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Numerical treatment of the hyperboloidal initial value problem for the vacuum
Einstein equations. I. The conformal field equations
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This is the first in a series of articles on the numerical solution of Friedrich’s conformal field equations for
Einstein’'s theory of gravity. We will discuss in this paper why one should be interested in applying the
conformal method to physical problems and why there is good hope that this might even be a good idea from
the numerical point of view. We describe in detail the derivation of the conformal field equations in the spinor
formalism which we use for the implementation of the equations, and present all the equations as a reference
for future work. Finally, we discuss the implications of the assumptions of a continuous symmetry.
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I. INTRODUCTION He introduced the notion of a conformal extension by which

_ _ _ a Lorentz manifold §1,g) is embedded into a bigger mani-
Much of the current work in numerical and experimentalfg|q (M,g) with isomorphic conformal structure, but with a

relativity is devoted to obtaining information about the gravi- Lorentz metric which differs frong by a positive facto

tational radiation that is emitted by astrophysical processes

205 :
which are taking place in our universe. The goal is to obtain g. The idea was to study the global conformal proper-

wave forms, i.e., the “finger prints” by which different pro- ties of Minkowski space IP order to obtain zi criterion for
hat one should call an “asymptotically flat” space-time.

cesses can be identified when the gravitational waves an? ided by the Minkowski situati P ted that
detected by laser interferometers such as the Laser Interfer uided Dy the Vinkowski situation, menrose suggested tha
such space-times allow the attachment of a conformal

'Injr?emgo(rgnrri\g;at\l/sgsl t\évz\éicagze;\;agﬁfgi?s)tgrrnv\:viﬁg'Ein_boundaryj which is characterized by the vanishing of the
- L . o conformal factor(). This boundary is a regular null hyper-
stein's theo_ry of gravity Is by way of an idealization, where surface in the ambient unphysical manifold. It can be inter-
the system is con5|dered as being so far away from the rest Bfeted as the points which are at infinity for the physical

the universe that the_lnfluer_lce of the Iatfcer_ can be n_egle_cteﬁganifmd along null directions.
(cf. [1] for a clear discussion of what is involved in this  The guestion arises as to what extent this geometric pic-
procesg Then, intuitively, the fields far away from the yyre is compatible with the Einstein equations. Friedrich
source should decay so that the space-time becomes asymjuld derive a system of equatiof8, the “conformal field
totically flat. The detectors are then idealized as observergquations,” which are defined on that larger unphysical
which are located “at infinity,” where they can gather the manifold. Furthermore, a solution of the conformal field
gravitational radiation coming from the system. equations gives rise to a solution of the standard field equa-
Isolated gravitating systems and the structure of their “fartions on the physical space-time. This system is written in
fields” have been investigated for a long time because oterms of geometric quantities of the unphysical manifold and
their importance for the interpretation of measurements. Ahe conformal factof) and it is regular everywhere even at
series of articles which heavily influenced the way we look atpoints where& vanishes. In a usual-81 decomposition, the
the subject today was published in the early 1960s. In theseonformal field equations split into constraint equations and
articles various important contributions were made: theevolution equations. Using this system of equations,
“peeling property” of the Weyl tensof2], the idea of ana- Friedrich was able to reduce the asymptotic characteristic
lyzing the vacuum field equations on outgoing null hypersur4nitial value problem for the Einstein equations, where data
faces resulting in the Bondi mass loss form[8a4], the in-  are given on a part afpas} null infinity and an ingoing null
vention of the Newman-Penrog®\P) formalism and the hypersurface which intersects null infinity in a two-
proposal for considering the vacuum Bianchi identity as adimensional surface to a characteristic initial value problem
field equation for the Weyl tensdb] and the asymptotic for a symmetric hyperbolic systef8].
solution of the Einstein vacuum equatidiig. Assuming that In order to describe a physical situation, one would like to
certain components of the Weyl curvature fall-off in a spe-prescribe initial data for the conformal field equations on
cific way, it was found by formal power series analysis of thesome initial space-like hypersurface and determine from
asymptotic characteristic initial value problem that the fall-them the future of the system. Ideally, the data should be
off behavior of the fields along null directions could be char-given on an asymptotically flat space-like surface. It does
acterized in terms of certain special coordinate systemturn out that the initial data for the conformal field equations
whose existence was presupposed. Finally, it was realized bgn such a hypersurface are necessarily singular because the
Penrosd 7] that these fall-off conditions as well as the peel- conformal structure of space-time is singulai4twhenever
ing property could be understood in a purely geometric waythe Arnowitt-Deser-MisnefADM) mass is nonzer¢see[9]
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for a new approach towards the solution of this problem rior of the space-time. The numerical procedure for solving
Therefore, the initial data are given on a space-like hypersurthe characteristic initial value problem is relatively simple
face which intersectgy transversely in a two-dimensional compared to the Cauchy problem which is due to the fact
surface. Such hypersurfaces are called hyperboloidal suthat the equations split into hypersurface equations, which
faces because they behave like spaces of constant negatiaee essentially ordinary differential equations and one evolu-
curvature in the neighborhood af. Friedrich [10] has tion equation. Three further equations, the so called “conser-
shown that the Cauchy problem for data given on such hyvation equations,” have to be satisfied gh The problem
persurfaces, the hyperboloidal initial value problem, is wellwith this approach is the fact that null hypersurfaces invari-
posed, i.e., given smooth initial data which solve the con-ably tend to form caustics, places where the hypersurface
straints then there exists a solution of the evolution equationiitersects itself so that it becomes impossiloieat least very
in some neighborhood of the initial surface. If the data aredifficult) to give unambiguous initial data. The stronger the
close enough to Minkowski data, then the future developfields are, the earlier the caustics will appear.
ment is complete in the sense that there exists a regular point The last alternative, commonly called the Cauchy-
i whose past light cone coincides with characteristic matchingCCM) procedure(probably going
The fact that the domain of dependence of the initial hy-back to[12]), has been intensely studied by various groups
perboloidal hypersurface includes the complete physica¢f. [13—15. The idea is to combine the two previous ap-
space-time in the future allows the study of global phenom{proaches without their respective disadvantages. The proce-
ena like the behavior of horizons and the causal structure diure is roughly to divide the physical space-time by a time-
singularities. But also, since one has access to null infinitylike world tube7 and to evolve the inner part by solving a
where gravitational radiation is registered, one can in prinCauchy problem. The exterior @fis evolved by solving the
ciple “extract” the radiative information by purely local ma- characteristic initial value problem based on outgoing null
nipulations from the fields “on7.” This suggests that the hypersurfaces connecting the world tube with null infinity.
hyperboloidal initial value problem is an appropriate deviceAn initial hypersurface for the combined problem consists of
for examining these issues. The goal of the present work ig space-like hypersurfacgwith a boundarywhich indicates
the investigation whether the conformal field equations, andhe intersection ofS and7) together with the outgoing null
in particular, the hyperboloidal initial value problem, can hypersurface emanating from the boundary. Obviously, at
provide an effective numerical tool for analyzing the globalthe interface, where the initial hypersurface changes its
structure of asymptotically flat space-times and for obtainingcausal character from space-like to null, there is a non-
information about the gravitational radiation emitted by thedifferentiable kink. The great challenge is to implement nu-
system in question. The starting point for this investigationmerically the information exchange across that kink. This
was the work by Hhner[11] who was able to demonstrate problem has been solved in various simpler circumstances,
the feasibility of that approach in the spherically symmetricsee, e.g[16,17.
case of gravity coupled to a scalar field. When viewed in the unphysical space-time, the initial sur-
There are various other numerical approaches towardice for the CCM procedure intersect§ in a two-
these problems based on the numerical solution of the stagimensional “cut.” Now consider a space-like hypersurface
dard field equations, either in terms of a Cauchy problem, & which also goes through that same cut. It is clear that this
characteristic initial value problem or a combination of both.surface is a hyperboloidal hypersurface. Its domain of depen-
The first two alternatives both have some problems. Thelence is the same as that of the Cauchy-characteristic hyper-
standard Cauchy problem cannot provide complete globadurface. The region off which can be described is the same
information because one has to cut off the initial data surfacén both cases. One advantage of evolving with the conformal
and provide boundary data on a time-like hypersurfacdield equations is certainly the fact that the causal character
which intersects the initial surface in a two-dimensional sur-of the foliation does not change so that there is no interface
face. The boundary data change the solution in their domaiand no need to change the evolution algorithm. Another ad-
of influence and hence, if the boundary data are unphysicaljantage is that one can go smoothly througtvhich allows
so will be the solution. Even if the boundary conditions areone to keep7 in the interior of the grid in order to avoid
physical, the radiation data obtained are still only approxi-numerical influences from the grid boundaries. There are
mate because the boundary is not at infinity. Only theremore equations to solve in the case of the conformal field
radiation can unambiguously be defined. Therefore, as a magquations than there are in standard ADM-like formulations.
ter of principle, the standard Cauchy problem can providdn the particular formulation of the conformal field equations
only approximate radiation information. In the hyperboloidal which is put forward here, there are fifty-three variables for
problem, there is only one idealization involved, namely, thathe full three dimensional case. This might be considered as
of how an isolated system is to be described. a drawback. However, there are recent formulations of the
The characteristic initial value problem, on the otherEinstein equations as hyperbolic systg8] which have to
hand, can be put to good use in the neighborhood7of introduce many additional variables so that the resulting sys-
Space-time is foliated by outgoing null hypersurfaces andem is comparable in size to the system of conformal equa-
one can perform a conformal transformation to obtain aions. Furthermore, the quantities in the latter system which
problem, where null infinity is at finite places. This is one are evolved in addition to the spatial metric and the extrinsic
boundary for the outgoing initial null hypersurface. The curvature in the standard case have a geometric meaning
other boundary is located someplace not too far in the intetRicci- and Weyl tensor componehtand any code which
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aspires to analyze the space-time structure needs to computiewed as an equation for the components of the chosen
those quantities anyway. tetrad with respect to the chosen coordinates.

This present article is meant to be the first in a series of The second structure equation which relates the Ricci ro-
papers on the numerical treatment of the conformal vacuurmtion coefficients of the connection to the curvature compo-
field equations. In this paper, we derive the conformal fieldnents. It can be viewed as an equation for the connection
equations in a formalism using space spinors. Although thi%omponents with respect to the chosen tetrad.

has been dqne preV|ou§J${9], we _present the equauons_here The Bianchi identity fora. This is an identity which re-
in a form suitable for our immediate purposes, the main rea- - ) o
son being to establish a common notation and for referencé@tes the .derE/a-tlves of the physmal- Riccl z-and.the Weyl cur-
The space spinor formalism has the advantage that the equ¢ature. SinceM is a vacuum space-time, this yields an equa-
tions can easily be decomposed into evolution and constraitton for the physical Weyl curvature. Expressing this
parts and that the evolution part comes out automatically ifquation in terms of the unphysical connection yields an
symmetric hyperbolic form. Furthermore, the equations carequation for the rescaled Weyl curvaturéd ,pq
be written in a more compact form and the possibility of =Q~1C_,.q, Which looks formally like the familiar spin-2
decomposing spinor fields into their irreducible parts can beero rest-mass equation.
used to remove any redundancy from the set of unknowns. The Bianchi identity forg. Again, this is a relation be-

In the second articlg20], we present the numerical treat- tween the derivatives of the Ricci and the Weyl curvature,
ment of the evolution part with the additional assumption ofput now on the unphysical space-time. Using the equation of

a symmetry and in the third, we want to discuss the solutionhe rescaled Weyl curvature, this identity yields an equation
of the constraint equations. The conventions used throughotér the unphysical Ricci curvature.

this work are those of Penrose and Rind[2t]. Equations for the conformal factd® and its derivatives
obtained from the conformal transformation law for the Ricci
Il. THE CONFORMAL FIELD EQUATIONS curvature.

i ) ) o An equation for the functiors: = 31, which is a con-

In _thls section we want to give a der_lvatlon of_the conf(_)r— sequence of the earlier equations.
mal field eq_uatlons _and a brief discussion of their properties. Because of the geometric origin of these equations, there
Apart from introducing the necessary background on the hyis gauge freedom in this system. Several variables can be
perboloidal initial value problem, this section also serves as gnosen freely. Apart from the coordinates, this is true also for
reference to the actual equations used in the code. the tetrad which is fixed by the metric only up to Lorentz

An essential ingredient in this approach towards the exyransformations and for the conformal factor, which is fixed
amination of global properties of space-times is the notion ofy the conditions above up to multiplication with a strictly
a conformal transformation. LetM,g) be a Lorentz mani- positive functionQ+— 6, where >0 on M. This allows
fold with vanishing Einstein tensgwe will assume through- the free choice of eleven functions, the gauge source func-
out that the cosmological constant vanighesssume that tions, which can be fixed in numerous ways. It is here where
this “physical space-time” is such that the following condi- the development of a code to evolve space-times turns into
tions hold: there exists a Lorentz manifoldi(g) with an art.
boundary7 and a function on M such that)=0 on M The essential property of the above system is the follow-
andQ =0, dQ+#0 onJ, the physical manifold can be iden- ing: With the gauge source functions fixed as arbitrary func-
tified with the interior ofM and there the equatiog=Q?g  tions of the coordinates, the system can be decomposed by a
holds. usual 3+ 1 splitting into two separate systems with respect to

These conditions state that the physical manifold is con@ given foliation of space-like hypersurfaces. The first of
formal to the interior of the “unphysical” manifoldM. The  those, the constraints, is intrinsic to the space-like hypersur-
points on the boundarw can be thought of as representing faces and therefore it restricts the values of the variables
the points ofM which are “at infinity” with respect to the there. The sec_o_nd part, the ev_olution equ_ations, can b(_a writ-

. S~ I . ten as a quasi-linear symmetric hyperbolic system. This has

physical r_netncg. With t_he vanishing of the cosmological the consequence that the Cauchy problem for this system is
constant, it follows that7 is a regular null hypersurface M

hich th | ishéaithouah this i | well posed: given initial data for the unknown functions on a
on which the W_ey curvature vanishesithough this is on2y space-like hypersurfac® then in a neighborhood &, there
strictly proven in the case, wherg has the topologys

will exist a solution of the system acquiring the prescribed

xR [22)). values onS. It turns out, that once the constraints are satis-

The conformal field equations can now be obtained fronYjoy o the initial hypersurface, they will be satisfied every-
the basic geometric equations &A and M, the Einstein  where by virtue of the evolution equations, they are propa-
equation which holds oM, and the conformal transforma- gated by the evolution. Therefore, given initial data which
tion properties of the geometric fields. In view of the numeri-satisfy the constraints, then they will evolve into a solution
cal application, it is advantageous to have a first order sysef the conformal field equations.
tem. This is easily achieved by using a frame formalism. The If M is such that the initial hypersurfacand 7 intersect
system then consists of the following equations. transversely in a regular compact two-dimensional surface,

The first of Cartan’s structure equations, which expressethen one can talk about the hyperboloidal initial value prob-
the fact that the connection dl is torsion free. It can be lem. The standard example for such “hyperboloidal” sur-
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faces are the conformal images of the space-like hyperbageneral procedure we will follow is to write the equations in
loids in Minkowski space in the usual conformal picture. Thespinorial form, then convert to space spinors, and finally de-
fact that S and 7 intersect in the unphysical space-time compose them into irreducible parts.

means in physical terms that the space-like surface extends The derivative oft**" gives rise to two important spinor
out to null infinity. Thus, such surfaces are not Cauchy sur
faces for the standard Cauchy problem for the Einstein equ
tions in the physical space-time.

-ﬁelds,KAB:tA,BDtAAr andKABCD:tC,DDABtCCI . NOte the
as'ymmetry and reality properties of these fields;z=K ag)

In summary, the conformal field equations allow a well- = ~Kae and Kagco=K(ag)cp)=Kasco- Geoméetrica_lly,
posed initial value problem on space-like hypersurfaces ik a8 cqrresponds to the acceleration V(?th_)rt_f Wh'le_
the unphysical space-time whose physical “pre-images” exasco iS related to the geometry of the distribution defined
tend asymptotically towards null infinity. Initial data which bX\ ta=0. This distribution is integrable if and only if

. . . . — a;
satisfy the constraints evolve into a solution of the complete<” (8p)a=0. Thent® is hypersurface orthogonal amthgcp
system. corresponds to the extrinsic curvature of the orthogonal sur-

faces.

We will assume, henceforth, th&t is hypersurface or-
thogonal. Hence, the covecthyis proportional to the conor-

In this section we briefly introduce the basic formalismmal of the space-like hypersurfaces given Q0. Then,
used to write down the equations and to separate them intine derivativeD g is the so called Sen-Witten connection
the evolution and constraint part. This can very convenientlyhich plays an important role in various areas of general
be achieved using the space spinor formalj&3), which in  relativity. It is not completely intrinsic to the hypersurfaces,
addition allows writing(and coding the equations in a more but contains information about the embedding of the surfaces
compact form. in space-time. This is reflected in the fact that the connection

The essential ingredient in the space spinor formalism is ¢hus defined possesses torsion which is proportional to the
time-like vector fieldt? which is normalized byt,t®=2  extrinsic curvature of the surfaces. Therefore, to obtain a
(note, that we use throughout the conventiond2f]). In  completely intrinsic covariant derivative operator on the hy-
terms of spinors, we havi®=t**" andt,.t®” = €,B. The  Persurfaces, we define for an arbitrary spingrthe operator
existence of this vector field allows the conversion of all
primed spinor indices to unprimed ones by extension of the

map 7> math 4 to the full spinor algebta. E.g., any Co- Tne connection defined by this derivative operator is torsion
Vector v,=vaa IS mapped tovag=vaat” g. Note, that free and respects the intrinsic metric of the hypersurfaces.
this spinor can be decomposed into irreducible partgs  Thus, it is theSU(2) spin connection of the intrinsic metric.
=1/2 epgv +vag, Wherev ag=vga. In terms of the original  In complete analogy, we define the operator

covector, these parts correspond to the components élong _ 1, b
v=t%,, and orthogonal ta?. dmc:=Dmct 3K 7p. (3.4

AA’ : ;
_ The vectort™ can be used to define a complex conjuga-This operator defines a connection along the integral curves
tion map on the algebra of unprimed spinors by extension of¢ ta \hich turns out to be the spinorial equivalent of the

the mapma—ma:=ta" ma to the full algebra. Note, that Fermi-Walker connection. E.g., a vectof=y"8 is Fermi-
7a,..a=(=1)"ma .. An even valence spinor Walker transported along thé curves if 5u*®=0.
These two operators are real in the sense that they map

real fields into real fields, which is obvious from the relations

Ill. SPACE SPINORS

Inemc:=Dagmct 5Kapc mp - (3.3

. ™ _(_ n
TA, .. Ay, |§ cglled real, |f7-rAl___A2n—( 1) TA, .. Ay
The derivative operato¥ on M can be decomposed as

follows: Jme=dmc, (3.5
Vaa=3taaD—ta®Dag, (3.2) .
TABTIC= ~ JaBTC - (3.9

or, equivalently,
In order to phrase the structure equations in this formula-
tA' gV an =2 €asD +Dpg, (3.2  tion, we need to know about the commutators of these op-
erators because these define the torsion and the curvature.
where D:=t2V, and DAB:tA'(BVA)A, are the parts which The commutators are given by the formula, valid for an ar-
act along and perpendicular t8, respectively. Thus, the bitrary spinorac,

[9,dnslac=3Kagdac+Kag™ depac—Oapac+Uagac

+3{9a8Kcp— IKapcp— KagE Kepert K(CEKD)EAB+ 3KagKcep} P (3.7
and
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2f9E(Af9EB)CYC: Uasact DAB“C_{aE(AKEB)CD_ 5KKagcpt 5KerpaaKE cp+ %€C(A€B)D(KEFGHKEFGH_ K?)}a®,

(3.8
|
where we have defined the trace of the extrinsic curvature K agco= 2 (IpsKep+ dcpKap) + KagE Keren
K:=K"B,g and introduced the curvature derivations .
+3KaeKep+ (Pagcot Pepas)
Oapac=—Yapcap+2Aecpap, (3.9 — (¥ agcot Yasco)
+4A€C(A€B)D y (311)
Oasac=—Pasc ap - (3.10 dcaKg)=0, (3.12

Here, we have used the curvature spinors, i.e., the Weyl aE(AKEB)CD:%(\PABCD_WABCD)_%((DABCD_(DCDAB)
spinor ¥ agcp, the (space spinor equivalent of th&icci (3.13
spinor ® agcp:=Papapt? ct? p and the scalar curvature and simplified commutation relations

A.

In view of the reality properties of the derivative opera-
tors, we find that the commutation relation can be split into
various parts. This yields equations for the spinor fiddds
andKagco, —3(Papcp— Pcpan)a® (3.19

[0,9aslac=3Kapdac+Kag™ derac

1 E D_1 ) D
+ K5 cKpyeas?” = 2(VYagco— VYascD) @

2f7E(A(7EBCYc:{%KKABCD_ %KEFABKEFCD_ %GC(AGB)D(KEFGHKEFGH_ Kz)} aP— ZAGC(AEB)Da’D

+3(Vapcot Vascp) aP+ 5(Pagcot Pepas) a. (3.19
|
When acting on functions, these commutators yield curves oft? which has the property that it leaves the angles
between vectors constant, while keeping the tangent vector
[9,9ap]f= 2K agdf + KapFFogef, (3.1  along the curve fixed. However, this is not the most general
propagation law with these properties. Any other one with
2905y f=0. (3.17  the above properties differs from the Fermi-Walker transport

law by the addition of a term which involves an infinitesimal

rotation. Thus, we fix an arbitrary transport law which leaves
IV. THE EQUATIONS angles invariant and fixes the tangent vector to propagate the
frame into the full space-time. The infinitesimal rotation in-

We are now in a position to give the derivation of the ; ) .
conformal field equations on the unphysical manifild To VOIVE.’d in the_ transport law determines some of the Ricci
ré)tatlon coefficients of the tetrad thus obtained.

this end, we need to introduce coordinates and a spin fram In terms of spinors. this choice of frame is expressed as
with respect to which we express all the spinor fields in-]c I on th pinor ’I f h P lized
volved. Since we have already assumed the existence of g'ows.. nt ? Initial ‘surface, we choose a norma '?e
family of space-like hypersurfaces, we may now introduce &Pinor fieldoy, i.e., we have”0,=1. To complete the spin
time coordinate by requiring that it be constant with non- frame, we define,=0,. Then the orthonormal tetrad con-
vanishing differential on the hypersurfaces. Then, necessastructed from this spin frame has the above properties on the
ily, we havet,=V ,t. Now, we choose arbitrary coordinates initial surface. Now we impose the transport equation in the
{x},x2,x3} on M. These coordinates can be characterized bjorm
their change along the integral curves t8f thus defining
lapse function and shift vector. dop=F pg0°, (4.7)

The choice of frame is probably best described in terms of
orthonormal tetrads. On the initial surface, we choose thevhereF g is an arbitrary purely imaginary and symmetric
time-like leg of the tetrad to be proportional t& Then the  spinor field. It corresponds exactly to the infinitesimal rota-
other members are tangent to the surface and we choosen mentioned above. It was already pointed out thabr-
them arbitrarily. To propagate the tetrad off the hypersurfaceresponds to the Fermi-Walker transport, which is, conse-
we could use the Fermi-Walker transport along the integrafjuently, selected by choositg,g=0.
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The connection is defined by the spinor fieldgg and  We have the following relations between the coordinate dif-
Kagcp, the fieldF 55 and finally by the field sgcp, defined  ferentials and the forms, 5.

by L
—_ i_ i AB__ i
9ap0c=T"agcpoP®. (4.2) dt= N 0, dx'=C,g0 T'6, (4.9
It §atisfieS the rela..tionEABCD:F(AB)(CD): _fABCD! thUS 6= th, GAB: DCB(ka‘F Tkth),
bE|ng pUrEIy imaginary. (49)

The frame components with respect to a coordinate basis _ _ _
are usually obtained by applying the vector fields whichwith D{® being the inverse o€}z, i.e.,Di2Clg= 6} . From
make up the tetrad to the coordinates. Similarly, in thethese we get the metric expressed in terms of the frame com-
present case: we apply the operatérand d,g to the coor-  ponents

dinates . )
g=2N?dt?— D#*BD pg(dX + NT'dt)® (dx*+ NTdt).

1 (4.10
ot= N, &ABt= O, (43)
We now come to the system of equations. To express the
oxi=—Ti f?ABXi=CiAB- (4.4 first structure equation in terms of the fields defined above,

we apply the commutators to the coordinates which gives the

This defines several additional fields &M which fix the ~ €duations
frame in terms of the chosen coordinates. The second equa- 9.aN=LINK (4.19)
tion reflects the fact that we have chosen the time-like leg of ABTTT 2T AR '
the tetrad to be the unit normal of the surfaces throughout. 9(nKg)c=0, (4.12
The functionN is the lapse, while the three functiom$ are
closely related to the shift vector which appear in all variants aCL\B+ T =— 1KgT' + KABEFCiEF , (4.13
of 3+1 decompositions.

To make the relationship between the frame as defined &C<ACiB)c=0- (4.14

above and the coordinate basis somewhat more precise, let
us introduce the 1-form8, #*8 which are dual to the opera- The second structure equation is obtained analogously by
tors 9, dag considered as vector fields dvi. l.e., for any  applying the commutators @ yielding the evolution equa-

spinor field B, we have the relations tion for I,
(0,a"Bopg)=0, (0°B,a®Pocp)=a”B, (4.5 T apco=asFco— 2l agepF o)+ 2KasFcp
(6,0)=1, (6*8,3)=0. (4.6) +Kag™ Tercot 2K (cKpjeas
Then the metricg on M when expressed in terms of the ~3{¥asco~ Vascol ~ H{Pasco~ Peoas)
present formalism is simply (4.15
9=260 0— O,5® 0B, (4.7  and the constraint equation

2<9E(AFEB)CD: ZFE(BF\C|FA)EDF+ 3{KKapco— KerasK= cp— %EC(AGB)D(KEFGHKEFGH_ K2)}— 2A€éc(n€r)p

+3{¥ascot Yascol + 2 {Pascot Pcoas)- (4.16

The derivation of the equation for the curvature and thewhich is valid in any space-time. Since the Weyl curvature is
conformal factor will be given first using primed and conformally invariant, the first of these equations when
unprimed spinors. At the end of this section, we will collectviewed in the physical space-time takes the form
all the equations in the space spinor formalism. To obtain

equations for the curvature components, we need to look at Ve AV agcp=0, (4.19
the Bianchi identities. These have the following spinorial
form: with V being the physical connection. Here we have used the
, Einstein equation and the fact that the energy-momentum
Ve "W agco=V" (5Pcpyarer (417  tensor in the physical space-time vanishes. The conformal
transformation behavior of the connection implies that this
VBB D ppap +3Van A=0, (4.189  equation is conformally invariant provided we rescale
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V¥ agcp With the conformal factor in the appropriate way.
Thus, if we define the rescaled Weyl spinor

Yapco=0Q "Wapco (4.20
then we have the equation
Ve Yascp="0 (4.21

holding on M. Note, that¢agcp is well behaved onM,
because the Weyl curvature vanishes @nwhere also()
=0.

Expressing the Bianchi identitig@.17) in terms of the
rescaled Weyl spinor and using the E4.21) together with
the definition

EAAr :ZVAAIQ (422

we get an equation for the Ricci spinor

VBB’(I)CDA’B’ :EA'El/fEBCD"‘ ZEB(CVD)A/A- (4.23

When these equations are expressed in terms of space

spinors using the operatorsand dag, they become rather

PHYSICAL REVIEW D58 064002

We have included in this list the lap9¢ and K,g for
which we do not have an evolution equation yet. This can
easily be achieved by computation of the “harmonicity func-
tion” F:=2[]t. Expressing the wave operator in termsdof
and d,g Yields the equation foN, while commutingd and
dag ON N gives the evolution equation fd€,g.

The evolution equations can be grouped together accord-
ing to the geometric meaning of the variables:

The evolution of the frame components

IN=—KN—NZ?F, (4.29
IChg=Kas""Crr— dasT — 3KagT'.
(4.30

The evolution of the extrinsic curvature and the accelera-
tion vector

IK agt29°PK apcp=KapF Ker— KagK
—4ppg— 2NdpgF —NKpF,

long. To simplify them, we decompose every spinor and ev-

ery equation into their irreducible parts, thus obtaining a set

of equations which can be further decomposed into real and

imaginary parts. The resulting equations will be displayed

below.
The next set of equations is the definitiondfviewed as

an equation fof) and the equation which expresses the con-

(4.3)
K agcp— 3 (asKcpt dcpKas)
=Kae" Kercot 3KaeKep+2dasco
—20Epgcpt 5(6A+d)ecacpyp.  (4.32

The evolution of the intrinsic connection

formal transformation behavior of the Ricci spinor viewed as

an equation fopp :

(4.29
with S:=1/40Q). The final equation is an equation f&

VBB’EAA’: _Q(DABA!B!+ EABEA!B!S

which can be derived from the equations established so far.

reads

VAA’S: _(I)ABA’B’EBB, +QVAA’A+2A2AA’ .
4.25

The conformal transformation behavior of the scalar curva-

ture implies an algebraic equation

205 202N -3 0 3A =0, (4.26

This completes the derivation of the system of equations

I’ Aco=asFcp— ZFABE(DFEC)+ 3KasFco
+Kag" Tercot 3KEcKpyeas—1Q2Bagcop

(4.33

It —€ncPo)B)-

The evolution of the Ricci curvature

dPasco— dasdco)=KasPco) K(ABEF¢CD)EF
—2Kagco)®—2Easco

+2i2(AEBBC|3)Ey (4.39

cD _ cb
Ipag— 59+ I°Chapco=5Kap®— PascoK

3 CD 1
+3Kagcpd " —2Kdas

and we now want to present the full list of equations in the

space spinor formalism. The variables for which we have an

evolution equation areN, CiAB, Kag, Kascos I'ascp,

Eascp: = 3 (¥asco™ YascD): Basco: = (1/2)(¥asco
—ageD) Pasco: Pag, ¢, Q, 2, 2 andsS. In this list we
have included the irreducible parts ®agcp and > 54 de-
fined by the decompositions

San=3tan S —ta B3,

(4.27

_ 1 1
D agcp™ Pascot 2 €acPp)eT 2 €B(CPD)A

(4.28

1
_§€A(CGD)B¢-

+Eapco> P —4dapA,

(4.35
I+ 20ppd"P= — 2K pgp"B—2K"B P rpcp
+3Kp—20A. (4.36

The evolution of the Weyl curvature

JEagcp—2i a(AEBBCD)E: ZiK(AEBBCD)E_ ‘?’K(ABEFECD)EF
+2KagcD (4.39
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IBagcpt 2id(aA"Egcp)e 0=3(x°Kpyc, (4.49
— _oix E EF .
__ZIK(A EBCD)E_3K(AB BCD)EF O:a(AEKB)ECD—’_IQBABCD_ E(A(C¢D)B)! (447)
+2KBagco- (4.38 the intrinsic connection

The evolution of the conformal factor . ) . e
0=29 o Tg)ecot 2KKagcp— 2Kas™ Kcper

IN=3, (4.39
B - %GC(AGB)D(KEFGHKEFGH_ K2)+2FE(AF\C|FB)EDF
92 =—Kpp2""—Q¢+2S, 4.4
AB ¢ (440 —3€ecaepp(p+6A)+QEapcpt Pasco: (4.48
1 . .
I3 pp= EKABE —Qdnp, (4.41) the Ricci curvature components
1 _ 4 E _1 E _ _ E
9S= §¢E_ ¢ABEAB+Q§A+2AE. (4.42) 0 A d’BCD)E 2K(ABC ¢D)E 2 Basco 2(A EBCD)E!
(4.49
This completes the list of evolution equations. We need to
make several remarks. 0=3papcot 39a8P+ 1Kagcpd "
The gauge functions in this system are the “harmonicity” . cb
F, the shift functionsT', the frame rotation$ ,5, and the —2K¢apt 2" Enpcot 20a8A, (4.50

scalar curvaturél. These eight functions can be chosen al-
most at will. From the form of the metric, we infer a condi- 0=0s"¢g)e+ K a“PFbg)cpe—i 2 PBagco,
tion which has to be satisfied by the shift functions. Since the (4.5

vector d, needs to be time-like, we find the inequality ) .
and the constraints for the Weyl spinor

D BD g T TF>2. (4.43
0=3°PEAgcp— K (a°PFB , 4.5
The full gauge freedom of eleven functions has been reduced ABCD TTMA - PB)CDE (4.52
to eight because of our fixing of the time-like leg of the o  cbE
tetrad. 0=0""BagcoT K~ Eg)cpE-
Since the operataft is the directional derivative along the (4.53

vector f|e|d_t when acting on fun_ct|ons, most of the €qUa” e rest of the constraints is concerned with the conformal
tions are simple advection equations along that vector f'eldfactor and its derivatives

This is obvious from the explicit form ofyf=(1/N)d;
—T'd,i. There are three subsystems for which this is not the

case. These are the systems describing the evolutiét, gf 0=0a8— 2 pe, (4.59
andK gcp, Of the Ricci curvature and of the Weyl curva-
ture. They will have considerable significance later when it 0=0a82 +Kapcp2 P+ Qdag, (4.55
comes to the numerical treatment of the equations at the
boundary. _ 1

It is a useful property of the space spinor formalism that 0=0dag2co~ 2Kagco + 2 ¢asco
the equations automatically come out separated into con- +3ecaep)p(Qg+69), (4.56

straints and evolution equations and that the evolution equa-

tions automatically come out as a symmetric hyperbolic sys- _ cD. 1

tem. This is the case for the above system. As written, it is in 0=0a8S+ daBcD> " T 2 Pap>

symmetric hyperbolic form. The symmetric hyperbolicity is — 13 05— QdppA +2A3 A5. (4.57)

the basic property which allows the proof of existence and

unigueness of solutions for various initial value problemsThe final constraint is the algebraic condition mentioned ear-

see, e.g[10]. lier
In a similar way, the constraint equations can be grouped
according to their geometric meaning starting with the frame 0=20S-202A—132-3 , SAB (4.59
components
0= 9a6N— 1K agN, (4.44 Finally, a note on the name conventions of the various

spinor components. In the above equations, all the spinor
fields are irreducible except for the extrinsic curvature and

_ o C(
0=0da"Cpyc- (4.45 the intrinsic three connection which have the decompositions

Next are the extrinsic curvature and the acceleration of
the time-like unit normal to the surfaces Kagcp=Kaagcp— %GC(AGB)DK- (4.59
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' ABcD= YanscpT %GA(cv’zD)BJF %€B<c7ZD)A— %EC(Aés)DY hypersurfaces is compatible with the symmetry, i.e., #iat
(4.60 is everywhere tangent to the hypersurfages., orthogonal
to t?). Next we choose the frame in such a way that one of
with Kyagcp being totally symmetric. The components of the space-like legs points along the Killing vector and that it
the irreducible parts with respeab/,:,) are defined as fol- is invariant under the action of the symmetry group. Note,

lows for a four index spinoragcp that this restricts the available frame rotation from the or-
thogonal group to rotations around the Killing vector. Fi-
apBcD™ @40p080c0p — 4@304080ctp) + 6@20A0BLCLD) nally, we take one of the coordinates, séyto be the coor-

dinate along the integral curves of the Killing vector. Then
(4.6 : " .
all components of the geometric quantities with respect to
the adapted frame are independent of that coordinate.
These choices can be made irrespective of whether the
Killing vector is hypersurface orthogonal or not. They do not
entail much simplification in the equations except for the fact

When we have spinors with the same kernel symbol, buthat some frame components and connection coefficients
different numbers of indices likéb sz and ¢apcp e specify  Vanish. In particular, the Weyl curvature still has all of its ten
the number of indices in the name of the components, thu§omponents. However, assuming hypersurface orthogonality

obtaining, e.g.4 as a component obagcp and o, as a  Simplifies things considerably. This is because it is equiva-
component ofpag. lent to the existence of a discrete symmetfy->—£2. To

explain the simplification, it is best to consider an example.
Let C,pcq be the Weyl tensor oM. The electric part with
V. THE SYMMETRY REDUCTION respect to the Killing vectog? is proportional toé2£°C,pcq

Finally we discuss a simplification which has been used tovhich is symmetric under the discrete symmetry. However,
reduce the resource requirements. Since the main interests il magnetic part with respect &€ which is proportional to
this project are the development of procedures to logate ~ £%£°Cjp.q changes sign under the symmetry hence it has to
extract the radiation information from there and to study sevvanish. This reduces the Weyl curvature down to five inde-
eral various gauge choices, it is legitimate to assume thpendent components. Similar consideration can be made for
existence of a continuous symmetry. This is because to Icthe geometric quantities showing that the number of inde-
cate J as the zero-set of the conformal factor is not muchpendent variables reduces from fifty-three down to thirty-
more difficult in three dimensions than it is in two. On the three.
other hand, one needs to have at least two nontrivial spatial In the space spinor formalism, we take the Killing vector
dimensions because otherwise the Weyl curvature vanishds be of the form¢”B= ¢BAx0(AB) Then the discrete sym-
identically so that there will be no radiation present. Hencemetry implies that the components of almost all of the spinor
in the sequel we will assume the existence of a space-likéelds vanish if they are obtained by contraction with an odd
Killing field &2 in the physical space-time, which in addition number of o® and . Only the fieldsFg, I'agcp and
is required to be hypersurface orthogonal. In order to exclud8,gcp have a different behavior. For them it is the even
numerical problems with coordinate singularities, we follow components which have to vanish. So, e.g., the Weyl curva-
Schmidt[24], who suggested to look at situations, where theture is described by the five nonvanishing componétys
Killing vector has no singular points. This excludes theE,, E,, B; and B; in agreement with the argument given
physically intuitive axisymmetry which has fixed points on above.
the axis and leaves us with a completely nonphysical toy
problgm. It also has_the |mpI|cat|0_n thgt no longer has V. CONCLUSION
spherical cross sections, but toroidal ones. These global
questions are not relevant to local considerations such as the The purpose of the present article was the presentation of
influence of different choices of gauge functions on the sothe conformal field equations in the space spinor formalism.
lution or even the question of stability of the numerical This paper is intended to serve as a reference for future ar-
method. They do, however, forcefully come to the fore wherticles which are intended to discuss the numerical implemen-
it comes to defining and interpreting global quantities such aation of this set of equations for solving the hyperboloidal
the Bondi mass or the radiation flux. These are issues thaiitial value problem. We have discussed the simplification
have not yet been discussed. We will consider them in somesbtained from assuming the existence of a hypersurface or-

_4alO(ALBbcbD)+ aplalglclp
and for a two index spinor

CYABZazoAOB_Zalo(ALB)+C¥0LALB. (462

what more detail if20]. thogonal Killing vector field.
We adapt the gauge to the symmetry. First of all, the
Killing vector in the physical space-time becomes a confor- ACKNOWLEDGMENTS

mal Killing vector in the unphysical space-time. Choosing an
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