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Inflation in a self-interacting gas universe
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We show that de Sitter spacetime is a solution of Einstein’s field equations with the energy momentum
tensor of a self-interacting, classical Maxwell-Boltzmann gas in collisional equilibrium. The self-interaction is
described by a four-force which is quadratic in fepatially projectegiparticle four-momenta. This force does
not preserve the particle number and gives rise to an exponential increase in the comoving entropy of the
universe while the temperature of the latter remains constant. These properties of a gas universe are related to
the existence of a “projector-conformal” timelike Killing vector representing a symmetry which is in between
the symmetries characterized by a Killing vector and those characterized by a conformal Killing vector.
[S0556-282(198)07016-1

PACS numbe(s): 98.80.Hw, 04.40.Nr, 05.70.Ln, 95.30.Tg

I. INTRODUCTION fluid quantities mimics a perfect fluid with continuously in-
creasing particle number, supposedly of quantum origin.
Standard inflationary cosmology relies on the dynamics ofVhile the magnitude of conventional viscous pressures
a scalar field with a suitably designed potential term allowingwhich are due to particle number preserving interactions
for an effectively negative pressure of the cosmic substraturwithin the fluid is severely restricted by close-to-equilibrium
[1,2]. Alternatively, there have been numerous attempts t@onditions, the magnitude of effective, cosmological particle
describe early phases of accelerated expansion, either poweroduction describing bulk pressures is not.
law or exponential, as nonequilibriuttmperfecy fluid phe- Previous investigations have shown that such a kind of
nomena(see Refs[3,4], and references therginStudies (generalizeyl equilibrium particle production(creation of
along this line make use of the fact that fluid viscosities ar erfect fluid partic|es with minimal entropy product)(]lmay
dynamically equivalent to effective negative pressures. Su(%ubstantially modify the standard cosmological dynamics, in-
kinds of pressure occur, e.g., due to interngl i.nterlaction_s i”cluding the possibility of “reheating” phenomena and
side relativistic gasef5—7]. However, the dissipative fluid _power-law inflation[20,22—24. Particularly interesting con-
approaches face the following general problem. Their relivoctions were established between spacetime symmetries,
abll[ty IS restricted to small dev_|§1t|9ns from. pe_rfect_flmq be- described by a conformal timelike Killing vector and the
havior, i.e., close tqlocal) equilibrium, while inflation in production rate for particles at equilibrium. Depending on

this context is necessarily a far-from-equilibrium phenom- : :
enon. Although the imperfect fluid dynamics was shown tothe equations of state the symmetry requirements turned out

admit inflationary solutiongsee Refs[3.4], and references to fix the creation rate for fluid particles at equilibrium.

therein their physical significance is unclef8]. The ques- Moreover, for a gas universe the _product_lon of particles
tion of whether or not bulk viscosity may drive inflatiog] could be traced back to specific self-interacting forces on the
remains open. (classical microscopic constituents of the cosmic medium

A different line of fluid dynamical early universe investi- [24]- Essential features of the cosmological dynamics may be

gations implying effective negative pressures as well is condiscussed in terms of microscopic particle motion ifcias-
nected with cosmological particle productifto—22. Here, ~ sica) force field.
the negative bulk pressure is not due to deviations ftoof In Sec. Ill of the present paper we identify those forces on
lisional) equilibrium but is a consequence of the phase spacthe particles of a simple relativistic gas governed by an equi-
enlargement of the fluid particle system. Negative pressurbibrium distribution function which, on the phenomenologi-
terms of this kind in the local energy-momentum conserva<al level, give rise to an effective bulk pressure=—(p
tion relations may be regarded as equivalent to correspond+ p), wherep is the energy density of the cosmic medium
ing not necessarily small source terms in the energyandp is the corresponding equilibrium pressure. A negative
momentum balance of a perfect fluid. In other words, thepressurer of this magnitude is equivalent to a particle pro-
effective nonequilibrium description in terms of imperfect duction rate that coincides with the expansion rate of the
universe[see Eq.25) below]. We show that a gas configu-
ration such as this is intimately connected with a symmetry

*Electronic address: winfried.zimdahl@uni-konstanz.de of the spacetime characterized by a “projector-conformal
"Electronic address: dulkyn@ant.ksc.iasnet.ru timelike Killing vector” (PCTKV) ¢# which we generally
*Present address. define by

0556-2821/98/58)/06350310)/$15.00 58 063503-1 © 1998 The American Physical Society



WINFRIED ZIMDAHL AND ALEXANDER B. BALAKIN PHYSICAL REVIEW D 58 063503

£, 9ik={i:kt Lki=20Pi, () 1

bau | Pk 3

habhik}cik
where £ ik is the Lie derivative of the metric tensog,

with respect ta/, and ¢ = ¢(X) is a spacetime function. The
guantity P;, is the projector
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where @=u; is the fluid expansion,TET,aua, VaT
EhgT,b, U, is the four-acceleration, ang,, is the shear.
According to different choices for the quantitiés B,
¢, and b,, we introduce the following classification for
u,/T.
(i) uy/T is a Killing vector forA=B,,= ¢=b,,=0, cor-
responding to

&k
{al?

Pik=0ik— Pilk=0 (2

on surfaces orthogonal to the timelike vect8r The special
case of interest here correspondg ie- u,/T whereu? is the
macroscopic four-velocity of the cosmic medium and its
equilibrium temperature. The projecté, then reduces to
hik=gix+U;u,, the projection tensor orthogonal td. The Uy
first part of the pape{Sec. 1) therefore intends to clarify the ( - 9
general implications of the PCTKV property of /T for the

relativistic fluid dynamics. Section IV considers the case tha
a medium such as characterized in Sec. Ill dominates the
dynamics of a homogeneous and isotropic universe, while

Sec. V summarizes our main findings. Units have been cho-

vV.T .
2 U=

T 0, (10)

Uab:O'

sen so that=kg=A=1.

Il. FLUID DYNAMICS WITH A
PROJECTOR-CONFORMAL TIMELIKE KILLING

(i) u,y/T is a conformal Killing vector forA=— ¢ and
Bm: bab:Ov i.e.,

VECTOR u; Uy

. . . o 7] tlF/) =249k, (11

In fluid spacetimes the Lie denvatweJéf,Tgab of the met- K i
ric tensorg,, with respect tau, /T, whereu?u,= —1 plays . .
the well-known role of characterizing symmetries of the met_equwalent to relation$?) and
ric. Especially interesting are cases in which'T is either a : ® v
Killing vector or a conformal Killing vector. As with any Iz_ el al - - —
- . . . . , +Ua O, Tap 0. (12)

symmetric tensor, the Lie derivative of the metric may gen- T 3 T

erally be split into contributions parallel and perpendicular to

the four-velocity:

U; Uy
£, 9=\ T .k+ T li:Cik ()
with
Cik:2AUiUk+Biuk+ Bkui+2¢hik+bik (4)

and h;u*=B;u'=b; u*=b!=0. Combining relations(3)
and(4) we have

1. T
A:—Cikul =—

> =2 ©)
. 1. VT
Bm:_hlmukcik:—f Um+ %}, (6)
1 " 10
o= "Ci=3 7. (7

and

(iii ) uy /T is a projector-conformal timelike Killing vector
for A=B,,=b,,=0, i.e.,

i 5 —2ph 13
T‘k+?.i_¢ik (13
or relations(7) and
T V.T .
==0, —+u,=0, 0,4,=0. (14

T

In this paper we are interested in the third of these cases.
In the following section we will give a microscopic realiza-
tion of the PCTKV behavior on the level of kinetic theory
and identify a spacetime which admits a PCTKV.

In the present section we show that the propérnywith
a nonvanishing together with Eqs(14) may be realized in
the case where the fluid particle number is not preserved.
Introducing a length scala according to®=3a/a, the
numberN of particles in a comoving voluma® is N=na®,
wheren is the particle number density. The corresponding
particle number flow vector idl®=nu?. Denoting the phe-
nomenological particle production rate Hy, the particle
number balance may be written as
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_ N will demonstrate that this type of generalized equilibrium

Nf‘a= n+0®n= nN =nl". (15 under the conditions of homogeneity and isotropy requires a
de Sitter universe for arbitrary fluid equations of state.

It is a characteristic feature of generalized equilibrium of

The energy-momentum tensor of a general fluid is give X ; , :
9y ¢ g r‘l)oth types that the particle production rate is not an arbitrary

b . : .
y parameter but determined by consistency requirements.
Tik:Ti(lé)+ mhk+ 7K+ g'uk+gku’ (16)  Given equations of state in the general form
with Ti§,=pu'u*+ph* and 7'*u,=q'u;=m=h*u;=0. p=p(n,T), p=p(n,T), (22

Local energy-momentum conservatim'ﬁﬂk:O implies ) o ) _
differentiation of the latter relation and using the balances

p=—0(p+p+m)— V03— 20,03~ oppm?®. (17) (15 and(17) yields

With the help of the Gibbs equatigsee, e.g., Ref.25)]) T et ap -
, . F-(0- )%+ aplaT’ (23)
Tds=d—+pd—, (18
n n where the abbreviations
wheres is the entropy per particle, we obtain ap  (aplaT) ap | dp
S L S
o i ap  (dplaT)," T (aT)n
nTs=p=(p+p). (19

' o have been used. Restricting ourselves to the sas@, the
Taking into account the standard definiti@h=nsu+q'/T temperature laws in Eqél4) and(23) are only consistent for
of the entropy flow vecto6' and using Eqgs(15), (17), and I'=0. Via the relation

(19 yields
Om=—(p+p) (24)
i _ ptp 1 e ik U Uk
Si—nsl'=——"I'=3(M"-To)|| 5| *|F]| | which makes the right-hand side of E@1) vanish, the vis-
K ! (200  Cous pressurer is fixed as well:
Under the PCTKV condition§13), Eq. (20) reduces to I'=0=m=—(p+p). (29
S —nef=— P+DF_ O 21 From Eq.(15) it follows that n vanishes. Because of the
i NSL= T T (21) equations of staté22), constant values af andT along the

fluid flow lines imply constant pressure and constant energy
For g=#2"=0 the right-hand side of this equation coin- density as well:

cides with ns. The especially interesting casem=—(p
+p)I" which makes the right-hand side of E@1) vanish
implies S;=nsI" (ands=0 for g?=7?"=0): There is en-
tropy production only due to the enlargement of the phase
space of the system but not to conventional dissipative pro- We recall[23] that generalized equilibrium under the con-
cesses within the fluid, i.e., the entropy production is mini-formal Killing-vector conditiong11) is characterized by Eq.
mal. States in which the right-hand side of 1) vanishes (24) with
(andI'=0 holdg are states of “generalized equilibrium”
[23]. This kind of equilibrium was originally introduced on r=|1- 1dp 0 — (ot 1 1dp
the basis of the conformal Killing vector propertg1) of - 3ap) 0 " (p+p) 39p
u;/T. Here we enlarge the generalized equilibrium concept
to include the PCTKYV casgl3) as well. We consider a fluid instead of Eq(25).
to be in generalized equilibrium ifi) S;—nsI'=0 with I’ Statements on the spatial dependences of the thermody-
=0 holds and(ii) u;/T satisfies either the conditior(41), namic quantities may be obtained from the momentum bal-
equivalent to Eqgs(7) and (12), or the conditions(13), ance
equivalent to Eqs(7) and(14).

For massive particles in a homogeneous and isotropic uni- (p+p+mUp+Vm(p+7)=0, (27)
verse the first case, minimal entropy production under the
conditions(11), dealt with in Refs[23,24], was shown to where we restricted ourselves agairft= 72°=0. Because
imply power-law inflation. In this paper we are interested inof relation (25) we find
the second case, i.e., minimal entropy production according
to S';i —nsl"=0 together with the PCTKV propert13). We Vip=—V,7=V_p=0. (28

-

n :
ﬁ=?=0:>p=p=0. (26)
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The energy density is also spatially constant, the pressure not VT 2mvVgn

necessarily. With the help of the second equation of state T 737 n (m>T) (35
(22) the condition(28) provides us with a relation between

VT andVn: and we find

VaT  ndplin Vgn 29 Vop=—Vam~—pU, (Mm>T). (36)

T  TapldT n '

Nonrelativistic matter §>p) in the present case combines a

where homogeneous energy density with a generally inhomoge-
neous equilibrium pressure. Only the total effective pressure
dp _ptp Tap is homogeneous as well.
on  n naT’ For the spatial gradient qi/T we get
which is a consequence of the fact that the entropy is a state v (g o m VLT_ Tu
function. m T T T T m
Restricting ourselves to a classical gas witknT and
using the first relatioi28) and Eq.(29) as well as the second u—m
relation (14) we obtain :>Vm(?) ~0 (m>T).
Ve | T dpldT VT S
nT |ndplon ~| T It is well known thatu—m is the nonrelativistic chemical
potential (see, e.g., Refl26]). In the following section we
_ I apl T 1l (30 show how a gas characterized by the propelds and(25)
n dplon m may be realized with the help of relativistic kinetic theory.
From the Gibbs-Duhem relation IIl. KINETIC THEORY FOR A GAS IN A FORCE FIELD

A. General relations
(3D

daT s
dp=(p+p) T +an(T The conventional kinetic theory of a simple relativistic
gas relies on the concept of pointlike particles which may
it follows under such circumstances that interact through elastic binary collisions. In between the col-

lisions which are assumed to establistepproximate local
v (ﬁ E 32 or global equilibrium of the system the particles move on
mT T geodesics of either a given spacetime or a spacetime selfcon-
sistently determined by the gas particles themselves. Sophis-
The Gibbs equatiofil8) together with the second relation ticated solution techniques for the corresponding Boltzmann

p N T dpldT
p ndplon

(28) then provide us with equation have been developed and applied to numerous
physically relevant situationg25—29. The usual procedure

V.s— P + 1) Van _ _(g )I aploT U (33) here is first to characterize equilibrium states, i.e., states with

a p p n ndplon &’ vanishing entropy production and to relate the parameters of

the corresponding distribution function to macroscdjpier-
The spatial gradient of the entropy per particle does not vanfect) fluid quantities. Nonequilibrium situations are then, in a
ish in general. second step, taken into account as deviations from equilib-
We finish this section by considering the general relationgium. Obviously, geodesic particle motion is a highly ideal-
(28)—(33) for the limiting cases of pure radiatidultrarela-  ized case. In reality, particle world lines are supposed to
tivistic mattey and nonrelativistic matter. deviate from geodesics since the particles will be subject to
(i) p=nT, p=3nT (ultrarelativistic matter The relation additional interactions in general. We assume here that these
Vap=0 implies V,,T/T=-V_n/n, equivalent toV,p interactions may be modeled as effective forces on the par-
=-V,,m=0. From Eq.(32) one obtains ticles. The kinetic theory for particles under the influence of
various forces was considered, e.g., in R¢2§,26,30,31
AN ml P Following the lines of Ref{24] we will focus here on equi-
Vm(? - _4?_4% (p— 5)' 34 Jibrium states of the gas in a force field. Our main objective
will be the characterization of equilibrium configurations of
Although the spatial pressure gradient vanishes, the correx gas under the influence of a self-interacting force which is
sponding gradients of the temperature, the number densitguadratic in the particle four-momenta. By ‘“self-
and the entropy per particle are different than zero unless thateracting” we mean that the force, except its dependence

fluid motion is geodesic. on the microscopic particle momenta, also depends on mac-
(i) p=nT, p=nm+3nT, m>T (nonrelativistic matter  roscopic quantities, characterizing the gas system as a whole
In this case the second relatié®8) reduces to (see below. This force will neither preserve the particle
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number nor the energy momentum and it will give rise totempts to formulate a relativistic statistics for interacting
entropy production. In particular, it will turn out that a qua- many-particle systemgsee, e.g., Ref[32], and references
dratically self-interacting force realizes states of “general-therein.

ized equilibrium” characterized below Eq21), including The particle number flow four-vectdd' and the energy
the conditions=0 for “adiabatic” (or “isentropic”) particle  momentum tensofl ¥ are defined in a standard wagee,
production. e.g., Ref[26]) as

The one-particle distribution functiof f(x,p) for rela-
tivistic gas particles under the influence of a four-fofee Ni:j dP o'f frik:f dP o ok 40
=F'(x,p) obeys the Boltzmann equation piep), PPIT(xp). (40

_ ' of of While it will turn out that in the equilibrium case the first
p'f,i—Tpkp' — +mF —=C[f], (38)  moment off in Eq. (40) may be identified with the quantity
ap' ap' Ni=nu' introduced below Eq(14), we have used here the

same symbol immediately. The second momerit dénoted

where f(x,p) p*n,d= dP is the number of particles whose by T in Eq. (40) will not, however, coincide with the
world lines intersect the hypersurface elemegdX around  energy-momentum tensdr® in Eq. (16). The integrals in
X, having four-momenta in the range,p+dp). The quan-  the definitions(40) and in the following are integrals over
tity dP=A(p)8(p'p;+m?)dP, is the volume element on the entire mass shei p;= — m2. The entropy flow vectos?®
the mass shelp'p;=—m? in the momentum space\(p) is given by[26,27]
=?/ip' is future directed andA(p)=0 otherwise;dP,
= /=g dp’dp'dp?dp®. __J a _

C[f] is Boltzmann’s collision term. Its specific structure s piLT In f—1]dP, 41
discussed, e.g., by Ehlefg6] will not be relevant for our . .
considerations. Following Israel and Stewf27] we shall where we have restricted ourselves to the case of classical

only require thati) C be a local function of the distribution Maxwell-Boltzmann particles. _

function, i.e., independent of derivatives fof(ii) C be con- Using well-known general relationsee, e.g., Ref.28))
sistent with conservation of four-momentum and number ofVe find

particles, andiii) C yields a nonnegative expression for the

entropy production and does not vanish unlebss the form N2 = J C[f]-mF ‘9_f_ dP

of a local equilibrium distribution functiofisee Eq(44) be- 2 ap' ’

low]. Equation(38) implies that the masst patrticles in be-

tween the collisions move according to the equations of mo- of
tion To= f pe| CLf)-mF —~|dP, (42
P
dx . DpI . and
i _r _ i
dy p', dy mF, (39

_ _ _ _ s?a=—f In f C[f]—mFia—f.)dP. (43

where y is a parameter along their world line which for ’ ap'

massive particles may be related to the proper timsy v _ ) )

= r/m. Since the particle four-momenta are normalized ac/n the following we will focus on the force terms in the

cording top'p; = —m?, the forceF' has to satisfy the relation €xpressiong42) and (43). In order to separate the corre-

piF=0. sponding contributions from those due to the collision inte-
Both the collision integralC and the forceF' describe gral we will restrict ourselves to collisional equilibrium from

interactions within the many-particle system. Wh@econ-  Now on. Under this condition Ifi in Eq. (43) is a linear

ventionally accounts for elastic binary collisions, we intendcombination of the collision invariants 1 amf and the

F' to model different kinds of interactions in a simple man- contributions due t&[f] in formulas(42) and(43) vanish.

ner. Strictly speakingE' should be calculated from the mi- The corresponding equilibrium distribution function be-

croscopic particle dynamics and, consequently, depend ofPmes(see, e.g., Ref26])

the entire set of particle coordinates and momenta character- 0 _ a

izing the system of gas particles. We will introduce here the F(x.p)=exd a+Bap7], (44

simplifying assgmption thaF' be an effective one—_particle wherea= a(x) and B4(x) is timelike.

quantity which instead of depending on the coordinates and ' |hserting the equilibrium distribution functiot#4) into

momenta of the re_malnlng_partlcles, is sppposed to depengq. (38) one obtains

on macroscopic fluid quantities characterizing the system as

a whole. A_t the moment we do not spgcify this forp_e. It will pPa o+ IB(a;b)papb: —mp;F'. (45)

be determined below by general equilibrium conditions. We A

expect the concept of a self-interacting force to be useful ifFor a vanishing forcé=' the latter condition reduces to the

circumventing some of the general problems inherent in at“global” equilibrium condition of standard relativistic ki-
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netic theory. ForF'#0 condition (45) is a “generalized”
equilibrium condition(see Ref[23] and below.
Use of Eq.(44) in the balance$42) yields

N&=— mﬂif F'fodP,

To=—mp, f pAF'fodP. (46)
For the entropy production densit¢3) we find
S?a=m,8if [a+BapIF In f0dP
=—aN%—BaTh - (47)

With f replaced byf® in the definitiong40) and(41), N2,

Tab and S* may be split with respect to the unique four-
velocity u? according to
Ni=nud, T2P=puduP+ph?,

SP=nsf?, (49

whereu?, h?®, n, p, p, ands may be identified with the

PHYSICAL REVIEW D 58 063503

T2=puduP+ (p+)haP (54)
with the identifications
Ut= -0, hyt'=7u,+ V7. (55

This mapping of the “source” term? onto an effective vis-
cous pressurer of a locally conserved energy-momentum
tensorT2 was explicitly shown to be consistent for specific
“sources” t?, depending on the first and second moments of
the distribution function only{19,20,23. In the following
subsection we will show that this interpretation continues to
hold if specific third moments are involved.

Let us now decompose the four-momergd into p?
=Eu?+\e? wheree? is a unit spatial vector, i.ee?e,=1,
e®u,=0. Consequently, one hd&s=—u,p? and A =¢,p?
and the mass shell conditiopp,= —m? is equivalent to
A2=E2—m?. Moreover,h,,p?p®=\? is valid. For the force
F™ we write analogouslyF™=F(x,p)u™+K(x,p)e™ where

=—u,F™ andK=eF™. The requiremenp,,F™=0 will
be automatically fulfilled for

E
FM=|u™m+ Xem F(x,p). (56)

corresponding quantities of the previous section. The exact

integral expressions far, p, p, ands are given by formulas
(177—(180 in Ref.[26].
Using the structuré48) for N# and defining

m .
r=- Fﬁif F'fodP, (49

the first expression in E¢46) becomes+®n=nr [cf. Eq.
(15)] which justifies definition(49). Similarly, with the de-
composition(48) and the abbreviation

t*=mgp, f p2F'fodP, (50)
we obtain
TP+17=0, (51)
implying
p+O(p+p)=u,t?
(p+P)Ua+Vap=—hgt'. (52)

The energy-momentum tensdt* is not conserved. Obvi-
ously, the balance$?2) following from Eq.(51) are identical
to the balances

p+O(p+p+m)=0,
(p+p+mUy+V(p+m)=0 (53)

following from the local conservatiomf‘bb=0 of an effective
energy-momentum tensdr®,

With the familiar identification3,,=u,,/T it is obvious that
only the partu,,F™=—F contributes in the sourc€49) and
(50).

B. Quadratic self-interaction

Any specific force relies on reasonable assumptions about
F(x,p). In a previous papef24] we investigated the most
general linear dependence Bf on the particle momentum
p?. In this paper we assunteto depend quadratically on the
spatially projected four-moments, i.e.,

F(X,p)=—UiF'=\F1(X) + \?F 5(X). (57)
F.(x) andF,(x) are spacetime functions to be determined
by the equilibrium conditions of the gas. It will turn out that
it is just this force under the action of which the particle
energyE is preserved in a homogeneous and isotropic uni-
verse[cf. Eq. (84) below].

An equivalent way of writing the forcés6) with F given

by Eq.(57) is
F'(X,p) =gapp*[u'e”— UPe'][F1(x) + AF5(x)]. (58)

The equilibrium condition45) becomes

m
paa,a+ B(a;b)papb:?[eapaFl(X) + habpapr2(X)]-
(59)

It is satisfied for

. m
a=0, eaVaa=?F1, (60)

and
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B(a;b): d(X)hap, (61) 1 gTmn ap
77=_§hmn 1T == 1T (69)
with ¢=(m/T)F,. Since relation7) holds we find J(1IT) J(LT)
® Using here for the equilibrium pressupe[25]
Foa() =35 (62)
4arm* Ky(m/T) 70
= ——exX
Identifying 8, with u,/T, the equilibrium conditior{61) for P (2m)° (m/T)? Hal
a Maxwell-Boltzmann gas in the force fiel[®8) coincides
with the PCTKV condition(13). together with
We recall that an ansatz fét linear in the particle mo-
menta instead of the structutg7) analogously reproduces d[Ky2)| Ks(2)
the conformal Killing-vector conditio{(11) [24]. Through dz2l 2 | 2 (72)

F, the force depends on the fluid expansion, a quantity char-
acterizing the gas as a whole on the macroscopic level. Sinqg, and K; are Bessel functions of the second Kindne
both the microscopic particle momenta and macroscopigptains

fluid quantities of the system of gas particles enter the four-

force, the latter represents a self-interaction of the gas. K3(m/T)

Inserting the force(58), equivalent to expression&6) n:nTsz(m/T) =T(p+p), (72)
and (57), into the source ternf49) and using fp.?)=hab'~|'ab
=3nT we obtain where we took into account that the enthalpy per partide

given by h=(p+p)/n=mKs(m/T)/K,(m/T). Conse-
I'=3mF,(x). (63)  quently, the source term,t® becomes

Together withF, from Eg. (62) this impliesI’=0 [cf. Eq. Ut2=3m(p+p)Fa(X)=(p+p)0O. (73
(25)] and, consequently, the relationn=0. , ) L o .

For the source terrt50) one obtains Together with the first relation in E¢55) this is consistent

with mw=—(p+p) [cf. Eq. (25)].
. m = M aim With the identificationsa= u/T, B,=Uu,/T, ands=(p
== TR 08T = T F200himM =T, (64 +p)/nT— /T, the entropy production densit47) may be
expressed in terms of the sourdésandu,t? to yield
whereM® ™= [dP f°p?p'p™ is the third moment of the equi- A
librium distribution function. The projected source terms in @ _nsl=— PJ’_pr Uat 0. (74)
the balance$52) are a T T

wtte3n e %) (65 Recalling that Eq(61) impliesI'=® andn=0, we have

al =S AN, derivedall the generalized equilibrium conditions discussed

. . on a phenomenological level in the previous section. It is

where we have introduced the quantity remarkable that the fora®6) with the quadratic dependence

1 (57) not only leads to condition®1) but automatically guar-
7=— = Uzh;M3™ (66) antees the vanishing o8,—nsI, i.e., s=0, resulting in
3 T/T=0 according to the temperature 14@8). The condition
and s=0 for “adiabatic” or “isentropic” particle production is

a property of the force considered here and does not need to
A m be postulated separately.
Pnat __einFl(X)' (67) For anyI'=0=0 Eq. (74) implies S$,=0. The self-
. interacting force provides us with a non-negative expression
The third momenM®'™ enters the energy balance but not thefor the entropy production in an expanding universe. This
momentum balance. The momentum balance in &@)  completes our microscopic derivation of generalized equilib-
with the source tern{67) coincides with the corresponding rium characterized by Eq$21) and(24) under the PCTKV
balance in Ref[23]. It follows that the arguments in Ref. condition(13).
[23] which prove the consistency of the momentum balances
in Egs.(52) and(53) together with the second relation in Eq. IV. THE SELF-INTERACTING GAS UNIVERSE
(55) apply in the present case as well. Realizing that
Having clarified the implications of generalized equilib-
af° rium, especially the consequences of relaiib8), both phe-

af0_
Uap"f ) (68) nomenologically and on the level of kinetic theory, we now
consider Einstein’s field equations with the energy-
(the derivative has to be taken far=const), we find momentum tensor(54). This corresponds to a situation
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where matter in generalized equilibrium dominates the dyusually obtained with the help of a scalar field. A scalar field
namics of the universe. Since generalized equilibrium wasepresents an “exotic” kind of matter with mainly theoreti-
shown to be realized by a self-interacting gas we call such gal evidence at the present state of knowledge. We argue
configuration a self-interacting gas universe. While it is genere that it may occasionally be helpful to have alternative
erally an open question to what extent the hot and densgays of considering issues of inflation in terms of conven-
early universe is accessible to a kinetic description, a gas i§onal matter models which are more familiar and intuitive
the only system for which the correspondence between Migompared with the exotic ones. A remarkable difference to
croscopic variables and phenomenological fluid quantities igc4|ar-field-driven inflation is the circumstance that our ap-

sufficiently well understood. This makes gas universes inter: roach predicts an exponential increase of the comoving en-
esting toy models and we hope that such an approach aI%)popy ns& during the de Sitter phase

gives an idea of the relevant physics in our real universe. Our results may also shed new light on the old question of

The target of fchis seqtion Is 10 d_emonstrate explicitly thaly hether or not a fluid bulk pressure may drive inflation. We
the specific self-interactiob8) [equivalent to the combina- recall that this issue has been discussed in the literature from

tion of Egs.(56) and(57)] under the equilibrium conditions different points of view[9,35—-38,3,4,8 While Pacheet al.

5.60) a:cnd Eﬁl) aIIovv_s us tlo ;axa:ctly flntehgrate both the ec(|ju_a— 9] have shown that sufficiently high negative pressures can-
lons for the cosmic scale factor of a homogeneous and ISGyy; 54se jn g weakly interacting mixture of relativistic and

tropic self-interacting gas universe and the CorreSpondin%onrelativistic particlegsee also Ref37]), Lima et al.[35]
microscopic equations of motion for the individual gas par- ointed out that the situation may be di,fferent if the dilute-
ticles. A self—interacting gas ur_1iverse represents an exactl as approximation is given up and causal thermodynamics is
solyable model both microscopically and on the phenomenoépp“ed. Further investigations along this line have confirmed
logical uid Ieyel. the existence of inflationary solutiof36,38,3,4,8 although

In the spatially homogeneous case the funcianvan- o0 eyist general problems with their physical interpreta-

ishes[cf. Eq. (60)]. The length scala coinc_ides with the 5, [3,4,8, at least as long as cosmological particle produc-
scale factor of the Robertson-Walker metric and obeys thgq, s not taken into account. The fact that a bulk pressure

equation may phenomenologically represent certain quantum phenom-
H ena, especially particle production processes, is well known
a_ in the literature[39—41]. It was remarked in Refg§13,17]
3 Kp, (75 " T ;
a? that “conventional” bulk pressures, i.e., bulk pressures due
to internal interactions, and effective bulk pressures resulting
wherex is Einstein’s gravitational constant and from particle production are separate effects and both of

them contribute to the overall dynamics of the system.

a K We emphasize again that the quantityin the present

2] = Zptptm). (76)  paper is exclusively due to an increase in the number of
particles andchot the “conventional” bulk viscous pressure

Together with expressio(®5) for = the last equation yields of Ii.near, irreversible the.rmOQynamic.s, describing internal
a/a=H = const, wherdH is the Hubble parameter, implying particle number preserving interactions. “Conventional”
an exponential behavior of the scale factorexgHt]. A  Pulk pressures, generally equivalentst¢ 0, have been ex-
homogeneous and isotropic simple gas universe with arb€luded here by the assumpuon.of collisional equilibrium.
trary equation of state and quadratia the spatially pro- The possibility of a nonvanishing due to the process of
jected microscopic particle four-momehtelf-interaction in ~ particle production was eliminated by the requirement of
between elastic binary collisions requires a de Sitter spacégeneralized” equilibrium [see the discussion below Eqg.
time to be in(generalizeg equilibrium. (211 . . o

Evidently, this also implies that the de Sitter metric ad- The abovementioned studies within the framework of
mits a PCTKV. The consistency of this statement may becausal thermodynamics relied on deviations from thermody-
checked from Eq(13) directly by using the condition that namical equilibrium characterized bg#0, whereas the
the temperaturdl is constant both in space and time, to- present considerations refer to(generalizeyi equilibrium
gether with the well-known decomposition of the covariantyg imply s=0. While there are limits for deviations from

derivative of the four-velocity33,34 equilibrium in the mentioned nonequilibrium appoackes-
viations up to second ordeithere are no such restrictions in
U= — UjUpy+ 0+ @i+ %hinv (77 the c_ontext of this paper. In particular, thgre. is no need of a
requirementsr|<p in our case to be well within the range of
crd ) _ applicability of the theory as in conventional nonequilibrium
wherewap=hzhpuic;q - The present case is characterized bythermodynamics. The present analogue of the bulk viscous
Uy=0p=w,,=0 and ®@=3(a/a)=const as well as¢ pressurer which in conventional irreversible thermodynam-
=0/3T=const[cf. Eq. (7)]. ics representgsmal)) deviations from(collisiona) equilib-
In other words, the self-interaction of a classical gas isiium is a quantity without corresponding limitations. Instead
able to realize an effective fluid equation of stdgs=p it is determined by equilibrium conditions, equivalent to
+ 7= —p [cf. Eq.(25)] which in a cosmological context is Symmetry requirements. This quantityis directly related to
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the particle production rate which is traced back to a simpléNe discuss the last equation for the following three different

force on the(classical microscopic level. It follows thatr is

cases.

completely determined by this force. The problem whether a (i) F=0, geodesic motion. We find

bulk pressure may drive inflation reduces to the question of
whether microscopic forces on the particles exist, equivalent
to a nongeodesic motion of the latter, which generate al
appropriate macroscopic quantity. Our considerations

show that a surprisingly simple force generates such a qua
tity. In this sense the question of whether or not an effective
bulk pressure may drive inflation is answered affirmatively.
A final statement, however, requires the derivation of this
force from an underlying quantum level which is beyond the

scope of this paper.

Having determined the self-interacting force by the equi
librium conditions of the gas it is now also possible to study
the particle motion(39) explicitly. With the decomposition
p'=Eu+\e' the left-hand side of the second expression of

Eqg. (39) may be written as

Contraction withu; yields

Dp'  dE De' dE Du

Ugr =T PN g T T ar e e
Taking into account that
Dui i pn
dr "m’
we obtain
Dp' dE AE . A\
U; dT_ dr meUi ee'Uj.n

Applying here the decompositiofr7), the projected equa-

tion of motion

Dp'

UiF:UiFiZ_F (78)

may generally be written as

dE+)\E I +)\2 ign +)\2®—F 79
ar T m et meeTnt g 0=F. (79

For homogeneous isotropic universes with=c;,=0 the
last equation reduces to

dE \?

dr+%®=F' (80)

With dr=dt(m/E), \>=E?-m?, ®=3a/a, and dE/dt
=E, Eq. (80) is equivalent to

E2-m?) (&) 2m

( ) (@) = F. (81)
E2_m2 a2 E2_m2

E2-m?=\%xa"? (F=0), (82

I?mplying the expected behavidExa ! for massless par-

II,|i_c|es (photong while the nonrelativistic energg=E—m

with e<m of massive particles decays asa 2.

(i) F=(E—m)®/3. The previously studied force with a
linear dependence & on the particle four-momenta is given
by this expression for massive particless T) in a homo-
geneous universg24]. In such a case, which implies the

_conformal Killing-vector property11) and power-law infla-

tion according taaxt*3[24], the solution of Eq(80) is

E-mxa™?! ) (83)

(¢
F=(E—m)§

The nonrelativistic energy of massive particles under gener-
alized equilibrium conditions in dquasjlinear force field
decays linearly with the cosmic scale factor, i.e., in this case
the self-interacting force makes nonrelativistic particles be-
have as radiation. This may be regarded as the microscopic
counterpart of the statement that radiation and nonrelativistic
matter may be in equilibrium in the expanding universe, pro-
vided the number of matter particles increases at a specific
rate[20,24).

(i) F=(\?/3m)®. This is the case of interest hefref.
Eqg. (57) with F;=0 andF, from Eg. (62)]. It is obvious
from Eq. (80) that the force term on the right-hand side ex-
actly compensates the second term on the left-hand side.

ConsequentlyE vanishes, i.e.,
)\2
E=const, (F=%®). (84

The self-interacting force prevents the particle energies from
decaying with the expansion. Independently of the equations
of state the particle energies are preserved in such a universe.
With the result(84) we have completed the exact solution
of our model of a quadratically self-interacting gas universe.
It is the essential feature of this model that the same force
which on the microscopic level makes the gas particles move
at constant energy is responsible for an effective gravita-
tional repulsion on the macroscopic level, implying an expo-
nentially accelerated expansion of the universe.

V. CONCLUSIONS

In this paper we introduced the concept of a “projector-
conformal” timelike Killing vector (PCTKV) and discussed
the corresponding fluid dynamics under the condition of
minimal entropy productiorigeneralized equilibriugn Such
an equilibrium configuration requires a particle production
rate which coincides with the fluid expansion rate. As a con-
sequence the energy density of the fluid turned out to be
stationary. A microscopic realization of this phenomenologi-
cally defined concept was given with the help of the kinetic
theory for a classical gas in a force field. A quadrdincthe
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particle four-momentaself-interaction of the microscopic figuration necessarily implies a de Sitter spacetime. We
gas particles was shown to provide both the PCTKV prop-larified in which sense an effective bulk pressure may drive
erty of u; /T and “adiabatic” (or “isentropic”) particle pro-  exponential inflation.

duction. This force concept turned out to result in a compre-

hensive picture of the gas dynamics both macroscopically

and microscopically and allowed us to establish an exactly ACKNOWLEDGMENT

solvable model of a quadratically self-interacting gas uni-

verse. We found that generalized equilibrium under the con- This paper was supported by the Deutsche Forschungsge-
ditions of spatial homogeneity and isotropy for such a con-imeinschaft.
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