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Numerical treatment of the hyperboloidal initial value problem for the vacuum
Einstein equations. Il. The evolution equations

Jarg Frauendiener
(Received 12 December 1997; published 5 August 1998

This is the second in a series of articles on the numerical solution of Friedrich’s conformal field equations
for Einstein’s theory of gravity. We will discuss in this paper the numerical methods used to solve the system
of evolution equations obtained from the conformal field equations. In particular we discuss in detail the choice
of gauge source functions and the treatment of the boundaries. Of particular importance is the process of
“radiation extraction” which can be performed in a straightforward way in the present formalism.
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I. INTRODUCTION properties of the evolution equations, it is at least plausible
that null infinity 7 which is a characteristic surface for the
In the previous articld1] we presented the conformal differential equations also numerically acts as a barrier for
field equations explicitly in a form suitable for solving them perturbations generated in the unphysical space-time.
numerically. In a brief summary, we have derived the con- Section IV is devoted to a discussion of the various gauge
formal field equations in the space spinor formalism which isSource functions. This is an important subject also in the
well suited to perform the 31 split because the evolution conventional treatments of the Einstein equations because it
equations come out in a symmetric hyperbolic fofamder 1S not clear yvhat the |mpI|c§1t|ons are_lf one chooses, e.g., Fhe
appropriate assumptions on the free gauge source fungtion@PSe function and the shift vector in that way and not in
almost automatically. We have also discussefllinthe fur- another. The existence gf imposes some questions con-

ther assumption of a hypersurface orthogonal Syrnmetrc¥erning the resolution of features inside the physical space-
[

: o . , . me during the course of the computation. But these ques-
which has been made to simplify the implementation. Fixed. ) : )

. . . ions can be solved completely satisfactorily by making use
points of a continuous symmetry usually lead to coordinate

singularities which have to be treated specially in any ﬁniteOf a certain choice of shift vector which is forced by the

. . Ftructure of conformal field equations.
difference method. Therefore, we followed a suggestion o Finally, in Sec. V we discuss the procedure of “radiation

Schmidt{2] to require that there be no fixed points which hase,raction.” By this term we mean the determination of cer-
the unphysical consequence that the global topology ofain asymptotic quantities which in a well defined sense char-
space-time iST>X R?. However, since the emphasis of this acterize the gravitational radiation generated inside the
project lies in studying the effectiveness of radiation extracphysical space-time and escaping out to infinity. Here, this is
tion from the numerically generated space-times and sincg well defined procedure which involves finding the zero-set
these are local methods this is not a serious disadvantage.of the conformal factor, the interpolation of the field vari-
The conformal field equations have been used before bgbles and a frame transformation to a well defined frame
Hubner[3,4] to study the spherically symmetric collapse of which is adapted to the geometry gt Another issue dis-
scalar fields. He could show that they provide an effectivecussed in this section is the determination of the Bondi mass.
tool to obtain information about the global structure of theHere, due to the different global topology, the situation is
space-time and the nature of the emerging singularitiedifferent from the physical one in that one cannot find a
Here, we want to consider the conformal vacuum field equaBondi four-momentum, but only a Bondi scalar.
tions in a two-dimensional setting. Our emphasis is not so We tested the code by using exact solutions to first pro-
much on treating realistic systems, but more on examiningide initial data for all the variables and then to compare the
the algorithms which are necessary to obtain useful physicalomputed variables with the analytic ones. We also com-
information from the numerical solution. puted the radiative gquantities from the exact solutions for
In Sec. Il we first present the numerical method, a Lax-comparison with the numerically determined ones to check
Wendroff method in two dimensions and the procedure fotthe radiation extraction method.
choosing the time-step dynamically in order to enforce the As in[1] we use the conventions @f] throughout.
Courant-Friedrichs-LewyCFL) condition for stability of the
algorithm. In Sec. Il we show how the boundary can be Il. THE NUMERICAL EVOLUTION SCHEME
treated. This is an essential part of any numerical scheme
because if the boundary conditions are non-physical, one has The evolution part of the conformal field equations pre-
to live with the fact that the numerical solution probably sented in Sec. IV with the symmetry reduction described in
differs quite significantly in the domain of influence of the Sec. V is to be solved numerically. To this end we set up a
boundary from what one expects it to be there. In the preseriwvo-dimensional grid with coordinates,v. It is assumed
approach, this problem can be avoided because the bounddhat the fields are periodic i with period 2 so that we need
is entirely outside the physical space-time. From the causdb impose periodic boundary conditions at the surfaces

0556-2821/98/5@)/06400318)/$15.00 58 064003-1 © 1998 The American Physical Society



JORG FRAUENDIENER PHYSICAL REVIEW D58 064003

==*1. The coordinatev takes values in the interval The most important test, however, is the fact that the
[—Vo,Vg]. Our grid will always be a regular grid witN, evolution equations have to propagate the constraints.
XN, grid points which have coordinatesy;=-1 This property was verified for the full expanded evolu-
+iAu, vj=—Vy+jAv with constant grid spacingsu and tion equations and constraints usiMgPLE.

Av. The question of boundary conditions at the surfagces ) ) )
— +V, is rather delicate from the numerical point of view _1Nne evolution scheme used here is a variant of the scheme

and will be discussed in detail in Sec. III. originally proposed by Lax and Wendrdff] and similar to

Having set up the grid, we need to obtain solutions of th¢"€ Burstein schemg8]. It is a second order accurate and
constraint equations in order to initialize the fields. ThisStable scheme as is shown in Appendix B. For a quasi-linear

should be done by solving the constraint equations numer€duation of the form
cally given the appropriate free data and boundary data.
However, since we are here concerned mainly with the evo- _
lution algorithm, we will simply take these i3|/1itial values f=AL UL, DT +B(LUY, DT+ U, T) 2.1)
from appropriately adapted exact solutions which have re- '
cently been pointed out by SchmifZ]. In particular, we it can be characterized as follows. Define the following op-
take the rescaled A3 solution and one other solution fromy ators acting on a grid functiohy  :
this class(see Appendix A in various gauges as our test ’
case.
As our numerical method for solving the evolution equa- pal £1i = 3 (fiz a2y + Fivamy),
tions, we choose finite difference schemes which are second
order accurate in both time and space. In particular, we use
the leapfrog and the Lax-Wendroff schemes both extended in ol fli = %(fi,j_1,2+ fij+12)s (2.2
a straightforward manner to two space dimensions. Of
course, various other methods could have been employed. It
soon becomes apparent that the leapfrog method is not a Dalf]ij=Fivazj—Ffio12)),
viable choice in our case. Since the conformal field equations
form a quasi-linear symmetric hyperbolic system, it follows
that the characteristics which determine the evolution of the Dolflij=(fijruo—fij-12)- 2.3
fields depend on the solution itself. Or, to put it differently, ]
the wave parts of the fields propagate along the light cond hen the 2D-Lax-Wendroff scheme consists of the four
which is determined by the metric which, in turn, is evolved Steps:
by the field equations. Since the methods we employ are
explicit, we need to make sure that they remain stable by — L
controlling the size of the time stept during the evolution. 12y + 12 2 mal ol "1 ]i v 12+ 2224
However, changing the time step dynamically cannot be
done with the leapfrog method without losing the second

order accuracy in time. Hence, we will focus here exclu- ?:11//22,j+1/2‘_f_in+1/2,j+1/2
sively on the Lax-Wendroff method.
The equations in the general form given[ih Sec. IV + %CUA?+1/2J+1/2/L2[D1[fn]]i+1/2,j+1/2

are manipulated using therspiINORpackagd 6] of MAPLE,
extended to include the space spinor formalism. The equa-
tions are expanded into components using the decomposition
into irreducibles for each spinor field. We should point out N n
that the equations when written in components turn into, in +T2AE L 112
general, complex equations for complex variables. Due to
the reality properties of the spinor fields, these equations _

. . - . . n+1/2, 1 n+1/2
come either in complex conjugate pairs or as real equations. fij e zmaluoff 1
This fact reduces the number and the complexity of the equa-
tions. The symmetry conditions given|ih, Sec. \] are used
to simplify them.MAPLE is also used to test the equations ff e+ C AT M2, D[ 12]];
thus obtained quite extensively in various ways:

+ 3C,B 12+ 1o Dol "] 172+ 12

+CyBir],rllzlLl[DZ[fn+1/2]]i,j+AtEin,?—1/21
They are checked against hand calculations in simple
enough cases. . . . ¥vhere C,=At/Au and C,=At/Av and where
Inserting exact solutions into the equations should result | N 1o T
in identities. These solutions are obtained also with thei+1/2j+12=Altn Ui+ 28U 05+ 40,1 155411) and
help of MAPLE using different routines by conformally Al "?=A(t,, u;, v;,f7""%. The further generalization
transforming simple vacuum solutions of Einstein’s of this scheme to three dimensions is straightforward. How-
equations with arbitrary conformal factors. ever, it becomes rather inefficient and it is here where prob-
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FIG. 2. The local geometry for the timestep criterion.

in Minkowski space. Then the time levels are planes and the
light cone is a true cone, the null cone of the pdmtLet O
be the point inS, which is “straight below” P in the sense

thatOP is a multiple of the normal vectaf of S;. We take
ably operator splitting methods should be used. The com© as the origin. LetQ be the point inSy with the same

plete discretization of the equations was also carried 0Wnatial coordinates @ so thatQ P=Atd, . The equation for

symbolically. . _ -
The exact solutions described in Appendix A have beer® Planes; is given by (dt,x)=(dt,QP)=At so that

used to provide the initial data anith some casgsthose = OP2=Nt#At. ThenOQ is proportional to the shift vector
boundary data Which can be specified freely. It is clear frOfTb_?g: —NAtT'g,. The equation for the null cone &F is

the form of the metric that these solutions have two space-

like Killing vectors. The Killing vectord, is taken to be the . _

one that is factored out by the symmetry reductieae[1, an(X2—OP?)(x°~OP?) =0 (2.9
Sec. V). The metric functions are independentxoéndy. If

we choose andx to correspond to the two remaining coor-
dinatesv andu, respectively, then the code is essentially a
one-dimensional code. In order to test the two-dimensional

performance of the code, we, therefore, have to “warp” the t.x3=0, x3,=2N?At?>=0. (2.6)
coordinates. Thus, we put

FIG. 1. The orbits of the additional Killing vecta, .

and its intersectioft with Sy is given by all points<? which
obey the equations

Now we take any plankl orthogonal taS,, whose equation
2 o is w x?=s for somew with w,t2=0 and arbitrarys. Sup-
X=u, z=v—a(Vg—v)sin(wu). (24 pose thaH touchesE in a pointX. Then, atX the following

: . . .. equations hold:
We choosex in such a way that this transformation is bijec-

tive in the rangaie[ —1,1], v e[ —Vy,Vq]. In this coordi- —

nate system, the orbits of the second Killing vector are dis- X*=0X?,  xX,=—2N?At?, 0, X*=S, Xa=aw,.
torted and not aligned with the grid, see Fig. 1. All (2.7
computations which are presented here have been performeﬂl
with these warped coordinates. We will now describe theX
criterion to determine the maximal time stép possible to
evolve from an initial time level, at timet=t,, to the next
time level S; at timet=t,+ At. This is not specific to the
Lax-Wendroff method, but can be used with any explicit 2N?At?w 0= — 7, (2.9
evolution scheme. The CFL conditi¢@] can be phrased as

stating that “the numerical domain of dependence should 2

enclose the analytical domain of dependence.” Now con- x2= — —N2At202, (2.9
sider a pointP in the future time levelcf. Fig. 2. Its nu- S
merical domain of dependence consists of the points at tim
t,, which are used to compute the field valuedatThey lie
within a rectangular are® bounded by coordinate linas
=u, andv=v.. The analytic domain of dependence is
given by the intersection of the backward light conePof
with the time sliceSy. The maximal allowed time-stejpt is,
therefore, at most so big that the light cone just touches th
boundary ofR. To obtain a formula for the maximalt we . _
analyze this situation to first order or, what is the same thing, (T'£V—-2w,0*)NAt= £ AX', (2.10

e last equation expresses the fact that the tangent plane at
to E in Sy is parallel to the intersection dfi with S;.
From these equations, one can easily derive the relations

We are interested in coordinate planes within These are
obtained fromw=dx'—NT'dt. In particular, we consider
coordinate planes which are a distancéx' from the point
Q. These satisfy the equatianx®= —NT' At=Ax'. Insert-
ing this value fors in the equations above, we obtain the
Squation
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which holds whenever the past light cone Bftouches a physical propagation speeds and thus contaminate the solu-
coordinate plane which issAx' from the pointQ. Thus, tion all over the entire computational domain. A notorious
according to our criterion, a valid time-stéyt should satisfy place where non-physical modes are generated is at the
boundaries of the domain. Due to the lack of enough grid
points there, in general, the numerical evolution scheme has
At=min _ , (2.11) tq _be changed. It is absolutel_y vital to impose boundary con-
N|IT'=V—2w,07 ditions so that the non-physical modes are kept small. The
Gustafsson-Kreiss-Sundsmo(GKS) theory [10,11] which
where the minimum is taken over all points§g. There are  has been developed for analyzing such situations is inher-
some points to be mentioned: ently difficult to apply. A different(equivalent formulation
] ) based on the notion of group velocity for finite difference
In_our present case the square root is simplyschemes has been given by Trefeth&®]. It has been found
V=2w,0%=2/CgC*®', so that determining the maxi- that certain intuitive numerical boundary conditions do not
mal time-step is rather simple. It involves going through perform as expected. Conditions which work for one numeri-
the grid and finding the maximum of some algebraiccal scheme do not necessarily work for others. For linear
function of the fieldgno inversion of the spatial metjic equations in one space dimension, the mathematical analysis
We find that the criterion is at least necessary for stabilcan completely be carried through. It turns out that the es-
ity, i.e., if we do not enforce the time-step to be at mostsential criterion is a non-degeneracy condition for a linear
the above value then the scheme becomes unstable. §9stem of equations obtained from the combination of the
far it has also been sufficient for stability. evolution scheme and the boundary condition. This system is
This criterion might be conservative. In fact, one couldrequired to have no solutions in order to exclude the parasitic
imagine that one should be able to increase the time stemodes. Although Trefethen’s method is very physical and
until the first of the adjacent grid points comes to lie onintuitive, it does not provide enough information in the case
the null cone, the others still being not inside. We haveof higher dimensional and/or non-linear equations. It does,
not investigated this further. however, give valuable hints as to which conditions might
This is a first order criterion and it might be too crude for have a chance to be useful in those more general situations
the Lax-Wendroff method. One could think of enforcing treated with the Lax-Wendroff scheme.
this condition at each half step. Again this has not been The situation is somewhat ironic in the present case. One
investigated. is not at all interested in what happens at the boundary be-
. . . cause this igusually outside the physical space-time. How-
A complete time step is performed by going through thegyer it is the boundary which needs the most careful treat-
following steps given the solution at the time levgt ment. One would wish to find gauge conditions which make
the non-physical portion of the computational domain small,
ideally putting the boundary & =0. We will examine the

AX

Find the maximal possible time stég by inspection of
the current time level. ibility of this idea |
Set the gauge functions, also possibly according to thé€asibility of this idea lateron. = L
properties of the solution at the current time level In another aspect, the present situation is also quite disad-
Update the solution at the interior points using the gaug antageous. Usually, it is of great importance that the ana-
functions and the time-step by performing the above fou ytical problem has a well posed initial-boundary value prob-

: . -« lem. The rigorous analysis provides the information about
steps for each function. After the first half step, specify = " A :
the gauge source functions again. which data can be specified freely at the boundary and which

- : data is determined from information propagating towards the
Update the solution at the boundary points. L S
P yp boundary from the inside. Knowledge of this kind is neces-
sary in order not to over-specify the solution at the boundary,
lll. BOUNDARY TREATMENT because this would inevitably lead to instabilitiexcept for

Analytically, the hyperboloidal initial value problem does €xtremely simple casgsin our case, it is not known at
not need any boundary conditions. The initial data are givePresent whether the system admits a well posed initial-
on a three dimensional manifold with boundaryaS on ~ boundary value problertsee, howevef13]). To overcome
which the conformal factof) is supposed to vanish. Then a this lack of mformauon, we analyze the system to first order
solution exists on the four dimensional manifod=sS @t the boundary in the following sense. .

X[0,7] for somer>0 which is such that the boundas The b_oundaryB is a time-like three-d|men_5|onal hyper-
— 9SX[0,7] is a null hypersurface and hence characteristicSurface in the space-time. Lef be the space-like conormal
That means that even if one would extend the initial datlf B- A system of partial differential equations which has the
across the bounda® =0 in some way, this extension could form

not influence the interior, i.e., the physical space-time de-

pends only on the data given inside the boundary. .

The situation is different in the numerical case. The char- atua+A'aﬁaiu5= b, (3.9
acteristic speeds are different for different modes which are
propagated by the numerical scheme. In particular, non-
physical modes tend to propagate at speeds much higher thaan be rewritten in the form
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AU, + CaBDuB+ BﬁB&AuB=ba, (3.2 parts which are vertical and tangential £ The principal
part of the ¢-system which does not contain tangential de-
where D is the derivative along any vector fiels? which  rivatives is
satisfies,u®=1 on B (usually taken to be the normal vector
field extended off3 in an arbitrary way and where they
are derivatives intrinsic tés at poiz[s o%. On the boundz/;ry ¢asco™ NaePbco). 8
the matrixC,,; regulates to first order the propagation of the

fields across the boundary. By analyzing its structure, one Ipas— 5NAgDP+NCDhapcp,

can gain valuable insights into the behavior of the solution 3.9
on B. In particular, finding the eigenvalues and eigenvectors

of C, (which in our case is Hermitigrenables us to select I+ 2N\ gDSME. (3.10

combinations of the fields whickto first ordej propagate
purely inward or purely outward or which stay on the bound-pere we have neglected terms containing derivatives,gf

ary. These have to be treated differently. While the ingoingyecause those do not alter the symbol of the subsystem. In-
pieces can be prescribed freely, the outgoing ones have t0 k@ting the decompositions of the variables, we get the fol-
obtained from the interior. This is done here by extrapolajpying system

tion. That this might be possible is indicated be the Trefethen

analysis which shows that extrapolation remains stable when i

used in conjunction with the one-dimensional Lax-Wendroff dp+2D¢, (313
method. We want to mention that this analysis applies not

only at the boundary, but also at the interfaces between grid 4

cells. This is important for possible future application of high P+ §n2D¢+ D2,
resolution methods which require the solution of Riemann

problems at each grid cell, see, €.@4].

To be somewhat more precise, we need to analyze the
three subsystems of the full system which do not consist @ 20 2 (D)
entirely of advection equations along thevector. These are I$ T+ §n De, 313
the systems for the variableK {gcp,Kag,K), the variables
(bapcD Pag, ) and for the Weyl curvature
(Eagcp.Bascp), respectively. Note, that this analysis is Iapt+ Ddad, (3.19
valid in the three-dimensional case. Only in the code we
have specialized this to the two-dimensional case. Let us
describe the procedure for thisystem.

First, we note thah,=n,g can be viewed as a complex
metric on spin space which reduces the structure group from a¢g0E>SCD, (3.16
SL(2,C) down toU(1). Thus, it is possible to decompose
any symmetric spinor® ,g,® apcp into irreducible pieces Obviously, this system can be decomposed into three smaller
with respect to the smaller structure group: subsystems and it can be shown that the coefficient matrix of

the D operator is Hermitian with respect to a suitable inner
1 product (it has to be because it comes from a symmetric
D pp=DE - W”AB‘P(D, (3.9  hyperbolic system Now it is easy to find “characteristic
combinations” of the variables so that the symbol becomes
diagonal, i.e., it has the form

(3.12

IPapt N°DPyy, (3.19

3
0 1
®neco=Phaco 72Mre® o)+ graNmanco) @,

JC+\DC (3.17
(3.9
wheren.-nfB= —2n2 and for each characteristic quantity. These combinations are
ABTL T unigue only up to a scaling factor. We choose the following
quantities with their respective characteristic speeds
q)(l)zchBnAB, (3.5
=4n2h— 6062 =
@ = o on"BNCP, 3.6 Co=4n“¢p—6¢~, A=0 (3.19
1 C.=4n?¢p+3\4n2pV+34?, \==an?
D= D ppcpn P+ WnAB(D(Z)- (3.7 (3.19

This decomposition which is very natural algebraically cor- N
responds geometrically to a decomposition of the fields into  Cas= Prar NPy, A==n? (3.20
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A=0. (3.2)

— 4(0
CABCD_'¢X%CD'
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IV. GAUGE CHOICES

In this section we want to present some results about the

In an analogous way we find the characteristic quantities foy,5jous possible gauge choices. Our emphasis will be on the

the K-system

Co=3K@+4n%k, \=0 (3.22
C.=6K@+34n’KM+4n%K, r==./4n?
(3.23
Cap=2KH+2n%KQ  \==+2n2 (3.24
Capep=K A=0 (3.2
ABCD ABCD* . .

The Weyl system has a completely different structure from
the previous two subsystems. Nevertheless, the analysi
yields characteristic quantities written in terms of the com-

plex Weyl spinor ¢agcp and the spinor fieldoagcp
=N Yeco)E-

Co=¢9, 1=0 (3.26
Cas= VY= elg, A== \n? (3.27
Casco=+ N?Yicp—2¢0i8cn M=% 4n%, (3.28

In our case, the boundary is given as a surfaeeconst so
that we can puh,g= CiB. Let us now focus on Eq3.17).
Inserting the explicit expressions for the derivatives, this is

3,C+N(—T29,C+\d,C). (3.29

Therefore, it is the sign ofN— T?) which regulates in which
direction the quantityC propagates across the boundary.

temporal gauge choices. There is one class of choices for the
shift vector which is natural in the present context of the
conformal field equations. The gauge for the frame rotations
and the third class of gauges, namely the choice of the scalar
curvatureA, is unknown territory as of yet and we put the
corresponding gauge source functions equal to zero in the
code. As was pointed out in Sec. |, in the case of the frame
rotations, this means that the frame is Fermi-Walker trans-
ported along the normal vector of the time foliation.

A. Choices of lapse

Let us start with the temporal gauges. Fixing the lapse
function is a difficult task. This function has to be chosen in
such a way that the time coordinate does not degenerate in
Re course of the evolution. Here is an attempt to collect
some criteria which should be satisfied by the lapse:

the lapse function should not “collapse” in the sense
that it approaches zero in a finite coordinate time,

the surfaces of constant time should remain smooth,
the lines of constant spatial coordinates should not inter-
sect,

the lapse function should remain positive,

it should not develop too steep gradients,

depending on the problem, the foliation should or should
not avoid singularities.

In our treatment of the hyperboloidal initial value problem,
the lapse function cannot be chosen directly. Instead it is
governed by an evolution equation which contains the “har-
monicity” F=20t as an arbitrary function of the coordi-
nates. It is not easy to find a functidh which allows the
lapse to satisfy some or all of the above criteria. The reason
is that one has no idea whiatshould look like in coordinates
which are constructed as the code moves along. To make the
lapse satisfy the criteria above, one needs a certain amount of

To update the values at the boundary points, we proceetteedback,” i.e., information about the current status of the
as follows. First we determine the characteristic quantities ogyolution seems to be unavoidable. This means, that one
the boundary. This is done by looking at the sign of theshould specifyF as a function of the field variables. But
corresponding eigenvalues which decides whether to simplgince in the system also the derivatives Fofappear, this
set the value arbitrarily in case the quantity propagates inads to the problem that the characteristics of the system

wards or else whether to find the value by extrapolation fromchange because the symbol has been altered. We will discuss
the interior. From the characteristic quantities, we obtain thehijs |ater in this section.

field values by reversing the transformations above.

The various choices foN that have been considered so

In the situations considered, this procedure yields a stablgyy gre

algorithm. This is consistent with the Trefethen theory which
shows that in the one-dimensional case, extrapolation to-
gether with the Lax-Wendroff time evolution scheme re-
mains stable. By its very nature our procedure is a first order
approximation to the real situation, so that we cannot expect
to obtain a code which is second order accurate in the neigh-
borhood of the boundary. However, since the surf@ce0

is a characteristic surface we may hope, that the error does
not too severely influence the physical space-time as long as
the boundary of the computational domain is outside the
physical space-time.
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the “natural gauge” for the exact solutions obtained by
setting F equal to the expression computed from the
explicit form of the metric(cf. Appendix A and varia-
tions thereof,

the “Gauss gauge” which is the condition thidtshould

be constant throughout the timeslice,

the harmonic gauge witk=0 and

the special class of gauges for whigehs a function ofN
andK only, F=f(N,K), which in fact includes all of the
above gauges.



NUMERICAL TREATMENT OF THE ... . Il. ... PHYSICAL REVIEW D 58 064003

FIG. 3. The proper time (left) and the laps&\ (right) in the “natural” gauge. The extremal values arg,,=1.831, 7,,=2.988 and
Nmin=0.315, Nha=1.151. The black contours show the locations of the {f&

The popular “maximal gauge” where one requir6s=0  ness of the singularity. The light cones are infinitely
probably cannot be achieved by specifyifRg stretched along the symmetry directions as the singularity is
We can judge the effects of these gauges by monitoringpproached. A better resolution would have extended the
the function which satisfies the eiconal equatidh7V3r  €volution time somewhat more, but eventually the same
=1 and the conditionr=0 on the initial surface. The value thing would happen. In this run the coordinate time elapsed
of this function at a poinP gives the distance in proper time Was roughly 4.405. Itis clear that with this temporal gauge,
betweenP and the intersection point of the geodesic throughth€ Singularity can be reachéat least in principlg
P tangent to the unit normal of the foliation and the initial __'Vith harmonic gauge the code was stopped after an
surface. This function is evolved simultaneously with the!aPsed coordinate time 20.07. In Fig. 4 it can be seen that
other field variables. For the A3 solution the proper timethe evolution close to Fhe s_mgularlty ha_s slowed down con-
distance from a point on the initial surfate to with z=0 siderably. The proper time in the center is much smaller than

. . ) for regions further outside. The lapse function is very small
and the singularity at=z=0 is 7=2+—t, for t;=<0 and we g D Y

. . . in the center and it is decreasing. It is not known whether the
can compare how far the evolution proceeds with the variou

. S URvolution will reach the singularity even in principle. The
gauge choices. In all the examples presented in this SeCliofecrease in the lapse could be so rapid that the integrated
a 100<100 grid was used and the coordinate system is th

one discussed in Sec. Il witi—5. The initial data were f)roper time along the central geodesic would reach a limit
taken from the exact A3 solut?on ét an initial ting=—5 below the \(alue. !~ lo. Itis quite likely, that in this gauge
The boundary values were specified depending on thel casthe code \.NIH ultimately not pe able to resolve Fhe steep gra-

) y 9 P . P 9 _CaSGRants which occur at late times between the interior region
considered. When the “natural gauge” was used, the ingo

ing boundary data were taken from the A3 solution. In aIIWhICh cannot progress beyond the singularity and the exte-

ther these values were used initially to satisfy thaC''e9ion which can.
Other cases these values were use ally to satisfy the Related to this phenomenon is the fact that the interior

corner conditions and the_n specified_to decrease G.“Xpo.nepégion shrinks. On the initial surfacg is located at the
tially, so that after approximately 20 timesteps, the 'ngo'ngboundary of the grid and it gradually moves inward during

values are zero. the evolution. Ultimately, there will be only very few grid
points left in the interior region. This is a phenomenon which
has nothing to do with the temporal gauge, but with the
For the “natural gauge” we find that we can in principle choice of the shift vector. We will discuss later in this sec-
approach the singularity arbitrarily closely by increasing thetion a shift gauge which allows the freezing @fon the grid.
resolution appropriately. Obviously, there are hard limits im- To get some feeling for the influence &f on the time
posed on the calculation by the finite precision arithmetic selicings, we study the slicings obtained from substituting
that eventually the numbers will overflow. p-F for F with some parametep. For p=0 we have the
The difference between the natural and the harmonitarmonic gauge which avoids the singularity. for 1 we
gauge is shown in Fig. 3 and Fig. 4. In both figures we shovwhave the natural gauge which allows us to reach the singu-
the proper timer and the lapse at a late instant of the timelarity in finite time. What happens when we incregsée-
evolution. For the natural gauge this was dictated by the codgond unity?
which stopped because the time step could not be chosen We evolve for a fixed coordinate time interviak [ —5,
without violating the CFL condition. This is due to the close- — 4] with different values ofp[1.0,1.831%. We find that

1. F as a function of the space-time coordinates
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L=,

FIG. 4. The proper timer (left) and the laps& (right) in the harmonic gauge. The extremal values gfg=2.747, 7,=3.537 and
Nmin=0.03964, N,»,=0.1624. The zig-zag behavior in the figure féris due to a lack of sufficient resolution for the shading process.

for p>1.8315 the code crashes. It is easily seen that this IN= — N2K — N3F 4.1)
crash cannot be due to the curvature singularity in the A3

solution, but is a coordinate singularity. In Fig. 5 we plot the
proper time distance between the initial and final time slic
along the central geodesiz0) versus the parameter.
We see that(p) has an infinite derivative g¢= 1.8315 with

a finite value ofr far from its value 2/5 at the singularity. IN= a(ﬁ_ N), 4.2
The lapse functiomN for different values ofp diverges rap-

idly Z(Cp- 'Fig. 6. The curvature invarian =Q*(EoE,  whereN is an arbitrary(positivel constant. This equation has
+6E3) which diverges at the singularity stays perfectly regu-i,o solutionN(s) =N+ Noe™ S, s being the parameter with

lar. Figure 7 shows the exact invariant plotted against propet
time along the central geodesic. The dots are the valués 0?55— 1. Thus, fora>0 the lapseN approaches the constant

and 7 obtained from the runs with different parameter valuesvalue N in the course of the evolution. We can make
We see that the behavior of these functions is not altered b§atisfy the above evolution E¢4.2) by choosing
the occurrence of the coordinate singularity.

Finally, we show in Fig. 8 the profiles of the conformal N—N)+N2K
factor for various values gb. As the parameter approaches F= u
its final value, the conformal factor develops a minimum at N3
the center. Although this behavior seems strange at first
sight, it can easily be explained. The conformal factor deWe find what one would expect, namely that in this gauge
creases as a function ofor fixed spatial coordinates. Due to the timeslices develop causti@sr, what has become known
the rapid divergence of the lapse, the proper time=a is  as “coordinate shocks). This makes the Gauss gauge inap-
much larger than in the regions outside. So that we see vapropriate for long time evolutions.
ues of Q) in the center which are reduced over proportion

whered=N4d. Now suppose tha¥l would satisfy an evolu-
&ion equation

4.3

from the values outside the center. This accounts for that 3. F as a function of N and K
central dip. Let us now focus on the class of gauges definedFby
=f(N,K). Among this class there is a subclass for which the
2. The Gauss gauge lapse depends only on the three-dimensional volume

(-element V, N=g(V). For these gauges, we have, with

The “Gauss gauge” which forcebl to be constant is a . . )
appropriate assumptions on the functgn

condition which is imposed on the lapse function directly. In
principle, it is possible to express the exact solutions in

Gauss coordinates by performing the coordinate transforma- jN=g’(Vv)gv=—Kg'(V)V=—Kg' (g *(N))g~X(N),
tion explicitly. Then one can compute the “harmonicity” for (4.9
these coordinates and do the evolution. However, we pro-

ceed somewhat differently to impose the Gauss gauge. Theo that, in factF is a function ofN andK only. The natural
lapse function satisfies the evolution equati@n(4.29] gauge falls into this subclass witi(x)=x"*"® and, conse-
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FIG. 7. The curvature invariarit alongz=0 as a function of
proper time. The line is the exact function, the points indicate com-
puted values.

FIG. 5. Proper timer as a function of the parametpr

quently, F=—(4/3)(K/N). Similarly, the harmonic gauge

with F=0 is in this class withg(x)«x. o
If we specifyF for the natural gauge not as a function of L K)= = [ABK .+ [ ABnCDK £ (NF )LABD, K

the space-time variables, but instead as depending on thesp( K) 2 AB P ascot (NFL ™ Pas

field variables, then an interesting phenomenon occurs. Al-

though nothing else in the code has been changed, it seems +pLABCDKABCD_ I:ABCDpABKCD- (4.6)

to notice this difference because the boundary becomes un-

stable very quickly. However, inside the computational do-/5rious important properties of thé-system can be deter-

main, we get the same solution W|thoqt any significant dif- yined from the formS,. In particular, the system is sym-

ference between the two ways of specifying the gauge.  eyic it 5 is Hermitian, i.e., ifS,(L,K)=S,(K,L) for all
This phenomenon can be trace'd. to. the fact mentione ,Pag)- It will be symmetric hyperbolic if there exists

above, namely that the gauge specification might change t \Pag) Such thatS, is positive definite. We see from the

characteristics of the system. We can see this explicitly A3 hove that thé-system can be made symmetric if we do not
E!Of\'z;' :(r1) Er?é[llri(ndrc:isjﬁ tg?tdo?‘rlc\rgtlvee Szigﬁ?sears' With consider Eq[1, (4.32], but add to that equation an appro-
o principal p g priate multiple of its trace. This changé&; into (with L
= LABAB)
IK g+ 29°PK apcpt 2N T kdasK +2NT \dapN.
(4.5

p - N R
The term involvingd,egN can be removed by using the con- Sp(L,K)=> LABK ap+ LABp PKapcot (NF ) LABpagK
straint equation[1, (4.44] so that the symbol for the
K-subsystem is [f,pag)—Sp(L,K), whereS, denotes the

sesquilinear form obtained from the principal part of the +pLAPCPK Ao~ LB PpasKcn+ (N ) pLK
K-system by replacing the derivative operatofsifg) with )
(p,pag) and multiplying appropriately with the complex —(NfYK)LpCDKCD. 4.7

conjugate of some spinor field& (g,Lagcp)- Thus,

10000 T ———T————T———————————

100.0F

FIG. 6. Profiles of the lapse N for a fixed value of the Killing FIG. 8. Profiles of the conformal facté} for some values of the
coordinatex and different values of. Note the logarithmic scale. parametep.
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It is easy to see that this form is Hermitian and that it will speed of light. For gauges witla>1/3 this is not the case,

also be positive definite provided that the inequality the largest propagation speed is bigger than the speed of

light. But the largest speed is the one which limits the time-

step in order to enforce the CFL condition for stability of the

code. And, in fact, choosing big enough results in numeri-

is satisfied. This is of course a restriction on the possibl&@l instabilities inside the computational domain.

gauges. These test_s have been performeq usmg_the initial data of
Furthermore, the characteristics of the above system calfé A3 solution and then specifying various gauges by

be obtained by inspection of its characteristic polynomialC100singF. We find the surprising feature indicated already

defined by above that the code detects whetReis specified as a space-

time function

a=Nf+1/3>0 4.9

P(p.pag) =de(S,), (4.9 u
for which we obtain the expression F= s (4.11
2
_ 3 n2 AAB 2| 12 AB
P(P.Pag) =24ap™(P™+ P Pag)”| P7H2 a+§ P~ Pas|- or as a function of lapse and mean curvature=

(4.10 —(4/3)(K/N). While it runs without problems in the former
' case, all the way up to a maximum of the proper tindose

This polynomial is homogeneous of degree nine in its varito its theoretical limit in the latter case, the boundary be-
ables and, regarded as a polynomialpironly, it will have  comes unstable very quickly. As surprising as this might
nine real zeroes provided that+2/3 is positive, which is  seem, it is still in accordance with the general picture. What
always the case if the inequality.8) is satisfied. In this might be even more surprising is the fact that in the interior,
case, there will exist three different characteristics, namelyhere is apparently no sign of any difference between the two
the lines along the time evolution vector, the cone given bytases.
the first factor in parenthesis in Eg.10 which is double Another gauge which has some geometric significance is
layered and a simply layered cone given by the last factor ijiven by choosingN«=3/V. This condition can be obtained
Eq. (4.10. The latter cone is gauge dependent, while thefrom the requirement that the height of the backward light
former is not. The degenerate characteristic is time-likecone of a point in the next time level should be proportional
while the gauge dependent characteristic has no gauge indgy the “volume radius”R=3/V of its intersection with the

pendent causal character. The cases whevanishes, the cyrrent time level. This condition is satisfied for the standard
harmonic gauge, or wheh is specified as a space-time func- t.foliation in Minkowski space. Thus, we have

tion correspond tar= 1/3 in which case the gauge dependent
characteristic coincides with the light cone. For the other 1
cases X a<1/3 and 1/X « the characteristic is time-like, — =—_—=—_K (4.12
respectively, space-like. However, there are gauges within N 3V 3

the specified class for which this characteristic does not even

exist. Thus, the system acquires a mixed type, having hypeandF = (2/3)(K/N). The speed of the gauge modes is in this
bolic and elliptic parts. In particular, for the natural gaugecase bigger than the speed of light, but the system remains
specified in terms of field variables, we hadf (+1/3  hyperbolic. In practice, this gauge is not very much different
= —1 which violates the inequalit{4.8). from the harmonic gauge.

A natural question to ask is the following: to what extent ~What we learn from these various discussions and experi-
are these features noticeable in the code? Judging from eients is that the natural gauge is the most efficient one for
periments what seems to be the case is that the code wilipproaching the singularity. However, in situations where
probably not detect differences in the various cases as lorifjere is no exact solution, this gauge is not available. Now
as it does not make use of the hyperbolic character of thene has various possibilities: one could prescribe a gauge
system. In particular, it will probably not detect when the condition once and for all like the ones considered in Sec.
system changes its character from a hyperbolic type to & A 3 or even like the maximal gauge, where one needs to
mixed type due to a gauge change. However, in those insolve an elliptic equation on each timeslice. The former have
stances, where the hyperbolic character is in fact used in thie disadvantage that they introduce superluminal propaga-
code difficulties will arise. In the present code we find thattion speeds into the problem so that the stability of (e
the boundary will become unstable very quickly when weplicit) methods forces rather small time steps, while the latter
choose a gauge which makes the system partly elliptie  are rather time consuming. The other approach would be to
use this term only to indicate that the resulting system is n@lways specifyF as a function of the coordinates. This
longer hyperbolit. This is of course due to our treatment of means that one needs to experiment in order to find a good
the boundary which implicitly assumes tHatis specified as candidate expression fér which allows one to reach singu-

a coordinate function. Another instance which can detectarities effectively. This method is very flexible, but it is also
gauge changes is due to the time-step control. Here, we intather obscure because there are no guiding principles about
plicitly assume that the largest propagation speed is théhe shape of the harmonicity functidn
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B. Choices of shift vector the relative distances of thielines. Therefore, we need to
The choice of a shift vector is even more obscure. Theré&liminate as many components as is possible from the shear

are two issues involved in the choice of the shift vector: the?"d divergence combined in
problem of what to do at the points of the physical space-
time and how one is to treat the points gh

Let us first discuss the interior issues. To describe the
problems involved, we focus on the lines of constant spatial ) )
coordinates parametrized by the coordinate time. These ar@nce there are only three components in the shift vector,
the integral curves of the vector field= 9/4t, the “t-lines,”  Only three components ef,, can be compensated. Depend-
which form a family of time-like lines. It is the geometry of NG on which components are to be eliminated, there result
that congruence which can be influenced by choosing thdifferent, and'lr! .general e_II||c_)t|c, equatlpns to be satisfied by
shift vector. To discuss this in more detail, we decomposéra- One possibility is to eliminate the divergence of the con-

the time-like coordinate vector into lapse and shift gruence which leads essentially to a Poisson equation. An-
other possibility to determine a shift vector is not to elimi-

nate components ofr,,, but to minimize the functional

[ oa,02PdV. This leads to the well-known “minimal distor-
tion” shift condition, which is a second order elliptic equa-
tion for the shift vector. The problems related to the interior
of 7, i.e., to the physical space-time are essentially the same
s in the numerical treatment of the traditional Cauchy prob-
lem, and there is no insight to be gained from the hyperbo-
Stoidal initial value problem.

However, this is different when one looks at the issues
concerned with the boundary of the physical space-time. One
objection against the use of conformal methods in the nu-

1 merical treatment of the Einstein equations has been the fol-
TaVagb:NgaVaNTbJr N(£3V,tP+£2V,TP). lowing: as the evolution proceeds, the partfvhich cor-
(4.14 responds to the physical space-time shrinks so that there are
less and less grid points left in the interior @f(see the Figs.

The contraction of this equation with the time-like normal of 3 @1d 4. This implies that the resolution of features in the
the surfaces yields the constraint equafitn(4.44] which physical space-time is getting smaller. However, as it turns
couples the gradient df to the time evolution of the accel- ©OUL this is a misconception which might be caused by the
eration vector. The other part of the equation which is intrin-familiar_conformal diagrams of asymptotically flat space-

sic to the hypersurfaces can be obtained by projecting E¢iMes: There it is assumed that light rays are aligned on 45°
(4.14 along 72 onto the hypersurfaces. This is achieved by!IN€s: This need not be the case. In fact, by choosing the shift
contraction with the projection operator vector onJ appropriately, we gain complete control over the
movement of7 through the grid. Therefore, we get to choose
between(at least two options. On the one hand, we can
compute a Penrose diagram of the space-time which is useful
for discussing its global properties. E.qg., it helps in deciding
whether there exists a regulaf or whether there appear
This yields the relation singularities beforé* can be reached. Another option is to
have . not move at all through the grid. This enables one to
) keep the resolution in the interior constant so that the physi-
E3=N(EPKp2+ &P, T?), (4.16  cal space-time does not suffer any loss of resolution during
the evolution. This property is desirable when studying the
where the dot simply meandV , followed by projection. As  behavior of sources in the physical space-time. Although in
in the case of geodesic congruences, this family-tihes  this case, the picture which emerges looks like the one ob-
can be described infinitesimally by its twist, shear, and ditained by spatially compactifying space-time, one should
vergence according to the irreducible decomposition of th&eep in mind that the conformal structures are entirely dif-
right hand side of Eqi4.16). From this we can conclude that ferent in the two cases. After all, in the picture proposed
a constant shift vector generally causes the family-iles ~ here, 7 is still a regular characteristic surface.
to shear and diverge, depending on the properties of the ex- How can we achieve thaf does not move through the
trinsic curvature. This is well known in the case of Gaussgrid? The equation for the conformal factor is
coordinates which develop conjugate points unless the hy-
persurface is very special.
The goal of choosing a shift vector should be to prevent
the t-lines from coming too close together. The twist of the
congruence, entirely due to the shift vector, does not changdote, thatT' 9, =TAB9,gQ =TABS 55. Thus, if we choose

Oap™— a(aTb)+NKab' (417}

ra=N(t2+T?) (4.13

and we choose a connecting veci, i.e., a vector field
which commutes with®. Such a connecting vector, which is
also called a Jacobi field, can be viewed as describing a
infinitesimally separated line in the family wit]# connect-
ing points with the same value of the time parameter. Thu
£ is tangent to the=const surfaces, satisfying®t,=0.
From the commutator of the two vector fields, we obtain

1
pab=5ab— Ntha. (415)

3Q=N(T'3;Q+3). (4.18
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FIG. 9. The proper time (left) and the laps&\ (right) in harmonic gauge witl freezing. The extremal values arg;,=1.831, Tnax
=2.988 andN,,;;,=0.315, N,,,,=1.151. The black contours show the locations of the {f&

S AR the choice of this geometric class of shift vectors as a “scri
TABzzT: (419  freezing” gauge because it keeps “scri” from moving
through the grid.
then we obtain the equation In Fig. 9 we show the proper time and the lapse function

for a run with harmonic gauge and scri freezing. The initial
location of 7 was on the boundary,= *=5. The length of

at9=§ S A3 B 122) (4.20 coordinate time spent wafg —ty=25 with roughly 1000
2 2 timesteps 7 has moved during this evolution at most over 3
grid points. This is due to numerical inaccuracies. We see
40N from the figures_: thqt the_ evc_JIution is much more hom_og_e-
= T(S—QA)_ (4.21) neous over the interior with differences in proper time within

the interval[2.96,3.04. But we also see that the lapse has
decreased rapidly, from a maximum value of 0.316 at the

Therefore,d,{) is proportional toQ) so that() remains zero beginning to a maximum value of 0.0422 in the end

along thet-lines at those places, where it was zero in the
beginning of the evolution, i.e., of. This implies that7

does not move through the grid. Although it looks as if the
shift vector is now uniquely fixed, this is not the case. Note, The main motivation to consider the conformal field equa-

V. MASS LOSS AND RADIATION

that the choice tions in the first place is the claim that haviggat finite
places allows a well defined numerical description of the
Sap = asymptotic properties like the radiative informati@uch as
TAB=2T+QTAB (4.22  shear and news o) and also the global properties like the

Bondi energy-momentum and angular momentum. From the

- . ~ . . nature of the hyperboloidal initial value problem, it is clear
exhibits the same behavior. Hefgg is completely arbitrary  yh 4 \ve cannot get our hands on the Arnowitt-Deser-Misner

apart from the fact that it should be bounded @nits 9,”'V (ADM) quantities which are located at space-like infiriity
effect is on the coordinates in the interior. If we chod$g&  which is not in the domain of dependence of any hyperbo-
so thatQ) T 5 has finite values or7, then we can achieve that loidal initial surface.
J moves through the grid in a rather arbitrary, but controlled In the numerical treatment there exists a natural foliation
fashion. of Jinto two-dimensional cross sections or “cuts” which is
It should also be pointed out that the form of the shift obtained from the intersection @f with the constant time
vector given in Eq(4.22) is unique, imposed by the geom- hypersurfaces. The news, shear and the “null datum” are
etry. It does not suffer from the shortcomings of other gaugdocal quantities in the sense that their value at a poinyas
choices. In fact, although it is specified by prescribing as  constructed from the values of the field variables at that
a function of the dependent variables, this does not changeoint. Therefore, these quantities are not sensitive to the to-
the characteristics of the system, even though there are termpslogy of the “cuts.” In contrast, the Bondi quantities are
involving the derivatives of the shift vector. We will refer to global concepts and there is currently no way to determine
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their value from only local information. As a consequencewith a= —c23,,/2 andb=c¢(2%,,/2—1) andc an arbi-
they are very sensitive to the topology of the cuts and, intrary complex function on the cut. With this choiceafind
fact, they are so sensitive that in our case study with “cuts”h, e have achieved that og the null vectorl®I? is
which have a toroidal topology, there does not exist aryjigned with the null generators of. The factorA in Eq.
energy-momentunfour-vector, but only one scalar quantity (5 1) js found to be
which we still call the Bondi mass. The reason behind this
unexpected phenomenon will be discussed below. _

The main problem one is faced with when trying to obtain A=4cc(Xp—33), (5.4
expressions for the asymptotic quantities is the fact fhat
does not look the way it does in the analytical treatments. 1"

particular, there one usually assumes that a conformal gaué@n' . . .
has been chosen so thatis divergence free, i.e., that the . 1h€ asymptotic quantities with respect to the adapted

area of a cut does not change when the cut is moved alor'fésme can now be expressed grin terms of the field vari-
the null generators of/. Since J itself is shear free, this @ les. These_ expressions are rather lengthy in the general
implies that the shape of a cut does not change either afong @S¢, but quite manageable in the symmeiry reduced case
and this fact can be exploited to choose the metric on thaf’at we are looking at here. Following is a list of the vari-
family of cuts to be one with constant curvature. Usually this2P!es which are of interest to us and the expressions to com-
is the unit sphere metric. In our case, where the cuts havBute them in terms of the field variables in the reduced case:
toroidal topology, one would choose a flat metric on the cuts.
In a numerical treatment where the conformal fadois o'=0, k'=0, (5.5
one of the evolving variables, one has almost no control of
its behavior(at least at presentThus, we do not have the
freedom to specify thatZ should have these nice properties 2S Ssyo
and have to live with the way it emerges from the numerical P'=— R = S (5.9
computation. The only way to influence possibly the behav-
ior of the conformal factor is by way of tuning the gauge
source fu_nct_ion’\ for the conformal gauge. However, this is 0= — (K 4059,+ K 44+ 6K 4555,) (5.7
a rather indirect way and at the moment it is completely
unclear whethefand how one should specifiA so that.7
does have the desired properties. =3 (EoSs,— 2E,+E4S5)), (5.8
Another point is that the radiative quantities are referred
to a specific tetrador spin frame on 7 which is adapted to
the geometry there. Again, in the numerical treatment the 4= E4S§0+4Bgs§0+ 6Ezs§0+481320+ Eo, (5.9
tetrad is fixed by other means which implies that we need to
transform from the given tetrad to the geometric tetrad in . 4 )
order to obtain the correct values of the asymptotic quanti- N= (#4420 6 4520+ Pa0) (5.10
ties. Again, it is not yet known how to impose gauge condi-
tions so that the computed tetrad always coincides with thgyhere we have introducesh,= 23 ,,/3 and syp= 23 50/3.
geometric tetrad ot. The transformation from the numeri- The function\ is the so called “news” function.
cal frame to the adapted frame is straightforward. Recall that Haying these expressions at hand, it is in principle

the condition imposed on the adapted spin frai®8,(*) is  straightforward to obtain the asymptotic quantities from the
(5] numerical data. The only obstacle is that the level setQ of
do not necessarily agree with grid lines so that one has to
Vaad=—=Alpla +0(Q). (5.1  trace out the zero set @ within the grid and then interpo-
late for the values of the field variables there. This task is
This condition fixes the direction of the null vectdi”’, but  greatly simplified by using the/ fixing shift gauge discussed

says nothing about the space-like ved®dtlA' and its com- in Sec. IV when it is possible to aligiy on a grid-line ini-
plex conjugate. Given a cut of these are required to be Ually:

tangent vectors to the cut. Then the transformed spin frame is " Fig. 10 we present a surface representation of the null
fixed up to the scalingO?—>c.-0A, IA—>c 1.1 The datum ¢, for the A3 solution. This is a non-radiating solu-

transformation to the new spin frame is tion soy, should vanish. Indeed, we find that only when the
singularity is approached, the function differs significantly

A A A from zero. This is due to the closeness of the singularity. We

O%=ao™+b.%, (5.2 should also point out that this figure has been produced in the

warped coordinate system without the use of fhdixing

shift gauge. It is only in the late stages and in the central

— _(—EOA+§LA), region, where the warping is maximal when the tracing out

aa+bb of J produces too large errors. In a similar way the W1
(5.3  solution was treated. Nowy, cannot be expected to vanish

d we furthermore fixx=3 for the remainder of this sec-

1A=
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FIG. 11. Time profile ofy, for the W1 solution at a constant
value ofu.

FIG. 10. The “null datum” for the A3 solution.

metric and where the cut sits withjfiin such a way that the
because this is a radiating solution. Since there is an add'gpin_coefﬁcientT vanishes, then the E@¢5.12 has four lin-
tional symmetry present in the solution which is alignedearly independent solutions which can be taken as the first
alongJ, the function should be constant ghWe found that g spherical harmonicy¥,,,, |=0,1. Note, thatr=0 can
the tracing algorithm Work§ quite satisfactorily in this casealways be achieved in the neighborhood of a single cut be-
also in that the computedl, is indeed constant as a function cayse it only involves parallel transport®f* along the null
of the u-coordinate alongy. Therefore, we show in Fig. 11 generators. However, given a system of cuts and an adapted
only a time profile for constanti. The line indicates the spin frame, this condition cannot, in general, be maintained.
exact fUnCtion, while the markers indicate the Computed ValUnfortunate|y, this is the case for the cuts appearing in the
ues. The relative error in this calculatié200 by 200 points  numerical treatment as intersections Gfwith the constant
is a few percent in the region, where the influence of theime hypersurfaces. A more thorough discussion of the gen-
singularity is not too strong. eral spherical case is left to another paper.

Let us now discuss some of the issues related to the Bondi Here we want to focus on our immediate interest' name]y
energy-momentum. This is an unexpectedly complicated ispptaining a formula for the Bondi mass on cuts with toroidal
sue which, in addition, depends on the global topology of thegpology. In that case, the BMS group has a completely dif-
Space-time under consideration. The standard definition Usqgrent structure. This is reflected in the fact that @12 on
here is, from[5], a torus has only a one dimensional solution space as opposed

to the four dimensions in the spherical case. This means that
o the translation subgroup is a one-dimensional subgroup of
mg[W]= § ‘1/12— TN]Wsz, (5.1)  the BMS group. Therefore, on toroidal cuts, there does not
¢ exist a four-vector of energy-momentum, but only a “Bondi
. L . scalar,” which we call the Bondi mass.
where the integration is over a cut gt As it stands, the In order to compare the evolution of that scalar with time
formula is only valid under rather stringent simplifying as- i, our special case, we observe that for the initial data ob-
sumptions. It is assumed that the surfafes const are null - (3ineq from the exact solutions A3 and W1, the cuts are
even away from7. This implies that7 is nondiverging and spanned by Killing vectors. This implies that on the cut, all
that the spin-coefficient’” vanishes. If these assumptions aréfic|q variables are constant. Hence, we may ke const as
not made, then the new§ acquires additional compensating a solution of Eq(5.12 and sinceW has to be a conformal
terms. density of weight+ 1, we takeW= /A4, with A being the

The functionW which appears in Eq5.11) is a function 4,05 of the cut. Thus, we end up with the formula
with conformal weight+1 on the cut satisfying the confor-

mally invariant second order elliptic equation
a J—
I _ a ’ 2
S2w=0. (5.12 mg=— A 350[ Yo= x(N=0p >]d S (513

Here, thed, is the conformally invariant “eth” operator in-

troduced in[5]. For a more standard form of this equation, Of course, due to the constancy of the integrand on the cut,
we refer to[15]. The purpose of solving the E¢6.12 isto  we could have written this formula without the integral.
select out of the super-translation subgroup of the asymptotitlowever, we implement the formula with the integral be-
symmetry group[the Bondi-Metzner-SachéBMS) group]  cause it averages over the numerical inaccuracies present
the normal subgroup of translations which is used to generateom the interpolation process. In Fig. 12 is shown ther-

the energy-momentum. In the special case, where the metrinalized Bondi-mass for the A3 solution, which of course
on the cut has been scaled to be the standard unit sphesbould remain constant. Similarly, Fig. 13 presents the Bondi
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FIG. 12. The Bondi mass for the A3 solution normalized against ) ) )
its initial value. FIG. 13. The Bondi mass for the W1 solution normalized

against its initial value.

mass for the W1 solution. Again, the solid line is the exact o o .
profile, while the markers are the values obtained from thé>ravitationsphysik in Potsdam where part of this work has
numerical solution. been done. | am particularly grateful to P. bher for many

long discussions and for pointing me towards referdi@g

VI. CONCLUSION
APPENDIX A: THE EXACT SOLUTIONS

In this article we have presented and discussed several We h q | t soluti ‘ ical test
issues concerning the numerical solution of the evolution V'€ Nave Used several exact sojutions Tor numerical tests.

part of the hyperboloidal initial value problem for the APart from the trivial ones which are simply Minkowski
vacuum conformal field equations. We have described a sp pace in d'SQU'Se' i.e., rescaled with an ar_bltrary .conformal
cial case, where the unphysical assumption was made th ctor, there is the class of vacuum space-times with toroidal
there exists a hypersurface orthogonal Killing vector withUll infinities which have been constructed by Schnizk
closed orbits and no fixed points. This does not alter thefor exactly that purpose. They are characterized by a solution

essential issues. The numerical evolution scheme is a simplé ©f & two-dimensional wave equation and are defined as

two-dimensional implementation of the well-known Lax- follows
Wendroff method. The outer boundary is evolved using a
stable eigen-field method. We have discussed various lapse
choices and the features which appear when one specifies the
gauge source functioR as a function of the field variables.

We have found a special choice for the shift vector which
originates in the conformal properties of the system. This

shift allows us to freeze null infinity on the grid, while still 9= 2+ 72
leaving the usual freedom for specifying a shift vector in the

interior. Finally, we have described how to obtain the local X (e2W(t 2 x2 @~ 2W(t.2)gy2), (A2)
radiative information by simply “reading it off’ 7 and
transforming to the appropriate asymptotic spin frame. The_, , ) )
global quantities like Bondi four-momentum are more diffi- G1Ven & solution of the two-dimensional wave equafibé

cult to determine and they are very different in our present

case from the physical case, wheféhas spherical sections.  (t*—z%) (W — W,,) — 2t(32%+ t?)w, — 22(3t?+ z%)w,=0,

We have tested the code and the radiation extraction algo- (A3)
rithm using exact solutions. We obtained good agreement ) .

between the analytical and the numerical solution. Unfortu©n€ can obtain the function(t,z) by quadratures. The co-
nately, these have an additional Killing vector which makesordinates< andy are Killing coordinates, each taking values
these cases rather special even though we “warp” the coorl R. We identify the pointsX,y) and k+1, y+r) to ob-
dinate system. Therefore, we need to get generic initial datiin the toroidal topology. In our applications, we always
(within the specified class of space-times with one Killing haver =1. The simplest solutions of this type are the ones
vecto). Future work will be directed towards solving the Obtained by choosingw(t,zZ)=0 [with n(t,z)=0] and

constraint equations on the initial surface in order to provideV(t,z) =A(t?~v?) for some constanta [with n(t2)
those initial configurations. =—1A2(t>+27%)?]. Note, thatA=0 in the latter solution

gives the former. The physical metric which corresponds to
the first of these appears in the classification by Ehlers and
Kundt [17] under the name A3 as the analogue of the
It is a pleasure for me to thank the members of theSchwarzschild metric in plane symmetry. Here are the ex-
Mathematical Relativity group at the Max-Planck-Institut fu plicit expressions for the variables we use in the code.

0= %(tz—zz) (A1)

eZn(t,z)

(dt?—dZ?) — (t?+2?)

ACKNOWLEDGMENTS

064003-15



JORG FRAUENDIENER PHYSICAL REVIEW D58 064003

2112
= i ief(lIZ)AZUZ K = i (4A7U"-3) e(1/2)A2u2
vz 40 ! vz U !
11 a2 (v AUTATHL (112)A%02
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2112
Cio= i ieA(tz—vz)' K o= L 4ATUT+4AU+3 e(L2A%02,
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2112
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v 2()2
S 0= —1 — 4TV,
Y

with U=t2+2Zz2. All other functions either vanish or they are f=Af,+Bf,
complex conjugates of functions given above.

whereA and B are real constant symmetric matrices. Then

the scheme as defined in Sec. Il consists of the following two
APPENDIX B: THE FINITE DIFFERENCE SCHEME; steps:

ACCURACY AND STABILITY

We want to present in this appendix a short discussion of
the main properties of the finite difference scheme used i)
this work to obtain numerically the solution of the evolution
equations. This includes a derivation of the accuracy and _,.yp
stability properties and a display of a convergence properties 'i+12j+1/2™
of the scheme obtained from numerical experiments. As it is
usual in the analysis of finite difference schemes, we exam- " ﬁA(f” LRI RPL
ine the properties of the scheme for linear equations with 4Ax T HFLIFL T AL T
constant coefficients. The analysis given here follows in
spirit the one presented |@]. We consider the class of equa-
tions given by

1
Z(fin,ﬁfin+1,j+fin,j+1+fin+1,j+1)

t
+ mB(finH,jﬂ_ in+1,j+fin,i+l_finvi)
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(ii)
t
fin,?—lzfin,j+_ZAXA(fP::E-//ZZ,j+l/2_ ?j11//22,1+1/2+ P::E-//Zz,j—l/Z_f?jJil/Zz,j—llz)
At B fn+1/2 __gn+1/2 +fn+1/2 __gn+1/2
+ 2Ay (F iz 1™ fivamy— et fis iz e o= fit iy - 12)-
|
Combining these two steps and insertirfigl Ax,mAy) i i
=" exdi(kJAx+kmAy)], one obtains the amplification J= 3 sin§(1+cosn)A+ 5 sin (1+cos¢)B.
matrix
: i In order to see more clearly what happens, we introduce
H 2
G(£,7)=1+ = sin &1+cos 7)C, A+ = sin the half angles and then we finkK=2L< and J
(&) 3 Sl MEAT 3 sing =2 cosg/2)cos@i2)L, where
1 o .
X (1+c0s¢)CyB— 5(1—cos§)(1+cos 7)C2A2 L=sin(&/2)cog n/2) A+ sin( n/2)cog £/2)B.
1 SinceA andB are real symmetric, so at€, J andL. Now
_ 5(1_,_(:05 £)(1—cos 7])0552 we can write
. (u,GU)[= (1= (u,Ku)| 2+ [(u,3u) 2
- E sin g sin ﬂCXCy(AB+BA), :(1_2HLuH2)2+4XY|<u'Lu>|2

_ 2 4 2
with £=kAx, 7=k/Ay, Ca=At/AX and C,=At/Ay. <1-4fLul*+4fLuf*+4axyLu]

This is the linear transformation which maps from one time =1—4|Lul?((1—4XY)—|Lul?.

level to the next:f"—f"*1=Gf". The properties of the

propagation scheme can be completely derived from thélere, we have used the Cauchy-Schwarz inequality and the
properties of the amplification matrix. The propagator of theabbreviations X=co$(&2) and Y=cos(#/2). Thus,

differential equation is, of course, given by |(u,Gu)|<1 if |Lu||2<(1—XY). To see what the latter con-

dition entails, we estimatl u[|><2Y(1— X)||Aul|?+2X(1
G(ky, ky) =exdiAt(kA+k,B)]. —Y)|Bulf? to find that|(u,Gu)|<1 if

For what follows it is advantageous to abs@pandC, into 2Y(1—X)||Aul?+2X(1-Y)|Bul|?><1-XY. (B1)

A and B, respectively. They can be reinstated easily later.

Then the exact propagator is This inequality has to hold for all values &Y [0,1]. The
conditions orj|Au|| and||Bu| for which this is true define the

G(&,n)=exdiAt(§éA+7B)]. stability region of the evolution scheme.

) i For a fixed value of X,Y) the inequality restricts the
ExpandingG(¢,7) andG(¢,7) for small (&,7), we find that  y51yes|Aul2 and||Bull? to lie in a half plane containing the

they agree modulo terms of third order, thus demonstratin%rigin which is bounded by the line defined by the equality in

that the scheme is second order accurate. Eq. (B1). Therefore, these values have to be in the intersec-
~In order to find the stability properties, we need t0 getion U of all the halfplanes thus obtained. For the valies
information about the “field of values{(u,Gu):[[ul=1}. If  _g y=1 andXx=1, Y=0 the inequality(4.8) reduces to

these are all less than unity in absolute value, then the St3au|l2<1 and|Bul?<2

o ; R <3, respectively. This defines a square
bility theorem in[7] implies that the operator norms of all which containsU. On the other hand, we find that for all
powersG" are bounded:

values of| Au||? and||Bul|? within that square, we have
IG"<K, n=012..., 2Y(1—X)||Aul|2+2X(1-Y)|Bul

and this implies stability of the scheme. Let us write the <Y(1-X)+X(1-Y)

amplification matrix in the fornG=1—-K+iJ, where
=—(1-X)(1-Y)+(1-XY)=<1-XY.

K=3(1—cosé&)(1+cosn)A2? _ o
Hence, the square is also containedlintherefore, equal to
—1(1+cosé)(1—cos 7)B2—13 sin € sin n(AB+BA) U and we have the conditions

and A’<1/2, B?<1/2 (B2)
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condition is just satisfied. However, we have found a suffi-
cient condition and it is not known whether it is also neces-
sary. Furthermore, we do not find any instabilities by taking
bigger timesteps than those allowed by EB2) up to the
CFL condition. Of course, this analysis should be repeated
for the case of variable coefficients or, even more ambi-
tiously, for the full quasi-linear case.

Finally, we present a convergence plot obtained as fol-
lows. We evolve initial data for the A3 solution for various
grid sizesnxn, ne{50,70,100,150,250,5QP0for a fixed
time intervalt e[ —5,— 1] and compare the final numerical
solution to the exact solution. In Fig. 14 we plot the maximal
absolute error over the final timeslice in the scalar functions
Q, K, E2 and ¢. We choose these functions because they
represent the various differential levels of the geometry and
because they are functions within the system. The more
physically meaningful variable¥,,¥, and the sheas are
merely combinations of the basic unknowns so they show the
same behavior as those. The Bondi mass, however, is too
remote from these functions to be a good indicator of the

which are sufficient for stability of the evolution scheme. In convergence properties of the finite difference scheme. A
contrast, the original two-dimensional Lax-Wendroff schemeconvergence check for this quantity has not been performed

has stability conditionsA?,B2<1/8, while the Burstein

scheme haé?+ B?<1/2, both more stringent than E@®2).

yet. The plot shows the errorAf(n) normalized against
Af(100). The solid line is the functio = (n/100) 2. Thus,

It should be pointed out that the stability condition as suchwe see that the order of convergence of the scheme is to
does not justify taking the time step so big that the CFLgood approximation equal to its theoretical value.
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