0, +k21 k(n_k){zg?ﬂk;l Blein—ibi

. n -
Neeyn=—I \/; pb(i)n+k21 vk(k+ n)b(Ti)kb(:)mn

1 - 1
+ Eﬁ:)n—kZ«l Bley i€t §ﬁ:)k§<*:)n—k

12 L
-3 kzl VK(N=K)D kb )k (109 t3, mE:1 ﬂ?ﬂmﬂ?ﬂnk,m§<r)|§(:>mH- (113
hz)-n=hls)n. (108 R(.y, is bilinear inp anda(.,:

064007-10



QUANTUM FIELDS AT ANY TIME

R(t)n \/7 pE

2 2 vk(n—k)a I ll)jk

E Bleyne Y(+) fJ)a

|
7

X[Z(*:)n—k‘kzl ﬁ?i)n—k,|§<+)|]- (114

Finally, S -, is quadratic inazri)k:

o n-1

1
5 2 2 Vk(n=k)
I,m=1 k=1

S(:)n:_

* *
)k ¥(+=)n—k,m

_Z' ﬁ( =)kr& )n k1 7Y(x)rm
_21 lgfi)n—k,ra?t)kJ?’(:)rm

Tt
A=) 8(x)m-

(115

We now compareQ:yn, Risjns Sizyn With Q.
R(+yns S(=yn; We find that

+ r;l Bikt)krﬁzct)nfk,s‘y(t)rl Y(=)sm

Q(:)n:iQ(t)—\n\ (116
Ri=n=1R(=)—|n| (117
S(+)n=iS()—|n| - (118
Combining our results, we have for all
1
TO0nthent A Z|[04,T)=0, (119
where
A=)n=1(8+)nlog N(T)), when n=0, (120
=i(J(+)nlog N(T))
Lt
T3 Z 2 I+ 1BEw je ol
when n<0. (121
This equation is equivalent to
1
T 5T“(X) +Hgo(X)+ AL (X)Z||0,4,T)=0, (122
where
A (x)= %Ti(x)n;w e TN, (129

PHYSICAL REVIEW D 58 064007

The presence of the-number contributionA4, to the
Schralinger picture image of the normal-ordered Heisenberg
Hamiltonian was proposed by Kuchir [5]. Its presence is
needed to ensure the integrability of E{.22) given the
appearance of an anomalgchwinger termsin the algebra
of the operatorg{,(x). As such, following Kucharwe refer
to A4, as the “anomaly potential.” The form ofd, as a
functional of embeddings is not uniquely determined because
of the freedom to specifk[ T] in Eq. (70). The results of5]
imply that the phas&[T] can be chosen to put the anomaly
potential into the following local, spatially covariant form
[16]:

A= o T (T K 124
== | T3 (T 7+ (T3 Dx| (124

where

1
KXIE

T Thx

L L 12
T, T (125

is the mean extrinsic curvature of the embedding multiplied
by the square root of the determinant of the metric induced
on the embedded circle.

Having derived the functional Schiimger equation satis-
fied by the Schrdinger image of the Heisenberg vacuum
state, it now is easy to see that the bdis(T))} described
in Sec. lll A also satisfies the same equation. This follows
from the fact that the operatorp, by, b;’i)k, k

=1,2,... satisfy
p,— : ma(x)JrHSa(x)vLA (X)Z|=0, (126
and
[b( )k’l 51-01( )+HSa(X)+Aa(X)I
=|b/ o 7. 12
= (i)k!i_gTT()()+HSa(X)+Aa(X) . (12

The stateq|e;(T))} thus define a basis of solutions to the
functional Schrdinger equation.

Finally, we emphasize that the functional Sdfirger
equation(122) can be viewed as the quantum constraint in
the Dirac quantization of parametrized field theory in the
Schralinger picture. As predicted if5], the factor ordering
of this constraint is quite non-trivially related to that of nor-
mal ordering in the 4",a) operators. Note also that the op-
erators p,b",b) used to build the physical states are “Dirac
observables;” as shown in Eq€l26) and (127) they com-
mute with quantum constraint operators.

IV. SPATIAL DIFFEOMORPHISMS

In the quantum theory of generally covariant systems one
often partitions the constraint equations of the theory into
dynamical constraintgthe “super-Hamiltonian constraint,”
the “Wheeler-DeWitt equation)’and gauge constraintghe
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“super-momentum constraint,” the “diffeomorphism con- Sec. lll A are invariant under an action of the groupgpa-
straint”). The physical states constructed in Sec. Il A satisfytial) diffeomorphisms of the circle.
the functional Schidinger equation(122), which governs To begin, we note thak{(s) is, up to operator ordering,
the propagation of the state vector from hypersurface to hythe Schrdinger momentum density in Eq132). As a con-
persurface in spacetime. As described in Sec. Il C this equaequence, the difference betwedfis)(x) and h(x) is a
tion can be interpreted as representing a gquantization of théc-number” functional of the embeddings] T](x):
constraints which arise in the Hamiltonian description of a
parametrized field theory. If Eq122) is projected along the
normal to the embedding*(x) then we obtain an analog of
the Wheeler-DeWitt equation, which governs the change of: direct computation of thig-number is straightforward but
the state as time is pushed forward along the normal to theot immediately enlightening. We computg T](x) indi-
embedding. If we project this equation tangentially to therectly as follows. Because of Eq133), the variation of
embeddingT *(x), then we get Hs)x with respect to the embeddinlf*(x) is a multiple of
the identity which is related to T] via

H(S)X:hx+ al. (133)

1 1)
T Thgra tHont AW (M)=0, (128 (s, TI(X) _ 8alTI00 (134
oT(y) oT(y)
where
We take the expectation value of this operator relation in the
Hiox=T%H (Sa> (129  Schralinger vacuum stat¢0,5,T). Using the Schidinger
' equation(122 we can put the expectation value in the form
and
M—iTﬁ(x><0 [H(X), Ha(y)1]0.4)
A=TEA,. (130 sTaty) R OHOAILHE) Ha IO
Normally, this gauge constraint is viewed as enforcing some . g T8
kind of spatial diffeomorphism invariance of the state vector. ! oT(y) (0T H0)[04).

Indeed, the analog of this equation in canonical quantum (135
gravity is usually interpreted as saying that wave functions in

the metric representation depend only upon diffeomorphism The right-hand side of E¢135) can be evaluated using

equivalence classes of the spatial mefig]. Alternatively, (esults of Kuchar5]. As usual, we will compute in null
in the loop representation of canonical quantum gravity, thggordinates; we haviel6]

analog of Eq.(128 is interpreted as saying that wave func-
tions only depend upon diffeomorphism equivalence classes
of closed curvegknots, links, etg.[14,15. Here we would
like to relate Eq.(128 to the action of spatial diffeomor-
phisms in quantum parametrized field theories. In particular, F AL (TH(X)) Lo, ((TL(x)) 1
we would like to see how/if one can maintain the interpreta-
tion of Eq.(128) as enforcing spatial diffeomorphism invari- X8, (XY}
ance at the quantum level. The issue is not trivial given the . ) ) ) )
factor ordering used to defir¥,g), and, in particular, given It is a stra|g_htforward exercise to solve the functional differ-
the c-number termA, which appears in Eq128). ential equatior(136); we get

We will present two results. First we show that the phase
freedom(A[T] in Eqg. (70)) can be used to cast E¢L28
into the form

SolTI) 1 _.
e —ET,X(X){(S,X(X.Y)

(136

;XXX

1|1 3
o[ T]= E E('|"‘*>'<)2_ E(T";)—Z(T";X)Z_I_(T;)—l-r-%—

1 3
1 1) T V2 2TV 2T V2 (T 17—
[i_T’aX 2 e ey, (131 5 (T20%+ S (T30 72T (T30 ™ T o
(137
where
where we have eliminated an integration constant by taking
hy=:mo(0),x:, (132  into account the boundary condition tha{T]=0 when

T()=T5(x).

is a particular ordering of the Schdimger picture momen-
tum density for the field, and the field operatafg(x) and

mo(X) are defined in Eq926), (27). By definition, the op-
eratorh, is normal ordered in thea(’,a) creation and anni-
hilation operators. Second, we show Efj31) can be inter-

As mentioned in Sec. Il D, the dynamical evolution of
field operators arises via two copies of the metaplectic rep-
resentation of the group of diffeomorphisms of the circle. As
noted in[4], this representation is closely related to a version
of the Schwarzian derivative. The Schwarzian derivative de-

preted as indicating that the physical states constructed ifined in [4] is a non-linear third-order differential operator
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mapping diffeomorphisms of the circle into functions on the The scalar product:,-) on H is that associated with the
circle. It is defined on diffeomorphisnfsSt— St via Gaussian measuiu[ Q] on the space of field®(x) with
covariance (1) (—d?/dx?) =2 for the non-zero modes of
Q(x). The zero mod&), gets the standard translationally
invariant measuradQ,. So, for example, if we consider
wave functions depending upon a finite number of modes,
The difference between the two different orderings of thesay,{Q,,|n|<N}, we have

Schralinger momentum densities can therefore be expressed
in terms of the Schwarzian derivative as

1 1 2

SR8

fH

1 1\2
7| Fagl(f2-11. (138

(w.@)= [ ¥*[QIe[QldQ,

1
o[ T]=5-[S(T")=S(T7)]. (139 N o
nEinN 2

e_ln‘QnQ—ndQn_ (143

From the resul{137), it is now easy to show that, for an
appropriate choice oA[T] in Eqg. (70), we can turn Egq. Here the star on the product symbol indicates one should

(128 into Eq. (13, i.e., omit n=0. The Hilbert space inner product based upon the
Gaussian measuu[ Q] arises formally as the limit of Eq.
A[T]+o[T]=0. (140 (143 asN—.

Because we use the measudig[ Q], the wave functions
. i = VP[Q] cannot be quite interpreted as probability amplitudes
vocated by Kuchain [5] leads precisely to Eq140. Thisis iy the traditional way. Note, for example, that the Fock
easily verified using Eq(124), and then using the relation \50,um|0,4) in this representation is simply given by the
between the extrinsic curvature anvd the embeddiig$). wave function®[Q]= ¢(Q,), wherey e £2(R). In general,
We thus get an interpretation of Kuchacovariant choice of ¢ 1o \wave function is given by’ =W[Q], the probability

sates for the difference in factor ordering between the"Schrgp[Q] for measuring the fields(x) and obtaining a valuéin

dinger momentum densityts), appearing in Eq(122) and an infinitesimal neighborhood pf(x) is given by

the naive Schrdinger momentum densitil 32). PQ]I=¥*[Q]¥[Q]du[Q]. (144
Given an appropriate choice of pha&¢T] in Eq. (70),

we can assume that the spatial projection of the functionainclusion of the Gaussian measure in Ei44) is essential

Schralinger equation takes the forgi31). We now show for the probability interpretation of the wave functions.

that this equation implies spatial diffeomorphism invariance Keeping in mind that the Heisenberg picture fields on the

of the Schrdinger picture physical states. Although this initial slice Xg(x), namely (¢o(x),mo(X)), are the Schro

could be demonstrated directly in the Fock representation wdinger picture fields, we expand these operators as

have been using for the non-zero modes of the field, we will

Indeed, the local, spatially covariant choice of “gauge” ad-

instead place our discussion in the Salinger coordinate 1 - .
ion si i - bo(X)= == 2 e ™ (145
representation since that is the representation one usually has 0 P2 ne n '
in mind in such discussions. We now digress to describe this
representation. 1 o
The_Sch'r'o_Iin_ggr representation we shall use is a natural mo(X)= —= > m,e™ (146)
extension to infinitely many degrees of freedom of an analo- N2 n=—o

gous representation for the harmonic oscillator. Because of ) ] o )
the absence of an infinite-dimensional generalization of thd he Fourier representativesp(,,) of the Schralinger pic-
usual translationally invariant Lebesgue measure, we use e operatorggo(x),mo(x)) are to satisfy the commutation
Gaussian measurku to define the Hilbert space inner prod- relations
uct [2,18]. So, the Hilbert spac@{ of states is defined as a .
space of functional® =¥ [Q] of a scalar fieldQ(x) on a [bn: Tml=16nm, (147)
circle. We assume that the scalar field lies in the functioyng the Hermiticity requirements

space which is the topological dual to the space of smooth

functions on the circle. ThuQ(x) e S’, the space of distri- ¢>;§: ¢_, and w;: T _n- (148
butions on the circlésee, e.g[17]). It is convenient to work
with the Fourier modes o(x). We have The basic operatorsd(, ,7,) are represented on wave func-
tions as
Q)= X Qe ™™ (141 $n¥[Q]=Q,V[Q], (149
n=—wx
1(d¥[Q]
and, sinceQ(x) is real, mV[Q]=+ 20 —[n|Q_,¥[Q]|. (150
n
Qn=0Q%,. (142 The creation and annihilation operators are represented as
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Let us now define an operatér, which provides the in-

1 9v
a-¥Y[Q]=— (151 finitesimal action of a one parameter family of spatial diffeo-
v2n 9Q=n morphismsf, generated by on functionals¥[Q]:
1 9¥ d\lf[f*Q])

T A
a ) Y[Ql=—— +v2nQ; V. SWV[Q]=|———— 161)

(£)n [Q] \/% 9Q.n Q=n \% [Q] ( dn o ( )

(152

. If we also define
The Schrdinger representation described here is unitarily

equivalent to the Fock representatijd)18]. 27
It is now a simple matter to express the Salinger mo- hx(V)ZJ hy(X)V(x)dXx, (162
mentum density(132) as a differential operator-valued dis- 0
tribution on a suitable dense domain of functiohgQ]. We then, using Eq(153), it is easily verified that
get

- 1
L - Al h(V)W[Q]==8¥[Q]+F[QIV[Q], (163
hOOVQl=~5— X & ™mQ, a([g?] (VV[Q]= 78 W[QI+FIQI¥[Q]  (
1 =20 where
- E n=1 m§=:1 m(n_m)[einxQ*(n*m)Qfm © n
. F[Ql=— 21 2—1 m(n=m[VaQ_n-mQ-m
—e "MQu_mQm]W[Q]. (153 n=1m=

We now consider an action of the spatial diffeomorphism ~V-nQn-mQuml- (164
group Diff(S') on state vectors in this representation. Let\we remark that the infinite sum iA[Q] converges for suf-
f:S'— S! be a diffeomorphism of the circle. In coordinates, ficiently smoothV(x). From Eq.(163 we see thah, (V)
) . . . X
f is represented by a smooth map-f(x) with @ smooth 514 "generate the action of spatial diffeomorphisms on
inverse, satisfying wave functions¥[Q] if not for the presence of the term
f(2m)=f(0)+ 2. (154  F[QJ. This extra term simply reflects the presence of the
Gaussian measure in E443). The role ofF[ Q] is to guar-
We consider the usual pull-back action of spatial diffeomor-antee that,(V) generates the action of spatial diffeomor-

phisms on the field(x): phisms on the probability144). Indeed, we have the identity
Q(X)— (f*Q)(x) =Q(f(x)). (155 SyP={[ih(V)¥T* ¥ +¥*[ih, (V)¥]}du. (165
This action induces an action of Dif{) on the Fourier

Next we recall that a functionab[ T] of the embeddings

modes: changes under an infinitesimal spatial diffeomorphism via
Qn_>(f*Q)n = 2 Eanm, (156) d(I)[Taof)\] = jzw 5D 3
o d\ o Jo ST¥(X) TS(X)V(x)dx.
where (166

1 (2= . _imfoo Becgu_se of Eq(165), the_spati_al projection of t_he fL_JnctionaI
nm=5—~ o ere dx. (157 schralinger equation, given in Eq131), then implies that

the probabilities occurring on a given embedding are invari-

In order to interpret Eq(131) we need the infinitesimal form ant under orientation preserving spatial diffeomorphisms.

of this action. Consider a 1-parameter famfly of spatial ~More precisely, associated with a physical state vector, such

I

diffeomorphisms and define as Eq.(71), there is a wave function
dfy(x - . V="v[Q,T] (167)
V(x):= gi )) = 2 Ve ™ (158
r=0 777 which defines the probabilitf?[ Q, T] for a measurement of

the field ¢(x) on the circle embedded d$'=T*(x) to result

d(f} .
5Q, :=(%) ) (159 in Q(x):
A=0
. PLQ TI=V*[Q,T]V[Q,TIdu[Q]. (168
It is easy to see that

o The probability”[ Q,T] is spatially diffeomorphism invari-

— ant: If f:S'-S! is an orientation-preserving diffeomor-

Qn Im;xz MVn-mQm- (160 phism, then
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PQ,T]=P[f*Q,Tof]. (169 discuss partial results pertaining to such generalizations; de-

tails will appear elsewhere. The generalizations that we con-

The result(169 is checked as follows. Because any two sider include: inclusion of nonzero mass, massive and mass-

orientation preserving diffeomorphisms of the circle can beess fields on flat spacetimes diffeomorphicRx R, and

connected by a one parameter family of such diffeomorhigher-dimensional generalizations of these models.

phisms, it suffices to consider a one parameter family of We begin by presenting a generic form for the Bogolubov

diffeomorphisms in Eq(169 and check that coefficient relevant for a discussion of unitary implement-
ability of dynamical evolution along an arbitrary foliation.

dPLfXQ,Tefy] B We consider a free scalar fiel@d propagating on a flatn(
dn =0. (170 +1)-dimensional spacetimél. We assume thaM~R
r=0 X3, where eithe® =R" or 3=T" (T" is then-torug. We
Using Egs.(166), (165), and(131), Eq. (170 follows. assumeg satisfies the Klein-Gordon equation
We note that while Eg(131) depends upon the choice of (01— m?) p=0. (174

phaseA[T], the result(169) is independent of such a choice
of phase. This is, of course, due to the fact that the phaseet T* andx' denote inertial coordinates vt and arbitrary
factor does not contribute to the probability. Viewing the coordinates oiX, respectively. An embedding:>—M of a
state of a quantum system as the totality of probability disCauchy surface is represented iy 1 functions ofn vari-
tributions for the outcome of any and all measurements madgp|es:
on an ensemble of identically prepared systems, we thus con-
clude that the functional Schilinger equatiori122) enforces T*=T%x). (179
spatial diffeomorphism invariance of states in the Sehro
dinger representation of the Schimger picture.

Physically speaking, there is little else to discuss regard

The induced metric and future pointing unit normal of a slice
embedded by “(x) are denoted by;; andn®, respectively.

- . . . . T
ing the role of spatial diffeomorphisms in the space of Schro Creation and annihilation operatorap(,ap_), are labeled by
the wave vectomp for plane waves. This vector takes on

dinger picture physical states. Mathematically, there are discrete or continuous values Wh&n=T" or S=R". Dy-

few other interesting issues. In particular, while the prob- ical lution f initial Slic@2(x) to a final sl
abilities are spatially diffeomorphism invariant in the sensenim'ca evolution from an initial Sfice o(X) toa inal sfice
of Eq. (169, in the present representation neither the mea (*) can be viewed as a symplectic transformation on the
suredu[Q] nor the wave function®[Q,T] satisfying Eq.  SPace of solutions to E¢174). Consequently, there is a cor-
(122 are separately invariant under the spatial diffeomor-reSpond'ng Bogolubov transformation of the creation and an-
phism transformation nihilation operators. If we choose the initial embedding to be
flat with Cartesian coordinate§,“(x)=(0x'), the mixing
(Q,T)—(f*Q,Tof ). (17)  between creation and annihilation operators is controlled by
o . ~_the coefficients:
This is because the representation we are working in is de-

signed to render the initial field operatadfthe Schrdinger 1

picture field operatopsdiagonal and keep in a simple form Bk,p:\/k: f (K, + w(p))

the representation of thea{,a) creation and annihilation w(k)o(p)

operators as well as the representation of the Fock vacuum W@ 1P X+KT00) gy (176

|0,i). From the point of view of the parametrized field
theory of[5], this representation is tailored to the HeisenbergHere w(k)=\[k|>+m? and k,=(—w(k),k). We have
picture quantization in which physical states are embeddindropped an irrelevant overall numerical factor in E476).
independent and the action of spatial diffeomorphisms is The Bogolubov coefficient€l76) define an operatgs on
trivial on the field variables: the one particle Hilbert space that underlies the Fock space.
Unitary implementability of dynamical evolution frofg(x)
(QT)=(QTef). (172 to T#(x) requiresB to be Hilbert-Schmidt. We have seen that
Presumably, there exists a representation in which thghis is so wher® =S' andm=0 (there we had to also take
wave functionals and measure are separately invariant undégcount of zero modgsWith compact spatial sections, the
the action of spatial diffeomorphisms that naturally arise inHilbert-Schmidt condition only involves the ultraviolet be-

the Schrdinger picture quantization of parametrized field havior of 8, and one therefore expects that, Ie=S', Bis
theory[5]: Hilbert-Schmidt even whem=0. This is indeed the case.

We can prove that dynamical evolution along arbitrary
(QT)—(f*Q,Tof ). (173 spacelike foliations is unitarily implemented whén=R
x St for any value of the massn. When M=RXR the
massless case is rather similar to the case studied in detail in
the previous sections. In particular, we can show that the
V. GENERALIZATIONS ultraviolet behavior ofB does no't spoil the HiIbert-Sphmidt
property provided the embeddings are asymptotically flat.
There are a number of ways one might try to generalizeHowever, one encounters an infrared divergence if one uses
the results presented in the previous sections. Here we briefthe usual Schwartz space as the space of test functions. We

We will explore this representation of the quantum field
theory elsewhere.
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expect that this case can nevertheless be handled with & Nityananda, J. Samuel, P. Sommers, and J. Whelan. This
appropriate choice of test functions for operator valued diswork was supported in part by grants PHY-9507710V)
tributions representing the scalar fig@]. Likewise, we ex- and PHY-960061&CGT) from the National Science Foun-
pect the operatop for a massive field oM =RXR to be  dation.

well-behaved in the infrared and ultraviolet for evolution in-

volving asymptotically flat spacelike slices. Consequently, APPENDIX

we conjelcture that our results for a ma_ssless, free, scalar field In this appendix we show that the matB)S'n*n) satisfies the

on RXS" generalize to any free field on a flat two- Hilbert-Schmidt condition(43),

dimensional spacetime. In particular, we expect that dynami- SinceT* () is a diffeomorphism of the circle, it can be

cal evolution along arbitrary spacelike foliations is unltarlly used as a coordinate. PTit (x)— T*(0)= 6 and definey to
implemented for free fields on flat spacetimigls=Rx St be the inverse function té, that is, y(8) :=x. Then

and along asymptotically flat spacelike foliations Mf=R

XR. 1 n +
o . o . B(H) — e'”T 0
The situation in higher dimensions is not nearly so simple mnT T o
as it is for two-dimensional spacetimesidtpossible to ob-
tain unitary evolution on the Fock space for free fields in « Z”eimx(9>+inad6 (A1)
higher dimensions if one restricts attention to special classes 0 '

of foliations. For example, dynamical evolution along a fo- )

liation obtained by dragging an arbitrary spacelike sliceFor anyte[0,1], the function

along the integral curves of a Killing vector field can be 0)=tv(0)+(1—1)8 A2
shown to be unitarily implementable. However, using the Xi(8):=tx(9)+( ) (A2)
stationary phase approximation, we have estimated H§) is also a diffeomorphism. With=m/(m+n),

for the case® =T" and found thaB is not Hilbert-Schmidt

for a generic embeddin@“(x). This means that dynamical B(H = _ i n einT*(0)

evolution along arbitrary spacelike foliationsnst unitarily mn 27 Vm

implemented in the usual Poincare-invariant Fock represen- o

tation for free fields on flat spacetime. A related difficulty is X f el(Mtnx(6)qg. (A3)
that the smeared energy-momentum densities do not have the 0

particle number eigenstatés.g., the Fock vacuujrin their
domain(this point has already been noted[i8]). This fact
would explain the divergent Schwinger terms that are en-

Put x¢(#) =y and denote the inverse function %q as ¢; .

countered when computing the algebra of energy-momentum +_ 1 \F inT*(0)
tensorq20]. We remark that an analogous situation arises in Bmn =~ 57 Vm®©
current algebrg21].
It is an interesting open question to find a Hilbert space % fz |(m+n)yd(Pt d (A4)
guantization of free fields on flat spacetime of dimension 0 dy y:

greater than two which yields the correct physical results for

dynamical evolution along foliations by flat slices and which On integrating by part& times,

also allows for dynamical evolution along more general fo- "

liations. In particular, the standard apparatus of Hilbert space B(H)=_ \[ (m+n) keinT" ()

and unitary time evolution does not seem adequate to deal

with quantization of parametrized field theory models of or gk

guantum gravity in spacetime dimensions greater than two. It % f gl (m+ n)y_kﬁ dy, (A5)

is well-known that analogous difficulties arise in the con- dy**

struction of quantum field theories in curved spacetime

where generically there are no preferred foliations availabl

for the purposes of canonical quantization. In this case n
|B(+)|<(n+m) k\/:

é(vhlch gives the estimate

progress can be made by using algebraic methods of quanti-
zation(see, e.g9.[22]), and it is likely that such methods can
be fruitfully applied to the class of problems we are consid- .
ering here. Thus, even in the simplest context of free fields in X Suq’ ’ AT
flat spacetime, our results suggest that one is forced to aban- y
don “traditional” approaches to quantization of generally (Note that for sufficienty smooth embeddings
covariant theories in favor of the more flexible algebr@c  sup{|d“" ¢, /dy**!|} exists) Clearly Eq.(A6) suffices to
othey) approaches. show thatB(;") is Hilbert-Schmidt type.
Similar con3|derat|ons mvolvmg appropriate integrations
by parts, suffice to show thaimn S@E)mn, andf+ymn are
The authors gratefully acknowledge helpful discussions oHilbert-Schmidt type and thaZ( ) and {(=)n are rapidly
this material with A. Ashtekar, S. Bose, G. Kang, K. Kughar decreasing im.

0<sy<27,0st<1;. (A6)
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