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Chaos in preinflationary Friedmann-Robertson-Walker universes
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The dynamics of a preinflationary phase of the universe, and its exit to inflation, is discussed. This phase is
modeled by a closed Friedmann-Robertson-Walker geometry, the matter content of which is radiation plus a
scalar field minimally coupled to the gravitational field. The energy-momentum tensor of the scalar field is split
into a cosmological constant type term, corresponding to the vacuum energy of the scalar field plus the
energy-momentum tensor of the spatially homogeneous expectation value of the scalar field. This simple
configuration, with two effective degrees of freedom only, presents a very complicated dynamics connected
with the existence of critical points of saddle-center-type and saddle-type in the phase space of the system.
Each of these critical points is associated with an extremum of the scalar field potential. The topology of the
phase space about the saddle centers is characterized by homoclinic cylinders emanating from unstable peri-
odic orbits, and the transversal crossing of the cylinders, due to the nonintegrability of the system, results in a
chaotic dynamics. The topology of the homoclinic cylinders provides an invariant characterization of chaos.
The model exhibits one or more exits to inflation, associated with one or more strong asymptotic de Sitter
attractors present in phase space, but the way out from the initial singularity into any of the inflationary exits
is chaotic. We discuss possible mechanisms, connected with the spectrum of inhomogeneous fluctuations in the
models, which would allow us to distinguish physically the several exits to inflation.@S0556-2821~98!03116-6#
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I. INTRODUCTION

The existence of an inflationary phase in the early sta
of our Universe has become one of the paradigms of mod
cosmology@1#, and is now being subject to experiment
verification through the crucial measurements of small sc
anisotropies in the cosmic background radiation. The ba
physical ingredient for this inflationary phase is the existe
of a scalar field—the inflaton field, the vacuum energy
which plays the role of a cosmological constant, engende
via the gravitational dynamics an exponential expansion
the comoving scales of the universe. This model may
thought to have evolved from a preinflationary phase j
exiting the Planck era. Our attempt here will be to discus
model for this pre-inflationary phase and its exit to inflatio
by using a minimal set of ingredients: in its simplest vers
the model can be described as a Friedmann-Robert
Walker ~FRW! universe, the matter content of which is
perfect fluid~which we take as radiation! plus a scalar field
minimally coupled to the gravitational field. The energy m
mentum tensor of the scalar field may be split into a cosm
logical constant-type term~corresponding to the vacuum en
ergy of the scalar field! plus the energy momentum tensor
the spatially homogeneous expectation value of the sc
field. We assume from the start a closed FRW universe. T
apparently simple configuration, with two effective degre
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of freedom only, will present a very complicated dynamic
In fact, we will show that~i! the model exhibits one or mor
exits with inflation, associated to one or more asymptotic
Sitter attractors in phase space, depending on the structu
the scalar field potential,~ii ! the dynamics will imply that in
any of the exits to inflation the scalar field will be frozen
one of the vacuum states~with its corresponding vacuum
energy playing the role of the cosmological constant for t
exit! associated with an extremum of the scalar field pot
tial, and~iii ! the exit to inflation is chaotic.

In the literature of inflation, the exponential expansion
the scales of the model, whenever a positive cosmolog
constant is present, has been extensively discussed and
stitutes the basis of the so-called cosmic no-hair conject
Wald @2#, in the realm of spatially homogeneous cosmo
gies, and Starobinskii@3#, in the more general case of inho
mogeneous models, showed that all initially expanding m
els evolve towards the de Sitter configuration if a posit
cosmological constant is present. Also, the introduction
dynamical degrees of freedom associated with the sc
fields, in addition to a cosmological constant, was shown
produce nontrivial dynamics in the early stages of inflatio
In particular, Calzetta and El Hasi@4#, and Cornish and
Levin @5# exhibited chaotic behavior in the dynamics
FRW models with a cosmological constant term and sca
fields conformally and/or minimally coupled with gravita
tion, implying that small fluctuations in initial conditions o
the model preclude or induce the Universe to inflate. In b
cases, the presence of the cosmological constant induce
existence of separatrices in the unperturbed phase spa
the models, connecting critical points of the saddle-ty
© 1998 The American Physical Society04-1
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These connections are known to be highly unstable, and t
breaking and transversal crossing, due to perturbations o
nated from the coupling of the gravitational variable with t
scalar field, are basically responsible for the chaotic dyna
ics. This chaotic behavior constitutes the so-cal
Poincare’s homoclinic phenomena@6#.

The new features in the preinflationary dynamics int
duced by our model arise from the presence of a posi
cosmological constant and a perfect fluid~matter in radiation
form! in a closed FRW universe, whenever a scalar field
also present even in the form of small perturbations, a
have not been considered in the literature yet. The degree
freedom are the scale factor of the FRW geometry and
scalar field. As a consequence, the phase space of the sy
present one or more critical points, depending on the num
of extrema of the potential of the scalar field. If the extremu
is a minimum, the corresponding critical point is identified
a saddle center. As a consequence, we have a very com
dynamics based on the so-called homoclinic cylinders wh
emanate from unstable periodic orbits that exist in a nei
borhood of a saddle center. Analogous to the breaking
crossing of heteroclinic curves in above referred homocli
phenomena, these cylinders will cross each other in the n
integrable cases producing a chaotic dynamics. These t
logical structures allow an invariant characterization of ch
in the model@7#, as we will discuss, and will have a dee
implication for the occurrence or not of inflation in its se
eral exits, as well as for the physics in the early stages
inflation. Chaotic exit to inflation, as a consequence of
existence of a saddle center and its associated structu
homoclinic cylinders, has been examined for the first time
the literature by de Oliveira, Soares, and Stuchi@7# ~subse-
quently referred to as OSS!, and contains several technic
results which we will often refer to here. The paper is org
nized as follows. In Sec. II, we describe the Hamiltoni
dynamics of the model and the critical points in the pha
space. We discuss the nature of these critical points,
describe the topology of homoclinic cylinders about ea
saddle-center critical point. The numerical evidence fo
physically relevant chaotic behavior is shown in Sec.
where two cases concerning the choices of the potential
be discussed. Finally, in Sec. IV, we conclude and tr
some perspectives of the present work.

II. THE DYNAMICS OF THE MODEL

We consider closed FRW cosmological models charac
ized by the scale functiona(t), with line element

ds25dt22a2~ t !@~w1!21~w2!21~w3!2#. ~2.1!

Here t is the cosmological time and (w1,w2,w3) are invari-
ant Bianchi type-IX 1-forms@8#. The matter content of the
model is represented by a perfect fluid with four-veloc
Um5d0

m in the comoving coordinate system used, plus a
mogeneous minimally coupled scalar field with potent
V(w). The total energy momentum tensor is described b
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Tmn5~r1p!UmUn2pgmn1]mw]nw

2
1

2
„]aw]aw22V~w!…gmn , ~2.2!

where r and p are the energy density and pressure of
fluid, respectively. In the present model we assume the eq
tion of state for the fluid,p51/3r. This assumption is justi-
fied since the models are supposed to describe a phase o
Universe emerging from the Planck era@9#. Einstein’s equa-
tions for the metric~2.1! and the energy momentum tens
~2.2! are equivalent to Hamiltonian’s equations generated
the Hamiltonian constraint

H52
pw

2

2a3
1

pa
2

12a
13a2a3V~w!2

E0

a
50, ~2.3!

wherepa andpw are the momenta canonically conjugated
a andw, respectively,E0 is a constant arising from the firs
integral of Bianchi identities, and obviously proportional
the total matter energy of the models. The complete dyna
ics is governed by Hamilton’s equations

ȧ5
pa

6a
,

ẇ52
pw

a3
,

~2.4!

Ṗa52
pw

2

a4
2614a2V~w!,

Ṗw5a3V8~w!,

where8 denotes derivative with respect tow. We have used
the Hamiltonian constraint~2.3! to simplify the third of Eqs.
~2.4!. The dynamical system~2.4! has critical pointsEw0

in
the finite region of the phase space whose coordinates a

Ew0
:w5w0 ,a5a05A 3

2V~w0!
,pa50,pw50, ~2.5!

wherew0 is solution of the equationV8(w0)50. The number
of critical points Ew0

is therefore equal to the number o

extremaw0 of the potentialV(w). The energy associate
with each critical point is given by

E05Ecr5
3a0

2

2
. ~2.6!

Also, the existence of the critical points demands th
V(w0).0; these critical points correspond to the configu
4-2
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tion of the Einstein universe, with the respective cosmolo
cal constant given by eachV(w0). The stability analysis is
obtained by linearizing the system~2.4! about the critical
pointsEw0

, resulting in the constant matrix determining th

linear system about eachEw0
, with the four eigenvalues

l1,256A4V~w0!

3
, l3,456A2V9~w0!. ~2.7!

From the above we can see that if the particular extremum
V(w) is a minimum, the corresponding critical point is
saddle center@10#. On the contrary, ifV9(w0),0, the critical
point is a pure saddle, with four real eigenvalues.

The dynamical system~2.4! admits invariant planesMw0

defined generically by

Mw0
:w5w0 , pw50. ~2.8!

OnMw0
the dynamics is governed by the two-dimension

system

ȧ5
pa

6a
,

ṗa52614a2V~w0!. ~2.9!

The system~2.9! is integrable, with Hamiltonian constrain
H5pa

2/12a13a2a3V(w0)2E0 /a50. Introducing the con-
formal timeh by dh5dt/a, the dynamical system~2.9! and
its associated Hamiltonian constraint become regular aa
50, so that the dynamics can be continuously extende
the regiona,01 as shown in Fig. 1. The integral curve
represent closed FRW models, with radiation plus an eff
tive cosmological constant given by the valueV(w0). We
remark that each critical pointEw0

belongs to the respectiv

invariant planeMw0
. A straightforward analysis of the infin

ity of the phase space shows the presence of pairs of cri
points, corresponding to the de Sitter solution, one acting
an attractor~stable de Sitter configuration! and the other as a
repeller ~unstable de Sitter configuration!. Each pair of de
Sitter attractors is associated with an invariant planeMw0

,
with its corresponding effective cosmological consta
V(w0). The scale factora(t) approaches the stable de Sitt
attractors asa(t);eAV(w0)/3t. The stable de Sitter attractor
define exits to inflation, and one of the questions to be
amined in this paper is the characterization of sets of ini
conditions for which one of them is attained. The existen
of critical points of saddle-saddle or saddle-center charac
and of distinct exits to inflation associated with the de Sit
attractors, is a striking novelty in the dynamics of our mo

1We note however thata50 corresponds to the singularity of th
curvature tensor and we will obviously restrict our analysis to
physical regiona.0.
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els. Moreover, we will show that—due to topology of th
phase space of the models—the dynamics of the allowa
exits to inflation is highly complex. For example, sets
initial conditions exist for which the exit to inflation is cha
otic: arbitrarily small fluctuations of initial conditions in
these sets may change the final state of the universe, not
from collapse to escape in the neighborhood of the sa
invariant plane, but also from collapse or escape about
neighborhood of one invariant manifold into collapse or e
cape about the neighborhood of another invariant plane.

This complex dynamics and some of its physical appli
tions will be discussed in the following sections, togeth
with various numerical experiments showing the above m
tioned effects, for the case of two standard scalar field
tentials: the first with one extremum~minimum! only, and
the second having three extrema~two minima and one maxi-
mum!.

III. THE TOPOLOGY OF PHASE SPACE
ABOUT THE CRITICAL POINTS

Our starting point here is to linearize the Hamiltonia
~2.3! about its critical points. As we have seen already th
critical points are of two types, a saddle center ifV9(w0)
.0 or a pure saddle ifV9(w0),0. About the critical point,
whose coordinates are given by Eq.~2.5!, the Hamiltonian
may be expressed

H52
pw

2

2a0
3

2
a0

3

2
V9~w0!~w2w0!21

pa
2

12a0

2
6

a0
~a2a0!21

1

a0
~Ecr2E0!1O~3!50, ~3.1!

whereO(3) denotes higher order terms in the expansion
a small neighborhood of the critical point, these higher or
terms can be neglected and the motion is separable, with
partial energies

e

FIG. 1. Phase portrait of the invariant manifoldw5w0, pw50.
The orbits represent homogeneous and isotropic universes wit
diation and cosmological constant.
4-3
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E15
pw

2

2a0
2

1
a0

4

2
V9~w0!~w2w0!2, E25

1

12
pa

226~a2a0!2

~3.2!

approximately conserved. We have

2E11E21Ecr2E0;0, ~3.3!

where the quantityEcr2E0 is small. We consider first the
case of saddle centers. We note thatE1 is always positive,
due toV9(w0).0, and is associated with rotational motio
while E2 has no fixed sign and corresponds to hyperbo
motion always. This is in accordance with a theorem
Moser@11# stating that there always exists a set of canon
variables such that, in a small neighborhood of a saddle c
ter, the Hamiltonian is separable into rotational motion a
hyperbolic motion pieces. In this approximation, we no
from Eq. ~3.2! that the scale factora(t) has pure hyperbolic
motion, and is completely decoupled from the scalar fi
pure rotational motion. The general oscillatory behavior
the orbits are connected with the existence of a manifold
unstable periodic orbits, associated with the saddle cent

To see this, let us briefly describe the topology of h
moclinic cylinders in the phase space about a saddle ce
A detailed description is done in OSS~cf. also references
therein!. Let us consider the possible motions in a sm
neighborhoodN of the saddle centers. In the caseE250 and
pa505a2a0, the motions are unstable periodic orbitstE0

in the plane (w,pw). Such orbits depend continuously on th
parameterE0. For E250, there is still the possibilitypa5
6(a2a0), which defines the linear stableVs and unstable
Vu one-dimensional manifolds, which are tangent, at
critical point, to the separatricesS of the invariant plane
associated with the saddle center~cf. Fig. 1!. The separa-
trices are actually the nonlinear extension ofVs andVu . The
direct product of the periodic orbittE0

with Vs andVu gen-

erates, in the linear neighborhoodN of the saddle center, th
structure of pairs of stable (tE0

3Vs) and unstable (tE0

3Vu) cylinders. Orbits on the cylinders coalesce into t
periodic orbittE0

for times going to1` and 2`, respec-
tively, the energy of the orbits being the same as that of
periodic orbit. The nonlinear extension of the plane of ro
tional motion, where the linear unstable periodic orbits
side, is a two-dimensional manifold, thecenter manifold@6#,
of unstable periodic orbits of the system, parametrized w
the energyE0. The intersection of the center manifold wit
the energy surfaceE0 is a periodic orbit of energyE0, from
which two pairs of cylinders emanate, as in the linear c
previously described. From Eq.~3.3! we can see that the
intersection of the center manifold with the energy surfa
E05Ecr is just the critical point; forEcr2E0,0, the energy
surface does not intersect the center manifold. It follows t
the structure of homoclinic cylinders is present only in t
energy surfaces for whichEcr2E0.0. In the caseE2Þ0
andEcr2E0.0 the orbits are restricted to infinite cylindr
cal surfaces which, in a linear neighborhoodN of the saddle
center, are the product of periodic orbits of the central ma
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fold with small hyperbolas in the plane (a,pa), which are
obviously solutions of Eq.~3.2!. We remark that a picture o
these hyperbolas is given by the curves of Fig. 1 containe
the small neighborhoodN.

Now due to the nonintegrability of the system, the exte
sion of the cylinders away from the periodic orbit is distort
and twisted, with eventual transversal crossings of the
stable cylinder with the stable one. These intersections
produce chaotic sets in the phase space@7,12,13#, analogous
to the case of breaking and crossing of homoclinic or hete
clinic connections in Poincare’s homoclinic phenomena@14#.
This provides an invariant characterization of chaos in
general relativistic dynamics of the models.

From the general chaotic behavior of the system, we w
single out the following aspect which is of physical intere
for inflation. A general orbit which visits the neighborhoo
N is characterized byE1Þ0, E2Þ0. In this region the orbit
has an oscillatory approach to the cylinders, the closer
E2→0. Thepartition of the energyuEcr2E0u, into the ener-
giesE1 andE2 of motion about the critical point, will deter
mine the outcome of the oscillatory regime into collapse
escape to inflation~de Sitter attractor!. For instance, initially
expanding models with energyE0 will go out the oscillatory
regime into collapse or escape if thepartition of Ecr2E0 in
N is such thatE2,0 or E2.0, respectively. However, the
non-integrability of the system~2.4!, with the consequen
twisting and crossing of homoclinic cylinders, will cause th
partition of energy to be chaotic in general, and will chara
terize a chaotic exit to inflation towards the de Sitter attrac
of the invariant plane associated with the saddle center
other words, given a general initial condition of energyE0,
we are no longer able to foretell in what of regions I or
about the saddle center~cf. Fig. 1! the orbit will stay when it
approaches the saddle center. Small fluctuations inE0 or in
the initial conditions in these sets will change the outcom
of the orbits from collapse into escape and vice versa, ch
acterizing a chaotic exit to inflation. We note that this chao
behavior will also set up associated with cylinders emana
from unstable periodic orbits of the center manifold whi
are not in a linear neighborhood of the saddle center. T
will be illustrated thoroughly in the numerical experiments
the following section.

But this is not the whole story of the chaotic exit to infl
tion in the present model, as we will see if a critical point
the saddle-type is also present in phase space. In the ca
a pure saddle, bothE1 andE2 do not have a fixed sign@note
that V9(w0),0# and correspond obviously to hyperbol
motion only. Instead of homoclinic cylinders in this neig
borhood, we have two sets of linear stableVs and unstable
Vu manifolds emanating from the pure saddle, associa
with the pair of real eigenvalues~2.7!. It is straightforward to
see that one of the sets, associated with the eigenvaluesl1,2,
is the linearization~around the saddle point! of the separa-
trices of the invariant plane containing this critical point. T
nonlinear extension of the second set~corresponding to the
eigenvaluesl3,4) constitutes a homoclinic curve that visi
the nearest saddle center, approaching a periodic orbit in
neighborhood~cf. Fig. 6!. The above-mentioned crossing o
homoclinic cylinders will reach the neighborhood of the i
4-4
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variant plane associated with the pure saddle, producing
chaotic sets in this neighborhood.

The chaotic behavior of the system, associated with
exits to inflation, will be the main object of the next sectio

IV. CHAOTIC EXITS TO INFLATION

In order to proceed in the numerical examination of t
dynamics, we will restrict ourselves to the two choices of
scalar field potentialV(w),

V1~w!5L1
1

2
m2w2 ~4.1!

and

V2~w!5L1
l

4
~w22s2!2, ~4.2!

whereL is included as the vacuum energy of the scalar fi
~inflaton field!, m is the mass of its expectation value, andl
ands are positive constants. The constantL plays the role
of a cosmological constant. The usual matter content will
represented by radiation. In the literature of inflation, ext
sive use has been made of both potentials@1#. In the numeri-
cal experiments performed here all calculations were m
using the packagePoincarè@15#, where we enforce that th
error of the Hamiltonian never exceeds a given threshold
10210.

A. CaseV1„w…5L1 1
2 m2w2

The potential has only one extremum~a minimum! at
w050, and the phase space has only one critical pointP of
saddle-center type, with coordinates

a05A 3

2L
; w5w050; pa5pw50, ~4.3!

and energyEcr59/4L. The eigenvalues~2.7! are given, re-
spectively by6A4L/3 and 6 im, and they are associate
with the hyperbolic motion in the plane (a,pa) and rotational
motion in the plane (w,pw), in a neighborhood ofP. Note
that the eigenvalues corresponding to the rotational mo
depend on the mass of the scalar field. There is also
invariant manifoldM defined byw5pw50.

The phase space under consideration is not compact,
we will actually identify a chaotic behavior associated w
the possible asymptotic outcomes of the orbits in this ph
space, namely, escape to a de Sitter attractor at infinity
resenting the inflationary regime, or collapse after a burs
initial expansion.

Following the procedure of OSS, our objective here
first to analyze numerically the behavior of the orbits, t
initial conditions of which are taken in a small neighborho
of a point on the separatrix in the invariant manifo
M (w5pw50). We assume thatL51.5 andm54.0 such
thata051.0 andEcr51.5. We select a pointS0 belonging to
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the separatrix (E05Ecr51.5) with coordinatesa50.4, pa

53.563818177; aroundS0 we construct a four dimensiona
sphere in phase space with arbitrary small radiusR
51023,1024, as the measure of the uncertainty in the init
conditions. The initial conditions (a,pa ,w,pw) are then
taken in energy surfaces which have a nonempty intersec
with this sphere, as evaluated from the Hamiltonian co
straint. It is easy to see that such energy surfaces are t
for which the range of the energyE0 is in the intervalD
5(1.52DE0 ,1.52DE0) about the critical energyE05Ecr

51.5, withDE0 of the order of, or smaller than,R. Actually,
these initial conditions represent initially expanding mod
just after the singularity exhibiting small perturbations in t
scalar field. The numerical experiments revealed, as
pected, two possible outcomes: collapse or escape to th
flationary regime, depending onE0 that varies from 1.5
2DE0 to 1.51DE0, with DE0 of orderR. Since the energy
E0 was chosen to be very close to the energy of the sep
trix, it is not difficult to prove@7# that all orbits visit a small
~of order ofR) neighborhoodN of the critical point before
collapsing or escaping into inflation. The final state depe
crucially on the partition of the energy
uE02Ecru into the rotational motion mode and the hype
bolic motion mode, in the small neighborhoodN, so that, if
E2.0 the orbits escape, whereas collapse is characterize
E2,0. In Fig. 2 we illustrate the collapse and the escape
400 orbits initially in a sphere of radiusR51024. Neverthe-
less, for each radiusR, there exists a non-null interval o
energydE* 5uEmax2Eminu,D for which orbits have an in-
determinate outcome; that is, fluctuations in initial conditio
of the order of or smaller thanR51023,1024, . . . will
change the long time behavior of an orbit from collapse
escape into inflation, and vice versa. HereEmin and Emax
denote the values of the energyE0 above or below which all
orbits escape or collapse, respectively. In this sense we
that the exit to inflation is chaotic. In Fig. 3 this behavior
shown for 300 orbits corresponding to a sphere of init
conditions with radiusR51024. This result of fundamenta
importance is an evidence of the chaoticpartition of the
energyE02Ecr into the energy modesE1 andE2 when the
orbits are in the small region aroundP. It is worth mention-
ing that the indeterminate outcome due todE* Þ0 occurs
only for E02Ecr,0, as expected. This is the energy con
tion for the presence of homoclinic cylinders. In the ca
E02Ecr>0, we haveE2.0 and all orbits escape. By dete
mining numerically the values ofEmin andEmax for several
values ofR, we obtain the scaling law,dE* 5kR2, wherek
is a constant depending onm. We will discuss this depen
dence onm elsewhere, but form54, we havek'2.576. An
analogous scaling relation was obtained in OSS, in the re
of anisotropic universes. We recall that the above relatio
a manifestation of chaos resulting from the crossing of
stable and stable cylinders emanating from the periodic
bits of the center manifold.

The above chaotic behavior is not restricted to sets
initial conditions infinitesimally close to the invariant man
fold and whose orbits visit a small neighborhood ofP. In
Fig. 4 we show the chaotic exit to inflation occurring in
4-5
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FIG. 2. ~a! Collapse of 100 orbits with energyE0

51.49999994 initially in a sphere of radiusR51024 about the
point a50.4,pa53.563818177 on the separatrix of the invaria
manifold associated with the saddle center.~b! Escape to inflation
of 100 orbits with energyE051.499999999 initially in a sphere o
radiusR51024 about the same point.
06350
nonlinear neighborhood of the saddle center in whicha(t)
and pa(t) oscillate, implying the breakdown of the linea
approximation, since, according to Sec. III, the infinitesim
neighborhood ofP displays only hyperbolic motions in th
plane (a,pa). In this nonlinear regime aboutP the scalar
field degree of freedom pumps rotational energy into
degree of freedom associated with the gravitational scale
tor. The initial conditions were obtained by constructing
small sphere about a point outside the invariant manifold.
orbits oscillate very close to a typical unstable periodic or
of the center manifold before collapsing or escaping to in
tion. The set of unstable periodic orbits are very special
lutions that cannot be exactly attained by a physically r
evant solution. This numerical experiment also indicates
generality of the chaotic exit to inflation due to thepartition
of the total energy into the rotational energy mode of t
periodic orbit and the hyperbolic mode. The latter fixes alo
which cylinder~of collapse or escape! the motion will flow.

B. CaseV2„w…5L1l/4„w22s2
…

2

For the scalar field potential~4.2!, three critical points are
present on the phase space. Two of them are saddle ce
whereas the third is a pure saddle denoted, respectively
P6 andP0 whose coordinates are

P6 : a65A 3

2L
;w5w056s;pa5pw50, ~4.4!

P0 : a05A 3

2Le f
;w5w050;pa5pw50, ~4.5!

where Le f5L1(l/4)s4. The energies ofP6 and P0 are
given byEcr59/4L,9/4Le f , respectively. Since the Hamil
tonian ~2.3! is invariant under the changew→2w and pw

→2pw , both critical pointsP6 are physically identical. Due
to the fact thatLe f.L, it follows a6.a0. The critical
points are contained, respectively, in the three invari
manifoldsM6 andM0, defined by (w56s, pw50), and
(w50, pw50). The phase portrait of the invariant manifold
are schematically shown in Fig. 1. As we shall see in
sequence, the coexistence of three critical points of dist
topological nature produce very rich and complex dynam
resulting in several chaotic exits to inflation. In the numeric
experiments performed in the sequence, we assumeL51.0,
l50.5, s5A3, which producesa050.840168050,Ecr
51.058823529 anda651.224744871,Ecr52.25 that are
the values of the scale factor of the pure saddle and sa
centers together with the corresponding energies, res
tively.

Analogous to the caseA, we start the numerical study b
examining the long time behavior of orbits generated fro
initial conditions inside a sphere~as before the radiusR is of
order 1023, . . . , etc.! about a point on the separatrices
one of the invariant manifoldsM6 . These orbits represen
universes with radiation and effective cosmological const
V(6s)5L with fluctuations of the scalar field about th
symmetry-breaking scaleuwu5s. The dynamics is similar to
the one analyzed in the caseA for initial conditions
4-6
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FIG. 3. ~a! Chaotic exit to inflation of 300 orbits with energyE051.499999983 initially in a sphere ofR51024 about the same point o
Fig. 2. ~b! Three dimensional view of the region near the saddle center. Note the oscillations of the orbits in this region.~c! Projection of
orbits near the sphere of intitial conditions in the plane (w,pw). The strip in black indicates orbits that escape to de Sitter configuration, w
those in gray correspond to orbits that collapse.~d! A small strip of ~c! (20.00004<w<20.00002) is magnified, and repeats the sa
pattern indicating a fractal structure.
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FIG. 4. ~a! Chaotic exit to inflation of 30 orbits with energyE051.3660351 initially inside a ball of radius51028 about the point with
coordinatesa50.560834374,pa52.857528660,w50.106525696,pw50.251541127, close to the invariant manifold of the saddle cen
~b! These orbits approach an unstable periodic orbit of the center manifold in a small, but not infinitesimal, neighborhood of saddl
in such a way that the scale factora(t) as well aspa(t) oscillate several times before collapsing or escaping.~c! Projection of the same orbits
in the plane (w,pa) showing that the frequency of the motion ofpa is twice the frequency of the motion inw.
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sets taken in a neighborhood of the invariant manifold of
saddle center, with a chaotic exit to inflation of the same ty
as shown in Fig. 3. This study displays only the dynamics
case B occurring in a region of phase space close to
invariant manifold of the saddle center. The dynamical
pects due to the existence of another critical point of the p
saddle nature have not been evidenced, as well as the dy
ics in the region between the two invariant manifolds. F
instance, the extension of the center manifold and its ass
ated structure of homoclinic cylinders will permeate t
neighborhood of the pure saddle invariant planeM0, pro-
ducing the complex dynamics to be discussed next.

Now we proceed by taking initial conditions near the i
variant manifoldM0 associated with the pure saddle. T
idea is, again, to select a point onM0 and construct a smal
sphere of initial conditions with radiusR that represents the
uncertainty about the point under consideration due to fl
tuations around the local maximum of the potential. Depe
ing on the energyE0 collapse and escape to inflation ta
place. Nevertheless, it can be shown numerically that th
always exists an interval of energydE* 5uEmax2Eminu for
each radiusR, assumed sufficiently small asR51023, 1024,
1025, . . . , etc., in which the boundaries of collapse and
cape to the de Sitter configuration are chaotically mix
Again Emin andEmax denote the values of the energyE0 for
above or below which all orbits escape or collapse, resp
tively. The chaotic exits to inflation occur for the energ
inside the intervaldE* , and are a direct consequence of t
nonintegrability of the dynamics between the saddle cen
and the pure saddle. We recall that the twisting and cros
of homoclinic cylinders emanating from periodic orbits
the center manifold extend to the region of phase space
tween the saddle centers and the pure saddle reaching
neighborhood ofM0. The interplay of cylinders in a neigh
borhood of the pure saddle, and the consequent several
otic exits to inflation, can be revealed more clearly by t
following experiments. Consider now a point lying on th
separatrixS of M0 and whose coordinates area50.4, pa
52.756570759,w5pw50. Choosing the radiusR suffi-
ciently small, all orbits remains close toM0 until they reach
a region of the same order ofR around the pure saddle. From
this region, orbits will collapse or escape into the de Sit
attractor associated with the invariant plane of pure sad
~with Le f5L1ls4/4), depending on the energyE0. How-
ever, there also exists a domaindE* for which the outcome
of orbits is chaotic. According to Fig. 5, for a given ener
inside the chaotic domaindE* , we note three types of orbits
Type I orbits approach the pure saddle from which so
collapse and some escape to inflation. Indeed, in this lin
region about the pure saddle, thepartition of uE02Ecru into
the hyperbolic modes energiesE1 and E2 is completely in-
determinate so that we are not able to foretell which o
will collapse or escape once the initial conditions are gen
ated. Type IIa orbits visit the neighborhood of the sad
center, oscillate to follow with collapse or escape, wher
type IIb return to the neighborhood of the pure saddle
proceed with collapse or escape. In these situations thepar-
tition of uE02Ecru into the hyperbolic and rotational ene
gies modes around the saddle center, and in the hyperb
06350
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energy modes associated with the pure saddle, are chaot
Fig. 6, we refine the numerical experiment in such a way
select only type IIb orbits. By projecting them in the plan
w,pw , the approach to the homoclinic trajectory appea
Therefore, in the same sense that orbits shown in Fig
approached a given unstable periodic orbit of the cen
manifold, the orbits of Fig. 6 approach thehomoclinic orbit.

Another chaotic exit to inflation is obtained if we consid
a point of coordinatesa50.4, pa54.427039907,w5pw

50 (E052.058823529) on a trajectory~not the separatrix!
lying entirely onM0. For a given energy inside the chaot
domain the initial conditions generated about this po
evolve to one of the saddle centers, perform some osc
tions in its neighborhood~the scale factora and its canonical
momentumpa also oscillate! to collapse or to escape to in
flation, as shown in Fig. 7. In this case, the orbits have
proached a periodic orbit of the center manifold analogou
as shown in Fig. 4.

Finally, the chaotic behavior of the system describ
above, associated with the several exits to inflation, can
summarized as follows:

FIG. 5. Chaotic exit to inflation~case of symmetry breaking
potential! of 100 orbits with energyE051.058823529 evolving
from a sphere ofR51027 about a point with a50.4, pa

52.756570760 on the separatrix of the invariant manifold ass
ated to the pure saddle point. The orbits remain close to the inv
ant manifold until they arrive at the small neighborhood of the p
saddle. Type I orbits collapse or escape to inflation after the
proach to the pure saddle. Type II orbits are directed towards on
the saddle centers and, after some oscillations, either esc
collapse~type IIa!, or return to a neighborhood of the pure sadd
~type IIb! to collapse/escape.
4-9
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MONERAT, de OLIVEIRA, AND SOARES PHYSICAL REVIEW D58 063504
FIG. 6. ~a! Chaotic exit to inflation of 100 orbits of type IIb with
E051.058825026. Note the approach of these orbits to the
moclinic orbit extending from the pure saddle to the saddle cen
~b! Zoom of the region near the pure saddle showing the cha
exit to inflation.
06350
~1! Small fluctuations of initial conditions taken on ch
otic sets in a neighborhood of the invariant plane associa
with a saddle center will change one of the followin
asymptotic outcomes into another of the remaining on
visit the neighborhood of the saddle center and escap
inflation, towards the de Sitter attractor associated with
invariant plane of the saddle center; visit the neighborho
of the saddle center, then visit a neighborhood of the p
saddle, and escape to inflation, towards the de Sitter attra
associated with the invariant plane of the pure saddle; v
the neighborhood of the saddle center and collapse; visit
neighborhood of the saddle center, then visit the neighb
hood of the pure saddle, and collapse.

~2! Analogously, small fluctuations of initial condition
taken on chaotic sets in a neighborhood of the invari
plane associated with a pure saddle will change one of
following asymptotic outcomes into another of the remaini
ones: visit the neighborhood of the pure saddle and escap
inflation, towards the de Sitter attractor associated with
invariant plane of the pure saddle; visit the neighborhood
the pure saddle, then visit a neighborhood of the saddle c
ter, and escape to inflation, towards the de Sitter attra
associated with the invariant plane of the saddle center; v
the neighborhood of the pure saddle and collapse; visit

o-
r.
ic

FIG. 7. Chaotic exit to inflation of 60 orbits with energyE0

51.623311538, and initial conditions taken about the point,a
50.4, pa54.427039909,w50, pw50. This point belongs to the
invariant manifold of the pure saddle point, but not on the sepa
trix. The orbits visit the neighborhood of one of the saddle cent
and perform some oscillations before the collapse/escape.
4-10
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neighborhood of the pure saddle, then visit the neighborh
of the saddle center, and collapse.

We recall that, in any of the exits to inflation, the sca
field will be frozen in one of the vacuum states~with its
corresponding vacuum energy playing the role of the cos
logical constant for that exit! associated with one of the ex
trema of the scalar field potentialV(w).

V. FINAL REMARKS AND CONCLUSIONS

In this paper we have discussed the dynamics of clo
Friedmann-Robertson-Walker models which may provid
description of preinflationary stages of the universe and
exit to inflation. The basic physical ingredients of the mod
are radiation plus a scalar field minimally coupled to t
gravitational field. The energy momentum tensor of the s
lar field is split into a cosmological constant-type term~cor-
responding to the vacuum energy of the scalar field!, plus the
energy momentum tensor of the spatially homogeneous
pectation value of the scalar field. This simple configurati
with two effective degrees of freedom, presents a comp
dynamics. The basic features of the dynamics result from
presence of saddle center and pure saddle critical poin
the phase space of the system. In our model, the crit
points are associated with extrema of the scalar field po
tial, a minimum and a maximum corresponding, resp
tively, to a saddle center and pure saddle. Each critical p
is related to an invariant plane of the dynamics and to a
Sitter attractor. The scale factor approaches the de Sitte
tractors exponentially, defining exits to inflation, one f
each critical point. The region of phase space about a sa
center has the structure of homoclinic cylinders, emana
from the center manifold of unstable periodic orbits, resu
ing in a general orbit with an oscillatory behavior in th
neighborhood of the saddle center. Due to the nonintegra
ity of the system, the extension of homoclinic cylinders aw
from the periodic orbit is distorted and twisted, with eventu
transversal crossings of the unstable cylinders with the st
ones. These intersections produce chaotic sets in p
space, in a manner analogous to the breaking and crossin
homoclinic/heteroclinic curves in Poincare´’s homoclinic
phenomena, and provide a topological characterization
chaos in the general relativistic dynamics of the model.
we have shown, these phenomena extends to the neigh
hood of the nearest pure saddle invariant plane, produ
also chaotic sets of initial conditions in the region of pha
space laying between the invariant planes. A physically
evant manifestation of chaos is the chaotic exit to inflat
through one of the de Sitter attractors present in phase sp
Small fluctuations of initial conditions taken on chaotic s
change drastically the long time behavior of orbits, with
possibilities listed at the end of Sec. IV. This is a fundam
tal result, illustrated extensively in Figs. 3, 4, 5, 6 and 7. F
instance, a typical chaotic exit to inflation is realized wh
orbits, emanating from a small ball about a point on t
separatrix of one of the invariant manifolds associated w
the saddle centers, reach a linear neighborhood of the sa
center to proceed with collapse or escape to inflation. In
case, the chaotic domain is characterized by the gap of
06350
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ergydE* in which collapse and escape are possible, impl
by small fluctuations in initial conditions. Nevertheless, t
chaotic exit to inflation seems to be a general feature of
system. As made evident in the text, there is always a ga
energy for which orbits initially in a small sphere can visit
nonlinear region about the saddle center to evolve afterwa
to collapse or escape. The new and important effect is
oscillation of the scale factor induced by the scalar field,
equivalently, due to the approach to a given unstable orbi
the center manifold. Considering a model with symme
breaking potential three critical points, two saddle cent
and one pure saddle are present and the dynamics in
region between them produces several chaotic exits to in
tion, which are related to the extension of the cylindric
structure to this region. Therefore, we have shown num
cally that there always exists a gap of energy in which orb
initially close to the invariant manifold of the pure saddl
for instance, can visit a small neighborhood of one of t
saddle centers to~i! collapse or escape, or~ii ! return to the
pure saddle to collapse or escape.

Finally, an interesting perspective of this work is the po
sibility of the physical distinction between the exits to infl
tion, namely, whether the exit occurred towards the sad
center de Sitter attractor or towards the pure saddle de S
attractor. This possibility is based on the growing of a s
lected spectrum of Fourier components of inhomogene
perturbations, due a resonance mechanism generated b
oscillations of the scale factor, as already pointed out pre
ously @7#. Indeed, as we have seen, the scale factora(t) and
the scalar fieldw(t) oscillate, as the orbit visits a neighbo
hood of the saddle center, with frequency determined by
unstable periodic orbit approached~see Fig. 4, for instance!.
We remark that initial conditions always exist such that t
oscillations take an arbitrary fixed time before collapse
escape to a de Sitter phase. Therefore, inhomogeneous s
field perturbations and/or matter perturbations in this gra
tational background will have a selected spectrum of Fou
components amplified by a mechanism of resonance with
oscillations, the amplification occurring for the particul
Fourier components having periods approximately equa
an integer times the period of the periodic orbit approach
Even if the universe inflates afterwards the relative rate
amplitudes produced after the resonance amplification wo
be maintained as an imprint in the ‘‘initial spectrum’’ o
density fluctuations. This mechanism however is absen
the case of the exit towards the pure saddle de Sitter att
tor, since no oscillations appear when the orbit visits
neighborhood of the pure saddle before escaping. The
cases can in principle be observationally distinguished, ba
on restrictions imposed by observations in the initial sp
trum of density fluctuations. If the exit to inflation occurre
via a saddle-center de Sitter attractor the resonance am
cation mechanism referred to above will give rise to a non
@17# ‘‘initial spectrum’’ of density fluctuations@16#. The
above analysis obviously excludes orbits of type IIb.
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