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A point mass in an isotropic universe: Existence, uniqueness, and basic properties

Brien C. Nolan*
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Criteria which a space-time must satisfy to represent a point mass embedded in an open Robertson-Walker
~RW! universe are given. It is shown that McVittie’s solution in the casek50 satisfies these criteria, but does
not in the casek521. The existence of a solution for the casek521 is proven and its representation in terms
of an elliptic integral is given. The following properties of this and McVittie’sk50 solution are studied;
uniqueness, the behavior at future null infinity, the recovery of the RW and Schwarzschild limits, the compli-
ance with energy conditions, and the occurrence of singularities. The existence of solutions representing more
general spherical objects embedded in a RW universe is also proven.@S0556-2821~98!05716-6#

PACS number~s!: 04.20.Jb, 04.20.Ha, 04.40.2b, 98.80.Hw
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I. INTRODUCTION

This paper deals with the embedding of massive obje
in Robertson-Walker~RW! universes. There are three wa
in which the physical embedding may be modelled and t
treated mathematically. First, one can treat the body as a
body whose dynamics are described by a suitable se
equations of motion~e.g., geodesic equations for a test p
ticle, equations derived from the Nambu action for cosm
strings!. Secondly, the history of the surface of the object c
be treated as a boundaryS2, which is then matched with a
diffeomorphic surfaceS1 in the ‘‘exterior’’ RW geometry.
The usual matching conditions are the continuity of the fi
and second fundamental forms ofS>S6 @1#. This technique
has been used to study the formation and evolution of vo
in cosmology@2#, and to study domain walls@3#.

The third method is to solve Einstein’s field equation
exactly or approximately, in such a way that the result
solution can be interpreted as an embedding of some mas
object in a RW background. Two landmark papers in t
vein are those of McVittie@4#, who gave solutions of Ein-
stein’s equations with perfect fluid source which have be
claimed to represent the embedding of the Schwarzsc
field in the three families (k50,61) of RW space-times
and of Hawking@5#, who studied gravitational radiation from
a bound source in thek521 dust filled RW space-time
There also exist several papers dealing with thesuperposi-
tion of the Kerr-Newman and RW space-times~see@6#, or
@7# for a summary!. We stress that we are considering t
embedding of extended objects of finite size, so that the
tensive studies~see, e.g.,@8#! of perturbations which occu
throughout the universe do not concern us here.

These three approaches incorporate various degree
coupling between the mass-energy of the extended body
the geometry of the universe at large. In particular phys
situations, one of the three provides an appropriate mo
For example, in cosmology, the galactic source of some
servable effect is treated as a test body moving on a time
geodesic of the RW geometry; the Einstein-Straus vacu
@9# provides a description of the effect of the cosmic exp
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sion on the gravitational field of the sun, but McVittie’s s
lution is a more appropriate description of the gravitation
field outside a supermassive spherical body in an otherw
uniform RW space-time.

An interesting result was derived recently by Senovi
and Vera regarding the cylindrical analogue of these mod
@10#. String dynamics in an RW universe deals with e
tended bodies which are limits of cylindrical objects and
well understood. However, moving to the next level of co
pling, the aforementioned authors showed that no static
lindrical region can be matched continuously to a RW u
verse. Similiar results have also been obtained for the axi
symmetric case@11#. Since real strings have internal stru
ture, this implies that at this level, strings cannot be emb
ded in a RW universe. The same is true for any static loca
cylindrical objects; coins, bottles and~true! cylinders. This
begs the question: Can the third type of embedding be
ried out for cylindrical objects? That is, can we find an exa
solution of Einstein’s equation representing a cylindrical o
ject embedded in a RW space-time?

We will not attempt to answer this question here, but
examining carefully the spherical case, suggest how
problem may be approached. Thus we readdress the pro
first discussed by McVittie, but from a modern point of view

We find that McVittie’s solution in the casek50 satis-
factorily describes a massive particle embedded in a R
universe, but that hisk521 solution does not. Motivated by
the differences between these two solutions, we lay dowa
priori conditions that a space-time (V,g) must satisfy to rep-
resent a massive particle embedded in a RW space-time
provide a solution in the casek521 and discuss uniquenes
in each case, which has not been done before. We emph
that we have not found a new solution of Einstein’s equ
tions, but have determined the physical significance of a c
tain class of shear-free spherically symmetric perfect fl
solutions~see Chap. 14 of@12#!. Furthermore, we discuss th
following properties~mathematical and physical! of the so-
lutions: ~a! representation of thek521 solution by an ellip-
tic integral,~b! recovery of the Schwarzschild solution in th
vacuum limit,~c! behavior at future null infinity,~d! compli-
ance with energy conditions and~e! existence and nature o
the central singularity. A central tool in this analysis
Hawking’s quasilocal mass@5#. We show by this example
© 1998 The American Physical Society06-1
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BRIEN C. NOLAN PHYSICAL REVIEW D 58 064006
how such quasilocal constructions can be used to ob
boundary conditions for Einstein’s equations useful for o
taining solutions in particular situations. Since we are de
ing with asymptotics in open space-times, the casek511 is
excluded from our discussion.

The structure of the paper is as follows. In the next s
tion we review McVittie’s solution and the Hawking mas
and point out problems with the interpretation of the form
in the casek521. In Sec. III, we set out conditions for
space-time (V,g) to represent a massive particle embedd
in a RW universe. Using these conditions and Einstein’s fi
equations, we show how the problem reduces to findin
solution, with a certain asymptotic behavior, of a nonline
second order differential equation. In Sec. IV, we prove
existence of such a solution, and discuss uniqueness. U
this solution, the properties listed above are discussed in
V, and we make some concluding comments in Sec. VI. T
global struture of these space-times is to be analyzed
subsequent paper.

II. MCVITTIE’S SOLUTION AND THE HAWKING MASS

In 1933, McVittie @4# found solutions of Einstein’s field
equations for a perfect fluid energy-momentum tensor, r
resenting a Schwarzschild field embedded in the RW sp
times. His solutions can be written@13# ~using units in which
c5G51)

ds252S 12m/2w

11m/2wD 2

dt21ebS 11
m

2wD 4

3$dr21h2~du21sin2udf2!%, ~2.1!

where

m5m~ t !, b5b~ t !, ḃ522~ṁ/m!, ~2.2!

and here and throughout, an overdot indicates partial dif
entiation with respect tot ~a prime will be used for differen-
tiation with respect to the variabler ). The functions
h(r ),w(r ) depend on a choice ofk(521,0,11), the Rie-
mannian curvature of the surfaces of homogeneityt5const
in the background RW universe:

h~r !55 sinhr , k521;

r , k50;

sinr , k511;

w~r !55
2sinh

r

2
, k521;

r , k50;

2sin
r

2
, k511.

The isotropic pressurepmv and the energy densityrmv
obtained from Einstein’s field equations are given by
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8ppmv52
3

4
ḃ22b̈S 11

m

2w

12
m

2w

D 2
ke2b

S 12
m

2wD S 11
m

2wD 5 ,

~2.3!

8prmv5
3

4
ḃ21

3ke2b

S 11
m

2wD 5 . ~2.4!

The properties of this solution have been summarized
Raychaudhuri as follows~cf. @14#, p. 97!: ‘‘The McVittie
solution follows uniquely under the following conditions:~i!
The line element is spherically symmetric with a singular
at the center;~ii ! the energy-stress tensor is that of a perf
fluid; ~iii ! the fluid motion is shear free;~iv! the metric must
asymptotically go over to the isotropic cosmological form
~It should be noted that neither a proof of this statement,
a reference to one is given; McVittie’sad hocapproach does
not include such a proof.!

The functionm5m0e2b/2 for some constantm0 by Eq.
~2.2!, and is interpreted as the mass at the singularity. W
this is set equal to zero, the line element~2.1! is that of a RW
space-time.

The characterization of McVittie’s solution quoted abo
is unsatisfactory, as points~i! and ~iv! refer to properties
which are deduced simply by looking at the metric tens
components relative to the line element~2.1!. We can show
that point~iv! in particular is misleading. This point seems
imply that the solution corresponds to a point mass emb
ded in the RW geometry, so that the gravitational field
asymptotically that of a RW space-time.

Hawking @5# has made this notion precise with a reno
malized~against the RW background! quasilocal mass mea
sured at future null infinityI1. Since we are dealing with
asymptotic regions of the space-time, we restrict our att
tion to the casesk521,0.

The Hawking mass is defined by analogy with the Bon
mass@15# of a bound source of gravitation in an asympto
cally flat space-time; it measures the mass of a bound so
of gravitation in an asymptotically RW universe. The add
tions to the total~infinite! mass from the RW background ar
subtracted away in a gauge invariant manner, as we desc
now. The construction is valid in any space-time.

We use the null tetrad$ l a,na,ma,m̄a%, wherel a is chosen
to be an outgoing null vector, and takev to be an affine
parameter along the integral curves ofl a, so that

l a5
dxa

dv
. ~2.5!

Taking S to be a spacelike 2-sphere orthogonal tol a andna

~so thatv5const onS), the quasilocal mass surrounded byS
is defined to be

M ~S!5kE ~2C22sl1F111L!dS, ~2.6!
6-2
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A POINT MASS IN AN ISOTROPIC UNIVERSE: . . . PHYSICAL REVIEW D58 064006
where

k5
1

~4p!3/2S E dSD 1/2

and the terms in the integrand have their usual meaning
Newman-Penrose notation. In the appropriate limits,M
yields the Bondi mass and the ADM mass, and is the sph
cal version of Hayward’s improved quasilocal mass@16#.

The renormalization is carried out by subtracting the lo
~fluid! matter which manifests itself in the Ricci tens
terms, and to leave the nonlocal gravitational terms. To
this, Hawking@5# has defined

M1~S!5kE ~F111L!dS, ~2.7!

and

M2~S!5kE ~2C22sl!dS. ~2.8!

In order that the bound source mass is measured atI1,

M̃25 lim
v→`

M2 , ~2.9!

is defined to be the mass of the model.
Using a suitable null-tetrad, we can evaluate Eq.~2.8! for

McVittie’s space-time~notice that due to spherical symmet
l5s50). We find

M2~S!5m0

h5

w5 . ~2.10!

Thus fork50, whereinh5w5r , we haveM25m0, and so
the Hawking mass is

M̃25m0 , ~2.11!

which verifies the interpretation ofm0 as being the mass of
point particle embedded in the RW cosmos in this ca
However in the casek521, sincer→` asv→`, we find
that

M2~S!→`, as v→` ~2.12!

and so the renormalized mass is infinite. Thus thek521
McVittie solutiondoes notrepresent a point mass embedd
in a RW space-time.

The main aim of this paper, then, is to provide a solut
of Einstein’s equation which does represent a point m
embedded in thek521 RW space-time.

III. DESCRIPTION OF SPACE-TIME REPRESENTING A
POINT MASS EMBEDDED IN AN RW UNIVERSE

In this section, we give three conditions„C1–C3… on
space-time (V,g) which, if these conditions are satisfied, w
postulate to represent a point mass embedded in a RW
verse. These conditions are motivated by the discus
06400
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above. For convenience, we will use the symbol (M ,g) to
refer to such a space-time.

Condition C1. (M ,g) is spherically symmetric with a
shear-free perfect fluid energy-momentum tensor.

Demanding a perfect fluid energy-momentum tensor a
spherical symmetry are obvious requirements for the spa
time we seek to describe; the requirement that the fluid fl
lines be shear-free is a convenience that eases integratio
the field equations without ruling out the existence of a
lution. There does not seem to be anya priori reason why
the shear should be set equal to zero.

Under these assumptions, the line element can be wri
as @12#

ds252endt21em$dr21h2~r !dv2%, ~3.1!

wheren5n(r ,t), m5m(r ,t) and h is an arbitrary function
of r , which we may always assume is one of the functio
h(r ) of Sec. II. Doing so maintains the connection with t
corresponding forms of the RW space-times.

The density and pressure obtained from Einstein’s fi
equations are given by

8pr5
3

4
ṁ2e2n2e2mH m91

1

4
m8212

h8

h
m813

h9

h J ,

~3.2!

8pp5e2mH 1

2
~m91n9!1

1

4
n821

1

2

h8

h
~n81m8!1

h9

h J
2e2nH m̈1

3

4
ṁ22

ṁṅ

2 J . ~3.3!

The remaining field equations reduce to@12#

en5ṁ2e2g~ t !, ~3.4!

m92
1

2
m822

h8

h
m85F~r !e2m/2, ~3.5!

where g(t) and F(r ) are arbitrary functions of their argu
ments.

The Weyl tensor is Petrov typeD, and on a naturally
occurring null tetrad, the only nonzero Newman-Penro
component is

C252
1

6
F~r !e23m/2. ~3.6!

Then the Hawking mass enclosed by anyt5 constr 5 const
surfaceS is

M2~S!5
1

6
h3~r !F~r !. ~3.7!

This surface S is a metric sphere of radiusR(r ,t):
5h(r )em/2. In the solutions we examine,]R/]r .0, and so
sinceM2(S) is independent oft, the limit r→` of Eq. ~3.7!
yields the Hawking mass at infinity.
6-3
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BRIEN C. NOLAN PHYSICAL REVIEW D 58 064006
The second condition achieves two things. First, it iden
fies the RW background against which the Hawking mas
measured, and secondly, it ensures that the limitr→` has
physical significance. This condition is a minimal requir
ment that (M ,g) ‘‘looks like’’ a RW space-time near infin-
ity.

Condition C2:

lim
r→`

m~r ,t !5b~ t !

for all t in the range ofm, and whereb is the function
appearing in the line element of the RW universe,

ds252dt21eb~ t !$dr21h2~r !dv2%. ~3.8!

As we shall see below, it is not necessary to give
corresponding condition forn (n→0 as r→`), as this is
ensured by a naturally arising choice of function of integ
tion.

We turn now to the Hawking mass and consider how t
may be used in our description. We wish to embed a fin
nonzero mass in the RW universe, indicating thatM2(S)
should yield a finite positive number when measured at
finity, i.e.,

lim
r→`

M2~S!5m0 ~3.9!

for some positive constantm0. However this allows the pos
sibility of surplus Hawking mass arbitrarily close to infinity
We will therefore consider the stronger condition,

M2~S!5m0 , ~3.10!

for some positive constantm0. This condition suggests tha
there is an isolated body of massm0 at the center of the
space-time. In order to present a more general discussio
Sec. IV, we will deal with the condition~3.9!, but focus on
the special case of Eq.~3.10!.

We see from the above that Eq.~3.9! implies

F~r !5O~h23! as r→`,

while Eq. ~3.10! gives

F~r !5
6m0

h3~r !
. ~3.11!

This last equation is interesting, as it is a necessary
sufficient condition for the energy density to be spatia
homogeneous, i.e.,

F~r !5const3h23~r !⇔r5r~ t !. ~3.12!

Thus to obtain the constant Hawking mass condit
~3.11!, or equivalently to express the fact that there is
‘‘extra’’ energy density in the universe outside the embedd
mass, we take the third condition to be as follows.

Condition C3. The energy density~3.2! obeysr5r0(t),
wherer0(t) is the energy density calculated via Einstein
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field equations of the RW space-time with line element~3.8!.
Furthermore, the constant quantity m0 :5h3(r )F(r )/6 is
positive.

We can show now how to obtainn→` as r→`. From
the above, the energy-density of (M ,g) is given by

8pr5
3

4
eg~ t !13ke2b~ t !,

while that of the RW background is given by

8pr05
3

4
ḃ213ke2b~ t !.

@r0 andp0, the energy-density and pressure of the RW ba
ground may be read off from Eqs.~2.4! and ~2.3! respec-
tively by taking m50.# Thus r(t)5r0(t) requires eg(t)

5ḃ2. We will see below that there exists a solution satis
ing the three conditions above for whichm is differentiable
with respect tot, and which obeys limr→`ṁ5ḃ. Thus

lim
r→`

en5 lim
r→`

ṁ2e2g~ t !51,

as claimed.
The physical problem has been modelled using the co

tionsC1–C3 above. We see that the remaining mathemati
analysis is to find a solutionm(r ,t) of

em/2S m92
1

2
m822

h8

h
m8D5

6m0

h3
, ~3.13a!

with the boundary condition

lim
r→`

m~r ,t !5b~ t !, ~3.13b!

for all t in the range ofm.
More generally, we look for a solution of Eq.~3.13a! with

the right hand side replaced byO„h23(r )… as r→`. Our
analysis below is based on this version of the equati
which corresponds to the condition~3.9!.

We note at this stage that McVittie’s solution@4# in the
casek50 satisfies conditionsC1–C3. We focus henceforth
on the casek521, and work under this assumption.

We conclude this section by giving a useful transform
tion which will make the problem~3.13! more manageable
Defining g5e2m/2 and x5w2 ~cf. Sec. II!, these become
respectively

gxx5G~x!g2, ~3.14a!

lim
x→`

g5e2b/2, ~3.14b!

where

G~x!5224m0~x214x!25/25O~x25! as x→`,

and the subscript indicates partial differentiation with resp
to x. Using G(x)5O(x25) corresponds to the general ca
6-4
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~3.9!. We now proceed to prove existence of a solution of
boundary value problem~3.14!.

IV. EXISTENCE OF A SOLUTION AND UNIQUENESS
CONSIDERATIONS

Writing g(x,t)5a(t)„11Y(x,t)… where a(t):5e2b(t)/2

allows us to restate the problem~3.14! as

Yxx5aG12aGY1aGY2,

Y~x,t !5o~1!, x→`.

We treatx as a complex variable and solve the equation i
neighborhood of infinity which includes$xPC: Ix
50, Rx.x0.0% wherex0 is some real constant.

Consider the equation

Yxx5aG1d~2aGY1aGY2!, ~4.1!

whered.0 is a small parameter. We look for a solution
this equation of the form

Y~x,t !5 (
n50

`

dnYn~x,t !, ~4.2!

and having found one, show that for sufficiently large valu
of x, this converges in the limitd51 and obeysY5o(1) as
x→`. This will prove existence of the required solution. W
will use the ansatzY(x,t)5an11(t)yn(x), and throughout
this section, a prime onyn indicates differentiation with re-
spect to argument.

To proceed, we fill out Eq.~4.1! using Eq. ~4.2!, and
equate powers ofd. This leads to the system of equations

y095G~x!, ~4.3a!

yn952G~x!yn211G~x! (
m50

n21

ymyn212m , n>1. ~4.3b!

Clearly, this system admits solutions obeying

yn~x!5o~1!, yn8~x!5o~x21!, x→`.

Then we can write

yn~x!5 Èx

yn8~s!ds

5 Èx

~x2s!yn9~s!ds.

Transforming the integral to one over a finite contour viaz
5s21 and using basic bounds for integrals, we obtain

uyn~x!u<2ux21usup$uxu,usu%us
3yn9~s!u.

Then takingD to be a neighborhood of infinity contained
the intersection of$xPC: uxu.x0.0% and a sector contain
ing the positive real axis, we have
06400
e
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s

uyn~x!u<CiWniD

for all xPD, whereC:52x0
21, Wn(x):5x3yn9(x) and i•iD

is the supremum norm restricted toD. So

iyniD<CiWniD . ~4.4!

Applying these definitions to Eq.~4.3b!, we obtain

iWniD<2Biyn21iD1B (
m50

n21

iymiDiyn212miD ,

whereB5B(x0)5ix3G(x)iD , and so using Eq.~4.4!,

iyniD<2Aiyn21iD1A (
m50

n21

iymiDiyn212miD ,

with A5BC.
Using this inequality, we can derive a geometric bou

for the iyniD , which will suffice to prove the convergenc
properties of(yn required to show that thisformal solution
is a ~convergent! solution. To see how, define the sequen
of positive reals$bn%n50

` by

b05iy0iD ,

bn52bn211 (
m50

n21

bmbn212m .

Then we see from the last inequality that

iyniD<Anbn , n>0. ~4.5!

Consider the formal power series

P~X!:5 (
n50

`

bnXn.

From the recurrence relation for thebn , we find thatP(X)
obeys

P5b01X~2P1P2!,

the solution of which consistent with the definition ofP is

P~X!5
122X2@~122X!224b0X#1/2

2X
. ~4.6!

This is an analytic function ofX in a neighborhood of the
origin, and so for any 0,lPR with ulu, radius of conver-
gence ofP(X),

(
n50

`

bnln

is convergent. Then each term in this series must
bounded, i.e., there exists some positive real constantK such
that

bnln,K, n>1,
6-5
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BRIEN C. NOLAN PHYSICAL REVIEW D 58 064006
and so

iyniD<KS A

l D n

, n>1.

Then forx0 sufficiently large, this last inequality will read

iyniD<kn, ~4.7!

for some 0,k,1. To see this, notice that asx0 increases,
the regionD gets smaller, so thatA52x0

21ix3G(x)iD de-
creases@recall that G(x)5O(x25)#. b05iyniD is nonin-
creasing, which by Eq.~4.6! indicates that the radius of con
vergence ofP(X) in nondecreasing, allowing the use
nondecreasing values ofl.

The condition~4.7! is sufficient to imply that

(
n50

`

yn~x!

converges uniformly onD ~see, e.g.,@17#!. Hence

Y~x,t !5 (
n50

`

an11~ t !yn~x!

converges uniformly on some subset
D3R (xPD, tPR). By our construction, this is a solu
tion of Eq. ~4.1! in the cased51 obeyingY(x,t)5o(1) as
x→`.

Furthermore, for each fixed value ofx, the series

( yn~x!an11~ t !, ( yn~x!~n11!an~ t !
da

dt

are both uniformly convergent on some interval of the r
t-axis ~which will contain the set$tPR:ua(t)u,1%). Hence
by standard results@18#, ]Y/]t exists on this interval, and

]Y

]t
5 (

n50

`
]Yn

]t
~x,t !.

We summarize and extend as follows.
Theorem 1 „Existence and uniqueness…. There exists0

,x0PR and a nonempty subset A#R such that on$x
PR:uxu.x0%3A, there exists a solution o
gxx5G(x)g2 where G(x)5O(x25) as x→`, obeying
g(x,t)5e2b(t)/21o(1) as x→`. This solution is differen-
tiable with respect to t. Furthermore, if G(x) is analytic in a
neighborhood of infinity, then this solution is the unique an
lytic solution.

For the proof of the last statement, note first of all tha
G(x) is analytic in a neighborhood of infinity, then the e
istence proof of the theorem gives the construction of
analytic solution of Eq.~3.14!. For each term in the serie
Eq. ~4.2! is found by integrating analytic functions, and
therefore analytic; uniform convergence guarantees anal
ity of the sum. Next, we argue that ifG(x) and a solution
g(x,t) of Eq. ~3.14! are analytic functions ofx in a neigh-
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borhood of infinity, then this solution is unique. For l
g1 ,g2 be two such solutions, and define

G:5g12g2 , H~x,t !:5~g11g2!G~x!5O~x25!.

ThenH is analytic inx in a neighborhood of infinity, andG
obeys

Gxx5H~x,t !G, ~4.8a!

G5o~1!, x→`. ~4.8b!

By analyticity, the solutions of this linear differential equ
tion, which has a regular singular point at infinity, can
written in the form

G5 (
n50

`

an~ t !x2n1p

for some realp. Using a Taylor series expansion abo
x2150 for H(x,•) and filling out the equation~4.8a!, we
find that the two independent solutions are described by

~i! p50, a0 arbitrary,a15a250, an ,n>3 determined by
recurrence relations, and proportional toa0;

~ii ! p51, a0 ,a1 arbitrary,a250, an ,n>3 determined by
recurrence relations given by linear combinations ofa0 and
a1.

In either case, we see that nonzero solutions do not o
G5o(1) asx→`, so thatG[0 is the only solution of Eq.
~4.8!, and sog15g2, proving uniqueness.

In particular, in the case of most interest to us,G(x)5
224m0(x214x)25/2 is such a function, and so the solutio
produced by the theorem is the unique analytic solution. N
tice also that whenm050 in this solution, we obtain the RW
line element~3.8!. It will be useful to have the first few term
of this solution. These terms are obtained by integrating
~4.3a! with the appropriate choice of integration constan
and yield

g~x,t !5e2b/2H 12mS 2

~x214x!1/2
2~x12!

1~x214x!1/2D J 1O~x26!, ~4.9!

where m5m0e2b/2. Converting to the original coordinate
using the transformation given prior to Eq.~3.14!, this leads
to

em5eb~ t !~124m0e2b/2e23r !1O~e25r !. ~4.10!

We note that the corresponding first order term in McV
tie’s k521 solution is

em5eb~112m0e2b/2e2r /2!1O~e23r /2!,

from which we can identify the problem with this solution
the metric coefficients do not tend to those of the RW me
rapidly enough.
6-6



th

lt
u-
on
na

qu

s
s
e

d
m

in

is
he
e
un

on
t

xi
b

ic
en

ling

n

-
ms

he

a

s is

ies
is

t all

e
tial
und

l

A POINT MASS IN AN ISOTROPIC UNIVERSE: . . . PHYSICAL REVIEW D58 064006
We now turn our attention briefly to the casek50. The
existence proof of this section is of course not needed for
case, because as we have seen already, McVittie’sk50 so-
lution satisfies the conditionsC1–C3. The uniqueness resu
of this sectiondoesapply, and so we see that if Raycha
duri’s conditions quoted in Sec. II are replaced by the c
ditions of Sec. III, then under the added hypothesis of a
lyticity, the solution is indeed unique.

V. PROPERTIES OF THE SOLUTION

In this section, we discuss various properties of the uni
analytic space-time (M ,g) found in the previous section
which obeys the conditions of Sec. III withk521 and
G(x)5224m0(x214x)25/2. Throughout this section, term
such as ‘‘the solution,’’ ‘‘the line element,’’ etc. refer to thi
solution and its line element, etc. unless otherwise specifi

A. Representation with an elliptic integral

We show here that the functionem can be represente
intrinsically by an elliptic integral; the basic results are fro
@12#.

Writing g5(x214x)1/2u, we can obtain the following
first integral of Eq.~3.14a!:

~x214x!2ux
254~u224m0u3!1A~ t !, ~5.1!

where A(t) is a function of integration. Using Eq.~4.9!
above, we can compare powers ofx21 in this last equation to
obtain

A~ t !5e2b~ t !.

A straightforward calculation shows that

~x214x!ux52
g2

h

]R

]r
,

whereR(r ,t):5h(r )em/2 is the radius of metric 2-spheres
the space-time, so to ensure]R/]r .0, we take the negative
square root of Eq.~5.1!, which leads to an intrinsic elliptic
integral representation foru:

E du

~4u2216m0u31e2b!1/2
52

1

4
lnS x

x14D1B~ t !,

andB(t) is the sole remaining function of integration. Th
term may involvem0, and so cannot be determined from t
other relevant limit,m050. The integral on the left hand sid
does not have a representation in terms of elementary f
tions for m0Þ0, and so nor does our solution.

We note that it may be possible to determine the functi
A(t),B(t) in the elliptic integral which yield the correc
asymptotic behavior form without prior knowledge of the
solution. The advantage is that we would not need the e
tence proof of the previous section. However, this would
a rather difficult problem involving inversion of asymptot
formulas for elliptic integrals. We feel that the chos
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method is the most direct, and has the advantage of dea
with the general case,G(x)5O(x25).

B. Energy conditions

Using the field equation~3.4! and the first integral of the
main equation~3.13a! as found in Sec. V A above, we ca
write the pressure~3.3! as

8pp52
3

4
ḃ213e2b2ṁ21ḃ~ b̈12e2b!. ~5.2!

Notice that by the main theorem of Sec. IV, in the limitr
→`, this coincides with 8pp0, the pressure of the back
ground RW universe. Thus all of the curvature tensor ter
match up with those of the RW background in this limit.

Using Eq.~4.9!, we find that

8pp58pp01~ b̈12e2b!m0e2b/2e23r1O~e25r !.
~5.3!

Recall also that the energy density obeysr(t)5r0(t). We
see then that the question of whether or notr and p obey
appropriate energy conditions@19# is, for sufficiently large
values ofr , equivalent to the same question regardingr0 and
p0. Notice that if the weak energy condition is satisfied in t
RW background, thenr01p0>0, leading tob̈12e2b<0.
Thus according to Eq.~5.3!, to first order, the presence of
central mass in ak521 RW universe causes adecreasein
the fluid pressure, contrary to what one would expect. Thi
in distinction to the situation in thek50 model, where ac-
cording to Eq.~2.3! we can write

8pp58pp02b̈m0e2b/2r 211O~r 22!.

The weak energy condition in the RW background impl
b̈<0, and so the first order perturbation of the pressure
positive, as expected. Indeed this behavior is continued a
orders; 8pp>8pp0 in the k50 model, provided the weak
energy condition holds in the RW background.

This latter situation is in line with what happens in th
analogous situation in Newtonian cosmology. The poten
describing the physical scenario under consideration is fo
~in this linear theory! by adding the potentialsfm5
2mr21 andfc5r(t)r 2/12 for respectively a point particle
of massm situated atr 50 and an isotropic cosmologica
model with densityr(t) ~see@20# for the latter!. We take the
potential to be

f5fm1fc52
m

r
1

1

12
r~ t !r 2.

Then the pressure across the surface$S:r 5const% at timet is

p~S!5E
S
2,W f•nW d2S,

wherenW is the unit inward normal toS. This yields
6-7
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p~S!54pm1
2

3
prr 3.

Thus we see that in Newtonian theory, the central m
makes a positive contribution to the pressure.

The negative first order contribution in thek521 case
could be cancelled out by higher order terms, leaving a
positive contribution, but if not, it appears to be an intere
ing effect of the negative curvature of the spatial sections
the RW background.

C. Recovering the Schwarzschild space-time

We have seen above how the line element of the R
background is recovered by takingm050. We show next
how the line element of the exterior Schwarzschild fie
arises in a natural way as a limiting case of our solution.

In McVittie’s k50 solution, the Schwarzschild field i
obtained by settingḃ equal to zero. Then following a con
stant rescaling of the coordinater , the line element~2.1! with
k50 is the isotropic form of the Schwarzschild line eleme
with mass parameterm0. The procedure is quite natural; wit
ḃ50, the energy density and pressure both vanish, yield
a spherical vacuum which is by necessity, the exte
Schwarzschild field. Note also that the expansion of the fl
flow lines u5 3

2 ḃ is then also equal to zero.
Carrying out the same procedure in thek521 case leads

to

r~ t !5r0~ t !5
3

4
ḃ223e2b50,

giving

eb5~ t1c!2 ~5.4!

for some constantc. Calculatingp0(t), the pressure of the
RW background, we findp0(t)50, so that this space-time i
~a portion of! Minkowski space-time. Similarly, calculatin
p(r ,t) for our solution using this form ofb yieldsp50, and
so the Ricci tensor vanishes. From Eq.~3.6!, the Weyl tensor
remains nonzero, and so by Birkhoff’s theorem, (M ,g) is ~a
portion of! the exterior Schwarzschild field. The Hawkin
mass of the Schwarzschild field is the Schwarzschild m
parameter, and som0 in our solution is the Schwarzschil
mass parameter.

Thus McVittie’s solution fork50, and our solution for
the casek521, represents the Schwarzschild field embe
ded in a RW universe.

Another limiting case is of importance, namely whenr
1p50, so that the space-time is an Einstein space. In b
cases (k521,0), we can explicitly verify thatr1p50 im-
plies thatp is constant. Again, the choice ofb(t) does not
affect the value of the Weyl tensor, and so by the ‘‘Birkho
with-a-cosmological-constant’’ theorem, space-time is a p
tion of the Schwarzschild–de Sitter cosmos. Thus the s
tions discussed here give genuinely cosmological~i.e.,
nonstationary! generalizations of this static space-time.
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D. Behavior at future null infinity

As r→` on the spacelike hypersurfaces orthogonal to
fluid flow lines, the line element of our solution approach
that of a RW space-time. The question of how it behav
asymptotically along future null directions is more comp
cated, but the following argument indicates that the spa
time tends to a RW universe in this limit. We show that t
metric coefficients of our solution match up with those of t
RW background asr→` along future null directions of the
RW background, which are hence asymptotically future n
directions of (M ,g). We deal explicitly with the more com
plicated casek521; analogous results hold fork50. We
consider first the description ofI1 in the RW background.
The following relies heavily on@21#.

Consider the RW background, whose line element may
written

ds252dt21eb~ t !$dr21sinh2rdv2%

5V2~h!$2dh21dr21sinh2rdv2%,
~5.5!

whereV(h)5eb/2(t), dt5V(h)dh anddv2 is the line el-
ement of the unit 2-sphere. Define coordinatesu(0,u,`)
andx(0<x,`) by

u5eh2r↔h5
1

2
ln~u212ux!, ~5.6!

x5ehsinhr↔r 5
1

2
ln~112xu21!. ~5.7!

In these coordinates, the line element~5.5! assumes the form

ds25F2~u,x!$2du222dudx1x2dv2%,

where

F~u,x!5V2
„ln~u212ux!1/2

…~u212ux!21.

Next, definel 5x21 and introduce the nonphysical line ele
ment

ds̃25H2~u,l !ds2

52 l 2du212dudl1dv2,
~5.8!

where

H~u,l !5 lV21
„ln~u212ul21!1/2

…~u212ul21!1/2.

Then, in the usual way, future null infinity of the RW spac
time is identified with the boundaryH50 of the space-time
(Ṽ,g̃) whose metric is given via the line element~5.8!. If
H50 coincides withl 50, then a direct calculation show
thatI1 is a shear-free null hypersurface. This depends u
V(h) being a sufficiently rapidly increasing function of it
argument, which relates to the conditions required ofeb(t)
to ensure convergence of the solution in Sec. IV. We n
that for a perfect fluid with equation of statep5ar, we have
6-8
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V~h!5AXsinhS 3a11

2
h D C2/~3a11!

,

for some constantA, which leads to

H~u,l !5A2122/~3a11! ~5.9!

3
l ~u2l 12u!

„~u2l 12u!~3a11!/22 l ~3a11!/2
…

2/~3a11!
,

~5.10!

so that these conditions are satisfied if 3a11.0.
This shows how to describeI1 in the RW backgrounds

for a large class of such space-times. The importance of
for our situation is that it tells us that asx→` along u
5const, we approachI1 in the RW universe. To conclud
this section, we simply note that in this limit, the metr
coefficients of our solution approach those of the RW ba
ground, and all the curvature tensor terms approach the b
ground values. Thus our solution is asymptotically RW
future null infinity; we already know it to be asymptotic t
the RW background at spacelike infinity.

E. Singularities

The solutions which we study here~McVittie’s k50 so-
lution and ourk521 version! have been shown to represe
the Schwarzschild field embedded in a RW universe. I
therefore natural to ask if these solutions have a central
gularity and event horizon, and if so, how they are affec
by the cosmic expansion. We will treat this important iss
in more depth elsewhere; we can give the following prelim
nary results here.

For any space-time, the quantityI 5C0C424C1C3

13C2
2 is an invariant of the curvature. Here, we have

both k50,21

I 53
m0

2

R6
. ~5.11!

Thus we see that there is indeed an intrinsic curvature
gularity at the centerR50. The coordinates we have use
might not cover this region; this is immaterial as Eq.~5.11!
derives from an invariant property of the curvature tens
namelyM2(S)5m0 for all metric 2-spheresS.

Hayward @22# has shown that the Misner-Sharp gravit
tional energy is a useful tool for investigating singularities
spherical symmetry. One of the equivalent definitions for t
quantity is

E:5
R

2
~12x!, x:5¹aR¹aR. ~5.12!

Carrying out a straightforward calculation which makes u
of Eq. ~3.4! and the first integral~5.1!, we obtain the follow-
ing nice results, which apply to bothk50 andk521:
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8p

3
R2r~ t !1122m0R21, ~5.13!

E5
4p

3
R3r~ t !1m0 . ~5.14!

These forms have the advantage of being coordinate in
pendent; bothr and R are invariantly defined quantities
Equation~5.14! is particularly satisfying; the effect on th
gravitational energy of the presence of a particle of massm0
is an increase of exactly this amount.

Notice now that ifx is any point in the boundaryR50,
then

lim
g→x

E.0,

along any curveg approachingx. Thus by a result of Hay-
ward @22#, the central singularity is spacelike and trapped,
in the Schwarzschild space-time.

In the casek50, we see from Eq.~2.3! that there is also
a curvature singularity atr 5m/2, which, intriguingly, corre-
sponds toR52m0, the gravitational radius of the centra
mass. We see from Eq.~5.13! that this is a spacelike hyper
surface, and is surrounded by a trapped region. The exist
of this singularity is fundamentally different to the vacuu
case, and demands a thorough investigation of the singula
and horizon structure of this space-time. These issues
currently being studied.

F. Summary

The solution we have found represents a point massm0
embedded in ak521 RW universe. Whenm050, we ob-
tain this RW background. The energy-density is identical
that of the background, and the zero-density limit giv
Schwarzschild’s space-time with mass parameterm0. The
space-time is asymptotic to the RW universe at infinity a
contains a spacelike singularity at the center.

VI. COMMENTS

We have given a prescription above for embedding
Schwarzschild field in an open RW universe. Consider
converse problem. Given a spherically symmetric shear-
perfect fluid space-time (V,g), how do we know if (V,g)
represents a point mass in a RW universe and, if it does,
do we identify that RW universe? This presents us with
gauge problem. ‘‘Suppose we consider the lumpy unive
model S, not knowing how the~background! model S̄ was
used to make the construction; can we uniquely recoveS̄
from S?’’ @8#. In fact the answer to this question is ye
Calculate the Hawking mass for an arbitrary metric 2-sph
of (V,g). If the result is not a constant, then (V,g) does not
represent a point mass in a RW universe. If the result i
constant (m0 say!, and if further whenm050, (V,g) is a
RW universe, we may proceed. This solves the gauge p
lem by identifying the background model. It remains then
check if (V,g) satisfies the remaining parts of condition
6-9
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BRIEN C. NOLAN PHYSICAL REVIEW D 58 064006
C2,C3 with respect to this well defined RW background.
In a previous paper@23#, we interpreted certain space

times as being extended sources for the McVittie field in
three casesk50,61. To further investigate the occurence
singularities and horizons in (M ,g), it would be interesting
to determine if a collapsing fluid can be used as a sou
This would allow us to interpret (M ,g) as the end state o
the spherical collapse of a massive body in an expand
universe and may throw some light on the issue of wha
any, the effect of this expansion is on the collapse. This
leaves the problem of whether the space-time is of bla
hole ~collapsed object surrounded by an event horizon! or
white-hole ~lagging core of an expanding universe! type.
This issue is to be addressed in a subsequent paper in w
the horizon, singularity and asymptotic structure of the
space-times is analyzed.

The nature of the solution we have found has opened
these interesting questions. However, our main purpose
to give a clear physical interpretation of some solutions
Einstein’s equation. In particular, we hope to have giv
such for McVittie’s solution, which in the casek50 does
r
e,

lt,

06400
e

e.

g
if
ll
-

ich
e

p
as
f

n

indeed represent a point mass in an RW universe; some
thors have contested this interpretation@24,25#. We have
seen how Hawking’s mass was a useful tool in this. Our a
now is to use this tool in an attempt to identify solutio
representing the embedding of other objects~cosmic strings,
the Reissner-Nordstrom and Kerr fields! in RW universes.
We note that some of the solutions@6# given previously
which it was claimed represent such do not reprodu
McVittie’s solution in thek50 case or our solution in the
k521 case in the appropriate limit~charge-free and nonro
tating!. This may be an inherent discontinuous feature
solutions of the field equations in such situations. Howeve
leads to the suspicion that these solutions do not satisfy a
of conditions analogous toC1–C3 which clearly determine
their physical interpretation.
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