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Gravitational waves from a spinning particle plunging into a Kerr black hole
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Using a black hole~BH! perturbation approach, we numerically study gravitational waves from a spinning
particle of massm and spins on the equatorial plane plunging into a Kerr BH of massM and spina. When
we take into account the particle spins, ~a! the motion of the particle changes due to the coupling effects
betweens and the orbital angular momentumLz and betweens and a, and also~b! the energy momentum
tensor of the linearized Einstein equations changes. We calculate the total radiated energy, linear momentum,
angular momentum, the energy spectrum, and waveform of gravitational waves, and we find the following
features.~1! There are three spin coupling effects: betweenLz anda, betweens andLz , and betweens anda
whens is considered. Among them, (Lz•a) coupling is the most important effect for the amount of gravita-
tional radiation, and the other two effects are not as remarkable as the first one. However, these effects are still
important; for example, the total radiated energy changes by a factor of;2 for the case ofa/M50.6,
Lz /mM51.5 if we changes from 0 to &M . ~2! For the case when one of the three spins (a, Lz , ands) is
vanishing, the amount of gravitational radiation becomes larger~smaller! if spin axes of the other two are
parallel ~antiparallel!. For the case when three spins are nonvanishing, the amount of gravitational radiation
becomes maximum if all the axial directions ofs, a, andLz coincide. Thus, our calculations indicate that in a
coalescence of two black holes~BHs! whose spins and orbital angular momentum are aligned, gravitational
waves are emitted most efficiently.@S0556-2821~98!05216-3#

PACS number~s!: 04.30.Db, 04.25.Nx
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I. INTRODUCTION

Ground-based laser interferometers such as the Lase
terferometeric Gravitational Wave Observatory~LIGO! @1#,
VIRGO @2#, GEO600@3#, and TAMA300@4# will be in op-
eration within the next five years. Among the many possi
sources of gravitational waves, coalescing binaries compo
of neutron stars~NSs! or black holes~BHs! are probably the
most well-understood source, and are potentially among
most promising sources. In particular, merging binary B
are expected to be the most general relativistic phenom
and the detections of gravitational waves from them w
enable us to obtain physical information in extremely curv
spacetime. In order to extract it from a noisy data effective
it is necessary to prepare in advance a list of theoret
templates of gravitational waves, which depend on many
rameters of sources~masses, spins, quadrupole momen
and the orbital inclination of compact objects, and so on! @5#.

A fully general relativistic simulation is the only metho
by which such templates can be prepared, and much effo
now being paid to such simulations@6#. We usually expect
that the numerical simulation must be performed accura
throughout the large dynamic range from the innerm
stable circular orbit to the final merging. To carry it ou
there are many problems to be solved; e.g., we need to
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appropriate gauge and slice conditions for 3D numeri
relativity, to construct a sophisticated computational progr
for treating highly curved spacetime near BH horizons, a
so on. Moreover, a huge amount of computational time w
be necessary to perform many simulations for many poss
parameters of BH binaries. Much progress in this field h
been done in the last five years and will be expected in
next five years, but it will still be helpful if we could hav
another more reliable and economical approximate met
to calculate gravitational waves from merging BH-BH bin
ries, because the result will be a guideline or a template
carrying out those fully general relativistic simulations.

A BH perturbation approach is one of approximate me
ods to calculate gravitational waves from merging bina
BHs. In this approach, we assume that a small particle
massm is moving around the other large BH of massM
@m, and calculate gravitational waves emitted using line
ized Einstein equations ignoringO@(m/M )2# terms in the
BH spacetime as the background. The advantage of this
proach is that it enables us to treat full general relativis
effects of the background BH spacetime and it may be
plied to an arbitrary motion of a particle in principle. A
though this approximation is valid only form!M , we expect
that the perturbation calculation will give a fairly good a
proximation to numerical relativistic calculations; in fact, th
waveform and total radiated energy of gravitational waves
the head-on collision of two equal mass (m) BHs @7# agree
with the extrapolated value (M→2m, m→m/2) of those ob-
tained by a perturbation calculation@8# with a fairly good
accuracy~within a factor of 2!. The waveforms obtained in
the simulations of the stellar core collapse to be a BH@9#
© 1998 The American Physical Society05-1
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also agree with those calculated by a perturbation study
rotating ring inspiraling into a Schwarzschild BH@10#.

Along this approach, many works have been carried ou
study gravitational waves from a nonspinning test parti
plunging into a spinning BH, since Sasaki and Nakam
@11# reformulated the Teukolsky equation@12# and made it
possible to calculate gravitational waves induced by a p
ticle plunging into a Kerr BH from infinity.~See Nakamura
Oohara, and Kojima@10#.! To study gravitational waves
from merging binaries of spinning BHs approximate
Mino, Shibata, and Tanaka@13# extended the Sasak
Nakamura formalism incorporating the energy moment
tensor and the equations of motion of a spinning partic
They calculated gravitational waves from a spinning parti
falling along the spin axis of a Kerr BH and showed that t
effect of a particle spin is significant. In this paper, we
vestigate gravitational waves from a spinning particle m
ing on the equatorial plane plunging into a Kerr BH.

This paper is organized as follows. In Secs. II A, II B, a
II C, we derive the explicit form of the equations of motio
of a spinning particle moving on the equatorial plane o
Kerr BH. We also mention the limitation of the equations
motion in Sec. II C. In Sec. II D, we review the energy m
mentum tensor of a spinning particle. We present numer
results in Sec. III. Section IV is devoted to a conclusion. T
detailed equations for a calculation of gravitational wav
such as the generalized Regge-Wheeler equation~Sasaki-
Nakamura equation!, and its source terms are summarized
the Appendix. Throughout this paper, we use geometri
units in which c515G and the metric sign as (2,1,1,
1).

II. THE MOTION OF A SPINNING PARTICLE

A. Equations of motion

The equations of motion of an extended body were fi
derived by Papapetrou@14# for a spinning particle case, an
then reformulated by Dixon@15# for a general extended
body. The equations of motion of a spinning particle a
given as

D

dt
pm52

1

2
Rm

nrs~z!vnSrs,

~2.1!
D

dt
Smn5pmvn2pnvm,

wherezm(t), vm(t)[dzm/dt, pm(t), Smn(t), andRm
nrs de-

note the world line, 4-velocity, momentum, spin angular m
mentum tensor of the spinning particle, and Riemann ten
of a Kerr spacetime, respectively, witht being an affine
parameter of the orbit. The quantitym2[2pmpm is con-
served along the orbit, and we regard it as the square o
mass of the particle. We also introduce a normalized m
mentumum5pm/m. The notationD/dt denotes the covari
ant derivative along the particle trajectory.

In order to close our system, we need a set of supplem
tary conditions, i.e., a relation betweenvm andum ~or pm), as
@15#
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Smnpn50. ~2.2!

This relation fixes the center of mass of the spinning partic
The magnitude of spin is also conserved, so that we set

SmnSmn52m2s2, ~2.3!

where a constants is the specific spin angular momentum
the particle. For the latter convenience, we normalize
orbital affine parametert as

umvm521. ~2.4!

Note that there is noa priori definition with regard to nor-
malization of vmvm besides the constraint that it must b
negative. Using Eqs.~2.1!, ~2.2!, and ~2.4!, the relation be-
tweenum andvm becomes

vm2um5
SmnRngslugSsl

2~m21 1
4 RabdjS

abSdj!
. ~2.5!

Thus, Eqs.~2.1!, ~2.2!, and~2.5! are equations to be solved

B. Conserved quantities

Conserved quantities are often very useful to obtain
orbit in an explicit manner. If we have a Killing vectorjm
which satisfiesjm;n1jn;m50, the quantity

Qj5pmjm2 1
2 Smnjm;n , ~2.6!

is conserved along a particle trajectory@15#.
Apart from the massm and spins of a spinning particle,

we have two additional conserved quantities because in K
spacetime, there are two Killing vectors@16#: One is a time-
like Killing vector jm given by

jm52SAD

S
em

~0!1
a sin u

AS
em

~3!D , ~2.7!

and the other is an axial Killing vectorxm given by

xm5aAD

S
sin2 uem

~0!1
~r 21a2!sin u

AS
em

~3! , ~2.8!

wherea is a spin parameter of the Kerr BH,D[r 222Mr
1a2, andS[r 21a2cos2 u, respectively. We choose the te
rad bases of a covariant vectorem

(a) as
5-2
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em
~0!dxm5AD

S
~dt2a sin2 udf!,

em
~1!dxm5AS

D
dr,

em
~2!dxm5ASdu,

em
~3!dxm5

sin u

AS
@2adt1~r 21a2!df#,

~2.9!

where quantities with Latin index denote their tetrad com
nents. Then, two conserved quantities, the energyE, and the
z component of the total angular momentumJz of the par-
ticle, are given by

E

m
52umjm1

1

2m
Smnjm;n

5AD

S
u~0!1

a sin u

AS
u~3!

1
M ~r 22a2 cos2 u!

S2

S~1!~0!

m
1

2Mar cosu

S2

S~2!~3!

m
,

~2.10!

Jz

m
5umxm2

1

2m
Smnxm;n

5a sin2 uAD

S
u~0!1

~r 21a2!sin u

AS
u~3!

1
a sin2 u

S2
@~r 2M !S12Mr 2#

S~1!~0!

m

1
aAD sin u cosu

S

S~2!~0!

m
1

rAD sin u

S

S~1!~3!

m

1
cosu

S2
@~r 21a2!22a2D sin2 u#

S~2!~3!

m
.

C. Equations of motion on the equatorial plane

In the following section, we restrict our analysis to th
case, where a spinning particle moves on the equatorial p
of a Kerr BH (u5p/2). From this constraint, we find that th
spin direction of a spinning particle is always perpendicu
to the equatorial plane. To confirm this, we introduce a s
cific spin vectors(a) @17# as

s~a!52
1

2m
e~a!

~b!~c!~d!u
~b!S~c!~d!, ~2.11!

or equivalently,
06400
-

ne

r
-

S~a!~b!5me~a!~b!
~c!~d!u

~c!s~d!, ~2.12!

where e (a)(b)(c)(d) is the completely antisymmetric tenso
with e (0)(1)(2)(3)51. When the particle always moves on th
equatorial plane of the Kerr BH, we find from the equatio
of motion @Eqs. ~2.1!# that the nonvanishing component o
the specific spin vector is onlys(2). Then we sets(2)52s,
wheres indicates not only the magnitude of a particle sp
but also includes the information of a spin direction, i.e., t
particle spin is parallel to the BH spin fors.0, while it is
antiparallel fors,0.

From Eq.~2.12!, nonvanishing tetrad components of th
spin angular momentum are obtained as

S~0!~1!52msu~3!,

S~0!~3!5msu~1!, ~2.13!

S~1!~3!5msu~0!,

and the conserved energy and total angular momentum@Eq.
~2.10!# can be written as

E

m
5

AD

r
u~0!1

~ar1Ms!

r 2 u~3!,
~2.14!

Jz

m
5

AD

r
~a1s!u~0!1F ~r 21a2!

r
1

as

r 2 ~r 1M !Gu~3!.

Using Eqs.~2.5!, ~2.14!, and the normalizationumum5
21, the relation between the normalized momentum vec
u(a) and the 4-velocityv (a) are

v ~0!5NS 12
Ms2

r 3 D u~0!, ~2.15!

v ~1!5NS 12
Ms2

r 3 D u~1!, ~2.16!

v ~3!5NS 11
2Ms2

r 3 D u~3!, ~2.17!

where

N5S 12
Ms2

r 3
@113~u~3!!2# D 21

. ~2.18!

Then, we can derive explicit components of velocity fiel
from Eqs.~2.14!–~2.17! as

SsLs

dt

dt
5aS 11

3Ms2

rSs
D @ J̃z2~a1s!Ẽ#1

r 21a2

D
Ps ,

~2.19!

SsLs

dr

dt
52ARs, ~2.20!
5-3



in

th
th

o

ed

n
h
rs
g

in

-
of

e

y
of

lar
ons

le.
the
ich

SAIJO, MAEDA, SHIBATA, AND MINO PHYSICAL REVIEW D 58 064005
SsLs

dw

dt
5S 11

3Ms2

rSs
D @ J̃z2~a1s!Ẽ#1

a

D
Ps ,

~2.21!

where

Ss5r 2S 12
Ms2

r 3 D , ~2.22!

Ls512
3Ms2r @2~a1s!Ẽ1 J̃z#

2

Ss
3

, ~2.23!

Rs5Ps
22DS Ss

2

r 2
1@2~a1s!Ẽ1 J̃z#

2D , ~2.24!

Ps5S ~r 21a2!1
as

r
~r 1M ! D Ẽ2S a1

Ms

r D J̃z,

~2.25!

and the energy and total angular momentum of the spinn
particle were normalized asẼ[E/m and J̃z[Jz /m, respec-
tively. Since we pay attention only to the case when
particle plunges into the BH, we choose the minus sign in
right-hand side of Eq.~2.20!.

One can easily understand the property of the radial m
tion of a particle by using an effective potential@18#. We
rewrite Eq.~2.24! to an equation forE as

aE222bE1g2~Ssp
r !250, ~2.26!

wherepr5mur , and

a5S ~r 21a2!1
as

r
~r 1M ! D 2

2D~a1s!2,

b5F S a1
Ms

r D S ~r 21a2!1
as

r
~r 1M ! D2D~a1s!GJz ,

g5S a1
Ms

r D 2

Jz
22DF r 2S 12

Ms2

r 3 D 2

1Jz
2G .

The effective potential is defined as the minimum allow
value of the particle energy at radiusr ; i.e.,

Veff5
b1Ab21ag

a
, ~2.27!

where we take the positive square root because the motio
a spinning particle should be future directed. We show t
effective potential in Fig. 1 for some sets of paramete
Here, we note that there may appear the following patholo
cal feature in treating the equations of motion of a spinn
particle: As mentioned in Sec. II A, for the casesÞ0, there
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is no normalization relation forvmvm , and hence the time
like conditionvmvm,0 is not guaranteed in the equations
motion of a spinning particle. In reality, for the case wheres
is large enough,vmvm becomes positive for some choicesE
and Jz @see Fig. 1~d!#. Hence, we have to incorporate th
timelike condition forvm additionally. Using Eqs.~2.14!–
~2.17!, the timelike condition,vmvm,0, is reduced to the
inequality

3
@ J̃z2Ẽ~a1s!#2

~Ms2!2/3
,

~12X!4

~21X!X5/3
, ~2.28!

whereX[Ms2/r 3. This condition must be satisfied for an
value of r>r H , wherer H denotes the coordinate radius
event horizon (r H[M1AM22a2) @19#. We depict this con-

FIG. 2. The allowed region of parameters (E,Lz) for a particle
to fall from infinity into a BH @~a! a/M50, ~b! a/M50.9]. The
quantitiesE and Lz represent the energy and the orbital angu
momentum of a spinning particle, respectively. The allowed regi
of E,Lz are encompassed by solid (s/M50) and dashed lines
(s/M50.9), respectively.~Note that alongE/m51, dashed line lies
below solid one.!

FIG. 1. The effective potential@Eq. ~2.27!# of a spinning particle
moving on the equatorial plane for~a! (a/M ,s/M ,Lz /mM )
5(0,0,2.4), ~b! (0,0.9,1.5) ~c!, (0.9,0,2.4), and~d! (0.9,0.9,1.5),
where Lz5Jz2ms @see Eq.~3.1!#. Note that Jz is fixed to be
2.4mM . The arrows indicate the trajectories of a spinning partic
Figure 1~d! shows the case, where the timelike condition along
particle trajectory is violated, and we mark the cross point at wh
vmvm50.
5-4
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dition in Figs. 2. We find that the allowed region is high
constrained when the spin is large (s/M;1) and no plung-
ing orbit is allowed fora/M5s/M51. We also summarize
the allowed region from the timelike condition in Table
with E5m, for which we perform our analysis in this pape

We guess that there cannot be such a pathological orb
a realistic situation, and that appearance of such an o
might be due to the violation of the assumption in derivi
basic equations in this extreme situation. The equation
motion of a spinning particle were derived under the assu
tion that its characteristic radius~or magnitude of spins) is
much smaller than the curvature scale of a backgro
spacetime. Hence, if a particle spins is much smaller than a
horizon radiusr H when the particle plunges into a BH@20#,
no pathological feature appears.

Exactly speaking, results presented in the following
reliable only for usu/r H&usu/M!1, as mentioned above
However, it is interesting to extend the analysis to the c
usu;M because the result could be helpful for understand
the feature of gravitational waves from coalescence o
highly spinning binary BHs. Therefore, in this paper, w
consider the case, whereusu/M;O(1), unless the timelike
condition is violated. When the timelike condition is violate
for a set of parameters (s,E,Jz) somewhere before a spin
ning particle reachesr H , we simply exclude the case.

TABLE I. Allowed region of the ‘‘orbital angular momentum’
of the spinning particle (Lz min,Lz,Lz max) which is constrained
by the timelike condition of its trajectory. We defined the orbi
angular momentumLz as Lz5Jz2ms @See Eq.~3.1!#. Since we
consider only the case of zero radial velocity at infinity, we on
show the case ofE5m in this table.

a/M s/M Lz min /mM Lz max/mM

0.0 0.3 27.505 7.505
0.6 23.472 3.472
0.9 22.022 2.022

0.3 0.3 26.767 7.367
0.6 22.950 3.550
0.9 21.538 2.173

0.6 0.3 25.112 6.312
0.6 21.965 3.165
0.9 20.814 2.014

0.9 0.3 22.237 4.037
0.6 20.359 2.159
0.9 0.345 1.455
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D. Energy-momentum tensor of a spinning particle

As the source term of Einstein equations, we use the
ergy momentum tensor of a spinning particleTmn, which is
given as@13#

Tmn~x!5
1

A2g
E dt@p(m(x,t)vn)(x,t)d~4!

„x2z(t)…

2¹lSl~m(x,t)vn)(x,t)d~4!
„x2z(t)…# , ~2.29!

where va(x,t), pa(x,t), and Sab(x,t) are defined exten-
sively from vm(t), pm(t), and Smn(t), which are defined
only on the particle trajectory. These extended fields are
fined only around the particle trajectoryxm5zm(t) @21#, us-
ing a bivector of parallel displacementḡm

a(x,z) @22# defined
as

lim
x→z

ḡm
a
„x,z~t!…5dm

a ,
~2.30!

lim
x→z

¹bḡm
a
„x,z~t!…50.

For the present case~with a mass monopole and a spin dipo
moment!, a further specification ofḡa

m(x,z) is not required.
Using the bivectorḡa

m(x,z), we defineva(x,t), pa(x,t),
andSab(x,t) as

va~x,t!5ḡa
m„x,z~t!…vm~t!,

pa~x,t!5ḡa
m„x,z~t!…pm~t!, ~2.31!

Sab~x,t!5ḡa
m„x,z~t!…ḡn

b
„x,z~t!…Smn~t!.

From these equations, we can get the energy-momentum
sor without ambiguity.

Using Eqs.~2.31! with the relations

¹bḡa
m„x,z~t!…d~4!

„x,z~t!…50,
~2.32!

va~x!¹aS d~4!
„x,z~t!…

A2g
D 52

d

dt S d~4!
„x,z~t!…

A2g
D ,

the divergence of Eq.~2.29! can be written as
¹bTab~x!5E dtḡa
m„x,z~t!…

d~4!
„x,z~t!…

A2g
S d

dt
pm~t!1

1

2
Rm

nrs„z~t!…vn~t!Srs~t!C
1

1

2E dt¹bS ḡa
m„x,z~t!…ḡb

n„x,z~t!…
d~4!

„x,z~t!…

A2g
D S d

dt
Smn~t!22p[m~t!vn]~t! D . ~2.33!

Thus, by the equations of motion~2.1!, the divergence free condition¹mTmn50 is guaranteed.
5-5
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III. GRAVITATIONAL WAVES FROM A SPINNING
PARTICLE

To investigate gravitational waves emitted from a sp
ning particle plunging into a Kerr BH, we adopt the Sasa
Nakamura formalism@11#. In order to calculate the total ra
diated energyDE, energy spectrum (dE/dv) lmv and so on
using their formalism, we need to obtain source ter
Slmv(r ) which consists of the motion of a spinning particl
to integrate the radial wave equation forXlmv(r ), and to
construct the waveformsh1 and h3 . In the Appendix, we
summarize the basic equations required. In this section,
only present numerical results and discuss implication
them.

For a nonspinning test particle plunging into a BH, w
have learned that an orbital angular momentumLz , which is
a conserved quantity, is one of the most important key
rameters in determining the amount of gravitational radiat
@10#. In the case of a spinning particle, however, we just ha
the total angular momentumJz and do not have an ‘‘orbita
angular momentum’’a priori. Here, we introduce an ‘‘or-
bital angular momentum’’ at infinity as

Lz5Jz2ms, ~3.1!

and hereafter use it as a parameter of our analysis for gr
tational waves instead ofJz .

A. Effects of a particle spin, black hole spin, and orbital
angular momentum to the total radiated energy

of gravitational waves

In Figs. 3 and 4, we show the total radiated energyDE for
a wide variety of parameters. In Figs. 3, we showDE as a
function of Lz fixing a/M (50,0.3,0.6,0.9) ands/M (50,
60.9), and in Figs. 4,DE as a function ofa and s fixing
Lz /mM as 0,61.5 and63. In these figures, we may find th
less number of data points for largers. This is because of the
violation of the timelike condition onvm for larges.

First, we pay attention to a Schwarzschild BH case, wh
a50 ~see, e.g., Fig. 3~a! or Figs. 4 alongs axis!. In this case,
we can find the following features:~1! The total radiated
energyDE is sensitively dependent onLz . With increasing
Lz , DE increases by a factor of 10 for very largeuLzu/mM
;3.5. ~2! The effect ofs is not as remarkable as that ofLz ,
but it changes the amount of gravitational radiation by
factor of 2.~3! In the case, wheres andLz are parallel,DE
is always larger than in the case when they are antipara

We guess that the features~1!–~3! may be roughly under-
stood by considering the trajectories of the particle: For
case whereuLzu is larger, the particle stays in the stron
gravitational field region for a longer time due to the ce
trifugal force }Lz

2/r 3. Since a particle emits most of grav
tational waves when it stays in a strong gravitational fi
region near the event horizon, the particle emits much m
gravitational waves for largeruLzu.

A similar idea can also be applied to interpreting the fe
tures ~2! and ~3!. If s and Lz are parallel~antiparallel!, the
particle stays in a strong gravitational field region for
longer~shorter! time compared with the case ofs50 due to
06400
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- FIG. 3. The total radiated energy of gravitational waves a
function of Lz @~a! a/M50, ~b! a/M50.3, ~c! a/M50.6, and~d!
a/M50.9]. Circle~filled!, triangle~filled!, and circle~open! denote
the cases ofs/M50.9, 0, and20.9, respectively.
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FIG. 4. The total radiated energy of gravitational waves as a function of a BH spina and a particle spins @~a! Lz /mM523, ~b!
Lz /mM521.5, ~c! Lz /mM50, ~d! Lz /mM51.5, and~e! Lz /mM53].
ed
a
f
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the spin-orbit~SO! coupling force}LzsM/r 4. Hence, when
the direction of a particle spin is parallel~antiparallel! to Lz ,
more ~less! gravitational waves are thought to be emitt
than when a particle is nonspinning. Along this line, we m
understand that the effect ofs is not as remarkable as that o
Lz since the spin-orbit~SO! coupling force is weaker than
the centrifugal force by a factor ofusM/Lzr u.

Next, we consider a spinning BH case in whichaÞ0. We
here begin with a discussion of thes50 case and have
brief review of the previous argument in@10#. From our per-
turbation study, one may find the following features:~4! The
06400
y

valueLz , which makes the radiated energy minimum, shi
to a negative value ofLz for a.0 @see Figs. 3~b!–~d!#. ~5!
The increase rate of a radiated energy with increasinguLzu
becomes larger forLz.0 than that forLz,0 @see Figs.
3~b!–~d!#. ~6! Fixing Lz*0 (Lz,0), DE usually increases
~decreases! asa increases.

The feature~4! is thought to be due to the frame-draggin
effect of a Kerr BH. Around a Schwarzschild BH (a50),
the amount of gravitational radiation for a particle ofLz50
is minimum since it has no toroidal motion. However, in
Kerr BH (a.0), the frame-dragging effect generates an
5-7
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fective toroidal motion. Thus a particle ofLz,0 could can-
cel this additional toroidal motion and radiate less ene
than the particle ofLz50.

The feature~5! might be understood in the same mann
as we understand the feature~3!. There exists a significan
coupling betweenLz anda, and in the case whereLz anda
are parallel~antiparallel!, the particle stays longer~shorter!
around the horizon. As a result,DE is enhanced~reduced!.
Moreover, the wave propagation character in a Kerr ba
ground leads to this feature. The emissivity of gravitatio
waves significantly depends on the ringing tail of gravi
tional waves. ForLz.0, the m5 l mode dominates in the
ringing tail, and them52 l mode dominates forLz,0 ~see
Figs. 5–7 below!. The quasinormal mode frequencies of
Kerr BH with a/M50.9 are Mv50.920.04i (m5 l 52)

FIG. 5. The energy spectrum of gravitational waves of thl
52 mode for the case ofa/M50.6 andLz /mM52.5 @~a! s/M
50.6, ~b! s/M50, ~c! s/M520.6]. Solid, dashed, dotted, dash
dotted, and dash-three dotted lines denote the cases ofm522,
21, 0, 1, and 2, respectively.
06400
y

r

-
l
-

and 0.320.09i (m52 l 522), respectively@23#. Thus, the
damping rate of the latter mode is considerably larger th
the former one. This is the main reason whyDE is larger for
Lz.0 than for Lz,0. The explanation of the feature~6!
might be essentially the same as that of~5!. The damping
rate of the ringing tail decreases with increasinga for Lz
*0, and opposite relation holds forLz,0.

Now, we discuss the effect of a particle spins which first
appears in this paper. For a Kerr background, there exi
coupling effect between a particle spins and a BH spina as
a new effect, which we will call the spin-spin~SS! coupling.

We first consider the SO coupling betweens and Lz for
aÞ0 @see, e.g., Figs. 4~d! and~e!#. As in the casea50, DE
increases~decreases! as s becomes larger forLz.0 (Lz
,0), however, the effect is significantly enhanced for
largera. For example, from Fig. 4~d!, DE for a/M50.9 and
s/M50.6 is about ten times larger than that fora50 and
s/M50.6, in the case ofLz /mM51.5. This seems to show
the importance of the coupling betweena and the SO cou-
pling term (s•Lz), and clearly implies that for the case
where their directions of axes have a coincidence,
amount of gravitational radiation becomes maximum.

The effect of the SS coupling can be seen from Fig. 4~c!
in the case ofLz50. We find thatDE increases asa be-
comes larger fors.0 ~or as s becomes larger fora.0).
Thus, the SS coupling increasesDE if the direction of two
spin axes have a coincidence. This can also be seen foLz
.0 @see, e.g., Fig. 4~e!# as an enhancement effect. Howeve
for Lz,0 @see, e.g., Fig. 4~a!#, such an effect is not clea
because the SO coupling is larger than the SS coupling,
makes it obscure to see SS coupling effect.

B. The linear momentum and angular momentum
of gravitational waves

In Figs. 8 and 9, we show the total radiated linear m
mentumDuPu as a function ofa, s, andLz . The parameter
dependence ofDuPu is quite similar to that ofDE as a whole.
For example, in a Schwarzschild BH case, asuLzu increases,
DuPu gets larger. Also, the SO coupling increases~decreases!
DuPu for (s•Lz).0(,0). However, the result seems t
show that the SS coupling effect acts in the opposite se
From Fig. 9~c!, DuPu increases as2(s•a) gets large in the
case, whereLz50.

Total radiated angular momentumDJz as a function of
a, s, andLz are shown in Figs. 10 and 11. Again, the p
rameter dependence ofDJz is similar to that ofDE. How-
ever, there is one interesting feature: From the compariso
Figs. 3 and 10, for the critical orbital angular momentu
Lz crit at which DE takes a minimum value,DJz becomes
almost zero. This coincidence seems to be very reason
from our interpretation of the feature~4! in a previous sub-
section. Since there is no effective toroidal motion atLz
5Lz crit , a particle plunges into a Kerr BH along the mo
straight path and the angular momentum can hardly be r
ated.

C. Energy spectrum and waveforms

In Figs. 5–7, we show the energy spectrum of gravi
tional waves ofl 52 andm522;2 modes.
5-8
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FIG. 6. The energy spectrum of emitted gravitational waves of thel 52 mode for the case ofa/M50.6 and Lz /mM50 @~a!
(a/M ,s/M )5(0.6,0.6),~b! (0.6,0),~c! (0.6,20.6)], ~d! (0,0), ~e! (0,0.6)). Solid, dashed, dotted, dash-dotted, and dash-three dotted
denote the cases ofm522, 21, 0, 1, and 2, respectively.
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From Figs. 5, one may find that forLz /mM52.5.0, the
m5 l 52 mode is always dominant. The spin parameters is
not so important in determining features of the energy sp
trum, e.g., the peak amplitude and the frequency at the p
However, we find that the amplitude ofm52 (m522)
mode is enhanced~suppressed! for increasings(.0), and
that the amplitude ofm52 mode is suppressed for decrea
ing s(,0). These features are considered as follows: W
increasingJz , the amplitude ofm52 (m522) mode is
enhanced~suppressed!. Jz is increased either byLz or by s.
Thus, if s is positive,Jz is increased, and as a result, t
amplitude of m52 (m522) mode is enhanced~sup-
pressed!. Similar feature can be found form561 modes;
i.e., for positive~negative! s, the amplitude ofm51 mode is
enhanced~suppressed!, and that ofm521 mode is sup-
pressed~enhanced!. On the other hand, forLz /mM521.5
,0, we have opposite features to those forLz /mM52.5,
06400
c-
k.

-
h

i.e., them52 l 522 mode is dominant and it is enhance
with decreasings.

From Figs. 6 (Lz50), we may see the SS coupling effe
more clearly because the SO coupling effect is suppres
The contribution of them5 l 52 mode is slightly larger than
that of them52 l 522 mode fors5a case, while contri-
butions ofm5 l 52 andm52 l 522 modes are almost th
same fors52a case. Recall that the contributions ofm5 l
52 and m52 l 522 modes fora5s5Lz50 are exactly
the same because the system has an inversion symmetry
respect to the equatorial plane. Hence, the feature seen i
s52a case would be explained by some cancellation
some effects regardinga ands.

In Fig. 12, we show the energy spectrum of eachl mode.
In all the cases, thel 52 mode dominates the total amplitud
From Fig. 12~a!, however, we find the contribution of largel
modes become significant forLz.0. This shows that for
5-9
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SAIJO, MAEDA, SHIBATA, AND MINO PHYSICAL REVIEW D 58 064005
corotating cases@(a•Lz).0#, l 5m modes are efficiently en
hanced. As for the effect of a particle spins, we can see two
clear features: Ifs andLz is parallel, the emissivity of gravi-
tational waves is enhanced and in the opposite case,
suppressed, as we mentioned above. In addition to this, f
Figs. 12~a! and~b!, as the coupling (s•Lz) or (s•a) become
larger, the higherl modes are enhanced more efficient
This feature seems to imply that these SO and SS coupl
excite the higherl modes.

In Figs. 13 and 14, we show waveforms of gravitation
waves. We here present the waveform of thel 52 mode
because the contribution of the higherl modes is at mos
;10% as shown in Fig. 12. We set the observer at infinity
the direction ofu5p/2, w50 for Fig. 13, and in thez axis

FIG. 7. The energy spectrum of gravitational waves of thl
52 mode for the case ofa/M50.6 andLz /mM521.5 @~a! s/M
50.6, ~b! s/M50, ~c! s/M520.6]. Solid, dashed, dotted, dash
dotted, and dash-three dotted lines denote the cases ofm522,
21, 0, 1, and 2, respectively.
06400
is
m
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for Fig. 14. In Fig. 13, the cross mode (h3) of gravitational
waves disappears from the character of polarization.

As we mentioned in Sec. III A, gravitational waves a
most efficiently radiated in the quasinormal mode ringing.
fact, we can find the damping oscillation of a quasinorm
mode ringing of the significant amplitude in Figs. 13 and 1
From Figs. 13~a! and 14, it is found that them5 l mode
dominates over other modes forLz.0 and the damping os
cillation can be described by this single quasinormal mo
However whenLz<0, to perform accurate fitting for the
ringing tail, we need more than two quasinormal modes
cause the contributions of severalm modes become compa
rable. As shown in Figs. 13~b! and 13~c!, we can actually see
that the ringing tail of the waveform looks different from th
in Figs. 13~a! and 14.

As we mentioned above, the effect ofs is not as remark-
able as that ofLz , which can also be seen in Figs. 13 and 1
Even a significant change ofs does not modify the waveform
so much@24#, however, the amplitude changes by a factor
;2 for s&M . Thus, we cannot neglect the effect ofs on the
amplitude of gravitational waves although the global sha
of waveforms does not change.

IV. CONCLUSION

We have calculated gravitational waves from a spinn
particle moving on the equatorial plane plunging into a K
BH using a BH perturbation approach. We obtain the follo
ing conclusions.

Contribution of a particle spins to the total radiated en
ergy, linear momentum, and angular momentum of grav
tional waves is not as large as that of a orbital angular m
mentumLz and spin of Kerr BHa. But the effect is still
important; for example, the total radiated energy changes
a factor of;2 even for Kerr BH cases when magnitudes
a and Lz are moderately large, if we changes from 0 to
&M .

Among effects due to particle spins, SO coupling~the
coupling betweens andLz) seems most important, and in th
case wheres andLz are parallel~antiparallel!, the amount of
gravitational radiation is enhanced~suppressed!. One of the
main reasons is that for the parallel~antiparallel! case, the
duration of the particle staying near BH horizon becom
longer~shorter! than that for thes50 case due to the repul
sive nature of the SO coupling force.

The reason why the effect ofs is less important than tha
of Lz is thought that the ratio of the order of magnitude of t
SO coupling to the centrifugal one isusuM /uLzur . Thus, for
usu;uLzu, the effect ofLz is always stronger than that ofs.

The coupling effect betweens and Lz is enlarged for
larger a. This may indicate the importance of the couplin
betweena and (s•Lz).

The coupling betweens anda is not as important as tha
betweens andLz , but it has still an important contribution
As in the case of the SO coupling, the total radiated energ
enhanced for the case, wheres and a are parallel. This be-
havior is opposite to that for the case when the spinn
particle falls along the spin axis of Kerr BH@13#. Thus, the
amount of gravitational radiation does not simply depend
5-10
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FIG. 8. The total radiated linear momentum of gravitational waves as a function ofLz @~a! a/M50, ~b! a/M50.3,~c! a/M50.6, and~d!
a/M50.9]. Circle ~filled!, triangle~filled!, and circle~open! denote the cases ofs/M50.9, 0, and20.9, respectively.
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the direction ofs, but on the type of the orbital trajectory.
The amount of gravitational radiation is maximum wh

the directions of axes ofs, a, and Lz have a coincidence
Thus, our calculations indicate that in the coalescence
two BHs, gravitational waves are emitted most efficien
when directions of their spins and orbital angular moment
have a coincidence.
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APPENDIX: GENERALIZED REGGE-WHEELER
EQUATIONS AND SOURCE TERMS OF A SPINNING

PARTICLE

Let us begin with a brief review of a BH perturbatio
approach. In order to calculate metric perturbations in a K
06400
of

i,
e

r
for
l
d

r
.

,

s.

rr

spacetime, we adopt the Sasaki-Nakamura formalism@11#,
which is derived by a transformation from the Teukols
equation @12#. The radial wave equation in the Sasak
Nakamura formalism is

S d2

dr* 2
2F~r !

d

dr*
2U~r !D Xlmv~r !5Slmv~r !, ~A1!

where the tortoise coordinater * is defined as

dr* 5
r 21a2

D
dr, ~A2!

and

F~r !5
D

r 21a2

1

g

dg

dr
,

U~r !5G22FG1
D

~r 21a2!

dG

dr
1

D

~r 21a2!2
U1 ,

with
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FIG. 9. The total radiated linear momentum of gravitational waves as a function of a BH spina and a particle spins @~a! Lz /mM
523, ~b! Lz /mM521.5, ~c! Lz /mM50, ~d! Lz /mM51.5, and~e! Lz /mM53].
c c c c 1 dD rD

g~r !5c01

1

r
1

2

r 2
1

3

r 3
1

4

r 4
,

c05212iM v1l~l12!212av~av2m!,

c158ia@3av2l~av2m!#,

c25224iaM ~av2m!112a2@122~av2m!2#,

c3524ia3~av2m!224Ma2,

c4512a4,
06400
G~r !52
r 21a2 dr

1
(r 21a2)2

,

U1(r )5VT1
D2

b F d

dr S 2a1
db/dr

D D
2

dg/dr

g S a1
db/dr

D D G ,
a52 i

Kb

D2
13i

dK

dr
1l1

6D

r 2
,
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GRAVITATIONAL WAVES FROM A SPINNING PARTICLE . . . PHYSICAL REVIEW D 58 064005
FIG. 10. The total radiated angular momentum of gravitational waves as a function ofLz@~a! a/M50, ~b! a/M50.3, ~c! a/M50.6, and
~d! a/M50.9]. Circle ~filled!, triangle~filled!, and circle~open! denote the cases ofs/M50.9, 0, and20.9, respectively.
en

g

h
i.

out~0! in~0!

he
b52DS 2 iK 1r 2M2
2D

r D .

VT is the potential in the Teukolsky equation, which is giv
as

VT~r !52
K214i ~r 2M !K

D
18ivr 1l, ~A3!

where K5(r 21a2)v2ma and l is the eigenvalue of the
spheroidal harmonics~see below!. The explicit form of the
source termSlmv(r ) for the general motion of a spinnin
particle is shown below.

To describe the wave functionXlmv(r ) of Eq. ~A1! using
the Green’s function method, we need two independent
mogeneous solutions of the Sasaki-Nakamura equation,

Xlmv
in~0!~r !5H e2 ikr* as r *→2`,

Almv
in e2 ivr* 1Almv

out eivr* as r *→`,

Xlmv
out~0!~r !5H Blmv

in e2 ikr* 1Blmv
out eikr* as r *→2`,

eivr* as r *→`,

wherek5v2ma/2r H and the WronskianW becomes
06400
o-
e.,

W[Xlmv
in~0!

dXlmv

dr*
2Xlmv

out~0!
dXlmv

dr*
52ivAlmv

in g

c0
.

Then the inhomogeneous solution of Eq.~A1! becomes

Xlmv~r !5Xlmv
in~0!E

r*

`Slmv~r !

W
Xlmv

out~0!dr*

1Xlmv
out~0!E

2`

r* Slmv~r !

W
Xlmv

in~0!dr* .

For observational point of view, we only need to know t
asymptotic behavior of the wave functionXlmv(r ) at infinity,
which is

Xlmv
~`! ~r !5Almv

~`! eivr* , ~A4!

where

Almv
~`! 5

c0

2ivAlmv
in E

2`

` Slmv~r !

g
Xlmv

in~0!~r !dr* . ~A5!

Then the waveform at infinity becomes

h12 ih35
8

r E2`

`

dveiv~r* 2t !(
l ,m

Almv
~`!

c0
22S lm

av~u!
eimw

A2p
,

~A6!
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FIG. 11. The total radiated angular momentum of gravitational waves as a function of a BH spina and a particle spins @~a! Lz /mM
523, ~b! Lz /mM521.5, ~c! Lz /mM50, ~d! Lz /mM51.5 and~e! Lz /mM53].
al

-
ear

of
where 22Slm
av(u) is one of the spin-weighted spheroid

function, which obeys

F 1

sin u

d

du S sin u
d

du D2S a2v2 sin2 u

1
~m22 cosu!2

sin2 u
24av cosu1222amv2l D G22

3Slm
av~u!50. ~A7!
06400
The spin-weighted spheroidal function22Slm
av(u) is normal-

ized as

E
0

p

du sin uu22Slm
av~u!u251.

From Eq.~A6!, we find the total energy, total linear mo
mentum, total angular momentum, energy spectrum, lin
momentum spectrum, and angular momentum spectrum
emitted gravitational waves are given as
5-14
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DE5E
2`

`

dv(
l ,m

S dE

dv D
lmv

, DP5E
0

`

dv(
l ,m

S dP

dv D
lmv

, DJz5E
2`

`

dv(
l ,m

S dJz

dv D
lmv

, ~A8!

and

S dE

dv D
lmv

58v2U Almv
~`!

c0
U2

,

S dP

dv D
lmv

58v2(
l 8

S Almv
~`!

c0

Āl 8m11v
~`!

c̄0
E

0

p

du sin2 u22Slm
av~u!22Sl 8m11

av
~u!

1
Al 8m21v

~`!

c0

Ālmv
~`!

c̄0
E

0

p

du sin2 u22Sl 8m21
av

~u!22Slm
av~u!D , ~A9!

S dJz

dv D
lmv

58mvU Almv
~`!

c0
U2

,

FIG. 12. The energy spectrum of gravitational waves of eachl mode for the case ofa/M50.6 @~a! Lz /mM52.5, ~b! Lz /mM50, ~c!
Lz /mM521.5]. Solid, dashed, and dash-dotted lines denote the cases ofs/M50.6, 0, and20.6, respectively.
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respectively, where we have defined a linear angular momentum by the complex valued one asDP5DPx1 iDPy .
In order to solve the Sasaki-Nakamura equation, we first have to give the source termSlmv in Eq. ~A1!. Here we consider

only nonperiodic motion or unbound system. The source termSlmv is given by

Slmv5
gD

~r 21a2!3/2r 2
W expS 2 i E r K

D
dr D . ~A10!

HereW is divided into three parts as

W5Wnn1Wm̄n1Wm̄m̄ , ~A11!

Wnn5 f 0~r !eix~r !1E
r

`

dr8 f 1~r 8!eix~r 8!1E
r

`

dr8E
r 8

`

dr9 f 2~r 9!eix~r 9!, ~A12!

Wm̄n5g0~r !eix~r !1E
r

`

dr8g1~r 8!eix~r 8!, ~A13!

FIG. 13. The waveforms (h1) of gravitational waves from BHs witha/M50.6 @~a! Lz /mM52.5, ~b! Lz /mM50, ~c! Lz /mM5
21.5]. We only include thel 52 mode in the present calculation. We set the observer at infinity in the direction ofu5p/2, w50 @the cross
mode (h3) of gravitational wave disappears from the character of polarization#. Solid line, dashed line, and dash-dotted line correspon
the cases ofs/M50.6, 0,20.6, respectively.
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Wm̄m̄5h0~r !eix~r !1E
r

`

dr8h1~r 8!eix~r 8!1E
r

`

dr8E
r 8

`

dr9h2~r 9!eix~r 9!, ~A14!

where

x5v~ t1r * !2mw̃, ~A15!

f 052
1

v2
wnn

~1!2
i

v
wnn

~3! , ~A16!

f 152
2

v2 S dwnn
~1!

dr
1 i ~av2m!

dw̃

dr
wnn

~1!D 1
i

v
wnn

~2!2
i

v

dwnn
~3!

dr
1~av2m!

wnn
~3!

v

dw̃

dr
, ~A17!

FIG. 14. The waveforms@h1~a,c,e! and h3~b,d,f!# of gravitational waves from BHs witha/M50.6 @~a!, ~b! Lz /mM52.5, ~c!, ~d!
Lz /mM50, ~e!, ~f! Lz /mM521.5#. We only include thel 52 mode in the present calculation. We set the observer along the spin a
the Kerr BH. Solid line, dashed line, and dash-dotted line correspond to the cases ofs/M50.6, 0,20.6, respectively.
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Ŝ5S av2m2 i
a

r D S̃2
l

222Slm
av , ~A27!

wnn
~1!5

ARs

Ss
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Finally, we note that numerical methods for calculation of the radial~outgoing! waves function, the spheroidal function, an
eigenvalue valuel, and so on are essentially the same as those in a previous paper@25#. When we calculate the total radiate
energy, angular momentum, and linear momentum, we took the sum ofl from 2 to 6.
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