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Quantifying uncertainties in primordial nucleosynthesis without Monte Carlo simulations
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We present a simple method for determining ¢berrelated uncertainties of the light element abundances
expected from big bang nucleosynthesis, which avoids the need for lengthy Monte Carlo simulations. Our
approach helps to clarify the role of the different nuclear reactions contributing to a particular elemental
abundance and makes it easy to implement energy-independent changes in the measured reaction rates. As an
application, we demonstrate how this method simplifies the statistical estimation of the nucleon-to-photon ratio
through comparison of the standard BBN predictions with the observationally inferred abundances.
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I. INTRODUCTION the determination of the relevant parameters, it is desirable to
have a faster method for error evaluation and comparison
Big bang nucleosynthes{®8BN) is entering the precision with observations.

era[1]. On the one hand, there has been major progress in In this work we propose a simple method for estimation
the observational determination of the abundances of thef the BBN abundance uncertainties and their correlations
light elements D[2,3], 3He [4,5], “He [6,7], and "Li [8,9], which requires little computational effort. The method, based
although the increasing precision has highlighted discreparfn linear error propagation, is described in Sec. IIl. A con-
cies between different measuremefgse Refs[10-17 for ~ Crete application is given in Sec. lll, where theory and ob-
recent assessmeht§ec0nd|y, we have a sound ana|ytica| servations are Compared using Simpzl?estatistics to obtain
understanding of the physica| processes in\/o[\j@jl[]} and the best-fit value of the nucleon-to-photon ratio. In Sec. IV
the standard BBN computer cofte5,16 which incorporates ~ We study with this method the relative importance of differ-
this physics is robust and can be easily altered to accommd@nt nuclear reactions in determining the synthesized abun-
date changes in the input parameters, e.g. nuclear reactiétances. Conclusions and perspectives for further work are
rates[17]. The comparison of increasingly accurate observapresented in Sec. V.
tionally inferred and theoretical abundances will further con-

strain the values of fundamental parameters, such as the Il. PROPAGATING INPUT CROSS SECTION
nucleon density parametésee, e.g., Ref.18]) or extra de- UNCERTAINTIES TO OUTPUT ELEMENTAL

grees of freedom related to possible new physics beyond the ABUNDANCES

standard mode(see, e.g., Ref.19]). It goes without saying

that error evaluation represents an essential part of such com- A. Notation and input

parisons. The four relevant element abundancésconsidered in

Because of the complex interplay between differéntys \york are defined in Table (Note that the abundance of
nuclear reactions, it is not straightforward to assess the effe e is conventionally quoted asrass fraction while the
on a particular elemental yield of the uncertainties in the bundances of D’He and’Li are ratios by numberin BBN

experimentally determined reaction rates. The authors o alculations, thev,’s depend both on model parametétfse
Ref. [20.] f'FSt gmployed Monte Carlo methods to Sample_thenucleon-to—photoh ratioy, the number of neutrino families
error distributions of the relevant reaction cross sectiong, etc) and on a netwérk of nuclear reactioRg:

which were then used as inputs to the standard BBN com- "’ '
puter code. This enables well-defined confidence levels to be
attached to the theoretically predicted abundances; e.g. the
abundance range within which say 95% of the computed _ , ,
values fall correspond to 95% C.L. limits on the expected_  1ABLE | The four light elemental abundanc¥sconsidered in
abundance. It was later realized that error correlations ar@ls work. Alternative symbols used in the literature are indicated in

. . . parentheses.
also relevant, and can be estimated with the same technique

[21,22. The Monte CarldMC) approach has since become

Yi:Yi(ﬁan---v{Rk})- (1)

the standard tool for comparing theory and ddta,23—28. Symbol - O Definition
However, although it can include refinements such as asymy, (Yp) “He mass fraction
metric or temperature-dependent reaction rate uncertainties, (Y2p) D/H (by numbey
[17], it requires lengthy calculations which need to be re-vy, (Yap) He/H (by numbey
peated each timéany of) the input parameters are changedy, (Y7p) "Li/H (by numbey

or updated. Since we may expect continued improvement ia
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TABLE Il. The BBN reaction rate®R, and their Ir uncertain- Light element abundonces Yi(n) + zgi(ﬂ)
ties = A R, adopted in this work. The numbering follows REL6] - : : : —
while the reference “unit” valuesR,=1) correspond to the rates 0.26 | *He mass fraction
in Ref.[17]. ==
k Reaction Ry +A Ry

1 N—peve 0.9979 +0.0021

2 p(n,y)d 1 +0.07

3 d(p,y)°He 1 +0.10

4 d(d,n*He 1 *0.10

5 d(d,pit 1 +0.10

6 t(d,n)*He 1 +0.08

7 t(a,y)"Li 1 +0.26

8 SHe(n,pit 1 +0.10

9 3He(d,p*He 1 +0.08 0°F E

10 3He(a,y)'Be 1 +0.16

11 Li(p,a)*He 1 +0.08

12 Be(n,p)’Li 1 +0.09

The most importanR,’'s are listed, numbered as in Ref.
[16], in the first two columns of Table II, while our default
inputs for the rate®R, and their br uncertaintiest AR, are
given in the third and fourth columns. The numerical values
are given in ratio to the reference reaction rates compiled in
Table 1 of Ref[17]; we have chosen identical valués.,
Ry=1) except forR;, the neutron decay rate, where we Y, -
adopt the most recent world average for the neutron lifetime " 5oL
of 7,=886.7+1.9 s[27,28, as compared to the value of
7,=888.54+ 3.73 s used in Ref.17]. The fractional uncer-

tainties * AR, /R, (k#1) have also been taken from Ref. 107"° 7 107°
[17] (see their Table 2 assuming conservatively the largest
value for the temperature-dependent erdR; andARyo.* FIG. 1. Primordial abundanceg (solid lines and their+ 2o

bands(dashed lines as functions of the nucleon-to-photon raijo
B. The method
where the functiong,,(#) represent the logarithmic deriva-

For simplicity we consider only the standard BBN Casey; ag of Y, with respect taR, :

(i.e., N,=3, etc), so that# is the only model parameter
being varied in the calculation of the abundan¥gsand of I
. L a1InY,;
their uncertainties,; : M) = o R|(77) . @
k(7)
Yi=Yi(n) X oi(n). 2
In general, the deviationsgY; in Eq. (3) are correlated,
Our method can however be easily generalized to nonstandince they all originate from the same set of reaction rate
ard cases. shifts{ 5R,}. The global information is contained in the error
For a relatively small changéR, of the input rateR, matrix (also called covariance matjix29], which is a gen-
(Rk—Ry+ 8Ry), the corresponding deviatiadlY; of thei-th  eralization of the “error vector’sY; in Eq. (3). In particular,
elemental abundanceY{—Y;+ dY;), as given by linear the abundance error matrixrizj(n) obtained by linearly
propagation, reads propagating the input 1o reaction rate uncertaintiesA Ry
to the output abundancég reads

SR,

6Yi<n>=vi<n>2k Ni(7) 3)

ARK)Z
R (5)

ai%(n):Yi(n)Yj(n); Nik( N ji(7)

'our method for error propagation requires that AR, /R,’s be  This matrix completely defines the abundance uncertainties.
constanti.e., temperature independgnive will comment on this  In particular, the &r abundance errors; of Eq. (2) are given
point at the end of this section. by the square roots of the diagonal elements,
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TABLE llI. Polynomial fit to the central value of the elemental abundan¥es,ay+ a;x+ a x>+ ax®
+a,x*+agx®, with x=log;o(7/10719 in the range 0—1. The abundances were obtained using the BBN
computer codd16] with the inputRy’s as in Table Il. The value of, has been corrected using the
prescription of Ref[19]. The accuracy of the fit is better than 1/25 of the total theoretical uncertainty for each

Y.
ag a; a, as ay as
Y,x 10 +0.4808 —1.8112 +3.2564 —3.3525 +1.8834 —0.4458
Y3x 10° +3.4308 —6.1701 +8.1311 —9.7612 +7.7018 —2.5244
Y, x 10 +2.2305 +0.5479 —0.6050 +0.6261 —0.3713 +0.0949
Y;x10° +0.5369 —2.8036 +7.6983 —12.571 +12.085 —3.8632
oi(n)=\oi(n), (6) ~ may be quite subtle. Although some general features of this

while the error correlationg;; can be derived from Egs.
(5), (6) through the standard definition

ol ()

ai(n)aj(n)’ @)

pij(n)=

Thus Egs.(2)—(7) represent all that is required to calculate

dependence have been addressed in[R4f, further work is
needed to interpret the functional form of thg's in Fig. 2.

We intend to address this issue elsewhere. Finally, Fig. 3
displays the fractional uncertainties/Y; and their correla-
tions p;; as derived from Eqs(5)—(7). Notice that, in gen-
eral, the error correlations are non-negligible and should be
properly taken into account in statistical analyses, as first
emphasized in Ref21].

In summary, the recipe for evaluating the BBN uncertain-

the errors in the predicted abundances and their correlations.
Note that the relevant physics is contained entirely in the
central valuesy; and in their logarithmic derivatives;,
which have to be evaluated just once with a BBN numerical
code, thus dramatically reducing the required computing
time2 We have made a further check of the linearity of the

0.6

error propagation by calculating the logarithmic derivatives ), 0.4

with increments equal tA R, (defaul) and AR, , obtaining
practically the same functionsy in either case. This means
that doubling the error oR, also doubles the corresponding
error component of;, i.e. the error propagation is indeed
linear.

We think it useful to present the results of this exercise in
the form of tables so all calculations that will now follow can

be done on a pocket calculator. Tables Il and IV show the”/*2«

coefficients of polynomial fits tdr; and \;,, respectively,
for 7 in the usually considered range 18-107°.2 The
abundance¥,(#) with their associated:- 2 standard devia-
tion error bands calculated through E6) are shown in Fig.
1. The functions\j (%) are shown in Fig. 2; note that some
of these vary stronglyand even change sigmvith 7, indi-
cating that the physical dependence of W& on theRy's

°The logarithmic derivatives are numerically definedXag(7)
=[Y|(77,Rk+ARk) _Yi(77,Rk_ARK)]Rk/ZYi(ﬂ,Rk)ARk, at giVen
7. We find negligible difference between left and right derivatives.
3Small corrections to the helium abundan¥¢g due to Coulomb,

radiative and finite temperature effects, finite nucleon mass eﬁ‘ectf}\7k

and differential neutrino heating, have been incorporated according
to the prescription given in Ref19]. We have used the BBN code
[16] with the lowest possible settings of the time steps in (&
ordep Runge-Kutta routine, which allows rapid convergence to
within 0.01% of the true valug30]. We understand that our results
are in good agreement with a recent independent computatigp of
using a new BBN computer cod8l].
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Abundance uncertainties and correlations MonteCarlo vs Analytic estimate
(2,3,4,7 = D, He, *He, L) (2, 3,243, 4,7 = D, He, D+He, *He, "Li)

o SKM 93 7

FIG. 3. Fractional abundance uncertaintiggY; (upper panel FIG. 4. Monte Carlo estimates of; /Y; (SKM '93 [17], dot9
and their correlationg;; (lower pane), as functions ofy. andp;; (KK '94 [22], dotg, compared with our analytic evaluation
(solid lineg, using the same inputs.
ties = o affecting theY;’s for a given value ofy is: ) ) 4 ) )
ties o;/Y; as derived from Ref.17]" with our analytic esti-
mate (using, for this exercise, the same input paramgters
There is good agreement between these two totally indepen-
dent estimates. In Fig. dower panel we also show a com-
parison with the only MC evaluation gf;; we are aware of
) (viz., Ref.[22]), obtaining again good agreement with our
_ tively; _ calculation when the same inpRf,= AR, are used. We con-
(ii) If the central values of the reaction ratBg are up-  ¢jyde the discussion of Fig. 4 by noting that the uncertainty
dated R— R+ Ry) with respect to those reported  , . ., and the correlationp,. 3); related to the often-used
in Table II, then update also the central values of thecombination of abundance¥(2+3):Y2+Y3=(D+3He)/H

(i) Determine the abundanc¥g #%) and their logarithmic
derivatives\;(#) using Tables Il and IV, respec-

abundancesY;— Y, + 48Y;) through Eq.(3); are given, within our approach, by
(iii) For given reaction rate uncertaintiaf, (e.g., from
Table I1l), compute the abundance errersand their 0%y 3= 05+ 05+ 2py30,03, (8)

correlationsp;; using Eqs.(5)—(7).

P(2+3)]0(2+3)0) = P2j020)+ p3j030] . 9
C. Comparison with MC estimates and remarks
) ) ) There are, of course, some refined features of the MC
Our approach is based on the linear propagation of errorgpproach that cannot be addressed with our method, such as
originating from many independent sourcgé®. the R,’s). asymmetric or temperature-dependent uncertaintid®;
One can expect that this method will work reasonably well[17]. However we consider these refinements not essential
both because the input fractional uncertaint¥R, /R, are  for practical applications. In a sense, the possible asymmetry
relatively small, and because the final output uncertainties between “upper” and “lower” errors is where one wants it
affecting the abundancé§ are “regularized” by the central to be. For instance, if one assungepriori symmetric errors
limit theorem. Indeed, our-2¢ bands in Fig. 1 compare in the astrophysicab-factors, then asymmetric errors are in-
well with the MC-estimated bands of Refd7,21,23-28 duced in the thermally averaged reaction rakes(ov);
with small relative differences which depend, in part on dif-
ferent inputR,*AR,’s, and that are not larger than the
spread among the various MC estimates themselves. “The MC values ofr, /Y; have been read off themall panels of
In order to be more quantitative, we compare in Fig. 4rig. 27 in Ref.[17] and, therefore, may be subject to small tran-
(upper panelthe MC evaluation of the fractional uncertain- scription errors.
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TABLE V. Polynomial fits to the logarithmic derivatives)(x)=ag+a;x+ax’>+ax>+a,x*+asx>, as functions of
x=log,o( 7/10° 2% [0,1] (see Fig. 2 In most cases, polynomials of degrees provide sufficiently accurate fits. Only non-negligible
logarithmic derivatives are tabulated.

k a a; a, as a, as
Aok 1 +0.7130 —0.7964 +0.4577 +0.0914 0 0
2 —0.7025 +0.2611 +1.2008 —0.8934 0 0
3 —0.0189 —0.1879 +0.2502 —0.6806 0 0
4 —0.4228 —0.1698 +0.0207 +0.0247 0 0
5 —0.4138 —0.1477 +0.1103 +0.0010 0 0
8 —0.0073 —0.0003 +0.0801 —0.0416 0 0
9 —0.0011 —0.0348 +0.0592 —0.0511 0 0
N3k 1 +0.0940 +0.1892 —0.1484 —0.0199 0 0
2 +0.0981 +0.9948 —3.1667 +3.4108 —1.2845 0
3 +0.0610 +0.1640 +0.5368 —0.2605 0 0
4 +0.3050 +0.0805 —0.4208 +0.1555 0 0
5 —0.5118 +0.1274 +0.4081 —0.2106 0 0
6 —0.0327 +0.0829 —0.0939 +0.0362 0 0
8 —0.5580 —0.0287 +1.3574 —0.8735 0 0
9 —0.1080 —0.5089 —1.0157 +0.8163 0 0
Nk 1 +0.8138 —0.1465 +0.0408 0 0 0
2 +0.0610 —0.1962 +0.2416 —0.1049 0 0
4 +0.0082 —0.0058 +0.0034 0 0 0
5 +0.0075 —0.0058 +0.0034 0 0 0
N7k 1 +1.9638 +1.8520 —19.721 +27.542 —11.041 0
2 —-0.9214 —1.6472 +5.6187 +54.059 —112.80 +56.426
3 +0.0500 —1.0433 +4.1384 —2.4441 0 0
4 +0.1734 —2.7428 +11.209 —10.736 +2.5263 0
5 +0.1837 —0.0875 +0.0158 —0.1350 0 0
6 —0.9877 —0.8168 +6.1555 —4.4380 0 0
7 +0.9644 +0.6888 —5.6151 +4.0284 0 0
8 +0.0529 +0.6318 —3.3995 +2.5754 0 0
9 —0.0764 +0.3017 —2.9632 +1.9311 0 0
10 +0.0690 —1.5360 +9.5808 —10.168 +2.9807 0
11 —1.4095 —0.3543 +6.4780 —4.7956 0 0
12 —0.0043 —0.3779 +7.7358 —42.390 +61.401 —26.778

conversely, the requirement af priori symmetricAR, er- ¢, temperature-dependent refinements in the propagation of
rors requires that the inpu-factor uncertainties are read- just two of thesg AR; andAR;) do not appear to be deci-
justed, as discussed in RéfL7]. Although the authors of sive for the estimate of the global erros.

Ref. [17] have adopted the latter option|+ARy| In conclusion, we have shown that our simple analytic
=[—ARy]), the former option or others are equally accept-method for error evaluation represents an useful alternative
able, and would clearly produce different outputs for the MCto |engthy and computationally expensive MC simulations.
estimate of the abundance errors. For instance, the upper aggth the magnitude and the correlations of the total errors
lower errors ofY; appear to be rather symmetrical in the MC affecting the theoretical abundances are reproduced with
calculation of Ref.[17], while they are noticeably asym- 4404 accuracy. We therefore advocate the use of this method

metrical in Ref.[22]. o for BBN analyses as an alternative to MC simulatidns.
Concerning the temperature-dependgt¥f] uncertainties

AR; andAR;g, which affect mainly the estimate of;, our

conservative choice in Table Il proves to be successful for

the estimate ofr;/Y7 (see Fig. 4 This seems to indicate  5a parallel situation holds in the field of solar neutrino physics,
that the uncertainties at low temperatutedich are larger where the correlated uncertainties of the neutrino fluxes predicted
than those at high temperaturgk/]) dominate in the esti- by solar models have been estimated through both Monte Carlo
mate of these errors. In any case, since practically all reagimulations[32] and linear propagation of input errof83]. The

tion rate uncertaintied R, contribute to the final value of latter technique has proved more popular because of its ease of use.
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lIl. DETERMINING THE LIKELY Standard BBN predictions vs data (10 errors)
NUCLEON-TO-PHOTON RATIO
5 ;QX:O' T x = logi(n X 10'%)
The comparison of the predicted primordial abundances na ] y:%‘mass rostion
Yi(n) = o(n) with their observationally inferred valueg "’-%01 ¥> = "Li/H
+ ¢ through a statistical test allows extraction of the likeli- > 3f ™ 3 YD"_t‘Ef:i ?4)“04
hood range for the fundamental paramee6o far, this has o LYS V. = 0.234£0.0054
been done either through fit-by-eysee, e.g., Ref17)) or = 2} + oA F ¥r = (1.640.36)x 107
by Monte Carlo-based maximum likelihood metho@ee, F N ] Data set B .
e.g., Refs[25,26)). In this section we show how limits on IS v Greza000s
can be simply extracted using?® statistics based on the ok . . 1o = (1.73£0.12)x10™
method described in the previous section. B B S B —
Assuming that the errorg; in the determinations of dif- g H1 .
3 . 10F 410 3
ferent abundance¥; are uncorrelated, the experimental : ; E
squared error matrix; is simply >t 8 9 18§ ;
o BE[|x-0 4 deH o 3
S O I B
gij=6jj0i0j, (10 = 4FVepoa 0‘ 34 o.w»“' 3
E -.n0.2 . 3 0.2 E
. 2F B ; ; 12 c ) 3
where & is  Kronecker's delta. The total A A Bloc A ]
. . . 2 . . ok I I ! 0 ! ! I I d
(perimental thecrelca) otor ML) s hen obfaned T
y 9 G20 10x Y, 10*x Y,
321-(7])=Ui21(77)+;i2j- (12) FIG. 5. Standard BBN predictiongdotted line$ in the 2-

dimensional planes defined by the abundan¢gsY,, andY,, as
functions of x=log;o( /107 1%9. The theoretical uncertainties are
depicted as & error ellipses ak=0, 0.1, 0.2... 1. Thecrosses
indicate the two observational data sétsth 1o errors.

Its inverse defines the weight mati;; (7):

Wi () =[S5(m)] ™ (12)
Y,=1.9+0.4x10"4,

Data set A:{ Y4=0.234+0.0054, (14)
Y;=1.6+0.36x10 1,

The x? statistic associated with the difference between the-

oretical (Y;) and observationaly;) light element abundance
determinations is thefR29]

X0 =2 [Yi() =YW () Yi(m =il (13) Y,=3.40£0.25¢10°,
. Data set B:{ Y,=0.243+0.003, (15)

V_— — 10
Minimization of the y? gives the most probable value of Y7=1.73£0.12<10"

7, while the intervals defined by?= x2,,+Ax* give the
likely ranges ofy at the confidence level set lyy? (for one
degree of freedomy).®

In order to illustrate this, we estimate using recent ob-

The data set “A” is used in Ref[26], the authors of
which make a detailed MC-based fit fpthus enabling com-
servational data for the three li garison with our method. Note that their adopted value of the

ght element abundanceg; dial deuteri bundance from observations of high
(Y,,Y4,Y7) whose primordial origin is most secure. It is primordial deuterium abun . ervation '9

20 4 07 . . — redshift quasar absorption systems is consistent with another
well known that the observationally inferred valués and recent observatiorY,= (2.15+0.35)x 10~ [3], but in con-

Y, are still controversial, and the conflict between differentyjict with the significéntly smaller value repor',[ed in REZ],
determinations has driven a lively debate on the status ofpich we adopt for data set “B.” Similarly the primordial
BBN (see Refs[18,34 and references thersirin this paper  pejium mass fraction inferred from observations of metal-
we do not enter into this debate but rather apply our methog’oor blue compact galaxies which we adopt for data set “B”
to two possible(although mutually incompatibleselections s from Ref.[7] in which it is argued that previous analyses
of measurements which we name data set “A” and data Sqteading to the smaller value of, used in data set “A”
"B underestimate the true abundar{eéthough this is disputed

in Ref.[6].) Finally the estimates for the primordial lithium

abundance in both data sets are based on observations of pop

We remind the reader thaty2=1, 2.71, 3.84, and 6.64 corre- |l stars, with the slightly higher valug9] of Y, in data set

spond to confidence level€.L.’s) of 68%, 90%, 95%, and 99%, “B” taken from an updated analysis. Readers who prefer to
respectively. adopt different combinations of these, or indeed other, esti-
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Standard BBN fit to experimental data

FIG. 6. Our)? fit to the data sets A and B, including observa-
tional and(correlated theoretical errors.

PHYSICAL REVIEW D 58 063506

Big Bang Nucleosynthesis — Error Components
at 7 =1.78X107"

T
k = n decay
p(ny)d
d(py)*He
d(d,n)He
d(d,p)t
t(d,n)*He
t(e,y)’Ui
*He(n,p)t
*He(d,p)*He
*He(a,y) Be
Li{p,a)*He
Be(n,p)’Li

0.5

6Y,/ 0,
0O~ d WN =

-0.5

0.5

0

8Y,/0,

-0.5

FIG. 7. Individual contributions of different reaction rategto
the uncertainties itY,, Y,, andY,, normalized to the correspond-
ing total errorso,, o4, andoy, for =1.78x10 %, Each arrow
corresponds to the shiflY; induced by a+ 1o shift of R,. Some

mates for the primordial abundances are invited to perfornsmall error components have not been plotted.

their own fit to » by following the simple prescription given
here.
Before performing the? fit, it is useful to get an idea of

The range for case “A” agrees very well with the 95% C.L.
range estimated in Reff26] with the same inputs but with a

what one should expect by comparing the data with the thedifferent method (Monte Carlemaximum likelihood). Of

oretical predictions at various values gf Figure 5 shows
the theoretical predictions for the abundandgs Y,, and
Y7 in the three possible plane¥;(,Y;), for representative
values ofx=log;( 7/10~19. The correspondingd.error el-

lipses show clearly the size and the correlation of the “the-

oretical” errors. The observational data sets “A” and “B”
are also indicated on the figure, as crosses witlertor bars.
Clearly the former prefers)~2x 10 1° while the latter fa-
vors n~(4-5)x10 1°,

A more precise estimate of the likely range gpfis ob-
tained, as anticipated, throughya fit. The results are shown
in Fig. 6. The value of2,, is almost zero for the fit to data
set “A,” indicating very good agreement between theory

course, the incompatibility between the above two ranges of
n reflects the incompatibility between the input abundance
data within their stated errors.

IV. ROLE OF DIFFERENT REACTIONS IN LIGHT
ELEMENT NUCLEOSYNTHESIS

The role of the different nuclear reactions rates listed in
Table Il in the synthesis of the light elements can be studied
by “perturbing” the values of the input reaction rates and
observing their effect on the predicted abundances. More
precisely, one can study the contribution to the total uncer-
tainty o; of Y; induced by a+ 1o shift of R:

and observations, while it is somewhat larger for data set

“B.” Note that the characteristic minimum in th&.i curve
at 7~2.6x10 1° (see bottom panel of Fig.)lallows its

Rk—> Rk+ARk:>Yi_)Yi + 5Y| . (18)

measured abundance to be compatible with both high D/loy}Yithin our approach, this can be done very easily using Eq.

“He (data set “A”) or low D/high *He (data set “B”). The
95% C.L. ranges allowed by each of the two data sets,
obtained by cutting the curves At?= y?>— x2,,=3.84, are:

Data set A: 7=1.78"332x 1071, (16)
Data set B: 7=5.13"3{2x 10" 1°. 17

al

(3), with the AR,’s from Table Il. Of course, the results
depend on the value chosen for To illustrate various
trends, we choose the best-fit valugs 1.78x 10 1% and »
=5.13x10719 corresponding to data sets “A” and “B”
respectively.

Figures 7 and 8 show the deviatioA¥; (normalized to
the total erroro;) induced by+ 1o shifts in theR,’s, plotted
in the same set of planes as used for Fig. 5. Theefror
ellipses shown in these figures are obtained by combining the
deviation vectorsSY; /o in an uncorrelated manner. Several
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theoretical uncertaintiesay for ’Li), this will enable atten-
tion to be focussed on the particular reaction rate whose

i "] k=1  ndecay value needs to be experimentally better known.
i 2 p(ry)d We have also demonstrated that for standard BBN, our
o5 ] N jng;?:e method enables the use of simp#é statistics to obtain the
o | 5 ddprt best-fit value ofy from the comparison of theory and obser-
) or ] ° :Ei;i':.e vations. At present there are conflicting claims regarding the
© ] 8 He(np)t primordial abundances of, particularly, D afide, and dif-
a3 ] 9 He(d,p)He ferent choices of input data sets imply valuesyofliffering
F 1 0 fjg’[gfe by a factor of~3. However this quantity can also be deter-
T Y 12 "Be(np)Ui mined throug_h measurements of the angular anisotropy of
‘ ‘ ‘ . . . . the cosmic microwave backgrout@MB) on small angular
1 ] scales. Within a decade the forthcoming all-sky surveyors
[ Microwave Anisotropy ProbéMAP) and PLANCK are ex-
o5 ] pected to pinpoint the nucleon density to withirb% [35].
{ Such measurements probe the acoustic oscillations of the
SO0 ] coupled photon-matter plasma at tfre)combination epoch
© sk ] and will thus provide an independent check of BBN, assum-
’ ] ing % did not change significantly between the two epaths.
b 1 Nevertheless precise measurements of light element abun-

-1 -0.5 0 0.5 1 =1

(SYA/ O4

-0.5 0 0.5 1

8Y,/0,

dances, particularlyHe, are still crucial because they pro-
vide a unigue probe of physical conditions, in particular the

expansion rate at the BBN epoch. To illustrate,zifwas
determined by the CMB measurements to 4@x 10 10
(consistent with data set “A), but the abundance dHe

interesting conclusions can be drawn from this exercise. A¥as established to be actually closer to its higher value of
expected, the uncertainty in the weak interaction Rytdas ~ ~24% in data set “B,” this would be a strong indication
the greatest impact o¥, for the high value ofy (Fig. 8), that the expansion rate durln.g BBN was higher than in the
since essentially all neutrons end up being boundHe. standard case WItN,,.=3 neumnos. Although the number _of
However at the lower value of (Fig. 7), the uncertainty in SU(?) doublet neut_rmos is mdeed 3, there are many light
R,—the “deuterium bottleneck’—plays an equally impor- pertlcles expected in extensions of the standard.model, e.g.
tant role asR, in determiningY, because nuclear burning is Singlet neutrinos, which can speed up the expansion rate dur-
less complete here than at highSimilarly with reference to N nucleosynthesigl9]. The generalization of our method
the reaction rateR,, Ryg— R;, which synthesizéLi, at low to such non-standard cases is stralghtf_orward and we intend
7 it is the competition betweeR, and Ry, which largely to present these resullts in a_future publl_caﬁea]. It is cleer
determinesy-, while at high it is the competition between that BBN analyses will continue to be important in this re-
Ry and Ry,. The anticorrelation betweel, and Y, is  9&rd for both particle physics and cosmology.

driven mainly byR, at low » and, to a lesser extent, 13,
andRs, while the reverse is the case at highThe anticor-
relation betweeryY, andY- at low # is also basically driven
by R,, while the correlation at highy is due to bottR, and E.L. thanks the Department of Physics at Oxford Univer-
R,. Thus we have a direct visual basis for assessing in whagity for hospitality during the early stages of this work. S.S.
direction the output abundances are pulled by possible and F.V. thank the organizers and participants in the Inter-
changes in the input cross sectidRg. national Workshop oisynthesis of Light Nuclei in the Early
Universe held at ECT, Trento for useful discussions. We
thank Geza Gyuk and Rob Lopez for very helpful feedback.

FIG. 8. Same as Fig. 7, but foj=5.13< 10" .

ACKNOWLEDGMENTS

V. CONCLUSIONS

We have shown that a simple method based on linear

error propagation allows us to quantify the uncertainties as- 7y physics beyond the standard model can chapge.g. by
sociated with the elemental abundances expected from bigcreasing the photon number through massive particle dgggly

bang nucleosynthesis, in excellent agreement with the results more exotically, bydecreasinghe photon number through pho-
obtained from Monte Carlo simulations. This method makesgon mixing with a shadow sectdB7]. However such possibilities
transparent which nuclear reaction rate is mainly responsiblgre strongly constrained by the absence of distortions in the Planck
for the uncertainty in the abundance of a given element. Ipectrum of the CMHE38] and also, in the latter case, by the ab-
determinations of the primordial abundances improve to theence of Sakharov oscillations in the power spectrum of large-scale
point where the observational errors become smaller than theructure[39].
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