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Numerical treatment of the hyperboloidal initial value problem for the vacuum
Einstein equations. II. The evolution equations

Jörg Frauendiener
~Received 12 December 1997; published 5 August 1998!

This is the second in a series of articles on the numerical solution of Friedrich’s conformal field equations
for Einstein’s theory of gravity. We will discuss in this paper the numerical methods used to solve the system
of evolution equations obtained from the conformal field equations. In particular we discuss in detail the choice
of gauge source functions and the treatment of the boundaries. Of particular importance is the process of
‘‘radiation extraction’’ which can be performed in a straightforward way in the present formalism.
@S0556-2821~98!05616-1#

PACS number~s!: 04.25.Dm
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I. INTRODUCTION

In the previous article@1# we presented the conforma
field equations explicitly in a form suitable for solving the
numerically. In a brief summary, we have derived the co
formal field equations in the space spinor formalism which
well suited to perform the 311 split because the evolutio
equations come out in a symmetric hyperbolic form~under
appropriate assumptions on the free gauge source funct!
almost automatically. We have also discussed in@1# the fur-
ther assumption of a hypersurface orthogonal symm
which has been made to simplify the implementation. Fix
points of a continuous symmetry usually lead to coordin
singularities which have to be treated specially in any fin
difference method. Therefore, we followed a suggestion
Schmidt@2# to require that there be no fixed points which h
the unphysical consequence that the global topology
space-time isT23R2. However, since the emphasis of th
project lies in studying the effectiveness of radiation extr
tion from the numerically generated space-times and s
these are local methods this is not a serious disadvantag

The conformal field equations have been used before
Hübner @3,4# to study the spherically symmetric collapse
scalar fields. He could show that they provide an effect
tool to obtain information about the global structure of t
space-time and the nature of the emerging singularit
Here, we want to consider the conformal vacuum field eq
tions in a two-dimensional setting. Our emphasis is not
much on treating realistic systems, but more on examin
the algorithms which are necessary to obtain useful phys
information from the numerical solution.

In Sec. II we first present the numerical method, a La
Wendroff method in two dimensions and the procedure
choosing the time-step dynamically in order to enforce
Courant-Friedrichs-Lewy~CFL! condition for stability of the
algorithm. In Sec. III we show how the boundary can
treated. This is an essential part of any numerical sche
because if the boundary conditions are non-physical, one
to live with the fact that the numerical solution probab
differs quite significantly in the domain of influence of th
boundary from what one expects it to be there. In the pres
approach, this problem can be avoided because the boun
is entirely outside the physical space-time. From the cau
0556-2821/98/58~6!/064003~18!/$15.00 58 0640
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properties of the evolution equations, it is at least plausi
that null infinity J which is a characteristic surface for th
differential equations also numerically acts as a barrier
perturbations generated in the unphysical space-time.

Section IV is devoted to a discussion of the various gau
source functions. This is an important subject also in
conventional treatments of the Einstein equations becau
is not clear what the implications are if one chooses, e.g.,
lapse function and the shift vector in that way and not
another. The existence ofJ imposes some questions co
cerning the resolution of features inside the physical spa
time during the course of the computation. But these qu
tions can be solved completely satisfactorily by making u
of a certain choice of shift vector which is forced by th
structure of conformal field equations.

Finally, in Sec. V we discuss the procedure of ‘‘radiatio
extraction.’’ By this term we mean the determination of ce
tain asymptotic quantities which in a well defined sense ch
acterize the gravitational radiation generated inside
physical space-time and escaping out to infinity. Here, thi
a well defined procedure which involves finding the zero-
of the conformal factor, the interpolation of the field var
ables and a frame transformation to a well defined fra
which is adapted to the geometry ofJ. Another issue dis-
cussed in this section is the determination of the Bondi ma
Here, due to the different global topology, the situation
different from the physical one in that one cannot find
Bondi four-momentum, but only a Bondi scalar.

We tested the code by using exact solutions to first p
vide initial data for all the variables and then to compare
computed variables with the analytic ones. We also co
puted the radiative quantities from the exact solutions
comparison with the numerically determined ones to ch
the radiation extraction method.

As in @1# we use the conventions of@5# throughout.

II. THE NUMERICAL EVOLUTION SCHEME

The evolution part of the conformal field equations pr
sented in Sec. IV with the symmetry reduction described
Sec. V is to be solved numerically. To this end we set u
two-dimensional grid with coordinatesu,v. It is assumed
that the fields are periodic inu with period 2 so that we need
to impose periodic boundary conditions at the surfaceu
© 1998 The American Physical Society03-1
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561. The coordinatev takes values in the interva
@2V0 ,V0#. Our grid will always be a regular grid withNu
3Nv grid points which have coordinatesui521
1 iDu, v j52V01 j Dv with constant grid spacingsDu and
Dv. The question of boundary conditions at the surfacev
56V0 is rather delicate from the numerical point of vie
and will be discussed in detail in Sec. III.

Having set up the grid, we need to obtain solutions of
constraint equations in order to initialize the fields. Th
should be done by solving the constraint equations num
cally given the appropriate free data and boundary d
However, since we are here concerned mainly with the e
lution algorithm, we will simply take these initial value
from appropriately adapted exact solutions which have
cently been pointed out by Schmidt@2#. In particular, we
take the rescaled A3 solution and one other solution fr
this class~see Appendix A! in various gauges as our te
case.

As our numerical method for solving the evolution equ
tions, we choose finite difference schemes which are sec
order accurate in both time and space. In particular, we
the leapfrog and the Lax-Wendroff schemes both extende
a straightforward manner to two space dimensions.
course, various other methods could have been employe
soon becomes apparent that the leapfrog method is n
viable choice in our case. Since the conformal field equati
form a quasi-linear symmetric hyperbolic system, it follow
that the characteristics which determine the evolution of
fields depend on the solution itself. Or, to put it different
the wave parts of the fields propagate along the light c
which is determined by the metric which, in turn, is evolv
by the field equations. Since the methods we employ
explicit, we need to make sure that they remain stable
controlling the size of the time stepDt during the evolution.
However, changing the time step dynamically cannot
done with the leapfrog method without losing the seco
order accuracy in time. Hence, we will focus here exc
sively on the Lax-Wendroff method.

The equations in the general form given in@1, Sec. IV#
are manipulated using theNPSPINORpackage@6# of MAPLE,
extended to include the space spinor formalism. The eq
tions are expanded into components using the decompos
into irreducibles for each spinor field. We should point o
that the equations when written in components turn into
general, complex equations for complex variables. Due
the reality properties of the spinor fields, these equati
come either in complex conjugate pairs or as real equati
This fact reduces the number and the complexity of the eq
tions. The symmetry conditions given in@1, Sec. V# are used
to simplify them.MAPLE is also used to test the equatio
thus obtained quite extensively in various ways:

They are checked against hand calculations in sim
enough cases.
Inserting exact solutions into the equations should re
in identities. These solutions are obtained also with
help of MAPLE using different routines by conformall
transforming simple vacuum solutions of Einstein
equations with arbitrary conformal factors.
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The most important test, however, is the fact that
evolution equations have to propagate the constrai
This property was verified for the full expanded evol
tion equations and constraints usingMAPLE.

The evolution scheme used here is a variant of the sch
originally proposed by Lax and Wendroff@7# and similar to
the Burstein scheme@8#. It is a second order accurate an
stable scheme as is shown in Appendix B. For a quasi-lin
equation of the form

f t5A~ t,u,v, f ! f u1B~ t,u,v, f ! f v1E~ t,u,v, f !
~2.1!

it can be characterized as follows. Define the following o
erators acting on a grid functionf i , j :

m1@ f # i , j5
1
2 ~ f i 21/2,j1 f i 11/2,j !,

m2@ f # i , j5
1
2 ~ f i , j 21/21 f i , j 11/2!, ~2.2!

D1@ f # i , j5~ f i 11/2,j2 f i 21/2,j !,

D2@ f # i , j5~ f i , j 11/22 f i , j 21/2!. ~2.3!

Then the 2D-Lax-Wendroff scheme consists of the fo
steps:

f̄ i 11/2,j 11/2
n ← 1

2 m1@m2@ f n## i 11/2,j 11/2,

f i 11/2,j 11/2
n11/2 ← f̄ i 11/2,j 11/2

n

1 1
2 CuAi 11/2,j 11/2

n m2@D1@ f n## i 11/2,j 11/2

1 1
2 CvBi 11/2,j 11/2

n m1@D2@ f n## i 11/2,j 11/2

1 1
2 DtEi 11/2,j 11/2

n ,

f̄ i , j
n11/2← 1

2 m1@m2@ f n11/2## i , j ,

f i , j
n11← f i , j

n 1CuAi , j
n11/2m2@D1@ f n11/2## i , j

1CvBi , j
n11/2m1@D2@ f n11/2## i , j1DtEi , j

n11/2,

where Cu5Dt/Du and Cv5Dt/Dv and where

Ai 11/2,j 11/2
n 5A(tn ,ui1

1
2 Du,v j1

1
2 Dv, f̄ i 11/2,j 11/2

n ) and

Ai , j
n11/25A(tn , ui , v j , f̄ i , j

n11/2). The further generalization
of this scheme to three dimensions is straightforward. Ho
ever, it becomes rather inefficient and it is here where pr
3-2
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NUMERICAL TREATMENT OF THE . . . . II. . . . PHYSICAL REVIEW D 58 064003
ably operator splitting methods should be used. The co
plete discretization of the equations was also carried
symbolically.

The exact solutions described in Appendix A have be
used to provide the initial data and~in some cases! those
boundary data which can be specified freely. It is clear fr
the form of the metric that these solutions have two spa
like Killing vectors. The Killing vector]y is taken to be the
one that is factored out by the symmetry reduction~see@1,
Sec. V#!. The metric functions are independent ofx andy. If
we choosez andx to correspond to the two remaining coo
dinatesv andu, respectively, then the code is essentially
one-dimensional code. In order to test the two-dimensio
performance of the code, we, therefore, have to ‘‘warp’’ t
coordinates. Thus, we put

x5u, z5v2a~V0
22v2!sin~pu!. ~2.4!

We choosea in such a way that this transformation is bije
tive in the rangeuP@21,1#, vP@2V0 ,V0#. In this coordi-
nate system, the orbits of the second Killing vector are d
torted and not aligned with the grid, see Fig. 1. A
computations which are presented here have been perfo
with these warped coordinates. We will now describe
criterion to determine the maximal time stepDt possible to
evolve from an initial time levelS0 at time t5tn to the next
time levelS1 at time t5tn1Dt. This is not specific to the
Lax-Wendroff method, but can be used with any expli
evolution scheme. The CFL condition@9# can be phrased a
stating that ‘‘the numerical domain of dependence sho
enclose the analytical domain of dependence.’’ Now c
sider a pointP in the future time level~cf. Fig. 2!. Its nu-
merical domain of dependence consists of the points at t
tn which are used to compute the field values atP. They lie
within a rectangular areaR bounded by coordinate linesu
5u6 and v5v6 . The analytic domain of dependence
given by the intersection of the backward light cone ofP
with the time sliceS0 . The maximal allowed time-stepDt is,
therefore, at most so big that the light cone just touches
boundary ofR. To obtain a formula for the maximalDt we
analyze this situation to first order or, what is the same th

FIG. 1. The orbits of the additional Killing vector]u .
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in Minkowski space. Then the time levels are planes and
light cone is a true cone, the null cone of the pointP. Let O
be the point inS0 which is ‘‘straight below’’ P in the sense

thatOPW is a multiple of the normal vectorta of S0 . We take
O as the origin. LetQ be the point inS0 with the same

spatial coordinates asP so thatQPW 5Dt] t . The equation for

the planeS1 is given by ^dt,x&5^dt,QPW &5Dt so that

OPW a5NtaDt. Then OQW is proportional to the shift vecto

OQW 52NDtTi] i . The equation for the null cone ofP is

gab~xa2OPW a!~xb2OPW b!50 ~2.5!

and its intersectionE with S0 is given by all pointsxa which
obey the equations

taxa50, xaxa52N2Dt250. ~2.6!

Now we take any planeH orthogonal toS0 , whose equation
is vaxa5s for somev with vata50 and arbitrarys. Sup-
pose thatH touchesE in a pointX. Then, atX the following
equations hold:

xa5OXW a, xaxa522N2Dt2, vaxa5s, xa5ava .
~2.7!

The last equation expresses the fact that the tangent pla
X to E in S0 is parallel to the intersection ofH with S0 .
From these equations, one can easily derive the relation

2N2Dt2vava52s2, ~2.8!

xa52
2

s
N2Dt2va. ~2.9!

We are interested in coordinate planes withinS0 . These are
obtained fromv5dxi2NTidt. In particular, we consider
coordinate planes which are a distance6Dxi from the point
Q. These satisfy the equationvaxa52NTiDt6Dxi . Insert-
ing this value fors in the equations above, we obtain th
equation

~Ti6A22vava!NDt56Dxi , ~2.10!

FIG. 2. The local geometry for the timestep criterion.
3-3
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JÖRG FRAUENDIENER PHYSICAL REVIEW D58 064003
which holds whenever the past light cone ofP touches a
coordinate plane which is6Dxi from the pointQ. Thus,
according to our criterion, a valid time-stepDt should satisfy

Dt<min
Dxi

NuTi6A22vavau
, ~2.11!

where the minimum is taken over all points inS0 . There are
some points to be mentioned:

In our present case the square root is sim
A22vava52ACAB

i CABi, so that determining the maxi
mal time-step is rather simple. It involves going throu
the grid and finding the maximum of some algebra
function of the fields~no inversion of the spatial metric!.
We find that the criterion is at least necessary for sta
ity, i.e., if we do not enforce the time-step to be at mo
the above value then the scheme becomes unstable
far it has also been sufficient for stability.
This criterion might be conservative. In fact, one cou
imagine that one should be able to increase the time
until the first of the adjacent grid points comes to lie
the null cone, the others still being not inside. We ha
not investigated this further.
This is a first order criterion and it might be too crude f
the Lax-Wendroff method. One could think of enforcin
this condition at each half step. Again this has not be
investigated.

A complete time step is performed by going through t
following steps given the solution at the time leveltn :

Find the maximal possible time stepDt by inspection of
the current time level.
Set the gauge functions, also possibly according to
properties of the solution at the current time level.
Update the solution at the interior points using the gau
functions and the time-step by performing the above f
steps for each function. After the first half step, spec
the gauge source functions again.
Update the solution at the boundary points.

III. BOUNDARY TREATMENT

Analytically, the hyperboloidal initial value problem doe
not need any boundary conditions. The initial data are gi
on a three dimensional manifoldS with boundary]S on
which the conformal factorV is supposed to vanish. Then
solution exists on the four dimensional manifoldM5S
3@0,t# for somet.0 which is such that the boundary]M
5]S3@0,t# is a null hypersurface and hence characteris
That means that even if one would extend the initial d
across the boundaryV50 in some way, this extension coul
not influence the interior, i.e., the physical space-time
pends only on the data given inside the boundary.

The situation is different in the numerical case. The ch
acteristic speeds are different for different modes which
propagated by the numerical scheme. In particular, n
physical modes tend to propagate at speeds much higher
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physical propagation speeds and thus contaminate the s
tion all over the entire computational domain. A notorio
place where non-physical modes are generated is at
boundaries of the domain. Due to the lack of enough g
points there, in general, the numerical evolution scheme
to be changed. It is absolutely vital to impose boundary c
ditions so that the non-physical modes are kept small. T
Gustafsson-Kreiss-Sundstro¨m ~GKS! theory @10,11# which
has been developed for analyzing such situations is in
ently difficult to apply. A different~equivalent! formulation
based on the notion of group velocity for finite differen
schemes has been given by Trefethen@12#. It has been found
that certain intuitive numerical boundary conditions do n
perform as expected. Conditions which work for one nume
cal scheme do not necessarily work for others. For lin
equations in one space dimension, the mathematical ana
can completely be carried through. It turns out that the
sential criterion is a non-degeneracy condition for a line
system of equations obtained from the combination of
evolution scheme and the boundary condition. This system
required to have no solutions in order to exclude the paras
modes. Although Trefethen’s method is very physical a
intuitive, it does not provide enough information in the ca
of higher dimensional and/or non-linear equations. It do
however, give valuable hints as to which conditions mig
have a chance to be useful in those more general situat
treated with the Lax-Wendroff scheme.

The situation is somewhat ironic in the present case. O
is not at all interested in what happens at the boundary
cause this is~usually! outside the physical space-time. How
ever, it is the boundary which needs the most careful tre
ment. One would wish to find gauge conditions which ma
the non-physical portion of the computational domain sm
ideally putting the boundary atV50. We will examine the
feasibility of this idea later on.

In another aspect, the present situation is also quite dis
vantageous. Usually, it is of great importance that the a
lytical problem has a well posed initial-boundary value pro
lem. The rigorous analysis provides the information ab
which data can be specified freely at the boundary and wh
data is determined from information propagating towards
boundary from the inside. Knowledge of this kind is nece
sary in order not to over-specify the solution at the bounda
because this would inevitably lead to instabilities~except for
extremely simple cases!. In our case, it is not known a
present whether the system admits a well posed init
boundary value problem~see, however@13#!. To overcome
this lack of information, we analyze the system to first ord
at the boundary in the following sense.

The boundaryB is a time-like three-dimensional hype
surface in the space-time. Letna be the space-like conorma
of B. A system of partial differential equations which has t
form

] tua1Aab
i ] iu

b5ba ~3.1!

can be rewritten in the form
3-4
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NUMERICAL TREATMENT OF THE . . . . II. . . . PHYSICAL REVIEW D 58 064003
] tua1CabDub1Bab
A ]Aub5ba , ~3.2!

whereD is the derivative along any vector fieldua which
satisfiesnaua51 onB ~usually taken to be the normal vecto
field extended offB in an arbitrary way! and where the]A
are derivatives intrinsic toB at points ofB. On the boundary
the matrixCab regulates to first order the propagation of t
fields across the boundary. By analyzing its structure,
can gain valuable insights into the behavior of the solut
on B. In particular, finding the eigenvalues and eigenvect
of Cab ~which in our case is Hermitian! enables us to selec
combinations of the fields which~to first order! propagate
purely inward or purely outward or which stay on the boun
ary. These have to be treated differently. While the ingo
pieces can be prescribed freely, the outgoing ones have t
obtained from the interior. This is done here by extrapo
tion. That this might be possible is indicated be the Trefeth
analysis which shows that extrapolation remains stable w
used in conjunction with the one-dimensional Lax-Wendr
method. We want to mention that this analysis applies
only at the boundary, but also at the interfaces between
cells. This is important for possible future application of hi
resolution methods which require the solution of Riema
problems at each grid cell, see, e.g.@14#.

To be somewhat more precise, we need to analyze
three subsystems of the full system which do not con
entirely of advection equations along the] t vector. These are
the systems for the variables (KABCD ,KAB ,K), the variables
(fABCD ,fAB ,f ) and for the Weyl curvature
(EABCD ,BABCD), respectively. Note, that this analysis
valid in the three-dimensional case. Only in the code
have specialized this to the two-dimensional case. Let
describe the procedure for thef-system.

First, we note thatna5nAB can be viewed as a comple
metric on spin space which reduces the structure group f
SL(2,C) down to U(1). Thus, it is possible to decompos
any symmetric spinorsFAB ,FABCD into irreducible pieces
with respect to the smaller structure group:

FAB5FAB
~0!2

1

2n2 nABF~1!, ~3.3!

FABCD5FABCD
~0! 2

1

n2 n(ABFCD)
~1! 1

3

8n4 n(ABnCD)F
~2!,

~3.4!

wherenABnAB522n2 and

F~1!5FABnAB, ~3.5!

F~2!5FABCDnABnCD, ~3.6!

FAB
~1!5FABCDnCD1

1

2n2 nABF~2!. ~3.7!

This decomposition which is very natural algebraically c
responds geometrically to a decomposition of the fields i
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parts which are vertical and tangential toB. The principal
part of thef-system which does not contain tangential d
rivatives is

]fABCD2n(ABDfCD) , ~3.8!

]fAB2 2
3 nABDf1nCDDfABCD ,

~3.9!

]f12nABDfAB. ~3.10!

Here we have neglected terms containing derivatives ofnAB
because those do not alter the symbol of the subsystem
serting the decompositions of the variables, we get the
lowing system

]f12Df~1!, ~3.11!

]f~1!1
4

3
n2Df1Df~2!,

~3.12!

]f~2!1
4

3
n2Df~1!, ~3.13!

]fAB
~0!1DfAB

~1! , ~3.14!

]fAB
~1!1n2DfAB

~0! , ~3.15!

]fABCD
~0! . ~3.16!

Obviously, this system can be decomposed into three sm
subsystems and it can be shown that the coefficient matri
theD operator is Hermitian with respect to a suitable inn
product ~it has to be because it comes from a symme
hyperbolic system!. Now it is easy to find ‘‘characteristic
combinations’’ of the variables so that the symbol becom
diagonal, i.e., it has the form

]C1lDC ~3.17!

for each characteristic quantity. These combinations
unique only up to a scaling factor. We choose the followi
quantities with their respective characteristic speeds

C054n2f26f~2!, l50 ~3.18!

C654n2f63A4n2f~1!13f~2!, l56A4n2

~3.19!

CAB
6 5fAB

~1!6An2fAB
~0! , l56An2 ~3.20!
3-5
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JÖRG FRAUENDIENER PHYSICAL REVIEW D58 064003
CABCD5fABCD
~0! , l50. ~3.21!

In an analogous way we find the characteristic quantities
the K-system

C053K ~2!14n2K, l50 ~3.22!

C656K ~2!63A4n2K ~1!14n2K, l56A4n2

~3.23!

CAB
6 52KAB

~1!6A2n2KAB
~0! , l56A2n2 ~3.24!

CABCD5KABCD
~0! , l50. ~3.25!

The Weyl system has a completely different structure fr
the previous two subsystems. Nevertheless, the ana
yields characteristic quantities written in terms of the co
plex Weyl spinor cABCD and the spinor fieldwABCD
5n(A

EcBCD)E .

C05c~0!, l50 ~3.26!

CAB
6 56An2cAB

~1!2wAB
~1! , l56An2 ~3.27!

CABCD
6 56An2cABCD

~0! 22wABCD
~0! , l56A4n2. ~3.28!

In our case, the boundary is given as a surfacev5const so
that we can putnAB5CAB

2 . Let us now focus on Eq.~3.17!.
Inserting the explicit expressions for the derivatives, this

] tC1N~2T2]vC1l]vC!. ~3.29!

Therefore, it is the sign of (l2T2) which regulates in which
direction the quantityC propagates across the boundary.

To update the values at the boundary points, we proc
as follows. First we determine the characteristic quantities
the boundary. This is done by looking at the sign of t
corresponding eigenvalues which decides whether to sim
set the value arbitrarily in case the quantity propagates
wards or else whether to find the value by extrapolation fr
the interior. From the characteristic quantities, we obtain
field values by reversing the transformations above.

In the situations considered, this procedure yields a sta
algorithm. This is consistent with the Trefethen theory wh
shows that in the one-dimensional case, extrapolation
gether with the Lax-Wendroff time evolution scheme r
mains stable. By its very nature our procedure is a first or
approximation to the real situation, so that we cannot exp
to obtain a code which is second order accurate in the ne
borhood of the boundary. However, since the surfaceV50
is a characteristic surface we may hope, that the error d
not too severely influence the physical space-time as lon
the boundary of the computational domain is outside
physical space-time.
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IV. GAUGE CHOICES

In this section we want to present some results about
various possible gauge choices. Our emphasis will be on
temporal gauge choices. There is one class of choices fo
shift vector which is natural in the present context of t
conformal field equations. The gauge for the frame rotatio
and the third class of gauges, namely the choice of the sc
curvatureL, is unknown territory as of yet and we put th
corresponding gauge source functions equal to zero in
code. As was pointed out in Sec. I, in the case of the fra
rotations, this means that the frame is Fermi-Walker tra
ported along the normal vector of the time foliation.

A. Choices of lapse

Let us start with the temporal gauges. Fixing the lap
function is a difficult task. This function has to be chosen
such a way that the time coordinate does not degenera
the course of the evolution. Here is an attempt to coll
some criteria which should be satisfied by the lapse:

the lapse function should not ‘‘collapse’’ in the sen
that it approaches zero in a finite coordinate time,
the surfaces of constant time should remain smooth,
the lines of constant spatial coordinates should not in
sect,
the lapse function should remain positive,
it should not develop too steep gradients,
depending on the problem, the foliation should or sho
not avoid singularities.

In our treatment of the hyperboloidal initial value problem
the lapse function cannot be chosen directly. Instead i
governed by an evolution equation which contains the ‘‘h
monicity’’ F52ht as an arbitrary function of the coord
nates. It is not easy to find a functionF which allows the
lapse to satisfy some or all of the above criteria. The rea
is that one has no idea whatF should look like in coordinates
which are constructed as the code moves along. To make
lapse satisfy the criteria above, one needs a certain amou
‘‘feedback,’’ i.e., information about the current status of t
evolution seems to be unavoidable. This means, that
should specifyF as a function of the field variables. Bu
since in the system also the derivatives ofF appear, this
leads to the problem that the characteristics of the sys
change because the symbol has been altered. We will dis
this later in this section.

The various choices forN that have been considered s
far are

the ‘‘natural gauge’’ for the exact solutions obtained
setting F equal to the expression computed from t
explicit form of the metric~cf. Appendix A! and varia-
tions thereof,
the ‘‘Gauss gauge’’ which is the condition thatN should
be constant throughout the timeslice,
the harmonic gauge withF50 and
the special class of gauges for whichF is a function ofN
andK only, F5 f (N,K), which in fact includes all of the
above gauges.
3-6
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FIG. 3. The proper timet ~left! and the lapseN ~right! in the ‘‘natural’’ gauge. The extremal values aretmin51.831, tmax52.988 and
Nmin50.315, Nmax51.151. The black contours show the locations of the twoJ’s.
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The popular ‘‘maximal gauge’’ where one requiresK50
probably cannot be achieved by specifyingF.

We can judge the effects of these gauges by monito
the functiont which satisfies the eiconal equation¹at¹at
51 and the conditiont50 on the initial surface. The valu
of this function at a pointP gives the distance in proper tim
betweenP and the intersection point of the geodesic throu
P tangent to the unit normal of the foliation and the initi
surface. This function is evolved simultaneously with t
other field variables. For the A3 solution the proper tim
distance from a point on the initial surfacet5t0 with z50
and the singularity att5z50 is t52A2t0 for t0<0 and we
can compare how far the evolution proceeds with the vari
gauge choices. In all the examples presented in this sec
a 1003100 grid was used and the coordinate system is
one discussed in Sec. II withV055. The initial data were
taken from the exact A3 solution at an initial timet0525.
The boundary values were specified depending on the c
considered. When the ‘‘natural gauge’’ was used, the in
ing boundary data were taken from the A3 solution. In
other cases these values were used initially to satisfy
corner conditions and then specified to decrease expo
tially, so that after approximately 20 timesteps, the ingo
values are zero.

1. F as a function of the space-time coordinates

For the ‘‘natural gauge’’ we find that we can in princip
approach the singularity arbitrarily closely by increasing
resolution appropriately. Obviously, there are hard limits i
posed on the calculation by the finite precision arithmetic
that eventually the numbers will overflow.

The difference between the natural and the harmo
gauge is shown in Fig. 3 and Fig. 4. In both figures we sh
the proper timet and the lapse at a late instant of the tim
evolution. For the natural gauge this was dictated by the c
which stopped because the time step could not be cho
without violating the CFL condition. This is due to the clos
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ness of the singularity. The light cones are infinite
stretched along the symmetry directions as the singularit
approached. A better resolution would have extended
evolution time somewhat more, but eventually the sa
thing would happen. In this run the coordinate time elaps
was roughly 4.405. It is clear that with this temporal gaug
the singularity can be reached~at least in principle!.

With harmonic gauge the code was stopped after
elapsed coordinate time 20.07. In Fig. 4 it can be seen
the evolution close to the singularity has slowed down c
siderably. The proper time in the center is much smaller th
for regions further outside. The lapse function is very sm
in the center and it is decreasing. It is not known whether
evolution will reach the singularity even in principle. Th
decrease in the lapse could be so rapid that the integr
proper time along the central geodesic would reach a li
below the value 2A2t0. It is quite likely, that in this gauge
the code will ultimately not be able to resolve the steep g
dients which occur at late times between the interior reg
which cannot progress beyond the singularity and the e
rior region which can.

Related to this phenomenon is the fact that the inte
region shrinks. On the initial surfaceJ is located at the
boundary of the grid and it gradually moves inward duri
the evolution. Ultimately, there will be only very few gri
points left in the interior region. This is a phenomenon whi
has nothing to do with the temporal gauge, but with t
choice of the shift vector. We will discuss later in this se
tion a shift gauge which allows the freezing ofJ on the grid.

To get some feeling for the influence ofF on the time
slicings, we study the slicings obtained from substituti
p•F for F with some parameterp. For p50 we have the
harmonic gauge which avoids the singularity. Forp51 we
have the natural gauge which allows us to reach the sin
larity in finite time. What happens when we increasep be-
yond unity?

We evolve for a fixed coordinate time intervaltP@25,
24# with different values ofpP@1.0,1.8315#. We find that
3-7
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FIG. 4. The proper timet ~left! and the lapseN ~right! in the harmonic gauge. The extremal values aretmin52.747, tmax53.537 and
Nmin50.03964, Nmax50.1624. The zig-zag behavior in the figure forN is due to a lack of sufficient resolution for the shading process
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for p.1.8315 the code crashes. It is easily seen that
crash cannot be due to the curvature singularity in the
solution, but is a coordinate singularity. In Fig. 5 we plot t
proper time distance between the initial and final time sl
along the central geodesic (z50) versus the parameterp.
We see thatt(p) has an infinite derivative atp51.8315 with
a finite value oft far from its value 2A5 at the singularity.
The lapse functionN for different values ofp diverges rap-
idly ~cp. Fig. 6!. The curvature invariantI 5V2(E0E4

16E2
2) which diverges at the singularity stays perfectly reg

lar. Figure 7 shows the exact invariant plotted against pro
time along the central geodesic. The dots are the valuesI
andt obtained from the runs with different parameter valu
We see that the behavior of these functions is not altered
the occurrence of the coordinate singularity.

Finally, we show in Fig. 8 the profiles of the conform
factor for various values ofp. As the parameter approache
its final value, the conformal factor develops a minimum
the center. Although this behavior seems strange at
sight, it can easily be explained. The conformal factor
creases as a function oft for fixed spatial coordinates. Due t
the rapid divergence of the lapse, the proper time atz50 is
much larger than in the regions outside. So that we see
ues of V in the center which are reduced over proporti
from the values outside the center. This accounts for
central dip.

2. The Gauss gauge

The ‘‘Gauss gauge’’ which forcesN to be constant is a
condition which is imposed on the lapse function directly.
principle, it is possible to express the exact solutions
Gauss coordinates by performing the coordinate transfor
tion explicitly. Then one can compute the ‘‘harmonicity’’ fo
these coordinates and do the evolution. However, we p
ceed somewhat differently to impose the Gauss gauge.
lapse function satisfies the evolution equation@1, ~4.29!#
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]̂N52N2K2N3F ~4.1!

where]̂5N]. Now suppose thatN would satisfy an evolu-
tion equation

]̂N5a~N̄2N!, ~4.2!

whereN̄ is an arbitrary~positive! constant. This equation ha
the solutionN(s)5N̄1N0e2as, s being the parameter with
]̂s51. Thus, fora.0 the lapseN approaches the constan
value N̄ in the course of the evolution. We can makeN
satisfy the above evolution Eq.~4.2! by choosing

F5
a~N̄2N!1N2K

N3
. ~4.3!

We find what one would expect, namely that in this gau
the timeslices develop caustics~or, what has become know
as ‘‘coordinate shocks’’!. This makes the Gauss gauge ina
propriate for long time evolutions.

3. F as a function of N and K

Let us now focus on the class of gauges defined byF
5 f (N,K). Among this class there is a subclass for which t
lapse depends only on the three-dimensional volu
~-element! V, N5g(V). For these gauges, we have, wi
appropriate assumptions on the functiong,

]N5g8~V!]V52Kg8~V!V52Kg8„g21~N!…g21~N!,
~4.4!

so that, in fact,F is a function ofN andK only. The natural
gauge falls into this subclass withg(x)5x21/3 and, conse-
3-8
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quently, F52(4/3)(K/N). Similarly, the harmonic gauge
with F50 is in this class withg(x)}x.

If we specifyF for the natural gauge not as a function
the space-time variables, but instead as depending on
field variables, then an interesting phenomenon occurs.
though nothing else in the code has been changed, it se
to notice this difference because the boundary becomes
stable very quickly. However, inside the computational d
main, we get the same solution without any significant d
ference between the two ways of specifying the gauge.

This phenomenon can be traced to the fact mentio
above, namely that the gauge specification might change
characteristics of the system. We can see this explicitly
follows. In Eq. @1, ~4.31!# the derivative ofF appears. With
F5 f (N,K) the principal part of that equation is

]KAB12]CDKABCD12N f ,K]ABK12N f ,N]ABN.
~4.5!

The term involving]ABN can be removed by using the co
straint equation@1, ~4.44!# so that the symbol for the
K-subsystem is (p,pAB)°Sp(L,K), where Sp denotes the
sesquilinear form obtained from the principal part of t
K-system by replacing the derivative operators (],]AB) with
(p,pAB) and multiplying appropriately with the comple
conjugate of some spinor fields (LAB ,LABCD). Thus,

FIG. 5. Proper timet as a function of the parameterp.

FIG. 6. Profiles of the lapse N for a fixed value of the Killin
coordinatex and different values ofp. Note the logarithmic scale
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Sp~L,K !5
p

2
L̂ABKAB1L̂ABpCDKABCD1~N f ,K!L̂ABpABK

1pL̂ABCDKABCD2L̂ABCDpABKCD . ~4.6!

Various important properties of theK-system can be deter
mined from the formSp . In particular, the system is sym
metric if Sp is Hermitian, i.e., ifSp(L,K)5Sp(K,L) for all
(p,pAB). It will be symmetric hyperbolic if there exists
(p,pAB) such thatSp is positive definite. We see from th
above that theK-system can be made symmetric if we do n
consider Eq.@1, ~4.32!#, but add to that equation an appro
priate multiple of its trace. This changesSp into ~with L
5LAB

AB)

Sp~L,K !5
p

2
L̂ABKAB1L̂ABpCDKABCD1~N f ,K!L̂ABpABK

1pL̂ABCDKABCD2L̂ABCDpABKCD1~N f ,K!pL̂K

2~N f ,K!L̂pCDKCD . ~4.7!

FIG. 7. The curvature invariantI along z50 as a function of
proper time. The line is the exact function, the points indicate co
puted values.

FIG. 8. Profiles of the conformal factorV for some values of the
parameterp.
3-9



ill

ib

c
ia

r

e
b

r
th
ke
in

c-
n
e

,
th
v
pe
ge

n
e
w

lo
th

he
o
i
t
a

we

n
of

e
im
th

,
d of
e-
e

-

a of
by
dy
-

r

e-
ht

hat
or,
two

e is
d
ht
al

rd

is
ains
nt

eri-
for
re

ow
uge
ec.
to
ve
ga-

tter
e to
is
ood
-
o
bout

JÖRG FRAUENDIENER PHYSICAL REVIEW D58 064003
It is easy to see that this form is Hermitian and that it w
also be positive definite provided that the inequality

a[N fK11/3.0 ~4.8!

is satisfied. This is of course a restriction on the poss
gauges.

Furthermore, the characteristics of the above system
be obtained by inspection of its characteristic polynom
defined by

P~p,pAB!5det~Sp!, ~4.9!

for which we obtain the expression

P~p,pAB!524ap3~p21pABpAB!2Fp212S a1
2

3D pABpABG .
~4.10!

This polynomial is homogeneous of degree nine in its va
ables and, regarded as a polynomial inp only, it will have
nine real zeroes provided thata12/3 is positive, which is
always the case if the inequality~4.8! is satisfied. In this
case, there will exist three different characteristics, nam
the lines along the time evolution vector, the cone given
the first factor in parenthesis in Eq.~4.10! which is double
layered and a simply layered cone given by the last facto
Eq. ~4.10!. The latter cone is gauge dependent, while
former is not. The degenerate characteristic is time-li
while the gauge dependent characteristic has no gauge
pendent causal character. The cases whenF vanishes, the
harmonic gauge, or whenF is specified as a space-time fun
tion correspond toa51/3 in which case the gauge depende
characteristic coincides with the light cone. For the oth
cases 0,a,1/3 and 1/3,a the characteristic is time-like
respectively, space-like. However, there are gauges wi
the specified class for which this characteristic does not e
exist. Thus, the system acquires a mixed type, having hy
bolic and elliptic parts. In particular, for the natural gau
specified in terms of field variables, we haveN f ,K11/3
521 which violates the inequality~4.8!.

A natural question to ask is the following: to what exte
are these features noticeable in the code? Judging from
periments what seems to be the case is that the code
probably not detect differences in the various cases as
as it does not make use of the hyperbolic character of
system. In particular, it will probably not detect when t
system changes its character from a hyperbolic type t
mixed type due to a gauge change. However, in those
stances, where the hyperbolic character is in fact used in
code difficulties will arise. In the present code we find th
the boundary will become unstable very quickly when
choose a gauge which makes the system partly elliptic~we
use this term only to indicate that the resulting system is
longer hyperbolic!. This is of course due to our treatment
the boundary which implicitly assumes thatF is specified as
a coordinate function. Another instance which can det
gauge changes is due to the time-step control. Here, we
plicitly assume that the largest propagation speed is
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speed of light. For gauges witha.1/3 this is not the case
the largest propagation speed is bigger than the spee
light. But the largest speed is the one which limits the tim
step in order to enforce the CFL condition for stability of th
code. And, in fact, choosinga big enough results in numeri
cal instabilities inside the computational domain.

These tests have been performed using the initial dat
the A3 solution and then specifying various gauges
choosingF. We find the surprising feature indicated alrea
above that the code detects whetherF is specified as a space
time function

F5
4t

At21z2
~4.11!

or as a function of lapse and mean curvatureF5
2(4/3)(K/N). While it runs without problems in the forme
case, all the way up to a maximum of the proper timet close
to its theoretical limit in the latter case, the boundary b
comes unstable very quickly. As surprising as this mig
seem, it is still in accordance with the general picture. W
might be even more surprising is the fact that in the interi
there is apparently no sign of any difference between the
cases.

Another gauge which has some geometric significanc
given by choosingN}A3 V. This condition can be obtaine
from the requirement that the height of the backward lig
cone of a point in the next time level should be proportion
to the ‘‘volume radius’’R5A3 V of its intersection with the
current time level. This condition is satisfied for the standa
t-foliation in Minkowski space. Thus, we have

]N

N
5

1

3

]V

V
52

1

3
K ~4.12!

andF5(2/3)(K/N). The speed of the gauge modes is in th
case bigger than the speed of light, but the system rem
hyperbolic. In practice, this gauge is not very much differe
from the harmonic gauge.

What we learn from these various discussions and exp
ments is that the natural gauge is the most efficient one
approaching the singularity. However, in situations whe
there is no exact solution, this gauge is not available. N
one has various possibilities: one could prescribe a ga
condition once and for all like the ones considered in S
IV A 3 or even like the maximal gauge, where one needs
solve an elliptic equation on each timeslice. The former ha
the disadvantage that they introduce superluminal propa
tion speeds into the problem so that the stability of the~ex-
plicit! methods forces rather small time steps, while the la
are rather time consuming. The other approach would b
always specifyF as a function of the coordinates. Th
means that one needs to experiment in order to find a g
candidate expression forF which allows one to reach singu
larities effectively. This method is very flexible, but it is als
rather obscure because there are no guiding principles a
the shape of the harmonicity functionF.
3-10
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B. Choices of shift vector

The choice of a shift vector is even more obscure. Th
are two issues involved in the choice of the shift vector:
problem of what to do at the points of the physical spa
time and how one is to treat the points onJ.

Let us first discuss the interior issues. To describe
problems involved, we focus on the lines of constant spa
coordinates parametrized by the coordinate time. These
the integral curves of the vector fieldt5]/]t, the ‘‘t-lines,’’
which form a family of time-like lines. It is the geometry o
that congruence which can be influenced by choosing
shift vector. To discuss this in more detail, we decomp
the time-like coordinate vector into lapse and shift

t a5N~ t a1T a! ~4.13!

and we choose a connecting vectorja, i.e., a vector field
which commutes withta. Such a connecting vector, which
also called a Jacobi field, can be viewed as describing
infinitesimally separated line in the family withja connect-
ing points with the same value of the time parameter. Th
ja is tangent to thet5const surfaces, satisfyingjata50.
From the commutator of the two vector fields, we obtain

t a¹aj b5
1

N
j a¹aNt b1N~j a¹at b1j a¹aT b!.

~4.14!

The contraction of this equation with the time-like normal
the surfaces yields the constraint equation@1, ~4.44!# which
couples the gradient ofN to the time evolution of the accel
eration vector. The other part of the equation which is intr
sic to the hypersurfaces can be obtained by projecting
~4.14! along ta onto the hypersurfaces. This is achieved
contraction with the projection operator

pa
b5da

b2
1

N
tbt a. ~4.15!

This yields the relation

j̇ a5N~j bKb
a1j b]bT a!, ~4.16!

where the dot simply meansta¹a followed by projection. As
in the case of geodesic congruences, this family oft-lines
can be described infinitesimally by its twist, shear, and
vergence according to the irreducible decomposition of
right hand side of Eq.~4.16!. From this we can conclude tha
a constant shift vector generally causes the family oft-lines
to shear and diverge, depending on the properties of the
trinsic curvature. This is well known in the case of Gau
coordinates which develop conjugate points unless the
persurface is very special.

The goal of choosing a shift vector should be to prev
the t-lines from coming too close together. The twist of t
congruence, entirely due to the shift vector, does not cha
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the relative distances of thet-lines. Therefore, we need t
eliminate as many components as is possible from the s
and divergence combined in

sab5] (aTb)1NKab . ~4.17!

Since there are only three components in the shift vec
only three components ofsab can be compensated. Depen
ing on which components are to be eliminated, there re
different, and in general elliptic, equations to be satisfied
Ta. One possibility is to eliminate the divergence of the co
gruence which leads essentially to a Poisson equation.
other possibility to determine a shift vector is not to elim
nate components ofsab , but to minimize the functional
*sabs

abdV. This leads to the well-known ‘‘minimal distor
tion’’ shift condition, which is a second order elliptic equa
tion for the shift vector. The problems related to the inter
of J, i.e., to the physical space-time are essentially the sa
as in the numerical treatment of the traditional Cauchy pr
lem, and there is no insight to be gained from the hyper
loidal initial value problem.

However, this is different when one looks at the issu
concerned with the boundary of the physical space-time. O
objection against the use of conformal methods in the
merical treatment of the Einstein equations has been the
lowing: as the evolution proceeds, the part ofS which cor-
responds to the physical space-time shrinks so that there
less and less grid points left in the interior ofJ ~see the Figs.
3 and 4!. This implies that the resolution of features in th
physical space-time is getting smaller. However, as it tu
out, this is a misconception which might be caused by
familiar conformal diagrams of asymptotically flat spac
times. There it is assumed that light rays are aligned on
lines. This need not be the case. In fact, by choosing the s
vector onJ appropriately, we gain complete control over th
movement ofJ through the grid. Therefore, we get to choo
between~at least! two options. On the one hand, we ca
compute a Penrose diagram of the space-time which is us
for discussing its global properties. E.g., it helps in decid
whether there exists a regulari 1 or whether there appea
singularities beforei 1 can be reached. Another option is
haveJ not move at all through the grid. This enables one
keep the resolution in the interior constant so that the ph
cal space-time does not suffer any loss of resolution dur
the evolution. This property is desirable when studying
behavior of sources in the physical space-time. Although
this case, the picture which emerges looks like the one
tained by spatially compactifying space-time, one sho
keep in mind that the conformal structures are entirely d
ferent in the two cases. After all, in the picture propos
here,J is still a regular characteristic surface.

How can we achieve thatJ does not move through th
grid? The equation for the conformal factor is

] tV5N~Ti] iV1S!. ~4.18!

Note, thatTi] iV5TAB]ABV5TABSAB . Thus, if we choose
3-11
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FIG. 9. The proper timet ~left! and the lapseN ~right! in harmonic gauge withJ freezing. The extremal values aretmin51.831, tmax

52.988 andNmin50.315, Nmax51.151. The black contours show the locations of the twoJ’s.
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TAB52
SAB

S
, ~4.19!

then we obtain the equation

] tV5
2N

S S SABSAB1
1

2
S2D ~4.20!

5
4VN

S
~S2VL!. ~4.21!

Therefore,] tV is proportional toV so thatV remains zero
along thet-lines at those places, where it was zero in t
beginning of the evolution, i.e., onJ. This implies thatJ
does not move through the grid. Although it looks as if t
shift vector is now uniquely fixed, this is not the case. No
that the choice

TAB52
SAB

S
1VT̃AB ~4.22!

exhibits the same behavior. HereT̃AB is completely arbitrary
apart from the fact that it should be bounded onJ. Its only
effect is on the coordinates in the interior. If we chooseT̃AB

so thatVT̃AB has finite values onJ, then we can achieve tha
J moves through the grid in a rather arbitrary, but control
fashion.

It should also be pointed out that the form of the sh
vector given in Eq.~4.22! is unique, imposed by the geom
etry. It does not suffer from the shortcomings of other gau
choices. In fact, although it is specified by prescribingTAB as
a function of the dependent variables, this does not cha
the characteristics of the system, even though there are t
involving the derivatives of the shift vector. We will refer t
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the choice of this geometric class of shift vectors as a ‘‘s
freezing’’ gauge because it keeps ‘‘scri’’ from movin
through the grid.

In Fig. 9 we show the proper time and the lapse funct
for a run with harmonic gauge and scri freezing. The init
location ofJ was on the boundaryV0565. The length of
coordinate time spent wast12t0525 with roughly 1000
timesteps.J has moved during this evolution at most over
grid points. This is due to numerical inaccuracies. We
from the figures that the evolution is much more homog
neous over the interior with differences in proper time with
the interval@2.96,3.04#. But we also see that the lapse h
decreased rapidly, from a maximum value of 0.316 at
beginning to a maximum value of 0.0422 in the end.

V. MASS LOSS AND RADIATION

The main motivation to consider the conformal field equ
tions in the first place is the claim that havingJ at finite
places allows a well defined numerical description of t
asymptotic properties like the radiative information~such as
shear and news onJ! and also the global properties like th
Bondi energy-momentum and angular momentum. From
nature of the hyperboloidal initial value problem, it is cle
that we cannot get our hands on the Arnowitt-Deser-Mis
~ADM ! quantities which are located at space-like infinityi 0

which is not in the domain of dependence of any hyper
loidal initial surface.

In the numerical treatment there exists a natural foliat
of J into two-dimensional cross sections or ‘‘cuts’’ which
obtained from the intersection ofJ with the constant time
hypersurfaces. The news, shear and the ‘‘null datum’’
local quantities in the sense that their value at a point onJ is
constructed from the values of the field variables at t
point. Therefore, these quantities are not sensitive to the
pology of the ‘‘cuts.’’ In contrast, the Bondi quantities a
global concepts and there is currently no way to determ
3-12
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their value from only local information. As a consequen
they are very sensitive to the topology of the cuts and
fact, they are so sensitive that in our case study with ‘‘cu
which have a toroidal topology, there does not exist
energy-momentumfour-vector, but only one scalar quantit
which we still call the Bondi mass. The reason behind t
unexpected phenomenon will be discussed below.

The main problem one is faced with when trying to obta
expressions for the asymptotic quantities is the fact thaJ
does not look the way it does in the analytical treatments
particular, there one usually assumes that a conformal ga
has been chosen so thatJ is divergence free, i.e., that th
area of a cut does not change when the cut is moved a
the null generators ofJ. SinceJ itself is shear free, this
implies that the shape of a cut does not change either alonJ
and this fact can be exploited to choose the metric on
family of cuts to be one with constant curvature. Usually t
is the unit sphere metric. In our case, where the cuts h
toroidal topology, one would choose a flat metric on the cu

In a numerical treatment where the conformal factorV is
one of the evolving variables, one has almost no contro
its behavior~at least at present!. Thus, we do not have th
freedom to specify thatJ should have these nice properti
and have to live with the way it emerges from the numeri
computation. The only way to influence possibly the beh
ior of the conformal factor is by way of tuning the gaug
source functionL for the conformal gauge. However, this
a rather indirect way and at the moment it is complet
unclear whether~and how! one should specifyL so thatJ
does have the desired properties.

Another point is that the radiative quantities are refer
to a specific tetrad~or spin frame! on J which is adapted to
the geometry there. Again, in the numerical treatment
tetrad is fixed by other means which implies that we need
transform from the given tetrad to the geometric tetrad
order to obtain the correct values of the asymptotic qua
ties. Again, it is not yet known how to impose gauge con
tions so that the computed tetrad always coincides with
geometric tetrad onJ. The transformation from the numer
cal frame to the adapted frame is straightforward. Recall
the condition imposed on the adapted spin frame (OA,I A) is
@5#

¹AA8V52AIAI A81O~V!. ~5.1!

This condition fixes the direction of the null vectorI AI A8, but
says nothing about the space-like vectorOAI A8 and its com-
plex conjugate. Given a cut ofJ these are required to b
tangent vectors to the cut. Then the transformed spin fram
fixed up to the scalingsOA°c•OA, I A°c21

•I A. The
transformation to the new spin frame is

OA5aoA1biA, ~5.2!

I A5
1

aā1bb̄
~2b̄oA1āiA!,

~5.3!
06400
n
’’
n

s

n
ge

ng

at
s
ve
.

f

l
-

y

d

e
to
n
i-
-
e

at

is

with a52c2S22/S and b5c(2S21/S21) andc an arbi-
trary complex function on the cut. With this choice ofa and
b, we have achieved that onJ the null vector I AI A8 is
aligned with the null generators ofJ. The factorA in Eq.
~5.1! is found to be

A54cc̄~S212
1
2 S!, ~5.4!

and we furthermore fixc5 1
2 for the remainder of this sec

tion.
The asymptotic quantities with respect to the adap

frame can now be expressed onJ in terms of the field vari-
ables. These expressions are rather lengthy in the gen
case, but quite manageable in the symmetry reduced
that we are looking at here. Following is a list of the va
ables which are of interest to us and the expressions to c
pute them in terms of the field variables in the reduced ca

s850, k850, ~5.5!

r852
2S

S
, t852

Ss20

S
~5.6!

s52 1
8 ~K40s22

4 1K4416K42s22
2 ! ~5.7!

c25 1
4 ~E0s22

2 22E21E4s20
2 !, ~5.8!

c45E4s20
4 14B3s20

3 16E2s20
2 14B1s201E0 , ~5.9!

N5 1
4 ~f44s20

4 16f42s20
2 1f40! ~5.10!

where we have introduceds2252S22/S and s2052S20/S.
The functionN is the so called ‘‘news’’ function.

Having these expressions at hand, it is in princip
straightforward to obtain the asymptotic quantities from t
numerical data. The only obstacle is that the level sets oV
do not necessarily agree with grid lines so that one ha
trace out the zero set ofV within the grid and then interpo
late for the values of the field variables there. This task
greatly simplified by using theJ fixing shift gauge discussed
in Sec. IV when it is possible to alignJ on a grid-line ini-
tially.

In Fig. 10 we present a surface representation of the
datumc4 for the A3 solution. This is a non-radiating solu
tion soc4 should vanish. Indeed, we find that only when t
singularity is approached, the function differs significan
from zero. This is due to the closeness of the singularity.
should also point out that this figure has been produced in
warped coordinate system without the use of theJ fixing
shift gauge. It is only in the late stages and in the cen
region, where the warping is maximal when the tracing o
of J produces too large errors. In a similar way the W
solution was treated. Now,c4 cannot be expected to vanis
3-13



dd
ed

se
n

a

th

on
i

th
s

s-

re
g

-

n,

to

ra
et
h

first

be-

pted
ed.
the

en-

ely
al

dif-

osed
that

of
not
di

e
ob-
are
all

l

cut,
l.
e-
sent

e
ndi

t
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because this is a radiating solution. Since there is an a
tional symmetry present in the solution which is align
alongJ, the function should be constant onJ. We found that
the tracing algorithm works quite satisfactorily in this ca
also in that the computedc4 is indeed constant as a functio
of the u-coordinate alongJ. Therefore, we show in Fig. 11
only a time profile for constantu. The line indicates the
exact function, while the markers indicate the computed v
ues. The relative error in this calculation~200 by 200 points!
is a few percent in the region, where the influence of
singularity is not too strong.

Let us now discuss some of the issues related to the B
energy-momentum. This is an unexpectedly complicated
sue which, in addition, depends on the global topology of
space-time under consideration. The standard definition u
here is, from@5#,

mB@W#5 R
C
H c22

sN
A J Wd2S, ~5.11!

where the integration is over a cut ofJ. As it stands, the
formula is only valid under rather stringent simplifying a
sumptions. It is assumed that the surfacesV5const are null
even away fromJ. This implies thatJ is nondiverging and
that the spin-coefficientt8 vanishes. If these assumptions a
not made, then the newsN acquires additional compensatin
terms.

The functionW which appears in Eq.~5.11! is a function
with conformal weight11 on the cut satisfying the confor
mally invariant second order elliptic equation

Zc
2W50. ~5.12!

Here, theZc is the conformally invariant ‘‘eth’’ operator in-
troduced in@5#. For a more standard form of this equatio
we refer to@15#. The purpose of solving the Eq.~5.12! is to
select out of the super-translation subgroup of the asymp
symmetry group@the Bondi-Metzner-Sachs~BMS! group#
the normal subgroup of translations which is used to gene
the energy-momentum. In the special case, where the m
on the cut has been scaled to be the standard unit sp

FIG. 10. The ‘‘null datum’’ for the A3 solution.
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metric and where the cut sits withinJ in such a way that the
spin-coefficientt vanishes, then the Eq.~5.12! has four lin-
early independent solutions which can be taken as the
four spherical harmonicsYlm , l 50,1. Note, thatt50 can
always be achieved in the neighborhood of a single cut
cause it only involves parallel transport ofOA along the null
generators. However, given a system of cuts and an ada
spin frame, this condition cannot, in general, be maintain
Unfortunately, this is the case for the cuts appearing in
numerical treatment as intersections ofJ with the constant
time hypersurfaces. A more thorough discussion of the g
eral spherical case is left to another paper.

Here we want to focus on our immediate interest, nam
obtaining a formula for the Bondi mass on cuts with toroid
topology. In that case, the BMS group has a completely
ferent structure. This is reflected in the fact that Eq.~5.12! on
a torus has only a one dimensional solution space as opp
to the four dimensions in the spherical case. This means
the translation subgroup is a one-dimensional subgroup
the BMS group. Therefore, on toroidal cuts, there does
exist a four-vector of energy-momentum, but only a ‘‘Bon
scalar,’’ which we call the Bondi mass.

In order to compare the evolution of that scalar with tim
in our special case, we observe that for the initial data
tained from the exact solutions A3 and W1, the cuts
spanned by Killing vectors. This implies that on the cut,
field variables are constant. Hence, we may takeW5const as
a solution of Eq.~5.12! and sinceW has to be a conforma
density of weight11, we takeW5AA, with A being the
area of the cut. Thus, we end up with the formula

mB52AA R
C
H c22

s

A
~N2s̄r8!J d2S. ~5.13!

Of course, due to the constancy of the integrand on the
we could have written this formula without the integra
However, we implement the formula with the integral b
cause it averages over the numerical inaccuracies pre
from the interpolation process. In Fig. 12 is shown the~nor-
malized! Bondi-mass for the A3 solution, which of cours
should remain constant. Similarly, Fig. 13 presents the Bo

FIG. 11. Time profile ofc4 for the W1 solution at a constan
value ofu.
3-14
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mass for the W1 solution. Again, the solid line is the ex
profile, while the markers are the values obtained from
numerical solution.

VI. CONCLUSION

In this article we have presented and discussed sev
issues concerning the numerical solution of the evolut
part of the hyperboloidal initial value problem for th
vacuum conformal field equations. We have described a
cial case, where the unphysical assumption was made
there exists a hypersurface orthogonal Killing vector w
closed orbits and no fixed points. This does not alter
essential issues. The numerical evolution scheme is a sim
two-dimensional implementation of the well-known La
Wendroff method. The outer boundary is evolved using
stable eigen-field method. We have discussed various la
choices and the features which appear when one specifie
gauge source functionF as a function of the field variables
We have found a special choice for the shift vector wh
originates in the conformal properties of the system. T
shift allows us to freeze null infinity on the grid, while sti
leaving the usual freedom for specifying a shift vector in t
interior. Finally, we have described how to obtain the lo
radiative information by simply ‘‘reading it off’’J and
transforming to the appropriate asymptotic spin frame. T
global quantities like Bondi four-momentum are more dif
cult to determine and they are very different in our pres
case from the physical case, whereJ has spherical sections
We have tested the code and the radiation extraction a
rithm using exact solutions. We obtained good agreem
between the analytical and the numerical solution. Unfor
nately, these have an additional Killing vector which mak
these cases rather special even though we ‘‘warp’’ the co
dinate system. Therefore, we need to get generic initial d
~within the specified class of space-times with one Killi
vector!. Future work will be directed towards solving th
constraint equations on the initial surface in order to prov
those initial configurations.
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APPENDIX A: THE EXACT SOLUTIONS

We have used several exact solutions for numerical te
Apart from the trivial ones which are simply Minkowsk
space in disguise, i.e., rescaled with an arbitrary confor
factor, there is the class of vacuum space-times with toro
null infinities which have been constructed by Schmidt@2#
for exactly that purpose. They are characterized by a solu
w of a two-dimensional wave equation and are defined
follows

V5
1

8
~ t22z2! ~A1!

g5
e2n~ t,z!

At21z2
~dt22dz2!2~ t21z2!

3~e2w~ t,z!dx21e22w~ t,z!dy2!. ~A2!

Given a solution of the two-dimensional wave equation@16#

~ t42z4!~wtt2wzz!22t~3z21t2!wt22z~3t21z2!wz50,
~A3!

one can obtain the functionn(t,z) by quadratures. The co
ordinatesx andy are Killing coordinates, each taking value
in R. We identify the points (x,y) and (x11, y1r ) to ob-
tain the toroidal topology. In our applications, we alwa
have r 51. The simplest solutions of this type are the on
obtained by choosingw(t,z)50 @with n(t,z)50] and
w(t,z)5A(t22v2) for some constanta @with n(t,z)
52 1

2 A2(t21z2)2]. Note, that A50 in the latter solution
gives the former. The physical metric which corresponds
the first of these appears in the classification by Ehlers
Kundt @17# under the name A3 as the analogue of t
Schwarzschild metric in plane symmetry. Here are the
plicit expressions for the variables we use in the code.

FIG. 13. The Bondi mass for the W1 solution normaliz
against its initial value.

t
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&
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&
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v

&

4U2A211

U3/4 e~1/2!A2U2
,

C105
1

&
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with U5t21z2. All other functions either vanish or they ar
complex conjugates of functions given above.

APPENDIX B: THE FINITE DIFFERENCE SCHEME;
ACCURACY AND STABILITY

We want to present in this appendix a short discussion
the main properties of the finite difference scheme used
this work to obtain numerically the solution of the evolutio
equations. This includes a derivation of the accuracy
stability properties and a display of a convergence proper
of the scheme obtained from numerical experiments. As
usual in the analysis of finite difference schemes, we ex
ine the properties of the scheme for linear equations w
constant coefficients. The analysis given here follows
spirit the one presented in@7#. We consider the class of equa
tions given by
06400
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f t5A f x1Bf y

whereA and B are real constant symmetric matrices. Th
the scheme as defined in Sec. II consists of the following t
steps:

~i!

f i 11/2,j 11/2
n11/2 5

1

4
~ f i , j

n 1 f i 11,j
n 1 f i , j 11

n 1 f i 11,j 11
n !

1
Dt

4Dx
A~ f i 11,j 11

n 2 f i , j 11
n 1 f i 11,j

n 2 f i , j
n !

1
Dt

4Dy
B~ f i 11,j 11

n 2 f i 11,j
n 1 f i , j 11

n 2 f i , j
n !
3-16
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~ii !

f i , j
n115 f i , j

n 1
Dt

2Dx
A~ f i 11/2,j 11/2

n11/2 2 f i 21/2,j 11/2
n11/2 1 f i 11/2,j 21/2

n11/2 2 f i 21/2,j 21/2
n11/2 !

1
Dt

2Dy
B~ f i 11/2,j 11/2

n11/2 2 f i 11/2,j 21/2
n11/2 1 f i 21/2,j 11/2

n11/2 2 f i 21/2,j 21/2
n11/2 !.
e

th
h

te

tin

e

s
ll

he

uce

the

-
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ec-

re
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Combining these two steps and insertingf ( lDx,mDy)
5 f n exp@i(kxlDx1kymDy)#, one obtains the amplification
matrix

G~j,h!511
i

2
sin j~11cosh!CxA1

i

2
sin h

3~11cosj!CyB2
1

2
~12cosj!~11cosh!Cx

2A2

2
1

2
~11cosj!~12cosh!Cy

2B2

2
1

2
sin j sin hCxCy~AB1BA!,

with j5kxDx, h5kyDy, Cx5Dt/Dx and Cy5Dt/Dy.
This is the linear transformation which maps from one tim
level to the next: f n° f n115Gf n. The properties of the
propagation scheme can be completely derived from
properties of the amplification matrix. The propagator of t
differential equation is, of course, given by

G~kx ,ky!5exp@ iDt~kxA1kyB!#.

For what follows it is advantageous to absorbCx andCy into
A and B, respectively. They can be reinstated easily la
Then the exact propagator is

G~j,h!5exp@ iDt~jA1hB!#.

ExpandingG~j,h! andG(j,h) for small ~j,h!, we find that
they agree modulo terms of third order, thus demonstra
that the scheme is second order accurate.

In order to find the stability properties, we need to g
information about the ‘‘field of values’’$^u,Gu&:iui51%. If
these are all less than unity in absolute value, then the
bility theorem in @7# implies that the operator norms of a
powersGn are bounded:

iGni<K, n50,1,2 . . . ,

and this implies stability of the scheme. Let us write t
amplification matrix in the formG512K1 iJ, where

K5 1
2 ~12cosj!~11cosh!A2

2 1
2 ~11cosj!~12cosh!B22 1

2 sin j sin h~AB1BA!

and
06400
e
e
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J5
i

2
sin j~11cosh!A1

i

2
sin h~11cosj!B.

In order to see more clearly what happens, we introd
the half angles and then we findK52L2 and J
52 cos(j/2)cos(h/2)L , where

L5sin~j/2!cos~h/2!A1sin~h/2!cos~j/2!B.

SinceA andB are real symmetric, so areK , J andL . Now
we can write

u^u,Gu&u25~12u^u,Ku&u!21u^u,Ju&u2

5~122iLui2!214XYu^u,Lu&u2

<124iLui214iLui414XYiLui2

5124iLui2
„~124XY!2iLui2

….

Here, we have used the Cauchy-Schwarz inequality and
abbreviations X5cos2(j/2) and Y5cos2(h/2). Thus,
u^u,Gu&u<1 if iLui2<(12XY). To see what the latter con
dition entails, we estimateiLui2<2Y(12X)iAui212X(1
2Y)iBui2 to find thatu^u,Gu&u<1 if

2Y~12X!iAui212X~12Y!iBui2<12XY. ~B1!

This inequality has to hold for all values ofX,YP@0,1#. The
conditions oniAui andiBui for which this is true define the
stability region of the evolution scheme.

For a fixed value of (X,Y) the inequality restricts the
valuesiAui2 andiBui2 to lie in a half plane containing the
origin which is bounded by the line defined by the equality
Eq. ~B1!. Therefore, these values have to be in the inters
tion U of all the halfplanes thus obtained. For the valuesX
50, Y51 and X51, Y50 the inequality~4.8! reduces to
iAui2< 1

2 andiBui2< 1
2 , respectively. This defines a squa

which containsU. On the other hand, we find that for a
values ofiAui2 and iBui2 within that square, we have

2Y~12X!iAui212X~12Y!iBui2

<Y~12X!1X~12Y!

52~12X!~12Y!1~12XY!<12XY.

Hence, the square is also contained inU, therefore, equal to
U and we have the conditions

A2<1/2, B2<1/2 ~B2!
3-17
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which are sufficient for stability of the evolution scheme.
contrast, the original two-dimensional Lax-Wendroff sche
has stability conditionsA2,B2<1/8, while the Burstein
scheme hasA21B2<1/2, both more stringent than Eq.~B2!.

It should be pointed out that the stability condition as su
does not justify taking the time step so big that the C

FIG. 14. The maximal absolute error in the functionsK, V, f
andE2 against the number of grid points per dimension. The so
line is the functionD5(n/100)22.
06400
e

h

condition is just satisfied. However, we have found a su
cient condition and it is not known whether it is also nece
sary. Furthermore, we do not find any instabilities by taki
bigger timesteps than those allowed by Eq.~B2! up to the
CFL condition. Of course, this analysis should be repea
for the case of variable coefficients or, even more am
tiously, for the full quasi-linear case.

Finally, we present a convergence plot obtained as
lows. We evolve initial data for the A3 solution for variou
grid sizes n3n, nP$50,70,100,150,250,500% for a fixed
time interval tP@25,21# and compare the final numerica
solution to the exact solution. In Fig. 14 we plot the maxim
absolute error over the final timeslice in the scalar functio
V, K, E2 andf. We choose these functions because th
represent the various differential levels of the geometry a
because they are functions within the system. The m
physically meaningful variablesC2 ,C4 and the shears are
merely combinations of the basic unknowns so they show
same behavior as those. The Bondi mass, however, is
remote from these functions to be a good indicator of
convergence properties of the finite difference scheme
convergence check for this quantity has not been perform
yet. The plot shows the errorsD f (n) normalized against
D f (100). The solid line is the functionD5(n/100)22. Thus,
we see that the order of convergence of the scheme i
good approximation equal to its theoretical value.
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