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New method for determining cumulative gravitational lensing effects in inhomogeneous universe
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Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637-143
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We present a new approach to calculating the statistical distributions for magnification, shear, and rotation
of images of cosmological sources due to gravitational lensing. In this approach one specifies an underlying
Robertson-Walker cosmological model together with relevant information on the clumping of matter on scales
much smaller than the Hubble radius. The geodesic deviation equation is then integrated backwards in time
until the desired redshift is reached, using a Monte Carlo procedure wherein each photon beam in effect
‘‘creates its own universe’’ as it propagates. The approach is somewhat similar to that used in ‘‘Swiss cheese’’
models, but the ‘‘cheese’’ has been completely eliminated, the matter distribution in the ‘‘voids’’ need not be
spherically symmetric, the total mass in each void need equal the corresponding Robertson-Walker mass only
on average, and we do not impose an ‘‘opaque radius’’ cutoff. The case where the matter in the universe
consists of point masses is studied in detail, and it is shown that the statistical distributions of the lensing
images are essentially independent of both the mass spectrum and the clustering properties of the point masses,
provided that the clustering is spherical. Detailed results for the distribution of the magnification of images are
presented for the point mass case, as well as a number of other matter distributions. We apply our results~i! to
argue that the positive correlation recently found between quasar luminosity and the number of absorption line
systems is not likely to be due to lensing, and~ii ! to determine the amount of ‘‘noise’’ and possible bias
produced by lensing in measurements ofq0 using distant supernovas.@S0556-2821~98!03516-4#

PACS number~s!: 98.80.Hw, 04.20.Cv, 98.62.Sb
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I. INTRODUCTION

In recent years there has been a great deal of intere
studying the effects on cosmologically distant sources p
duced by gravitational lensing due to intervening matter.
many cases of interest, the lensing effects can be assum
be produced by a single galaxy or cluster of galaxies,
one can use the detailed structure of the images produce
lensing to extract a great deal of information about the m
distribution of the galaxy or cluster. However, in other c
cumstances of interest one may be interested in the cum
tive lensing effects produced by many different objects~or
voids!, and one may be primarily interested in statistical d
tributions of the image brightenings and/or distortions, rat
than the detailed modeling of any individual lens system

Two examples of the latter circumstances are the follo
ing: ~1! Vanden Berket al. @1# have presented evidence for
positive correlation between quasar luminosity and the nu
ber of intervening carbon IV absorption clouds. Could th
correlation be the result of the cumulative gravitational le
ing effects produced by the mass distributions associa
with these clouds?~2! Efforts are currently underway to us
supernovas occurring at cosmological distances as stan
candles for tests ofq0 @2#. How much ‘‘noise’’ in the appar-
ent luminosity distribution of the supernovas would be e
pected from gravitational lensing effects? Could any use
information about the distribution of matter in the univer
be extractable from this ‘‘noise’’?

The main purpose of this paper is to present a new
proach for determining cumulative gravitational lensing
fects on cosmological scales due to inhomogeneities in
matter distribution of the universe. As explained further b
low, in this approach one specifies an underlying Roberts
Walker cosmological model together with one’s assumpti
0556-2821/98/58~6!/063501~23!/$15.00 58 0635
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concerning the detailed clumping and clustering of matte
the universe. Both the Robertson-Walker model and
clumping or clustering of matter may be specified arbitrari
provided that the clustering of matter occurs only on sca
much smaller than the Hubble radius and that the aver
density of the matter distribution corresponds to that of
underlying Robertson-Walker model. Our approach then
ables one to accurately obtain statistical distributions for
luminosity, shear, and rotation of images of ‘‘standa
candle’’ ~nearly! point sources at any cosmological redshi
When multiple images occur, however, even statistical inf
mation about the number of images and the relationsh
between the images cannot be easily extracted using ou
proach, since that would require us to keep track of the
lationship between finitely~as opposed to infinitesimally!
separated null geodesics. Nevertheless, statistical infor
tion about the luminosity, shear, and rotation of the in
vidual images occurring in multiple images is included in o
distributions.

The rest of this section will be devoted to an overview
our approach for determining statistical lensing effects in
homogeneous universes. Section I A introduces our cos
logical model, presenting and justifying the metric whic
provides the framework for our results. Section I B discus
lensing effects on the propagation of photon beams wit
the cosmology, while Sec. I C discusses the local nature
these effects. Section I D gives a general overview of
method, and Sec. I E discusses the relevant scales of
model. In Sec. II we present our procedure for calculat
statistical lensing effects in more explicit detail. In Sec.
we analyze the case where all of the matter in the unive
can be treated as being comprised of point masses@satisfying
Eq. ~25!#. Other distributions of mass are considered in S
IV A, and then in Sec. IV B we perform some internal co
© 1998 The American Physical Society01-1
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DANIEL E. HOLZ AND ROBERT M. WALD PHYSICAL REVIEW D 58 063501
sistency checks on our results. Applications of our work
the analysis of lensing effects by quasar absorption syst
are given in Sec. V, and applications to the effects of lens
on supernova luminosity are given in Sec. VI.

A. Cosmological model

To explain our approach, we first need to state our c
mological assumptions with more precision. We assume
the spacetime metric of the universe is globally well appro
mated ~on all scales! by a ‘‘Newtonianly perturbed
Robertson-Walker metric’’ of the form

ds252~112f!dt21~122f!a2~t!

3F dr2

12kr2 1r 2~du21sin2udw2!G , ~1!

where k50,61. We shall refer to the metric obtained b
settingf50 in Eq. ~1! as theunderlying Robertson-Walke
model. The spatial metric of this underlying Robertso
Walker model isa2hab , where

hab[
1

12kr2 dradrb1r 2~duadub1sin2udwadwb! ~2!

is either the metric of a unit 3-sphere (k51), a unit 3-
hyperboloid (k521), or flat 3-space (k50).

Without loss of generality, we may assume that the spa
average off vanishes, since a spatially constant part off
could be absorbed into the definitions oft and a. We also
assume that throughout spacetime—or at least out to dist
scales of orderRH , where RH[H215a/ȧ denotes the
Hubble radius of the underlying Robertson-Walk
model—we have

ufu!1. ~3!

We further assume that time derivatives off are much
smaller than spatial derivatives, i.e.,

u]f/]tu2!a22habDafDbf, ~4!

with similar relations holding for the higher time derivative
Here Da denotes the spatial derivative operator associa
with hab , andhab denotes the inverse ofhab ~so a22hab is
the inverse spatial metric of the underlying Robertso
Walker model!. It is important to note that spatial derivative
of f may locally be very large compared with scales set
the underlying Robertson-Walker model. However, we
sume that products of the first spatial derivatives off are
small compared with second derivatives: i.e.,

~habDafDbf!2!hachbdDaDbfDcDdf. ~5!

Finally, we assume that the matter stress-energy tensor,Tab
~not including the cosmological constant term!, is every-
where such that, in the rest frame of the underlyi
Robertson-Walker model, the energy density of ma
greatly dominates the other components ofTab . In this case
Tab is approximately of the ‘‘matter dominated’’ form
06350
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Tab'ruaub , ~6!

whereua is the unit@in the metric of Eq.~1!# timelike vector
field orthogonal to the surfaces of constantt. Equations~3!–
~6! are the only assumptions we shall need to obtain E
~9!–~11! below.1 However, in Sec. I C we shall also assum
that there is a~co-moving! scaleR!RH such that no strong
correlations in the density of matter occur on scales gre
thanR.

We now substitute the metric form of Eq.~1! and the
matter stress-energy of Eq.~6! into Einstein’s equation, pos
sibly with a nonvanishing cosmological constant,L. We
make the approximations of Eqs.~3!–~6!, and also drop all
terms~like Lf andrf! which are small compared with th
curvature of the underlying Robertson-Walker metric. T
nonvanishing components of Einstein’s equation then yie2

3ä/a5L24pr1a22habDaDbf ~7!

3~ ȧ/a!25L18pr22a22habDaDbf23k/a2, ~8!

where the overdots denote derivatives with respect tot. The
spatial average of these equations yields the usual form
the matter dominated Einstein equations for the underly
Robertson-Walker metric, namely

3ä/a5L24pr̄ ~9!

3~ ȧ/a!25L18pr̄23k/a2, ~10!

1E. Linder ~private communication! has claimed that the approxi
mation e2/k!1 of Refs. @3#, @4#, and @5# is also needed for the
validity of our equations below. We do not agree with this claim

2In addition to the two equations given here—which correspond
the time-time and diagonal space-space components of Einst
equation—there are also contributions to the time-space com
nents of Einstein’s equation of the formrva ~whereva denotes the

velocity of the matter relative to the Hubble flow!, (ȧ/a)Daf, and
mixed time-space derivatives off. These terms need not every
where be small compared with the curvature of the underly
Robertson-Walker metric. If only these terms were considered,
time-space components of Einstein’s equation would yield ad
tional equations forf which would be inconsistent with Eq.~11!
below. This difficulty is resolved by allowing for the presence
nonvanishing time-space components of the metric,g0m ~with m
51,2,3), satisfyingug0mu!ufu. The time-space components of Ein
stein’s equation then become, in essence, equations which d
mine g0m ~see Sec. 4.4a of@6# for further details in the ordinary
Newtonian case!. However, sinceg0m makes a negligible correction
to the effects calculated in this paper, we shall ignore its prese
below and, correspondingly, will not consider the time-space co
ponents of Einstein’s equation.
1-2
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NEW METHOD FOR DETERMINING CUMULATIVE . . . PHYSICAL REVIEW D 58 063501
where r̄ denotes the spatial average ofr. Subtracting Eqs.
~9! and ~10! from Eqs. ~7! and ~8!, we find the remaining
content of Einstein’s equation is thatf satisfies the Poisso
equation3

a22habDaDbf54pdr, ~11!

where

dr[r2 r̄. ~12!

We emphasize that it is completely consistent with our
sumptions to have, locally,dr@ r̄. It is essential that this be
allowed if Eq.~1!, together with Eqs.~3!–~5!, is intended as
an accurate description of our universe, since we commo
find dr;1030r̄ in our vicinity.

Thus, in our model the matter is assumed to have an
ergy density much greater than its stresses, and is assum
move non-relativistically with respect to the Hubble flo
defined by the underlying Robertson-Walker model. Ho
ever, unlike a Robertson-Walker model, this matter may
distributed in a very inhomogeneous manner; in particular
already noted, the fluctuations in the mass density may
very large compared with the spatial average of the m
density. Consequently, the local curvature of spacetime m
differ drastically from that of a Robertson-Walker mode
Nevertheless, in our cosmological model the Hubble flow
the matter and the causal structure of spacetime corres
very closely to the underlying matter dominated Roberts
Walker model whose mass density is equal to the aver
density of matter in the universe.

It is useful to examine the form taken by the metric of E
~1! in a locally Minkowskian frame associated with an o
server moving with the Hubble flow, which, for convenienc
we take to be located atr 50. To do so we define a new
radial coordinate,R, by

R5ar, ~13!

and a new time coordinate,T, by

3Nonlinear terms inf, such asa22habDafDbf5DafDaf, are
neglected in Eq.~11! because they are small compared with t
term linear inf @see Eq.~5!#. On the other hand, since the spat
average ofDaDaf vanishes, the neglect of the spatial average
nonlinear terms likeDafDaf in Eqs. ~9! and ~10! is justified as
follows. We have

E
V
DafDafdV52E

V
fDaDafdV524pE

V
fdrdV

524pE
V
f~r2 r̄ !dV.

The integral offr is much less than the integral ofr, asf!1 and

r is non-negative. The same argument holds for thefr̄ term. Thus,
under our assumptions, the spatial average ofDafDaf is much

less thanr̄, which justifies dropping the former in Eqs.~9! and~10!.
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In these new coordinates the metric of Eq.~1! takes the form

ds252~112f2R2ä/a!dT2

1$122f1R2@~ ȧ/a!21k/a2#%dR2

1~122f!R2dV2, ~15!

where we have dropped all terms of orderR3 and higher in
distance from the origin. Transforming to an isotropic rad
coordinate, then further transforming to the correspond
Cartesian coordinatesX,Y,Z, and, finally, substituting from
Einstein’s equations@Eqs. ~9! and ~10!# for the underlying
Robertson-Walker model, we obtain

ds252~112F2LR2/3!dT2

1~122F2LR2/6!@dX21dY21dZ2#, ~16!

where

F[f12pR2r̄/3, ~17!

and where, to the approximation in which we are worki
~i.e., dropping terms of orderR3 and higher!, we haveR2

5X21Y21Z2. Thus,F satisfies the ordinary Poisson equ
tion

¹2F5¹2f14pr̄54p~dr1 r̄ !54pr. ~18!

WhenL50, Eq. ~16! is precisely the usual form of Newto
nianly perturbed Minkowski spacetime~see, e.g., Sec. 4.4
of @6#!. Thus, in the spacetime of Eq.~1!, whenL50, New-
tonian gravity holds to a very good approximation in t
vicinity of any observer following the Hubble flow, wher
‘‘in the vicinity’’ here means on scales much smaller th
the Hubble radius. Even whenLÞ0, if udru@ r̄ in the neigh-
borhood of the observer, realistic values ofL have LR2

!F out to distances much smaller than the Hubble rad
Thus, Newtonian gravity holds to an excellent approximat
in the vicinity of such observers as well.

In summary, we may characterize our cosmologi
model of Eq.~1!, together with Eqs.~3!–~5!, as one which
corresponds closely to a Robertson-Walker model as fa
the Hubble flow of the matter and the causal structure of
spacetime are concerned, but in which the local distribut
of matter may be highly inhomogeneous. In addition, as
have just noted, on scales small compared with those se
the underlying Robertson-Walker model, Newtonian grav
holds to a very good approximation. Apart from negligib
small regions of spacetime which contain black holes
other strong field objects, we believe that our universe
accurately described by this model. In any case, our mod
a relatively precise, mathematically consistent cosmolog
model which describes the spacetime structure and distr
tion of matter on all scales, and is not in obvious confl
with any observed properties of our universe.

f

1-3
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B. Propagation of photon beams

Let us now consider this cosmological model from t
perspective of photons ([null geodesics! propagating in it,
and compare this to what photons would encounter in
Robertson-Walker model. All gravitational focusing an
shearing effects on an infinitesimal beam of light rays in
vicinity of a null geodesicg are described by the geodes
deviation equation~see, e.g.,@6#!

d2ha

dl2 52Rbcd
akbkdhc, ~19!

whereka is the tangent tog corresponding to affine param
eter l, and ha is the deviation vector to an infinitesimall
nearby null geodesic in the beam. The Riemann curva
tensor appearing in Eq.~19! can be decomposed into it
Ricci and Weyl pieces in the usual way~see, e.g.,@6#!

Rabcd5Cabcd1~ga[cRd]b2gb[cRd]a!2
1

3
Rga[cgd]b .

~20!

The Ricci curvature directly produces a rate of change
convergence of the beam of geodesics, while the Weyl c
vature directly produces a rate of change of shearing.

In a Robertson-Walker model the Weyl tensor vanish
and, by Einstein’s equation, the Ricci tensor is of the fo
Rab58p(Tab21/2 Tgab), with Tab given by Eq.~6!. The
geodesic deviation equation then takes the form

d2ha

dl2 524pv2rha, ~21!

wherev is the frequency of the photon as measured in
Robertson-Walker rest frame. This corresponds to a ste
increase in the convergence of the beam of geodesics,
no shear. Contrast this behavior with the propagation of p
tons in the cosmological model of Eq.~1! in the case where
the matter is highly clumped on various scales, but with
~or negligible! matter distributed between the clumps. In th
case, the Ricci tensor vanishes along the geodesic, excep
rare instances when the photon propagates through a c
of matter. On these rare occasions, the Ricci curvature br
becomes extremely large compared with that of the unde
ing Robertson-Walker model. The Weyl curvature also w
be small except in similarly rare instances of propagat
through~or very near! a sufficiently dense clump of matte
Thus, when the matter distribution is highly clumped, at
most all times the propagation of a beam of photons in
spacetime of Eq.~1! would be indistinguishable from propa
gation in flat spacetime. Occasionally, however, the be
may receive a strong ‘‘kick’’ of Weyl and/or Ricci curvature
Thus, the local history of a photon propagating in the spa
time of Eq.~1! could hardly be more different from the loca
history of a photon propagating in a Robertson-Walk
model. Nevertheless, there are some global corresponde
In particular, since the causal structure of the spacetime
Eq. ~1! corresponds closely to that of the underlyin
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Robertson-Walker metric, at each redshift4 the area of the
boundary of the past of an event in the spacetime of Eq.~1!
must be very nearly equal to the area of the past light con
the corresponding event in the underlying Robertson-Wa
metric. We will return to this point in Sec. IV B.

In order to calculate magnification and shear effects o
~nearly! point source due to gravitational lensing, we need
integrate the geodesic deviation equation@Eq. ~19!# along a
null geodesic connecting the source to the observer. To
this, we need to know the curvature along the geodesic.
curvature is determined directly by a knowledge of the u
derlying Robertson-Walker model together withf. We will
assume that, in the underlying Robertson-Walker model,
distance scales set by the spatial curvature andL are at least
as large as the Hubble radius,RH . The spacetime curvatur
of the Robertson-Walker model is then of order 1/RH

2. Con-
tributions off to the spacetime curvature which are smal
than 1/RH

2 will therefore be neglected. From Eq.~11!, to-
gether with the assumption thatf is bounded and has van
ishing spatial average, it follows thatf is uniquely deter-
mined by specifying the matter distributiondr. However, Eq.
~11! is a nonlocal equation, and so in principle the loca
encountered curvature could depend upon the distributio
matter in arbitrarily distant parts of the universe.5 Neverthe-
less, we shall now argue that, under our cosmological
sumptions, only the distribution of matter withinRH is rel-
evant.

C. Local nature of the influence of matter on photon beams

Let S be a sphere of proper radial distanceRH centered
about the pointx at which we wish to evaluatef. Let
GD(x,x8) denote the Dirichlet Green’s function for the equ
tion a22habDaDbG(x,x8)524pd(x,x8) for the region en-
closed byS. ~A simple, explicit formula forGD in the case of
flat geometry can be found, e.g., in Sec. 2.6 of@7#.! Then, by
Green’s identity, we have

f~x!52E
V
GD~x,x8!dr~x8!dV8

2
1

4p E
S
f~x8! r̂ 8aDa8GD~x,x8!dS8, ~22!

where the volume integral extends only over the region
closed byS. Under our above assumptions, the contributi
of f to the curvature is given directly in terms of the seco
spatial derivatives off, since the contributions from the tim
derivatives off, products of first derivatives off, etc., have

4Since ufu!1 and the velocity of matter relative to the Hubb
flow is small, we neglect the difference between redshifts in
metric of Eq.~1! and in the underlying Robertson-Walker model

5Note that since, for an open universe,dr does not fall off to zero
at infinity, we cannot assume,a priori, that f is given in terms of
dr by the usual Poisson integral expression that would hold fo
localized mass distribution.
1-4
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been assumed to be negligible compared with the linear c
tributions from the second spatial derivatives off. Differen-
tiating Eq.~22!, we obtain

DaDbf~x!52E
V
DaDbGD~x,x8!dr~x8!dV8

2
1

4p E
S
f~x8! r̂ 8aDa8DaDbGD~x,x8!dS8.

~23!

However, the surface term in Eq.~23! is of orderufu/RH
2,

and thus, in view of Eq.~3!, it can be neglected. Therefor
the curvature atx is determined by the matter distributio
only within a Hubble radius ofx, as we desired to show. I
should be emphasized that this conclusion isnot a conse-
quence of any causality arguments but, rather, follows
rectly from our aboveassumptionthatf is small at distances
of order RH , as is necessary for the underlying Robertso
Walker metric to be a good description of spacetime str
ture on cosmological scales.

We now make the additional assumption that there i
~co-moving! scaleR!RH such that no strong correlations
the distribution of matter occur on scales greater thanR.
Under these circumstances it seems clear that the curva
at a given point can be accurately calculated—at least for
purposes of determining geodesic deviation—by taking i
account only the matter distribution within a distanceR of
that point. We have not attempted to give a precise formu
tion or proof of this claim, but a justification for it can b
given as follows. First we note that, by Einstein’s equatio
the Ricci curvature is determined by the matter distribut
in a completely local manner. Therefore, matter can hav
nonlocal influence on a photon beam only via Weyl curv
ture. To calculate the Weyl curvature associated with a
tribution of matter we need to evaluate the trace-free par
the second derivatives off, as given by Eq.~23! with the
surface term omitted. We break up the volumeV in Eq. ~23!
into a union of regions of sizeR, excluding the ball of radius
R centered atx. In the case of flat spatial geometry, each
these regions will make a contribution of orderm/D3 to the
Weyl tensor atx, whereD is the distance of the region from
x, and m is of the order of the expected mass,r̄R 3, con-
tained in that region. However, by our assumption, there w
be no correlations between the contributions from the diff
ent regions. Hence, by a simple ‘‘random walk’’ estima
we find that the total contribution to the Weyl tensor atx
from all of V except for the ball of radiusR centered atx
should be no greater than;m/R 3;r̄. Similar estimates
hold if the geometry is curved or a cosmological constan
present, sinceGD will differ significantly from the flat case
only at distances comparable toRH , and the contributions
from these regions should be negligible.

We note thatr̄ is the same order of magnitude as t
curvature of the underlying Robertson-Walker metric.
Ricci curvature of this magnitude and having a consist
sign~as occurs in the Robertson-Walker model! could have a
significant effect on the convergence of a beam of phot
06350
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propagating over cosmological distances. However, a r
domly fluctuating Weyl curvature of this magnitude shou
have a completely negligible effect upon the shear~merely
adding a tiny bit of ‘‘noise’’ to the Weyl curvature resultin
from nearby matter!, and an even smaller effect upon th
convergence. Thus, no significant error should be made
considering only the curvature resulting from the presence
matter withinR of the photon path, as we desired to sho

Since we have assumed thatR!RH and that the distance
scales set by the spatial curvature and/orL are at least as
large asRH , the Dirichlet Green’s function withinR of x
will be well approximated by 1/r , wherer denotes the prope
distance betweenx andx8. Thus, Eq.~22!—with the surface
term omitted and the volume integral restricted to a ball
radiusR aroundx—reduces to the usual Poisson integ
formula, and the curvature can be obtained from formu
arising from ordinary Newtonian gravity~see Sec. II below!.
It is somewhat more convenient to work with the potentialF
of Eq. ~17! rather thanf. It follows that F is given by the
usual Poisson integral formula ofr ~rather thandr! over the
region enclosed byR.

D. Our method

The basic idea of our procedure in its most general c
text can now be explained. We choose an underly
Robertson-Walker model and~co-moving! scale,R, with
R!RH in the present universe.6 We then specify a probabil
ity distribution for how the matter is distributed withinR.
This probability distribution may vary with cosmologica
time; it is constrained only by the requirement that the av
age amount of mass contained withinR agree with that oc-
curring in the underlying Robertson-Walker model. We th
perform a ‘‘Monte Carlo’’ propagation of a beam of photon
backward in time, starting from the present, in the followi
manner: We prescribe a matter distribution~chosen from our
probability distribution! in a ball of radiusR. We calculate
the Newtonian potential for this matter distribution and t
corresponding curvature. Then we choose a random im
parameter for the entry of a photon into this ball, and
integrate Eq.~19! through the ball.@In this step, we take the
photon trajectory to be a ‘‘straight line’’: i.e., we do no
attempt to include the~completely negligible! corrections
due to the tiny bending angle.# When the photon exits from
this ball, we use the underlying Robertson-Walker mode
update the frequency of the photon relative to the local r
frame of the matter, and to update the proper radius co
sponding to the comoving scaleR. Then we choose a matte
distribution in a new ball of comoving radiusR, choose
another random impact parameter for entry of the pho
into this ball,7 and repeat the above calculations. We co
tinue until the photon has reached the desired redshift.
repeating this sequence of calculations a large numbe

6More generally, we could specify a probability distribution fo
R, although we shall not do so in this paper.

7Note that, in general, this would require the balls to over
slightly. We neglect this overlap in our analysis.
1-5
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times—for most of our models we performed about 20
such ‘‘runs’’—we build up good statistics for what happe
to beams of photons on our past light cone. From this
obtain, for any given model, good statistical information
the magnification, shear, and rotation of images of~nearly!
point sources at any redshift. We will spell out the details
our procedure more explicitly in the next section.

In comparison with other approaches, ours most clos
resembles the ‘‘Swiss cheese’’ models, wherein one tak
matter dominated Robertson-Walker model, removes
dust from spherical balls, and redistributes the mass wi
these balls in some other~arbitrarily chosen! spherically
symmetric manner. However, our approach differs from
Swiss cheese models in the following significant ways:~i!
The ‘‘cheese’’ has been completely eliminated.~ii ! The mass
within a given ball need not be equal to the correspond
Robertson-Walker mass, though equality must still hold
average.~iii ! The matter distribution within the balls nee
not be spherically symmetric.~iv! We do not consider the
propagation of photons in a single, fixed cosmologi
model. Rather, each photon in effect ‘‘creates its own c
mological model’’ via our Monte Carlo procedure during th
course of its propagation.~v! Although it is not a necessar
facet of the Swiss cheese models, most analyses of the S
cheese models@8,9# have attempted to calculate only ave
ages of certain lensing quantities, and, in the course of do
so, have imposed an ‘‘opaque radius’’ cutoff—within whic
photons are absorbed—which biases the results towards
magnification relative to Robertson-Walker models. O
analysis determines the probability distributions for magn
cation, shear, and rotation of sources by doing an ex
Monte Carlo calculation, imposing no opaque radius cut
As we shall see, our results show no bias towards dema
fication relative to the underlying Robertson-Walker mod
provided that all of the high luminosity images are includ
~see Sec. VI for further discussion!.

Our approach also bears some similarity to analy
which start with a model of the matter distribution in th
universe—obtained analytically@10–12# or from N-body
codes@13–16#—and then project the matter into lens plan
lying between the source and observer. Ray shooting m
ods are used to numerically obtain bending angles of a la
sample of photons, from which the amplification and sh
distribution of images can then be computed. Our appro
uses the geodesic deviation equation rather than the
equation and is considerably simpler and more flexible
also avoids any artifacts resulting from collapsing all t
matter into lens planes.

E. Relevant scales of clustering and clumping

Two final issues remain to be addressed:~1! What clus-
tering scaleR should be chosen to adequately model sta
tical lensing effects in our universe: i.e., what is the larg
scale on which the clustering of matter has an import
effect upon lensing?~2! On what scales~belowR! does one
have to model the details of the matter distribution in ord
to adequately treat statistical lensing effects: i.e., what is
smallest scale on which the clumping of matter has an
portant effect?
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In analyzing these questions, it is convenient to view g
axies as the basic ‘‘building blocks’’ of the distribution o
matter in the universe.~Although we do not exclude the pos
sibility that substantial amounts of matter may be distribu
between galaxies, we assume that such matter is distrib
in a relatively uniform way.! It is essential to take into ac
count the clumping of matter on the scale of galaxies in or
to adequately model lensing effects. In essence, the
question above asks to what extent the clustering of the
axies themselves must be taken into account, while the
ond question asks to what extent the clumping substruc
of the matter within galaxies must be taken into account.

As already noted, it follows from Einstein’s equation th
the Ricci curvature is determined by the matter distribut
in a completely local manner. The effects of Ricci curvatu
on lensing should therefore depend only upon the den
contrasts associated with galaxies, and not upon the ‘‘sha
of galaxies. This will be verified explicitly in Sec. IV B
Furthermore, these Ricci curvature effects should dep
only weakly on the clustering of galaxies, since the clust
ing should merely produce some correlations in the times
passage of a photon through different galaxies, and th
effects should largely ‘‘wash out’’ over cosmological di
tance scales. Thus, we believe that the clustering of gala
should have a negligible influence on lensing effects p
duced by Ricci curvature.

On the other hand, simple estimates show that the W
curvature of a spherical aggregate of matter of massm and
radiusr can have a substantial effect on lensing only if t
matter ‘‘lies within its own Einstein radius,’’r E , i.e., only if

r 2&r E
2;mD, ~24!

whereD denotes a cosmological distance and we use u
whereG5c51. Note that this relationship is marginally sa
isfied by individual galaxies~or at least by their centra
cores!, and so the Weyl curvature of individual galaxies c
~at least occasionally! produce significant lensing effects
Clustering of galaxies can produce important Weyl curvat
effects only in circumstances when the clusters themse
satisfy Eq.~24!. This doesoccur in the central portions o
rich clusters of galaxies, and so the effects of clustering c
not always be assumed to be negligible.

However, in the limit where galaxies can be treated
‘‘point masses’’—as occurs if Eq.~24! is satisfied by a wide
margin—it follows from the analysis given in Sec. III B be
low that even very strong clustering of the galaxies will ha
at most a tiny effect on the lensing probability distributio
for the magnification, shear, and rotation of~nearly! point
sources.~On the other hand, clusteringwould still have an
important effect on some lensing quantities, such as bend
angles, which we do not calculate here.! Thus, clustering
effects can be of importance for the statistical lensing qu
tities treated here only when individual galaxies fail to s
isfy Eq. ~24!, but these galaxies form clusters which do s
isfy Eq. ~24! ~at least in their core regions!. In these
circumstances the neglect of the clustering of galaxies sho
underestimate the lensing effects somewhat. However, w
not believe that such circumstances arise frequently eno
1-6
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to have an important influence on the statistical lensing qu
tities we calculate. Furthermore, as we shall conjecture
Sec. III D, the point mass results should provide a firm up
limit to lensing effects, even when galactic clustering
present.

Consequently, in this paper we shall takeR to be the
scale of the separation between galaxies, thereby negle
lensing effects resulting from the clustering of galaxies. F
the reasons detailed above, we do not expect that this
result in any significant errors in our calculations of the pro
ability distributions for magnification, shear, and rotation
images of cosmologically distant sources. Some evidenc
favor of this expectation will be given in Sec. VI, where w
will obtain results in close agreement with@15#, despite our
neglect of the effects of clustering.8

We turn now to the issue of how small a scale of clum
ing of matter we must consider in order to calculate grav
tional lensing effects. In principle the clumping of matter
arbitrarily small scales~including atomic and sub-atomi
scales! could have an important effect on lensing—thou
we would have to use physical, rather than geometric, op
to calculate these effects when the objects are so small
the scale of variation of the gravitational field becomes l
than the wavelength of the light. However, the finite size
the source which is being lensed provides an effective cu
to lensing produced by clumping on small scales. This f
lows because the lens merely magnifies~as well as shears
and rotates! the image of the source, keeping the surfa
brightness constant@11#. Thus, if the angular size of the~as-
sumed to be uniform! source is much larger than the angu
scale associated with the lens, the lensing effects cause
clumping should have little effect, as only a relatively sm
part of the source would be magnified by the presence
clump of matter~and the rest of the source may be cor
spondingly demagnified by the absence of matter betw
clumps!. In other words, the net angular size of the image
a source of finite size will not be significantly affected b
sufficiently small scale lensing, and consequently, the lu
nosity of the image also will not be greatly affected.9 The
angular scale of the source is;r S /DS , wherer S denotes the
size of the source andDS denotes its distance, and the ang
lar scale associated with the lens is;r E /DL , where DL
denotes the distance of the lens. TakingDS and DL to be
cosmological in scale and using Eq.~24! for r E , we find that
lensing effects should not be important unless the mas
the lens satisfies

m*r S
2/D. ~25!

8This expectation could be further tested by re-doing our analy
takingR to be the scale of separation of clusters of galaxies
using appropriately chosen probability distributions for the distrib
tion of mass within clusters. We have not yet attempted to carry
such an analysis.

9If the angular size of the source is much larger than the ang
scale of separation between the clumps of matter, then the len
effects of the matter should wash out completely.
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The smallest sources of interest here~central regions of qua-
sars and supernova shells at an early stage of expan!
have r S*1023 light years, and so takingD;1010 light
years, we find

m*1023M ( . ~26!

Clumping of matter on mass scales smaller than Eq.~26!
should not be relevant for lensing of the sources we consi
However, the clumping of matter down to the scale of E
~26! is potentially of importance. In particular, the clumpin
of matter in galaxies into stars can have a significant eff
upon the probability distribution for the magnification o
light emitted from quasars and supernovas.

Fortunately, it is not necessary to model a galaxy as 111

or so point mass stars in order to calculate its lensing effe
The clumpiness of matter will be relevant only very close
the path of the photon. If, say, we letd;100r E , wherer E
denotes the Einstein radius of a single star, then the discr
ness of the galactic mass distribution due to stars which
outside of a tube of radiusd around the photon path can b
ignored: i.e., outside of the tube the galactic matter distri
tion can be treated as continuous. Consequently, in
analysis we will take account of all ‘‘microlensing’’ effect
due to small scale clumping of matter~say, into stars! in the
following manner: First, we model the galaxy as a contin
ous mass distribution and compute its Newtonian poten
Then, when a photon passes through the galaxy in our Mo
Carlo simulations, we remove the continuous galactic ma
lying within cylindrical radiusd of the path~or the portion of
this matter assumed to be clumped into stars!, and subtract
the Newtonian potential of this removed matter. Finally, w
randomly redistribute this removed mass back into the c
inder in the form of stars, and we add in the Newtoni
potential of these ‘‘point masses.’’ In this manner we ta
full account of the small scale clumping of matter in a co
putationally efficient way.

II. DETAILS OF OUR METHOD

In the previous section we spelled out our cosmologi
assumptions and described our method for calculating st
tical lensing effects on cosmological sources. The purpos
this section is to provide a more concrete and explicit
scription of our approach.

As discussed in the previous section, we first must cho
an underlying matter dominated Robertson-Walker mod
which we may characterize by the parameters (H0 ,V0 ,L),
where the subscript ‘‘0’’ denotes the present value, a
whereV0[8pr̄0/3H0 . @The value ofk can then determined
from Einstein’s equation~10!.# For the calculations in this
paper, we use the valueH0570 km s21 Mpc21. We choose
a comoving scale,R, which, as discussed above, we take
be the scale of the galactic separations. For most of the
culations in this paper the value ofR will be taken to corre-
spond to 2 Mpc in the present universe. Next we specify h
mass is distributed in~and in between! galaxies. As ex-
plained in the previous section, in general, we may spe
this as a probability distribution which is subject only to th
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DANIEL E. HOLZ AND ROBERT M. WALD PHYSICAL REVIEW D 58 063501
constraint that, on average, the mass assigned to the ga
equal the mass contained in a ball of radiusR in the under-
lying Robertson-Walker model. In the present paper, ho
ever, we will only be concerned with simple ‘‘toy models
for the mass distribution, and, in each model universe,
will take all galaxies to have identical mass and structu
rather than specifying a probability distribution.~However,
we will consider model universes with a wide range of d
ferent galactic mass distributions.! We also will choose the
galactic mass distributions~expressed in terms of proper—
not comoving—distances! not to vary with cosmologica
time.

Our basic strategy for determining lensing effects can
explained in the following manner. Imagine a telescope a
event p in the present universe which is pointed in som
direction in the sky, so that it only accepts photons wh
impinge upon it with null tangent very close to the directi
ka. Suppose, further, thatka has been chosen so that, wh
followed backwards in time, a photon arriving at eventp
with null tangentka would have emerged from a source
redshift z: i.e., suppose that the telescope happens to
‘‘pointed at’’ a source at redshiftz. If the source is suffi-
ciently small, the photons emitted by it which are accep
by the telescope can be treated as a beam of null geod
which all lie on the past light cone ofp and have directions
differing only infinitesimally fromka. The deviation vector
characterizing any given geodesic in this beam must th
fore vanish atp, and is uniquely determined by its time d
rivative at p. The relationship between the image produc
by the telescope and the actual structure of the sourc
determined by the relationship between the time derivati
of the deviation vectors in this infinitesimal beam atp and
the values of these deviation vectors at redshiftz. To calcu-
late this relationship we must integrate the geodesic de
tion equation~19!—backwardsin time starting fromp—for
the 2-dimensional space of spatial deviation vectorsha

which are orthogonal toka and which vanish atp. By linear-
ity of the geodesic deviation equation, the components
these deviation vectors in a parallelly propagated frame
determined by a 232 matrix,A m

n(l), defined by

hm~l!5A m
n~l!

dhn

dl
~0!, ~27!

wherel50 corresponds to the present time. It follows im
mediately from the geodesic deviation equation~19! that
A m

n(l) satisfies

d2A m
n

dl2 52Rabs
nkaksA b

m , ~28!

with initial conditionsA m
n(0)50 anddA m

n(0)/dl5dm
n .

Equation ~28!, together with these initial conditions
uniquely determinesA m

n for all l.
All lensing effects considered in this paper are obtain

directly fromA m
n as follows. Letlz denote the affine pa

rameter of the beam of photons at redshiftz. We decompose
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the matrixA m
n(lz) as a product of a proper~i.e., unit deter-

minant! orthogonal matrixOm
n and a self-adjoint matrix

Sm
n :

A m
n~lz!5Om

sSs
n . ~29!

The matrixScan be characterized by its two eigenvalues,a1
anda2 . The area,A, of the beam at redshiftz is given by

A5a1a25detA. ~30!

The corresponding magnification—and, henc
amplification—of the~nearly point! source at redshiftz ~rela-
tive to a source placed at the same affine parameter in
spacetime! is given by

m5lz
2/A. ~31!

Note that a caustic in the beam of geodesics occurs prec
when detA50, in which case the magnification and amp
fication of a point source becomes infinite.

The distortion of the image is characterized by the ratioe,
of the eigenvalues ofA,

e5ua1 /a2u, ~32!

where we takeua1u<ua2u, so that 0<e<1. For a circular
source, the image will be elliptical in shape, with axial ra
given by e. This distortion also can be characterized by t
net shear10 of the image, defined by

g5
ua12a2u

2lz
. ~33!

If A.0, corresponding to a beam which has not pas
through a caustic~or has passed through an even number
caustics!, we may chooseS to be positive definite~as op-
posed to negative definite!. This uniquely fixesO. The ma-
trix O can be characterized, in turn, by a rotation angleQ
ranging between2p andp, which may be interpreted as th
angle of rotation of the image relative to the orientation th
the image would have had in the underlying Roberts
Walker model. Such a rotation results from the cumulat
effects of shearing in different directions produced by mas
lying in different ‘‘lens planes’’; lensing by masses lying i
a single plane orthogonal to the photon trajectory would
yield any rotation. IfA,0, there is a sign ambiguity inS,
and a corresponding sign ambiguity inO. We resolve this
ambiguity ~arbitrarily! by choosing Q to range between
2p/2 andp/2

In this paper, the desired statistical information on t
magnification, shear, and rotation of sources at redshiftz will
be obtained by repeated ‘‘Monte Carlo’’ integration of E
~28!, as explained in detail below. It is worth noting that E

10The term ‘‘shear’’ is also commonly used for the optical tens
sab @see, e.g.,~9.2.28! of @6## and/or its magnitude,s. These quan-
tities characterize the ‘‘rate of shearing’’ of the beam, and should
clearly distinguished from the ‘‘net shear’’ defined here.
1-8
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~28! corresponds to the ‘‘primitive form’’@Eq. ~19!# of the
geodesic deviation equation, rather than the mathematic
equivalent ‘‘optical equations’’ form @see, e.g., Eqs
~9.2.32!–~9.2.33! of @6## used in many other analyses. F
our purposes, Eq.~28! has a significant advantage over t
optical equations in thatA m

n varies continuously when caus
tics occur, whereas quantities—such as the convergenc
the congruence—appearing in the optical equations bec
singular at caustics.

We begin our backwards evolution of Eq.~28!, with ini-
tial conditions A m

n(0)50 and dA m
n(0)/dl5dm

n , by
imagining that the beam of photons enters a ball of radiusR
with a randomly chosen impact parameter,b: i.e., we take
b5ApR with p chosen randomly from the interval@0,1#. As
described above, the mass distribution in this ball has b
prescribed, and we can calculate the Newtonian potentialF,
corresponding to this mass distribution by solving the or
nary Poisson equation@see Eq.~18! above#. The relevant
components of the Riemann curvature tensor can be ca
lated straightforwardly for the metric of Eq.~16!, yielding

Rabcdk
bkd52v2]a]cF1kb]b~kd]dF!hac

5v2@2]a]cF1Zb]b~Zd]dF!hac#. ~34!

Herehab denotes the ordinary Minkowski metric associat
with the coordinates (T,X,Y,Z) @see Eq.~16! above#, ]a
denotes the derivative operator ofhab , Za denotes a unit
vector in the ‘‘Z-direction’’ ~[ the direction of propagation
of the photon!, andv5dT/dl denotes the frequency of th
photon. Without loss of generality, we choose our affine
rametrization so that initiallyv51. Note that theL term in
Eq. ~16! does not contribute to the relevant components
the Riemann tensor: i.e., we havenot assumed in this equa
tion thatL50.

In integrating Eq.~28! through the ball, we neglect th
tiny bending angle of the photon trajectory, and we also
glect the tiny changes inA m

n occurring as the photon
traverses the ball. Thus, when the beam of photons e
from the ball, the new values ofA m

n anddA m
n(0)/dl are

related to the values they had when entering the ball as
lows:

~A m
n!15~A m

n!01v21DZ~dA m
n /dl!0 ~35!

~dA m
n /dl!15~dA m

n /dl!02vJm
b~A b

n!0 , ~36!

where we have used the fact thatdZ/dl5v, and where we
have defined

Jm
n[E dZ@2]m]nF1Zb]b~Zd]dF!dm

n#, ~37!

with the integral taken over the ‘‘straight line’’ photon pa
through the ball. Since (A b

n)050, the Jm
n term will not

contribute to Eq.~36! for the traversal through the first bal
but it will contribute for all subsequent balls.

For the cases considered in this paper,Jm
n can be calcu-

lated analytically. Specifically, if we align our axes so th
the photon propagates in theZ-direction and lies in theY
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50 plane, then for a ‘‘point mass’’ of massM placed at the
center of the ball~i.e., linearized Schwarzschild geometry!,
we have

~JP!X
X522M S 12

b2

R2D 1/2S 2

b2 1
1

R2D
~JP!Y

Y512M S 12
b2

R2D 1/2S 2

b2 1
1

R2D
~JP!X

Y50, ~38!

whereb is the impact parameter andR is the proper radius of
the ball (5R for the initial ball!. For a uniform density ball
of massM and radiusd concentric with the ball of radiusR,
we have, forb<d,

~JU!X
X5~JP!X

X14M S 12
b2

d2D 1/2S 1

b2 1
2

d2D
~JU!Y

Y5~JP!Y
Y24M S 12

b2

d2D 1/2S 1

b2 2
1

d2D
~JU!X

Y50, ~39!

whereas (JU)m
n5(JP)m

n when b.d. Similarly, for a trun-
cated isothermal ball~with density given byr}1/r 2) of mass
M and ‘‘cutoff radius’’ d, we have, forb<d,

~JI !X
X5~JP!X

X1
4M

b2 S 12
b2

d2D 1/2

~JI !Y
Y5~JP!Y

Y2
4M

b2 S 12
b2

d2D 1/2

1
4M

bd
cos21~b/d!

~JI !X
Y50, ~40!

and, again, the point mass expressions apply whenb.d.
Finally, for a uniform density cylinder of cylindrical radiusd
and length 2R, whose axis passes through the center of
ball of radiusR, when the photon trajectory does not pa
through the cylinder, we have

~JC!X
X52

2~11cos2 a!g

sin a F Z1

X0
21Z1

2 2
Z2

X0
21Z2

2G
~JC!Y

Y51
2~11cos2 a!g

sin a F Z1

x0
21Z1

2 2
Z2

X0
21Z2

2G
~JC!X

Y54gX0 cot aF 1

X0
21Z1

2 2
1

X0
21Z2

2G , ~41!

where we have neglected the tiny ‘‘end effects’’ resulti
from the finite length of the cylinder. In Eq.~41!, the axes
have been aligned so that the photon again propagates in
Z-direction, but now theX andY axes are chosen so that th
shortest line connecting the photon path to the axis of
cylinder points in theX-direction. The length of this shortes
line is X0 , anda denotes the angle between the path of
1-9
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photon and the axis of the cylinder. The quantitiesZ2 and
Z1 denote, respectively, theZ-values of the entry and exit o
the photon from the ball of radiusR, with Z50 being the
point of closest approach of the photon path to the axis of
cylinder. Finally,g[M /2R denotes the mass per unit leng
of the cylinder. When the photon trajectory passes thro
the cylinder, the additional term 16g(d2

2X0
2)1/2/(d2 sina) must be added to (JC)X

X , but the other
components of (JC)m

n are not changed.
The x andy axes of our parallelly propagated frame w

be rotated by an angleu with respect to theX andY axes of
the above formulas. Under a rotation,U, by angleu, compo-
nents ofJ transform as

J→UJU21 ~42!

so that, explicitly, the components ofJ in our parallelly
propagated frame are given by

Jx
x5cos2 uJX

X1sin2 uJY
Y22 sin u cosuJX

Y , ~43!

and so on.
We return, now, to following the evolution~into the past!

of our beam of photons. After the beam exits from the fi
ball, it is assumed to immediately enter a second ball. Ho
ever, on account of the Hubble expansion—or, rather,
Hubble contraction, since we are evolving backwards
time—the proper radius,R, of the second ball will now be
smaller thanR by the factora1 /a0 , wherea0 anda1 denote,
respectively, the values of the scale factor of the underly
Robertson-Walker metric at the times of entry into, and e
from, the first ball. Similarly, the frequency of the photo
will be blueshifted by this same factor. After updating t
values of R and v in this manner, we send the beam
photons into the second ball with a randomly chosen imp
parameter, and with a randomly chosen value of the orie
tion angle,u, with respect to the parallelly propagated fram
@see Eq.~43!#. ~In the cylindrical case, the orientation of th
axis of the cylinder also is suitably randomized.! When it
exits the second ball, the values ofA m

n anddA m
n /dl are

changed via Eqs.~35! and ~36!. The values ofR and v are
then also updated, and the beam of photons is subsequ
taken to enter a third ball. This procedure is repeated u
the desired redshift is reached. At each redshift the a
shear, and rotation of the beam can be computed in the m
ner explained below Eq.~29!.

Figure 1 shows the area of a beam of geodesics a
function of z for a typical ‘‘run,’’ in the case of a universe
with V51 andL50, and where the galaxies are treated
point masses. The corresponding areas for the underl
Robertson-Walker model and for a universe which is em
near the beam~i.e.,Rabcd50 in a neighborhood of the beam!
are also shown~see@17#!. In this particular run, it can be
seen that the beam of photons propagates very nearl
though it were in empty, flat spacetime, until it reaches
redshiftz.2, at which time it receives a strong ‘‘kick’’ due
to a close encounter with a~point mass! galaxy. A caustic
then occurs at a redshiftz.2.4. To build up good statistics
we typically performed 2000 such ‘‘runs’’ for each choice
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cosmological model~i.e., values ofV0 andL! and galactic
mass distribution. Our results will be presented in the follo
ing sections.

Finally, we explain in more detail how the effects due
clumping of matter into stars~or other sub-galactic struc
tures! are calculated. First, a continuous mass distribution
specified for the galaxy, and theJm

n appropriate to this con-
tinuous distribution was obtained@see Eqs.~38!–~41! above#.
A cylindrical radiusd is then chosen so that a typical cylin
drical tube cutting through the galaxy contains at least;10
‘‘stars.’’ For the cases we consider, such ad is automatically
much smaller than galactic scales, but much larger than
Einstein radius of the individual stars. In our ‘‘runs,’’ when
beam of photons passes through a galaxy, we replace theJm

n

calculated for the continuous mass distribution byJ8m
n

where

J8m
n5Jm

n24psdm
n1(

i
~Ji

P!m
n~bi ,u i !. ~44!

Heres is the projected surface density~mass per unit area!
of the galaxy at the photon trajectory,ms denotes the mass o
an individual star, the ‘‘impact parameters’’bi are chosen
randomly within a disk of radiusd, and the rotation anglesu i
are chosen randomly in@0,2p#. The sum ranges up toN
'm/ms , wherem5pd2s is the mass in a cylindrical tube
of radiusd about the photon path. The term24psdm

n sub-
tracts the contribution toJm

n from the continuously distrib-
uted mass within the cylindrical tube, whereas the last te
corresponds to adding back in the contribution of this m
in the form of~point mass! stars, where eachJi

P is given by
Eq. ~38! as modified by Eq.~43!. ~As we shall see in the nex
section, no essential change in the probability distribution
J8m

n would occur if we put the entire massm into a single
‘‘star’’ which is randomly distributed in the disk of radiusd.!
We believe that all statistical ‘‘microlensing’’ effects due
stars or other sub-galactic structures can be accurately t
into account by this procedure.

III. POINT MASSES AND SPHERICAL CLUSTERING

In this section we will analyze lensing effects in the lim
iting case where all of the matter in the universe is clump

FIG. 1. The area vs redshift of a beam of photons in a typi
Monte Carlo run, for a universe withV51 andL50 in which all
of the matter is in the form of point masses.
1-10
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into structures which are much smaller than their own E
stein radii, so that these objects may be treated as p
masses. By a combination of analytic and numerical ar
ments, we will establish—or, at least, present strong e
dence for—the following two key claims:~1! If the point
masses are randomly distributed throughout the unive
then the probability distributions for magnification, she
and rotation of images depend, in an essential way, only
the total mass density of the point masses.~This mass den-
sity, of course, is constrained to equal the mass density o
underlying Robertson-Walker model.! In other words, these
probability distributions are~virtually! independent of the
masses of the individual point masses; in particular, they
~virtually! the same for a universe randomly populated
stellar mass black holes~or stars! as for a universe randoml
populated by galactic mass black holes.~Some partial results
along this line are given on p. 329 of@11#.! ~2! If the point
masses are not randomly distributed but are clustered
scales!RH in a spherical but otherwise arbitrary manne
then the probability distributions for magnification, she
and rotation of images are very nearly the same as for
randomly distributed case.

Taken together, results~1! and ~2! provide a great
strengthening of the familiar claim that the ‘‘optical depth
for a strong gravitational lensing event produced by po
masses depends only on the total mass density of these
masses@18#. We show here that for a universe populated
point masses, the entire probability distributions for mag
fication, shear, and rotation at each redshift do not depen
an essential way on either the individual masses or cluste
properties of the point masses. Thus, the point mass p
ability distributions for magnification, shear, and rotation a
remarkably ‘‘universal’’ in character, depending only upo
the choice of underlying Robertson-Walker model. Our co
putations of this universal probability distribution for variou
choices ofV0 andL will be given in Sec. III C.

It should be emphasized that various lensing effects w
null geodesics which differ by afinite ~as opposed to infini-
tesimal! amountwill depend on the masses and cluster
properties of the individual point masses. In particular, if t
lensing of a given source produces multiple images, the
pected angular separation of these images will dep
strongly on the masses and/or clustering properties of
point masses. What we show here, however, is that fo
universe populated by point masses, all of the statist
properties of theindividual imagesof nearly point sources
are ‘‘universal’’—although the criteria for what constitutes
‘‘nearly point source’’ does depend upon the properties
the point masses@see Eq.~25! above#.

A. Random distributions of point masses

We turn now to a demonstration of claim~1!. As in the
previous section, consider the propagation of a beam of p
tons backwards in time. We focus attention on the lens
effects caused by matter near the photon trajectory at red
z. We may view this matter as lying in a single ‘‘lens plane
Suppose a point mass of massM is randomly placed in this
lens plane within a disk of radiusL centered on the photo
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trajectory. By Eqs.~35! and ~36!, the effect of this mass on
A m

n is determined byJm
n . SettingR→` in Eq. ~38!, and

performing the rotation indicated in Eq.~43!, we obtain

Jx
x52

4M cos 2u

b2

Jy
y5

4M cos 2u

b2

Jx
y52

4M sin 2u

b2 , ~45!

where (b,u) ~with bP@0,L#) denote the polar coordinates o
the point mass. It follows that the lensing effects of the po
mass on the beam of photons are uniquely determined
Eq. ~45! by a knowledge of the probability distribution
p(c), for the variable

c[
4M cos 2u

b2 , ~46!

corresponding to a random choice of point in the disk.
straightforward calculation yields

p~c!

5
4M

pL2c2 H 12A12~L4c2/16M2! if L4c2/16M2,1,

1 otherwise.

~47!

Note that this probability distribution has a divergent seco
moment~and the integral defining the first moment fails
converge absolutely!.

Now suppose we break up the point mass,M, into N point
masses, each of massm5M /N. Suppose we randomly dis
tribute theseN point masses within the same disk of radiusL
in the given lens plane. The correspondingJm

n produced by
this configuration of masses is given by a formula similar
Eq. ~45!, except thatM is replaced byM /N and a sum is
taken over the independent contributions of theN particles.
By inspection, we see that the probability distribution forJm

n

in this case is determined by the probability distributio
PN(C), for the variableC in exactly the same manner as th
probability distribution forJm

n in the case of a single mass
determined byp(c), where

C[
1

N (
i 51

N

c i , ~48!

and where eachc i is given by Eq.~46! with (b,u) taken to
be the polar coordinates of thei th particle. Thus, the lensing
effects of a single, randomly distributed point mass of m
M will differ from the lensing effects ofN randomly distrib-
uted point masses, each of massM /N, precisely to the exten
that the probability distribution functionsp andPN differ.

The determination of the relationship betweenp andPN is
a standard problem in probability theory: Ifp is the probabil-
ity distribution for the random variablec, thenPN(C) cor-
1-11
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DANIEL E. HOLZ AND ROBERT M. WALD PHYSICAL REVIEW D 58 063501
responds to the probability that the average value of a se
of N independent ‘‘trials’’ will be C. If p is such that its
second moment is finite, the answer to this problem in
limit of large N is known as the ‘‘law of large numbers,’
which states thatPN is well approximated by a Gaussia
centered at̂c& whose width is proportional to 1/AN. How-
ever, the law of large numbers isnotapplicable here because
as already noted above, the probability distribution of E
~47! fails to have a finite second moment. We note in pass
that the failure ofp to have a finite second moment implie
that if one wishes to work with moments ofp, it will be
necessary to impose an ‘‘opaque radius’’ cutoff to the pr
ability distribution at largec, as has been done in mo
analyses of the ‘‘Swiss cheese’’ models. No opaque rad
cutoff will be imposed here.

Although the law of large numbers does not hold here,
mathematical techniques used in the proof of the law of la
numbers can be used to analyze the relationship betwep
andPN ~see@11#!. We write

PN~C!5E dS C2
1

N (
i 51

N

c i D p~c1!¯p~cN!dc1¯dcN .

~49!

Taking the Fourier transform ofPN , we obtain

P̂N~K ![E e2 iKCPN~C!dC

5E e2 iKc1 /N
¯e2 iKcN /Np~c1!¯p~cN!dc1¯dcN

5@ p̂~K/N!#N, ~50!

wherep̂ is the Fourier transform ofp. A direct computation
of p̂ from Eq. ~47! yields

p̂~k!5124M uku/L21O~k2!. ~51!

In the limit asN→`, we have

P̂`~K !5 lim
N→`

S 12
4M uKu
NL2 D N

5exp~24M uKu/L2!. ~52!

Taking the inverse Fourier transform of Eq.~52!, we obtain

P`~C!5
4M

pL2

1

C21a2 , ~53!

wherea[4M /L2.
A number of key conclusions follow directly from Eq

~53!. First, the mere existence ofP` is somewhat surprising
since,a priori, there is no obvious reason to expect a w
defined, finite, and nonvanishing limit to the lensing effe
of randomly distributed point masses asN→`. More re-
markable still is the fact thatP` nearly coincides with the
original probability distributionp; they are both ‘‘1/x2’’ dis-
tributions with the same coefficient, but are ‘‘regularized’’
slightly different ways nearx50. Furthermore, the small dif
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ference betweenP`(x) andp(x) at x'0 is of no importance
because the contribution to lensing is negligible in that
gime. Thus, the probability distributions for magnificatio
shear, and rotation of images for the case where a sin
point mass is randomly placed in a lens plane will diff
negligibly from the limiting case where infinitely many in
finitesimal point masses~with the same total mass! are ran-
domly placed in that lens plane.

The fact thatP` is an excellent approximation top further
implies that for finiteN, PN also can differ only negligibly
from p. Indeed, if we approximatep by P` in Eq. ~50!, we
find PN'P` ; i.e., to the extent that we havep'P` we also
havep'PN for all N. Consequently, an arbitrary~finite! sub-
division of a point mass placed randomly in a given le
plane has essentially no effect on the statistical distributi
of lensing images, provided, of course, that all of the po
masses resulting from this subdivision are again rando
distributed. Since an arbitrary spectrum of masses can
produced by appropriate subdivisions starting from a sin
point mass, this result has the further consequence tha
random placement ofany collection of point masses of tota
massM in a given lens plane has the same effect on
statistical distributions of the lensing images as a single p
mass of massM. Finally, since the cumulative lensing effec
produced by all of the matter in the universe can be view
as resulting from a sequence of encounters of the beam
photons with matter lying in various different lens planes,
conclude thatall random distributions of point masse
throughout the universe~of any mass spectrum! must pro-
duce the same statistical distributions of the lensing imag
as stated in claim~1! above.

As a check of both the above arguments and our meth
for calculating lensing effects, we have tested claim~1! in
the following ways: First, we computed the statistical dist
butions of the lensing images for a universe withV51 and
L50 by the method of Sec. II, taking the ‘‘galaxies’’ to b
point masses of massM51012M ( . This should correspond
closely to the case of a universe filled with a random dis
bution of point masses, each having mass 1012M ( . Then we
repeated the Monte Carlo calculations, choosingM
51013M ( , and takingR to be correspondingly larger. Th
results we obtained for the two cases were statistically in
tinguishable from each other. We also repeated our calc
tions with ‘‘galaxies’’ taken to be uniform density balls o
radiusd5R ~so that the matter is distributed exactly as
the underlying Robertson-Walker model!, but taking ‘‘mi-
crolensing’’ by ‘‘stars’’ into account in the manner explaine
at the end of Sec. II. This calculation corresponds to a u
verse filled with a random distribution of point masses ea
of massM5M ( . Again, the results we obtained were st
tistically indistinguishable from the two previous cases.

B. Spherical clustering of point masses

The results of the previous subsection apply only to r
dom distributions of point masses. What happens if the po
masses are clustered? On the one hand, since clustering
duces corresponding ‘‘voids,’’ there should be an increa
likelihood that the photon beam will fail to come close to a
1-12
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NEW METHOD FOR DETERMINING CUMULATIVE . . . PHYSICAL REVIEW D 58 063501
point mass. Furthermore, if the photon beam passes
some point mass, there is an increased likelihood that
lensing effects of this point mass will be partially cancel
by the presence of other nearby point masses. These
effects suggest that clustering should decrease the ov
lensing efficiency of point masses. On the other hand, c
tering will result in the production of a large scale, cohere
‘‘cluster potential,’’ which can cause important lensing e
fects on the beam of photons even if this beam does not
close to any individual point mass. This effect suggests
clustering should increase the overall lensing efficiency
point masses.

In fact, our results for randomly distributed point mass
strongly suggest that the above effects should nearly can
at least for spherical clustering. Imagine starting with a r
dom distribution of point masses, each of massM. Suppose
we clusterN of these point masses into a spherical struct
of radius d. This clustering should have little effect upo
lensing unlessd is sufficiently small that the Einstein radii o
the individual masses overlap when projected into the pl
perpendicular to the path of the photon@19#. However, at this
stage,d will be of the order of the Einstein radius of th
cluster. If d is made still smaller, the cluster itself can b
treated as a ‘‘point mass,’’ and, by claim~1!, its lensing
effects will be equivalent to that of the original uncluster
distribution. Thus, except perhaps for a cluster whose siz
very nearly equal to its own Einstein radius, spherical cl
tering of point masses should have a negligible effect on
statistical distributions of the lensing images, in accorda
with claim ~2!.

We have tested the above arguments for claim~2! by
performing a number of runs for both uniform density a
isothermal galaxies of various radii, using the ‘‘microlen
ing’’ procedure described at the end of Sec. II. These ca
lations simulate the clustering effects of ‘‘point mass star
into galaxies. We found that the statistical distributions
the lensing images were indeed statistically indistinguisha
from the randomly distributed point mass case except w
the radius of the galaxy was close to its own Einstein rad
In that case, the clustering produced a slight—but stat
cally significant—diminution of the lensing effects as com
pared with a random distribution of point masses. Howev
even when we chose the parameters of the galaxy so a
maximize the differences, the effects of clustering were
significant, as will be illustrated in Fig. 10 below. Thus, to
excellent approximation, for a universe with matter in t
form of point masses, the statistical distributions for t
magnification, shear, and rotation of images are universa
character, independent of the mass distribution and~spheri-
cal! clustering properties of the point masses.

C. Results

We now present some of the results of our Monte Ca
calculations of these distributions for several cosmolog
models. As already indicated at the beginning of Sec. II
our calculations we used the valuesH0570 km/s Mpc and
R52 Mpc, with the mass,M, of each galaxy then deter
mined from the underlying Robertson-Walker model. Th
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for a universe withV51, we setM5531012M ( , whereas
for a universe withV050.1, we setM5531011M ( . We
then performed the calculations described in detail in Sec
using Eq. ~38! for Jm

n . In each case presented here, w
performed 2000 ‘‘runs’’ back to a redshift of 3, and we ca
culated the magnification, shear, and rotation of the beam
photons at various intermediate redshifts as well.

The main focus of our attention was on the distribution
magnifications, since that distribution is most relevant to
applications described in Secs. V and VI below. We plot o
magnification results in the following manner: At the give
redshift of interest, our data set contains 2000 individual v
ues of area—one for each ‘‘run.’’ We sort these runs in ord
of increasing value of area, with the area of beams wh
have passed through a caustic counting as negative~i.e., the
large negative areas come first!.11 We then normalize the
areas to the area of the underlying Robertson-Walker mo
so that an image corresponding to a beam withA51 has
exactly the same apparent luminosity as it would have ha
that model. In other words, images of objects carried
beams of photons withuAu,1 have been magnified with re
spect to Robertson-Walker model, while those withuAu.1
have been demagnified.

In our figures we plot the area of each run against
position in the sorted list. For convenience, we re-scale
x-axis so that it ranges up to 100 rather than 2000. Thus,
a given area valueA, the correspondingx-value yields the
percentage of beams with area less thanA. This ‘‘percent-
age’’ is taken relative to a random sampling of telesco
directions in the present sky, as opposed to a random s
pling of source positions at redshiftz. Note that if a source is
randomly placed on a sphere of radiusD centered on us
~with D chosen so that the light reaching us was emitted
redshift z!, the probability that it will be ‘‘hit’’ by a given
photon beam is proportional to the magnitude of the ar
uAu, that the beam has at redshiftz. A large beam will sample
a larger section of the sky, and therefore will represent m
sources~all of them demagnified! than a small beam. The
probability that a randomly placed source will have an ima
with area betweenA andA1DA is proportional to the cor-
responding value ofDx3uAu, rather than justDx. We will
discuss this further in Sec. VI below@see Eq.~55!#.

Note also that since lensing simply magnifies or dem
nifies images relative to the underlying Robertson-Wal
model—but does not affect the surface brightness of
images—the apparent luminosity of an image of a sourc
proportional to 1/A. Since, as just noted above, the probab
ity that a beam ‘‘hits’’ a given source is proportional toA,
the expected luminosity~i.e., photon flux! in each beam is
exactly the same as in the underlying Robertson-Wal
model. In particular, our analysis automatically builds in t

11In some cases, a handful of runs contained beams which
passed through two caustics@and thus had~usually very large! posi-
tive area#. When such double-caustic runs occurred, we sorted th
so that their areas appeared first, i.e., before any of the neg
areas arising from single caustic runs.
1-13
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DANIEL E. HOLZ AND ROBERT M. WALD PHYSICAL REVIEW D 58 063501
fact that the expected total luminosity agrees with that of
underlying Robertson-Walker model.

For beams of photons which have not undergone caus
the largest possible area is the ‘‘flat space’’~or ‘‘empty
beam’’ @17#! value,AFlat, corresponding to setting the cu
vature to zero in the geodesic deviation equation. This va
is marked in~most of! the figures. It should be noted tha
after a photon beam undergoes a caustic, its area typic
becomes very large~and negative!—significantly larger in
magnitude than the flat space value.~An indication of this
fact can already be seen in Fig. 1.! To avoid problems with
the scale of our figures, we did not attempt to plot any a
values less than2AFlat. This accounts for the ‘‘gap’’ at the
beginning of our plots.

We will refer to an image associated with a photon be
which has not undergone a caustic as aprimary image.12 If p
denotes the event representing our telescope at the pr
time, then any eventq which lies on the boundary of the pa
of p must be connected top by a null geodesic whose cor
responding photon beam has not undergone a caustic~see,
e.g., @6#!. Since the world line of any source must interse
the boundary of the past ofp, it follows that every source
must have at least one primary image~see also@11#!. In Sec.
IV B below we shall argue that for spherical distributions
matter it is very rare that a source would have more than
primary image, but for very dense cylindrical matter dist
butions, multiple primary images are common. Every p
mary image of a source must be at least as bright as it wo
be if it were placed in flat spacetime at the same affine
rameter distance@11#. On the other hand, secondary imag
~corresponding to photon beams which have undergone
or more caustics! can be arbitrarily faint. Of course, a se
ondary image of a source can also be bright and, in part
lar, can be brighter than a primary image of that source.

Each secondary image of a source must have at least
associated primary image of the same source, and~since the
total number of images must be odd@11#! must also have
other associated secondary images. If the angular separ
of these images is very small, it may not be possible

12This corresponds to the ‘‘type I’’ image of@11#.

FIG. 2. Area vs percent of photon beams atz50.5, for anV
51, L50 universe, with matter distributed in the form of poi
masses. The dashed line represents the flat spacetime~empty beam!
area, and the dotted line represents the Robertson-Walker are
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resolve the separate images. One of the shortcomings o
method is that we do not have a good way of determin
~even statistically! which primary and secondary images a
associated with each other, since this would require us
analyze photon trajectories which differ by finite~as opposed
to infinitesimal! separations. Thus, if the different images
the same source are not resolved—the case
microlensing—we are unable to predict the probability d
tribution in total luminosity.

Note added in proof.In the ‘‘strong lensing’’ regime—
i.e., when bright multiple images occur—it appears tha
single close encounter with a lens will dominate the lens
effects, at least for sources at redshiftz&3. In the case of
point masses and isothermal galaxies, we may then use
dard analytic expressions to obtain the magnification of
brightest secondary image associated with a primary ima
In this way the total luminosity can be predicted, as has n
been done in@27#.

Figures 2–5 show our results for a universe filled w
point masses corresponding to an underlying spatially
Robertson-Walker cosmology withV51 andL50. As with
all plots shown here, we have takenH0
570 km s21 Mpc21. We also tookR52 Mpc, although as
argued above, the results should be independent of
choice ofR. As can be seen from the graphs, the percent
of photon beams which have undergone caustics ranges
about 5% at redshiftz51/2 to over 35% at redshiftz53.
Note also that by redshiftz53 about 20% of the primary

FIG. 3. Area vs percent of photon beams atz51.0, for anV
51, L50 universe. Matter is distributed in the form of poin
masses.

FIG. 4. Area vs percent of photon beams atz52.0, for anV
51, L50 universe. Matter is distributed in the form of poin
masses.
1-14
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NEW METHOD FOR DETERMINING CUMULATIVE . . . PHYSICAL REVIEW D 58 063501
images are less than half as bright (A.2) as they would
have been in the underlying Robertson-Walker cosmolo
Taking account of the factor ofuAu mentioned above, and
assuming that each source has only one primary image~see
Sec. IV B below!, we find that the probability that the pri
mary image of a randomly placed source atz53 will be
demagnified relative to the Robertson-Walker model by
least a factor of 2 is 1/2. Since these photon trajectories
not pass near any of the point masses, it seems unlikely
such sources will have any~bright! secondary images. Thus
even if multiple images cannot be resolved, it appears tha
this cosmology, at redshiftz53, 50% of all sources should
be dimmer by at least a factor of 2 relative to the underlyi
Robertson-Walker model.

The results atz53 for a universe filled with point masse
corresponding to an open Robertson-Walker model w
V050.1 andL50 is plotted in Fig. 6. It can be seen that th
lensing effects here are dramatically weaker than in theV
51 model. In particular, in this cosmology less than 10%
the photon beams have undergone a caustic byz53, and the
maximum de-magnification relative to the Robertson-Walk
model is only 0.85~but over half the primary images suffe
nearly this de-magnification!.

Finally, the results atz53 for a universe filled with point
masses corresponding to a spatially flat Robertson-Wa
model with V050.1 andVL[L/3H0

250.9 are plotted in
Fig. 7. This distribution is intermediate between the cases
V51, L50 andV050.1, L50.

FIG. 5. Area vs percent of photon beams atz53.0, for anV
51, L50 universe. Matter is distributed in the form of poin
masses.

FIG. 6. Area vs percent of photon beams atz53.0, for anV0

50.1, L50 universe. Matter is distributed in the form of poin
masses.
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A sample of our results for shear is given in Fig. 8. He
we have plotted the magnification,m, relative to the empty
beam value, versus the axial ratio,e, of the beam at redshif
z52 for a universe filled with point masses for the caseV
51 andL50. This figure corresponds to Fig. 11.12 of@11#,
except that we also have included the points withm,1, aris-
ing from beams which have undergone caustics. The ag
ment between the figures appears to be excellent.

A sample of our results for rotation is given in Fig.
Here we plot the magnitude of rotation angle,uQu ~in radi-
ans!, versus photon beam number~ordered by area, as de
scribed above! at redshift z53 for a universe filled with
point masses for the caseV51 andL50. From the figure it
can be seen that the photon beams which have not under
caustics generally have a very small rotation, but tho
which have undergone caustics have undergone such a
rotation that their orientation is practically random~see@20#
for a general discussion of the behavior of beams near c
tics!. As noted above, no rotation would occur for lensi
produced by a single point mass.

Finally Fig. 10 shows how remarkably small the effects
clustering are. The rightmost curve shows the magnificat
versus photon beam number for point mass galaxies i

FIG. 7. Area vs percent of photon beams atz53.0, for anV0

50.1, VL50.9 universe. Matter is distributed in the form of poi
masses.

FIG. 8. Magnification vs axial ratio atz52, for an V51, L
50 universe filled with point masses. The solid line gives the
m5(11e)2/(4e), which would hold if the lensing was done by
single point mass, as described in@11#. This figure compares wel
with Fig. 11.12 of that reference.
1-15
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DANIEL E. HOLZ AND ROBERT M. WALD PHYSICAL REVIEW D 58 063501
universe withV51 andL50, at a redshift of 3; it is the
same curve as shown in Fig. 5 above. Also shown is
curve for ~point mass! stars clustered into uniform densit
galaxies of radius 200 kpc. This curve is statistically ind
tinguishable from the curve for point mass galaxies. The l
most curve is for~point mass! stars clustered into uniform
density galaxies of radius 20 kpc. This clustering distribut
was chosen~in a parameter search, varying the galactic
dius! so as tomaximizethe deviation from the random dis
tribution. As expected, the maximum deviation occurs
galaxies ~composed of point mass stars! whose radii are
close to their Einstein radii. It can be seen from the figu
that there is a slight~but statistically significant! diminution
of the lensing effectiveness due to the clustering.

D. Conjecture

We conclude this section with a conjecture, based u
the fact that spherical clustering of point masses appear
slightly reduce their lensing effectiveness, together with

FIG. 9. Magnitude of rotation angle vs percent of photon bea
at redshift z53, for an V51, L50 universe filled with point
masses. The demarcation between beams which have unde
caustics and those which have not occurs at 36%~see Fig. 5!. The
restriction ofuQu to the range 0 top/2 ~rather than 0 top! for beams
which have undergone a single caustic is due to our conventio
the definition ofQ in that case, as explained below Eq.~33!. The
first 3% of the photon beams have undergone two caustics.

FIG. 10. Area vs percent of photon beams atz53, for an V
51, L50 universe. Graphs are shown for point mass galaxiesr
50), and for uniform density spheres ofr 520 kpc and r
5200 kpc, each composed of~point mass! stars.
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expectation~borne out in all of our simulations! that point
masses are more effective in lensing than any bodies of fi
extent:

Conjecture.For any underlying Robertson-Walker co
mological model at any redshiftz, randomly distributed point
masses provide the most ‘‘effective’’ distribution of matt
for lensing in the following sense: LetArpm(x) denote the
area as a function of the percentage of photon beams f
universe filled with a random distribution of point mass
~see Figs. 2–7!. Let x1 denote thex-value such thatArpm

equals the Robertson-Walker area, i.e.,Arpm(x1)51. Then
for any other matter distribution, we haveA(x).Arpm(x) for
all x<x1 . In particular, the greatest number of caustics
achieved for the case of randomly distributed point mass

IV. OTHER CASES, CONSISTENCY CHECKS

A. Uniform density balls, isothermal balls,
and uniform density cylinders

In the previous section the lensing effects occurring in
universe filled with point masses were analyzed in detail
this subsection the corresponding lensing effects will
briefly discussed for other galactic mass distributions, s
cifically for isothermal balls, uniform density balls, and un
form density cylinders. The isothermal balls should be go
descriptions of the actual mass distribution in galaxies, a
so ~with appropriate choices of parameters! the results for
this case should provide a realistic description of the sta
tical lensing effects occurring in our universe—at least p
vided that the clustering of galaxies does not play an imp
tant role and that the effects of sub-galactic structure can
ignored.@As previously discussed near Eq.~26! above, sub-
galactic structure need not be taken into account if
sources are of sufficiently large angular size. If the sour
are of sufficiently small angular size that ‘‘microlensing’’ b
stars is of relevance, and if most of the matter is in the fo
of stars or other condensed objects, then the point mas
sults of the previous section should apply.# Although the
uniform density balls and cylinders presumably do not c
respond to realistic mass distributions,13 they provide useful
‘‘toy models’’ for investigating various effects.

As in the point mass case, for the calculations of t
subsection we used the valuesH0570 km s21 Mpc21 and
R52 Mpc, and we determined the mass,M, of each galaxy
from the underlying Robertson-Walker model. Indeed,
only important difference in our calculational procedur
from those of the point mass case was our use of Eqs.~39!,
~40!, or ~41! in place of Eq.~38!. In addition, in the cylin-
drical case, a further randomization over the orientation
the cylinder was performed at each step. A sampling of so
of our results is presented in Figs. 11–15.

13Recent findings of Zhanget al. @21# and others indicate tha
filamentary structures may play an important role in the evolut
of structure. Cylindrical mass distributions can be used to mim
filaments, and identify qualitative differences in the lensing dis
butions to be expected from such structures.
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NEW METHOD FOR DETERMINING CUMULATIVE . . . PHYSICAL REVIEW D 58 063501
In Fig. 11 we plot the area vs percent of photon beam
z53 for a universe withV51 andL50, populated by gal-
axies with a ‘‘truncated isothermal profile’’@M (r )}r # and a
cutoff radius of 200 kpc. Comparison with Fig. 5 immed
ately shows that the lensing effects are greatly reduced
compared with the point mass case. In particular, only ab
2% of the photon beams have undergone caustics by a
shift of 3, as compared with over 35% in the point mass ca
The lensing effectiveness is further reduced if the galax
are modeled as uniform density—rather than isotherma
balls of radius 200 kpc~see Fig. 12!.

Figure 13 shows the area vs percent of photon beam
z53 for the caseV050.1 andL50, with matter distributed
in isothermal balls, now of radius of 50 kpc. Again, a si
nificant reduction in the lensing effectiveness as compa
with the point mass case can be seen~see Fig. 6!.

Finally, Figs. 14 and 15 plot the area vs percent of pho
beams atz53 for the caseV51 and L50, with matter
distributed in the form of uniform density cylinders of leng
2R and cylindrical radii 52 kpc and 200 pc, respectively.
will be discussed further below, the results shown in Fig.
are qualitatively different from all of the other cases sho
here.

B. Consistency checks

The results presented thus far allow us to perform a nu
ber of consistency checks, which provide a good test of so

FIG. 11. Area vs percent of photon beams atz53.0, for anV
51, L50 universe. Matter is distributed in isothermal (M}r )
balls of radius 200 kpc.

FIG. 12. Area vs percent of photon beams atz53.0, for anV
51, L50 universe. Matter is distributed in uniform density balls
radius 200 kpc.
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of the underlying ideas of Sec. I as well as a good test of
validity and accuracy of our formulas and calculational p
cedures.

First, as noted in Sec. I E, the effects of Ricci curvatu
on lensing should depend only upon the density contra
present in the universe. Thus, in situations where the W
curvature can be neglected, galaxies of the same den
should produce identical statistical lensing effects, indep
dent of their ‘‘shapes.’’ This is borne out by a comparison
Figs. 12 and 14, corresponding, respectively, to spherical
cylindrical galaxies of the same density. No statistically s
nificant difference is discernible for the area distributions
these two cases.

A further important consistency check arises from the f
that the causal structure of the spacetime of Eq.~1!—whose
properties we are attempting to model with our Monte Ca
calculations—is nearly the same as that of the underly
Robertson-Walker model. Consequently, at any redshifz,
the area of the boundary of the past of an eventp in the
spacetime of Eq.~1! should be very nearly equal to the are
of the past light cone ofp at redshiftz in the underlying
Robertson-Walker model. Now, as previously mentioned
Sec. III C, for a null geodesic to lie on the boundary of t
past ofp, it is necessary that its corresponding photon be
not have undergone a caustic. Thus, in any of our Mo
Carlo results, if we add up the areas of all of the phot

FIG. 13. Area vs percent of photon beams, atz53.0, for an
V050.1, L50 universe. Matter is distributed in isothermal balls
radius 50 kpc.

FIG. 14. Area vs percent of photon beams atz53.0, for anV
51, L50 universe. Matter is distributed in uniform density cylin
ders of radius 52 kpc. This figure is almost identical to Fig. 1
which is for uniform density spheres of the same density as th
cylinders.
1-17
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DANIEL E. HOLZ AND ROBERT M. WALD PHYSICAL REVIEW D 58 063501
beams which have not undergone caustics~corresponding to
‘‘primary images’’ in the terminology introduced in Sec
III C !, the result should be at least as large as the area o
past light cone in the underlying Robertson-Walker mod
Since we have normalized our beam areas so thatA51 cor-
responds to the Robertson-Walker value, this means th
we doN Monte Carlo runs, then, within statistics, we alwa
must have

(
i

Ai>N, ~54!

where the sum ranges only over the beams which have
undergone caustics by the given redshift.14

We have checked Eq.~54! in all of our Monte Carlo simu-
lations~including many not shown here! and have found it to
be satisfied in all cases. Furthermore, in all of our simu
tions in which the matter distribution withinR is spherically
symmetric~i.e., in all but the cylindrical cases!, the left side
of Eq. ~54! was larger than the right side by only a tin
amount—typically, just a few percent. This remarkab
~near! equality of the left and right sides of Eq.~54! has two
important consequences. First, it provides strong evidenc
the self-consistency of our calculations, since it is hard
imagine how such~near! equality could hold for cases a
different as, say, Figs. 5 and 12, if our Monte Carlo calcu
tions were not properly modeling at least some aspects o
spacetime of Eq.~1!. Second, it shows that for spheric
matter distributions, almost all photons which leave t
boundary of the past ofp do so at~or very near to! a caustic.
Consequently, it also shows that in the spherical case,
few sources can have more than one primary image.

14There is an additional ‘‘area test’’ that should hold: If we add
all areas—with beams with an odd number of caustics countin
negative and beams with an even number of caustics~or no caus-
tics! counting as positive—we should~very nearly! obtain the
Robertson-Walker result. However, it was not possible to mean
fully apply this test to our Monte Carlo data, because the total a
in our data set was usually dominated by a single area value fro
run which had undergone a caustic~or a double-caustic!. In other
words, our ‘‘statistics’’ were never adequate to investigate this t

FIG. 15. Area vs percent of photon beams atz53.0, for anV
51, L50 universe. Matter is distributed in uniform density cylin
ders of radius 200 pc.
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For the case of a relatively ‘‘thick’’ cylinder~with negli-
gible Weyl curvature! as in Fig. 14, near equality also hold
in Eq. ~54!, as is evident from the fact that Fig. 14 is indi
tinguishable from Fig. 12. However, for a very thin cylind
as in Fig. 15, the left side of Eq.~54! exceeds the right side
by a factor of about 1.8. Thus, in this case many sour
must have multiple primary images, presumably result
from the passage of photons around different sides of
cylinder.

V. CORRELATIONS BETWEEN QUASAR LUMINOSITY
AND THE NUMBER OF ABSORPTION SYSTEMS

In a recent paper, Vanden Berket al. @1# have presented
evidence for a positive correlation between quasar lumin
ity and the number of intervening carbon IV absorpti
clouds. Using the results of previous quasar surveys, th
authors compiled a catalog of nearly 500 quasars, with o
2000 heavy metal absorption lines. Analysis of this cata
revealed an excess of C IV absorbers in luminous quas
The authors proposed that this effect might be caused by
brightening~i.e., magnification! of the quasar images due t
cumulative gravitational lensing by the mass distribution
sociated with the C IV absorbers.

Figures 1 and 4 of@1# present the main evidence in favo
of this positive correlation. In their Fig. 1, they divide th
quasars in their catalog into a ‘‘bright half’’ and a ‘‘dim
half,’’ and they plot the number of C IV absorbers for th
two groups in five different redshift bins. In all five bins, th
bright quasars had more C IV absorbers than the dim o
We have analyzed these results and we estimate that if
effect found in their Fig. 1 were due entirely to lensing, ea
C IV absorber would have to contribute an increase on
order of 1/2 V magnitude to the luminosity of the quas
Possible evidence for an even larger effect can be foun
Fig. 4 of @1#. That figure shows a three magnitude differen
between the absolute luminosity of the quasars with the la
est and fewest number of C IV absorbers. Taken at f
value, this suggests that each absorber would have to
tribute an increase of roughly 1 V magnitude to the luminos
ity of the quasar for the effect to be due to lensing.

A proper analysis of the results of@1# and their implica-
tions for lensing would, of course, require a careful cons
eration of numerous observational issues. We shall not
tempt to undertake such an analysis here.15 Nevertheless, we
shall pose the following questions: Should gravitational le
ing produce a systematic, positive correlation between q
sar luminosity and the number of intervening absorpt
clouds? If so, is this effect large enough to plausibly acco
for the results of@1#?

To analyze these questions, we make the extreme assu
tion that~most of! the mass of the universe is associated w
C IV absorption clouds. Clearly, this assumption shou
maximize the lensing effects associated with the C IV a
sorbers, and the results we obtain should thereby be vie

as

g-
a
a

t.

15The bias due to gravitational lensing on the luminosity functi
of quasars has been investigated by Pei@22#.
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as upper limits to the possible lensing effects of these clou
In our investigations, we considered underlying Roberts
Walker models withL50 and withV0 either 1 or 0.1. For
each Robertson-Walker model, we considered a variety
different possible mass distributions associated with the C
absorbers. These mass distributions ranged from ‘‘po
masses’’~appropriate if the C IV clouds are associated w
large black holes or with galaxies in which most of the m
ter has already condensed to form stars! to low density iso-
thermal balls~corresponding to galaxies or proto-galaxie!.
For each cosmological model and mass distribution
‘‘cloud radius’’ was defined so that in the Monte Carlo da
we generated, our average number of C IV absorbers in
relevant redshift range was equal~at least approximately! to
the average number of C IV absorbers in the data of@1#. We
then performed the Monte Carlo calculations described
detail in the previous sections above, but in addition, we n
kept track of the number of times the photon beam ‘‘pas
through a C IV cloud’’ ~i.e., had an impact parameter small
than the assigned ‘‘cloud radius’’!. At each redshift of inter-
est, we again ordered our 2000 ‘‘runs’’ by area, and th
binned these ordered runs in 100 groups of 20 runs each
each such group of 20, we then computed~from our magni-
fication data! the average magnitude of a ‘‘standard candl
source at the given redshift, as well as the average numb
‘‘passages through C IV clouds.’’ We then represented e
of our 100 groups as a point in a ‘‘scatter plot’’ of avera
magnitude versus average number of passages through
IV cloud.

Figure 16 shows the results we obtained for~standard
candle! quasars at a redshift of 2 for the case of a unive
with V050.1 andL50, and with matter in isothermal ball
of mass 531011M ( and radius 50 kpc. In this case, th
‘‘cloud radius’’ also was taken to be 50 kpc, so that ea
time a photon beam punctures a galaxy, we say that we h
registered an absorption line. It can be seen from the fig

FIG. 16. Magnitude vs number of absorption clouds, for
V050.1, L50 universe, with galaxies treated as isothermal ba
of mass 531011M ( and radius 50 kpc. The ‘‘magnitudes’’ are fo
~standard candle! quasars at redshift 2~with an arbitrarily chosen
absolute luminosity!. The ‘‘number of absorption clouds’’ is the
number of instances in which the photon beam passes throu
galaxy in the redshift range 1,z,2. The data are for 2000 runs
and have been binned in groups of 20. The best fit line yield
slope of 0.08 magnitude per absorber.
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that there is a clear positive correlation between luminos
and the number of ‘‘passages through clouds.’’ However,
effect is not very large, corresponding to only about 0.1 m
nitude per absorber.

The results we obtained in a variety of other cases w
quite similar. In all the cases we examined, a positive co
lation was found between quasar luminosity and the num
of ‘‘passages through clouds.’’ When we made the mass
tribution associated with the clouds more highly conce
trated than in Fig. 16, the lensing effect on luminosity b
came larger, but the correlation with the number of clou
generally became less strong~since the lensing effects wer
more dominated by a single close encounter!, and so the
overall results were not greatly changed. Thus, none of
cases we investigated produced lensing effects which d
ated significantly from the roughly 0.1 magnitude per a
sorber seen in Fig. 16. This value is undoubtedly an ove
timate since, as mentioned above, in our calculations
associated all of the mass in the universe with the absorp
clouds. Thus, although our results definitely confirm th
gravitational lensing should produce a positive correlat
between quasar luminosity and the number of absorber
appears unlikely that the effects of gravitational lensing
large enough to explain the results of@1#.

VI. LENSING ‘‘NOISE’’ AND BIAS IN MEASUREMENTS
OF q0 USING SUPERNOVA LUMINOSITIES

One of the key goals of observational cosmology is
determine the parameters of what we have referred to as
underlying Robertson-Walker model of our universe, p
ticularly the deceleration parameter,q05V0/22VL ~where
VL[L/3H0

2). Much progress has been made recently
this regard by using type Ia supernovas as standard can
@2#. The intrinsic dispersion of peak magnitudes of type
supernovas is of the order of 0.2 magnitude, and this num
has been steadily decreasing with improved understandin
the phenomenology of type Ia supernova light curves.
important issue is whether or not lensing could produc
significant further dispersion of~distant! supernova magni-
tudes. If so, lensing could be an important source of noise
estimates ofq0 . In addition, since the dispersion in lumino
ity produced by lensing is non-Gaussian and can be hig
asymmetric about the mean—with a high probability for
small decrease in luminosity and a small probability for
large increase—lensing also could produce a significant
in the results if there are selection effects or if the d
sample is small. Indeed, using a Swiss cheese model to
vestigate this issue, Kantowskiet al. @23# have claimed that
lensing can have a large effect, causing a bias as larg
33% in q0 measurements from supernovas atz;0.5 when
the true underlying Robertson-Walker model is one withV
51 andL50. However, using other methods, Frieman h
recently argued that the induced flux dispersion in type
supernova magnitudes due to lensing is less than about
magnitude for sources within a redshift of 0.5@24#. If so,
lensing would not, at present, be a significant source
noise, but might become important if the current intrins
spread in type Ia supernova magnitudes can be ha
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through a better understanding of the phenomenology of
light curves. Frieman’s estimates are consistent with thos
Wambsgansset al. @15#.

Our approach can be used to obtain the spread in im
magnification ~and, hence, amplification! of a standard
candle at any given redshift, for any given cosmological
rameters, and any choice of inhomogeneous distribution
matter. According to our conjecture in Sec. III D, random
distributed point masses should provide the most no
and/or bias, and so it is particularly instructive to exam
that case. Furthermore, as discussed in Secs. II and III,
case should provide a realistic description of lensing p
nomena in our universe if most of the matter in the unive
is clumped into stars and/or MACHOs of mass 1023 M ( or
greater.

Consider, first, the case of a universe withV51 andL
50 filled with randomly distributed point masses. A plot
area versus percentage of photon beams atz50.5 was pre-
viously given in Fig. 2. We wish to convert this figure into
probability distribution for the apparent luminosity of
‘‘standard candle’’ source randomly placed on a sphere
radius D centered on us, corresponding toz50.5. As we
argued in Sec. III C, each source should have exactly
primary image. It is straightforward to obtain the probabil
distribution for the apparent luminosity of this prima
image—and we shall do so below. However, as discusse
Sec. III C, we do not have a good way of determining wh
secondary images are associated with a given primary im
and so we cannot directly obtain the probability distributi
for the total apparent luminosity associated with a sour
See note added in proof in Sec. III C. This is not a ve
serious problem in the present case, since Fig. 2 shows
less than 5% of the photon beams~as measured in the
‘‘present sky’’! have undergone a caustic byz50.5, so that
less than 5% of the total expected luminosity of the sour
at z50.5 will be carried in secondary images. Undoubted
most of the luminosity carried by the secondary images w
be associated with sources whose primary images
strongly lensed. Thus, if the primary and secondary ima
of a source cannot be resolved~as would be the case fo
microlensing by stars!, the effect of including the secondar
images should be merely to further brighten a few of
sources with the brightest primary images. Thus, the pr
ability distribution we give below for the apparent lumino
ity of the primary images should be accurate for the to
luminosity, except for the brightest sources.

To convert Fig. 2 to a probability distribution for appare
luminosity for the primary image of a randomly place
source, we proceed as follows. Letpz(A)dA denote the
probability that a beam—which is randomly chosen with
spect to the ‘‘present sky’’—will have area betweenA and
A1dA at redshiftz. Up to normalization,p1/2(A) is just the
inverse of the slope of the curve plotted in Fig. 2. L
Pz(A)dA denote the probability that a source which is ra
domly placed on a sphere centered about us of radiusD,
corresponding to redshiftz, will be ‘‘hit’’ by a beam with
area betweenA andA1dA which has not undergone a cau
tic. Then, as previously mentioned in Sec. III C above,
have
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Pz~A!}Apz~A!. ~55!

Since the apparent luminosity,L, of the source is propor-
tional to 1/A, the probability distribution,Pz(L), for appar-
ent luminosity is given by

Pz~L!}L22Pz~1/L!}L23pz~1/L!, ~56!

where we have normalized both the beam area and intri
luminosity so that bothA andL would have unit value at
redshift z in the underlying Robertson-Walker model. Th
probability distribution,P1/2(L), is plotted in Fig. 17, using
the data from Fig. 2 to determinep1/2(A).

It should be noted that, since at anyz we havepz(0)
Þ0, it follows from Eq.~56! that asL→`, we have, at allz,

P~L!}1/L 3. ~57!

Consequently,P~L! is normalizable~as it must be! and has a
well defined first moment@since, as mentioned in Sec. IV B
the total expected apparent luminosity~including the second-
ary as well as primary images! must agree with that of the
underlying Robertson-Walker model#. However, its second

FIG. 17. The probability distribution,P~L!, for the apparent
luminosity,L, of a ‘‘standard candle’’ for anV51, L50 universe
with point mass galaxies, at a redshift of 1/2. The absolute lu
nosity of the standard candle has been normalized to yield an
parent luminosity of 1 in the underlying Robertson-Walker mod
The probability distribution shown is for primary images only; i
clusion of the flux from secondary images presumably wo
mainly increase the luminosity of the most luminous primary i
ages~which are off the scale of this plot!, and should not signifi-
cantly affect this figure.~Note that, according to Fig. 2, approx
mately 5% of the total luminosity is carried by secondary image!
The vertical dashed line represents the empty beam apparent
nosity, which is the minimum possible apparent luminosity for p
mary images. This empty beam apparent luminosity correspond
a Robertson-Walker model withV050.6 andL50. The vertical
dotted lines show the lower and upper 16% of this probability d
tribution, to give an indication of what one might roughly view a
‘‘one sigma’’ errors in this highly non-Gaussian distribution wi
infinite second moment. TheV values corresponding to these line
also are shown.
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NEW METHOD FOR DETERMINING CUMULATIVE . . . PHYSICAL REVIEW D 58 063501
moment is logarithmically divergent. As a result, the law
large numbers fails to apply toP~L!. Thus, if one makes
repeated measurements~by observing many supernov
events! and averages the apparent luminosities, one willnot
obtain a sharply peaked Gaussian distribution about the
erage value. If the strongly lensed events are removed f
the data sample, a Gaussian distribution would be obta
for the average value, but a bias will be introduced tow
smaller apparent luminosity.

To obtain a rough, quantitative measure of both
‘‘noise’’ and the potential bias in apparent luminosity me
surements resulting from lensing, we inserted dotted line
Fig. 17 to demarcate the upper and lower 16% of the pr
ability distribution. If the probability distribution were a
Gaussian, these lines would correspond to a ‘‘one sigm
error centered about the mean. Thus, the separation of t
dotted lines gives a rough indication of the lensing ‘‘noise
whereas the ‘‘off-centerness’’ of the lines~away from 1!
gives a rough indication of the potential bias that would o
cur if the strong lensing events were not included in the d
sample. We see that in the point mass case, if the str
lensing events are excluded, the potential exists for a sig
cant bias toward values of apparent luminosity nearly
small as the empty beam value. This result is consistent w
the results of Kantowskiet al. @23#, since the imposition of
an ‘‘opaque radius’’ effectively excises the strong lensi
events.

The corresponding plot atz51 for a universe withV
51 andL50 is shown in Fig. 18. As can be seen from th
figure, both the noise and potential bias due to gravitatio
lensing are considerably larger atz51 than atz51/2. Fig-
ures 17 and 18 appear to be in good qualitative agreem
with the results of@12,25#.

The noise and potential bias due to lensing are consi
ably smaller if microlensing is not taken into account,
would be justified if most of the matter is smoothly distri
uted, rather than clumped into stars. As an example o

FIG. 18. The probability distribution for apparent luminosity,L,
of a ‘‘standard candle’’ for anV51, L50 universe with point
mass galaxies, at a redshift of 1. The dashed and dotted lines
the same meaning as in Fig. 17. Again, only primary images
considered. In this case, about 12% of the total luminosity is car
by secondary images~see Fig. 3!, and so the corrections to the plo
which would result from inclusion of secondary images may
somewhat more significant than in Fig. 17.
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model with smoothly distributed matter, consider, again,
case of a universe withV51 andL50, but now with the
galaxies treated as isothermal balls of radius 200 kpc.
probability distributionP~L! for redshifts of 1/2 and 1 is
shown in Figs. 19 and 20. There are very few caustics e
at z51 in this case, and so the secondary images are o
importance. Inspection of Figs. 19 and 20 shows that
probability distribution is peaked much closer to 1 than
the point mass case, and the high luminosity ‘‘tail’’ of th
distribution is much smaller. Thus, there would appear to
no significant danger of ‘‘bias’’ in this case. In addition
there is considerably less ‘‘noise’’ than in the point ma
case. The noise estimate obtained from the dotted line
Fig. 19 is in good agreement with the estimate obtained
Frieman@24#.

Wambsgansset al. @15# have investigated a cosmologic
model withV050.4 andVL50.6 using a cold dark matte
N-body computer simulation~normalized to COBE data! to
determine the matter distribution. They studied lensing
this model and produced plots ofP~L! at z51/2 andz51. It
is instructive to compare their results with what would
obtained from our approach. To do so, we considered aV0
50.4, VL50.6 universe and distributed the matter in gala

ve
re
d

e

FIG. 19. The probability distribution for apparent luminosity,L,
of a ‘‘standard candle’’ for anV51, L50 universe with isother-
mal galaxies of radius 200 kpc, at a redshift of 1/2.

FIG. 20. The probability distribution for apparent luminosity,L,
of a ‘‘standard candle’’ for anV51, L50 universe with isother-
mal galaxies of radius 200 kpc, at a redshift of 1.
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ies chosen to be isothermal balls of radius 200 kpc.~This
choice of galactic mass distribution is merely our guess a
what should be reasonable for this cosmology; we did
attempt to match the results of the simulation used in@15#.!
In order to obtain good statistics for the comparison, we
6000 ~rather than our usual 2000! runs in this case. Ou
results forP~L! at z51/2 andz51 are shown in Figs. 21
and 22 respectively. Comparison with Fig. 1 of@15# shows
very good agreement—apart from an overall normalizat
~which appears to have been chosen arbitrarily in@15#!. In-
deed, this agreement seems remarkably good in view of
fact that we did not attempt to adjust our galactic mass
tribution to theirs, and, in our calculations, the clustering
galaxies isnot taken into account. This latter fact lends su
port to the argument presented in Sec. I E that, in almos
models, clustering of galaxies should have a negligible ef
on the statistical distributions for magnification, shear, a
rotation.

Finally, we note that knowledge ofP~L! over a range of
redshifts contains a great deal of information about both
nature of the mass distribution in the universe and the
rameters of the underlying Robertson-Walker cosmology
particular, the shape ofP~L! can be used to determine th
fraction of matter in the form of condensed objects. We e
phasize that, to do so, it should not be necessary to go to
high luminosity tail of the distribution, as has been cons
ered previously@12,26#, since there are considerable diffe
ences between, e.g., Figs. 18 and 20 at low apparent l
nosities as well.

With regard to determining the parameters of the und
lying Robertson-Walker cosmology, as indicated above,
to photon conservation the expected total luminosity

FIG. 21. The probability distribution for apparent luminosity,L,
of a ‘‘standard candle’’ for anV050.4, VL50.6 universe with
isothermal galaxies of radius 200 kpc, at a redshift of 1/2.
B.
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including both primary and secondary images—of
sources is independent of gravitational lensing effects. Th
if no other sources of noise or bias are present, the appa
luminosity of a standard candle in the underlying Roberts
Walker model always can be obtained, in principle, by av
aging the apparent luminosities of the observed sources.
stress that, since the probability distribution,P~L!, can be
quite asymmetric about its mean, it is crucial that one av
ages apparent luminosities rather than some function of th
~like apparent magnitudes!. Furthermore, in the point mas
case—relevant if microlensing by stars is important—it w
be necessary to make effort to include the very bright ima
in the average in order not to bias the results toward sma
apparent luminosity.

Note added in proof.An analysis of the effects of lensin
on the determination of cosmological parameters from rec
type Ia supernova data is given in@27#.
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FIG. 22. The probability distribution for apparent luminosity,L,
of a ‘‘standard candle’’ for anV050.4, VL50.6 universe, with
isothermal galaxies of radius 200 kpc, at a redshift of 1.
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