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The dynamics of a preinflationary phase of the universe, and its exit to inflation, is discussed. This phase is
modeled by a closed Friedmann-Robertson-Walker geometry, the matter content of which is radiation plus a
scalar field minimally coupled to the gravitational field. The energy-momentum tensor of the scalar field is split
into a cosmological constant type term, corresponding to the vacuum energy of the scalar field plus the
energy-momentum tensor of the spatially homogeneous expectation value of the scalar field. This simple
configuration, with two effective degrees of freedom only, presents a very complicated dynamics connected
with the existence of critical points of saddle-center-type and saddle-type in the phase space of the system.
Each of these critical points is associated with an extremum of the scalar field potential. The topology of the
phase space about the saddle centers is characterized by homoclinic cylinders emanating from unstable peri-
odic orbits, and the transversal crossing of the cylinders, due to the nonintegrability of the system, results in a
chaotic dynamics. The topology of the homoclinic cylinders provides an invariant characterization of chaos.
The model exhibits one or more exits to inflation, associated with one or more strong asymptotic de Sitter
attractors present in phase space, but the way out from the initial singularity into any of the inflationary exits
is chaotic. We discuss possible mechanisms, connected with the spectrum of inhomogeneous fluctuations in the
models, which would allow us to distinguish physically the several exits to infldi&#556-282(198)03116-9

PACS numbgs): 98.80.Hw, 47.52+j, 98.80.Cq

[. INTRODUCTION of freedom only, will present a very complicated dynamics.
In fact, we will show thaii) the model exhibits one or more
The existence of an inflationary phase in the early stagesxits with inflation, associated to one or more asymptotic de
of our Universe has become one of the paradigms of moder8itter attractors in phase space, depending on the structure of
cosmology[1], and is now being subject to experimental the scalar field potentialji) the dynamics will imply that in
verification through the crucial measurements of small scalany of the exits to inflation the scalar field will be frozen in
anisotropies in the cosmic background radiation. The basione of the vacuum statgsvith its corresponding vacuum
physical ingredient for this inflationary phase is the existencenergy playing the role of the cosmological constant for that
of a scalar field—the inflaton field, the vacuum energy ofexit) associated with an extremum of the scalar field poten-
which plays the role of a cosmological constant, engenderingal, and (iii) the exit to inflation is chaotic.
via the gravitational dynamics an exponential expansion in In the literature of inflation, the exponential expansion of
the comoving scales of the universe. This model may behe scales of the model, whenever a positive cosmological
thought to have evolved from a preinflationary phase justonstant is present, has been extensively discussed and con-
exiting the Planck era. Our attempt here will be to discuss &titutes the basis of the so-called cosmic no-hair conjecture.
model for this pre-inflationary phase and its exit to inflation,Wald [2], in the realm of spatially homogeneous cosmolo-
by using a minimal set of ingredients: in its simplest versiongies, and Starobinskji3], in the more general case of inho-
the model can be described as a Friedmann-Robertsomogeneous models, showed that all initially expanding mod-
Walker (FRW) universe, the matter content of which is a els evolve towards the de Sitter configuration if a positive
perfect fluid(which we take as radiatigrplus a scalar field cosmological constant is present. Also, the introduction of
minimally coupled to the gravitational field. The energy mo-dynamical degrees of freedom associated with the scalar
mentum tensor of the scalar field may be split into a cosmofields, in addition to a cosmological constant, was shown to
logical constant-type terrcorresponding to the vacuum en- produce nontrivial dynamics in the early stages of inflation.
ergy of the scalar fieldplus the energy momentum tensor of In particular, Calzetta and El Ha$#], and Cornish and
the spatially homogeneous expectation value of the scaldrevin [5] exhibited chaotic behavior in the dynamics of
field. We assume from the start a closed FRW universe. ThiSRW models with a cosmological constant term and scalar
apparently simple configuration, with two effective degreedfields conformally and/or minimally coupled with gravita-
tion, implying that small fluctuations in initial conditions of
the model preclude or induce the Universe to inflate. In both

*Email address: germano@symbcomp.uerj.br cases, the presence of the cosmological constant induces the
"Email address: oliveira@symbcomp.uerj.br existence of separatrices in the unperturbed phase space of
*Email address: ivano@Ical.drp.cbpf.br. the models, connecting critical points of the saddle-type.
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Thesg connections are known to be highly unstablef and the_ir T,=(p+p)U,U,—pg,,+d,0d,¢
breaking and transversal crossing, due to perturbations origi-
nated from the coupling of the gravitational variable with the
scalar field, are basically responsible for the chaotic dynam-
ics. This chaotic behavior constitutes the so-called
Poincare’s homoclinic phenomen@l. wherep and p are the energy density and pressure of the
The new features in the preinflationary dynamics intro-fluid, respectively. In the present model we assume the equa-
duced by our model arise from the presence of a positivéion of state for the fluidp=1/3p. This assumption is justi-
cosmological constant and a perfect flgmlatter in radiation  fied since the models are supposed to describe a phase of the
form) in a closed FRW universe, whenever a scalar field idJniverse emerging from the Planck 8. Einstein’s equa-
also present even in the form of small perturbations, andions for the metriq2.1) and the energy momentum tensor
have not been considered in the literature yet. The degrees (2.2) are equivalent to Hamiltonian’s equations generated by
freedom are the scale factor of the FRW geometry and onthe Hamiltonian constraint
scalar field. As a consequence, the phase space of the system

1
- E(é“eo(?aso—ZV(@)g,m 2.2

present one or more critical points, depending on the number p2 p2 E
of extrema of the potential of the scalar field. If the extremum H=——%+ > +3a—a%V(p)— 2, (2.3
is a minimum, the corresponding critical point is identified as 2a® 12a a

a saddle center. As a consequence, we have a very complex ) _
dynamics based on the so-called homoclinic cylinders whichvherep, andp,, are the momenta canonically conjugated to
emanate from unstable periodic orbits that exist in a neigh2 and ¢, respectivelyE, is a constant arising from the first
borhood of a saddle center. Analogous to the breaking antitegral of Bianchi identities, and obviously proportional to
crossing of heteroclinic curves in above referred homoclini¢he total matter energy of the models. The complete dynam-
phenomena, these cylinders will cross each other in the nodcs is governed by Hamilton’s equations

integrable cases producing a chaotic dynamics. These topo-

logical structures allow an invariant characterization of chaos . Pa

in the model[7], as we will discuss, and will have a deep a= 6a’

implication for the occurrence or not of inflation in its sev-

eral exits, as well as for the physics in the early stages of

inflation. Chaotic exit to inflation, as a consequence of the : [

existence of a saddle center and its associated structure of =" "5

homoclinic cylinders, has been examined for the first time in a

the literature by de Oliveira, Soares, and StudHi(subse- (2.4)
quently referred to as O$Sand contains several technical

results which we will often refer to here. The paper is orga- 5

nized as follows. In Sec. Il, we describe the Hamiltonian p :—&—6+4aZV( )

dynamics of the model and the critical points in the phase @ at @

space. We discuss the nature of these critical points, and
describe the topology of homoclinic cylinders about each . )
saddle-center critical point. The numerical evidence for a P,=a’V'(g),

physically relevant chaotic behavior is shown in Sec. I,

where two cases concerning the choices of the potential wilf'nere. denotes derivative with respect go We have used
be discussed. Finally, in Sec. IV, we conclude and tracdn® Hamiltonian constrain@.3) to simplify the third of Egs.
some perspectives of the present work. (2.4). The dynamical syster(2.4) has critical pomtsE% in

the finite region of the phase space whose coordinates are

Il. THE DYNAMICS OF THE MODEL 3
We consider closed FRW cosmological models character- oy @=¢0,a=80= \/ m,paZO,p(P:O, (2.9
ized by the scale functioa(t), with line element
whereg is solution of the equatioW’ (¢)=0. The number
of critical pointsE, is therefore equal to the number of
ds’=dt?—a?(t)[(wh?+(w?)*+(wW?)?]. (2.1  extremag, of the potentialV(¢). The energy associated
with each critical point is given by

Heret is the cosmological time andu!,w? w?) are invari-

ant Bianchi type-IX 1-formg8]. The matter content of the 3a
model is represented by a perfect fluid with four-velocity EO:EchT'
U#=8f in the comoving coordinate system used, plus a ho-

mogeneous minimally coupled scalar field with potentialAlso, the existence of the critical points demands that
V(¢). The total energy momentum tensor is described by V(¢g)>0; these critical points correspond to the configura-

(2.6
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tion of the Einstein universe, with the respective cosmologi- f
cal constant given by eacti(¢y). The stability analysis is
obtained by linearizing the systef2.4) about the critical
points Eey resulting in the constant matrix determining the

linear system about eadh,, , with the four eigenvalues

4V(¢o)

A== 3 N3s=FtV—V'(eg). (2.7

From the above we can see that if the particular extremum of \-
V(¢) is a minimum, the corresponding critical point is a
saddle centdrl0]. On the contrary, iV”(¢) <0, the critical

-

point is a pure saddle, with four real eigenvalues.
The dynamical syster(2.4) admits invariant planesA,,

defined generically by

L _ FIG. 1. Phase portrait of the invariant manifajd= ¢4, p,=0.
Mcpo"P_ %o p‘P_O' (2.8 The orbits represent homogeneous and isotropic universes with ra-
diation and cosmological constant.
On M(PO the dynamics is governed by the two-dimensional
system els. Moreover, we will show that—due to topology of the
phase space of the models—the dynamics of the allowable
exits to inflation is highly complex. For example, sets of
initial conditions exist for which the exit to inflation is cha-
otic: arbitrarily small fluctuations of initial conditions in
these sets may change the final state of the universe, not only
Pa=—6+4a%V(p). (2.9 from_collapse to escape in the neighborhood of the same
invariant plane, but also from collapse or escape about the
The system(2.9) is integrable, with Hamiltonian constraint N€ighborhood of one invariant manifold into collapse or es-
H=pZ/12a+3a—a®V(py) — Eg/a=0. Introducing the con- Cape about the neighborhood of another invariant plane.
formal time 5 by d7=dt/a, the dynamical systert2.9) and _ This _comple_x dynamlqs and some _of its ph_y5|cal applica-
its associated Hamiltonian constraint become regulaa at tions Will be discussed in the following sections, together
=0, so that the dynamics can be continuously extended tgylth various numerical experiments showing the aboye men-
the regiona<0' as shown in Fig. 1. The integral curves tioned effects, for the case of two standard scalar field po-

represent closed FRW models, with radiation plus an effeclﬁnt'als': tr;ehf|r§t W'thh one extremur(rnn|n|mum)donly, and_
tive cosmological constant given by the valWée,). We the second having three extrerftaro minima and one maxi-

remark that each critical poitﬁ% belongs to the respective mum).
invariant plane/\/l%. A straightforward analysis of the infin- L. THE TOPOLOGY OF PHASE SPACE

ity _of the phase space shows the presence of pairs of qitical ABOUT THE CRITICAL POINTS

points, corresponding to the de Sitter solution, one acting as

an attractorstable de Sitter configuratipand the other asa  Our starting point here is to linearize the Hamiltonian
repeller (unstable de Sitter configuratipnEach pair of de (2.3 about its critical points. As we have seen already these
Sitter attractors is associated with an invariant plave, , critical points are of two types, a saddle centele(¢9)

with its corresponding effective cosmological constant= 0 Or & pure saddle ¥/"(¢o)<0. About the critical point,
V(). The scale factoa(t) approaches the stable de Sitter Whose coordinates are given by H@.5), the Hamiltonian
attractors as(t)~e"V#R The stable de Sitter attractors M2y Pe expressed

define exits to inflation, and one of the questions to be ex-

a= D2
6a’

amined in this paper is the characterization of sets of initial p2  aj , 2
conditions for which one of them is attained. The existence H=— Pyci 7V"(<Po)(¢— ®o)°+ 12a,
0

of critical points of saddle-saddle or saddle-center character,

and of distinct exits to inflation associated with the de Sitter 6 1

attractors, is a striking novelty in the dynamics of our mod- - a—(a— ag)’+ a_(E”_ Ey)+0O(3)=0, (3.1
0 0

whereO(3) denotes higher order terms in the expansion. In
We note however tha=0 corresponds to the singularity of the @ small neighborhood of the critical point, these higher order
curvature tensor and we will obviously restrict our analysis to theterms can be neglected and the motion is separable, with the
physical regiona>0. partial energies

063504-3



MONERAT, de OLIVEIRA, AND SOARES
2 4
— p‘P Q " 2 — 1 2 2
E1—2_a3+ 7V (e0)(@—¢0)%, E2_1_2pa_6(a_ao)
(3.2

approximately conserved. We have

_E1+ E2+ Ecr_EONO, (33)

where the quantitye.,—E, is small. We consider first the

case of saddle centers. We note thatis always positive,

PHYSICAL REVIEW 68 063504

fold with small hyperbolas in the plane(p,), which are
obviously solutions of E¢(3.2). We remark that a picture of
these hyperbolas is given by the curves of Fig. 1 contained in
the small neighborhooill.

Now due to the nonintegrability of the system, the exten-
sion of the cylinders away from the periodic orbit is distorted
and twisted, with eventual transversal crossings of the un-
stable cylinder with the stable one. These intersections will
produce chaotic sets in the phase spgac#2,13, analogous
to the case of breaking and crossing of homoclinic or hetero-
clinic connections in Poincare’s homoclinic phenomghéd.

due toV”(¢py)>0, and is associated with rotational motion, This provides an invariant characterization of chaos in the
while E, has no fixed sign and corresponds to hyperbolicgeneral relativistic dynamics of the models.
motion always. This is in accordance with a theorem by From the general chaotic behavior of the system, we will
Moser[11] stating that there always exists a set of canonicabingle out the following aspect which is of physical interest
variables such that, in a small neighborhood of a saddle cerfor inflation. A general orbit which visits the neighborhood
ter, the Hamiltonian is separable into rotational motion and\ is characterized b, +#0, E,#0. In this region the orbit
hyperbolic motion pieces. In this approximation, we notehas an oscillatory approach to the cylinders, the closer as
from Eq. (3.2 that the scale factaa(t) has pure hyperbolic E,—0. Thepartition of the energyE.,— E|, into the ener-
motion, and is completely decoupled from the scalar fieldgiesE; andE, of motion about the critical point, will deter-
pure rotational motion. The general oscillatory behavior ofmine the outcome of the oscillatory regime into collapse or
the orbits are connected with the existence of a manifold ofscape to inflatioide Sitter attractor For instance, initially
unstable periodic orbits, associated with the saddle center.expanding models with enerds, will go out the oscillatory

To see this, let us briefly describe the topology of ho-regime into collapse or escape if thartition of E.,— Eg in
moclinic cylinders in the phase space about a saddle centeX is such thate,<0 or E,>0, respectively. However, the
A detailed description is done in OSS§f. also references non-integrability of the systen2.4), with the consequent
therein. Let us consider the possible motions in a smalltwisting and crossing of homoclinic cylinders, will cause this

neighborhoo\ of the saddle centers. In the cdsg=0 and
p.=0=a—a,, the motions are unstable periodic orbi’@O

in the plane ¢,p,). Such orbits depend continuously on the

parametetE,. For E,=0, there is still the possibilityp,=
*+(a—ag), which defines the linear stabM; and unstable

partition of energy to be chaotic in general, and will charac-

terize a chaotic exit to inflation towards the de Sitter attractor
of the invariant plane associated with the saddle center. In
other words, given a general initial condition of eneigy,

we are no longer able to foretell in what of regions | or I

V, one-dimensional manifolds, which are tangent, at the2Pout the saddle centgsf. Fig. 1) the orbit will stay when it

critical point, to the separatriceS of the invariant plane
associated with the saddle centef. Fig. 1). The separa-
trices are actually the nonlinear extensiorMgfandV,,. The
direct product of the periodic orbiztE0 with Vg andV, gen-

erates, in the linear neighborhobdof the saddle center, the

structure of pairs of stablergoxvs) and unstable 7(Eo

approaches the saddle center. Small fluctuatioryimr in

the initial conditions in these sets will change the outcomes
of the orbits from collapse into escape and vice versa, char-
acterizing a chaotic exit to inflation. We note that this chaotic
behavior will also set up associated with cylinders emanating
from unstable periodic orbits of the center manifold which
are not in a linear neighborhood of the saddle center. This

XV,) cylinders. Orbits on the cylinders coalesce into theill be illustrated thoroughly in the numerical experiments in

periodic orbitrE0 for times going to+e« and —«, respec-

the following section.

tively, the energy of the orbits being the same as that of the But this is not the whole story of the chaotic exit to infla-
periodic orbit. The nonlinear extension of the plane of rota-ion in the present model, as we will see if a critical point of
tional motion, where the linear unstable periodic orbits re-the saddle-type is also present in phase space. In the case of

side, is a two-dimensional manifold, tieenter manifold 6],

a pure saddle, both; andE, do not have a fixed sigimote

of unstable periodic orbits of the system, parametrized wittthat V"(¢g)<<0] and correspond obviously to hyperbolic
the energyE,. The intersection of the center manifold with motion only. Instead of homoclinic cylinders in this neigh-

the energy surfackg is a periodic orbit of energ¥, from

borhood, we have two sets of linear stablg and unstable

which two pairs of cylinders emanate, as in the linear cas&/,, manifolds emanating from the pure saddle, associated
previously described. From E@3.3) we can see that the with the pair of real eigenvalud?.7). It is straightforward to
intersection of the center manifold with the energy surfacesee that one of the sets, associated with the eigenvalugs

Eo=E,, is just the critical point; folE.,— E(<0, the energy

is the linearization(around the saddle poinof the separa-

surface does not intersect the center manifold. It follows thatrices of the invariant plane containing this critical point. The
the structure of homoclinic cylinders is present only in thenonlinear extension of the second $etrresponding to the

energy surfaces for whick,,—E;>0. In the caseE,#0

eigenvalues\3 4 constitutes a homoclinic curve that visits

andE.,— Ey>0 the orbits are restricted to infinite cylindri- the nearest saddle center, approaching a periodic orbit in this

cal surfaces which, in a linear neighborhdddf the saddle

neighborhoodcf. Fig. 6). The above-mentioned crossing of

center, are the product of periodic orbits of the central manihomoclinic cylinders will reach the neighborhood of the in-
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variant plane associated with the pure saddle, producing aldbe separatrix Eq=E.,=1.5) with coordinatea=0.4, p,
chaotic sets in this neighborhood. =3.563818177; aroun8, we construct a four dimensional
The chaotic behavior of the system, associated with thgphere in phase space with arbitrary small radRs
exits to inflation, will be the main object of the next section. = 10*3,10*4, as the measure of the uncertainty in the initial

conditions. The initial conditions & p,,¢,p,) are then
IV. CHAOTIC EXITS TO INFLATION taken in energy surfaces which have a nonempty intersection
. . I with this sphere, as evaluated from the Hamiltonian con-
In order to proceed in the numerical examination of the | . ;
dynamics, we will restrict ourselves to the two choices of theStra'nt', Itis easy to see that such energy surfaces are those
scalar field potentiaV/(¢), for which the range of the enerdy, is in the intervalD
=(1.5-AEy,1.5-AE) about the critical energ¥,=E,
=1.5, withAE, of the order of, or smaller thaRR. Actually,
Vi(@)=A+ Emchz (4.1) these initial conditions represent initially expanding models
2 just after the singularity exhibiting small perturbations in the
scalar field. The numerical experiments revealed, as ex-
pected, two possible outcomes: collapse or escape to the in-
flationary regime, depending oB, that varies from 1.5
—AE, to 1.5+ AE,, with AE, of orderR. Since the energy
E, was chosen to be very close to the energy of the separa-
trix, it is not difficult to prove[7] that all orbits visit a small
whereA is included as the vacuum energy of the scalar fieldof order of R) neighborhood\ of the critical point before
(inflaton field, m is the mass of its expectation value, and collapsing or escaping into inflation. The final state depends
and o are positive constants. The constaniplays the role crucially on the partiion of the energy
of a cosmological constant. The usual matter content will béE,—E_,| into the rotational motion mode and the hyper-
represented by radiation. In the literature of inflation, extenbolic motion mode, in the small neighborhoby so that, if
sive use has been made of both potenfiélsin the numeri-  E,>0 the orbits escape, whereas collapse is characterized by
cal experiments performed here all calculations were madg,<0. In Fig. 2 we illustrate the collapse and the escape of
using the packagPoincare[15], where we enforce that the 400 orbits initially in a sphere of radil8=10"*. Neverthe-
error of the Hamiltonian never exceeds a given threshold ofess, for each radiuR, there exists a non-null interval of
107", energysE* = |Enax— Eminl C D for which orbits have an in-
determinate outcome; that is, fluctuations in initial conditions
A. CaseV,(¢)=A+3m?p? of the order of or smaller thaR=10"3,10"%, ... will
change the long time behavior of an orbit from collapse to
escape into inflation, and vice versa. Hé&tg;, and E .«
denote the values of the enerBy above or below which all
orbits escape or collapse, respectively. In this sense we say
that the exit to inflation is chaotic. In Fig. 3 this behavior is
a— /i_ =0 —b -0 4.3 shown for 300 orbits corresponding to a sphere of initial
0 oA PTP0TY PaTRe=, ' conditions with radiusR=10"*. This result of fundamental
importance is an evidence of the chaogiartition of the
and energyE.,=9/4A. The eigenvalue§2.7) are given, re- energyEy—E,, into the energy modeg; andE, when the
spectively by +4A/3 and =im, and they are associated orbits are in the small region aroufl It is worth mention-
with the hyperbolic motion in the plan@(p,) and rotational ing that the indeterminate outcome due 88* #0 occurs
motion in the plane ¢,p,), in a neighborhood oP. Note  only for Eo—E,<0, as expected. This is the energy condi-
that the eigenvalues corresponding to the rotational motiotion for the presence of homoclinic cylinders. In the case
depend on the mass of the scalar field. There is also ongy—E..=0, we haveE,>0 and all orbits escape. By deter-
invariant manifoldM defined bye=p,=0. mining numerically the values &,,;, andE,,, for several
The phase space under consideration is not compact, arvlues ofR, we obtain the scaling lawdE* =kR?, wherek
we will actually identify a chaotic behavior associated withis a constant depending an. We will discuss this depen-
the possible asymptotic outcomes of the orbits in this phasdence orm elsewhere, but fom=4, we havek~2.576. An
space, namely, escape to a de Sitter attractor at infinity re@nalogous scaling relation was obtained in OSS, in the realm
resenting the inflationary regime, or collapse after a burst obf anisotropic universes. We recall that the above relation is
initial expansion. a manifestation of chaos resulting from the crossing of un-
Following the procedure of OSS, our objective here isstable and stable cylinders emanating from the periodic or-
first to analyze numerically the behavior of the orbits, thebits of the center manifold.
initial conditions of which are taken in a small neighborhood The above chaotic behavior is not restricted to sets of
of a point on the separatrix in the invariant manifold initial conditions infinitesimally close to the invariant mani-
M (¢=p,=0). We assume thak =1.5 andm=4.0 such  fold and whose orbits visit a small neighborhood Rf In
thatag=1.0 andE;,=1.5. We select a poir, belonging to  Fig. 4 we show the chaotic exit to inflation occurring in a

and

Vz(¢)=A+%(¢2—02)2, (4.2)

The potential has only one extremua minimum at
¢o=0, and the phase space has only one critical p@inf
saddle-center type, with coordinates
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FIG. 2. (8 Collapse of 100 orbits with energyE,
=1.49999994 initially in a sphere of raditR=10"* about the
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nonlinear neighborhood of the saddle center in wha¢h)

and p,(t) oscillate, implying the breakdown of the linear
approximation, since, according to Sec. lll, the infinitesimal
neighborhood ofP displays only hyperbolic motions in the
plane @,p,). In this nonlinear regime aboW® the scalar
field degree of freedom pumps rotational energy into the
degree of freedom associated with the gravitational scale fac-
tor. The initial conditions were obtained by constructing a
small sphere about a point outside the invariant manifold. All
orbits oscillate very close to a typical unstable periodic orbit
of the center manifold before collapsing or escaping to infla-
tion. The set of unstable periodic orbits are very special so-
lutions that cannot be exactly attained by a physically rel-
evant solution. This numerical experiment also indicates the
generality of the chaotic exit to inflation due to tpartition

of the total energy into the rotational energy mode of the
periodic orbit and the hyperbolic mode. The latter fixes along
which cylinder(of collapse or escapehe motion will flow.

B. CaseV,(¢)=A +N/4(p*— 0?)?

For the scalar field potenti&t.2), three critical points are
present on the phase space. Two of them are saddle centers
whereas the third is a pure saddle denoted, respectively, by
P. andPy whose coordinates are

/3
P.: a.= ﬁ;q;:goo:ta;pa:pq,zo, (4.9

[ 3
PO: Qo= 2A .QD:QDOZO;pa:pw:O! (45)

ef

where Ag=A + (\4)o*. The energies oP. and P, are
given by E.,=9/4A,9/4A ¢¢, respectively. Since the Hamil-
tonian (2.3 is invariant under the change— —¢ andp,

— —p,,, both critical pointsP. are physically identical. Due

to the fact thatA.>A, it follows a.>ay. The critical
points are contained, respectively, in the three invariant
manifolds M.. and M,, defined by ¢=*o, p,=0), and
(¢=0, p,=0). The phase portrait of the invariant manifolds
are schematically shown in Fig. 1. As we shall see in the
sequence, the coexistence of three critical points of distinct
topological nature produce very rich and complex dynamics
resulting in several chaotic exits to inflation. In the numerical
experiments performed in the sequence, we asshimé.0,
A=0.5, o=+3, which producesa,=0.840168050,E,,
=1.058823529 and.=1.224744871E. =2.25 that are

the values of the scale factor of the pure saddle and saddle
centers together with the corresponding energies, respec-
tively.

Analogous to the cash, we start the numerical study by
examining the long time behavior of orbits generated from
initial conditions inside a sphefas before the radiuR is of
order 103, ..., etc) about a point on the separatrices of
one of the invariant manifolda1.. . These orbits represent

point a=0.4p,=3.563818177 on the separatrix of the invariant Universes with radiation and effective cosmological constant

manifold associated with the saddle centby. Escape to inflation

V(= o)=A with fluctuations of the scalar field about the

of 100 orbits with energye,= 1.499999999 initially in a sphere of symmetry-breaking scale|= o. The dynamics is similar to

radiusR=10"* about the same point.

the one analyzed in the cas& for initial conditions
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FIG. 3. (@) Chaotic exit to inflation of 300 orbits with enerdi,=1.499999983 initially in a sphere &= 10"* about the same point of
Fig. 2. (b) Three dimensional view of the region near the saddle center. Note the oscillations of the orbits in this(cedioojection of
orbits near the sphere of intitial conditions in the plapep(,). The strip in black indicates orbits that escape to de Sitter configuration, while
those in gray correspond to orbits that collap@®.A small strip of (c) (—0.00004< ¢<—0.00002) is magnified, and repeats the same
pattern indicating a fractal structure.
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FIG. 4. (a) Chaotic exit to inflation of 30 orbits with enerds,=1.3660351 initially inside a ball of radius 10”8 about the point with
coordinatesa=0.560834374p,=2.857528660¢=0.106525696p,=0.251541127, close to the invariant manifold of the saddle center.
(b) These orbits approach an unstable periodic orbit of the center manifold in a small, but not infinitesimal, neighborhood of saddle center,
in such a way that the scale fact(t) as well ag,(t) oscillate several times before collapsing or escagic)gProjection of the same orbits
in the plane {,p,) showing that the frequency of the motion pf is twice the frequency of the motion ip.
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sets taken in a neighborhood of the invariant manifold of the st sphere of initial
saddle center, with a chaotic exit to inflation of the same type <~ conditions
as shown in Fig. 3. This study displays only the dynamics of
case B occurring in a region of phase space close to the
invariant manifold of the saddle center. The dynamical as-
pects due to the existence of another critical point of the pure  2f
saddle nature have not been evidenced, as well as the dynan
ics in the region between the two invariant manifolds. For .
instance, the extension of the center manifold and its associ N\
ated structure of homoclinic cylinders will permeate the \
neighborhood of the pure saddle invariant plakh&,, pro- Y \
ducing the complex dynamics to be discussed next. \
Now we proceed by taking initial conditions near the in-
variant manifold M, associated with the pure saddle. The
idea is, again, to select a point v, and construct a small ¢ o
sphere of initial conditions with radiuR that represents the
uncertainty about the point under consideration due to fluc-
tuations around the local maximum of the potential. Depend-
ing on the energ\E, collapse and escape to inflation take
place. Nevertheless, it can be shown numerically that there |
always exists an interval of energdE* =|E,ax— Eminl for \
each radiuR, assumed sufficiently small &=10"3, 10 4,
10°°, ..., etc., in which the boundaries of collapse and es-
cape to the de Sitter configuration are chaotically mixed.
Again E i, andE, 5, denote the values of the enerBy for 2 ;
above or below which all orbits escape or collapse, respec-
tively. The chaotic exits to inflation occur for the energy
inside the intervaE*, and are a direct consequence of the FIG. 5. Chaotic exit to inflatior(case of symmetry breaking
nonintegrability of the dynamics between the saddle centergotentia) of 100 orbits with energyE,=1.058823529 evolving
and the pure saddle. We recall that the twisting and crossinfiom a sphere ofR=10"" about a point witha=0.4, p,
of homoclinic cylinders emanating from periodic orbits of =2.756570760 on the separatnx of the |nvar|§nt manifold associ-
the center manifold extend to the region of phase space bé'x_ted to t_he pure_saddle ppmt. The orbits remam close to the invari-
tween the saddle centers and the pure saddle reaching tARt manifold until they arrive at the small neighborhood of the pure

. - . : . saddle. Type | orbits collapse or escape to inflation after the ap-
neighborhood of\f,. The interplay of cylinders in a neigh roach to the pure saddle. Type Il orbits are directed towards one of

bqrhoo_d of the pure saddle, and the consequent several Cr%'e saddle centers and, after some oscillations, either escape/
otic exits to inflation, can be revealed more clearly by the

. . . . . collapse(type lla), or return to a neighborhood of the pure saddle
foIIowmg experiments. Consider now a point lying on the (type Ilb) to collapse/escape.
separatrixS of M, and whose coordinates ase=0.4, p,
=2.756570759,0=p,=0. Choosing the radiuR suffi-  energy modes associated with the pure saddle, are chaotic. In
ciently small, all orbits remains close fot, until they reach  Fig. 6, we refine the numerical experiment in such a way to
a region of the same order Bfaround the pure saddle. From select only type llb orbits. By projecting them in the plane
this region, orbits will collapse or escape into the de Sitterp,p,,, the approach to the homoclinic trajectory appears.
attractor associated with the invariant plane of pure saddl@herefore, in the same sense that orbits shown in Fig. 4
(with Ag¢=A+\c?/4), depending on the enerdy,. How-  approached a given unstable periodic orbit of the center
ever, there also exists a domai&* for which the outcome manifold, the orbits of Fig. 6 approach themoclinic orbit
of orbits is chaotic. According to Fig. 5, for a given energy  Another chaotic exit to inflation is obtained if we consider
inside the chaotic domaisiE*, we note three types of orbits. a point of coordinatesa=0.4, p,=4.427039907,0=p,,
Type | orbits approach the pure saddle from which some=0 (E,=2.058823529) on a trajectokyot the separatrix
collapse and some escape to inflation. Indeed, in this linedying entirely on M. For a given energy inside the chaotic
region about the pure saddle, thartition of |[Eq—E.,| into  domain the initial conditions generated about this point
the hyperbolic modes energi&s andE, is completely in-  evolve to one of the saddle centers, perform some oscilla-
determinate so that we are not able to foretell which orbitions in its neighborhoo(the scale factoa and its canonical
will collapse or escape once the initial conditions are genermomentump, also oscillatg to collapse or to escape to in-
ated. Type lla orbits visit the neighborhood of the saddleflation, as shown in Fig. 7. In this case, the orbits have ap-
center, oscillate to follow with collapse or escape, whereaproached a periodic orbit of the center manifold analogously
type llIb return to the neighborhood of the pure saddle taas shown in Fig. 4.
proceed with collapse or escape. In these situationpaine Finally, the chaotic behavior of the system described
tition of |Eq—E,,| into the hyperbolic and rotational ener- above, associated with the several exits to inflation, can be
gies modes around the saddle center, and in the hyperbolgsummarized as follows:

// Type I1Ib
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FIG. 6. (a) Chaotic exit to inflation of 100 orbits of type Ilb with
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FIG. 7. Chaotic exit to inflation of 60 orbits with enerds,
=1.623311538, and initial conditions taken about the point,
=0.4, p,=4.4270399094=0, p,=0. This point belongs to the
invariant manifold of the pure saddle point, but not on the separa-
trix. The orbits visit the neighborhood of one of the saddle centers
and perform some oscillations before the collapse/escape.

(1) Small fluctuations of initial conditions taken on cha-
otic sets in a neighborhood of the invariant plane associated
with a saddle center will change one of the following
asymptotic outcomes into another of the remaining ones:
visit the neighborhood of the saddle center and escape to
inflation, towards the de Sitter attractor associated with the
invariant plane of the saddle center; visit the neighborhood
of the saddle center, then visit a neighborhood of the pure
saddle, and escape to inflation, towards the de Sitter attractor
associated with the invariant plane of the pure saddle; visit
the neighborhood of the saddle center and collapse; visit the
neighborhood of the saddle center, then visit the neighbor-
hood of the pure saddle, and collapse.

(2) Analogously, small fluctuations of initial conditions
taken on chaotic sets in a neighborhood of the invariant
plane associated with a pure saddle will change one of the
following asymptotic outcomes into another of the remaining
ones: visit the neighborhood of the pure saddle and escape to
inflation, towards the de Sitter attractor associated with the
invariant plane of the pure saddle; visit the neighborhood of

Eo=1.058825026. Note the approach of these orbits to the hothe pure saddle, then visit a neighborhood of the saddle cen-
moclinic orbit extending from the pure saddle to the saddle centeit€r, and escape to inflation, towards the de Sitter attractor
(b) Zoom of the region near the pure saddle showing the chaoti@ssociated with the invariant plane of the saddle center; visit

exit to inflation.

the neighborhood of the pure saddle and collapse; visit the
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neighborhood of the pure saddle, then visit the neighborhoodrgy SE* in which collapse and escape are possible, implied
of the saddle center, and collapse. by small fluctuations in initial conditions. Nevertheless, the
We recall that, in any of the exits to inflation, the scalarchaotic exit to inflation seems to be a general feature of the
field will be frozen in one of the vacuum statésith its ~ System. As made evident in the text, there is always a gap of
corresponding vacuum energy playing the role of the cosmoenergy for which orbits initially in a small sphere can visit a
logical constant for that exitassociated with one of the ex- nonlinear region about the saddle center to evolve afterwards
trema of the scalar field potenti®l( ). to collapse or escape. The new and important effect is the
oscillation of the scale factor induced by the scalar field, or,
equivalently, due to the approach to a given unstable orbit of
V. FINAL REMARKS AND CONCLUSIONS the center manifold. Considering a model with symmetry

In this paper we have discussed the dynamics of CloseBreaking potential three critical points, two saddle centers

Friedmann-Robertson-Walker models which may provide zfmd one pure saddle are present and the dynamics in the

description of preinflationary stages of the universe and it egion between them produces several chaotic exits to infla-

exit to inflation. The basic physical ingredients of the models |;)n, tWh'Cth ‘?r:? rela_ted Elf)hthef extens,lor:] of ﬂ;]e cyl|ndr|call
are radiation plus a scalar field minimally coupled to theStructure 1o this region. 1heretore, we have shown numeri-

gravitational field. The energy momentum tensor of the scaf—:a"y that there always exists a gap of energy in which orbits

lar field is split into a cosmological constant-type tefcor- initially close to the invariant manifold of the pure saddle,
responding to the vacuum energy of the scalar figitlis the for instance, can visit a small neighborhood of one of the

energy momentum tensor of the spatially homogeneous e)g._addle ZZ?tetrs tol)l collapse or escape, i) return to the
pectation value of the scalar field. This simple configuration,pure. saddle fo collapse or escape. . .
Finally, an interesting perspective of this work is the pos-

with two effective degrees of freedom, presents a complex., .. . AU . .
dynamics. The basic features of the dynamics result from th ibility of the physical distinction between the exits to infla-
on, namely, whether the exit occurred towards the saddle-

resence of saddle center and pure saddle critical points i 4 .
!cohe phase space of the systemp In our model thep criticayenter de Sitter attractor or towards the pure saddle de Sitter
: ' ttractor. This possibility is based on the growing of a se-

points are associated with extrema of the scalar field pote acted Spectrum of Fourier components of inhomodeneous
tial, a minimum and a maximum corresponding, respec- P P 9

tively, to a saddle center and pure saddle. Each critical poir{?ert'urb.atmns, due a resonance mechanism generated by Fhe
is related to an invariant plane of the dynamics and to a dgscnlatlons of the scale factor, as already pointed out previ-

Sitter attractor. The scale factor approaches the de Sitter at —USIV[7|]' Ir;g:laed,tas W(.a”hfve set(ra]n, thg'tsc.allt.;: faa(o)_ a}:‘g
tractors exponentially, defining exits to inflation, one for e scalar fieldp(t) oscillate, as the orbit visits a neighbor-

each critical point. The region of phase space about a saddneOOd t())lf the s_a((jj_dle %e_nter, withljrequelzr!cyfefterr_nined by the
center has the structure of homoclinic cylinders, emanatingNStable periodic orbit approachesee Fig. 4, for instange

from the center manifold of unstable periodic orbits, result- eilrler_nark thﬁt initial %Qndltlops 3Iways EX'fSt such”that the
ing in a general orbit with an oscillatory behavior in the oscillations take an arbitrary fixed time before collapse or

neighborhood of the saddle center. Due to the nonintegrabifgscape to a de Sitter phase. Therefore, inhomogeneous scalar

ity of the system, the extension of homoclinic cylinders awayf'eld perturbations and/or matter perturbations in this gravi-

from the periodic orbit is distorted and twisted, with eventualtatlonal background will have a selected spectrum of Fourier

transversal crossings of the unstable cylinders with the stabfgomponents amplified _by a_mechanlsm of resonance W'th the
ones. These intersections produce chaotic sets in pha éCI|!atI0nS, the amphflC@tlon oceurring for. the particular

space, in a manner analogous to the breaking and crossing puner components haylng periods gpp.romm.ately equal to
homaclinic/heteroclinic curves in Poiné&ehomoclinic &1 INtéger times the period of the periodic orbit approached.

phenomena, and provide a topological characterization o ven if the universe inflates afterwards the relative rate of
chaos in thé general relativistic dynamics of the model. A mplitqdes_ produced a_fter t.he resonance _amplification would
we have shown, these phenomena extends to the neighb e maintained as an imprint in the “initial spectrum” of

hood of the nearest pure saddle invariant plane, producin ensity quctuation_s. This mechanism however is.absent in
also chaotic sets of initial conditions in the region of phase e case of the exit towards the pure saddle de Sitter attrac-

space laying between the invariant planes. A physically rejfor, since no oscillations appear when the orbit visits the

evant manifestation of chaos is the chaotic exit to inﬂationnem'hborhood of the pure saddle before escaping. The two

through one of the de Sitter attractors present in phase spa 1SEs cgn_in pri.nciple be observationally d_istingu_ishgd, based
Small fluctuations of initial conditions taken on chaotic sets2! "estrictions imposed by observations in the initial spec-

change drastically the long time behavior of orbits, with gl trum of density fluctuations. If the exit to inflation occurred

possibilities listed at the end of Sec. IV. This is a fundamen-i2 & saddle-center de Sitter attractor the resonance amplifi-

tal result, illustrated extensively in Figs. 3, 4, 5, 6 and 7 I:Orcation mechanism referred to above will give rise to a nonflat

instance, a typical chaotic exit to inflation is realized When[17] “initial spectrum™ of density fluctuationg[16]. The

orbits, emanating from a small ball about a point on theabove analysis obviously excludes orbits of type IIb.

separatrix of one of the invariant manifolds associated with ACKNOWLEDGMENTS
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