PHYSICAL REVIEW D, VOLUME 58, 063501

New method for determining cumulative gravitational lensing effects in inhomogeneous universes

Daniel E. Holz and Robert M. Wald
Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S. Ellis Avenue, Chicago, lllinois 60637-1433
(Received 5 August 1997; published 3 August 1998

We present a new approach to calculating the statistical distributions for magnification, shear, and rotation
of images of cosmological sources due to gravitational lensing. In this approach one specifies an underlying
Robertson-Walker cosmological model together with relevant information on the clumping of matter on scales
much smaller than the Hubble radius. The geodesic deviation equation is then integrated backwards in time
until the desired redshift is reached, using a Monte Carlo procedure wherein each photon beam in effect
“creates its own universe” as it propagates. The approach is somewhat similar to that used in “Swiss cheese”
models, but the “cheese” has been completely eliminated, the matter distribution in the “voids” need not be
spherically symmetric, the total mass in each void need equal the corresponding Robertson-Walker mass only
on average, and we do not impose an “opaque radius” cutoff. The case where the matter in the universe
consists of point masses is studied in detail, and it is shown that the statistical distributions of the lensing
images are essentially independent of both the mass spectrum and the clustering properties of the point masses,
provided that the clustering is spherical. Detailed results for the distribution of the magnification of images are
presented for the point mass case, as well as a number of other matter distributions. We apply ouiresults
argue that the positive correlation recently found between quasar luminosity and the number of absorption line
systems is not likely to be due to lensing, afiid to determine the amount of “noise” and possible bias
produced by lensing in measurementsggfusing distant supernovasS0556-282(98)03516-4

PACS numbe(s): 98.80.Hw, 04.20.Cv, 98.62.Sb

I. INTRODUCTION concerning the detailed clumping and clustering of matter in
the universe. Both the Robertson-Walker model and the
In recent years there has been a great deal of interest lumping or clustering of matter may be specified arbitrarily,
studying the effects on cosmologically distant sources proprovided that the clustering of matter occurs only on scales
duced by gravitational lensing due to intervening matter. Inmuch smaller than the Hubble radius and that the average
many cases of interest, the lensing effects can be assumeddensity of the matter distribution corresponds to that of the
be produced by a single galaxy or cluster of galaxies, andinderlying Robertson-Walker model. Our approach then en-
one can use the detailed structure of the images produced laples one to accurately obtain statistical distributions for the
lensing to extract a great deal of information about the maskiminosity, shear, and rotation of images of ‘“standard
distribution of the galaxy or cluster. However, in other cir- candle” (nearly point sources at any cosmological redshift.
cumstances of interest one may be interested in the cumul&®/hen multiple images occur, however, even statistical infor-
tive lensing effects produced by many different obje@ts  mation about the number of images and the relationships
voids), and one may be primarily interested in statistical dis-between the images cannot be easily extracted using our ap-
tributions of the image brightenings and/or distortions, ratheproach, since that would require us to keep track of the re-
than the detailed modeling of any individual lens system. lationship between finitelyas opposed to infinitesimally
Two examples of the latter circumstances are the follow-separated null geodesics. Nevertheless, statistical informa-
ing: (1) Vanden Berlket al.[1] have presented evidence for a tion about the luminosity, shear, and rotation of the indi-
positive correlation between quasar luminosity and the numvidual images occurring in multiple images is included in our
ber of intervening carbon IV absorption clouds. Could thisdistributions.
correlation be the result of the cumulative gravitational lens- The rest of this section will be devoted to an overview of
ing effects produced by the mass distributions associatedur approach for determining statistical lensing effects in in-
with these clouds?2) Efforts are currently underway to use homogeneous universes. Section | A introduces our cosmo-
supernovas occurring at cosmological distances as standal@bical model, presenting and justifying the metric which
candles for tests df [2]. How much “noise” in the appar- provides the framework for our results. Section | B discusses
ent luminosity distribution of the supernovas would be ex-lensing effects on the propagation of photon beams within
pected from gravitational lensing effects? Could any usefuthe cosmology, while Sec. | C discusses the local nature of
information about the distribution of matter in the universethese effects. Section I D gives a general overview of our
be extractable from this “noise”? method, and Sec. | E discusses the relevant scales of the
The main purpose of this paper is to present a new apmodel. In Sec. Il we present our procedure for calculating
proach for determining cumulative gravitational lensing ef-statistical lensing effects in more explicit detail. In Sec. 1lI
fects on cosmological scales due to inhomogeneities in theve analyze the case where all of the matter in the universe
matter distribution of the universe. As explained further be-can be treated as being comprised of point majssssfying
low, in this approach one specifies an underlying RobertsonEg. (25)]. Other distributions of mass are considered in Sec.
Walker cosmological model together with one’s assumptiondV A, and then in Sec. IV B we perform some internal con-
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sistency checks on our results. Applications of our work to Tap=pUsUp, (6)
the analysis of lensing effects by quasar absorption systems
are given in Sec. V, and applications to the effects of lensing

on supernova luminosity are given in Sec. VI. whereu? is the unit[in the metric of Eq(1)] timelike vector
field orthogonal to the surfaces of constanEquationg3)—
A. Cosmological model (6) are the only assumptions we shall need to obtain Egs.

. . (9)—(11) below! However, in Sec. | C we shall also assume
To _explam our Qpproqch, we first n.e.ed to state our COSga; there js daco-moving scaleR<Ry such that no strong
mological assumptions with more precision. We assume thgl, e|ations in the density of matter occur on scales greater

the spacetime metric of the universe is globally well approXi-pan .

mated (on all scales by a “Newtonianly perturbed We now substitute the metric form of E¢l) and the
Robertson-Walker metric” of the form matter stress-energy of E(f) into Einstein’s equation, pos-

d2= —(1+2H)d 72+ (1—2d)a> sibly with a nonvanishing cosmological constark, We
( Pdr+( $a(7) make the approximations of Eg&)—(6), and also drop all
dr? o o 5 terms(like A¢ andp¢) which are small compared with the
X| Tz Tride +sirfode?) |, (D) curvature of the underlying Robertson-Walker metric. The

nonvanishing components of Einstein’s equation then ¥ield
wherek=0,=1. We shall refer to the metric obtained by
setting=0 in Eq. (1) as theunderlying Robertson-Walker
model The spatial metric of this underlying Robertson- 3a/a=A—4mp+a *h?"D,Dy¢ )
Walker model isa’h,;,, where

hap drdrp+r2(d6,d6,+sirfédede,) (2) 3(ala)’=A+8mp—2a *h3*D,D,¢p—3k/a%, (8)

~1-kr?

is either the metric of a unit 3-spher&=1), a unit 3-
hyperboloid k=—1), or flat 3-spacek=0).

Without loss of generality, we may assume that the spati
average of¢ vanishes, since a spatially constant part¢of
could be absorbed into the definitions ofanda. We also
assume that throughout spacetime—or at least out to distance
scales of orderR,, where Ry=H '=a/a denotes the 3a/la=A—4mp 9
Hubble radius of the underlying Robertson-Walker
model—we have

where the overdots denote derivatives with respeet fthe
patial average of these equations yields the usual form of
he matter dominated Einstein equations for the underlying
Robertson-Walker metric, namely

A a)2— . 2
= —+ —
We further assume that time derivatives ¢f are much
smaller than spatial derivatives, i.e., 'E. Linder (private communicationhas claimed that the approxi-
> 2 ab mation €?/xk<1 of Refs.[3], [4], and[5] is also needed for the
|aglar|*<a”*h**D,¢Dy ¢, (4) validity of our equations below. We do not agree with this claim.

L . : . . - 2In addition to the t ti iven here—which dt
with similar relations holding for the higher time der|vat|ves.é] f acdrion fo e two equations given nere—which cofrespond 'o

H D. d h ial derivati .~ the time-time and diagonal space-space components of Einstein’s
ere D, denotes the spatial derivative operator associate quation—there are also contributions to the time-space compo-

with h,p,, and ha? denotes the inverse tf;, (soa ?h®is  Lents of Einstein's equation of the forpw , (Wherev, denotes the
the inverse spa.tla'l metric of the underlylng Ro.berjtson'velocity of the matter relative to the Hubble flmv(é/a)Daqs, and
Walker model. It is important to note that spatial derivatives . o time-space derivatives @f. These terms need not every-
of ¢ may locally be very large compared with scales set byyhere be small compared with the curvature of the underlying
the underlying Robertson-Walker model. However, we asggpertson-walker metric. If only these terms were considered, the
sume that products of the first spatial derivativesgoire  time-space components of Einstein's equation would yield addi-

small compared with second derivatives: i.e., tional equations forp which would be inconsistent with E¢11)
ab 2 _racbd below. This difficulty is resolved by allowing for the presence of
(h* DDy ) “<h**h*" DD, D Dyéb. ) nonvanishing time-space components of the megig, (with u

i =1,2,3), satisfyindg,,|<|¢|. The time-space components of Ein-
Finally, we assume that the matter stress-energy tefiggr, stein's equation then become, in essence, equations which deter-
(not including the cosmological constant tekmis every- g 9o, (see Sec. 4.4a d#] for further details in the ordinary
where such that, in the rest frame of the underlyingnewtonian case However, sinca,, makes a negligible correction
Robertson-Walker model, the energy density of matteko the effects calculated in this paper, we shall ignore its presence
greatly dominates the other componentsTgf. In this case  below and, correspondingly, will not consider the time-space com-
Tap IS approximately of the “matter dominated” form ponents of Einstein’s equation.
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where? denotes the spatial average mf Subtracting Egs. 1a )
(9) and (10) from Egs.(7) and (8), we find the remaining T=7+ EER : (14
content of Einstein’s equation is thétsatisfies the Poisson
equatiori In these new coordinates the metric of Et). takes the form
a ?h®D,Dy¢=47dp, (11) d?=—(1+24—R%4/a)dT?
where +{1-2¢+R?[(ala)?>+k/a?]}dR?
_ +(1-2¢)R?d0?, (15)
Sp=p—p. (12

where we have dropped all terms of ord@t and higher in
We emphasize that it is completely consistent with our asdistance from the origin. Transforming to an isotropic radial
sumptions to have, locallyjp> p. It is essential that this be coordinate, then further transforming to the corresponding

allowed if Eq.(1), together with Eqs(3)—(5), is intended as Cartesian coordinates,Y,Z, and, finally, substituting from

an accurate description of our universe, since we commonlinstein’s equationgEgs. (9) and (10)] for the underlying
find 8p~10°% in our vicinity obertson-Walker model, we obtain

Thus, ir_1 our model the matte_r is assumed to _have an en- d?= —(1+2® — ARY3)dT?
ergy density much greater than its stresses, and is assumed to
move non-relativistically with respect to the Hubble flow +(1-20— AR?6)[dX?+dY?+dZ?], (16)

defined by the underlying Robertson-Walker model. How-
ever, unlike a Robertson-Walker model, this matter may b&vhere
distributed in a very inhomogeneous manner; in particular, as _
already noted, the fluctuations in the mass density may be d=¢p+27R%p/3, 17
very large compared with the spatial average of the mass
density. Consequently, the local curvature of spacetime magnd where, to the approximation in which we are working
differ drastically from that of a Robertson-Walker model. (i-€., dropping terms of ordeR® and highey, we haveR?
Nevertheless, in our cosmological model the Hubble flow of=X*+Y?+Z2. Thus,® satisfies the ordinary Poisson equa-
the matter and the causal structure of spacetime correspoi@n
very closely to the underlying matter dominated Robertson- _ _
Walker model whose mass density is equal to the average VZO=V2¢+4mp=4m(dp+p)=4mp. (18
density of matter in the universe. ) )

It is useful to examine the form taken by the metric of Eq. WhenA=0, Eq.(16) is precisely the usual form of Newto-
(1) in a locally Minkowskian frame associated with an ob- Nianly perturbed Minkowski spacetinisee, e.g., Sec. 4.4a
server moving with the Hubble flow, which, for convenience, ©f [6]). Thus, in the spacetime of E(l), whenA =0, New-

we take to be located at=0. To do so we define a new fonian gravity holds to a very good approximation in the
radial coordinateR, by vicinity of any observer following the Hubble flow, where

“in the vicinity” here means on scales much smaller than

R=ar, (13)  the Hubble radius. Even whehi#0, if | 5p|>p in the neigh-
borhood of the observer, realistic values &fhave AR?
<@ out to distances much smaller than the Hubble radius.
Thus, Newtonian gravity holds to an excellent approximation
in the vicinity of such observers as well.
N _ _ . B . In summary, we may characterize our cosmological
Nonlinear terms ing, such asa™*h**D,¢D,¢=D.¢D%h, are  model of Eq.(1), together with Eqs(3)—(5), as one which
neglected in Eq(11) because they are small compared with the corresponds closely to a Robertson-Walker model as far as
term linear in¢ [see Eq/(S)]. On the other hand, since the spatial the Hypple flow of the matter and the causal structure of the
average ofD,D"¢ vanishes, the neglect of the spatial average ofg,cetime are concerned, but in which the local distribution
nonlinear terms likeD,$D*¢ in Egs. (9) and (10) is justified as ¢ 1 iter may be highly inhomogeneous. In addition, as we
follows. We have have just noted, on scales small compared with those set by

jDaqﬁDa(ﬁdV: ,f ¢DaDa¢dV=—4wf $pdV the underlying Robertson-Walker model, Newtonian gravity
v v v holds to a very good approximation. Apart from negligibly

and a new time coordinat&, by

small regions of spacetime which contain black holes or
:—4Wf d(p—p)dV. other strong field objects, we believe that our universe is
v accurately described by this model. In any case, our model is
The integral of¢p is much less than the integral pfas¢<1 and 3 relatively precise, mathematically consistent cosmological
p is non-negative. The same argument holds fordlpeterm. Thus, model which describes the spacetime structure and distribu-
under our assumptions, the spatial averagdDgiD®¢ is much  tion of matter on all scales, and is not in obvious conflict
less tharp, which justifies dropping the former in Eq$) and(10). with any observed properties of our universe.
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B. Propagation of photon beams Robertson-Walker metric, at each redshifte area of the
boundary of the past of an event in the spacetime of([Ex.

perspective of photons={null geodesicspropagating in it, must be very n(_aarly equa'l to the area qf the past light cone of
and compare this to what photons would encounter in the c_orresporydlng event |n'the L.md'erlymg Robertson-Walker
Robertson-Walker model. All gravitational focusing and Metric. We will return to this point in Sec. IV B.

shearing effects on an infinitesimal beam of light rays in the " Order to calculate magnification and shear effects on a
vicinity of a null geodesicy are described by the geodesic (nearly point source due to gravitational lensing, we need to

Let us now consider this cosmological model from the

deviation equatiorisee, e.g.[6]) integrate the geodesic deviation equatié. (19)] along a
null geodesic connecting the source to the observer. To do
d?»? abid this, we need to know the curvature along the geodesic. The
anZ = " Rocd KK, (19 curvature is determined directly by a knowledge of the un-

derlying Robertson-Walker model together with We will
assume that, in the underlying Robertson-Walker model, the

wherek? is the tangent toy corresponding to affine param- *; .
eter \, and %? is the deviation vector to an infinitesimally distance scales set by the spatial curvature Aratle at least

L ; large as the Hubble radiug,;. The spacetime curvature
nearby null geodesic in the beam. The Riemann curvatur@s W
tensor appearing in Eq19) can be decomposed into its of the Robertson-Walker model is then of ordeR1?. Con-

- : : tributions of ¢ to the spacetime curvature which are smaller
Ricci and Weyl pieces in the usual wégee, e.9.[6) than 1R, will therefore be neglected. From E(L1), to-
1 gether with the assumption thdtis bounded and has van-
- + — _Z ) ishing spatial average, it follows thas is uniquely deter-
Rabed™ Cabeat (GatcRugb ™ GtcRara) 3 RarcDart mined by specifying the matter distributidip. However, Eq.
(20) (11) is a nonlocal equation, and so in principle the locally
o ] encountered curvature could depend upon the distribution of
The Ricci curvature directly produces a rate of change ofnatter in arbitrarily distant parts of the univefsbleverthe-
convergence of the beam of geodesics, while the Weyl culfess, we shall now argue that, under our cosmological as-

vature directly produces a rate of change of shearing. ~ sumptions, only the distribution of matter withRy, is rel-
In a Robertson-Walker model the Weyl tensor vanishegygnt.

and, by Einstein’s equation, the Ricci tensor is of the form
Rap=8m(Tap—1/2 Tgap), With T4, given by Eq.(6). The
geodesic deviation equation then takes the form C. Local nature of the influence of matter on photon beams

5 a Let S be a sphere of proper radial distariRg centered
d_”:_47m2 a 1) about the pointx at which we wish to evaluatep. Let
d\? P Gp(x,x") denote the Dirichlet Green’s function for the equa-
tion a~2h®"D,DyG(x,x') = —4mé(x,x") for the region en-
where w is the frequency of the photon as measured in theclosed byS (A simple, explicit formula foiGp, in the case of
Robertson-Walker rest frame. This corresponds to a steadiat geometry can be found, e.g., in Sec. 2.§4@f) Then, by
increase in the convergence of the beam of geodesics, withreen’s identity, we have
no shear. Contrast this behavior with the propagation of pho-
tons in the cosmological model of E(L) in the case where — / , /
the matter is highly clumped on various scales, but with no ¢ vaD(X'X Jop(x)dV
(or negligible matter distributed between the clumps. In this
case, the Ricci tensor vanishes along the geodesic, except for _ i f ¢(x’)?’aD;GD(x,x’)dS’, (22)
rare instances when the photon propagates through a clump A7 Js
of matter. On these rare occasions, the Ricci curvature briefly
becomes extremely large compared with that of the underly-
ing Robertson-Walker model. The Weyl curvature also willwhere the volume integral extends only over the region en-
be small except in similarly rare instances of propagatiorclosed byS. Under our above assumptions, the contribution
through(or very neay a sufficiently dense clump of matter. of ¢ to the curvature is given directly in terms of the second
Thus, when the matter distribution is highly clumped, at al-spatial derivatives o, since the contributions from the time
most all times the propagation of a beam of photons in thalerivatives of¢, products of first derivatives ap, etc., have
spacetime of Eq(1) would be indistinguishable from propa-
gation in flat spacetime. Occasionally, however, the beam
may receive a strong “kick” of Weyl and/or Ricci curvature.  4gjnce|4|<1 and the velocity of matter relative to the Hubble
Thus, the local history of a photon propagating in the spacefioy is small, we neglect the difference between redshifts in the
time of Eq.(1) could hardly be more different from the local metric of Eq.(1) and in the underlying Robertson-Walker model.

history of a photon propagating in a Robertson-Walker SNote that since, for an open universp, does not fall off to zero
model. Nevertheless, there are some global correspondences.infinity, we cannot assumae, priori, that ¢ is given in terms of

In particular, since the causal structure of the spacetime ofp by the usual Poisson integral expression that would hold for a
Eq. (1) corresponds closely to that of the underlying localized mass distribution.
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been assumed to be negligible compared with the linear corpropagating over cosmological distances. However, a ran-
tributions from the second spatial derivativesgofDifferen-  domly fluctuating Weyl curvature of this magnitude should
tiating EqQ.(22), we obtain have a completely negligible effect upon the she@aerely
adding a tiny bit of “noise” to the Weyl curvature resulting
, , , from nearby mattgr and an even smaller effect upon the
DaDpé(x) == fVDanGD(X’X )op(x")dV convergence. Thus, no significant error should be made by
considering only the curvature resulting from the presence of
1 R A . matter withinR of the photon path, as we desired to show.
 4n JSQ"(X )r"*DaD4aDyGp(x,x")dS Since we have assumed thatRy and that the distance
scales set by the spatial curvature andfoare at least as
(23 large asRy, the Dirichlet Green’s function withirR of x
will be well approximated by t/ wherer denotes the proper
distance betweer andx’. Thus, Eq.(22)—with the surface
term omitted and the volume integral restricted to a ball of
radius R around x—reduces to the usual Poisson integral
formula, and the curvature can be obtained from formulas
arising from ordinary Newtonian gravitigee Sec. Il beloy

However, the surface term in E@3) is of order|¢|/Ry2,
and thus, in view of Eq(3), it can be neglected. Therefore
the curvature ak is determined by the matter distribution
only within a Hubble radius ok, as we desired to show. It
should be emphasized that this conclusiomig a conse-

quence of any causality arguments .bUt’ rather, .fOHOWS di7t is somewhat more convenient to work with the poterdial
rectly from our apovassumptlonhat¢ is small'at distances of Eq. (17) rather thand. It follows that® is given by the
of orderRy, as is necessary for the underlying Robertson-

_ o ) usual Poisson integral formula pf(rather thandp) over the
Walker metric to be a good description of spacetime struc-region enclosed bR.
ture on cosmological scales.

We now make the additional assumption that there is a
(co-moving scaleR< Ry, such that no strong correlations in D. Our method
the distribution of matter occur on scales greater tfan The basic idea of our procedure in its most general con-
Under these circumstances it seems clear that the curvatuggyt can now be explained. We choose an underlying
at a given point can be accurately calculated—at least for thgopertson-Walker model antto-moving scale, R, with
purposes of determining geodesic deviation—Dby taking intop <R , in the present universeWe then specify a probabil-
account only the matter distribution within a distarReof iy gistribution for how the matter is distributed withiR.
that point. We have not attempted to give a precise formulathis probability distribution may vary with cosmological
tion or proof of this claim, but a justification for it can be {ine it is constrained only by the requirement that the aver-
given as follows. First we note that, by Einstein’s equation,age amount of mass contained witihagree with that oc-
the Ricci curvature is determined by the matter distributioncurring in the underlying Robertson-Walker model. We then
in a completely local manner. Therefore, matter can have Perform a “Monte Carlo” propagation of a beam of photons
nonlocal influence on a photon beam only via Weyl curva-packward in time, starting from the present, in the following
ture. To calculate the Weyl curvature associated with a dispanner: We prescribe a matter distributi@hosen from our
tribution of matter we need to evaluate the trace-free part ofgpapility distribution in a ball of radiusR. We calculate
the second derivatives a#, as given by Eq(23) with the  {he Newtonian potential for this matter distribution and the
surface term omitted. We break up the volumé Eq.(23)  corresponding curvature. Then we choose a random impact
into a union of regions of sizR, excludlr_1g the ball of radius parameter for the entry of a photon into this ball, and we
R centered ak. In the case of flat spatial geometry, each ofjnagrate Eq(19) through the ball[In this step, we take the
these regions will make a contribution of ordefD? to the photon trajectory to be a “straight line”: i.e., we do not
Weyl tensor ak, whereD is the distance of the region from aiempt to include thecompletely negligible corrections
x, andm is of the order of the expected magsR 3, con-  due to the tiny bending anglewhen the photon exits from
tained in that region. However, by our assumption, there willthis ball, we use the underlying Robertson-Walker model to
be no correlations between the contributions from the differupdate the frequency of the photon relative to the local rest
ent regions. Hence, by a simple “random walk” estimate,frame of the matter, and to update the proper radius corre-
we find that the total contribution to the Weyl tensorxat sponding to the comoving scale. Then we choose a matter
from all of V except for the ball of radiu® centered ak  distribution in a new ball of comoving radiuR, choose
should be no greater thanm/R3~p. Similar estimates another random impact parameter for entry of the photon
hold if the geometry is curved or a cosmological constant ignto this ball and repeat the above calculations. We con-
present, sinc&p will differ significantly from the flat case tinue until the photon has reached the desired redshift. By
only at distances comparable Ry, and the contributions repeating this sequence of calculations a large number of
from these regions should be negligible.
We note thatp is the same order of magnitude as the

curvature of the underlying Robertson-Walker metric. A SMore generally, we could specify a probability distribution for
Ricci curvature of this magnitude and having a consistenik, although we shall not do so in this paper.
sign(as occurs in the Robertson-Walker mod®luld have a  “Note that, in general, this would require the balls to overlap
significant effect on the convergence of a beam of photonslightly. We neglect this overlap in our analysis.
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times—for most of our models we performed about 2000 In analyzing these questions, it is convenient to view gal-
such “runs”—we build up good statistics for what happensaxies as the basic “building blocks” of the distribution of
to beams of photons on our past light cone. From this wenatter in the universgAlthough we do not exclude the pos-
obtain, for any given model, good statistical information onsibility that substantial amounts of matter may be distributed
the magnification, shear, and rotation of imageqra#arly  petween galaxies, we assume that such matter is distributed
point sources at any redshift. We will spell out the details ofin a relatively uniform way. It is essential to take into ac-
our procedure more explicitly in the next section. count the clumping of matter on the scale of galaxies in order
In comparison with other approaches, ours most closelyy adequately model lensing effects. In essence, the first
resembles the “Swiss cheese” models, wherein one takes guestion above asks to what extent the clustering of the gal-
matter dominated Robertson-Walker model, removes th@yies themselves must be taken into account, while the sec-
dust from spherical balls, and redistributes the mass withijng question asks to what extent the clumping substructure
these balls in some otherbitrarily chosen spherically  of the matter within galaxies must be taken into account.
symmetric manner. However, our approach differs from the  As already noted, it follows from Einstein’s equation that
Swiss cheese models in the following significant walys:  the Ricci curvature is determined by the matter distribution
The “cheese” has been completely eliminatéd). The mass  jn a completely local manner. The effects of Ricci curvature
within a given ball need not be equal to the correspondingn |ensing should therefore depend only upon the density
Robertson-Walker mass, though equality must still hold orcontrasts associated with galaxies, and not upon the “shape”
average (iii) The matter distribution within the balls need of galaxies. This will be verified explicitly in Sec. IV B.
not be spherically symmetri¢iv) We do not consider the Fyrthermore, these Ricci curvature effects should depend
propagation of photons in a single, fixed cosmologicalpnly weakly on the clustering of galaxies, since the cluster-
model. Rather, each photon in effect “creates its own cosing should merely produce some correlations in the times of
mological model” via our Monte Carlo procedure during the passage of a photon through different galaxies, and these
course of its propagatiorty) Although it is not a necessary effects should largely “wash out” over cosmological dis-
facet of the Swiss cheese models, most analyses of the Swiggnce scales. Thus, we believe that the clustering of galaxies
cheese modelg8,9] have attempted to calculate only aver- should have a negligible influence on lensing effects pro-
ages of certain lensing quantities, and, in the course of doingyced by Ricci curvature.
so, have imposed an “opaque radius” cutoff—within which  on the other hand, simple estimates show that the Weyl
photons are absorbed—which biases the results towards dggryvature of a spherical aggregate of matter of masand
magnification relative to Robertson-Walker models. Ourradiusr can have a substantial effect on lensing only if the

analysis determines the probability distributions for magnifi-matter “lies within its own Einstein radius,tg, i.e., only if
cation, shear, and rotation of sources by doing an exact,

Monte Carlo calculation, imposing no opaque radius cutoff. r’<rg2~mbD, (29
As we shall see, our results show no bias towards demagni-
fication relative to the underlying Robertson-Walker model,
provided that all of the high luminosity images are included
(see Sec. VI for further discussipn

Our approach also bears some similarity to analyse

which start with a model of the matter distribution in the . L ;
universe—obtained analyticallj10—13 or from N-body (at least occasionallyproduce significant lensing effects.

codes|13—16—and then project the matter into lens planesClusterlng of galaxies can produce important Weyl curvature

lying between the source and observer. Ray shooting metﬁa_ffects only in circumstances when the clusters themselves
ods are used to numerically obtain bending angles of a Iargz?\"’ltISfy Eq.(24). This .doesoccur in the central pornons of
sample of photons, from which the amplification and shealmh clusters of galaxies, and so thg e;ffects of clustering can-
distribution of images can then be computed. Our approacHOt|_|al\'\’ays bE.’ a;shsurlr)ec_![ tohbe negl;glple. be treated
uses the geodesic deviation equation rather than the lens o'r(l)twme\ellzrrs’elsr]’ :s I(;T(]:Ic ‘;VS .Ef“ré q%i)a)gesz:s?g dE ;ea %e as
equation and is considerably simpler and more flexible. It pol o urs ! IS yaw

also avoids any artifacts resulting from collapsing all ther‘\?vr?r;nt_'f/f?]"svvrs frtc;mnthel ar;alrﬁls %';’hen |nIS)((eic. l\II:/iﬁ r?e\;
matter into lens planes. 0 ateven very strong clustering of the galaxies ave

at most a tiny effect on the lensing probability distributions
for the magnification, shear, and rotation @fearly point
sources(On the other hand, clusteringould still have an
Two final issues remain to be addressél): What clus-  important effect on some lensing quantities, such as bending
tering scaleR should be chosen to adequately model statisangles, which we do not calculate her&hus, clustering
tical lensing effects in our universe: i.e., what is the largeseffects can be of importance for the statistical lensing quan-
scale on which the clustering of matter has an importantities treated here only when individual galaxies fail to sat-
effect upon lensing®2) On what scalesbelow R) does one isfy Eq. (24), but these galaxies form clusters which do sat-
have to model the details of the matter distribution in orderisfy Eq. (24) (at least in their core regiohsIn these
to adequately treat statistical lensing effects: i.e., what is theircumstances the neglect of the clustering of galaxies should
smallest scale on which the clumping of matter has an imunderestimate the lensing effects somewhat. However, we do
portant effect? not believe that such circumstances arise frequently enough

whereD denotes a cosmological distance and we use units
whereG=c= 1. Note that this relationship is marginally sat-
'gsfied by individual galaxiegor at least by their central
cores, and so the Weyl curvature of individual galaxies can

E. Relevant scales of clustering and clumping
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to have an important influence on the statistical lensing quanfhe smallest sources of interest hécentral regions of qua-
tities we calculate. Furthermore, as we shall conjecture irsars and supernova shells at an early stage of expansion
Sec. Il D, the point mass results should provide a firm uppehave rs=10"2 light years, and so takind~10' light
limit to lensing effects, even when galactic clustering isyears, we find
present.
Consequently, in this paper we shall taketo be the m=103M,,. (26)
scale of the separation between galaxies, thereby neglecting
lensing effects resulting from the clustering of galaxies. ForClumping of matter on mass scales smaller than @26)
the reasons detailed above, we do not expect that this wikhould not be relevant for lensing of the sources we consider.
result in any significant errors in our calculations of the prob-However, the clumping of matter down to the scale of Eq.
ability distributions for magnification, shear, and rotation of (26) is potentially of importance. In particular, the clumping
images of cosmologically distant sources. Some evidence iof matter in galaxies into stars can have a significant effect
favor of this expectation will be given in Sec. VI, where we upon the probability distribution for the magnification of
will obtain results in close agreement with5], despite our light emitted from quasars and supernovas.
neglect of the effects of clusteritfg. Fortunately, it is not necessary to model a galaxy &< 10
We turn now to the issue of how small a scale of clump-or so point mass stars in order to calculate its lensing effects.
ing of matter we must consider in order to calculate gravita-The clumpiness of matter will be relevant only very close to
tional lensing effects. In principle the clumping of matter onthe path of the photon. If, say, we ldt-100 ¢, whererg
arbitrarily small scalesincluding atomic and sub-atomic denotes the Einstein radius of a single star, then the discrete-
scale$ could have an important effect on lensing—thoughness of the galactic mass distribution due to stars which lie
we would have to use physical, rather than geometric, opticeutside of a tube of radiud around the photon path can be
to calculate these effects when the objects are so small thigghored: i.e., outside of the tube the galactic matter distribu-
the scale of variation of the gravitational field becomes lession can be treated as continuous. Consequently, in our
than the wavelength of the light. However, the finite size ofanalysis we will take account of all “microlensing” effects
the source which is being lensed provides an effective cutofflue to small scale clumping of matteay, into starsin the
to lensing produced by clumping on small scales. This fol-following manner: First, we model the galaxy as a continu-
lows because the lens merely magnifias well as shears ous mass distribution and compute its Newtonian potential.
and rotates the image of the source, keeping the surfaceThen, when a photon passes through the galaxy in our Monte
brightness constait1]. Thus, if the angular size of th@s-  Carlo simulations, we remove the continuous galactic matter
sumed to be uniforinsource is much larger than the angular lying within cylindrical radiusd of the path(or the portion of
scale associated with the lens, the lensing effects caused ltiyis matter assumed to be clumped into Staasd subtract
clumping should have little effect, as only a relatively smallthe Newtonian potential of this removed matter. Finally, we
part of the source would be magnified by the presence of eandomly redistribute this removed mass back into the cyl-
clump of matter(and the rest of the source may be corre-inder in the form of stars, and we add in the Newtonian
spondingly demagnified by the absence of matter betweepotential of these “point masses.” In this manner we take
clumps. In other words, the net angular size of the image offull account of the small scale clumping of matter in a com-
a source of finite size will not be significantly affected by putationally efficient way.
sufficiently small scale lensing, and consequently, the lumi-
nosity of the image also will not be greatly affecte@he
angular scale of the source-srg/Dg, wherer g denotes the
size of the source and g denotes its distance, and the angu- In the previous section we spelled out our cosmological
lar scale associated with the lens 4srg/D,, where D assumptions and described our method for calculating statis-
denotes the distance of the lens. Taking and D, to be tical lensing effects on cosmological sources. The purpose of
cosmological in scale and using HG4) for r¢, we find that  this section is to provide a more concrete and explicit de-
lensing effects should not be important unless the mass afcription of our approach.
the lens satisfies As discussed in the previous section, we first must choose
an underlying matter dominated Robertson-Walker model,
which we may characterize by the parameteis ,(g,A),
m=rs%/D. (250  where the subscript “0” denotes the present value, and

whereQ ,=8mpy/3H,. [The value ofk can then determined
from Einstein’s equatior{10).] For the calculations in this
8This expectation could be further tested by re-doing our analysisP@Per, we use the valugy=70 km s *Mpc™'. We choose
taking R to be the scale of separation of clusters of galaxies andt comoving scaleR, which, as discussed above, we take to
using appropriately chosen probability distributions for the distribu-P€ the scale of the galactic separations. For most of the cal-
tion of mass within clusters. We have not yet attempted to carry ougulations in this paper the value & will be taken to corre-
such an analysis. spond to 2 Mpc in the present universe. Next we specify how
%f the angular size of the source is much larger than the angulafass is distributed inand in between galaxies. As ex-
scale of separation between the clumps of matter, then the lensirgjained in the previous section, in general, we may specify
effects of the matter should wash out completely. this as a probability distribution which is subject only to the

Il. DETAILS OF OUR METHOD
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constraint that, on average, the mass assigned to the galamye matrix.A#,(\,) as a product of a propér.e., unit deter-
equal the mass contained in a ball of radRisn the under-  minan) orthogonal matrixO*, and a self-adjoint matrix
lying Robertson-Walker model. In the present paper, hows~

ever, we will only be concerned with simple “toy models”

for the mass distribution, and, in each model universe, we AL (N,)=0#,5,. (29
will take all galaxies to have identical mass and structure,

rather than specifying a probability distributiofHowever, ~ The matrixScan be characterized by its two eigenvalues,
we will consider model universes with a wide range of dif-anda,. The areaA, of the beam at redshiftis given by
ferent galactic mass distributiondVe also will choose the

galactic mass distribution@xpressed in terms of proper— A= aja,=det A (30)
t ing—dist tt ith logical . L
El?necomovmg istancgsnot to vary with cosmologica The corresponding magnification—and, hence,

Our basic strategy for determining lensing effects can b .mplification—of the(nearly poin} source at redshitt (relaf
explained in the following manner. Imagine a telescope at a ve tot.a ;purc;e plat\)ced at the same affine parameter in flat
eventp in the present universe which is pointed in someSPaceimEs given by
direction in the sky, so that it only accepts photons which “\2/A (31)
impinge upon it with null tangent very close to the direction p= R

k2. Suppose, further, th&?® has been chosen so that, when Note that a caustic in the beam of geodesics occurs precisely

followed backwards in time, a photon arriving at event \ hen det4=0, in which case the magnification and ampli-
with null tangentk? would have emerged from a source at fication of a point source becomes infinite.

redshift z i.e., suppose that the telescope happens to be g gistortion of the image is characterized by the ratio,
“pointed at” a source at redshift. If the source is suffi- ¢ the eigenvalues aft,
ciently small, the photons emitted by it which are accepted
by the telescope can be treated as a beam of null geodesics e=|ai/ayl, (32)
which all lie on the past light cone qf and have directions
differing only infinitesimally fromk®. The deviation vector where we takda;|<|a,|, so that Bse<1. For a circular
characterizing any given geodesic in this beam must theresource, the image will be elliptical in shape, with axial ratio
fore vanish aip, and is uniquely determined by its time de- given by e. This distortion also can be characterized by the
rivative atp. The relationship between the image producednet shedf of the image, defined by
by the telescope and the actual structure of the source is
determined by the relationship between the time derivatives _ a1 —
of the deviation vectors in this infinitesimal beampatand Y= 2\,
the values of these deviation vectors at redshiffo calcu-
late this relationship we must integrate the geodesic devia- If A>0, corresponding to a beam which has not passed
tion equation(19—backwardsin time starting fromp—for  through a causti¢or has passed through an even number of
the 2-dimensional space of spatial deviation vectgfs causticy, we may chooses to be positive definit6as op-
which are orthogonal t&? and which vanish ap. By linear-  posed to negative definjteThis uniquely fixesO. The ma-
ity of the geodesic deviation equation, the components ofrix O can be characterized, in turn, by a rotation an@le
these deviation vectors in a parallelly propagated frame areanging between- 7 andm, which may be interpreted as the
determined by a 2 matrix, A*,(\), defined by angle of rotation of the image relative to the orientation that
the image would have had in the underlying Robertson-
Walker model. Such a rotation results from the cumulative
(0), (27)  effects of shearing in different directions produced by masses
lying in different “lens planes”; lensing by masses lying in
a single plane orthogonal to the photon trajectory would not
whereA=0 corresponds to the present time. It follows im- yield any rotation. IfA<O, there is a sign ambiguity i,
mediately from the geodesic deviation equatid® that and a corresponding sign ambiguity @ We resolve this

(33

dn”
d

7= A", gy

A* () satisfies ambiguity (arbitrarily) by choosing® to range between
— /2 and /2
d2A" In this paper, the desired statistical information on the
o= Raﬁ(,”k“k"Aﬁ , (2g)  magnification, shear, and rotation of sources at redsftl
dA # be obtained by repeated “Monte Carlo” integration of Eq.

(29), as explained in detail below. It is worth noting that Eqg.
with initial conditions.A#,(0)=0 andd.A#,(0)/d\= 6", .
Equation (28), together with these initial conditions,
uniquely determinesi*, for all \. 1%The term “shear” is also commonly used for the optical tensor
All lensing effects considered in this paper are obtaineds,, [see, e.g.(9.2.29 of [6]] and/or its magnituder. These quan-

directly from A#, as follows. Let\, denote the affine pa- tities characterize the “rate of shearing” of the beam, and should be
rameter of the beam of photons at redshiftVe decompose clearly distinguished from the “net shear” defined here.
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(28) corresponds to the “primitive form’[Eq. (19)] of the =0 plane, then for a “point mass” of mad4 placed at the

geodesic deviation equation, rather than the mathematicallyenter of the balli.e., linearized Schwarzschild geometry
equivalent “optical equations” form[see, e.g., EQs. e have

(9.2.32—(9.2.33 of [6]] used in many other analyses. For
our purposes, Eq28) has a significant advantage over the box 2\ 12
optical equations in thatl #, varies continuously when caus- (J7)x=—-2M| 1— R?
tics occur, whereas quantities—such as the convergence of
the congruence—appearing in the optical equations become p2\ 172
singular at caustics. P)y=+2M|1- ?)

We begin our backwards evolution of E®8), with ini-
tial conditions A*,(0)=0 and dA*,(0)/d\=46*,, by (JP)%,=0 (38)
imagining that the beam of photons enters a ball of ra@us '
with a randomly chosen impact parameter,i.e., we take  whereb is the impact parameter alis the proper radius of
b= pR with p chosen randomly from the interved,1]. As  the ball (=R for the initial bal). For a uniform density ball
described above, the mass distribution in this ball has beesf massM and radiusd concentric with the ball of radiuR,
prescribed, and we can calculate the Newtonian potedtial, we have, forb<d,
corresponding to this mass distribution by solving the ordi-
nary Poisson equatiofsee Eq.(18) abovd. The relevant

components of the Riemann curvature tensor can be calcu-
lated straightforwardly for the metric of E¢L6), yielding

2 1
2R

Py
N

+

LY
R e

1— —

2\ 1/2
dz) *

%
2

(39)%= (3P 4M

b2 1/2 1 1
Rapcd’k?=203,d,® + K dp(k?9¢®P) 74 (I9)Yy=(3")"y—4M ( 1- ?) (F - ?)
=0 20,0.D+2P0,(Z%94D) 74c].  (39) (39 =0, 39
Here 7, denotes the ordinary Minkowski metric associated
with the coordinates T,X,Y,Z) [see Eq.(16) abovd, d,
denotes the derivative operator @f,,, Z* denotes a unit
vector in the ‘Z-direction” (= the direction of propagation

whereas JY)#,=(JIP)#, whenb>d. Similarly, for a trun-
cated isothermal ballvith density given by« 1/r?) of mass
M and “cutoff radius” d, we have, fob=<d,

of the photon, andw=dT/d\ denotes the frequency of the b2\ 112
photon. Without loss of generality, we choose our affine pa-  (3')%,=(3")*+ F( 1— F)
rametrization so that initiallyp=1. Note that the\ term in
Eqg. (16) does not contribute to the relevant components of M b2\ 12
the Riemann tensor: i.e., we hamet assumed in this equa- Yo —(3P\Y,— _( _ — cos!
tion thatA =0. V=N pr[1m @] +pg 08 (P/d)
In integrating Eq.(28) through the ball, we neglect the -
tiny bending angle of the photon trajectory, and we also ne- (3)7%v=0, (40)

glect the tiny changes ind#, occurring as the photon : . .
.and, again, the point mass expressions apply whed.
traverses the ball. Thus, when the beam of photons eXIt?inally, for a uniform density cylinder of cylindrical radius

from the ball, the new values od#, andd.A# (0)/d\ are ;
related to the values they had when entering the ball as foF'Emd Iength' R, whose axis passes thr.ough the center of the
ball of radiusR, when the photon trajectory does not pass

lows: through the cylinder, we have
(A#)1= (A" )T 0 TAZ(dAX, IdN),  (35) c 2(1+cod a)y| Z. z
(39 %=~ - 2 27 % 2 2}
(dAX,[dN) = (dA¥, [dN)g— wI*4(AP,)g,  (36) Sina [ X™+Z:% X"+ 2Z-

where we have used the fact thi/d\ = w, and where we  (jc)v _ | 2(1+?°§ a)y
have defined Y sin a

Z, Z_
Xo?+Z,% Xo+Z_?

1
X2 +Z.2 XP2+z_2

: (41)

4 = f dZ[20"9,®+ZPa,(Z%4®)6*,],  (37) (IS*,=4vX, cot a

with the integral taken over the “straight line” photon path where we have neglected the tiny “end effects” resulting
through the ball. SinceA”,)o=0, the J*, term will not  from the finite length of the cylinder. In Eq41), the axes
contribute to Eq(36) for the traversal through the first ball, have been aligned so that the photon again propagates in the
but it will contribute for all subsequent balls. Z-direction, but now theX andY axes are chosen so that the
For the cases considered in this pagkt, can be calcu- shortest line connecting the photon path to the axis of the
lated analytically. Specifically, if we align our axes so thatcylinder points in theX-direction. The length of this shortest
the photon propagates in thi&direction and lies in ther line is Xy, anda denotes the angle between the path of the
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photon and the axis of the cylinder. The quantities and 2.5 Apat

Z . denote, respectively, thévalues of the entry and exit of

the photon from the ball of radiuR, with Z=0 being the 2

point of closest approach of the photon path to the axis of the 5 Arw

cylinder. Finally,y=M/2R denotes the mass per unit length
of the cylinder. When the photon trajectory passes througk4 1
the cylinder, the additional term 16d?

—Xo?) Y% (d? sin @) must be added toJ€)*y, but the other 0.5
components of J°)#, are not changed.

The x andy axes of our parallelly propagated frame will 0.5 1 1.5 2 2.5 redshi3ft
be rotated by an angle with respect to theX andY axes of -0.5

the above formulas. Under a rotatids, by angled, compo-
nents ofJ transform as

-1

FIG. 1. The area vs redshift of a beam of photons in a typical
J—uJut (42)  Monte Carlo run, for a universe with =1 andA =0 in which all
of the matter is in the form of point masses.
so that, explicitly, the components df in our parallelly

propagated frame are given by cosmological modeli.e., values of(}, and A) and galactic

mass distribution. Our results will be presented in the follow-
P,=cod 03%+sir? 03"y—2sin 6 cosJ*,, (43  Ing sections. - ,

Finally, we explain in more detail how the effects due to
clumping of matter into stargor other sub-galactic struc-
tureg are calculated. First, a continuous mass distribution is
tspecified for the galaxy, and tl##, appropriate to this con-

and so on.
We return, now, to following the evolutiofinto the past

of our beam of photons. After the beam exits from the first S .
ball, it is assumed to immediately enter a second ball. HowliNUoUs distribution was obtaingelee Eqs(38)—(41) abovd.

ever, on account of the Hubble expansion—or, rather, thé cylindrical radiusd is then chosen so that a typical cylin-

Hubble contraction, since we are evolving backwards indrical tube cutting through the galaxy contains at leadd

time—the proper radiusk, of the second ball will now be “stars.” For the cases we _consider, such s automatically
smaller thariR by the factora, /ag, whereay, anda, denote, m.uch gmallt_ar than ga}laqtlp scales, but mucp Iarg?r than the
respectively, the values of the scale factor of the underlyinfnSte'” radius of the individual stars. In our “runs,” when a
Robertson-Walker metric at the times of entry into, and exit?€@m of photons passes through a galaxy, we replac#‘the
from, the first ball. Similarly, the frequency of the photons c@lculated for the continuous mass distribution &y,
will be blueshifted by this same factor. After updating the W"€r€

values ofR and w in this manner, we send the beam of

photons into the second ball with a randomly chosen impact J'”V=J”V—47TU5”V+Z (JiP)“V(bi ,0,). (44
parameter, and with a randomly chosen value of the orienta- !

tion angle,d, with respeqt to_the parallelly prppaga}ted frame yere o is the projected surface densityiass per unit aréa
[see Eq(43)]. (In the cylindrical case, the orientation of the ¢ e gajaxy at the photon trajectom, denotes the mass of
axis of the cylinder also is suitably randomizetvhen it 5 ingividual star, the “impact parameterds; are chosen
exits the second ball, the values 4, andd.A*,/d\ are 5 qomly within a disk of radiug, and the rotation angle
changed via Eq935) and (36). The values oR _andw are i{/e chosen randomly if0,27]. The sum ranges up tb
then also updated, and the beam of photons is subsequen m/m, wherem=7d2 is the mass in a cylindrical tube

taken to enter a third ball. This procedure is repeated untiJ)f radiusd about the photon path. The term4ma 8*, sub-
the desired red;hift is reached. At each redshift_ the ar€dracts the contribution td#, from the continuously Vdistrib—
shear, anq rotation of the beam can be computed in the Malied mass within the cylindrical tube, whereas the last term
ner gxplamed below Eq29). . corresponds to adding back in the contribution of this mass
funcion of 2 for & typical “run. i the case of a unerse. T {1e form Of(point mass stars, where eack is given by

' Eq. (38) as modified by Eq(43). (As we shall see in the next

with =1 andA =0, and where the galaxies are treated aSsection, no essential change in the probability distribution for

point masses. The corresponding areas for th_e u_nderlyin\c);],# would occur if we put the entire mass into a single
Robertson-Walker model and for a universe which is emptlg v\ nich is randomly distributed in the disk of radiuf)
near the bearti.e., Rapc¢=0 in aneighborhood of the beam .o iove that all statistical “microlensing” effects due to

are also showr(see[17]). In this particular run, it can be stars or other sub-galactic structures can be accurately taken
seen that the beam of photons propagates very nearly as .
) . . - into account by this procedure.
though it were in empty, flat spacetime, until it reaches a
redshiftz=2, at which time it receives a strong “kick” due
to a close encounter with @oint mas$ galaxy. A caustic
then occurs at a redshift=2.4. To build up good statistics, In this section we will analyze lensing effects in the lim-

we typically performed 2000 such “runs” for each choice of iting case where all of the matter in the universe is clumped

IIl. POINT MASSES AND SPHERICAL CLUSTERING
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into structures which are much smaller than their own Ein-+rajectory. By Eqs(35) and (36), the effect of this mass on
stein radii, so that these objects may be treated as poind*, is determined byl*,. SettingR—o in Eq. (38), and
masses. By a combination of analytic and numerical arguperforming the rotation indicated in E43), we obtain
ments, we will establish—or, at least, present strong evi-

dence for—the following two key claimgd1) If the point P 4M cos ¥

masses are randomly distributed throughout the universe, X b?

then the probability distributions for magnification, shear,

and rotation of images depend, in an essential way, only on y 4AM cos ¥

the total mass density of the point massdsis mass den- Py= T pz

sity, of course, is constrained to equal the mass density of the

underlying Robertson-Walker modeln other words, these AM sin 26

probability distributions ardvirtually) independent of the Jy=- R (45)

masses of the individual point masses; in particular, they are

(virtually) the same for a universe randomly populated bywhere @, 6) (with be[0,L]) denote the polar coordinates of
stellar mass black holdsr stars as for a universe randomly  the point mass. It follows that the lensing effects of the point
populated by galactic mass black holéSome partial results mass on the beam of photons are uniquely determined via

along this line are given on p. 329 pf1].) (2) If the point  Eq. (45) by a knowledge of the probability distribution,
masses are not randomly distributed but are clustered op(y), for the variable

scales<Ry in a spherical but otherwise arbitrary manner,
then the probability distributions for magnification, shear, 4M cos ¥
and rotation of images are very nearly the same as for the =7 pz
randomly distributed case.

Taken together, result§l) and (2) provide a great corresponding to a random choice of point in the disk. A
strengthening of the familiar claim that the “optical depth” straightforward calculation yields
for a strong gravitational lensing event produced by point
masses depends only on the total mass density of these poin?(

(46)

masse$18]. We show here that for a universe populated by B \/ﬁ 1 4,2 2
point masses, the entire probability distributions for magni- — % 1=V1=(Ly7/1eM%) i L ¢./16M L
fication, shear, and rotation at each redshift do not depend in mLoyY” (1 otherwise.

an essential way on either the individual masses or clustering (47)

properties of the point masses. Thus, the point mass prob-
ability distributions for magnification, shear, and rotation areNote that this probability distribution has a divergent second
remarkably “universal” in character, depending only upon moment(and the integral defining the first moment fails to
the choice of underlying Robertson-Walker model. Our com-converge absolutely
putations of this universal probability distribution for various  Now suppose we break up the point madsjnto N point
choices ofQ}; and A will be given in Sec. Il C. masses, each of mass=M/N. Suppose we randomly dis-
It should be emphasized that various lensing effects withribute theseN point masses within the same disk of radius
null geodesics which differ by finite (as opposed to infini- in the given lens plane. The correspondity, produced by
tesima) amountwill depend on the masses and clusteringthis configuration of masses is given by a formula similar to
properties of the individual point masses. In particular, if theEq. (45), except thatM is replaced byM/N and a sum is
lensing of a given source produces multiple images, the extaken over the independent contributions of M@articles.
pected angular separation of these images will depengy inspection, we see that the probability distribution Jér,
strongly on the masses and/or clustering properties of thin this case is determined by the probability distribution,
point masses. What we show here, however, is that for @, (W), for the variable¥ in exactly the same manner as the
universe populated by point masses, all of the statisticabrobability distribution forJ#, in the case of a single mass is
properties of thendividual imagesof nearly point sources determined byp(y), where
are “universal”’—although the criteria for what constitutes a
“nearly point source” does depend upon the properties of

N
the point massefsee Eq(25) abovd. W= ;1 Wi, (48)

Z|l -

and where eacly; is given by Eq.(46) with (b, #) taken to
be the polar coordinates of thth particle. Thus, the lensing
We turn now to a demonstration of claift). As in the effects of a single, randomly distributed point mass of mass

previous section, consider the propagation of a beam of phdV will differ from the lensing effects oN randomly distrib-
tons backwards in time. We focus attention on the lensingited point masses, each of mé&ésN, precisely to the extent
effects caused by matter near the photon trajectory at redshitihat the probability distribution functioryg and P differ.

z We may view this matter as lying in a single “lens plane.”  The determination of the relationship betweeandPy is
Suppose a point mass of madsis randomly placed in this a standard problem in probability theory:diis the probabil-
lens plane within a disk of radius centered on the photon ity distribution for the random variablé, thenPy(¥) cor-

A. Random distributions of point masses
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responds to the probability that the average value of a seriderence betweeR.,(x) andp(x) atx~0 is of no importance

of N independent “trials” will be . If p is such that its

because the contribution to lensing is negligible in that re-

second moment is finite, the answer to this problem in thggime. Thus, the probability distributions for magnification,

limit of large N is known as the “law of large numbers,”

shear, and rotation of images for the case where a single

which states thaPy is well approximated by a Gaussian point mass is randomly placed in a lens plane will differ

centered aty) whose width is proportional to IN. How-

ever, the law of large numbershistapplicable here because,

negligibly from the limiting case where infinitely many in-
finitesimal point massegwvith the same total magsre ran-

as already noted above, the probability distribution of Eq.domly placed in that lens plane.
(47) fails to have a finite second moment. We note in passing The fact thaP,, is an excellent approximation ffurther
that the failure ofp to have a finite second moment implies implies that for finiteN, Py also can differ only negligibly

that if one wishes to work with moments @f it will be

from p. Indeed, if we approximatp by P., in Eqg. (50), we

necessary to impose an “opaque radius” cutoff to the probfind Py=P.,; i.e., to the extent that we haye= P, we also
ability distribution at largey, as has been done in most havep~ Py for all N. Consequently, an arbitraffinite) sub-
analyses of the “Swiss cheese” models. No opaque radiudivision of a point mass placed randomly in a given lens

cutoff will be imposed here.

plane has essentially no effect on the statistical distributions

Although the law of large numbers does not hold here, thef lensing images, provided, of course, that all of the point
mathematical techniques used in the proof of the law of largenasses resulting from this subdivision are again randomly
numbers can be used to analyze the relationship betweendistributed. Since an arbitrary spectrum of masses can be

and Py (see[11]). We write

L N
PN(\P):I 5(‘I’_Ni21 lﬁi)p('/fl)"'P('ﬁN)dl/fl“'dl//N-
(49

Taking the Fourier transform d?y, we obtain

ﬁN(K)EJ e KYp (¥)d¥

= f e VN eI NND (). p( ) iy - dipy
=[p(K/N)I", (50)

wherep is the Fourier transform gf. A direct computation
of p from Eq. (47) yields

p(k)=1—4M|K|/L%+O(K?). (51)
In the limit asN—«, we have
P..(K)= lim 1—4M“2<|>N
Nesoo NL
=exp(—4M|K|/L?). (52

Taking the inverse Fourier transform of E&2), we obtain

P.(¥)= M ! 53
o )—mm, (53
wherea=4M/L?,

A number of key conclusions follow directly from Eq.
(53). First, the mere existence 8%, is somewhat surprising,

since,a priori, there is no obvious reason to expect a well
defined, finite, and nonvanishing limit to the lensing effects

of randomly distributed point masses Bs—c. More re-
markable still is the fact thaP,, nearly coincides with the
original probability distributiorp; they are both “1x?” dis-

produced by appropriate subdivisions starting from a single
point mass, this result has the further consequence that the
random placement adny collection of point masses of total
massM in a given lens plane has the same effect on the
statistical distributions of the lensing images as a single point
mass of masMl. Finally, since the cumulative lensing effects
produced by all of the matter in the universe can be viewed
as resulting from a sequence of encounters of the beam of
photons with matter lying in various different lens planes, we
conclude thatall random distributions of point masses
throughout the universéf any mass spectrujnmust pro-
duce the same statistical distributions of the lensing images,
as stated in clainl) above.

As a check of both the above arguments and our methods
for calculating lensing effects, we have tested cldityin
the following ways: First, we computed the statistical distri-
butions of the lensing images for a universe witlk=1 and
A =0 by the method of Sec. Il, taking the “galaxies” to be
point masses of masd =10'?M, . This should correspond
closely to the case of a universe filled with a random distri-
bution of point masses, each having mas¥¥Q, . Then we
repeated the Monte Carlo calculations, choosihg
=10"M, and takingR to be correspondingly larger. The
results we obtained for the two cases were statistically indis-
tinguishable from each other. We also repeated our calcula-
tions with “galaxies” taken to be uniform density balls of
radiusd="R (so that the matter is distributed exactly as in
the underlying Robertson-Walker mogebut taking “mi-
crolensing” by “stars” into account in the manner explained
at the end of Sec. II. This calculation corresponds to a uni-
verse filled with a random distribution of point masses each
of massM =M . Again, the results we obtained were sta-
tistically indistinguishable from the two previous cases.

B. Spherical clustering of point masses

The results of the previous subsection apply only to ran-
dom distributions of point masses. What happens if the point
masses are clustered? On the one hand, since clustering pro-

tributions with the same coefficient, but are “regularized” in duces corresponding *“voids,” there should be an increased

slightly different ways neax= 0. Furthermore, the small dif-

likelihood that the photon beam will fail to come close to any
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point mass. Furthermore, if the photon beam passes neé&or a universe withl=1, we setM =5x10'°M, whereas
some point mass, there is an increased likelihood that théor a universe withQ),=0.1, we setM =5x10"M,. We
lensing effects of this point mass will be partially canceledthen performed the calculations described in detail in Sec. Il,
by the presence of other nearby point masses. These twasing Eq.(38) for J*,. In each case presented here, we
effects suggest that clustering should decrease the overglerformed 2000 “runs” back to a redshift of 3, and we cal-
lensing efficiency of point masses. On the other hand, cluseulated the magnification, shear, and rotation of the beam of
tering will result in the production of a large scale, coherentphotons at various intermediate redshifts as well.
“cluster potential,” which can cause important lensing ef- The main focus of our attention was on the distribution of
fects on the beam of photons even if this beam does not passagnifications, since that distribution is most relevant to the
close to any individual point mass. This effect suggests tha&pplications described in Secs. V and VI below. We plot our
clustering should increase the overall lensing efficiency oimagnification results in the following manner: At the given
point masses. redshift of interest, our data set contains 2000 individual val-
In fact, our results for randomly distributed point massesues of area—one for each “run.” We sort these runs in order
strongly suggest that the above effects should nearly cancedf increasing value of area, with the area of beams which
at least for spherical clustering. Imagine starting with a ranhave passed through a caustic counting as negétee the
dom distribution of point masses, each of madksSuppose large negative areas come first We then normalize the
we clusterN of these point masses into a spherical structurereas to the area of the underlying Robertson-Walker model,
of radiusd. This clustering should have little effect upon so that an image corresponding to a beam wita1 has
lensing unlessl is sufficiently small that the Einstein radii of exactly the same apparent luminosity as it would have had in
the individual masses overlap when projected into the planghat model. In other words, images of objects carried by
perpendicular to the path of the photd®9]. However, atthis  peams of photons withA|<1 have been magnified with re-
stage,d will be of the order of the Einstein radius of the gpect to Robertson-Walker model, while those witi>1
cluster. Ifd is made still smaller, the cluster itself can be pave peen demagnified.
treated as a “point mass,” and, by claif), its lensing In our figures we plot the area of each run against its
effects will be equivalent to that of the original unclusteredssition in the sorted list. For convenience, we re-scale the
distribution. Thus, except perhaps for a cluster whose size i3 axis so that it ranges up to 100 rather than 2000. Thus, for
very nearly equal to its own Einstein radius, spherical clusy given area valud\, the corresponding-value yields the
tering of point masses should have a negligible effect on th@ercentage of beams with area less tharThis “percent-
statistical distributions of the lensing images, in accordancege” s taken relative to a random sampling of telescope
with claim (2). directions in the present sky, as opposed to a random sam-
We have tested the above arguments for clainby  pjing of source positions at redshiftNote that if a source is
performing a number of runs for both uniform density andandomly placed on a sphere of radiDscentered on us
isothermal galaxies of various radii, using the “microlens- ith p chosen so that the light reaching us was emitted at
mg” proc_:edure described at the end of Sec._II. These calcUpegghift 2), the probability that it will be “hit” by a given
lations simulate the clustering effects of “point mass stars” hjoton beam is proportional to the magnitude of the area,
into galaxies. We found that the statistical distributions of|A|, that the beam has at redstifiA large beam will sample
the lensing images were indeed statistically indistinguishablg larger section of the sky, and therefore will represent more
from the randomly distributed point mass case except wheggrces(all of them demagnifiedthan a small beam. The
the radius of the galaxy was close to its own Einstein rad'us_probability that a randomly placed source will have an image

In that case, the clustering produced a slight—but statistiyit, area betweer and A+ AA is proportional to the cor-
cally significant—diminution of the lensing effects as com- responding value oAxx |A|, rather than just\x. We will
pared with a random distribution of point masses. Howevergic-ss this further in Sec. 7VI belofsee Eq.(55)].

even when we chose the parameters of the galaxy so as 10 Ngte glso that since lensing simply magnifies or demag-
maximize the differences, the effects of clustering were nofisieg images relative to the underlying Robertson-Walker
significant, as will be illustrated in Fig. 10 below. Thus, to an j,oqel—but does not affect the surface brightness of the
excellent approximation, for a universe with matter in theimages—the apparent luminosity of an image of a source is

form of point masses, the statistical distributions for the roportional to 1A. Since, as just noted above, the probabil-
magnification, shear, and rotation of images are universal ii y that a beam “hits” a 'given source is proportional £

character, independent of the mass distribution @mteri-  he expected luminosityi.e., photon flux in each beam is
cal) clustering properties of the point masses. exactly the same as in the underlying Robertson-Walker
model. In particular, our analysis automatically builds in the
C. Results
We now present some of the results of our Monte Carlo
calculations of these distributions for several cosmological 14, some cases, a handful of runs contained beams which had
models. As already indicated at the beginning of Sec. Il, ifyassed through two caustind thus hadusually very larggposi-
our calculations we used the valuelg=70 km/s Mpc and tive ared. When such double-caustic runs occurred, we sorted them
R=2Mpc, with the massM, of each galaxy then deter- so that their areas appeared first, i.e., before any of the negative
mined from the underlying Robertson-Walker model. Thus.areas arising from single caustic runs.
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FIG. 2. Area vs percent of photon beamszat0.5, for anQ) FIG. 3. Area vs percent of photon beamszat1.0, for an()

=1, A=0 universe, with matter distributed in the form of point =1, A=0 universe. Matter is distributed in the form of point
masses. The dashed line represents the flat spaceimmy beam masses.
area, and the dotted line represents the Robertson-Walker area.

resolve the separate images. One of the shortcomings of our

fact that the expected total luminosity agrees with that of thnethod is that we do not have a good way of determining
underlying Robertson-Walker model. (even statistically which primary and secondary images are

For beams of photons which have not undergone caustic@ssociated with each ofcher, s_ince_this Wo_uld require us to
the largest possible area is the “flat spacér “empty an{ily_z_e photon trajecto_nes which o!lffer by_ finiees qpposed
beam” [17]) value, Ar;, corresponding to setting the cur- to infinitesima) separations. Thus, if the different images of
vature to zero in the geodesic deviation equation. This valuf’® same source are not resolved—the case of
is marked in(most of the figures. It should be noted that Microlensing—we are unable to predict the probability dis-
after a photon beam undergoes a caustic, its area typicaljiPution in total luminosity. _ _
becomes very largéand negative—significantly larger in _ Note added in proofin the “strong lensing” regime—
magnitude than the flat space valgan indication of this €. When bright multiple images occur—it appears that a
fact can already be seen in Fig) To avoid problems with single close encounter with a lens will dominate the lensing

the scale of our figures, we did not attempt to plot any are£ff€cts, at least for sources at redshift3. In the case of
values less thar-Ag,. This accounts for the “gap” at the point masses and |sot_hermal galax|es, we may_the_n use stan-
beginning of our plots. dard analytic expressions to obtain the magnification of the
We will refer to an image associated with a photon beanprightest secondary image associated with a primary image.
which has not undergone a caustic arianary image'? If p In this way the total luminosity can be predicted, as has now

denotes the event representing our telescope at the pres&fien done in27]. _ _ _
time, then any everg which lies on the boundary of the past _Flgures 2-5 show our_results for a universe fllle_d with
of p must be connected tp by a null geodesic whose cor- POINt masses corresponding to an underlying spatially flat
responding photon beam has not undergone a ca(st, Robertson-Walker cosmology with=1 andA =0. As with
e.g.,[6]). Since the world line of any source must intersect@! P|°t31 sh0\1/vn here, we have takenH,

the boundary of the past g, it follows that every source =70 kms~Mpc = We also tookR=2 Mpc, although as

must have at least one primary imagee alsg11]). In Sec. argued above, the results should be independent of the
IV B below we shall argue that for spherical distributions of choice ofR. As can be seen from the graphs, the percentage

matter it is very rare that a source would have more than on@f Photon beams which have undergone caustics ranges from
primary image, but for very dense cylindrical matter distri- 8bout 5% at redshife=1/2 to over 35% at redshifz=3.
butions, multiple primary images are common. Every pri-Note also that by redshift=3 about 20% of the primary
mary image of a source must be at least as bright as it would
be if it were placed in flat spacetime at the same affine pa-
rameter distancgll]. On the other hand, secondary images
(corresponding to photon beams which have undergone ONA /A gy 1
or more caustigscan be arbitrarily faint. Of course, a sec-
ondary image of a source can also be bright and, in particu-
lar, can be brighter than a primary image of that source.

1.5

0.5

: 20 40 60 80 100
Each secondary image of a source must have at least on
; . . . -0.5 % of photon beams
associated primary image of the same source,(aimte the
total number of images must be odldll]) must also have -1
other associated secondary images. If the angular separatio s
of these images is very small, it may not be possible to ' I

FIG. 4. Area vs percent of photon beamszat2.0, for an()
=1, A=0 universe. Matter is distributed in the form of point
2This corresponds to the “type I” image ¢f.1]. masses.
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FIG. 5. Area vs percent of photon beamszat3.0, for anQ FIG. 7. Area vs percent of photon beamszat3.0, for an{),
=1, A=0 universe. Matter is distributed in the form of point _g 1 ), =0.9 universe. Matter is distributed in the form of point
masses. Masses.

IMages are_less than hal_f as brigii%2) as they would A sample of our results for shear is given in Fig. 8. Here
havg been in the underlying Robertson—WaIker cosmologyWe have plotted the magnificatiop, relative to the empty
;—:‘g&?ﬁinaciﬁ;tn;;;hthsiJ?géol_r]aiﬂinrlneg;gnerﬁnz?oﬁ’ and beam value, versus the axial ratig,of the beam at redshift
9 X y P Y IMSGE _5 for a universe filled with point masses for the cdke
Sec. IV B below, we find that the probability that the pri- —1 andA =0. This figure corresponds to Fig. 11.12[afl]
mary image of a randomly placed sourcezat3 will be : . §

o . X xcept that we also have included the points witli 1, aris-
demagnified relative to the Robertson-Walker model by aﬁqg from beams which have undergone caustics. The agree-

least a factor of 2 is 1/2. Since these photon trajectories dﬂwent between the figures appears to be excellent

not pass near any of the poi'nt masses, it Seems unlikely that A sample of our results for rotation is given iﬁ Fig. 9.
such sources will have ar(pright) secondary images. Thus, Here we plot the magnitude of rotation angé) (in radi-
even if multiple images cannot be resolved, it appears that igns) versus photon beam numbgrdered by a{rea as de-
this cosmology, at redshiii=3, 50% of all sources should scrit’>ed above at redshiftz=3 for a universe fiIIe’d with
be dimmer by at least a factor of 2 relative to the underlyingpoint masses for the cagk=1 andA =0. From the figure it

Robertson-Walker model. can be seen that the photon beams which have not undergone

The results ar=3 for a universe filled with point masses caustics generally have a very small rotation, but those

corresponding to an open Robertson-Walker model with )
o=0.1 andA =0 i plotted in Fig. 6. It can be seen that the which have undergone caustics have undergone such a large

lensi fects h d teall ker than inGh rotation that their orientation is practically randdsee[20]
iarismgde IeIC S ?_re Iare_ rt?]ma catly Ivvealer tﬁn 'qoo/e ffor a general discussion of the behavior of beams near caus-
— 1 MOdel. In particular, In this cosmology I€ss than 00 tics). As noted above, no rotation would occur for lensing
the photon beams have undergone a caustiz=b$, and the

X o : roduced by a single point mass.
maximum de-magnification relative to t_he Ro_bertson-WaIkelp Finally Fig. 10 shows how remarkably small the effects of
model is only 0.85but over half the primary images suffer

clustering are. The rightmost curve shows the magnification

near]y this de-magnification : i . . versus photon beam number for point mass galaxies in a
Finally, the results at=3 for a universe filled with point
masses corresponding to a spatially flat Robertson-Walker 5

model with Q,=0.1 andQ ,=A/3H,?=0.9 are plotted in
Fig. 7. This distribution is intermediate between the cases of 1-7°
0=1,A=0 andQ,=0.1, A=0. 1.5}

20 40 60 80 100 0.25
% of photon beams

/ _
_;' |

-1 FIG. 8. Magnification vs axial ratio at=2, for anQ=1, A

=0 universe filled with point masses. The solid line gives the fit
FIG. 6. Area vs percent of photon beamszat3.0, for anQ) w=(1+€)?/(4€), which would hold if the lensing was done by a

=0.1, A=0 universe. Matter is distributed in the form of point single point mass, as described[il]. This figure compares well

masses. with Fig. 11.12 of that reference.
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3k expectation(borne out in all of our simulationsthat point
J masses are more effective in lensing than any bodies of finite
2.5/ extent:
. Conjecture.For any underlying Robertson-Walker cos-
] 2% . mological model at any redshitt randomly distributed point
. 5:.... bt masses provide the most “effective” distribution of matter
..;',s'ﬁ.,; 0 . for lensing in the following sense: L&k, (x) denote the
R AR SN area as a function of the percentage of photon beams for a
:nf:";' v,gp;:-":-’;'...,’,f: . universe filled with a random distribution of point masses
0.5 ’.?;&‘f;:fg":o’i Saps: (see Figs. 2-)7 Let x; denote thex-value such tha#,,
% oy i oles o equals the Robertson-Walker area, i&,mn(X1)=1. Then
20 40 60 80 100  for any other matter distribution, we hawgx) > A,(x) for
% of photon beams all x<x;. In particular, the greatest number of caustics is

achieved for the case of randomly distributed point masses.
FIG. 9. Magnitude of rotation angle vs percent of photon beams y P

at redshiftz=3, for an Q=1, A=0 universe filled with point
masses. The demarcation between beams which have undergone IV. OTHER CASES, CONSISTENCY CHECKS
caustics and those which have not occurs at 36é& Fig. . The
restriction of|®| to the range 0 tar/2 (rather than 0 tar) for beams
which have undergone a single caustic is due to our convention in
the definition of® in that case, as explained below Eg3). The In the previous section the lensing effects occurring in a
first 3% of the photon beams have undergone two caustics. universe filled with point masses were analyzed in detail. In
this subsection the corresponding lensing effects will be
universe with=1 and A=0, at a redshift of 3; it is the briefly discussed for other galactic mass distributions, spe-
same curve as shown in Fig. 5 above. Also shown is theifically for isothermal balls, uniform density balls, and uni-
curve for (point mas stars clustered into uniform density form density cylinders. The isothermal balls should be good
galaxies of radius 200 kpc. This curve is statistically indis-gescriptions of the actual mass distribution in galaxies, and
tinguishable_from thg curve for point mass galaxies. The leftsq (with appropriate choices of parametetie results for
most curve is for(point mass stars clustered into uniform  inis case should provide a realistic description of the statis-
density galaxies of radius 20 kpc. This clustering distributiontjca) lensing effects occurring in our universe—at least pro-
was choseriin a parameter search, varying the galactic ra-jged that the clustering of galaxies does not play an impor-
dius) so as tomaximizethe deviation from the random dis- {ant role and that the effects of sub-galactic structure can be
tribution. As expected, the maximum deviation occurs forignored.[As previously discussed near E@6) above, sub-
galaxies (composed of point mass starahose radii are ggjactic structure need not be taken into account if the
close to their Einstein radii. It can be seen from the figuresoyrces are of sufficiently large angular size. If the sources
that there is a slightout statistically significantdiminution gy of sufficiently small angular size that “microlensing” by

A. Uniform density balls, isothermal balls,
and uniform density cylinders

of the lensing effectiveness due to the clustering. stars is of relevance, and if most of the matter is in the form
of stars or other condensed objects, then the point mass re-
D. Conjecture sults of the previous section should applplthough the

We conclude this section with a conjecture, based upoiNiform density balls and cylinders presumably do not cor-
the fact that spherical clustering of point masses appears #&SPond to realistic mass distributiotighey provide useful

slightly reduce their lensing effectiveness, together with our t0Y models” for investigating various effects. ,
As in the point mass case, for the calculations of this

subsection we used the valuek=70 kmsMpc! and

2 R=2 Mpc, and we determined the mad4, of each galaxy
A/Apw r = 20 kpc from the underlying Robertson-Walker model. Indeed, the
1 < only important difference in our calculational procedures

from those of the point mass case was our use of 393,
(40), or (41) in place of EQ.(38). In addition, in the cylin-
20 40 60 80 100 drical case, a further randomization over the orientation of
% of photon beams the cylinder was performed at each step. A sampling of some
of our results is presented in Figs. 11-15.

j r =200 kpc and r =0

.
1]

BRecent findings of Zhangt al. [21] and others indicate that
FIG. 10. Area vs percent of photon beamszat3, for an() filamentary structures may play an important role in the evolution
=1, A=0 universe. Graphs are shown for point mass galaxies ( of structure. Cylindrical mass distributions can be used to mimic
=0), and for uniform density spheres af=20 kpc andr filaments, and identify qualitative differences in the lensing distri-
=200 kpc, each composed @doint mass stars. butions to be expected from such structures.
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% of photon beams

FIG. 11. Area vs percent of photon beamsat3.0, for an()
=1, A=0 universe. Matter is distributed in isotherma¥ ¢r)
balls of radius 200 kpc.
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A/ARW
0.5

20 60 80 100

% of photon beams
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FIG. 13. Area vs percent of photon beams,zat3.0, for an
0,=0.1, A=0 universe. Matter is distributed in isothermal balls of
radius 50 kpc.

In Fig. 11 we plot the area vs percent of photon beams a@f the underlying ideas of Sec. | as well as a good test of the

z=23 for a universe witfl=1 andA =0, populated by gal-
axies with a “truncated isothermal profilde'M(r)«r] and a
cutoff radius of 200 kpc. Comparison with Fig. 5 immedi-

validity and accuracy of our formulas and calculational pro-
cedures.
First, as noted in Sec. | E, the effects of Ricci curvature

ately shows that the lensing effects are greatly reduced amn lensing should depend only upon the density contrasts
compared with the point mass case. In particular, only aboupresent in the universe. Thus, in situations where the Weyl
2% of the photon beams have undergone caustics by a redurvature can be neglected, galaxies of the same density
shift of 3, as compared with over 35% in the point mass caseshould produce identical statistical lensing effects, indepen-
The lensing effectiveness is further reduced if the galaxieglent of their “shapes.” This is borne out by a comparison of
are modeled as uniform density—rather than isothermal—gigs. 12 and 14, corresponding, respectively, to spherical and
balls of radius 200 kp¢see Fig. 12 cylindrical galaxies of the same density. No statistically sig-

Figure 13 shows the area vs percent of photon beams &ficant difference is discernible for the area distributions in
z=3 for the casél,=0.1 andA =0, with matter distributed a6 two cases.

in isothermal balls, now of radius of 50 kpc. Again, & sig- A fyrther important consistency check arises from the fact
nificant reduction in the lensing effectiveness as compareﬂ1at the causal structure of the spacetime of Eg—whose

with the point mass case can be sésee Fig. 6. : : :
Finally, Figs. 14 and 15 plot the area vs percent of photoerpert'fes we are attempting to model with our Monte Ca_rlo
calculations—is nearly the same as that of the underlying

beams atz=3 for the caseQ)=1 and A=0, with matter Robert Walk del. C ty. at dshift
distributed in the form of uniform density cylinders of length obertson-yvalker model. .onsequently, at any redsi
the area of the boundary of the past of an everih the

2R and cylindrical radii 52 kpc and 200 pc, respectively. As _
will be discussed further below, the results shown in Fig. 155Pacetime of Eq(1) should be very nearly equal to the area

are qualitatively different from all of the other cases shown©f the past light cone op at redshiftz in the underlying
here. Robertson-Walker model. Now, as previously mentioned in

Sec. lll C, for a null geodesic to lie on the boundary of the
past ofp, it is necessary that its corresponding photon beam
not have undergone a caustic. Thus, in any of our Monte
Garlo results, if we add up the areas of all of the photon

B. Consistency checks

The results presented thus far allow us to perform a num
ber of consistency checks, which provide a good test of som

A/ARW A/ARW

20 40 60 80 100 20 40 60 80 100
% of photon beams

% of photon beams

-2

FIG. 14. Area vs percent of photon beamsat3.0, for an()
=1, A=0 universe. Matter is distributed in uniform density cylin-
FIG. 12. Area vs percent of photon beamsat3.0, for an() ders of radius 52 kpc. This figure is almost identical to Fig. 12,
=1, A=0 universe. Matter is distributed in uniform density balls of which is for uniform density spheres of the same density as these
radius 200 kpc. cylinders.
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- For the case of a relatively “thick” cylindefwith negli-
gible Weyl curvaturgas in Fig. 14, near equality also holds
in Eq. (54), as is evident from the fact that Fig. 14 is indis-

........................................................................ tinguishable from Fig. 12. However, for a very thin cylinder

as in Fig. 15, the left side of Eq54) exceeds the right side

by a factor of about 1.8. Thus, in this case many sources

AlApw

40 Go(y of hg;’on bear};&?o must have multiple primary images, presumably resulting
ootpb from the passage of photons around different sides of the
cylinder.
i V. CORRELATIONS BETWEEN QUASAR LUMINOSITY

FIG. 15. Area vs percent of photon beamsat3.0, for an() AND THE NUMBER OF ABSORPTION SYSTEMS

=1, A=0 universe. Matter is distributed in uniform density cylin-  |n a recent paper, Vanden Beek al. [1] have presented
ders of radius 200 pc. evidence for a positive correlation between quasar luminos-
ity and the number of intervening carbon IV absorption
beams which have not undergone caustisresponding to clouds. Using the results of previous quasar surveys, these
“primary images” in the terminology introduced in Sec. authors compiled a catalog of nearly 500 quasars, with over
[I1 C), the result should be at least as large as the area of tH#000 heavy metal absorption lines. Analysis of this catalog
past light cone in the underlying Robertson-Walker modelrevealed an excess of C IV absorbers in luminous quasars.
Since we have normalized our beam areas soAlal cor-  The authors proposed that this effect might be caused by the
responds to the Robertson-Walker value, this means that Brightening(i.e., magnificatioh of the quasar images due to
we doN Monte Carlo runs, then, within statistics, we always cumulative gravitational lensing by the mass distribution as-
must have sociated with the C IV absorbers.
Figures 1 and 4 ofl] present the main evidence in favor
2 A=N (54) of this positive correlation. In their Fig. 1, they divide the
i= Ny . . . : .
i quasars in their catalog into a “bright half” and a “dim
half,” and they plot the number of C IV absorbers for the
where the sum ranges only over the beams which have né0 9roups in five different redshift bins. In all five bir_ls, the
undergone caustics by the given redsHift. bright quasars had more C IV absorbers than the dim ones.
We have checked E€54) in all of our Monte Carlo simu- We have analyzed these results and we estimate that if the

lations(including many not shown herand have found it to effect found in their Fig. 1 were due_entirely to lensing, each
be satisfied in all cases. Furthermore, in all of our simulaC IV @bsorber would have to contribute an increase on the

tions in which the matter distribution withiR is spherically ~order of 1/2 V magnitude to the luminosity of the quasar.
symmetric(i.e., in all but the cylindrical casgsthe left side  Possible evidence for an even larger effect can be found in
of Eq. (54) was larger than the right side by only a tiny Fig. 4 of[1]. That figure shpwg a three magnltude'dlfference
amount—typically, just a few percent. This remarkable Petween the absolute luminosity of the quasars with the larg-
(neay equality of the left and right sides of E¢4) has two est and _fewest number of C IV absorbers. Taken at face
important consequences. First, it provides strong evidence df@lue, this suggests that each absorber would have to con-
the self-consistency of our calculations, since it is hard tdfibute an increase of roughll V magnitude to the luminos-
imagine how suchinea) equality could hold for cases as Ity Of the quasar for the effect to be due to lensing.
different as, say, Figs. 5 and 12, if our Monte Carlo calcula-_ /A Proper analysis of the results ft] and their implica-
tions were not properly modeling at least some aspects of th#ons for lensing would, of course, require a careful consid-
spacetime of Eq(1). Second, it shows that for spherical eration of numerous observatlonal_ issues. We shall not at-
matter distributions, almost all photons which leave thet€mMpt to undertake such an analysis herdevertheless, we
boundary of the past gf do so at(or very near tpa caustic. §hall pose the following questions: Should grawtatlonal lens-
Consequently, it also shows that in the spherical case, ver§)d Produce a systematic, positive correlation between qua-

few sources can have more than one primary image. Sar luminosity and the number of intervening absorption
clouds? If so, is this effect large enough to plausibly account

for the results of 1]?
14 _ N ) ) To analyze these questions, we make the extreme assump-
There is an additional “area test” that should hold: If we add up tjoy that(most of the mass of the universe is associated with
all areas—with beams with an odd number of caustics counting ag. |\, absorption clouds. Clearly, this assumption should
negative and beams with an even number of causticsio caus-  5yimize the lensing effects associated with the C IV ab-

tics) counting as positive—we shoulvery nearly obtain the g, arq and the results we obtain should thereby be viewed
Robertson-Walker result. However, it was not possible to meaning-

fully apply this test to our Monte Carlo data, because the total area

in our data set was usually dominated by a single area value from a

run which had undergone a caustar a double-caustjc In other 15The bias due to gravitational lensing on the luminosity function
words, our “statistics” were never adequate to investigate this testof quasars has been investigated by [R&].
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° that there is a clear positive correlation between luminosity
. and the number of “passages through clouds.” However, the
effect is not very large, corresponding to only about 0.1 mag-
nitude per absorber.

-13.5

-13.6 The results we obtained in a variety of other cases were
mag quite similar. In all the cases we examined, a positive corre-
-13.7 lation was found between quasar luminosity and the number

of “passages through clouds.” When we made the mass dis-

-13. 84 tribution associated with the clouds more highly concen-

trated than in Fig. 16, the lensing effect on luminosity be-
came larger, but the correlation with the number of clouds
0.5 1 1.5 2 2.5 3 3.5 generally became less strofgjnce the lensing effects were
# of absorption clouds more dominated by a single close encountand so the
_ _ overall results were not greatly changed. Thus, none of the
of mass 5 10''M ¢, and radius 50 kpc. The “magnitudes” are for ated significantly from the roughly 0.1 magnitude per ab-

(standard cand)equasars at redshift vith an arbitrarily chosen 32:22 zienecr:amazlgﬁqigiig:ésdv::)%iles ?r?dgjlrbt:ejgu;r;ig:ser\?vz
absolute luminosity The “number of absorption clouds” is the ' !

number of instances in which the photon beam passes through ssociated all of the mass in the universe with the absorption

galaxy in the redshift range<1z<<2. The data are for 2000 runs, clouds. Thus, although our results definitely confirm that

and have been binned in groups of 20. The best fit line yields ravitational lensing _sho_uld produce a positive correlation_
slope of 0.08 magnitude per absorber. between quasar luminosity and the number of absorbers, it

appears unlikely that the effects of gravitational lensing are

as upper limits to the possible lensing effects of these clouddarge enough to explain the results[af.
In our investigations, we considered underlying Robertson-
Walker models withA =0 and with(} eithgr 1or0.1. Eor VI. LENSING “NOISE” AND BIAS IN MEASUREMENTS
egch Roberts_on-WaIker .mo_del,_ we consujered a variety of OF g, USING SUPERNOVA LUMINOSITIES
different possible mass distributions associated with the C IV
absorbers. These mass distributions ranged from “point One of the key goals of observational cosmology is to
masses”(appropriate if the C IV clouds are associated withdetermine the parameters of what we have referred to as the
large black holes or with galaxies in which most of the mat-underlying Robertson-Walker model of our universe, par-
ter has already condensed to form stacslow density iso- ticularly the deceleration parametef=o/2— €, (where
thermal balls(corresponding to galaxies or proto-galaxies Q,=A/3Hy?). Much progress has been made recently in
For each cosmological model and mass distribution, dhis regard by using type la supernovas as standard candles
“cloud radius” was defined so that in the Monte Carlo data[2]. The intrinsic dispersion of peak magnitudes of type la
we generated, our average number of C IV absorbers in theupernovas is of the order of 0.2 magnitude, and this number
relevant redshift range was equat least approximatelyto ~ has been steadily decreasing with improved understanding of
the average number of C IV absorbers in the datdlbfWe  the phenomenology of type la supernova light curves. An
then performed the Monte Carlo calculations described irimportant issue is whether or not lensing could produce a
detail in the previous sections above, but in addition, we nowsignificant further dispersion dfdistan} supernova magni-
kept track of the number of times the photon beam “passediudes. If so, lensing could be an important source of noise in
throuch a C IV cloud” (i.e., had an impact parameter smaller estimates ofjy. In addition, since the dispersion in luminos-
than the assigned “cloud radius”At each redshift of inter- ity produced by lensing is non-Gaussian and can be highly
est, we again ordered our 2000 “runs” by area, and therasymmetric about the mean—with a high probability for a
binned these ordered runs in 100 groups of 20 runs each. Femall decrease in luminosity and a small probability for a
each such group of 20, we then computdm our magni- large increase—lensing also could produce a significant bias
fication data the average magnitude of a “standard candle” in the results if there are selection effects or if the data
source at the given redshift, as well as the average number shmple is small. Indeed, using a Swiss cheese model to in-
“passages through C IV clouds.” We then represented eachestigate this issue, Kantowsét al. [23] have claimed that
of our 100 groups as a point in a “scatter plot” of averagelensing can have a large effect, causing a bias as large as
magnitude versus average number of passages through a33% in gy measurements from supernovaszat0.5 when
IV cloud. the true underlying Robertson-Walker model is one with

Figure 16 shows the results we obtained festandard =1 andA=0. However, using other methods, Frieman has
candlg quasars at a redshift of 2 for the case of a universeecently argued that the induced flux dispersion in type la
with Q,=0.1 andA =0, and with matter in isothermal balls supernova magnitudes due to lensing is less than about 0.04
of mass 5<10''M, and radius 50 kpc. In this case, the magnitude for sources within a redshift of 0.34]. If so,
“cloud radius” also was taken to be 50 kpc, so that eachlensing would not, at present, be a significant source of
time a photon beam punctures a galaxy, we say that we haveise, but might become important if the current intrinsic
registered an absorption line. It can be seen from the figurspread in type la supernova magnitudes can be halved
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through a better understanding of the phenomenology of the
light curves. Frieman’s estimates are consistent with those of
Wambsgansst al. [15].

Our approach can be used to obtain the spread in imagep(c)
magnification (and, hence, amplificationof a standard 10
candle at any given redshift, for any given cosmological pa- 5
rameters, and any choice of inhomogeneous distributions of
matter. According to our conjecture in Sec. Il D, randomly 1
distributed point masses should provide the most noise ¢.5
and/or bias, and so it is particularly instructive to examine
that case. Furthermore, as discussed in Secs. Il and llI, this
case should provide a realistic description of lensing phe- 0.95 1 1.05 1.1
nomena in our universe if most of the matter in the universe L
is clumped into stars and/or MACHOSs of mass £M, or

greater. FIG. 17. The G
. . . . 17. probability distributionP(£), for the apparent
Consider, first, the case of a universe with=1 andA luminosity, £, of a “standard candle” for a2 =1, A=0 universe

=0 filled with randomly distributed point masses. A plot of \yit hoint mass galaxies, at a redshift of 1/2. The absolute lumi-
area versus percentage of photon beams=e0.5 was pre-  nosity of the standard candle has been normalized to yield an ap-
viously given in Fig. 2. We wish to convert this figure into a parent luminosity of 1 in the underlying Robertson-Walker model.
probability distribution for the apparent luminosity of a The probability distribution shown is for primary images only; in-
“standard candle” source randomly placed on a sphere otlusion of the flux from secondary images presumably would
radius D centered on us, corresponding 2e-0.5. As we  mainly increase the luminosity of the most luminous primary im-
argued in Sec. Il C, each source should have exactly onages(which are off the scale of this plptand should not signifi-
primary image. It is straightforward to obtain the probability cantly affect this figure(Note that, according to Fig. 2, approxi-
distribution for the apparent luminosity of this primary mately 5% of the total luminosity is carried by secondary imgges.
image—and we shall do so below. However, as discussed ifihe vertical dashed line represents the empty beam apparent lumi-
Sec. lll C, we do not have a good way of determining whichnosity, which is the minimum possible apparent luminosity for pri-
secondary images are associated with a given primary imaggary images. This empty beam apparent luminosity corresponds to
and so we cannot directly obtain the probability distribution@ Robertson-Walker model witf),=0.6 andA =0. The vertical
for the total apparent luminosity associated with a sourcedotted lines show the lower and upper 16% of this probability dis-
See note added in proof in Sec. Ill C. This is not a very!ribution, to give an indication of what one might roughly view as
serious problem in the present case, since Fig. 2 shows thagn€ Sigma” errors in this highly non-Gaussian distribution with
less than 5% of the photon beaniss measured in the infinite second moment. Th@ values corresponding to these lines
“ ) . also are shown.
present sky”) have undergone a caustic by 0.5, so that
less than 5% of the total expected luminosity of the sources
at z=0.5 will be carried in secondary images. Undoubtedly,

most of the luminosit rri th ndary im will . L .
ost of the luminosity carried by the secondary images glnce the apparent luminosity;, of the source is propor-

be associated with sources whose primary images ar Lo
strongly lensed. Thus, if the primary and secondary image onal to 1A.’ th_e p_robablllty distribution;(£), for appar-
ent luminosity is given by

of a source cannot be resolvéds would be the case for

microlensing by staysthe effect of including the secondary

images should be merely to further brighten a few of the PL)x L 2P (LIL)x L ~3p,(1IL), (56)

sources with the brightest primary images. Thus, the prob-

ability distribution we give below for the apparent luminos- where we have normalized both the beam area and intrinsic

ity of the primary images should be accurate for the totaluminosity so that bottA and £ would have unit value at

luminosity, except for the brightest sources. redshift z in the underlying Robertson-Walker model. The
To convert Fig. 2 to a probability distribution for apparent probability distribution,P;(£), is plotted in Fig. 17, using

luminosity for the primary image of a randomly placed the data from Fig. 2 to determing,(A).

source, we proceed as follows. Let(A)dA denote the It should be noted that, since at amywe havep,(0)

probability that a beam—which is randomly chosen with re-= 0, it follows from Eq.(56) that asC— o, we have, at alf,
spect to the “present sky"—will have area betweArand

A+dA at redshiftz. Up to normalizationp,,(A) is just the
inverse of the slope of the curve plotted in Fig. 2. Let
P,(A)dA denote the probability that a source which is ran-
domly placed on a sphere centered about us of rabius ConsequentlyP(£) is normalizablgas it must bgand has a
corresponding to redshift, will be “hit” by a beam with  well defined first momensince, as mentioned in Sec. IV B,
area betweeA andA+ dA which has not undergone a caus- the total expected apparent luminodiitycluding the second-
tic. Then, as previously mentioned in Sec. Ill C above, weary as well as primary imagesnust agree with that of the
have underlying Robertson-Walker modeHowever, its second

100
50

SATLTLT

2% =0.6
Q=08
[ ]

P(A)xAp(A). (55

P(L)=1IL3, (57)
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FIG. 18. The probability distribution for apparent luminosi, FIG. 19. The probability distribution for apparent luminosis,

of a “standard candle” for af)=1, A=0 universe with point  of a3 “standard candle” for afd=1, A=0 universe with isother-
mass galaxies, at a redshift of 1. The dashed and dotted lines havga| galaxies of radius 200 kpc, at a redshift of 1/2.
the same meaning as in Fig. 17. Again, only primary images are

considered. In this case, about 12% of the total luminosity is carried . o . .
. ) ) model with smoothly distributed matter, consider, again, the
by secondary imagesee Fig. 3, and so the corrections to the plot

which would result from inclusion of secondary images may heCasSe .Of a universe V.Vltm:l andA =0, but .nOW with the
somewhat more significant than in Fig. 17. galaxies treated as isothermal balls of radius 200 kpc. The

probability distribution”(£) for redshifts of 1/2 and 1 is
shown in Figs. 19 and 20. There are very few caustics even
atz=1 in this case, and so the secondary images are of no
importance. Inspection of Figs. 19 and 20 shows that the
probability distribution is peaked much closer to 1 than in
the point mass case, and the high luminosity “tail” of the
Mistribution is much smaller. Thus, there would appear to be
0 significant danger of “bias” in this case. In addition,
ere is considerably less “noise” than in the point mass

moment is logarithmically divergent. As a result, the law of
large numbers fails to apply t®(£). Thus, if one makes
repeated measuremeni®y observing many supernova
events and averages the apparent luminosities, one nitl
obtain a sharply peaked Gaussian distribution about the a
erage value. If the strongly lensed events are removed fro
the data sample, a Gaussian distribution would be obtain

for the average value, but a bias will be introduced towar ase. The noise estimate obtained from the dotted lines in

smaller apparent luminosity. o Fig. 19 is in good agreement with the estimate obtained by
To obtain a rough, quantitative measure of both theFrieman[24].

“noise” and the potential bias in apparent luminosity mea-
surements resulting from lensing, we inserted dotted lines i%
Fig. 17 to demarcate the upper and lower 16% of the prob—N

ability .distribution.' If the probability distribution WEre & determine the matter distribution. They studied lensing in
Gaussian, these lines would correspond to a “one SigMa’is model and produced plots B£) atz=1/2 andz=1. It

error ce_ntereq about the mean. Thus, the sepa_ration O.f the?seinstructive to compare their results with what would be
dotted lines gives a rough indication of the lensing “noise,” obtained from our approach. To do so, we considerél,a

whereas the .offjcer_\terness of the. Ilne(away from =0.4, Q0 ,=0.6 universe and distributed the matter in galax-
gives a rough indication of the potential bias that would oc-

cur if the strong lensing events were not included in the data
sample. We see that in the point mass case, if the stronc

Wambsgansst al.[15] have investigated a cosmological
odel withQ,=0.4 and(),=0.6 using a cold dark matter
-body computer simulatiofnormalized to COBE dajao

] . .
lensing events are excluded, the potential exists for a signifi- s .;.‘..::.0.'0.,. o
cant bias toward values of apparent luminosity nearly asp(r) ' % e o o0
small as the empty beam value. This result is consistent with ' o o o i
the results of Kantowsket al. [23], since the imposition of 24 . ®ees
an “opaque radius” effectively excises the strong lensing ' : HCIN
events. 1h
The corresponding plot at=1 for a universe with() ' . *
=1 andA =0 is shown in Fig. 18. As can be seen from this 0.5 Eg 2 2 o
figure, both the noise and potential bias due to gravitational T o i .
lensing are considerably larger &&1 than atz=1/2. Fig- 'S i~ ‘S
ures 17 and 18 appear to be in good qualitative agreemen 0'20‘8 o T T )
with the results 0f12,25. o ) p ’ )

The noise and potential bias due to lensing are consider-
ably smaller if microlensing is not taken into account, as FIG. 20. The probability distribution for apparent luminosify,
would be justified if most of the matter is smoothly distrib- of a “standard candle” for af)=1, A=0 universe with isother-
uted, rather than clumped into stars. As an example of anal galaxies of radius 200 kpc, at a redshift of 1.
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FIG. 21. The probability distribution for apparent luminosi, FIG. 22. The probability distribution for apparent luminosi,
of a “standard candle” for a),=0.4, Q,=0.6 universe with of a “standard candle” for ar),=0.4, ,=0.6 universe, with
isothermal galaxies of radius 200 kpc, at a redshift of 1/2. isothermal galaxies of radius 200 kpc, at a redshift of 1.

ies chosen to be isothermal balls of radius 200 Kgdis  including both primary and secondary images—of all
choice of galactic mass distribution is merely our guess as tsources is independent of gravitational lensing effects. Thus,
what should be reasonable for this cosmology; we did notf no other sources of noise or bias are present, the apparent
attempt to match the results of the simulation usefilisl.)  luminosity of a standard candle in the underlying Robertson-
In order to obtain good statistics for the comparison, we didWalker model always can be obtained, in principle, by aver-
6000 (rather than our usual 20D@uns in this case. Our aging the apparent luminosities of the observed sources. We
results forP(L£) at z=1/2 andz=1 are shown in Figs. 21 stress that, since the probability distributioR(L), can be
and 22 respectively. Comparison with Fig. 1[db] shows quite asymmetric about its mean, it is crucial that one aver-
very good agreement—apart from an overall normalizatiorages apparent luminosities rather than some function of them
(which appears to have been chosen arbitrarily1i5]). In-  (like apparent magnitudgsFurthermore, in the point mass
deed, this agreement seems remarkably good in view of thease—relevant if microlensing by stars is important—it will
fact that we did not attempt to adjust our galactic mass disbe necessary to make effort to include the very bright images
tribution to theirs, and, in our calculations, the clustering ofin the average in order not to bias the results toward smaller
galaxies isnot taken into account. This latter fact lends sup-apparent luminosity.
port to the argument presented in Sec. | E that, in almost all Note added in proofAn analysis of the effects of lensing
models, clustering of galaxies should have a negligible effecon the determination of cosmological parameters from recent
on the statistical distributions for magnification, shear, andype la supernova data is given [ia7].
rotation.

Fln_ally, we note that knowledgg A*R(L) over a range of ACKNOWLEDGMENTS
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