PHYSICAL REVIEW D, VOLUME 58, 064006

A point mass in an isotropic universe: Existence, uniqueness, and basic properties
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Criteria which a space-time must satisfy to represent a point mass embedded in an open Robertson-Walker
(RW) universe are given. It is shown that McVittie's solution in the claseé) satisfies these criteria, but does
not in the cas&= — 1. The existence of a solution for the cdse — 1 is proven and its representation in terms
of an elliptic integral is given. The following properties of this and McVitti&'s-0 solution are studied;
uniqueness, the behavior at future null infinity, the recovery of the RW and Schwarzschild limits, the compli-
ance with energy conditions, and the occurrence of singularities. The existence of solutions representing more
general spherical objects embedded in a RW universe is also pi®&@566-282(198)05716-9

PACS numbes): 04.20.Jb, 04.20.Ha, 04.408b, 98.80.Hw

I. INTRODUCTION sion on the gravitational field of the sun, but McVittie’s so-
lution is a more appropriate description of the gravitational
This paper deals with the embedding of massive objectfield outside a supermassive spherical body in an otherwise
in Robertson-WalkefRW) universes. There are three ways uniform RW space-time.
in which the physical embedding may be modelled and thus An interesting result was derived recently by Senovilla
treated mathematically. First, one can treat the body as a teahd Vera regarding the cylindrical analogue of these models
body whose dynamics are described by a suitable set ¢fL0]. String dynamics in an RW universe deals with ex-
equations of motiorfe.g., geodesic equations for a test par-tended bodies which are limits of cylindrical objects and is
ticle, equations derived from the Nambu action for cosmicwell understood. However, moving to the next level of cou-
string9. Secondly, the history of the surface of the object carpling, the aforementioned authors showed that no static cy-
be treated as a bounda¥y , which is then matched with a lindrical region can be matched continuously to a RW uni-
diffeomorphic surface& * in the “exterior” RW geometry. verse. Similiar results have also been obtained for the axially
The usual matching conditions are the continuity of the firstsymmetric cas¢11]. Since real strings have internal struc-
and second fundamental forms®»& 3 * [1]. This technique ture, this implies that at this level, strings cannot be embed-
has been used to study the formation and evolution of voidged in a RW universe. The same is true for any static locally
in cosmology{2], and to study domain walls3]. cylindrical objects; coins, bottles ar¢tue) cylinders. This
The third method is to solve Einstein’s field equations,begs the question: Can the third type of embedding be car-
exactly or approximately, in such a way that the resultingried out for cylindrical objects? That is, can we find an exact
solution can be interpreted as an embedding of some massigelution of Einstein’s equation representing a cylindrical ob-
object in a RW background. Two landmark papers in thisject embedded in a RW space-time?
vein are those of McVitti§4], who gave solutions of Ein- We will not attempt to answer this question here, but by
stein’s equations with perfect fluid source which have beemxamining carefully the spherical case, suggest how the
claimed to represent the embedding of the Schwarzschilgroblem may be approached. Thus we readdress the problem
field in the three families K=0,+=1) of RW space-times, first discussed by McVittie, but from a modern point of view.
and of Hawking 5], who studied gravitational radiation from  We find that McVittie's solution in the case=0 satis-
a bound source in th&=—1 dust filled RW space-time. factorily describes a massive particle embedded in a RW
There also exist several papers dealing with shperposi-  universe, but that his= — 1 solution does not. Motivated by
tion of the Kerr-Newman and RW space-timesee[6], or  the differences between these two solutions, we lay dawn
[7] for a summary. We stress that we are considering thepriori conditions that a space-tim&{g) must satisfy to rep-
embedding of extended objects of finite size, so that the exresent a massive particle embedded in a RW space-time. We
tensive studiessee, e.g.[8]) of perturbations which occur provide a solution in the case= — 1 and discuss uniqueness
throughout the universe do not concern us here. in each case, which has not been done before. We emphasize
These three approaches incorporate various degrees tifat we have not found a new solution of Einstein’s equa-
coupling between the mass-energy of the extended body aribns, but have determined the physical significance of a cer-
the geometry of the universe at large. In particular physicatain class of shear-free spherically symmetric perfect fluid
situations, one of the three provides an appropriate modetolutions(see Chap. 14 df12]). Furthermore, we discuss the
For example, in cosmology, the galactic source of some obfollowing properties(mathematical and physigabf the so-
servable effect is treated as a test body moving on a timelikkutions: (a) representation of the= — 1 solution by an ellip-
geodesic of the RW geometry; the Einstein-Straus vacuoléc integral,(b) recovery of the Schwarzschild solution in the
[9] provides a description of the effect of the cosmic expanvacuum limit,(c) behavior at future null infinity(d) compli-
ance with energy conditions arid) existence and nature of
the central singularity. A central tool in this analysis is
*Email address: nolanb@ccmail.dcu.ie Hawking's quasilocal masks]. We show by this example
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how such quasilocal constructions can be used to obtain
boundary conditions for Einstein’s equations useful for ob- 1+ Sw ke B
taining solutions in particular situations. Since we are deal- 87p,,,=— —BZ—B —
ing with asymptotics in open space-times, the daset 1 is 4 m (
excluded from our discussion. 2w

The structure of the paper is as follows. In the next sec- 2.3
tion we review McVittie’s solution and the Hawking mass
and point out problems with the interpretation of the former 3. 3ke B
in the casek=—1. In Sec. Ill, we set out conditions for a 87pm= Zﬂ2+
space-time Y,g) to represent a massive particle embedded
in a RW universe. Using these conditions and Einstein’s field

equations, we show how the problem reduces to finding a _ _ . .
solution, with a certain asymptotic behavior, of a nonlinear! N€ properties of this solution have becin summap_zed by
aychaudhuri as followscf. [14], p. 97: “The McVittie

second order differential equation. In Sec. IV, we prove the® . . . L
existence of such a solution, and discuss uniqueness. Usilﬁlut'.On follows umquely gnder the foIIov'vmg. condlgor(s;) .

this solution, the properties listed above are discussed in Sec;, e line EIGant is spherically symmetric with a singularity
V, and we make some concluding comments in Sec. VI. Th t the center(ii) the energy-stress tensor is that of a perfect

global struture of these space-times is to be analyzed in AUid; (i) the fluid motion is shear frediv) the metric must
subsequent paper asymptotically go over to the isotropic cosmological form.”

(It should be noted that neither a proof of this statement, nor
a reference to one is given; McVittie&d hocapproach does
not include such a proof.

The functionm=mge #”2 for some constantn, by Eq.

In 1933, McVittie [4] found solutions of Einstein's field (2.2), and is interpreted as the mass at the singularity. When
equations for a perfect fluid energy-momentum tensor, repthis is set equal to zero, the line eleméatl) is that of a RW
resenting a Schwarzschild field embedded in the RW spacespace-time.
times. His solutions can be writt¢t3] (using units in which The characterization of McVittie’s solution quoted above
c=G=1) is unsatisfactory, as point§) and (iv) refer to properties
which are deduced simply by looking at the metric tensor
components relative to the line elemédgtl). We can show
that point(iv) in particular is misleading. This point seems to
imply that the solution corresponds to a point mass embed-
o oo ) ded in the RW geometry, so that the gravitational field is

x{dr?+h?(d6*>+sinfad¢?)}, (20 asymptotically that of a RW space-time.

Hawking [5] has made this notion precise with a renor-
malized(against the RW backgroupduasilocal mass mea-
sured at future null infinityZ *. Since we are dealing with
asymptotic regions of the space-time, we restrict our atten-

. . tion to the casek=—1,0.
m=m(t), A=A, A=-2(m/m), (2.2) The Hawking mass is defined by analogy with the Bondi
mass[15] of a bound source of gravitation in an asymptoti-

and here and throughout, an overdot indicates partial differgally flat space-time; it measures the mass of a bound source

entiation with respect to (a prime will be used for differen- Qf gravitation in an f_;lsymptotlcally RW universe. The addi-
- . . ; tions to the totalinfinite) mass from the RW background are
tiation with respect to the variable). The functions

. o : subtracted away in a gauge invariant manner, as we describe
h(r)’w(r) depend on a choice di(=—-1,0+1), the Rie- now. The construction is valid in any space-time.
mannian curvature of the surfaces of homogentitgonst — .
in the background RW universe: We use the null tetrafl?,n®,m® m?}, wherel? is chosen
to be an outgoing null vector, and taketo be an affine
parameter along the integral curvesldf so that

IIl. MCVITTIE’'S SOLUTION AND THE HAWKING MASS

1-m/2w

ds’=— 1+ mi2w

m 4
1+m)

2
) dt?+ef

where

r
i k=-1, a
sintr,  k=-1; Zsml”E, |a:d_x (2.5
du :
hn={ 1, k=0; w(r)={ r, k=0; v
sinr, k=+1; r ke 41 Taking S to be a spacelike 2-sphere orthogonal®@ndn?
2sin;,  K=+L. (so thatv = const onS), the quasilocal mass surrounded®y

is defined to be

The isotropic pressur@,,, and the energy density,,,

obtained from Einstein’s field equations are given by M(S)= Kf (=Womoh+ &y +A)dS, 26
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where above. For convenience, we will use the symbil,§) to
refer to such a space-time.
1 172 Condition C1. (M,g) is spherically symmetric with a
- (47)3/2 J ds shear-free perfect fluid energy-momentum tensor.
Demanding a perfect fluid energy-momentum tensor and
and the terms in the integrand have their usual meanings iBpherical symmetry are obvious requirements for the space-
Newman-Penrose notation. In the appropriate limis, time we seek to describe; the requirement that the fluid flow
yields the Bondi mass and the ADM mass, and is the spheriines be shear-free is a convenience that eases integration of
cal version of Hayward’s improved quasilocal m4ss]. the field equations without ruling out the existence of a so-
The renormalization is carried out by subtracting the locallution. There does not seem to be aamypriori reason why
(fluid) matter which manifests itself in the Ricci tensor the shear should be set equal to zero.
terms, and to leave the nonlocal gravitational terms. To do Under these assumptions, the line element can be written
this, Hawking[5] has defined as[12]

ds?=—e’dt?>+e#{dr?+h?(r)dw?}, (3.1
Ml(S)zxf (P1+A)dS, 2.7
wherev=1v(r,t), u=u(r,t) andh is an arbitrary function

and of r, which we may always assume is one of the functions
h(r) of Sec. Il. Doing so maintains the connection with the
corresponding forms of the RW space-times.

The density and pressure obtained from Einstein’s field
equations are given by

MZ(S)=Kf (—W,—o)\)dS (2.9

In order that the bound source mass is measuré&d*at

! n

=~ . 3. 24—V —u) o n 1 12 h ’
M,= Ierle, (2.9 8mp=gue "—e My ult o p T 2+ 3
’ (3.2
is defined to be the mass of the model.
Using a suitable null-tetrad, we can evaluate &g8) for
McVittie's space-timgnotice that due to spherical symmetry

A=0=0). We find

8 A M 1 " " 1 12 1n’' ’ ’ h”
mTPp=¢€ 5(/.1, +V)+ZV +§F(V +u )+F

h5 —e”(,[wr; 2—% . (3.3
The remaining field equations reduce[ 2]
Thus fork=0, whereinh=w=r, we haveM,=m,, and so
the Hawking mass is e’=p2e 90, (3.9
M2 Mo, (21]) M/,_%M,z_%M,ZF(r)e_MIZ' (35)

which verifies the interpretation ofi; as being the mass of a

point particle embedded in the RW cosmos in this caseyhereg(t) and F(r) are arbitrary functions of their argu-
However in the cas&k=—1, sincer -~ asv—«, we find

ments.
that The Weyl tensor is Petrov typ®, and on a naturally
My(S)—o0, as p—sos 2.12 occurring null tetrad, the only nonzero Newman-Penrose

component is

and so the renormalized mass is infinite. Thus klke—1 1
McVittie solutiondoes notepresent a point mass embedded W,=— —F(r)e 342, (3.6)
in a RW space-time. 6

The main aim of this paper, then, is to provide a solution .
of Einstein’s equation which does represent a point mas$nen the Hawking mass enclosed by amy constr= const
embedded in th&=—1 RW space-time. surfaceS is

1
[II. DESCRIPTION OF SPACE-TIME REPRESENTING A M,(S)= _h3(r)[:(r)_ 3.9
POINT MASS EMBEDDED IN AN RW UNIVERSE 6

In this section, we give three conditiol€1-C3) on  This surface S is a metric sphere of radiufR(r,t):
space-time Y,g) which, if these conditions are satisfied, we =h(r)e*’2. In the solutions we examingR/dr >0, and so
postulate to represent a point mass embedded in a RW ursinceM,(S) is independent of, the limit r—o of Eq. (3.7)
verse. These conditions are motivated by the discussiopields the Hawking mass at infinity.
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The second condition achieves two things. First, it identi-field equations of the RW space-time with line elenf@i®).
fies the RW background against which the Hawking mass i§urthermore, the constant quantity gm=h3(r)F(r)/6 is

measured, and secondly, it ensures that the limite has

physical significance. This condition is a minimal require-

ment that M,g) “looks like” a RW space-time near infin-
ity.

Condition C2:
lim e(r,t)=B(t)
r—oo

—

for all t in the range ofu, and whereg is the function
appearing in the line element of the RW universe,
ds?=—dt?+efV{dr2+ h?(r)dw?}. (3.8

As we shall see below, it is not necessary to give th
corresponding condition for (vr—0 asr—®), as this is

ensured by a naturally arising choice of function of integra-_

tion.

positive.
We can show now how to obtain—o~ asr—oc. From
the above, the energy-density d¥i(g) is given by

3
8mp= Zeg(t)+3kef'8(t),
while that of the RW background is given by
3.
87Tp0=ZBZ+ 3ke AV,

[po andpg, the energy-density and pressure of the RW back-
ground may be read off from Eq$2.4) and (2.3 respec-

Sively by taking m=0.] Thus p(t)=po(t) requires e

B?. We will see below that there exists a solution satisfy-
ing the three conditions above for whighis differentiable

We turn now to the Hawking mass and consider how thigvith respect tat, and which obeys lim. .= 3. Thus

may be used in our description. We wish to embed a finite

nonzero mass in the RW universe, indicating th(S)

should yield a finite positive number when measured at in-

finity, i.e.,

lim Mz(s):mo

r—oo

(3.9

for some positive constamt,. However this allows the pos-
sibility of surplus Hawking mass arbitrarily close to infinity.
We will therefore consider the stronger condition,
M2(S)=m0, (31@
for some positive constamh,. This condition suggests that
there is an isolated body of masg, at the center of the

space-time. In order to present a more general discussion i

Sec. IV, we will deal with the conditioi3.9), but focus on
the special case of E¢3.10.
We see from the above that E@®.9) implies

F(r)=0(h"3%) as r—om,
while Eq.(3.10 gives
F(r) = (3.12
- h3(r) . .

lime”= lim u2e 9V=1,

r—oo r—oo

as claimed.

The physical problem has been modelled using the condi-
tionsC1-C3 above. We see that the remaining mathematical
analysis is to find a solutiop(r,t) of

1 h' 6mg
ul2 n_ " 12_ 1| —
S Uy e (3.133
with the boundary condition
(3.13b

lim u(r,t)=B(1),

—

%‘rc]Jr all t in the range ofu.

More generally, we look for a solution of E(3.13a with
the right hand side replaced @(h~3(r)) asr—o. Our
analysis below is based on this version of the equation,
which corresponds to the conditid8.9).

We note at this stage that McVittie's solutigd] in the
casek=0 satisfies condition€1-C3. We focus henceforth
on the cas&=—1, and work under this assumption.

We conclude this section by giving a useful transforma-
tion which will make the problent3.13 more manageable.
Defining y=e #? and x=w? (cf. Sec. I), these become

This last equation is interesting, as it is a necessary anffSPectively

sufficient condition for the energy density to be spatially

homogeneous, i.e.,

F(r)=constxh™3(r)ep=p(t). (3.12

Thus to obtain the constant Hawking mass condition, o e
(3.11), or equivalently to express the fact that there is no

“extra” energy density in the universe outside the embedded  G(x)= — 24my(x2+ 4x) ~52=O(x )

mass, we take the third condition to be as follows.
Condition C3. The energy densit{3.2) obeysp=pq(t),

Yxx=G(X) 'yzy (3.143
lim y=e"#?, (3.14h
X— 00

as X—o,

and the subscript indicates partial differentiation with respect

where po(t) is the energy density calculated via Einstein’s to x. Using G(x)=0O(x°) corresponds to the general case
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(3.9. We now proceed to prove existence of a solution of the lYn(X)|<C|W,llp
boundary value probler(3.14).
for all xe D, whereC: =2x, %, Wx(x): =x%(x) and||-|»

IV. EXISTENCE OF A SOLUTION AND UNIQUENESS is the supremum norm restricted T2 So
CONSIDERATIONS
IYnllp=ClWhllp- (4.9
Writing y(x,t)=a(t)(L+Y(x,t)) where a(t): =e~#17?2 _ o _
allows us to restate the problef8.14) as Applying these definitions to Eq4.3b), we obtain
n—-1

— 2

YooaGr2acYrast Wallo=28lyn-1lo+8 5, Iymlolyn 1 mlo.
Y(x,t)=0(1), x—o0,
, .. whereB=B(xq)=|Ix3G(x)||p, and so using Eq4.4),

We treatx as a complex variable and solve the equation in a
neighborhood of infinity which includes{xe(C: Jx n-1
=0, Rx>x,>0} wherex, is some real constant. 1Yallo=<2Alyn—allp+A X [YmlolYa-1-mlp.

Consider the equation m=0

Y,,=aG+ 8(2aGY+aGY?), 4  With A=BC.
> ( ) @D Using this inequality, we can derive a geometric bound

where 5>0 is a small parameter. We look for a solution of for the [ly,[», which will suffice to prove the convergence
this equation of the form properties of2y,, required to show that thiformal solution
is a (convergent solution. To see how, define the sequence

” of positive reals{b,}_, by
Y(Xlt): 2 5nYn(Xlt)i (42) q n}n °
n=o bo=Yol p.
and having found one, show that for sufficiently large values n-1
of x, this converges in the limié=1 and obey¥'=0(1) as b.=2b. .+ b.b
x— 0. This will prove existence of the required solution. We nootnet mz=0 men-imm:

will use the ansat/(x,t)=a""1(t)y,(x), and throughout _ _
this section, a prime og,, indicates differentiation with re- Then we see from the last inequality that
spect to argument.

To proceed, we fill out Eq(4.1) using Eq. (4.2, and lyallp=<A"by, n=0. (4.5
equate powers of. This leads to the system of equations

yo=G(x), (4.33 ©
P(X):= >, bX".

n-1 n=0
¥3=2G(x)Yn-1+G0) 2 Ynyn-1-m: N=1. (4.3

Consider the formal power series

From the recurrence relation for thg, we find thatP(X)

. . . . b
Clearly, this system admits solutions obeying oheys

= 2
ya(X)=0(1), y,(x)=0(x"1), x—oe. P=by+X(2P+ P?),

. the solution of which consistent with the definition Bfis
Then we can write

1-2X—[(1—2X)?—4byX]*?

POO= 2X

X 4.6
Yn(X)= Lyrﬁ(S)ds 49

This is an analytic function oK in a neighborhood of the

(e q origin, and so for any &\ € R with |\|< radius of conver-
- w(x S)¥n(s)ds. gence ofP(X),

Transforming the integral to one over a finite contour zia i b

=s~! and using basic bounds for integrals, we obtain = "

|yn(¥)|=2[x"|supjx <|sIS*Yn(S)]. is convergent. Then each term in this series must be

) ) o ) ~ bounded, i.e., there exists some positive real constasuch
Then takingD to be a neighborhood of infinity contained in that

the intersection ofxe C: |x|>x,>0} and a sector contain-
ing the positive real axis, we have bA"<K, n=1,
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and so borhood of infinity, then this solution is unique. For let
. v1,7Y2 be two such solutions, and define
”yn”DgK<X> » n>1 Ti=y— 72, HOG:=(y1+72)G()=0(x"9).
Then forx, sufficiently large, this last inequality will read TthH is analytic inx in a neighborhood of infinity, anil
ysS
<k" 4,

Iyalo=x" @) F CHOT, .83
for some G<x<1. To see this, notice that ag increases,
the regionD gets smaller, so thah=2x,|x3G(x)|p» de- I'=0(1), x—o. (4.80

creasesrecall that G(x)=0(x"°)]. bo=|ly,lp is nonin-
creasing, which by Eq4.6) indicates that the radius of con-
vergence ofP(X) in nondecreasing, allowing the use of
nondecreasing values af

The condition(4.7) is sufficient to imply that

By analyticity, the solutions of this linear differential equa-
tion, which has a regular singular point at infinity, can be
written in the form

. I'= Zo an(t)x "*P
PIREY

for some realp. Using a Taylor series expansion about
x =0 for H(x,-) and filling out the equatiori4.89, we
find that the two independent solutions are described by

m (i) p=0, a arbitrary,a; =a,=0, a,,n=3 determined by
Y(x,t)= > a™i(t)y,(x) recurrence relations, and proportionalag .

n=0 (i) p=1, ag,a; arhitrary,a,=0, a,,n=3 determined by

. recurrence relations given by linear combinationagfand
converges uniformly on some subset of a,.

converges uniformly orD (see, e.g.[17]). Hence

DXR (xeD, teR). By our construction, this is a solu- | ejther case, we see that nonzero solutions do not obey
tion of Eq. (4.1) in the cases=1 obeyingY(x,t)=0(1) as T'=0(1) asx—, so thatl'=0 is the only solution of Eq.
X—®. (4.8), and soy;= v,, proving uniqueness.
Furthermore, for each fixed value »f the series In particu|ar, in the case of most interest to mx):
da —24my(x2+4x) ~%2 is such a function, and so the solution
n+1 nesy - & produced by the theorem is the unique analytic solution. No-
2 ya(0a" D), 2 ya(0(n+ DA% dt tice also that whemy=0 in this solution, we obtain the RW

. _ line elemen{3.8). It will be useful to have the first few terms
are both uniformly convergent on some interval of the realof this solution. These terms are obtained by integrating Eq.

t-axis (which will contain the sefte R:|a(t)|<1}). Hence  (4.33 with the appropriate choice of integration constants,
by standard resultsl8], dY/dt exists on this interval, and  and yield

©

oY s aYn( 0 -
J— X, . —a" — _
at @6 ot y(x,)=e 75 1-m T (x+2)
We summarize and extend as follows. ) " 6
Theorem 1 (Existence and uniqueness There exist$) +(X°+4x) +0(x7°), (4.9

<XgeR and a nonempty subset@R such that on{x
e R:X|>xq} XA, there exists a solution of
=G (X)y?> where Gx)=0(x"°) as x—x, obeying
y(x,t)y=e P24+ (1) as x—=. This solution is differen-
tiable with respect to t. Furthermore, if @) is analytic in a
neighborhood of infinity, then this solution is the unique ana- er=ef(1—amye P2e 3 +0(e™¥).  (4.10
lytic solution.

For the prOOf of the last statement, note first of all that if We note that the Corresponding first order term in McVit-
G(x) is analytic in a neighborhood of infinity, then the ex- tje’s k= — 1 solution is
istence proof of the theorem gives the construction of an
analytic solution of Eq(3.14). For each term in the series et=eP(1+2mye P2 "2)+ O(e 32,
Eq. (4.2) is found by integrating analytic functions, and is
therefore analytic; uniform convergence guarantees analytidrom which we can identify the problem with this solution;
ity of the sum. Next, we argue that @(x) and a solution the metric coefficients do not tend to those of the RW metric
v(x,t) of Eq. (3.14 are analytic functions of in a neigh- rapidly enough.

where m=mge #2. Converting to the original coordinates
using the transformation given prior to E®.14), this leads
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We now turn our attention briefly to the cake0. The  method is the most direct, and has the advantage of dealing
existence proof of this section is of course not needed for thisvith the general case&(x)=0(x"°).
case, because as we have seen already, McVikie'8 so-
lution satisfies the conditionS1-C3. The uniqueness result B. Energy conditions

of this sectiondoesapply, and so we see that if Raychau- ) i ) _
duri’s conditions quoted in Sec. Il are replaced by the con- USing the field equatiofi3.4) and the first integral of the

ditions of Sec. IlI, then under the added hypothesis of ana@in equation(3.13a as found in Sec. V A above, we can
lyticity, the solution is indeed unique. write the pressuré3.3) as

3. o
V. PROPERTIES OF THE SOLUTION 8mp=— Zﬁz+ e P—u 1B(B+2e7F). (5.2

In this section, we discuss various properties of the unique _ _ o
analytic space-time Ni,g) found in the previous section Notice that by the main theorem of Sec. IV, in the limit

which obeys the conditions of Sec. Ill witk=—1 and —, this coincides with &p,, the pressure of the back-
G(X) = — 24mg(x2+4x) ~52. Throughout this section, terms ground RW universe. Thus all of the curvature tensor terms

such as “the solution,” “the line element,” etc. refer to this Match up with those of the RW background in this limit.
solution and its line element, etc. unless otherwise specified. Using Eq.(4.9), we find that

A. Representation with an elliptic integral 8mp=8mpo+(B+ 2eiﬁ)moefﬁ/zef?’r‘k(3(975r)-(5 3
We show here that the functioe can be represented '

intrinsically by an elliptic integral; the basic results are from Recall also that the energy density obgys)=po(t). We

[12). , 0 _ ~ see then that the question of whether or paand p obey

~ Writing y=(x"+4x)"“u, we can obtain the following appropriate energy conditiorfid9] is, for sufficiently large

first integral of Eq.(3.144: values ofr, equivalent to the same question regardigand
(x4 4x) 202 = 4(u?— 4mgu®) + A1), 5. po- Notice that if the weak energy condition is satisfied in the

RW background, themy+ po=0, leading to3+2e #=<0.
Thus according to Eq5.3), to first order, the presence of a
central mass in &= —1 RW universe causesdecreasdn

the fluid pressure, contrary to what one would expect. This is

where A(t) is a function of integration. Using Eq4.9)
above, we can compare powersxof! in this last equation to

obtain i R ety o
in distinction to the situation in thke=0 model, where ac-
A(t)=e PO, cording to Eq.(2.3) we can write
A straightforward calculation shows that 8mp=8mpy— Bmee A "1+ 0(r 2).
) ¥? 4R The weak energy condition in the RW background implies
(X" +ax)uy=— h o’ B=0, and so the first order perturbation of the pressure is

positive, as expected. Indeed this behavior is continued at all
whereR(r,t):=h(r)e*? is the radius of metric 2-spheres in orders; 87p=8mp, in the k=0 model, provided the weak
the space-time, so to ensuiB/ar >0, we take the negative energy condition holds in the RW background.

square root of Eq(5.1), which leads to an intrinsic elliptic This latter situation is in line with what happens in the
integral representation far: analogous situation in Newtonian cosmology. The potential

describing the physical scenario under consideration is found

(in this linear theory by adding the potentialsp,,=
+B(t), —mr~ ! and ¢.=p(t)r?/12 for respectively a point particle

of massm situated atr=0 and an isotropic cosmological

. . . ) . ~ model with densityp(t) (see[20] for the lattej. We take the
andB(t) is the sole remaining function of integration. This potential to be

term may involvem,, and so cannot be determined from the

other relevant limitmy=0. The integral on the left hand side m 1

does not have a representation in terms of elementary func- b=mt ==+ 1—29(t)f2-
tions formy#0, and so nor does our solution.

We note that it may be possible to determine the function
A(1),B(t) in the elliptic integral which yield the correct
asymptotic behavior fo without prior knowledge of the
solution. The advantage is that we would not need the exis- p(S)=f -V ¢-nd,S,
tence proof of the previous section. However, this would be s
a rather difficult problem involving inversion of asymptotic R
formulas for elliptic integrals. We feel that the chosenwheren is the unit inward normal t&. This yields

du
f (4u?—16myus+ e*3)1’2: - Zln( X+4

Then the pressure across the surfgge = const at timet is
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D. Behavior at future null infinity

2
p(S)=4mm+ §7Tpr3.

As r— o on the spacelike hypersurfaces orthogonal to the
fluid flow lines, the line element of our solution approaches
Thus we see that in Newtonian theory, the central masthat of a RW space-time. The question of how it behaves
makes a positive contribution to the pressure. asymptotically along future null directions is more compli-

The negative first order contribution in the=—1 case cated, but the following argument indicates that the space-
could be cancelled out by higher order terms, leaving a neime tends to a RW universe in this limit. We show that the
positive contribution, but if not, it appears to be an interest-metric coefficients of our solution match up with those of the
ing effect of the negative curvature of the spatial sections oRW background as— < along future null directions of the
the RW background. RW background, which are hence asymptotically future null
directions of M,g). We deal explicitly with the more com-
plicated cas&k= —1; analogous results hold fd&r=0. We
) consider first the description af* in the RW background.

We have seen above how the line element of the RWhe following relies heavily oh21].
background is recovered by taking,=0. We show next Consider the RW background, whose line element may be
how the line element of the exterior Schwarzschild fieldyyritten
arises in a natural way as a limiting case of our solution.

C. Recovering the Schwarzschild space-time

In McVittie's k=0 solution, the Schwarzschild field is ds?=—dt?+efV{dr?+sintPrd w?}
obtained by settingg equal to zero. Then following a con- ) ) S )
stant rescaling of the coordinatethe line element2.1) with =0%(p){—dr*+dr’+sintfrdw?},
k=0 is the isotropic form of the Schwarzschild line element (5.9

with mass parameten,. The procedure is quite natural; with whereQ(7)=ef2(t), dt=Q(7)d7 anddw? is the line el-
B=0, the energy density and pressure both vanish, yieldingment of the unit 2-sphere. Define coordinaié8<u<«)
a spherical vacuum which is by necessity, the exteriomand y(0<y<) by

Schwarzschild field. Note also that the expansion of the fluid

flow lines 6= 23 is then also equal to zero. u=e”"’ _ Eln u2+2u 56

Carrying out the same procedure in te — 1 case leads T2 ( X, 66
to

1
3. X=e”sinh*<—>r=§In(1+2Xu*1). (5.7
p(t)=po(t)= ZB2—3e‘ﬂ=0,
In these coordinates, the line eleméh) assumes the form
giving ds?>=F?(u,x){—du?—2dudy+ x’dw?},
ef=(t+c)? (5.9  where

for some constant. Calculatingpy(t), the pressure of the F(u,x) = Q2(In(u?+2ux) A (u?+2uy) .

RW background, we finghy(t) =0, so that this space-time is
(a portion o Minkowski space-time. Similarly, calculating
p(r,t) for our solution using this form gB yieldsp=0, and
so the Ricci tensor vanishes. From E8.6), the Weyl tensor
remains nonzero, and so by Birkhoff's theorerivl,g) is (a
portion of the exterior Schwarzschild field. The Hawking
mass of the Schwarzschild field is the Schwarzschild mass

Next, definel =y~ and introduce the nonphysical line ele-
ment

ds?=H?(u,l)ds?

=—12du?+ 2dudl+ dw?,

parameter, and smg in our solution is the Schwarzschild 8
mass parameter. where

Thus McVittie’s solution fork=0, and our solution for
the casek=—1, represents the Schwarzschild field embed- ~ H(u,l)=1Q~1(n(u?+2ul~ 1)} (u2+2ul~H) 2

ded in a RW universe. . o

Another limiting case is of importance, namely when 'I.'hen., in the_gsual way, future null infinity of the RW space-
+p=0, so that the space-time is an Einstein space. In botHMe is identified with the boundarit =0 of the space-time
cases k=—1,0), we can explicitly verify thap+p=0 im-  (V,g) whose metric is given via the line eleme(®.g). If
plies thatp is constant. Again, the choice ¢f(t) does not H=0 coincides withl=0, then a direct calculation shows
affect the value of the Weyl tensor, and so by the “Birkhoff- thatZ * is a shear-free null hypersurface. This depends upon
with-a-cosmological-constant” theorem, space-time is a por{)(#) being a sufficiently rapidly increasing function of its
tion of the Schwarzschild—de Sitter cosmos. Thus the soluargument, which relates to the conditions requirece/i(t)
tions discussed here give genuinely cosmologi¢iad., to ensure convergence of the solution in Sec. IV. We note
nonstationary generalizations of this static space-time. that for a perfect fluid with equation of stgbe= ap, we have
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Ba+1 ||HEerD) 8
acn=alsin{ 25 % , =2 Rip()+1-2mRL (513
i A

for some constard\, which leads to E— ?R3p(t)+m0. (5.14

H(u,l)=A"1223«1) (5.9 _ o
These forms have the advantage of being coordinate inde-

) pendent; bothp and R are invariantly defined guantities.
I(u“l+2u) Equation(5.14) is particularly satisfying; the effect on the

(Ul +2u) Bt Di2_ | (Ba+1)/2)2(3a+1) ' gravitational energy of the presence of a particle of nmgs

(5.10 is an increase of exactly this amount.
Notice now that ifx is any point in the boundarR=0,

so that these conditions are satisfied i-81>0. then
This shows how to descriiE™ in the RW backgrounds

for a large class of such space-times. The importance of this

for our situation is that it tells us that gg—o along u

= const, we approacfi * in the RW universe. To conclude along any curvey approaching. Thus by a result of Hay-

this section, we simply note that in this limit, the metric \yarq[22], the central singularity is spacelike and trapped, as
coefficients of our solution approach those of the RW backi, the Schwarzschild space-time.

ground, and all the curvature tensor_terms appr(_)ach the back- | the casek=0, we see from Eq(2.3 that there is also
ground values. Thus our solution is asymptotically RW aty cyryature singularity at=m/2, which, intriguingly, corre-
future null infinity; we already'knc')w' it to be asymptotic to sponds toR=2m,, the gravitational radius of the central
the RW background at spacelike infinity. mass. We see from E¢5.13 that this is a spacelike hyper-
surface, and is surrounded by a trapped region. The existence
E. Singularities of this singularity is fundamentally different to the vacuum
The solutions which we study hedlcVittie's k=0 so- case, and demands a thorough investigation of the singularity

lution and ourk= — 1 version have been shown to represent and horizon structure of this space-time. These issues are

the Schwarzschild field embedded in a RW universe. It iscurrently being studied.

therefore natural to ask if these solutions have a central sin-

gularity and event horizon, and if so, how they are affected F. Summary

by the cosmic expansion. We will treat this important issue  The solution we have found represents a point nrags

in more depth elsewhere; we can give the following prelimi-embedded in &= —1 RW universe. Whem,=0, we ob-

nary results here. tain this RW background. The energy-density is identical to
For any space-time, the quantity=V,¥,—4¥,¥3 that of the background, and the zero-density limit gives

+3\If§ is an invariant of the curvature. Here, we have for Schwarzschild’s space-time with mass parametgr The

bothk=0,—1 space-time is asymptotic to the RW universe at infinity and

contains a spacelike singularity at the center.

limE>0,
Y—X

2

! _3R6 ' (.19 VI. COMMENTS
We have given a prescription above for embedding the
Thus we see that there is indeed an intrinsic curvature sinschwarzschild field in an open RW universe. Consider the
gularity at the centeR=0. The coordinates we have used converse problem. Given a spherically symmetric shear-free
might not cover this region; this is immaterial as B§.11)  perfect fluid space-time\,g), how do we know if ¥/,g)
derives from an invariant property of the curvature tensoryepresents a point mass in a RW universe and, if it does, how
namelyM(S) =m, for all metric 2-spheres. do we identify that RW universe? This presents us with a
Hayward[22] has shown that the Misner-Sharp gravita- gauge problem. “Suppose we consider the lumpy universe

tional energy is a useful tool for investigating singularities in model S, not knowing how the(background model S was
spherical symmetry. One of the equivalent definitions for this ' o . —
quantity is used to make the construction; can we uniquely rec&er

from S?” [8]. In fact the answer to this question is yes.
Calculate the Hawking mass for an arbitrary metric 2-sphere
E: = F_z(l_X), ¥:=V,RV?R. (5.12 of (V,g). If the result is not a constant, thel,g) does not
2 represent a point mass in a RW universe. If the result is a
constant (ny say, and if further whenmy=0, (V,Q) is a
Carrying out a straightforward calculation which makes useRW universe, we may proceed. This solves the gauge prob-
of Eq. (3.4) and the first integral5.1), we obtain the follow- lem by identifying the background model. It remains then to
ing nice results, which apply to both=0 andk=—1: check if (V,g) satisfies the remaining parts of conditions
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C2,C3 with respect to this well defined RW background. indeed represent a point mass in an RW universe; some au-
In a previous papef23], we interpreted certain space- thors have contested this interpretatit®4,25. We have
times as being extended sources for the McVittie field in theseen how Hawking’s mass was a useful tool in this. Our aim
three casek=0,* 1. To further investigate the occurence of now is to use this tool in an attempt to identify solutions

singularities and horizons in\,g), it would be interesting representing the embedding of other objegctssmic strings,
to determine if a collapsing fluid can be used as a sourcehe Reissner-Nordstrom and Kerr fields RW universes.
This would allow us to interpretN],g) as the end state of We note that some of the solutioi§] given previously
the spherical collapse of a massive body in an expanding/hich it was claimed represent such do not reproduce
universe and may throw some light on the issue of what, ifvicvittie’s solution in thek=0 case or our solution in the
any, the effect of this eXpanSion is on the CO”apse. This Stllk: —1 case in the appropriate |in'(itharge-free and nonro-
leaves the problem of whether the space-time is of blacktating). This may be an inherent discontinuous feature of
hole (collapsed object surrounded by an event horizon  spjutions of the field equations in such situations. However it
white-hole (lagging core of an expanding univejsgpe. |eads to the suspicion that these solutions do not satisfy a set
This issue is to be addressed in a subsequent paper in whigh conditions analogous t61—C3 which clearly determine
the horizon, singularity and asymptotic structure of theseneir physical interpretation.
space-times is analyzed.

The nature of the solution we have found has opened up
these interesting questions. However, our main purpose was ACKNOWLEDGMENTS
to give a clear physical interpretation of some solutions of
Einstein’s equation. In particular, we hope to have given | am indebted to Chris Luke for his invaluable assistance
such for McVittie's solution, which in the cade=0 does with the proof in Sec. IV.
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