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Gravitational waves from a spinning particle plunging into a Kerr black hole
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Using a black holé¢BH) perturbation approach, we numerically study gravitational waves from a spinning
particle of massw and spins on the equatorial plane plunging into a Kerr BH of m&dgsand spina. When
we take into account the particle spin (a) the motion of the particle changes due to the coupling effects
betweens and the orbital angular momentulry and betweers anda, and also(b) the energy momentum
tensor of the linearized Einstein equations changes. We calculate the total radiated energy, linear momentum,
angular momentum, the energy spectrum, and waveform of gravitational waves, and we find the following
features(1) There are three spin coupling effects: betwéermnda, betweers andL,, and betwees anda
whens is considered. Among theml - a) coupling is the most important effect for the amount of gravita-
tional radiation, and the other two effects are not as remarkable as the first one. However, these effects are still
important; for example, the total radiated energy changes by a facter2offor the case ofa/M=0.6,
L,/uM=1.5 if we changes from 0 to <M. (2) For the case when one of the three spiasl(,, ands) is
vanishing, the amount of gravitational radiation becomes lafgeralley if spin axes of the other two are
parallel (antiparalle]. For the case when three spins are nonvanishing, the amount of gravitational radiation
becomes maximum if all the axial directions®fa, andL, coincide. Thus, our calculations indicate that in a
coalescence of two black holéBHs) whose spins and orbital angular momentum are aligned, gravitational
waves are emitted most efficienthy50556-282(198)05216-3

PACS numbd(s): 04.30.Db, 04.25.Nx

[. INTRODUCTION appropriate gauge and slice conditions for 3D numerical
relativity, to construct a sophisticated computational program
Ground-based laser interferometers such as the Laser Ifier treating highly curved spacetime near BH horizons, and
terferometeric Gravitational Wave ObservatdkyGO) [1], so on. Moreover, a huge amount of computational time will
VIRGO [2], GEO600[3], and TAMA300[4] will be in op-  be necessary to perform many simulations for many possible
eration within the next five years. Among the many possibleparameters of BH binaries. Much progress in this field has
sources of gravitational waves, coalescing binaries composdaeen done in the last five years and will be expected in the
of neutron stargNSs or black holegBHs) are probably the next five years, but it will still be helpful if we could have
most well-understood source, and are potentially among thanother more reliable and economical approximate method
most promising sources. In particular, merging binary BHsto calculate gravitational waves from merging BH-BH bina-
are expected to be the most general relativistic phenomenédges, because the result will be a guideline or a template in
and the detections of gravitational waves from them willcarrying out those fully general relativistic simulations.
enable us to obtain physical information in extremely curved A BH perturbation approach is one of approximate meth-
spacetime. In order to extract it from a noisy data effectively,0ds to calculate gravitational waves from merging binary
it is necessary to prepare in advance a list of theoreticaBHs. In this approach, we assume that a small particle of
templates of gravitational waves, which depend on many pamassu is moving around the other large BH of mask
rameters of source§masses, spins, quadrupole moments> u, and calculate gravitational waves emitted using linear-
and the orbital inclination of compact objects, and sp[&h  ized Einstein equations ignorin@[ (x/M)?] terms in the
A fully general relativistic simulation is the only method BH spacetime as the background. The advantage of this ap-
by which such templates can be prepared, and much effort jgsroach is that it enables us to treat full general relativistic
now being paid to such simulatioi§]. We usually expect effects of the background BH spacetime and it may be ap-
that the numerical simulation must be performed accuratelplied to an arbitrary motion of a particle in principle. Al-
throughout the large dynamic range from the innermosthough this approximation is valid only fat<M, we expect
stable circular orbit to the final merging. To carry it out, that the perturbation calculation will give a fairly good ap-
there are many problems to be solved; e.g., we need to findroximation to numerical relativistic calculations; in fact, the
waveform and total radiated energy of gravitational waves in
the head-on collision of two equal mas®s)( BHs [7] agree

*Electronic address: saijo@gravity.phys.waseda.ac.jp with the extrapolated valueM —2m, u—m/2) of those ob-
TElectronic address: maeda@gravity.phys.waseda.ac.jp tained by a perturbation calculatig8] with a fairly good
*Electronic address: shibata@vega.ess.sci.osaka-u.ac.jp accuracy(within a factor of 2. The waveforms obtained in
SElectronic address: mino@vega.ess.sci.osaka-u.ac.jp the simulations of the stellar core collapse to be a [BH
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also agree with those calculated by a perturbation study of a S#'p,=0. (2.2
rotating ring inspiraling into a Schwarzschild BHOQ].

Along this approach, many works have been carried out to
study gravitational waves from a nonspinning test particleThiS relation fixes the center of mass of the spinning particle.
plunging into a spinning BH, since Sasaki and Nakamuralhe magnitude of spin is also conserved, so that we set
[11] reformulated the Teukolsky equati¢h2] and made it
possible to calculate gravitational waves induced by a par-
ticle plunging into a Kerr BH from infinity(See Nakamura,
Oohara, and Kojimg10].) To study gravitational waves

from merging binaries of spinning BHs approximately, \yhere a constarg is the specific spin angular momentum of

Mino, Shibata, and Tanak4l3] extended the Sasaki- e particle. For the latter convenience, we normalize the

Nakamura formalism _mcorporatmg the energy _momen.turrbrbim affine parameter as

tensor and the equations of motion of a spinning particle.

They calculated gravitational waves from a spinning particle

falling along the spin axis of a Kerr BH and showed that the uty,=-1. (2.9

effect of a particle spin is significant. In this paper, we in-

vestigate gravitational waves from a spinning particle mov-

ing on the equatoria] p|ane p|unging into a Kerr BH. Note that there is na priori definition with regard to nor-
This paper is Organized as follows. In Secs. Il A 1l B, and malization OfUMl)M besides the constraint that it must be

Il C, we derive the explicit form of the equations of motion hegative. Using Eqs2.1), (2.2), and(2.4), the relation be-

of a spinning particle moving on the equatorial plane of atweenu* andv* becomes

Kerr BH. We also mention the limitation of the equations of

motion in Sec. Il C. In Sec. Il D, we review the energy mo- , yaoh

mentum tensor of a spinning particle. We present numerical pH— Ut = S""RyymU’S (2.5

results in Sec. Ill. Section IV is devoted to a conclusion. The 2(p2+ § RopseS™¥S%) ' '

detailed equations for a calculation of gravitational waves

such as the generalized Regge-Wheeler equdiBasaki-

Nakamura equatignand its source terms are summarized inThus, Eqs(2.1), (2.2), and(2.5 are equations to be solved.

the Appendix. Throughout this paper, we use geometrized

units in whichc=1=G and the metric sign as—{,+,+, -
+). B. Conserved quantities

S*'S,,=2u’s?, 2.3

Conserved quantities are often very useful to obtain the
Il. THE MOTION OF A SPINNING PARTICLE orbit in an explicit manner. If we have a Killing vectdr,
A. Equations of motion which satisfies .., +§,.,=0, the quantity
The equations of motion of an extended body were first Qe=p*&E,— 3 "€, (2.6
derived by Papapetrdd 4] for a spinning particle case, and
then reformulated by Dixorf15] for a general extended ) .
body. The equations of motion of a spinning particle areis conserved along a particle trajectddyp].

given as Apart from the masg and spins of a spinning particle,
we have two additional conserved quantities because in Kerr
D y 1 " oo spacetime, there are two Killing vectdis6]: One is a time-
G- = T g REe(2)0"S, like Killing vector £, given by
(2.1

D

QMY gy, VgV M .

R N N VL L L) SR

H S e \/g [

wherez*(7), v#(7)=dz*/dr, p*(7), $"(7), andR*,,, de-
note the world line, 4-velocity, momentum, spin angular mo-
mentum tensor of the spinning particle, and Riemann tensotnd the other is an axial Killing vectoy, given by
of a Kerr spacetime, respectively, with being an affine
parameter of the orbit. The quantiwzz—pﬂp“ is con- N
served along the orbit, and we regard it as the square of the _ \/§ i2 90 (r'+ajsing
: . ; X,=a sine ge),’ + e”, (2.8

mass of the particle. We also introduce a normalized mo- # py m m
mentumu*=p#/w. The notationD/d+ denotes the covari-
ant derivative along the particle trajectory.

In order to close our system, we need a set of supplemerwherea is a spin parameter of the Kerr BiA=r>-2Mr
tary conditions, i.e., a relation betweef andu® (orp#), as  +a? andS=r?+a%cos 6, respectively. We choose the tet-
[15] rad bases of a covariant vectelf’ as
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A
el%dx= \/;(dt—a sir? 6d¢),

3
(1) = /=
eM dx* \/\dr’

(2.9
ePdx =3 dé,

sin @

(3) - _ 2, 52
e, dx*= 5 [—adt+(rc+a%)de],

where quantities with Latin index denote their tetrad compo-

nents. Then, two conserved quantities, the en&rggnd the
z component of the total angular momentumof the par-
ticle, are given by

P P
wo e g

- \/§u(0>+ asing s
2 V2

. M(r?—a? cog ) SHO© . 2Mar cos g SPG)

32 Iz 32 o
2.10
LSNP
n T g
A r2+a?)sin ¢
=a sirf 0\/:u(°)+ ¥u(3)
D vz
a sir? 6 s
52 [(r—M)3+2Mr?]
a\A sin 6 cos 6 S . ryA sin 9 SY®
py “ 3 “
cos 0 S@®
+ [(r?+a?)?—a’A sir? 6] .

22

C. Equations of motion on the equatorial plane

In the following section, we restrict our analysis to the

PHYSICAL REVIEW D 58 064005

SO @B y©gd)

(2.12
where €(a)(n)(c)(q) 1S the completely antisymmetric tensor
with €(0y(1)(2)(3y= 1. When the particle always moves on the
equatorial plane of the Kerr BH, we find from the equations
of motion [Egs. (2.1)] that the nonvanishing component of
the specific spin vector is onlgt?). Then we ses®= —s,
wheres indicates not only the magnitude of a particle spin,
but also includes the information of a spin direction, i.e., the
particle spin is parallel to the BH spin fa>0, while it is
antiparallel fors<0.

From Eq.(2.12, nonvanishing tetrad components of the
spin angular momentum are obtained as

SOM=— sy,
SOB = sy,

SDB) = 45y,

c)(d)

(2.13

and the conserved energy and total angular momen&gn
(2.10] can be written as

E_ £u<0>+ @r+Ms o

wor r? ’ (2.19
J A r’+a% as
;Zz \/r——(a+s)u(°)+ (r—)+ 2 (r+M) U@,

Using Egs.(2.9), (2.14, and the normalizatiom*u, =
—1, the relation between the normalized momentum vector
u® and the 4-velocity @ are

Ms?

v@=N 1—r—3 u'®, (2.15
Ms?

vM=N 1—r—3 u®, (2.16
2Ms?

u<3>=N<1+ = )u<3>, (2.17

where

2 -1
N:(l—M—:[lJrS(u(S))Z]) . (2.18
r

case, where a spinning particle moves on the equatorial plane . . o
of a Kerr BH (9= 7/2). From this constraint, we find that the Then, we can derive explicit components of velocity fields

spin direction of a spinning particle is always perpendiculad™m EQs.(2.14—(2.17) as

to the equatorial plane. To confirm this, we introduce a spe-

cific spin vectors® [17] as

1
— b d
R T CICIC

7 (2.1)

or equivalently,

s A dt L 3Ms?| = 2+a2P
shsg-=a +Ts [J,—(a+s) ]+T s
(2.19
dr
ESASE_ = \/Es, (2.20
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sn 30 (14 34 5 B+ 2p
Asqy = +TS [J,—(a+s) ]+K .
(2.21
where
M s?
Ye=r? 1-—-, (2.22
r
3Ms?r[—(a+s)E+J,]?
N [ (@93, (229
%
2 25 =172
Rs=Ps—A r—2+[—(a+s)E+JZ] , (2.29
as - Ms\..
Ps= (r2+a2)+T(r+M) E-lat+—/J,
(2.295

and the energy and total angular momentum of the spinnin
particle were normalized &8=E/u andJ,=J,/u, respec-

tively. Since we pay attention only to the case when the

particle plunges into the BH, we choose the minus sign in th
right-hand side of Eq(2.20.

One can easily understand the property of the radial mo
tion of a particle by using an effective potent{dl8]. We
rewrite Eq.(2.24) to an equation foE as

aE2—2BE+y—(24p")2=0, (2.26
wherep'=puu’, and
2
as
a= (r2+a2)+T(r+M) —A(a+s)?,
Ms 5. 5, as
B: a+T (I' +a )+T(r+M) _A(a+3) JZ,
Ms\? Ms?|?
V= a+T Jg—A rz(l—r—s +J§ .

The effective potential is defined as the minimum allowed

value of the particle energy at radiusi.e.,

B+ B+ ay
—

Veff_

(2.27)

where we take the positive square root because the motion

]
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FIG. 1. The effective potentidEqg. (2.27)] of a spinning particle
moving on the equatorial plane fofa) (a/M,s/M,L,/uM)
=(0,0,2.4), (b) (0,0.9,1.5)(c), (0.9,0,2.4), andd) (0.9,0.9,1.5),

where L,=J,— us [see Eq.(3.1)]. Note thatJ, is fixed to be

2.4uM. The arrows indicate the trajectories of a spinning particle.
igure Xd) shows the case, where the timelike condition along the
article trajectory is violated, and we mark the cross point at which

My =
v*v,=0.

% no normalization relation fov“v,, and hence the time-

like conditionv*v , <0 is not guaranteed in the equations of
motion of a spinning particle. In reality, for the case where
is large enoughy“v,, becomes positive for some choidés
and J, [see Fig. 1d)]. Hence, we have to incorporate the
timelike condition forv* additionally. Using Egs(2.14—
(2.17), the timelike conditionp*v,<0, is reduced to the

inequality

(1-X)*

J3.~E(a+s)]?
” (2+X)X53’

( M 52) 2/3

(2.28

whereX=Ms?/r3. This condition must be satisfied for any
value ofr=ry, wherer, denotes the coordinate radius of
event horizon (=M + yM?—a?) [19]. We depict this con-

=
=

L
2

12 1.3 1.4

11
E/un

FIG. 2. The allowed region of parameteis, [ ,) for a particle
@ fall from infinity into a BH [(a) a/M =0, (b) a/M=0.9]. The

a spinning particle should be future directed. We show thigantitiesE and L, represent the energy and the orbital angular

effective potential in Fig. 1 for some sets of parameters
Here, we note that there may appear the following pathologi

momentum of a spinning particle, respectively. The allowed regions
of E,L, are encompassed by solid/M=0) and dashed lines

cal feature in treating the equations of motion of a spinning(s/M =0.9), respectively(Note that alondE/u =1, dashed line lies

particle: As mentioned in Sec. Il A, for the cas&O0, there

06400
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TABLE I. Allowed region of the “orbital angular momentum” D. Energy-momentum tensor of a spinning particle
of the spinning particle I, nin<L,<L,mad Which is constrained
by the timelike condition of its trajectory. We defined the orbital
angular momentuni, asL,=J,— us [See EQ.(3.1]. Since we
consider only the case of zero radial velocity at infinity, we only
show the case dE=u in this table.

As the source term of Einstein equations, we use the en-
ergy momentum tensor of a spinning partidlé”, which is
given as[13]

TR (x)= %gf d] p*(x,7)v"(x,7) 8 (x—2(7))

a/M s/M L, min/ M L, max! M
0.0 0.3 —7.505 7.505 =V, S (x, 1) o "(x,7) 5<4)(X_Z(T))], (2.29
0.6 —3.472 3.472
0.9 —2.022 2.022 .
_ wherev®(x,7), p%(x,7), and S*3(x,7) are defined exten-
0.3 0.3 6.767 7.367 . . .
06 2950 3550 sively from v#(7), p*(7), and S*”(7), which are defined
' ' ' only on the particle trajectory. These extended fields are de-
0.9 —1538 2.173 fined only around the particle trajectoxyt=z*(7) [21], us-
0.6 0.3 —5.112 6.312 . . . — '
0.6 —1.965 3.165 ing a bivector of parallel displacemegy,“(x,z) [22] defined
0.9 ~0.814 2.014 as
0.9 0.3 —2.237 4.037 = .
0.6 ~0.359 2.159 limg,,“(x,2(7))= 6,
x—z (2.30
0.9 0.345 1.455

S _ S limVzg,“(x,2(7))=0.
dition in Figs. 2. We find that the allowed region is highly X—2
constrained when the spin is large/ i1 ~1) and no plung-
ing orbit is allowed fora/M=s/M=1. We also summarize For the present cage/ith a mass monopole and a spin dipole
the allowed region from the timelike condition in Table | momeny, a further Specification (ﬁ“#(x’z) is not required_
with E= u, for which we perform our analysis in this paper. |« ; —t R @

We guess that there cannot be such a pathological orbit igséngaé?f g|vaesct0|g p(x.2), we definev(x,7), p*(x.7).
a realistic situation, and that appearance of such an orbit ’
might be due to the violation of the assumption in deriving
basic equations in this extreme situation. The equations of
motion of a spinning particle were derived under the assump-

vY(X,7)=0%,(X,2(1))vH(7),

tion that its characteristic radiusr magnitude of spirs) is P(x,7) =9, (X, 2(7))pH(T), (2.31
much smaller than the curvature scale of a background

spacetime. Hence, if a particle sgris much smaller than a S“ﬁ(x,r)=E“M(x,z( )9,2(x,2(7))S*"(7).

horizon radius; when the particle plunges into a BI20],

no pathological feature appears. From these equations, we can get the energy-momentum ten-

Exactly speaking, results presented in the following aresor without ambiguity.
reliable only for |s|/ry=<|s|/M<1, as mentioned above.  Using Egs.(2.31) with the relations
However, it is interesting to extend the analysis to the case
|s|~M because the result could be helpful for understanding V 59%,(x,2(1)8¥(x,2( 7)) =0,

the feature of gravitational waves from coalescence of a (2.32
highly spinning binary BHs. Therefore, in this paper, we 4 (4)

consider the case, whets|//M~O(1), unless the timelike v(X)V w - d (57 xz() ,
condition is violated. When the timelike condition is violated “ V=0 dr V=g

for a set of parameterss(E,J,) somewhere before a spin-

ning particle reaches,, we simply exclude the case. the divergence of Eq2.29 can be written as
|
— _f drg 5Yx,z(7) [ d ; 1R“ oo
T *P(x)=| drg M(X,Z(T))T P+ 5 v Z(T)V"(T)S(7)

Y (x,z(7)) ( d
dr

+%fdr%(?ﬂ(xz(r)ﬁﬂ(x,z(r)) = —S#”(r>—2p[#<r>v”1<r>). (233

Thus, by the equations of motid@.1), the divergence free condition, T#”=0 is guaranteed.
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Ill. GRAVITATIONAL WAVES FROM A SPINNING
PARTICLE

To investigate gravitational waves emitted from a spin-
ning particle plunging into a Kerr BH, we adopt the Sasaki-
Nakamura formalisnil11]. In order to calculate the total ra-
diated energ\\AE, energy spectrumdE/dw)n,, and so on
using their formalism, we need to obtain source terms
Sime(r) Which consists of the motion of a spinning particle,
to integrate the radial wave equation &, (r), and to
construct the waveforms, andh, . In the Appendix, we
summarize the basic equations required. In this section, we
only present numerical results and discuss implication of
them.

For a nonspinning test particle plunging into a BH, we
have learned that an orbital angular momentum which is
a conserved quantity, is one of the most important key pa-
rameters in determining the amount of gravitational radiation
[10]. In the case of a spinning particle, however, we just have
the total angular momentud, and do not have an “orbital
angular momentum’a priori. Here, we introduce an “or-
bital angular momentum” at infinity as

L,=J,— us, 3.9
and hereafter use it as a parameter of our analysis for gravi-
tational waves instead o, .

A. Effects of a particle spin, black hole spin, and orbital
angular momentum to the total radiated energy
of gravitational waves

In Figs. 3 and 4, we show the total radiated enekdyfor
a wide variety of parameters. In Figs. 3, we shak as a
function of L, fixing a/M(=0,0.3,0.6,0.9) and/M (=0,
+0.9), and in Figs. 4AE as a function ofa ands fixing
L,/uM as 0+ 1.5 and= 3. In these figures, we may find the
less number of data points for largerThis is because of the
violation of the timelike condition o # for larges.

First, we pay attention to a Schwarzschild BH case, where
a=0 (see, e.g., Fig.@) or Figs. 4 alongs axis). In this case,
we can find the following feature€1) The total radiated
energyAE is sensitively dependent dn,. With increasing
L,, AE increases by a factor of 10 for very larfle,|/ uM
~3.5.(2) The effect ofs is not as remarkable as that bof,
but it changes the amount of gravitational radiation by a
factor of 2.(3) In the case, whers andL, are parallel AE
is always larger than in the case when they are antiparallel.

We guess that the featurég—(3) may be roughly under-
stood by considering the trajectories of the particle: For the
case wherdL,| is larger, the particle stays in the strong
gravitational field region for a longer time due to the cen-
trifugal forceoch/r3. Since a particle emits most of gravi-
tational waves when it stays in a strong gravitational field
region near the event horizon, the particle emits much more
gravitational waves for largdt.,|.

A similar idea can also be applied to interpreting the fea-
tures(2) and (3). If s andL, are parallel(antiparalle], the

AEM /12

(@)

AE M/ ?

(b)

AEM/y?

(©

AE M/ W2

(d)

10!

10°

107!

10t

100

107!
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T T T T T7IIT

a/M=0

—e— s/M=0.9
—a— s/M= 0.0
—O0— s/M=-0.9

Lo

ol

Lol

T T T T T TTTTIT

T

Lorrnn

Ll

Ll

LR AR

LRRR

Ll L1l

Lol

-4 0 4
L /uM
E | T T T T T T T T T T E
- a/M=0.9 3
;
! 1 1 1 1 1 1 1 | | L 1 |
-4 2 4

FIG. 3. The total radiated energy of gravitational waves as a
function of L, [(a) a/M =0, (b) a/M=0.3, (c) a/M=0.6, and(d)

particle stays in a strong gravitational field region for aa/mM=0.9]. Circle(filled), triangle(filled), and circle(open denote

longer(shortej time compared with the case s£0 due to
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Log(AEM/12)

Log (AEM/12)
-0.6 -1.4
0.8 0.9 -16 0.9

-1.8

@) 0.9 (©) 0.9

Log (AEM/2)

FIG. 4. The total radiated energy of gravitational waves as a function of a BHaspind a particle spirs [(@) L,/uM=—3, (b)
L,/ uM=-15,(c) L,/uM=0, (d) L,/uM=1.5, and(e) L,/ uM=3].

the spin-orbit(SO) coupling forcexL,sM/r#. Hence, when valuel,, which makes the radiated energy minimum, shifts
the direction of a particle spin is parall@ntiparalle] to L, to a negative value df, for a>0 [see Figs. &)—(d)]. (5)
more (les9 gravitational waves are thought to be emitted The increase rate of a radiated energy with increaging
than when a patrticle is nonspinning. Along this line, we maybecomes larger fok,>0 than that forL,<0 [see Figs.
understand that the effect efis not as remarkable as that of 3(b)—(d)]. (6) Fixing L,=0 (L,<0), AE usually increases
L, since the spin-orbitSO) coupling force is weaker than (decreasesasa increases.
the centrifugal force by a factor ¢§M/L,r|. The featurg4) is thought to be due to the frame-dragging
Next, we consider a spinning BH case in whit# 0. We  effect of a Kerr BH. Around a Schwarzschild B 0),
here begin with a discussion of ttee=0 case and have a the amount of gravitational radiation for a particlelof=0
brief review of the previous argument[ii0]. From our per- is minimum since it has no toroidal motion. However, in a
turbation study, one may find the following featuré$: The  Kerr BH (a>0), the frame-dragging effect generates an ef-
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10— and 0.3-0.09 (m=—I=—-2), respectivel)({23]. Thus, the
2 Lz/uM=2._5/~'/' \ 211 damping rate of the latter mode is considerably larger than
I (= 7 S - av ) the former one. This is the main reason wh is larger for
= E T NI E L,>0 than forL,<0. The explanation of the featur®)
~ 10 L/ e - . _m-2 3 might be essentially the same as that(8f. The damping
2 ES N\ \ 3 rate of the ringing tail decreases with increasiendor L,
; 10°? ;/ / : 4 =0, and opposite relation holds far,<O0.
= AR \ \ 3 Now, we discuss the effect of a particle sgimvhich first
o0t L ' . E appears in this paper. For a Kerr background, there exist a
£ AN \\ \.‘ 3 coupling effect between a particle sgirand a BH spira as
10°° 0 W SN S a new effect, which we will call the spin-spii$9 coupling.
(a) 0 0.2 0.4 1o 06 0.8 1 We first consider the SO coupling betwegrand L, for
a#0 [see, e.g., Figs.(d) and(e)]. As in the casea=0, AE
11— increases(decreas@sas s becomes larger fot,>0 (L,
£ L/uM=2.5 3 <0), however, the effect is significantly enhanced for a
10" L T *\ N largera. For example, from Fig. @), AE for a/M=0.9 and
= 3 ,,'/ . 3 s/IM=0.6 is about ten times larger than that fo=0 and
~ 10?2 / — . \ 4 s/IM=0.6, in the case of ,/uM=1.5. This seems to show
32 E - \ 3 the importance of the coupling betweanand the SO cou-
~  10? ;_/ V4 , \ ) pling term (s-L,), and clearly implies that for the case,
= \ 3 h their directions of axes have a coincidence, the
= ) . E where ,
=~ 10t L N ' \ 4 amount of gravitational radiation becomes maximum.
&\ \\ ‘-\ 3 The effect of the SS coupling can be seen from Fig) 4
103 L. U in the case ofL,=0. We find thatAE increases as be-
b) 0 0.2 04 Mo 0.6 0.8 1 comes larger fois>0 (or ass becomes larger foa>0).
Thus, the SS coupling increasAg if the direction of two
100 - e spin axes have a coincidence. This can also be seeh,for
ILll;iMl—lz 5 ' >0 [see, e.g., Fig.(#®)] as an enhancement effect. However,
ot L ” T B for L,<0 [see, e.g., Fig. @], such an effect is not clear
N Lo N\ because the SO coupling is larger than the SS coupling, and
= 2L ] makes it obscure to see SS coupling effect.
f \
~ 103 ;_/ . . \ N B. The linear momentum and angular momentum
= F B N of gravitational waves
10% // "\ ‘\ \ E In Figs. 8 and 9, we show the total radiated linear mo-
SF /) | B "\\ ] mentumA|P| as a function ofa, s, andL,. The parameter
107 === VPV dependence af |P| is quite similar to that oAE as a whole.
0 0.2 0.4 0.6 0.8 1 , . )
{c) Mo For example, in a Schwarzschild BH case/lag increases,

o A|P| gets larger. Also, the SO coupling increaggscreases
FIG. 5. The energy spectrum of gravitational waves of the A|P| for (s-L,)>0(<0). However, the result seems to
=2 mode for the case c/M=0.6 andL,/uM=25([(@ s/IM  show that the SS coupling effect acts in the opposite sense:

=0.6, (b) sSIM=0, (¢ s/szO._G]. Solid, dashed, dotted, dash- From Fig. 90), A|P| increases as-(s-a) gets large in the
dotted, and dash-three dotted lines denote the cases=of 2, case. wherd..=0
il Z .

—1,0,1,and 2, respectively. Total radiated angular momentunJ, as a function of

a, s, andL, are shown in Figs. 10 and 11. Again, the pa-
rameter dependence dfJ, is similar to that ofAE. How-
yever, there is one interesting feature: From the comparison of
Figs. 3 and 10, for the critical orbital angular momentum
L,qit at which AE takes a minimum valueAJ, becomes
almost zero. This coincidence seems to be very reasonable
from our interpretation of the featurd) in a previous sub-
section. Since there is no effective toroidal motionLat
=L,.i, @ particle plunges into a Kerr BH along the most
straight path and the angular momentum can hardly be radi-
ated.

fective toroidal motion. Thus a particle &f,<0 could can-
cel this additional toroidal motion and radiate less energ
than the particle of. ,=0.

The feature(5) might be understood in the same manner
as we understand the featu{®. There exists a significant
coupling betweer., anda, and in the case whele, anda
are parallel(antiparalle], the particle stays longdshortej
around the horizon. As a resullE is enhancedreduced.
Moreover, the wave propagation character in a Kerr back
ground leads to this feature. The emissivity of gravitational
waves significantly depends on the ringing tail of gravita-
tional waves. FoiL,>0, them=1 mode dominates in the
ringing tail, and them= —1 mode dominates fol ,<0 (see
Figs. 5—7 below The quasinormal mode frequencies of a In Figs. 5-7, we show the energy spectrum of gravita-
Kerr BH with a/M=0.9 areMw=0.9-0.04 (m=1=2) tional waves of =2 andm=—2~2 modes.

C. Energy spectrum and waveforms

064005-8
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FIG. 6. The energy spectrum of emitted gravitational waves of Ith@ mode for the case oc&/M=0.6 andL,/uM=0 [(a)
(a/M,s/M)=(0.6,0.6),(b) (0.6,0),(c) (0.6,—0.6)], (d) (0,0), (e) (0,0.6)). Solid, dashed, dotted, dash-dotted, and dash-three dotted lines
denote the cases ofi=—-2, —1, 0, 1, and 2, respectively.

From Figs. 5, one may find that far,/uM=2.5>0, the i.e., them=—I=-2 mode is dominant and it is enhanced
m=1=2 mode is always dominant. The spin paramstés  with decreasing.
not so important in determining features of the energy spec- From Figs. 6 [,=0), we may see the SS coupling effect
trum, e.g., the peak amplitude and the frequency at the peaknore clearly because the SO coupling effect is suppressed.
However, we find that the amplitude oh=2 (m=-—2) The contribution of then=1=2 mode is slightly larger than

mode is enhancesuppressedfor increasings(>0), and that of them=—1=—2 mode fors=a case, while contri-
that the amplitude om=2 mode is suppressed for decreas-butions ofm=1=2 andm= —1=—2 modes are almost the
ing s(<0). These features are considered as follows: Wittsame fors= —a case. Recall that the contributions mf=1
increasingJ,, the amplitude ofm=2 (m=-2) mode is =2 andm=—1=-2 modes fora=s=L,=0 are exactly

enhancedsuppressed J, is increased either bl, or by s.  the same because the system has an inversion symmetry with
Thus, if s is positive,J, is increased, and as a result, the respect to the equatorial plane. Hence, the feature seen in the
amplitude of m=2 (m=-2) mode is enhancedqsup- s=—a case would be explained by some cancellation of
pressegl Similar feature can be found fan==*=1 modes; some effects regarding ands.

i.e., for positive(negative s, the amplitude om=1 mode is In Fig. 12, we show the energy spectrum of ehehode.
enhanced(suppresseq and that ofm=—1 mode is sup- In all the cases, the=2 mode dominates the total amplitude.
pressedenhanced On the other hand, fok,/uM=—-15  From Fig. 1Za), however, we find the contribution of large

<0, we have opposite features to those fgruM=2.5, modes become significant fdr,>0. This shows that for
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SAIJO, MAEDA, SHIBATA, AND MINO PHYSICAL REVIEW D 58 064005

10 g for Fig. 14. In Fig. 13, the cross modé ) of gravitational
- L /“M_'l S ——— waves disappears from the character of polarization.

S (U -yl = As we mentioned in Sec. Il A, gravitational waves are
2 B —oom=1 ] most efficiently radiated in the quasinormal mode ringing. In
2 10 3 E fact, we can find the damping oscillation of a quasinormal
z LF/ - ] mode ringing of the significant amplitude in Figs. 13 and 14.
= 107 e, " E From Figs. 18) and 14, it is found that then=| mode
- W 4 : dominates over other modes fby>0 and the damping os-

107 / - 3 cillation can be described by this single quasinormal mode.

10° /. N However whenL,<0, to perform accurate fitting for the

0.2 0.4 0.6 0.8 ringing tail, we need more than two quasinormal modes be-
(@) ' Mo ' cause the contributions of severalmodes become compa-
rable. As shown in Figs. 1B) and 13c), we can actually see

<
—

10° E 'L'/' | is' I L that the ringing tail of the waveform looks different from that
§ uM=- ] in Figs. 13a) and 14.
- 10" E 3 As we mentioned above, the effect ®fs not as remark-
2 ) i ] able as that ok ,, which can also be seen in Figs. 13 and 14.
= 10 3 E Even a significant change sfdoes not modify the waveform
z F ] so much 24], however, the amplitude changes by a factor of
m 107, E ~2 for s<M. Thus, we cannot neglect the effectsobn the
z A ] amplitude of gravitational waves although the global shape
10* £/ / E of waveforms does not change.
Et7 ) 3
s b IV. CONCLUSION
®) 0 0.2 0.4, ., 06 0.8 1 o o
We have calculated gravitational waves from a spinning
10° 3 particle moving on the equatorial plane plunging into a Kerr
F L lp.M—-l 5 3 BH using a BH perturbation approach. We obtain the follow-
10! L ,; ing conclusions.
= g 3 Contribution of a particle spis to the total radiated en-
~ 102l . ergy, linear momentum, and angular momentum of gravita-
2 tional waves is not as large as that of a orbital angular mo-
g 100, ] = mentumL, and spin of Kerr BHa. But the effect is still
= ?/""‘/*\‘, AN 3 important; for example, the total radiated energy changes by
104 g_// o E a factor of~2 even for Kerr BH cases when magnitudes of
5/}' RN ] a and L, are moderately large, if we changefrom O to
10»5 b b b b Ny =M.
(c) 0 0.2 04 N 00 08 1 Among effects due to particle spsy SO coupling(the

coupling betwees andL,) seems most important, and in the
case where andL, are paralle(antiparalle], the amount of
gravitational radiation is enhancésguppressed One of the
main reasons is that for the parall@ntiparalle] case, the
duration of the particle staying near BH horizon becomes
longer (shortej than that for thes=0 case due to the repul-
sive nature of the SO coupling force.
corotating caselja- L,)>0], |=m modes are efficiently en-  The reason why the effect sfis less important than that
hanced. As for the effect of a particle sginwe can see two of L, is thought that the ratio of the order of magnitude of the
clear features: I§ andL, is parallel, the emissivity of gravi- SO coupling to the centrifugal one fis|M/|L,|r. Thus, for
tational waves is enhanced and in the opposite case, it is|~|L,|, the effect ofL, is always stronger than that ef
suppressed, as we mentioned above. In addition to this, from The coupling effect betwees and L, is enlarged for
Figs. 12a) and(b), as the couplingg-L,) or (s-a) become largera. This may indicate the importance of the coupling
larger, the highel modes are enhanced more efficiently. betweena and (s-L,).
This feature seems to imply that these SO and SS couplings The coupling betwees anda is not as important as that
excite the highet modes. betweens andL,, but it has still an important contribution.
In Figs. 13 and 14, we show waveforms of gravitationalAs in the case of the SO coupling, the total radiated energy is
waves. We here present the waveform of the2 mode enhanced for the case, wheseand a are parallel. This be-
because the contribution of the highemodes is at most havior is opposite to that for the case when the spinning
~10% as shown in Fig. 12. We set the observer at infinity inparticle falls along the spin axis of Kerr BH.3]. Thus, the
the direction ofd= /2, ¢=0 for Fig. 13, and in the axis = amount of gravitational radiation does not simply depend on

FIG. 7. The energy spectrum of gravitational waves of lthe
=2 mode for the case @d/M=0.6 andL,/uM=—-1.5[(a) s/M
=0.6, (b) sIM=0, (c) ssM=—0.6]. Solid, dashed, dotted, dash-
dotted, and dash-three dotted lines denote the cases=of 2,
—1,0, 1, and 2, respectively.
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FIG. 8. The total radiated linear momentum of gravitational waves as a functiop[td) a/M =0, (b) a/M =0.3,(c) a/M =0.6, and(d)
a/M=0.9]. Circle(filled), triangle (filled), and circle(open denote the cases sfM=0.9, 0, and— 0.9, respectively.

the direction ofs, but on the type of the orbital trajectory. spacetime, we adopt the Sasaki-Nakamura formalisin,
The amount of gravitational radiation is maximum whenwhich is derived by a transformation from the Teukolsky

the directions of axes of, a, andL, have a coincidence. equation[12]. The radial wave equation in the Sasaki-

Thus, our calculations indicate that in the coalescences dflakamura formalism is

two BHSs, gravitational waves are emitted most efficiently

when directions of their spins and orbital angular momentum

have a coincidence. d?

dr*2

d
—F() —— ~U() | Ximo(F) = Simu (1), (A1)
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(A2)

APPENDIX: GENERALIZED REGGE-WHEELER
EQUATIONS AND SOURCE TERMS OF A SPINNING
PARTICLE

dG A

U(r=G*-FG+——+ —+——-—U,
" (r2+a2) dr = (r2+a2)2 !

Let us begin with a brief review of a BH perturbation
approach. In order to calculate metric perturbations in a Kerwith
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FIG. 9. The total radiated linear momentum of gravitational waves as a function of a BHasmial a particle spirs [(a) L,/uM
-3,() L,/uM=-15,(c) L,/uM=0, (d) L,/uM=1.5, and(e) L,/uM=3].
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FIG. 10. The total radiated angular momentum of gravitational waves as a functigh(@fa/M =0, (b) a/M =0.3,(c) a/M=0.6, and
(d) a/M=0.9]. Circle(filled), triangle(filled), and circle(oper denote the cases sfM=0.9, 0, and— 0.9, respectively.

. 2A g xouto) d xin(©
B=2A| —iIK+r=M-—|. WEX:%S)%_X?&O) Mo _ o0 Almw’);'

V7 is the potential in the Teukolsky equation, which is givenThen the inhomogeneous solution of E41) becomes
as
i Slmw(r)
K2+ 4i(r—M)K X.mw(r)=><lrr1§2>fr* Xine, dr*

Vilr)=— ————F—— +8iar+\,  (A3)

™* Simw(l)
where K=(r?+a% w—ma and\ is the eigenvalue of the + Xt fo ImW Ximordr*.
spheroidal harmonicéee beloyw The explicit form of the
source termS,,(r) for the general motion of a spinning For observational point of view, we only need to know the
particle is shown below. asymptotic behavior of the wave functidq,,,(r) at infinity,
To describe the wave functio®,,,(r) of Eq. (Al) using  which is

the Green'’s function method, we need two independent ho-

mogeneous solutions of the Sasaki-Nakamura equation, i.e., ,mw(r) A,(,?;l,ei‘”*, (A4)
e kK as 1+ —o, where
Ximo ()=
] in L—ior* out Liwr* *
Ime® +Am.e as r*—oo, c * Simolr)
) ) A= f TEXMO(rydr*. (AS)
Imw
XEUO) () Bimoe " +Bfm,e " asrr——o, Then the waveform at infinity becomes

e asr* oo, Al eime

—Ih f do elw(r —t) mo Saw 6)——,

;n Co m )\/277
wherek=w—ma/2r and the WronskiaW becomes (AB6)
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FIG. 11. The total radiated angular momentum of gravitational waves as a function of a Bld apih a particle spis [(a) L,/uM
=-3,(b) L,/uM=-15,(c) L,/uM=0, (d) L,/uM=1.5 and(e) L,/uM=3].

where _,Si(6) is one of the spin-weighted spheroidal The spin-weighted spheroidal function,S3¢(6) is normal-

function, which obeys ized as
1 d d f” .
= [sing—|—-| a2? si dé sin 6] _,S(0)|*°=1.
sin0d0(3|n0d0 a’w? sir 0 . | 2Sim(0)]
2
(m—2cosb)  daw oS O+ 2— 2amm— \ From Eq.(A6), we find the total energy, total linear mo-
Siré 6 -2 mentum, total angular momentum, energy spectrum, linear
momentum spectrum, and angular momentum spectrum of

X Se(6)=0. (A7) emitted gravitational waves are given as
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FIG. 12. The energy spectrum of gravitational waves of dactode for the case d/M=0.6[(a) L,/uM=2.5,(b) L,/uM=0, (¢
L,/uM=—1.5]. Solid, dashed, and dash-dotted lines denote the castMef0.6, 0, and— 0.6, respectively.

and

o dE
AEZJ' dwE —) , fdwz
- I,m do Imw
() |2
(d_E> :8w2 Almw
d Ime Co
dp Az AL
_ — 2
(dw)“-nw 8o 2 Co
A()

=

Ime

_'m-le '”“”J d6 sir? 0_,S  (0)_,S(0)
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FIG. 13. The waveformsh(,) of gravitational waves from BHs witla/M=0.6 [(a) L,/uM=2.5, (b) L,/uM=0, (c) L,/ uM=
—1.5]. We only include thé=2 mode in the present calculation. We set the observer at infinity in the directi#n a2, ¢ =0 [the cross
mode ) of gravitational wave disappears from the character of polarizht®olid line, dashed line, and dash-dotted line correspond to
the cases 0§/M =0.6, 0,— 0.6, respectively.

respectively, where we have defined a linear angular momentum by the complex valued/oPe A, +iAP, .
In order to solve the Sasaki-Nakamura equation, we first have to give the sourc§ tgyim Eq. (Al). Here we consider
only nonperiodic motion or unbound system. The source 8y is given by

vA ('K
S|mw:mw ex —|f Kdr . (AlO)
Here W is divided into three parts as

W=Wint+Want Wi, (A11)
Wnn=f0(r)eix<”+f dr’fl(r’)eix“/)+j dr’f,dr”fz(r”)ei’(“//), (A12)

r r r
Wan=go(r)ei“”+f dr/gy(r’)e'xr, (A13)

r
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FIG. 14. The waveform$h, (a,c,e and hy(b,d,)] of gravitational waves from BHs witla/M =0.6 [(a), (b) L,/uM=2.5, (c), (d)

L,/ uM=0, (e), (f) L,/uM=—1.5]. We only include thd =2 mode in the present calculation. We set the observer along the spin axis of

the Kerr BH. Solid line, dashed line, and dash-dotted line correspond to the cas@4 ©0.6, 0, —0.6, respectively.

where

W,m=h0(r)eix“)+j dr’hl(r’)e‘X“')Jrf dr’f dr’h,(r")ex™),
r r r’

x=o(t+r*)—me,

fo=—

1 i
1 3
_ZWEm)_ZW%n)’
2[00
w2\ dr dr ") o "M @ dr
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1 || d2wty do dw d%e de
_ _T (1) _r (1)
fsy wz{ a2 +2i(aw m)dr ar +i(aw— m) > Wy (aw—m) ar Win
d  d%p i dw@ 1
_ (1) _a__ T m_ = (2)
'ann( a2 a2 +- ar (aw— m) Wrin (A18)
i
somit- Lo, 9
(2 2 ~
i dw= i d(,D
g1=— =g, +H(@w—m) ="t —w (A20)
how@o L L@ A21
0 Wmm mm 2 mm’ ( )
w
dwie da i dw2 w2
__“ 7 "'mm (4) O mm Wom Y @3
h,= wz( ir T +i(aw— m)d +mem —ar T@emm)—= W (A22)
d2w (4) d’(;) d (4) d ZD d’(;i 2
h, —;[ dr;m+2|(aw Wik dTm+|(aw m) 2Wu (aw—m)? ar wiik
o (5) ~
d<v d?¢ idw. - 1 do
_ (CON i -r _ mm__ - (5) (6)
Iw\/V”““(drz dr? ]+w T rn)d o Winm- (A23)
with
p=t+r*, (A24)
ra
~ d_oS
_Tm _t(ao—m) oS, (A26)
o=z
N al- A\
S= aw—m—iF>S— E_ZSﬁ;}, (A27)
Rs-~ as s
wg1n>=2—fs(1—r—2—iF(aw—m)), (A28)
@S (argEas| [~ Mg 95 A29
W”“_E_s[_(a SE+I | ——x— = )5 ") (A29)
T
Wi =5&—[J;~ (a+9)E] (A30)
S
(1) s 3Ms? 2
Wi =155 = J_ <P VR +| 1+ S5 |3~ (a+9ET), (A3D)
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S 3Ms? 1
w2 = |§2L((2+Tj)r[Jz—(a+s)E]+§ K(rZ—BMr+2az+irK)(Ps—\/ﬁs)
3Ms?| 3Ms? )
+P—||4— 3. ati(aw—m)r| 1+ . [J,—(a+S)E]; ), (A32)
@ S r2 3Msz> )
wmn——|s§25\/ES 1+ . [J,—(a+s)E]%, (A33)
r? 3Ms? r? 3Ms?
W%:_—ZES\/E;Z ,{‘]’{rz 1+—r25 )[JZ—(aJrs)E]ZW%:——ZES\/ESzsﬁ;‘]’[rz 1+—FES )[JZ—(aan)E]2
K 3Ms?
+|5+rig 1+T)P3[JZ—(a+S)E]—| rVRy 1 )[J —(a+s)E]|{, (A34)
3Ms?
W—— fzSamr; a(Pg +\/_)+(A+|Kr) TS)[JZ—(aJrs)E], (A35)
3 T S.Ms2 s
Vo= R 2Sm| 1+ —5 | [3.— (@+9)E]| r[J,~ (a+s)E]+ ~{2a[J,~ (a+S)E]+ YRy} |, (A36)
w\/ﬁsasA
Wik 2Samr4—zs, (A37)
2
mm———zﬁamrg [2 JVR+ +|K 1+ SrMTS)[JZ—(ast)E], (A38)
©_ " (1 3MSZ)J E]| [J E]- > (2a[J E]- VR A39
Wmm—sﬁ’mzdﬁS + 3. [J,—(a+s)E]| [J,—(a+s) ]—r—z{ a[J,—(a+s)E]-VRs}|. (A39)

Finally, we note that numerical methods for calculation of the radiatgoing waves function, the spheroidal function, and
eigenvalue valua, and so on are essentially the same as those in a previous[gapaihen we calculate the total radiated
energy, angular momentum, and linear momentum, we took the sunfrah 2 to 6.
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