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Numerical treatment of the hyperboloidal initial value problem for the vacuum
Einstein equations. I. The conformal field equations

Jörg Frauendiener
Institut für Theoretische Astrophysik, Universita¨t Tübingen, Auf der Morgenstelle 10, D-72076 Tu¨bingen, Germany

~Received 12 December 1997; published 5 August 1998!

This is the first in a series of articles on the numerical solution of Friedrich’s conformal field equations for
Einstein’s theory of gravity. We will discuss in this paper why one should be interested in applying the
conformal method to physical problems and why there is good hope that this might even be a good idea from
the numerical point of view. We describe in detail the derivation of the conformal field equations in the spinor
formalism which we use for the implementation of the equations, and present all the equations as a reference
for future work. Finally, we discuss the implications of the assumptions of a continuous symmetry.
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I. INTRODUCTION

Much of the current work in numerical and experimen
relativity is devoted to obtaining information about the gra
tational radiation that is emitted by astrophysical proces
which are taking place in our universe. The goal is to obt
wave forms, i.e., the ‘‘finger prints’’ by which different pro
cesses can be identified when the gravitational waves
detected by laser interferometers such as the Laser Inter
metric Gravitational Wave Observatory~LIGO! or VIRGO.
The common way to describe such a system within E
stein’s theory of gravity is by way of an idealization, whe
the system is considered as being so far away from the re
the universe that the influence of the latter can be negle
~cf. @1# for a clear discussion of what is involved in th
process!. Then, intuitively, the fields far away from th
source should decay so that the space-time becomes as
totically flat. The detectors are then idealized as observ
which are located ‘‘at infinity,’’ where they can gather th
gravitational radiation coming from the system.

Isolated gravitating systems and the structure of their ‘‘
fields’’ have been investigated for a long time because
their importance for the interpretation of measurements
series of articles which heavily influenced the way we look
the subject today was published in the early 1960s. In th
articles various important contributions were made:
‘‘peeling property’’ of the Weyl tensor@2#, the idea of ana-
lyzing the vacuum field equations on outgoing null hypers
faces resulting in the Bondi mass loss formula@3,4#, the in-
vention of the Newman-Penrose~NP! formalism and the
proposal for considering the vacuum Bianchi identity as
field equation for the Weyl tensor@5# and the asymptotic
solution of the Einstein vacuum equations@6#. Assuming that
certain components of the Weyl curvature fall-off in a sp
cific way, it was found by formal power series analysis of t
asymptotic characteristic initial value problem that the fa
off behavior of the fields along null directions could be ch
acterized in terms of certain special coordinate syste
whose existence was presupposed. Finally, it was realize
Penrose@7# that these fall-off conditions as well as the pe
ing property could be understood in a purely geometric w
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He introduced the notion of a conformal extension by wh

a Lorentz manifold (M̃ ,g̃) is embedded into a bigger man
fold (M ,g) with isomorphic conformal structure, but with

Lorentz metric which differs fromg̃ by a positive factorg

5V2g̃. The idea was to study the global conformal prop
ties of Minkowski space in order to obtain a criterion f
what one should call an ‘‘asymptotically flat’’ space-tim
Guided by the Minkowski situation, Penrose suggested
such space-times allow the attachment of a conform
boundaryJ which is characterized by the vanishing of th
conformal factorV. This boundary is a regular null hyper
surface in the ambient unphysical manifold. It can be int
preted as the points which are at infinity for the physic
manifold along null directions.

The question arises as to what extent this geometric
ture is compatible with the Einstein equations. Friedri
could derive a system of equations@8#, the ‘‘conformal field
equations,’’ which are defined on that larger unphysi
manifold. Furthermore, a solution of the conformal fie
equations gives rise to a solution of the standard field eq
tions on the physical space-time. This system is written
terms of geometric quantities of the unphysical manifold a
the conformal factorV and it is regular everywhere even
points whereV vanishes. In a usual 311 decomposition, the
conformal field equations split into constraint equations a
evolution equations. Using this system of equatio
Friedrich was able to reduce the asymptotic characteri
initial value problem for the Einstein equations, where d
are given on a part of~past! null infinity and an ingoing null
hypersurface which intersects null infinity in a two
dimensional surface to a characteristic initial value probl
for a symmetric hyperbolic system@8#.

In order to describe a physical situation, one would like
prescribe initial data for the conformal field equations
some initial space-like hypersurface and determine fr
them the future of the system. Ideally, the data should
given on an asymptotically flat space-like surface. It do
turn out that the initial data for the conformal field equatio
on such a hypersurface are necessarily singular becaus
conformal structure of space-time is singular ati 0, whenever
the Arnowitt-Deser-Misner~ADM ! mass is nonzero~see@9#
© 1998 The American Physical Society02-1
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JÖRG FRAUENDIENER PHYSICAL REVIEW D58 064002
for a new approach towards the solution of this problem!.
Therefore, the initial data are given on a space-like hyper
face which intersectsJ transversely in a two-dimensiona
surface. Such hypersurfaces are called hyperboloidal
faces because they behave like spaces of constant neg
curvature in the neighborhood ofJ. Friedrich @10# has
shown that the Cauchy problem for data given on such
persurfaces, the hyperboloidal initial value problem, is w
posed, i.e., given smooth initial data which solve the c
straints then there exists a solution of the evolution equat
in some neighborhood of the initial surface. If the data
close enough to Minkowski data, then the future devel
ment is complete in the sense that there exists a regular p
i 1 whose past light cone coincides withJ.

The fact that the domain of dependence of the initial h
perboloidal hypersurface includes the complete phys
space-time in the future allows the study of global pheno
ena like the behavior of horizons and the causal structur
singularities. But also, since one has access to null infin
where gravitational radiation is registered, one can in p
ciple ‘‘extract’’ the radiative information by purely local ma
nipulations from the fields ‘‘onJ.’’ This suggests that the
hyperboloidal initial value problem is an appropriate dev
for examining these issues. The goal of the present wor
the investigation whether the conformal field equations, a
in particular, the hyperboloidal initial value problem, ca
provide an effective numerical tool for analyzing the glob
structure of asymptotically flat space-times and for obtain
information about the gravitational radiation emitted by t
system in question. The starting point for this investigat
was the work by Hu¨bner @11# who was able to demonstrat
the feasibility of that approach in the spherically symmet
case of gravity coupled to a scalar field.

There are various other numerical approaches towa
these problems based on the numerical solution of the s
dard field equations, either in terms of a Cauchy problem
characteristic initial value problem or a combination of bo
The first two alternatives both have some problems. T
standard Cauchy problem cannot provide complete glo
information because one has to cut off the initial data surf
and provide boundary data on a time-like hypersurfa
which intersects the initial surface in a two-dimensional s
face. The boundary data change the solution in their dom
of influence and hence, if the boundary data are unphys
so will be the solution. Even if the boundary conditions a
physical, the radiation data obtained are still only appro
mate because the boundary is not at infinity. Only the
radiation can unambiguously be defined. Therefore, as a
ter of principle, the standard Cauchy problem can prov
only approximate radiation information. In the hyperboloid
problem, there is only one idealization involved, namely, t
of how an isolated system is to be described.

The characteristic initial value problem, on the oth
hand, can be put to good use in the neighborhood ofJ.
Space-time is foliated by outgoing null hypersurfaces a
one can perform a conformal transformation to obtain
problem, where null infinity is at finite places. This is on
boundary for the outgoing initial null hypersurface. Th
other boundary is located someplace not too far in the in
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rior of the space-time. The numerical procedure for solv
the characteristic initial value problem is relatively simp
compared to the Cauchy problem which is due to the f
that the equations split into hypersurface equations, wh
are essentially ordinary differential equations and one evo
tion equation. Three further equations, the so called ‘‘cons
vation equations,’’ have to be satisfied onJ. The problem
with this approach is the fact that null hypersurfaces inva
ably tend to form caustics, places where the hypersurf
intersects itself so that it becomes impossible~or at least very
difficult! to give unambiguous initial data. The stronger t
fields are, the earlier the caustics will appear.

The last alternative, commonly called the Cauch
characteristic matching~CCM! procedure~probably going
back to@12#!, has been intensely studied by various grou
cf. @13–15#. The idea is to combine the two previous a
proaches without their respective disadvantages. The pr
dure is roughly to divide the physical space-time by a tim
like world tubeT and to evolve the inner part by solving
Cauchy problem. The exterior ofT is evolved by solving the
characteristic initial value problem based on outgoing n
hypersurfaces connecting the world tube with null infinit
An initial hypersurface for the combined problem consists
a space-like hypersurfaceS with a boundary~which indicates
the intersection ofS andT) together with the outgoing nul
hypersurface emanating from the boundary. Obviously,
the interface, where the initial hypersurface changes
causal character from space-like to null, there is a n
differentiable kink. The great challenge is to implement n
merically the information exchange across that kink. T
problem has been solved in various simpler circumstan
see, e.g.@16,17#.

When viewed in the unphysical space-time, the initial s
face for the CCM procedure intersectsJ in a two-
dimensional ‘‘cut.’’ Now consider a space-like hypersurfa
S which also goes through that same cut. It is clear that
surface is a hyperboloidal hypersurface. Its domain of dep
dence is the same as that of the Cauchy-characteristic hy
surface. The region ofJ which can be described is the sam
in both cases. One advantage of evolving with the conform
field equations is certainly the fact that the causal chara
of the foliation does not change so that there is no interf
and no need to change the evolution algorithm. Another
vantage is that one can go smoothly throughJ which allows
one to keepJ in the interior of the grid in order to avoid
numerical influences from the grid boundaries. There
more equations to solve in the case of the conformal fi
equations than there are in standard ADM-like formulatio
In the particular formulation of the conformal field equatio
which is put forward here, there are fifty-three variables
the full three dimensional case. This might be considered
a drawback. However, there are recent formulations of
Einstein equations as hyperbolic systems@18# which have to
introduce many additional variables so that the resulting s
tem is comparable in size to the system of conformal eq
tions. Furthermore, the quantities in the latter system wh
are evolved in addition to the spatial metric and the extrin
curvature in the standard case have a geometric mea
~Ricci- and Weyl tensor components! and any code which
2-2
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NUMERICAL TREATMENT OF THE . . . . I. . . . PHYSICAL REVIEW D58 064002
aspires to analyze the space-time structure needs to com
those quantities anyway.

This present article is meant to be the first in a series
papers on the numerical treatment of the conformal vacu
field equations. In this paper, we derive the conformal fi
equations in a formalism using space spinors. Although
has been done previously@19#, we present the equations he
in a form suitable for our immediate purposes, the main r
son being to establish a common notation and for refere
The space spinor formalism has the advantage that the e
tions can easily be decomposed into evolution and constr
parts and that the evolution part comes out automaticall
symmetric hyperbolic form. Furthermore, the equations
be written in a more compact form and the possibility
decomposing spinor fields into their irreducible parts can
used to remove any redundancy from the set of unknow

In the second article@20#, we present the numerical trea
ment of the evolution part with the additional assumption
a symmetry and in the third, we want to discuss the solut
of the constraint equations. The conventions used throug
this work are those of Penrose and Rindler@21#.

II. THE CONFORMAL FIELD EQUATIONS

In this section we want to give a derivation of the confo
mal field equations and a brief discussion of their propert
Apart from introducing the necessary background on the
perboloidal initial value problem, this section also serves a
reference to the actual equations used in the code.

An essential ingredient in this approach towards the
amination of global properties of space-times is the notion
a conformal transformation. Let (M̃ ,g̃) be a Lorentz mani-
fold with vanishing Einstein tensor~we will assume through-
out that the cosmological constant vanishes!. Assume that
this ‘‘physical space-time’’ is such that the following cond
tions hold: there exists a Lorentz manifold (M ,g) with
boundaryJ and a functionV on M such thatV>0 on M
andV50, dVÞ0 onJ, the physical manifold can be iden
tified with the interior ofM and there the equationg5V2g̃
holds.

These conditions state that the physical manifold is c
formal to the interior of the ‘‘unphysical’’ manifoldM . The
points on the boundaryJ can be thought of as representin
the points ofM̃ which are ‘‘at infinity’’ with respect to the
physical metricg̃. With the vanishing of the cosmologica
constant, it follows thatJ is a regular null hypersurface inM
on which the Weyl curvature vanishes~although this is only
strictly proven in the case, whereJ has the topologyS2

3R @22#!.
The conformal field equations can now be obtained fr

the basic geometric equations onM and M̃ , the Einstein
equation which holds onM̃ , and the conformal transforma
tion properties of the geometric fields. In view of the nume
cal application, it is advantageous to have a first order s
tem. This is easily achieved by using a frame formalism. T
system then consists of the following equations.

The first of Cartan’s structure equations, which expres
the fact that the connection onM is torsion free. It can be
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viewed as an equation for the components of the cho
tetrad with respect to the chosen coordinates.

The second structure equation which relates the Ricci
tation coefficients of the connection to the curvature com
nents. It can be viewed as an equation for the connec
components with respect to the chosen tetrad.

The Bianchi identity forg̃. This is an identity which re-
lates the derivatives of the physical Ricci and the Weyl c

vature. SinceM̃ is a vacuum space-time, this yields an equ
tion for the physical Weyl curvature. Expressing th
equation in terms of the unphysical connection yields
equation for the rescaled Weyl curvatureDabcd

5V21Cabcd, which looks formally like the familiar spin-2
zero rest-mass equation.

The Bianchi identity forg. Again, this is a relation be-
tween the derivatives of the Ricci and the Weyl curvatu
but now on the unphysical space-time. Using the equation
the rescaled Weyl curvature, this identity yields an equat
for the unphysical Ricci curvature.

Equations for the conformal factorV and its derivatives
obtained from the conformal transformation law for the Ric
curvature.

An equation for the functionS:5 1
4 hV, which is a con-

sequence of the earlier equations.
Because of the geometric origin of these equations, th

is gauge freedom in this system. Several variables can
chosen freely. Apart from the coordinates, this is true also
the tetrad which is fixed by the metric only up to Loren
transformations and for the conformal factor, which is fix
by the conditions above up to multiplication with a strict
positive functionV°uV, whereu.0 on M . This allows
the free choice of eleven functions, the gauge source fu
tions, which can be fixed in numerous ways. It is here wh
the development of a code to evolve space-times turns
an art.

The essential property of the above system is the follo
ing: With the gauge source functions fixed as arbitrary fu
tions of the coordinates, the system can be decomposed
usual 311 splitting into two separate systems with respect
a given foliation of space-like hypersurfaces. The first
those, the constraints, is intrinsic to the space-like hyper
faces and therefore it restricts the values of the variab
there. The second part, the evolution equations, can be w
ten as a quasi-linear symmetric hyperbolic system. This
the consequence that the Cauchy problem for this syste
well posed: given initial data for the unknown functions on
space-like hypersurfaceS, then in a neighborhood ofS, there
will exist a solution of the system acquiring the prescrib
values onS. It turns out, that once the constraints are sa
fied on the initial hypersurface, they will be satisfied eve
where by virtue of the evolution equations, they are pro
gated by the evolution. Therefore, given initial data whi
satisfy the constraints, then they will evolve into a soluti
of the conformal field equations.

If M is such that the initial hypersurfaceS andJ intersect
transversely in a regular compact two-dimensional surfa
then one can talk about the hyperboloidal initial value pro
lem. The standard example for such ‘‘hyperboloidal’’ su
2-3
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JÖRG FRAUENDIENER PHYSICAL REVIEW D58 064002
faces are the conformal images of the space-like hype
loids in Minkowski space in the usual conformal picture. T
fact that S and J intersect in the unphysical space-tim
means in physical terms that the space-like surface exte
out to null infinity. Thus, such surfaces are not Cauchy s
faces for the standard Cauchy problem for the Einstein eq
tions in the physical space-time.

In summary, the conformal field equations allow a we
posed initial value problem on space-like hypersurfaces
the unphysical space-time whose physical ‘‘pre-images’’
tend asymptotically towards null infinity. Initial data whic
satisfy the constraints evolve into a solution of the compl
system.

III. SPACE SPINORS

In this section we briefly introduce the basic formalis
used to write down the equations and to separate them
the evolution and constraint part. This can very convenien
be achieved using the space spinor formalism@23#, which in
addition allows writing~and coding! the equations in a more
compact form.

The essential ingredient in the space spinor formalism
time-like vector field ta which is normalized bytata52
~note, that we use throughout the conventions of@21#!. In
terms of spinors, we haveta5tAA8 and tAA8t

BA85eA
B. The

existence of this vector field allows the conversion of
primed spinor indices to unprimed ones by extension of
map pA8°pA8t

A8
A to the full spinor algebra. E.g., any co

vector va5vAA8 is mapped tovAB5vAA8t
A8

B . Note, that
this spinor can be decomposed into irreducible parts:vAB

51/2 eABv1 ṽAB , whereṽAB5 ṽBA . In terms of the original
covector, these parts correspond to the components alonta,
v5tava , and orthogonal tota.

The vectortAA8 can be used to define a complex conjug
tion map on the algebra of unprimed spinors by extension
the mappA°p̂A :5tA

A8p̄A8 to the full algebra. Note, tha
p9 A1 . . . An

5(21)npA1 . . . An
. An even valence spino

pA1 . . . A2n
is called real, ifp̂A1 . . . A2n

5(21)npA1 . . . A2n
.

The derivative operator¹ on M can be decomposed a
follows:

¹AA85
1
2 tAA8D2tA8

BDAB , ~3.1!

or, equivalently,

tA8
B¹AA85

1
2 eABD1DAB , ~3.2!

whereD:5ta¹a and DAB5tA8
(B¹A)A8 are the parts which

act along and perpendicular tota, respectively. Thus, the
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general procedure we will follow is to write the equations
spinorial form, then convert to space spinors, and finally
compose them into irreducible parts.

The derivative oftAA8 gives rise to two important spino
fields,KAB5tA8

BDtAA8 andKABCD5tC8
DDABtCC8 . Note the

symmetry and reality properties of these fields:KAB5K (AB)

52K̂AB and KABCD5K (AB)(CD)5K̂ABCD . Geometrically,
KAB corresponds to the acceleration vector ofta, while
KABCD is related to the geometry of the distribution defin
by ta50. This distribution is integrable if and only i
KA

(BD)A50. Thenta is hypersurface orthogonal andKABCD
corresponds to the extrinsic curvature of the orthogonal s
faces.

We will assume, henceforth, thatta is hypersurface or-
thogonal. Hence, the covectorta is proportional to the conor-
mal of the space-like hypersurfaces given byta50. Then,
the derivativeDAB is the so called Sen-Witten connectio
which plays an important role in various areas of gene
relativity. It is not completely intrinsic to the hypersurface
but contains information about the embedding of the surfa
in space-time. This is reflected in the fact that the connec
thus defined possesses torsion which is proportional to
extrinsic curvature of the surfaces. Therefore, to obtain
completely intrinsic covariant derivative operator on the h
persurfaces, we define for an arbitrary spinorpC the operator

]ABpC :5DABpC1 1
2 KABC

DpD . ~3.3!

The connection defined by this derivative operator is tors
free and respects the intrinsic metric of the hypersurfac
Thus, it is theSU(2) spin connection of the intrinsic metric
In complete analogy, we define the operator

]pC :5DpC1 1
2 KC

DpD . ~3.4!

This operator defines a connection along the integral cur
of ta which turns out to be the spinorial equivalent of th
Fermi-Walker connection. E.g., a vectorva5vAB is Fermi-
Walker transported along theta curves if]vAB50.

These two operators are real in the sense that they
real fields into real fields, which is obvious from the relatio

]p Ĉ5]p̂C , ~3.5!

]ABp Ĉ52]ABp̂C . ~3.6!

In order to phrase the structure equations in this formu
tion, we need to know about the commutators of these
erators because these define the torsion and the curva
The commutators are given by the formula, valid for an
bitrary spinoraC ,
@],]AB#aC5 1
2 KAB]aC1KAB

EF]EFaC2hABaC1ĥABaC

1 1
2 $]ABKCD2]KABCD2KAB

EFKCDEF1K ~C
EKD)EAB1 1

2 KABKCD} aD ~3.7!

and
2-4
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2]E(A]E
B)aC5hABaC1ĥABaC2$]E(AKE

B)CD2 1
2 KKABCD1 1

2 KEFABKEF
CD1 1

4 eC~AeB)D~KEFGHKEFGH2K2!%aD,
~3.8!
tu

e

e

a-
t

where we have defined the trace of the extrinsic curva
K:5KAB

AB and introduced the curvature derivations

hABaC52CABC
DaD12LeC~AaB) , ~3.9!

ĥABaC52F̂ABC
DaD . ~3.10!

Here, we have used the curvature spinors, i.e., the W
spinor CABCD , the ~space spinor equivalent of the! Ricci
spinor FABCD :5FABA8B8t

A8
CtB8

D and the scalar curvatur
L.

In view of the reality properties of the derivative oper
tors, we find that the commutation relation can be split in
various parts. This yields equations for the spinor fieldsKAB
andKABCD ,
e

am
in
o
e
-
sa
s
b

o
th

oo
c
ra
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]KABCD5 1
2 ~]ABKCD1]CDKAB!1KAB

EFKEFCD

1 1
2 KABKCD1~FABCD1FCDAB!

2~ĈABCD1CABCD!

14LeC~AeB)D , ~3.11!

]C~AKC
B)50, ~3.12!

]E~AKE
B)CD5 1

2 ~CABCD2ĈABCD!2 1
2 ~FABCD2FCDAB!

~3.13!

and simplified commutation relations

@],]AB#aC5 1
2 KAB]aC1KAB

EF]EFaC

1 1
2 KE

~CKD)EABaD2 1
2 ~CABCD2ĈABCD!aD

2 1
2 ~FABCD2FCDAB!aD ~3.14!
2]E~A]E
BaC5$ 1

2 KKABCD2 1
2 KEFABKEF

CD2 1
4 eC~AeB)D~KEFGHKEFGH2K2!} aD22LeC~AeB)DaD

1 1
2 ~CABCD1ĈABCD!aD1 1

2 ~FABCD1FCDAB!aD. ~3.15!
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When acting on functions, these commutators yield

@],]AB# f 5 1
2 KAB] f 1KAB

EF]EFf , ~3.16!

2]E~A]E
B) f 50. ~3.17!

IV. THE EQUATIONS

We are now in a position to give the derivation of th
conformal field equations on the unphysical manifoldM . To
this end, we need to introduce coordinates and a spin fr
with respect to which we express all the spinor fields
volved. Since we have already assumed the existence
family of space-like hypersurfaces, we may now introduc
time coordinatet by requiring that it be constant with non
vanishing differential on the hypersurfaces. Then, neces
ily, we haveta}¹at. Now, we choose arbitrary coordinate
$x1,x2,x3% on M . These coordinates can be characterized
their change along the integral curves ofta, thus defining
lapse function and shift vector.

The choice of frame is probably best described in terms
orthonormal tetrads. On the initial surface, we choose
time-like leg of the tetrad to be proportional tota. Then the
other members are tangent to the surface and we ch
them arbitrarily. To propagate the tetrad off the hypersurfa
we could use the Fermi-Walker transport along the integ
e
-
f a
a

r-

y

f
e

se
e,
l

curves ofta which has the property that it leaves the ang
between vectors constant, while keeping the tangent ve
along the curve fixed. However, this is not the most gene
propagation law with these properties. Any other one w
the above properties differs from the Fermi-Walker transp
law by the addition of a term which involves an infinitesim
rotation. Thus, we fix an arbitrary transport law which leav
angles invariant and fixes the tangent vector to propagate
frame into the full space-time. The infinitesimal rotation i
volved in the transport law determines some of the Ri
rotation coefficients of the tetrad thus obtained.

In terms of spinors, this choice of frame is expressed
follows. On the initial surface, we choose a normaliz
spinor fieldoA , i.e., we haveôAoA51. To complete the spin
frame, we defineiA5ôA . Then the orthonormal tetrad con
structed from this spin frame has the above properties on
initial surface. Now we impose the transport equation in
form

]oA5FABoB, ~4.1!

whereFAB is an arbitrary purely imaginary and symmetr
spinor field. It corresponds exactly to the infinitesimal ro
tion mentioned above. It was already pointed out that] cor-
responds to the Fermi-Walker transport, which is, con
quently, selected by choosingFAB50.
2-5
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The connection is defined by the spinor fieldsKAB and
KABCD , the fieldFAB and finally by the fieldGABCD , defined
by

]ABoC5GABCDoD. ~4.2!

It satisfies the relationsGABCD5G (AB)(CD)52ĜABCD , thus
being purely imaginary.

The frame components with respect to a coordinate b
are usually obtained by applying the vector fields wh
make up the tetrad to the coordinates. Similarly, in
present case: we apply the operators] and]AB to the coor-
dinates

]t5
1

N
, ]ABt50, ~4.3!

]xi52Ti , ]ABxi5CAB
i . ~4.4!

This defines several additional fields onM which fix the
frame in terms of the chosen coordinates. The second e
tion reflects the fact that we have chosen the time-like leg
the tetrad to be the unit normal of the surfaces through
The functionN is the lapse, while the three functionsTi are
closely related to the shift vector which appear in all varia
of 311 decompositions.

To make the relationship between the frame as defi
above and the coordinate basis somewhat more precise
us introduce the 1-formsu, uAB which are dual to the opera
tors ], ]AB considered as vector fields onM . I.e., for any
spinor fieldaAB, we have the relations

^u,aAB]AB&50, ^uAB,aCD]CD&5aAB, ~4.5!

^u,]&51, ^uAB,]&50. ~4.6!

Then the metricg on M when expressed in terms of th
present formalism is simply

g52u ^ u2uAB^ uAB. ~4.7!
th
d
c
ai
k
ia
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We have the following relations between the coordinate d
ferentials and the formsu, uAB:

dt5
1

N
u, dxi5CAB

i uAB2Tiu, ~4.8!

u5Ndt, uAB5Dk
AB~dxk1TkNdt!,

~4.9!

with Dk
AB being the inverse ofCAB

i , i.e.,Dk
ABCAB

i 5dk
i . From

these we get the metric expressed in terms of the frame c
ponents

g52N2dt22Di
ABDABk~dxi1NTidt! ^ ~dxk1NTkdt!.

~4.10!

We now come to the system of equations. To express
first structure equation in terms of the fields defined abo
we apply the commutators to the coordinates which gives
equations

]ABN5 1
2 NKAB , ~4.11!

]~A
CKB)C50, ~4.12!

]CAB
i 1]ABTi52 1

2 KABTi1KAB
EFCEF

i , ~4.13!

]C
~ACB)C

i 50. ~4.14!

The second structure equation is obtained analogously
applying the commutators tooC yielding the evolution equa-
tion for G,

]GABCD5]ABFCD22GABE~DFE
C)1

1
2 KABFCD

1KAB
EFGEFCD1 1

2 KE
~CKD)EAB

2 1
2 $CABCD2ĈABCD%2 1

2 $FABCD2FCDAB%

~4.15!

and the constraint equation
2]E~AGE
B)CD52GE

~B
F

uCuGA)EDF1 1
2 $KKABCD2KEFABKEF

CD2 1
2 eC~AeB)D~KEFGHKEFGH2K2!%22LeC~AeB)D

1 1
2 $CABCD1ĈABCD%1 1

2 $FABCD1FCDAB%. ~4.16!
is
en

the
tum
mal
his
le
The derivation of the equation for the curvature and
conformal factor will be given first using primed an
unprimed spinors. At the end of this section, we will colle
all the equations in the space spinor formalism. To obt
equations for the curvature components, we need to loo
the Bianchi identities. These have the following spinor
form:

¹B8
ACABCD5¹A8

~BFCD)A8B8 ~4.17!

¹BB8FABA8B813¹AA8L50, ~4.18!
e

t
n
at
l

which is valid in any space-time. Since the Weyl curvature
conformally invariant, the first of these equations wh
viewed in the physical space-time takes the form

¹̃B8
ACABCD50, ~4.19!

with ¹̃ being the physical connection. Here we have used
Einstein equation and the fact that the energy-momen
tensor in the physical space-time vanishes. The confor
transformation behavior of the connection implies that t
equation is conformally invariant provided we resca
2-6
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CABCD with the conformal factor in the appropriate wa
Thus, if we define the rescaled Weyl spinor

cABCD5V21CABCD ~4.20!

then we have the equation

¹B8
AcABCD50 ~4.21!

holding on M . Note, thatcABCD is well behaved onM ,
because the Weyl curvature vanishes onJ, where alsoV
50.

Expressing the Bianchi identities~4.17! in terms of the
rescaled Weyl spinor and using the Eq.~4.21! together with
the definition

SAA8 :5¹AA8V ~4.22!

we get an equation for the Ricci spinor

¹B
B8FCDA8B85SA8

EcEBCD12eB~C¹D)A8L. ~4.23!

When these equations are expressed in terms of s
spinors using the operators] and ]AB , they become rathe
long. To simplify them, we decompose every spinor and
ery equation into their irreducible parts, thus obtaining a
of equations which can be further decomposed into real
imaginary parts. The resulting equations will be display
below.

The next set of equations is the definition ofS viewed as
an equation forV and the equation which expresses the c
formal transformation behavior of the Ricci spinor viewed
an equation forSAA8 :

¹BB8SAA852VFABA8B81eABeA8B8S ~4.24!

with S:51/4hV. The final equation is an equation forS
which can be derived from the equations established so fa
reads

¹AA8S52FABA8B8S
BB81V¹AA8L12LSAA8 .

~4.25!

The conformal transformation behavior of the scalar cur
ture implies an algebraic equation

2VS22V2L2SAA8S
AA850. ~4.26!

This completes the derivation of the system of equati
and we now want to present the full list of equations in t
space spinor formalism. The variables for which we have
evolution equation are:N, CAB

i , KAB , KABCD , GABCD ,

EABCD :5 1
2 (cABCD1ĉABCD), BABCD :5(1/2i )(cABCD

2ĉABCD), fABCD , fAB , f, V, S, SAB andS. In this list we
have included the irreducible parts ofFABCD andSAA8 de-
fined by the decompositions

SAA85
1
2 tAA8S2tA8

BSAB , ~4.27!

FABCD5fABCD1 1
2 eA~CfD)B1 1

2 eB~CfD)A

2 1
3 eA~CeD)Bf. ~4.28!
06400
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We have included in this list the lapseN and KAB for
which we do not have an evolution equation yet. This c
easily be achieved by computation of the ‘‘harmonicity fun
tion’’ F:52ht. Expressing the wave operator in terms of]
and ]AB yields the equation forN, while commuting] and
]AB on N gives the evolution equation forKAB .

The evolution equations can be grouped together acc
ing to the geometric meaning of the variables:

The evolution of the frame components

]N52KN2N2F, ~4.29!

]CAB
i 5KAB

EFCEF
i 2]ABTi2 1

2 KABTi .
~4.30!

The evolution of the extrinsic curvature and the accele
tion vector

]KAB12]CDKABCD5KAB
EFKEF2KABK

24fAB22N]ABF2NKABF,

~4.31!

]KABCD2 1
2 ~]ABKCD1]CDKAB!

5KAB
EFKEFCD1 1

2 KABKCD12fABCD

22VEABCD1 2
3 ~6L1f!eC~AeB)D . ~4.32!

The evolution of the intrinsic connection

]GABCD5]ABFCD22GABE~DFE
C)1

1
2 KABFCD

1KAB
EFGEFCD1 1

2 KE
~CKD)EAB2 iVBABCD

2e
„A~CfD)B… . ~4.33!

The evolution of the Ricci curvature

]fABCD2]~ABfCD)5K ~ABfCD)1K ~AB
EFfCD)EF

2 2
3 K ~ABCD!f2SEABCD

12iS~A
EBBCD)E , ~4.34!

]fAB2 2
3 ]ABf1]CDfABCD5 2

3 KABf2fABCDKCD

1 3
2 KABCDfCD2 1

2 KfAB

1EABCDSCD24]ABL,

~4.35!

]f12]ABfAB522KABfAB22KABCDfABCD

1 4
3 Kf22]L. ~4.36!

The evolution of the Weyl curvature

]EABCD22i ]~A
EBBCD)E52iK ~A

EBBCD)E23K ~AB
EFECD)EF

12KABCD ~4.37!
2-7
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]BABCD12i ]~A
EEBCD)E

522iK ~A
EEBCD)E23K ~AB

EFBCD)EF

12KBABCD . ~4.38!

The evolution of the conformal factor

]V5S, ~4.39!

]S52KABSAB2Vf12S, ~4.40!

]SAB5
1

2
KABS2VfAB , ~4.41!

]S5
1

2
fS2fABSAB1V]L12LS. ~4.42!

This completes the list of evolution equations. We need
make several remarks.

The gauge functions in this system are the ‘‘harmonicit
F, the shift functionsTi , the frame rotationsFAB , and the
scalar curvatureL. These eight functions can be chosen
most at will. From the form of the metric, we infer a cond
tion which has to be satisfied by the shift functions. Since
vector] t needs to be time-like, we find the inequality

Dk
ABDABiT

iTk.2. ~4.43!

The full gauge freedom of eleven functions has been redu
to eight because of our fixing of the time-like leg of th
tetrad.

Since the operator] is the directional derivative along th
vector field ta when acting on functions, most of the equ
tions are simple advection equations along that vector fi
This is obvious from the explicit form of] f 5(1/N)] t
2Ti]xi. There are three subsystems for which this is not
case. These are the systems describing the evolution ofKAB
and KABCD , of the Ricci curvature and of the Weyl curva
ture. They will have considerable significance later when
comes to the numerical treatment of the equations at
boundary.

It is a useful property of the space spinor formalism th
the equations automatically come out separated into c
straints and evolution equations and that the evolution eq
tions automatically come out as a symmetric hyperbolic s
tem. This is the case for the above system. As written, it i
symmetric hyperbolic form. The symmetric hyperbolicity
the basic property which allows the proof of existence a
uniqueness of solutions for various initial value proble
see, e.g.@10#.

In a similar way, the constraint equations can be grou
according to their geometric meaning starting with the fra
components

05]ABN2 1
2 KABN, ~4.44!

05]~A
CCB)C

i . ~4.45!

Next are the extrinsic curvature and the acceleration
the time-like unit normal to the surfaces
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05]~A
CKB)C , ~4.46!

05]~A
EKB)ECD1 iVBABCD2e

„A~CfD)B… , ~4.47!

the intrinsic connection

052]~A
EGB)ECD1 1

2 KKABCD2 1
2 KAB

EFKCDEF

2 1
4 eC~AeB)D~KEFGHKEFGH2K2!12GE

~A
F

uCuGB)EDF

2 1
3 eC~AeB)D~f16L!1VEABCD1fABCD , ~4.48!

the Ricci curvature components

05]~A
EfBCD)E2 1

2 K ~ABC
EfD)E2

i

2
BABCD2S~A

EEBCD)E ,

~4.49!

05]CDfABCD1 1
3 ]ABf1 1

2 KABCDfCD

2 1
2 KfAB1SCDEABCD12]ABL, ~4.50!

05]~A
EfB)E1K ~A

CDEfB)CDE2 iSCDBABCD ,
~4.51!

and the constraints for the Weyl spinor

05]CDEABCD2 iK ~A
CDEBB)CDE , ~4.52!

05]CDBABCD1 iK ~A
CDEEB)CDE .

~4.53!

The rest of the constraints is concerned with the conform
factor and its derivatives

05]ABV2SAB , ~4.54!

05]ABS1KABCDSCD1VfAB , ~4.55!

05]ABSCD2 1
2 KABCDS1VfABCD

1 1
6 eC~AeB)D~Vf16S!, ~4.56!

05]ABS1fABCDSCD1 1
2 fABS

2 1
6 fSAB2V]ABL12LSAB . ~4.57!

The final constraint is the algebraic condition mentioned e
lier

052VS22V2L2 1
2 S22SABSAB. ~4.58!

Finally, a note on the name conventions of the vario
spinor components. In the above equations, all the sp
fields are irreducible except for the extrinsic curvature a
the intrinsic three connection which have the decompositi

KABCD5K4ABCD2 1
3 eC~AeB)DK, ~4.59!
2-8



of

bu

hu

t
ts

ev
th
l

ch
e

at
sh
ce
lik
n
ud
w

th
he
n
to

ob
t

so
a
e
a

th
m

th
or
a
be
ri-
m
n-

of
t it
te,
or-
i-

en
to

the
ot

act
nts

en
ality
va-

le.

er,

to
e-
for

de-
ty-

or
-
or
dd

en
va-

n

n of
m.
ar-

en-
al
on
or-

ut
e

ar-
P.

NUMERICAL TREATMENT OF THE . . . . I. . . . PHYSICAL REVIEW D58 064002
GABCD5g4ABCD1 1
2 eA~Cg2D)B1 1

2 eB~Cg2D)A2 1
3 eC~AeB)Dg

~4.60!

with K4ABCD being totally symmetric. The components
the irreducible parts with respect (oA ,iA) are defined as fol-
lows for a four index spinoraABCD

aABCD5a4oAoBoCoD24a3o~AoBoCiD)16a2o~AoBiCiD)

24a1o~AiBiCiD)1a0iAiBiCiD , ~4.61!

and for a two index spinor

aAB5a2oAoB22a1o~AiB)1a0iAiB . ~4.62!

When we have spinors with the same kernel symbol,
different numbers of indices likefAB andfABCD we specify
the number of indices in the name of the components, t
obtaining, e.g.,f40 as a component offABCD andf22 as a
component offAB .

V. THE SYMMETRY REDUCTION

Finally we discuss a simplification which has been used
reduce the resource requirements. Since the main interes
this project are the development of procedures to locateJ, to
extract the radiation information from there and to study s
eral various gauge choices, it is legitimate to assume
existence of a continuous symmetry. This is because to
cateJ as the zero-set of the conformal factor is not mu
more difficult in three dimensions than it is in two. On th
other hand, one needs to have at least two nontrivial sp
dimensions because otherwise the Weyl curvature vani
identically so that there will be no radiation present. Hen
in the sequel we will assume the existence of a space-
Killing field ja in the physical space-time, which in additio
is required to be hypersurface orthogonal. In order to excl
numerical problems with coordinate singularities, we follo
Schmidt@24#, who suggested to look at situations, where
Killing vector has no singular points. This excludes t
physically intuitive axisymmetry which has fixed points o
the axis and leaves us with a completely nonphysical
problem. It also has the implication thatJ no longer has
spherical cross sections, but toroidal ones. These gl
questions are not relevant to local considerations such as
influence of different choices of gauge functions on the
lution or even the question of stability of the numeric
method. They do, however, forcefully come to the fore wh
it comes to defining and interpreting global quantities such
the Bondi mass or the radiation flux. These are issues
have not yet been discussed. We will consider them in so
what more detail in@20#.

We adapt the gauge to the symmetry. First of all,
Killing vector in the physical space-time becomes a conf
mal Killing vector in the unphysical space-time. Choosing
appropriate conformal gauge, we may achieve that it
comes a Killing vector. Then the conformal factor is inva
ant under the symmetry and the conformal gauge freedo
reduced to multiplication with functions which are also i
variant. We assume that the foliation ofM into space-like
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hypersurfaces is compatible with the symmetry, i.e., thatja

is everywhere tangent to the hypersurfaces~i.e., orthogonal
to ta). Next we choose the frame in such a way that one
the space-like legs points along the Killing vector and tha
is invariant under the action of the symmetry group. No
that this restricts the available frame rotation from the
thogonal group to rotations around the Killing vector. F
nally, we take one of the coordinates, sayx3 to be the coor-
dinate along the integral curves of the Killing vector. Th
all components of the geometric quantities with respect
the adapted frame are independent of that coordinate.

These choices can be made irrespective of whether
Killing vector is hypersurface orthogonal or not. They do n
entail much simplification in the equations except for the f
that some frame components and connection coefficie
vanish. In particular, the Weyl curvature still has all of its t
components. However, assuming hypersurface orthogon
simplifies things considerably. This is because it is equi
lent to the existence of a discrete symmetryja°2ja. To
explain the simplification, it is best to consider an examp
Let Cabcd be the Weyl tensor onM . The electric part with
respect to the Killing vectorja is proportional tojajcCabcd
which is symmetric under the discrete symmetry. Howev
the magnetic part with respect toja which is proportional to
jajcCabcd

! changes sign under the symmetry hence it has
vanish. This reduces the Weyl curvature down to five ind
pendent components. Similar consideration can be made
the geometric quantities showing that the number of in
pendent variables reduces from fifty-three down to thir
three.

In the space spinor formalism, we take the Killing vect
to be of the formjAB5jBA}o(AiB). Then the discrete sym
metry implies that the components of almost all of the spin
fields vanish if they are obtained by contraction with an o
number of oA and iA. Only the fieldsFAB , GABCD and
BABCD have a different behavior. For them it is the ev
components which have to vanish. So, e.g., the Weyl cur
ture is described by the five nonvanishing componentsE0,
E2, E4, B1 and B3 in agreement with the argument give
above.

VI. CONCLUSION

The purpose of the present article was the presentatio
the conformal field equations in the space spinor formalis
This paper is intended to serve as a reference for future
ticles which are intended to discuss the numerical implem
tation of this set of equations for solving the hyperboloid
initial value problem. We have discussed the simplificati
obtained from assuming the existence of a hypersurface
thogonal Killing vector field.
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@11# P. Hübner, Phys. Rev. D53, 701 ~1996!.
@12# N. T. Bishop, inApproaches to Numerical Relativity, edited by

R. d’Inverno ~Cambridge University Press, Cambridge, E
gland, 1993!.

@13# N. T. Bishop, R. Go´mez, R. A. Isaacson, L. Lehner, B. Szila
and J. Winicour, inOn the black hole trail, edited by B. Iyer
~Kluwer Academic, Dordrecht, 1998!.
06400
@14# C. J. S. Clarke and R. A. d’Inverno, Class. Quantum Grav.11,
1463 ~1994!.

@15# R. A. d’Inverno and J. A. Vickers, Phys. Rev. D56, 772
~1997!.

@16# R. Gomez, P. Laguna, P. Papadopoulos, and J. Winicour, P
Rev. D54, 4719~1996!.

@17# R. Gomez, R. L. Marsa, and J. Winicour, Phys. Rev. D56,
6310 ~1997!.

@18# A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. J.
York, Class. Quantum Grav.14, A9 ~1997!.

@19# H. Friedrich, J. Diff. Geom.34, 275 ~1991!.
@20# J. Frauendiener, following paper, Phys. Rev. D58, 064003

~1998!.
@21# R. Penrose and W. Rindler,Spinors and Spacetime~Cam-

bridge University Press, Cambridge, England, 1986!, Vol. 2.
@22# R. Penrose, Proc. R. Soc. LondonA284, 159 ~1965!.
@23# P. Sommers, J. Math. Phys.21, 2567~1980!.
@24# B. G. Schmidt, Class. Quantum Grav.13, 2811~1996!.
2-10


