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Inflation in a self-interacting gas universe
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We show that de Sitter spacetime is a solution of Einstein’s field equations with the energy momentum
tensor of a self-interacting, classical Maxwell-Boltzmann gas in collisional equilibrium. The self-interaction is
described by a four-force which is quadratic in the~spatially projected! particle four-momenta. This force does
not preserve the particle number and gives rise to an exponential increase in the comoving entropy of the
universe while the temperature of the latter remains constant. These properties of a gas universe are related to
the existence of a ‘‘projector-conformal’’ timelike Killing vector representing a symmetry which is in between
the symmetries characterized by a Killing vector and those characterized by a conformal Killing vector.
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I. INTRODUCTION

Standard inflationary cosmology relies on the dynamics
a scalar field with a suitably designed potential term allow
for an effectively negative pressure of the cosmic substra
@1,2#. Alternatively, there have been numerous attempts
describe early phases of accelerated expansion, either p
law or exponential, as nonequilibrium~imperfect! fluid phe-
nomena~see Refs.@3,4#, and references therein!. Studies
along this line make use of the fact that fluid viscosities
dynamically equivalent to effective negative pressures. S
kinds of pressure occur, e.g., due to internal interactions
side relativistic gases@5–7#. However, the dissipative fluid
approaches face the following general problem. Their r
ability is restricted to small deviations from perfect fluid b
havior, i.e., close to~local! equilibrium, while inflation in
this context is necessarily a far-from-equilibrium pheno
enon. Although the imperfect fluid dynamics was shown
admit inflationary solutions~see Refs.@3,4#, and references
therein! their physical significance is unclear@8#. The ques-
tion of whether or not bulk viscosity may drive inflation@9#
remains open.

A different line of fluid dynamical early universe invest
gations implying effective negative pressures as well is c
nected with cosmological particle production@10–22#. Here,
the negative bulk pressure is not due to deviations from~col-
lisional! equilibrium but is a consequence of the phase sp
enlargement of the fluid particle system. Negative press
terms of this kind in the local energy-momentum conser
tion relations may be regarded as equivalent to correspo
ing not necessarily small source terms in the ener
momentum balance of a perfect fluid. In other words,
effective nonequilibrium description in terms of imperfe
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fluid quantities mimics a perfect fluid with continuously in
creasing particle number, supposedly of quantum orig
While the magnitude of conventional viscous pressu
which are due to particle number preserving interactio
within the fluid is severely restricted by close-to-equilibriu
conditions, the magnitude of effective, cosmological parti
production describing bulk pressures is not.

Previous investigations have shown that such a kind
~generalized! equilibrium particle production~creation of
perfect fluid particles with minimal entropy production! may
substantially modify the standard cosmological dynamics,
cluding the possibility of ‘‘reheating’’ phenomena an
power-law inflation@20,22–24#. Particularly interesting con-
nections were established between spacetime symme
described by a conformal timelike Killing vector and th
production rate for particles at equilibrium. Depending
the equations of state the symmetry requirements turned
to fix the creation rate for fluid particles at equilibrium
Moreover, for a gas universe the production of partic
could be traced back to specific self-interacting forces on
~classical! microscopic constituents of the cosmic mediu
@24#. Essential features of the cosmological dynamics may
discussed in terms of microscopic particle motion in a~clas-
sical! force field.

In Sec. III of the present paper we identify those forces
the particles of a simple relativistic gas governed by an eq
librium distribution function which, on the phenomenolog
cal level, give rise to an effective bulk pressurep52(r
1p), wherer is the energy density of the cosmic mediu
andp is the corresponding equilibrium pressure. A negat
pressurep of this magnitude is equivalent to a particle pr
duction rate that coincides with the expansion rate of
universe@see Eq.~25! below#. We show that a gas configu
ration such as this is intimately connected with a symme
of the spacetime characterized by a ‘‘projector-conform
timelike Killing vector’’ ~PCTKV! za which we generally
define by
© 1998 The American Physical Society03-1
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£za
gik[z i ;k1zk; i52fPik , ~1!

where £za
gik is the Lie derivative of the metric tensorgik

with respect toza andf5f(x) is a spacetime function. Th
quantityPik is the projector

Pik5gik2
z izk

zaza
, Pikzk50 ~2!

on surfaces orthogonal to the timelike vectorza. The special
case of interest here corresponds toza5ua/T whereua is the
macroscopic four-velocity of the cosmic medium andT is its
equilibrium temperature. The projectorPik then reduces to
hik5gik1uiuk , the projection tensor orthogonal toui . The
first part of the paper~Sec. II! therefore intends to clarify the
general implications of the PCTKV property ofua /T for the
relativistic fluid dynamics. Section IV considers the case t
a medium such as characterized in Sec. III dominates
dynamics of a homogeneous and isotropic universe, w
Sec. V summarizes our main findings. Units have been c
sen so thatc5kB5\51.

II. FLUID DYNAMICS WITH A
PROJECTOR-CONFORMAL TIMELIKE KILLING

VECTOR

In fluid spacetimes the Lie derivative £ua /Tgab of the met-

ric tensorgab with respect toua /T, whereuaua521 plays
the well-known role of characterizing symmetries of the m
ric. Especially interesting are cases in whichua /T is either a
Killing vector or a conformal Killing vector. As with any
symmetric tensor, the Lie derivative of the metric may ge
erally be split into contributions parallel and perpendicular
the four-velocity:

£ua /Tgik[S ui

T D
;k

1S uk

T D
; i

5Cik ~3!

with

Cik52Auiuk1Biuk1Bkui12fhik1bik ~4!

and hikuk5Biu
i5bikuk5bi

i50. Combining relations~3!
and ~4! we have

A5
1

2
Cikuiuk5

Ṫ

T2
, ~5!

Bm52hm
i ukCik52

1

TF u̇m1
¹mT

T G , ~6!

f5
1

6
hikCik5

1

3

Q

T
, ~7!

and
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bab5Fha
i hb

k2
1

3
habh

ikGCik

5
1

TF¹bua1¹aub2
2

3
QhabG[ 2sab

T
, ~8!

where Q[u; i
i is the fluid expansion,Ṫ[T,aua, ¹aT

[ha
bT,b , u̇a is the four-acceleration, andsab is the shear.

According to different choices for the quantitiesA, Bm ,
f, and bab we introduce the following classification fo
ua /T.

~i! ua /T is a Killing vector forA5Bm5f5bab50, cor-
responding to

S ui

T D
;k

1S uk

T D
; i

50 ~9!

or

Q5Ṫ50,
¹aT

T
1u̇a50, sab50. ~10!

~ii ! ua /T is a conformal Killing vector forA52f and
Bm5bab50, i.e.,

S ui

T D
;k

1S uk

T D
; i

52fgik , ~11!

equivalent to relations~7! and

Ṫ

T
52

Q

3
,

¹aT

T
1u̇a50, sab50. ~12!

~iii ! ua /T is a projector-conformal timelike Killing vecto
for A5Bm5bab50, i.e.,

S ui

T D
;k

1S uk

T D
; i

52fhik ~13!

or relations~7! and

Ṫ

T
50,

¹aT

T
1u̇a50, sab50. ~14!

In this paper we are interested in the third of these ca
In the following section we will give a microscopic realiza
tion of the PCTKV behavior on the level of kinetic theor
and identify a spacetime which admits a PCTKV.

In the present section we show that the property~7! with
a nonvanishingQ together with Eqs.~14! may be realized in
the case where the fluid particle number is not preserv
Introducing a length scalea according toQ53ȧ/a, the
numberN of particles in a comoving volumea3 is N5na3,
wheren is the particle number density. The correspondi
particle number flow vector isNa5nua. Denoting the phe-
nomenological particle production rate byG, the particle
number balance may be written as
3-2
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N;a
a 5ṅ1Qn5n

Ṅ

N
5nG. ~15!

The energy-momentum tensor of a general fluid is giv
by

Tik5T~0!
ik 1phik1p ik1qiuk1qkui ~16!

with T(0)
ik 5ruiuk1phik and p ikuk5qiui5p i

i5hikui50.
Local energy-momentum conservationTik

;k50 implies

ṙ52Q~r1p1p!2¹aqa22u̇aqa2sabp
ab. ~17!

With the help of the Gibbs equation~see, e.g., Ref.@25#!

Tds5d
r

n
1pd

1

n
, ~18!

wheres is the entropy per particle, we obtain

nTṡ5 ṙ2~r1p!
ṅ

n
. ~19!

Taking into account the standard definitionSi5nsui1qi /T
of the entropy flow vectorSi and using Eqs.~15!, ~17!, and
~19! yields

S; i
i 2nsG52

r1p

T
G2

1

2
~Tik2T~0!

ik !F S ui

T D
;k

1S uk

T D
; i
G .

~20!

Under the PCTKV conditions~13!, Eq. ~20! reduces to

S; i
i 2nsG52

r1p

T
G2

Qp

T
. ~21!

For qa5pab50 the right-hand side of this equation coi
cides with nṡ. The especially interesting caseQp52(r
1p)G which makes the right-hand side of Eq.~21! vanish
implies S; i

i 5nsG ~and ṡ50 for qa5pab50): There is en-
tropy production only due to the enlargement of the ph
space of the system but not to conventional dissipative p
cesses within the fluid, i.e., the entropy production is mi
mal. States in which the right-hand side of Eq.~21! vanishes
~and G>0 holds! are states of ‘‘generalized equilibrium
@23#. This kind of equilibrium was originally introduced o
the basis of the conformal Killing vector property~11! of
ui /T. Here we enlarge the generalized equilibrium conc
to include the PCTKV case~13! as well. We consider a fluid
to be in generalized equilibrium if~i! S; i

i 2nsG50 with G
>0 holds and~ii ! ui /T satisfies either the conditions~11!,
equivalent to Eqs.~7! and ~12!, or the conditions~13!,
equivalent to Eqs.~7! and ~14!.

For massive particles in a homogeneous and isotropic
verse the first case, minimal entropy production under
conditions~11!, dealt with in Refs.@23,24#, was shown to
imply power-law inflation. In this paper we are interested
the second case, i.e., minimal entropy production accord
to S; i

i 2nsG50 together with the PCTKV property~13!. We
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will demonstrate that this type of generalized equilibriu
under the conditions of homogeneity and isotropy require
de Sitter universe for arbitrary fluid equations of state.

It is a characteristic feature of generalized equilibrium
both types that the particle production rate is not an arbitr
parameter but determined by consistency requireme
Given equations of state in the general form

p5p~n,T!, r5r~n,T!, ~22!

differentiation of the latter relation and using the balanc
~15! and ~17! yields

Ṫ

T
52~Q2G!

]p

]r
1

nṡ

]r/]T
, ~23!

where the abbreviations

]p

]r
[

~]p/]T!n

~]r/]T!n
,

]r

]T
[S ]r

]TD
n

have been used. Restricting ourselves to the caseṡ50, the
temperature laws in Eqs.~14! and~23! are only consistent for
G5Q. Via the relation

Qp52~r1p!G ~24!

which makes the right-hand side of Eq.~21! vanish, the vis-
cous pressurep is fixed as well:

G5Q⇒p52~r1p!. ~25!

From Eq. ~15! it follows that ṅ vanishes. Because of th
equations of state~22!, constant values ofn andT along the
fluid flow lines imply constant pressure and constant ene
density as well:

ṅ

n
5

Ṫ

T
50⇒ ṗ5 ṙ50. ~26!

We recall@23# that generalized equilibrium under the co
formal Killing-vector conditions~11! is characterized by Eq
~24! with

G5S 12
1

3

]p

]r DQ, p52~r1p!S 12
1

3

]p

]r D
instead of Eq.~25!.

Statements on the spatial dependences of the therm
namic quantities may be obtained from the momentum b
ance

~r1p1p!u̇m1¹m~p1p!50, ~27!

where we restricted ourselves again toqa5pab50. Because
of relation ~25! we find

¹ap52¹ap⇒¹ar50. ~28!
3-3
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The energy density is also spatially constant, the pressure
necessarily. With the help of the second equation of s
~22! the condition~28! provides us with a relation betwee
¹aT and¹an:

¹aT

T
52

n

T

]r/]n

]r/]T

¹an

n
, ~29!

where

]r

]n
5

r1p

n
2

T

n

]p

]T
,

which is a consequence of the fact that the entropy is a s
function.

Restricting ourselves to a classical gas withp5nT and
using the first relation~28! and Eq.~29! as well as the secon
relation ~14! we obtain

¹mp

nT
5FT

n

]r/]T

]r/]n
21G¹mT

T

52FT

n

]r/]T

]r/]n
21G u̇m . ~30!

From the Gibbs-Duhem relation

dp5~r1p!
dT

T
1nTdS m

T D ~31!

it follows under such circumstances that

¹mS m

T D52Fr

p
1

T

n

]r/]T

]r/]nG¹mT

T
. ~32!

The Gibbs equation~18! together with the second relatio
~28! then provide us with

¹as52S r

p
11D¹an

n
52S r

p
11DT

n

]r/]T

n]r/]n
u̇a . ~33!

The spatial gradient of the entropy per particle does not v
ish in general.

We finish this section by considering the general relatio
~28!–~33! for the limiting cases of pure radiation~ultrarela-
tivistic matter! and nonrelativistic matter.

~i! p5nT, r53nT ~ultrarelativistic matter!. The relation
¹mr50 implies ¹mT/T52¹mn/n, equivalent to ¹mp
52¹mp50. From Eq.~32! one obtains

¹mS m

T D524
¹mT

T
54u̇m S p5

r

3D . ~34!

Although the spatial pressure gradient vanishes, the co
sponding gradients of the temperature, the number den
and the entropy per particle are different than zero unless
fluid motion is geodesic.

~ii ! p5nT, r5nm1 3
2 nT, m@T ~nonrelativistic matter!.

In this case the second relation~28! reduces to
06350
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¹mT

T
'2

2

3

m

T

¹mn

n
~m@T! ~35!

and we find

¹mp52¹mp'2pu̇m ~m@T!. ~36!

Nonrelativistic matter (r@p) in the present case combines
homogeneous energy density with a generally inhomo
neous equilibrium pressure. Only the total effective press
is homogeneous as well.

For the spatial gradient ofm/T we get

¹mS m

T D'2
m

T

¹mT

T
5

m

T
u̇m

⇒¹mS m2m

T D'0 ~m@T!.

~37!

It is well known thatm2m is the nonrelativistic chemica
potential ~see, e.g., Ref.@26#!. In the following section we
show how a gas characterized by the properties~24! and~25!
may be realized with the help of relativistic kinetic theory

III. KINETIC THEORY FOR A GAS IN A FORCE FIELD

A. General relations

The conventional kinetic theory of a simple relativist
gas relies on the concept of pointlike particles which m
interact through elastic binary collisions. In between the c
lisions which are assumed to establish a~approximate! local
or global equilibrium of the system the particles move
geodesics of either a given spacetime or a spacetime self
sistently determined by the gas particles themselves. Sop
ticated solution techniques for the corresponding Boltzma
equation have been developed and applied to nume
physically relevant situations@25–29#. The usual procedure
here is first to characterize equilibrium states, i.e., states w
vanishing entropy production and to relate the parameter
the corresponding distribution function to macroscopic~per-
fect! fluid quantities. Nonequilibrium situations are then, in
second step, taken into account as deviations from equ
rium. Obviously, geodesic particle motion is a highly idea
ized case. In reality, particle world lines are supposed
deviate from geodesics since the particles will be subjec
additional interactions in general. We assume here that th
interactions may be modeled as effective forces on the
ticles. The kinetic theory for particles under the influence
various forces was considered, e.g., in Refs.@25,26,30,31#.
Following the lines of Ref.@24# we will focus here on equi-
librium states of the gas in a force field. Our main objecti
will be the characterization of equilibrium configurations
a gas under the influence of a self-interacting force which
quadratic in the particle four-momenta. By ‘‘sel
interacting’’ we mean that the force, except its depende
on the microscopic particle momenta, also depends on m
roscopic quantities, characterizing the gas system as a w
~see below!. This force will neither preserve the particl
3-4
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INFLATION IN A SELF-INTERACTING GAS UNIVERSE PHYSICAL REVIEW D58 063503
number nor the energy momentum and it will give rise
entropy production. In particular, it will turn out that a qu
dratically self-interacting force realizes states of ‘‘gener
ized equilibrium’’ characterized below Eq.~21!, including
the conditionṡ50 for ‘‘adiabatic’’ ~or ‘‘isentropic’’! particle
production.

The one-particle distribution functionf 5 f (x,p) for rela-
tivistic gas particles under the influence of a four-forceFi

5Fi(x,p) obeys the Boltzmann equation

pi f , i2Gkl
i pkpl

] f

]pi
1mFi

] f

]pi
5C@ f #, ~38!

where f (x,p)pknkdS dP is the number of particles whos
world lines intersect the hypersurface elementnkdS around
x, having four-momenta in the range (p,p1dp). The quan-
tity dP5A(p)d(pipi1m2)dP4 is the volume element on
the mass shellpipi52m2 in the momentum space.A(p)
52 if pi is future directed andA(p)50 otherwise;dP4

5A2g dp0dp1dp2dp3.
C@ f # is Boltzmann’s collision term. Its specific structu

discussed, e.g., by Ehlers@26# will not be relevant for our
considerations. Following Israel and Stewart@27# we shall
only require that~i! C be a local function of the distribution
function, i.e., independent of derivatives off , ~ii ! C be con-
sistent with conservation of four-momentum and number
particles, and~iii ! C yields a nonnegative expression for th
entropy production and does not vanish unlessf has the form
of a local equilibrium distribution function@see Eq.~44! be-
low#. Equation~38! implies that the mass-m particles in be-
tween the collisions move according to the equations of m
tion

dxi

dg
5pi ,

Dpi

dg
5mFi , ~39!

where g is a parameter along their world line which fo
massive particles may be related to the proper timet by g
5t/m. Since the particle four-momenta are normalized
cording topipi52m2, the forceFi has to satisfy the relation
piF

i50.
Both the collision integralC and the forceFi describe

interactions within the many-particle system. WhileC con-
ventionally accounts for elastic binary collisions, we inte
Fi to model different kinds of interactions in a simple ma
ner. Strictly speaking,Fi should be calculated from the m
croscopic particle dynamics and, consequently, depend
the entire set of particle coordinates and momenta chara
izing the system of gas particles. We will introduce here
simplifying assumption thatFi be an effective one-particle
quantity which instead of depending on the coordinates
momenta of the remaining particles, is supposed to dep
on macroscopic fluid quantities characterizing the system
a whole. At the moment we do not specify this force. It w
be determined below by general equilibrium conditions. W
expect the concept of a self-interacting force to be usefu
circumventing some of the general problems inherent in
06350
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tempts to formulate a relativistic statistics for interacti
many-particle systems~see, e.g., Ref.@32#, and references
therein!.

The particle number flow four-vectorNi and the energy
momentum tensorT̃ik are defined in a standard way~see,
e.g., Ref.@26#! as

Ni5E dP pi f ~x,p!, T̃ik5E dP pipkf ~x,p!. ~40!

While it will turn out that in the equilibrium case the firs
moment off in Eq. ~40! may be identified with the quantity
Ni5nui introduced below Eq.~14!, we have used here th
same symbol immediately. The second moment off denoted
by T̃ik in Eq. ~40! will not, however, coincide with the
energy-momentum tensorTik in Eq. ~16!. The integrals in
the definitions~40! and in the following are integrals ove
the entire mass shellpipi52m2. The entropy flow vectorSa

is given by@26,27#

Sa52E pa@ f ln f 2 f #dP, ~41!

where we have restricted ourselves to the case of clas
Maxwell-Boltzmann particles.

Using well-known general relations~see, e.g., Ref.@28#!
we find

N;a
a 5E S C@ f #2mFi

] f

]pi D dP,

T̃;k
ak5E paS C@ f #2mFi

] f

]pi D dP, ~42!

and

S;a
a 52E ln f S C@ f #2mFi

] f

]pi D dP. ~43!

In the following we will focus on the force terms in th
expressions~42! and ~43!. In order to separate the corre
sponding contributions from those due to the collision in
gral we will restrict ourselves to collisional equilibrium from
now on. Under this condition lnf in Eq. ~43! is a linear
combination of the collision invariants 1 andpa and the
contributions due toC@ f # in formulas~42! and ~43! vanish.
The corresponding equilibrium distribution function b
comes~see, e.g., Ref.@26#!

f 0~x,p!5exp@a1bapa#, ~44!

wherea5a(x) andba(x) is timelike.
Inserting the equilibrium distribution function~44! into

Eq. ~38! one obtains

paa ,a1b~a;b!p
apb52mb iF

i . ~45!

For a vanishing forceFi the latter condition reduces to th
‘‘global’’ equilibrium condition of standard relativistic ki-
3-5
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netic theory. ForFiÞ0 condition ~45! is a ‘‘generalized’’
equilibrium condition~see Ref.@23# and below!.

Use of Eq.~44! in the balances~42! yields

N;a
a 52mb iE Fi f 0dP,

T̃;k
ak52mb iE paFi f 0dP. ~46!

For the entropy production density~43! we find

S;a
a 5mb iE @a1bapa#Fi ln f 0dP

52aN;a
a 2baT̃;b

ab . ~47!

With f replaced byf 0 in the definitions~40! and~41!, Na,
T̃ab, and Sa may be split with respect to the unique fou
velocity ua according to

Na5nua, T̃ab5ruaub1phab, Sa5nsua, ~48!

where ua, hab, n, r, p, and s may be identified with the
corresponding quantities of the previous section. The ex
integral expressions forn, r, p, ands are given by formulas
~177!–~180! in Ref. @26#.

Using the structure~48! for Na and defining

G[2
m

n
b iE Fi f 0dP, ~49!

the first expression in Eq.~46! becomesṅ1Qn5nG @cf. Eq.
~15!# which justifies definition~49!. Similarly, with the de-
composition~48! and the abbreviation

ta[mb iE paFi f 0dP, ~50!

we obtain

T̃;b
ab1ta50, ~51!

implying

ṙ1Q~r1p!5uata,

~r1p!u̇a1¹ap52hait
i . ~52!

The energy-momentum tensorT̃ik is not conserved. Obvi-
ously, the balances~52! following from Eq.~51! are identical
to the balances

ṙ1Q~r1p1p!50,

~r1p1p!u̇a1¹a~p1p!50 ~53!

following from the local conservationT;b
ab50 of an effective

energy-momentum tensorTab,
06350
ct

Tab5ruaub1~p1p!hab ~54!

with the identifications

uata52Qp, hait
i5pu̇a1¹ap. ~55!

This mapping of the ‘‘source’’ termta onto an effective vis-
cous pressurep of a locally conserved energy-momentu
tensorTab was explicitly shown to be consistent for specifi
‘‘sources’’ ta, depending on the first and second moments
the distribution function only@19,20,23#. In the following
subsection we will show that this interpretation continues
hold if specific third moments are involved.

Let us now decompose the four-momentapa into pa

5Eua1lea whereea is a unit spatial vector, i.e.,eaea51,
eaua50. Consequently, one hasE52uapa and l5eapa

and the mass shell conditionpapa52m2 is equivalent to
l25E22m2. Moreover,habp

apb5l2 is valid. For the force
Fm we write analogouslyFm5F(x,p)um1K(x,p)em where
F[2umFm andK[emFm. The requirementpmFm50 will
be automatically fulfilled for

Fm5Fum1
E

l
emGF~x,p!. ~56!

With the familiar identificationbm5um /T it is obvious that
only the partumFm[2F contributes in the sources~49! and
~50!.

B. Quadratic self-interaction

Any specific force relies on reasonable assumptions ab
F(x,p). In a previous paper@24# we investigated the mos
general linear dependence ofF on the particle momentum
pa. In this paper we assumeF to depend quadratically on th
spatially projected four-momental, i.e.,

F~x,p![2uiF
i5lF1~x!1l2F2~x!. ~57!

F1(x) and F2(x) are spacetime functions to be determin
by the equilibrium conditions of the gas. It will turn out tha
it is just this force under the action of which the partic
energyE is preserved in a homogeneous and isotropic u
verse@cf. Eq. ~84! below#.

An equivalent way of writing the force~56! with F given
by Eq. ~57! is

Fi~x,p!5gabp
a@uieb2ubei #@F1~x!1lF2~x!#. ~58!

The equilibrium condition~45! becomes

paa ,a1b~a;b!p
apb5

m

T
@eapaF1~x!1habp

apbF2~x!#.

~59!

It is satisfied for

ȧ50, ea¹aa5
m

T
F1 , ~60!

and
3-6
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b~a;b!5f~x!hab , ~61!

with f5(m/T)F2. Since relation~7! holds we find

F2~x!5
Q

3m
. ~62!

Identifying ba with ua /T, the equilibrium condition~61! for
a Maxwell-Boltzmann gas in the force field~58! coincides
with the PCTKV condition~13!.

We recall that an ansatz forF linear in the particle mo-
menta instead of the structure~57! analogously reproduce
the conformal Killing-vector condition~11! @24#. Through
F2 the force depends on the fluid expansion, a quantity ch
acterizing the gas as a whole on the macroscopic level. S
both the microscopic particle momenta and macrosco
fluid quantities of the system of gas particles enter the fo
force, the latter represents a self-interaction of the gas.

Inserting the force~58!, equivalent to expressions~56!

and ~57!, into the source term~49! and using 3p5habT̃
ab

53nT we obtain

G53mF2~x!. ~63!

Together withF2 from Eq. ~62! this impliesG5Q @cf. Eq.
~25!# and, consequently, the relationṅ/n50.

For the source term~50! one obtains

ta52
m

T
F1~x!eiT̃

ai2
m

T
F2~x!himMaim, ~64!

whereMaim[*dP f0papipm is the third moment of the equi
librium distribution function. The projected source terms
the balances~52! are

uata53h
m

T
F2~x!, ~65!

where we have introduced the quantity

h[2
1

3
uahimMaim ~66!

and

hnat
a52enp

m

T
F1~x!. ~67!

The third momentMaim enters the energy balance but not t
momentum balance. The momentum balance in Eq.~52!
with the source term~67! coincides with the correspondin
balance in Ref.@23#. It follows that the arguments in Re
@23# which prove the consistency of the momentum balan
in Eqs.~52! and~53! together with the second relation in E
~55! apply in the present case as well. Realizing that

uapaf 05
] f 0

]~1/T!
~68!

~the derivative has to be taken fora5const), we find
06350
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h52
1

3
hmn

]T̃mn

]~1/T!
52

]p

]~1/T!
. ~69!

Using here for the equilibrium pressurep @25#

p5
4pm4

~2p!3

K2~m/T!

~m/T!2
exp@a# ~70!

together with

d

dzS K2~z!

z2 D 52
K3~z!

z2
~71!

(K2 and K3 are Bessel functions of the second kind!, one
obtains

h5nTm
K3~m/T!

K2~m/T!
5T~r1p!, ~72!

where we took into account that the enthalpy per particleh is
given by h5(r1p)/n5mK3(m/T)/K2(m/T). Conse-
quently, the source termuata becomes

uata53m~r1p!F2~x!5~r1p!Q. ~73!

Together with the first relation in Eq.~55! this is consistent
with p52(r1p) @cf. Eq. ~25!#.

With the identificationsa5m/T, ba5ua /T, and s5(r
1p)/nT2m/T, the entropy production density~47! may be
expressed in terms of the sourcesG anduata to yield

S;a
a 2nsG52

r1p

T
G1

uata

T
50. ~74!

Recalling that Eq.~61! implies G5Q and ṅ50, we have
derivedall the generalized equilibrium conditions discuss
on a phenomenological level in the previous section. It
remarkable that the force~56! with the quadratic dependenc
~57! not only leads to conditions~61! but automatically guar-
antees the vanishing ofS;a

a 2nsG, i.e., ṡ50, resulting in

Ṫ/T50 according to the temperature law~23!. The condition
ṡ50 for ‘‘adiabatic’’ or ‘‘isentropic’’ particle production is
a property of the force considered here and does not nee
be postulated separately.

For any G5Q>0 Eq. ~74! implies S;a
a >0. The self-

interacting force provides us with a non-negative express
for the entropy production in an expanding universe. T
completes our microscopic derivation of generalized equi
rium characterized by Eqs.~21! and ~24! under the PCTKV
condition ~13!.

IV. THE SELF-INTERACTING GAS UNIVERSE

Having clarified the implications of generalized equili
rium, especially the consequences of relation~13!, both phe-
nomenologically and on the level of kinetic theory, we no
consider Einstein’s field equations with the energ
momentum tensor~54!. This corresponds to a situatio
3-7
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where matter in generalized equilibrium dominates the
namics of the universe. Since generalized equilibrium w
shown to be realized by a self-interacting gas we call suc
configuration a self-interacting gas universe. While it is ge
erally an open question to what extent the hot and de
early universe is accessible to a kinetic description, a ga
the only system for which the correspondence between
croscopic variables and phenomenological fluid quantitie
sufficiently well understood. This makes gas universes in
esting toy models and we hope that such an approach
gives an idea of the relevant physics in our real universe

The target of this section is to demonstrate explicitly th
the specific self-interaction~58! @equivalent to the combina
tion of Eqs.~56! and ~57!# under the equilibrium conditions
~60! and ~61! allows us to exactly integrate both the equ
tions for the cosmic scale factor of a homogeneous and
tropic self-interacting gas universe and the correspond
microscopic equations of motion for the individual gas p
ticles. A self-interacting gas universe represents an exa
solvable model both microscopically and on the phenome
logical fluid level.

In the spatially homogeneous case the functionF1 van-
ishes@cf. Eq. ~60!#. The length scalea coincides with the
scale factor of the Robertson-Walker metric and obeys
equation

3
ȧ2

a2
5kr, ~75!

wherek is Einstein’s gravitational constant and

S ȧ

a
D •

52
k

2
~r1p1p!. ~76!

Together with expression~25! for p the last equation yields
ȧ/a[H5const, whereH is the Hubble parameter, implyin
an exponential behavior of the scale factora}exp@Ht#. A
homogeneous and isotropic simple gas universe with a
trary equation of state and quadratic~in the spatially pro-
jected microscopic particle four-momenta! self-interaction in
between elastic binary collisions requires a de Sitter spa
time to be in~generalized! equilibrium.

Evidently, this also implies that the de Sitter metric a
mits a PCTKV. The consistency of this statement may
checked from Eq.~13! directly by using the condition tha
the temperatureT is constant both in space and time, t
gether with the well-known decomposition of the covaria
derivative of the four-velocity@33,34#

ui ;n52u̇iun1s in1v in1
Q

3
hin , ~77!

wherevab5ha
chb

du[c;d] . The present case is characterized

u̇a5sab5vab50 and Q53(ȧ/a)5const as well asf
5Q/3T5const@cf. Eq. ~7!#.

In other words, the self-interaction of a classical gas
able to realize an effective fluid equation of statePeff[p
1p52r @cf. Eq. ~25!# which in a cosmological context i
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usually obtained with the help of a scalar field. A scalar fie
represents an ‘‘exotic’’ kind of matter with mainly theoret
cal evidence at the present state of knowledge. We ar
here that it may occasionally be helpful to have alternat
ways of considering issues of inflation in terms of conve
tional matter models which are more familiar and intuiti
compared with the exotic ones. A remarkable difference
scalar-field-driven inflation is the circumstance that our a
proach predicts an exponential increase of the comoving
tropy nsa3 during the de Sitter phase.

Our results may also shed new light on the old question
whether or not a fluid bulk pressure may drive inflation. W
recall that this issue has been discussed in the literature f
different points of view@9,35–38,3,4,8#. While Pacheret al.
@9# have shown that sufficiently high negative pressures c
not arise in a weakly interacting mixture of relativistic an
nonrelativistic particles~see also Ref.@37#!, Lima et al. @35#
pointed out that the situation may be different if the dilut
gas approximation is given up and causal thermodynamic
applied. Further investigations along this line have confirm
the existence of inflationary solutions@36,38,3,4,8#, although
there exist general problems with their physical interpre
tion @3,4,8#, at least as long as cosmological particle produ
tion is not taken into account. The fact that a bulk press
may phenomenologically represent certain quantum phen
ena, especially particle production processes, is well kno
in the literature@39–41#. It was remarked in Refs.@13,17#
that ‘‘conventional’’ bulk pressures, i.e., bulk pressures d
to internal interactions, and effective bulk pressures resul
from particle production are separate effects and both
them contribute to the overall dynamics of the system.

We emphasize again that the quantityp in the present
paper is exclusively due to an increase in the number
particles andnot the ‘‘conventional’’ bulk viscous pressur
of linear, irreversible thermodynamics, describing intern
particle number preserving interactions. ‘‘Conventiona
bulk pressures, generally equivalent toṡÞ0, have been ex-
cluded here by the assumption of collisional equilibriu
The possibility of a nonvanishingṡ due to the process o
particle production was eliminated by the requirement
‘‘generalized’’ equilibrium @see the discussion below Eq
~21!#.

The abovementioned studies within the framework
causal thermodynamics relied on deviations from thermo
namical equilibrium characterized byṡÞ0, whereas the
present considerations refer to a~generalized! equilibrium
and imply ṡ50. While there are limits for deviations from
equilibrium in the mentioned nonequilibrium appoaches~de-
viations up to second order!, there are no such restrictions i
the context of this paper. In particular, there is no need o
requirementupu,p in our case to be well within the range o
applicability of the theory as in conventional nonequilibriu
thermodynamics. The present analogue of the bulk visc
pressurep which in conventional irreversible thermodynam
ics represents~small! deviations from~collisional! equilib-
rium is a quantity without corresponding limitations. Inste
it is determined by equilibrium conditions, equivalent
symmetry requirements. This quantityp is directly related to
3-8
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the particle production rate which is traced back to a sim
force on the~classical! microscopic level. It follows thatp is
completely determined by this force. The problem whethe
bulk pressure may drive inflation reduces to the question
whether microscopic forces on the particles exist, equiva
to a nongeodesic motion of the latter, which generate
appropriate macroscopic quantityp. Our considerations
show that a surprisingly simple force generates such a q
tity. In this sense the question of whether or not an effect
bulk pressure may drive inflation is answered affirmative
A final statement, however, requires the derivation of t
force from an underlying quantum level which is beyond t
scope of this paper.

Having determined the self-interacting force by the eq
librium conditions of the gas it is now also possible to stu
the particle motion~39! explicitly. With the decomposition
pi5Eui1lei the left-hand side of the second expression
Eq. ~39! may be written as

Dpi

dt
5

dE

dt
ui1E

Dui

dt
1

dl

dt
ei1l

Dei

dt
.

Contraction withui yields

ui

Dpi

dt
52

dE

dt
1lui

Dei

dt
52

dE

dt
2lei

Dui

dt
.

Taking into account that

Dui

dt
5u;n

i pn

m
,

we obtain

ui

Dpi

dt
52

dE

dt
2

lE

m
eiu̇i2

l2

m
eienui ;n .

Applying here the decomposition~77!, the projected equa
tion of motion

ui

Dpi

dt
5uiF

i52F ~78!

may generally be written as

dE

dt
1

lE

m
eiu̇i1

l2

m
eiens in1

l2

3m
Q5F. ~79!

For homogeneous isotropic universes withu̇i5s in50 the
last equation reduces to

dE

dt
1

l2

3m
Q5F. ~80!

With dt5dt(m/E), l25E22m2, Q53ȧ/a, and dE/dt

[Ė, Eq. ~80! is equivalent to

~E22m2!•

E22m2
1

~a2!•

a2
5

2m

E22m2
F. ~81!
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We discuss the last equation for the following three differe
cases.

~i! F50, geodesic motion. We find

E22m25l2}a22 ~F50!, ~82!

implying the expected behaviorE}a21 for massless par-
ticles ~photons! while the nonrelativistic energy«[E2m
with «!m of massive particles decays as«}a22.

~ii ! F5(E2m)Q/3. The previously studied force with
linear dependence ofF on the particle four-momenta is give
by this expression for massive particles (m@T) in a homo-
geneous universe@24#. In such a case, which implies th
conformal Killing-vector property~11! and power-law infla-
tion according toa}t4/3 @24#, the solution of Eq.~80! is

E2m}a21 S F5~E2m!
Q

3 D . ~83!

The nonrelativistic energy of massive particles under gen
alized equilibrium conditions in a~quasi!linear force field
decays linearly with the cosmic scale factor, i.e., in this c
the self-interacting force makes nonrelativistic particles
have as radiation. This may be regarded as the microsc
counterpart of the statement that radiation and nonrelativi
matter may be in equilibrium in the expanding universe, p
vided the number of matter particles increases at a spe
rate @20,24#.

~iii ! F5(l2/3m)Q. This is the case of interest here@cf.
Eq. ~57! with F150 and F2 from Eq. ~62!#. It is obvious
from Eq. ~80! that the force term on the right-hand side e
actly compensates the second term on the left-hand s
Consequently,Ė vanishes, i.e.,

E5const, S F5
l2

3m
Q D . ~84!

The self-interacting force prevents the particle energies fr
decaying with the expansion. Independently of the equati
of state the particle energies are preserved in such a univ

With the result~84! we have completed the exact solutio
of our model of a quadratically self-interacting gas univer
It is the essential feature of this model that the same fo
which on the microscopic level makes the gas particles m
at constant energy is responsible for an effective grav
tional repulsion on the macroscopic level, implying an exp
nentially accelerated expansion of the universe.

V. CONCLUSIONS

In this paper we introduced the concept of a ‘‘projecto
conformal’’ timelike Killing vector ~PCTKV! and discussed
the corresponding fluid dynamics under the condition
minimal entropy production~generalized equilibrium!. Such
an equilibrium configuration requires a particle producti
rate which coincides with the fluid expansion rate. As a co
sequence the energy density of the fluid turned out to
stationary. A microscopic realization of this phenomenolo
cally defined concept was given with the help of the kine
theory for a classical gas in a force field. A quadratic~in the
3-9
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particle four-momenta! self-interaction of the microscopi
gas particles was shown to provide both the PCTKV pr
erty of ui /T and ‘‘adiabatic’’ ~or ‘‘isentropic’’! particle pro-
duction. This force concept turned out to result in a comp
hensive picture of the gas dynamics both macroscopic
and microscopically and allowed us to establish an exa
solvable model of a quadratically self-interacting gas u
verse. We found that generalized equilibrium under the c
ditions of spatial homogeneity and isotropy for such a c
v.

e

.
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figuration necessarily implies a de Sitter spacetime.
clarified in which sense an effective bulk pressure may dr
exponential inflation.
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