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We present a theoretical background for the data analysis of the gravitational-wave signals from spinning
neutron stars for Earth-based laser interferometric detectors. We introduce a detailed model of the signal
including both the frequency and the amplitude modulations. We include the effects of the intrinsic frequency
changes and the modulation of the frequency at the detector due to Earth’s motion. We estimate the effects of
the star’s proper motion and of relativistic corrections. Moreover we consider a signal consisting of two
components corresponding to a frequefiand twice that frequency. From the maximum likelihood principle
we derive the detection statistics for the signal and we calculate the probability density function of the
statistics. We obtain the data analysis procedure to detect the signal and to estimate its parameters. We show
that for optimal detection of the amplitude modulated signal we need four linear filters instead of one linear
filter needed for a constant amplitude signal. Searching for the doubled frequency signal increases further the
number of linear filters by a factor of 2. We indicate how the fast Fourier transform algorithm and resampling
methods commonly proposed in the analysis of periodic signals can be used to calculate the detection statistics
for our signal. We find that the probability density function of the detection statistics is determined by one
parameter: the optimal signal-to-noise ratio. We study the signal-to-noise ratio by means of the Monte Carlo
method for all long-arm interferometers that are currently under construction. We show how our analysis can
be extended to perform a joint search for periodic signals by a network of detectors and we perform a Monte
Carlo study of the signal-to-noise ratio for a network of detec{®6556-282198)00718-9

PACS numbegps): 95.55.Ym, 04.80.Nn, 95.75.Pq, 97.60.Gb

I. INTRODUCTION stars. Accretion of matter on a neutron star can drive it into a
nonaxisymmetric configuration and power steady radiation
Spinning neutron stars are one of the primary candidataith a considerable amplitude. This mechanism has been
sources of gravitational waves for long-arm laser interferopointed out by Wagone(f11], see alsd12]). It applies to a
metric detectorg[1], see[2] for a review. Detectors with a certain class of neutron stars, including accreting stars in
sufficient sensitivity to see strong neutron star sources anysinary systems that have been spun up to the first instability
where in the Galaxy will be taking data within two or three point of the Chandrasekhar-Friedman-Schi@g$ instabil-
years[3—6]. A rotating body, perfectly symmetric about its ity [13,14. Recently Anderssofil6] suggested a similar in-
rotation axis does not emit gravitational waves. If the spin-stability in r modes of rotating relativistic stars. The effec-
ning neutron star is to emit gravitational waves over ex-tiveness of these instabilities depends on the viscosity of the
tended periods of time, it must have some kind of long-livedstar which in turn is determined by the temperature of the
asymmetry. Several mechanisms have been given for such atar[17].
asymmetry to aris€7—10]. During the crystallization period This paper initiates a series of papers where theoretical
the crust of the neutron star may develop deviations fronproblems of data analysis of gravitational-wave signals from
axisymmetry that will be supported by anisotropic stresses ispinning neutron stars are considered, independently of the
the solid crus{7]. The strong magnetic field present in the mechanisms generating the waves.
neutron star may not be aligned with the rotation axis and The data analysis of monochromatic signals for interfero-
consequently the distortion produced by the magnetic pregnetric antennas was investigated by one of1§. A search
sure results in the neutron star being asymmed8ic Also  strategy for such signals was proposed and the computing
the rotation axis may not coincide with a principal axis of thepower required estimated. The basic method to detect peri-
star's moment of inertia tensor. Then the star will preces®dic signals is to Fourier analyze the data, and an efficient
and emit gravitational wave®,10]. There are other mecha- computational tool is the fast Fourier transform. The main
nisms that can produce gravitational waves from neutromproblem is that to do the search one has to take into account
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the modulation of the signal due to the Earth’s motion relaform a Monte Carlo study of the signal-to-noise ratio for a
tive to the solar system barycenter. If the position of thenetwork. In Appendix A we discuss the model of the phase
source on the sky is unknown this introduces two additionabf the gravitational-wave signal and in particular we estimate
parameters in the signal and this vastly increases the compihe effect of the proper motion of the neutron star and of
tational time to do the search. It is clear that the main limitrelativistic corrections. In Appendix B we give the general
on the sensitivity of such a search will be the available comanalytic formula for the optimal signal-to-noise ratio.
puting power. Variants of the proposed search strategy have
been implemented with test data from the prototype detectord NOISE-FREE RESPONSE OF THE INTERFEROMETRIC
where the search was carried out only over a limited region DETECTOR
of the parameter spa¢@8-20. A. Beam-pattern functions

The problem of computational requirements has recently ) .
been reconsidered by Bragy al.[21]. They realized that in The response of a Iase_r interferometric detector to a yveak
the model of the signal the effect of the intrinsic frequencyplane gravitational wave in the long wavelength approxima-

modulation due to spin-down or spin-up of the neutron stafion [i.e. when the size of the detector is much smaller than
: . the reduced wavelengtv(2) of the wavg is well known
needs to be considered. This increases the parameter sp

c )
and consequently the computational power required to sear ge, €.g123] and Sec. Il A 0f24], and references thergin

Il th t A : 10 terafl e dimensionless detector’s response functias defined
all the parameter space. ASSUmMIng access 1o teraflops CoMz yhe gifference between the wave induced relative length

puting power it was shown that coherent integration time%:hanges of the two interferometer arms and can be computed
will be limited to days for an all-sky search for young, rap- f.om the formula(cf. Eq. (5) of [24])

idly spinning stars and to weeks for more directed searches.

A simplified model of the signal where modulation due to ~ 1 ~

diurnal rotation of the Earth was neglected has also been h(t)=5n-[H()N]— 502 [H(DN], D
examined by one of ug22] and the computational require-

ments to do the search were estimated. wheren; andn, denote the unit vectors parallel to the arm

In this series of papers we consider a more general mod#&lumber 1 and 2, respectivelyhe order of arms if defined
of the signal than in the work cited above. We take intosuch that the vectar; X n, pointsoutwardsfrom the surface
account not only the modulation of the phase of the signabf the Earth, H is the three-dimensional matrix of the spatial
but also the amplitude modulation. Moreover we consider anetric perturbation produced by the wave in the proper ref-
signal consisting of two components corresponding to a freerence frame of the detector, and a dot stands for the stan-
quencyf and twice that frequency. In general neither of thedard scalar product in the three-dimensional Cartesian space.

components is dominant. The matrixH is given by
In this work, which is Paper | of the series, we introduce -
the signal and we derive an optimal data analysis procedure H(t)=M(H((t)M()T, 2

for its detection. In future works we will examine the accu-

racy of estimation of the parameters of the SignaL the Char\NhereM is the three-dimensional orthogonal matrix of trans-

acteristics of the detection statistics derived in this paper, antprmation from the wave Cartesian coordinateg (., ,z,)

the computational power required to calculate it. We shalto the Cartesian coordinatexq(yq,zg) in the detector's

also investigate the least-squares method to estimate astri@roper reference framghe definition of these coordinates is

physically interesting parameters of the signal from the estigiven below, T denotes matrix transposition. In the wave

mators of the amplitudes derived in this paper. coordinate system the gravitational wave travels in g,
The plan of this paper is as follows. In Sec. Il we derive adirection. In this frame the matriki has the form

general formula for the response of a laser interferometer to

our two component signal including both the phase and the hio(t) hx(® O

amplitude modulation. In Sec. lll from the maximum likeli- H(t)=[ hx(t) —h,(t) O, (3)

hood principle we derive the data analysis procedure to de- 0 0 0

tect the signal introduced in Sec. Il and to estimate its pa-

rameters. We obtain the basic probability density functiongynere the functionr, and h,, describe two independent
of the detection statistics. We show that probability of detecy, 5ye’s polarizations. Collecting Eqé1)—(3) together one

tion is determined by one parameter: the optimal signal-togan see that the response functioiis a linear combination
noise ratio. We study this quantity by means of the Monteys e functionsh, andh,, :

Carlo simulations for all the interferometric detectors that are

currently under construction. We conclude Sec. Ill by show- h(t)=F . (t)h.(t)+F(t)h(t), (4)

ing how one can take advantage of the speed of the fast

Fourier transform(FFT) algorithm to evaluate efficiently our whereF . andF . are called thébeam-patterrfunctions.
detection statistics. This involves application of the resam- Because of the diurnal motion of the Earth the beam pat-
pling techniques proposed earlier for the case of a simpleternsF, andF . are periodic functions of time with a period
signal model[15,21]. In Sec. IV we show that our analysis equal to one sidereal day. We want now to extract explicitly
can easily be extended to networks of detectors and we pethis time dependence as well as to expressandF as
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functions of right ascensiorx and declinationé of the TABLE I. Positions and orientations of detectors.
gravitational-wave source and polarization angje (the
anglesqa, 4, and ¢ determine the orientation of the wave Detector A L Y 4
reference frame with respect to the celestial sphere reference (degrees (degrees (degreep (degrees
frame defined beloy Our treatment pgrtlally follows that of GEOBOO 50 05 _9.81 68.775 94.33
Sec. V of[8]. We represent the matrid of Eg. (2) as
LIGO Hanford 46.45 119.41 171.8 90
LIGO Livingston 30.56 90.77 243.0 90
— T
M=MsM:My, ®) VIRGO 4363  —-105 1165 90
TAMA300 35.68 —139.54  225.0 90

whereM is the matrix of transformation from wave to ce-
lestial sphere frame coordinatdd,, is the matrix of trans-
formation from celestial coordinates to cardinal coordinatesn the West-East direction, the cardinal axis is along the
and M3 is the matrix of transformation from cardinal coor- Earth’s radius pointing toward zenith. In detector coordinates
dinates to detector proper reference frame coordinates. line z axis coincides with the axis of cardinal coordinates
celestial sphere coordinates tleaxis coincides with the and thex axis is along the first interferometer arthen the
Earth’s rotation axis and points toward the North pole,xhe y axis is along the second arm if the arms are at a right
andy axes lie in the Earth’s equatorial plane, and xhexis  angle. Under the above conventions the matridés, M-,
points toward the vernal point. In cardinal coordinates theand M5 are as follows(matricesM; and M, given below
(x,y) plane is tangent to the surface of the Earth at detector’soincide with matricesA andB from Ref.[8], cf. Egs.(52)
location withx axis in the North-South direction andaxis  and(60) of [8])

Ssina cosy—cosa Sindsiny  —Ccosa COSy—sina sind sinyg  coséd sin ¢
M;=| —Sina sSiny—cosa sin 6 COSy COSa SiN—sina Sin 5 cosy  Cosd cosy |, (6)
—COSa C0Sd —sin @ cosé —sin

sin\ cog ¢, +Q,t) sin\ sin(¢,+Q,t) —cosi
_Sin(d’r"'nrt) cog ¢, +Ot) 0 ) (7)
COSA cog ¢, +Q,t) cosA sin(¢p,+Q,t) sin\

=z
i

—sin(y+{/2) codvy+¢/2) O
My=| —cody+{/2) —sin(y+{/2) 0O, (8
0 0 1

In Eq. (7) \ is the latitude of the detector’s sit€), is the  The values of the angles v, £, and the longitudet (mea-
rotational angular velocity of the Earth, arfj is a deter- sured positively westwargsor different detectors can be
ministic phase which defines the position of the Earth in itsfound in Table I[25].

diurnal motion att=0 (the sum¢, +Q,t coincides with the To find the explicit formula for-, and F, we have to
local sidereal time of the detector’s site, i.e. with the anglecombine Eqs(1)—(9). After extensive algebraic manipula-
between the local meridian and the vernal ppiit Eq.(8) y  tions we arrive at the expressions:

determines the orientation of the detector’'s arms with respect

to local geographical directions.is measured counterclock- o ,

wise from East to the bisector of the interferometer arms, and F.(t)=sin {[a(t)cos 2/+b(t)sin 2/], (10
 is the angle between the interferometer arms. The vectors

n, andn, from Eq.(1) in the detector’s reference frame have F.(t)=sin ¢[b(t)cos 2y—a(t)sin 2], (11
coordinates

n;=(1,0,0, n,=(cos{,sin{,0). 9 where
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a(t)— ! sm27(3 c0S A )(3—cos )cog2(a— ¢, — Qt)]—lcOSZysm)\(S cos X)siN2(a— ¢, —Q,1)]

1 1 3
+ 7 sin 2y sin 24 sin 25 co§ a— ¢ — Qt] - 5 C0S 2y COSN sin 25 sin{ a— b~ t]+ 7 sin 2y co$\ coss,

(12
b(t)=cos 2y sin\ sin § co§2(a— ¢, —Q,t)]+ % sin 2y(3—cos A)sin § siM2(a— ¢, —Q,1)]

1
+c0Ss 2y cOsA cosé coga— ¢, —Q,t]+ > sin 2y sin 2\ cos é sila— ¢,— Q,t]. (13

By means of Egs(10)—(13) the beam-pattern functions can to the ecliptic and coincides with the orbital angular momen-

be computed directly for any instant of time. tum vector of the Earth. In that system the unit veatgr
Equivalent explicit formulas for the beam-pattern func- pointing towards the star has the components

tionsF, andF (for the case = #/2) can be found in Ref.

[26] where different angles describing the position of the

gravitational-wave source in the sky and the orientation of 1 0 0 COs @ C0s &
the detector on the Earth are used. Also for the cése . .
= /2 the functions andb can be found in Ref.19], where no=| 0 cose sine Sina cosé |, (15
still another set of angles is us¢ai7]. . .
0 —sine cose sin &

B. The phase of the gravitational-wave signal
wheree is the angle between ecliptic and the Earth’s equator.

hln A|ofpt?]nd|x A.tV\f[.e delrlve the_ t|m|e gependdenf{:?h of dtk: The position vectory of the detector has in this coordinate
phase of the gravitational-wave signal observed at the de e%ystem the components

tor’s location. We consider the significance of the corrections
due to the motion of both the detector and the neutron star
with respect to the the solar system baryce&3B refer- cog ¢o+ Qot)
ence frame as well as the importance of relativistic correc-

tions. On the basis of the discussion presented in Appendix,=Rg| sin(¢o+Qot)
A we adopt the following model of the phase of the

gravitational-wave signal: 0
S (k) g+l o S (k) tk 1 0 0 COS\ cog ¢, +Q,t)
vv= (D0+27TZ fo(k+1)| < Mo’ rd(t)z foﬁ’ +Rg| O cose sine cosh sin(¢, +Q,t) |,
(14 0 -—sine cose sin\

(9
wheref is thekth time derivative of the instantaneous fre- (16)

guency evaluated at=0 at the SSBn, is the constant unit

vector in the direction of the star in the SSB reference framewhere Res=1 AU is the mean distance from the Earth’s

andrq is the position vector of the detector in that frame. center to the SSBRg is the mean radius of the Eartf}; is
The signal analysis presented in the remaining part of théhe mean orbital angular velocity of the Earth, apglis a

paper does not depend on the numbeof the spindown deterministic phase which defines the position of the Earth in

parameters and therefore we keepnspecified. its orbital motion att=0. We recall that we neglect the ec-
We associate a coordinate system with the SSB referenazentricity of the Earth’s orbit and the motion of the Earth

frame. Thex axis of the system is parallel to tixeaxis of the  around the Earth-Moon barycenter.

celestial sphere coordinate system, zt&is is perpendicular Substituting Eqs(15) and(16) into Eq. (14) one gets
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V(1) =D o+ D(1), (17)

S k) tk+l ar
d(t)y=27 E fo—(k+1)| + {Red cosa cos § coq ¢+ Qgt)+(cose sin a cosd+sin e sin 8)sin(¢g+ Q)]
k=0 :

s k
(k) t
+Re[sin\ sin 8+cos\ coss coga— ¢ — Q)11 > forr. (18)
k=0 :
|
C. Wave polarization functions frequencyf. In this case the amplitude, is again given by

We use the following two-component model of the

Eq. (23) except thak is now the ellipticity of the star defined
gravitational-wave signal: by

h(t)=hy(t)+hy(t), (19 li—=15

€e=— (24)
where
wherel; andl, are the moments of inertia of the star with
hi(t)=F . (t)hy (1) +F(t)hy« (1), respect to the principal axes orthogonal to the rotation axis.
This model was considered j21].
ha(t) =F (). (1) + F () hax (1), (20) Replacing the physical constants in E83) by their nu-
merical values results in
hy ()= =hgsin 20 sin 2 cosW (1 f)
1+(t)=ghosin 20 sin 2 cos W (1), ho=4.23<10"%d, , (29
100 H
1 where
hy. (t)= §h03|n20(1+co§L)cos (1), (22)
q ( € )( I )(1kpc> 26
l 0 = s 5 .
hyx(t)= Zhosin 20 sin ¢ sin ¥ (t), 10 W0 gent '
By means of Eqs(10) and(11) the signal described by Egs.
hy(t)=hosinPd cose sin 20 (t). 22 (19-(22) can be written in the form
4 4
The beam-pattern functiors, ,F  are given by Eqs(10)— _ R o
(13) and the phas# is given by Eqs(17) and (18). h(t) izl Adi hl'(t)+i21 Aai hai(t), 27)

The model of the signal defined by Eq$9)—(22) repre-
sents the quadrupole gravitational wave that is emitted by ahere the eight amplitudes,; andA,; are given by
freely precessing axisymmetric star. The anglealled the

wobble angle, is the angle between the total angular momen- _ ) 1 .
tum vector of the star and the star's axis of symmetry aisd A11=hosin £ sin 20 = sin 2 cos 2 cosdy
the angle between the total angular momentum vector of the
star and the direction from the star to the Earth. The ampli- 1 _ )
tude hO is given by - Z Sin ¢ sin 2 sin CDO ) (28)
167°G elf? 1
VI (23 A1z=hosin ¢ sin 20| 7 sin « cos 2 sin @
wheref is the sum of the frequency of rotation of the star + E sin 2 sin 2 cos®y|, (29)
and the frequency of precessidnis the moment of inertia 8
with respect to the rotation axig,is the poloidal ellipticity
of the star and is the distance to the star. For small wobble Aoz hosi in 20| — 1 2 in @
angle the signah; is dominant. Details of the model can be 13= NoSIN £ sin g Sin < cos 2 sin @
found in[9]. When #= /2 theh; component vanishes. For 1
this special case thk, component is the quadrupole wave T ;
from a triaxial ellipsoid rotating about a principal axis with 4 Sin ¢ sin 2y cos o, (30

063001-5



JARANOWSKI, KRC_AK, AND SCHUTZ PHYSICAL REVIEW D 58 063001

1 quency of rotation of Earthf(=10"° Hz) and the same for
g Sine cos 2 cos g frequency 2,. The frequency modulation broadens the
lines. For the extreme case of the gravitational-wave fre-
quency of 18 Hz, the spin-down age=40 years, and the
observation timeT,=120 days the maximum frequency
shifts due to the neutron star spin down, Earth’s orbital mo-
1 tion and Earth's diurnal motion are, respectively,8,
Az1=hg sin ¢ sin20{§(1+co§b)cos 2) cos 2 ~0.1, and~10"2 Hz. As an example, in Fig. 1 we have
plotted the power spectrum of the noise-free response of a
detector located near Hannover to the gravitational wave
' (32 from the Crab pulsar. We took only the componaptwith
twice the rotational frequency. We have generated a 24-day
long signal.

A14=hgsin ¢ sin 20

1
— = Sin 2 sin 2 sin @

5 , (31

—CO0S¢ Sin 2 sin 2b,

o, 11 .
Ayp=hg sin £ sire §(1+co§b)sm 2 cos 2b,

lll. OPTIMAL FILTERING FOR THE AMPLITUDE

MODULATED SIGNAL

+cos¢ cos 2) sin 2P|, (33

A. Maximum likelihood detection

1 The signal given by Eq27) will be buried in the noise of

—5(1+ cos't)cos 2) sin 2b, a detector. Thus we are faced with the problem of detecting
the signal and estimating its parameters. A standard method
is the method ofmaximum likelihood detectiowhich con-

: (34 sists of maximizing the likelihood function with respect to
the parameters of the signal. If the maximumAoéxceeds a

1 certain threshold calculated from the false alarm probability

- §(1+0052L)sin 2 sin 2D, that we can afford we say that the signal is detected. The
values of the parameters that maximixeare said to be the
maximum likelihood (ML) estimatorsf the parameters of
. (35 the signal. The magnitude of the maximum/dofdetermines
the probability of detection of the signal.

We assume that the noisein the detector is an additive,
stationary, Gaussian, and zero-mean continuous random pro-
cess. Then the data (if the signalh is present can be
written as

A23: ho Sin g S|r\26

—Cc0S¢ Sin 2 cos 2b

A24: ho Sin g S|r]20

+C0s¢ cos 24 cos 2P

The amplitude®\;; andA,; depend on the parametdrg, 6,
¢, 1, and ®,. They also depend on the angle The time
dependent functionl;; have the form

h;=a(t)cosl®(t), h;,=b(t)cosld(t), x(1)=n(t)+h(t). 37)

1=1,2, (3
2, (36 The log likelihood function has the form

hiz=a(t)sinl®(t), h;,=b(t)sinld(t), 1
where the functiona andb are given by Eqs(12) and(13), In A=(x|h) 2 (hfh), (38)
respectively, andd is the phase given by Eq18). The
modulation amplitudest andb depend on the right ascen- where the scalar produ¢t|-) is defined by
sion a and the declinatio® of the sourcgthey also depend
on the angles\ and y). The phasefIJk depends on the fre- = X(F)Y* ()

(k) = A A
qguency fy, s spin-down parameter$, (kk= 1,...5), and (xly)=4Re Jo S(f) df, (39)

on the anglesy, 5. We call parameter§y,fy,a, 5 the phase

parametersMoreover the phas@ depends on the latitude  where  denotes the Fourier transforfnis complex conju-

of the detector. The whole signal depends (%n &s un-  gation, andS; is theone-sidedspectral density of the detec-
tor's noise.

known parameterdg, 6, ¢, ¢, ®g, a, 4, Ty, fo. I . . .
It is useful to consider the frequency domain characteris- . 1 he gravitational-wave signal given by EQ7) consists

tics of our gravitational-wave signal. The signal consists of°! W0 narrow-band components around the frequenties
two components with carrier frequencifigand 2f, that are and 2_fo a_md therefore to a very good accuracy the likelihood
both amplitude and phase modulated. The amplitude modJ@ti© is given by

lation, determined by functiona andb, splits each of the 1 1

two components into five lines corresponding to frequencies - _ = _t

fo—2f,, fo—1f,, fo, fotf,, fot2f,, wheref, is the fre- In A=(xlhy) = 3 (halhy) +(xIhz) = 5 (hzlhz). (40)
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FIG. 1. Power spectrum of the noise-free response of an interferometer located near Hannover to gravitational-wave signal from the Crab
(1)
pulsar at twice the rotation frequency. We have assumed the frequgre9.937 Hz and the spin-down parametdis=—3.773

(2) (3)
X107 19572 £,=0.976x10 2573 f;=—0.615<10 30 s* A 24-day long signal was analyzed corresponding to the frequency resolution
of around 4. 107 Hz. The power spectrum shows 24 main peaks resulting from the periodic phase modulation of the signal. In each
interval between the main peaks there are additional subsidiary peaks arising from the amplitude modulation of the signal.

This suggests that we consider the two components of the The log likelihood function for this signal is approxi-

response functior27) as two independent signals. Let us mately given by

take the first componeft; of the signal. We can assume that

over the bandwidth of the sign§),(f) is nearly constant and To

equal toS,(f,) wheref is the frequency of the signal;, at Sh(fo)

t=0. Thus in our case the above scalar product can be ap-

proximated by The maximum likelihood estimators can be found by maxi-
mizing the followingnormalized log likelihood function

1
In A= (x||hy)— E(hl”hl) . (43

h 2 fwz hy(t)d
=_— t t)at, 41
(xlhs) Sh(fo) —To/zx( ha(t 4y In Aiz(x||hl)—%(hl||hl). (44)

whereTj is the observation time and where the observatio
interval is[ — T¢/2,To/2]. It is useful to introduce the follow-
ing scalar product:

"he normalized log likelihood function does not involve ex-

plicitly the spectral density of the noise in the detector.
The signalh; depends linearly on four amplitudes;; .

The amplitudes depend on the five unknown paraméigrs

2 (Tol2 6, 4, 1, and®, and are independent. The likelihood equa-
(xlly) '_T_O JTO,ZX(t)y(t)dt' “2) tions for the amplitude#\;; are given by
As long as the detector’s noise is stationary over the obser- dIn Ay —0 i=1 4 (45)
vation period, this is a good scalar product. In realistic ob- A ' e

servations, the detector’s noise will vary slowly during the
observation period. We do not treat this important issue irOne easily finds that in our case the above set of equations is
this paper. equivalent to the following set of linear algebraic equations:
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4 The second partial derivatives of the log likelihood function
> MijA=(X||hy), i=1,....4, (46)  with respect toA;; are given by
i=1
_ , #’In A}
where the componentst;; of the 4<4 matrix M are given ———=—M;;. (54
M, =(hyl|hy)). (47) Sincea#b it follows from Schwarz inequality thab>0.
. e Thus asA>0 andB>0 the matrixM is positive definite.
Since over a typical observation tin¥, the phaseb will Therefore the extrema of the _Iog likelihood function _vvith
have very many oscillations, then to a very good accuracyespect toA;; are the local maxima. The above ML estima-
we have tors of the amplitudes\;; are substituted for the amplitudes
Aj; in the likelihood function(44) giving the reduced nor-
(h11[h19)=0, (hyyf|[h19)=0, (hyyl|h19=0, malized likelihood functiom\}=exp(F;) whereF; is given
by
(hyd|hy,) =0, (48 , ,
B(X|[h1)*+ A(x|[h12)“—2C(x|[h11) (X|[h1p)
and also 1= D
1 2 2_
(h11||h11)5(h13||h13)E§A1 N B(x||h19) +A(X||h14)D ZC(X||h13)(X||h14).
|| Ihso=> (@9) 0
hys|h1o)=(hy4|h1)= =B, 49
(N12ll2)=(M1dNsa 2 Thus to obtain the maximum likelihood estimators of the

parameters of the signal one first finds the maximum of the
functional F; with respect to the frequency, the spin down
parameters, and the anglesand § and then one calculates
the estimators of the amplitudes;; from the analytic for-
where A:=(al|a), B:=(b||b), C:=(al|lb). With these ap- mulas(52) with the correlations X||h;;) evaluated at the
proximations the matrix\ is given by values of the parameters obtained by the maximization of the
c (’)) functional F;. Thus we see that filtering for the

1
(hygl[h1p)=(higl|h1g) = EC’

gravitational-wave signal from a neutron star requifesr
O C linear filters. Efficient numerical methods to calculate the
statisticsF; are discussed in Sec. Il D.
whereO is a zero %2 matrix andC equals Exactly the same procedure applies to the second compo-
nent of the signal. The formulas for the estimators of the
amplitudesA,; and the normalized reduced statistiEs are
obtained from the above formulas by replacimg by h,; .

To consider the optimal detection of the whole two-
Thus M splits into two identical X2 matrices. Assuming component signal we need to remember that the eight ampli-
that a#b, A#0, and B#0 the explicit expressions for tudesA); are not independent. They depend on five param-
maximum likelihood estimator&,; of the amplituded\,; are ~ €t€rs:hg, 6, ¢, , and®,. To find the maximum likelihood
readily obtained and they are given by esﬂma’;or_s of the mdependent five pqrarr_leters we would have

to maximize the total likelihood functiofgiven by Eq.(40)]
R B(x||h1y) — C(x||h1p) with respect to these parameters. This however leads to an
117 D , intractable set of nonlinear algebraic equations which would
have to be solved numerically, thereby increasing the com-
A A(X||hy2) — C(X||hyy) putational cost _of the search for the signal. Instead we pro-
1= 5 , pose the following procedure:
(52) We form the statistics

A._> B(x|[h13) — C(x|[hys) - To P To .
13— ’ = .
D Su(fo) 7 Su(2f) 72

- A(x||h1s) —C(x||h19) This is just the reduced likelihood function assuming that the

A= D ' eight amplitudes are independent. We first maximize the

functional 7 with respect to the frequency, spin down param-

whereD is defined by eters, and angles and § and we calculate the eight ampli-

tudes from the analytic formulas. We then find the estimators
D=AB-C?2 (53 of the five independent parameters from the estimators of the

(50

1

C= E (51)

A C
C B/’

(56)
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amplitudes by least-squares method. We use the inverse tbn (PDF. Consequently the joint probability density func-
the Fisher matrix for the covariance matrix in the least-tion p(Xi1,X12,X13,X14) IS equal to a product
squares method. We shall consider this problem in future,(X11,X12) Pp(X13.X14), Where p, and p, are bivariate

work. Gaussian PDF’s with the same covariance matrix
To announce the detection of the signal the functighal

must exceed a certain threshold calculated on the basis of the 1 BX2,+ AX5,— 2CXq1X17

false alarm probability that one can afford. Onges above Pa(X11,X12) = mex - D ,

the threshold its magnitude determines the probability of de-
tection of the signal. Consequently we need to determine the
probability density function ofF both when the signal is and a similar formula fopy(Xys,X12), WhereX,; =xy; when
absent and present. B Lo

We shall first calculate these probabilities when the pa:[he signal is absent argh;=x;—my; when the signal is
rameters whichF depends on are known, i.e., when the fil- present. It is interesting to note that when the signal is absent
tershy; are known functions of time. We shall then explain the joint PDFpy is simply given by
how to obtain approximate formulas for the false alarm and 1
Lhnekr?g\fnctlon probabilities when parameters of the filters are Po=— exp( — Fy), (64)

(63

where F; is our optimal statistics. We want to find the PDF

) . . . . of F; when the signal is absent and present. We first decor-
We shall first consider the probability density function of rg|ate the variables,;. For the case of Gaussian variables

the normalized reduced function#h . Let us suppose that his can always be done by means of a linear transformation.

filters hy; are known functions of time, i.e. the phase param- ot s consider the following transformation mateix

(k)
etersfy,fy,a,6 are known, and let us define the following

B. Detection statistics

random variables: _ N O (65)
) O NJ’
Xq=(X||hy), i=1,...,4 (57)
_ . _ ~whereO is a zero 22 matrix and\ is given by
Sincex is a Gaussian random process the random variables
Xy; being linear inx are also Gaussian. Léq{x;;} and 1/\/A+C A/B 1/\/B+C BIA
E.{x,;} be, respectively, the meansxf when the signal is N= . (66)
absent and when the signal is present. One easily gets - 1/\/A—C\/A/B 1/\/B—C\/B/A
Eolx1i}=0, i=1,...,4, (58)  Let us introduce new random variableg (i=1,...,4) such
thatzlizif: 1£LijXyj . In the new variables the PDF takes the
and form
myq :=E4{x J}=£(AA +CA;») (59 1 1o = = =
e 125 P(Z11,212,213,214) = (ZT)ZeX - E(Zn"' Zipt 215+ 714) |
1 (67)
Mgz =Ea{X1o} = E(CAllJ“BAlZ)' €0 Thus z,; are independent Gaussian random variables with

unit variances. When the signal is absent we haye z;;

1 and when the signal is presemt;=z;;—m,., wherem;;
= — 4 | i 1i 1i ) 1
Mya:=Ba{Xsa) 7 (AAt ChAw), (62) =3{_,L;my;. The functional7; in the new variables is
given by
1
Mg :=Ex{X1qt= 5 (CA3TBAL). (62)

1
Fi= E(ziﬁ Z2+ 224+ 22,). (68)

One finds that the covariance matrix for the random variables

X4; is the same whether the signal is present or not and iThe probability density distributions af; both when the

splits into two identical X2 covariance matrice€ for the  signal is absent and present are well known. When the signal

pairs (X11,X1) and (X13,Xy4) Of random variables whei@is ~ is absent Z; has ax? distribution with four degrees of

given by Eq.(51). Hence the covariance matrix is exactly freedom and when signal is present it has a noncepftal

equal to the matrixM given by Eq.(50) above. distribution with four degrees of freedom and noncentrality
Thus in effect 11,X15) and (Xy3,X14) are pairs of corre- parametei =3_,(m;;)?.

lated Gaussian random variables, with pairs being indepen- In exactly the same way one obtains the PDF for the

dent of each other. For Gaussian variables their first twaormalized reduced functional for the second component of

moments determine uniquely their probability density func-the signal. The second component depends on four ampli-
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tudesA,; . The decorrelation is achieved by the same matrixsignal-to-noise ratia. In view of its importance we shall
L. Let us denote the four decorrelated random variables foinvestigate in detail the dependence of the optimal signal-to-
the second component kg, and their means byn),; (i noise ratio on the parameters of the signal in the next section.
=1,....4).

To obtain the PDF of the statistick for the detection of
the two-component signal it is convenient to introduce th
following normalized random variables :

k
Let us introduce a vector parameti#'= (fo,(fg ,a,06) de-
noting the phase parameters. When parametfs are
Snown the optimal statisticst is a random variable with
probability density functions given above. When the phase

T T parameters are not known we can thinkBfas a multidi-
n 0 n 0 . ; ph ; ; i
Z'=274 \ [— Z0 =275\ / i=1,....,4, mensional random procesq 4]"") with dimension equal to

Sn(fo) Sh(2 o)’ the number of phase parameters. Such a process is called

(69) random field For each realizatiox(t) of the data random
process the corresponding realization of the random field is
obtained by evaluating” for filters h; with continuously
varying parameterﬁi"h. For such a process we can define
éhe autocorrelation functio just in the same way as we
define the autocorrelation function for a one parameter ran-
dom process:

so that each random variabt® has a unit variance. Conse-
quently 2F=32 _(z")? has ay? distribution with eight de-
grees of freedom when the signal is absent and nonceyttral
with eight degrees of freedom when signal is present. Th
noncentrality parametex is given by

4

T T 4
Sy A Mt e 4™ (0 C=ELF(0P") F(6P")]. 76
0/ 1= o) i=

After some algebra one finds that=d? where

A

Let us first assume that the signal is absent,x(€) =n(t).
For many cases of interest the autocorrelation function will
H — pgrph_ gph;
d:=+(n[h). (71) tend to zero as the differencas= 6 — 67 increase. Thus
we can divide the parameter space into elementary cells such

The quantityd is called theoptimal signal-to-noise ratiolt  that in each cellC is appreciably different from zero. The

is the maximum signal-to-noise ratio that can be achieved fofealizations of the random field within a cell will be corre-

a signal in additive noise with tHeear filter [30]. This fact  lated (dependentwhereas realizations of the random field

does not depend on the statistics of the noise. within each cell and outside the cell are almost uncorrelated
Consequently the PDF’p, and p;, when, respectively, (independent Thus the number of cells covering the param-
the signal is absent and present are given by eter space estimates the number of independent samples of
the random field. For some signals the autocorrelation func-
F3 tion will depend only on the differences; and not on the
Po(F) = —g-exp(— F), (72) absolute values of the parameters. Then the randomied

called ahomogeneous random fielth this case one can
(2F)372 1 introduce the notion of the correlation hyperellipse as a gen-
p.(d,F)= Tl 5(d \/ﬁ‘)exp( —F— zdz) , (73 eralization of the correlation time of a stationary process and
estimate the area of the elementary cell by the area of the
correlation hyperellipse. For the general case of a random
field the number of elementary celd, can be estimated
from Owen’s formulg[28,21] with an appropriate choice of
the mismatch parameter and for the case of a homoge-
neous random field from a formula proposed by one of us
w [22]. For the parameter values in each cell the probability
Pe(Fo) ==f Po(F)dF distribution of F(6P") can be approximated by probability
o po(F) given by Eq.(77). Thus the probability distribution of
F is given by product ofN. copies of PDFpy(F). The
exp(—Fo). (74 probability thatF does not exceed the threshafg in a
given cell is 1- Pc(Fy), wherePg(Fp) is given by Eq(74).
The probability of detectiorPp, is the probability that7  The probability that7 does not exceed the threshakd in
exceeds the threshold, when the signal-to-noise ratio is all the N, cells is[1—P(F,)]Ve. The probabilityP] that &
equal tod: exceedsF, in one or more celis given by

wherel 5 is the modified Bessel function of the first kind and
order 3. The false alarm probabiliBf is the probability that
F exceeds a certain threshalg when there is no signal. In
our case we have

1 2 1 3
1+ Fot 5 Fot 5 Fo

= Pr(Fo)=1—[1—Pg(Fo)]Ne. 7
PD(d,fO)::J‘]__ pl(d,f)df (75) F( O) [ F( 0)] ( 7)
° This is the false alarm probability when the phase parameters
Thus we see that when the noise in the detector is Gaussi@te unknown. Wheg(Fy) <1 andNPg(Fp) <1 we have
and the phase parameters are known the probability of deteE’-;T:z N:Pe(Fy). When the signal is present a precise calcu-
tion of the signal depends on a single quantity: the optimalation of the PDF ofF would be very difficult because the
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presence of the signal makes the data random prodg}s 2 Tol2 12
nonstationary. As a first approximation we can approximate d1==V(h1|h1)E[ S (fo) j [hl(t)]zdt] , (8D
the probability of detection of the signal when parameters are 0} /- Tof2

unknown by the probability of detection when the param- 5 To2 12

eters of Fhe signal are knowigiven by_ Eq.(7_5)]. This ap- d,:= mz{ = f [hz(t)]zdt} . (82
proximation assumes that when the signal is present the true Sh(2fo) J-142

values of the phase parameters fall within the cell whEre )

has a maximum. This approximation will be the better theWe substitute Eq419)—(22) to Eqgs.(81)—(82) and drop out
higher the Signa|_to_noise rateh. An accurate probab”'ty of terms Wh|Ch OSC|”at-e around Zero W|th multlples Of the fre-
detection can be obtained by numerical simulations. Pargduencyfo. We obtain

metric plot of probability of detection vs probability of false

. . . . . . Tol2

alarm with opt_|mal S|gnal_—t0-n0|se rat@ as a parameter is d2= i Sin22Lj o Fidt
called thereceiver operating characteristidetailed calcu- 64 ~Tol2
lations of the number of cellsl, and false alarm probabili- 26ir2
ties as well as plots of receiver operating characteristic for i i sinZLfTO/Z 2 4t hgsin26 83)
the case of the signal considered here will be given in future 16 ~Tyl2 x Si(fo)
work.

The above reasoning is a generalization to the case of , [1 , (T2,
many parameters of the idea of affective sampling rate d E[z(lJFCOSZL) f Fidt
introduced by one of ugl5] and further developed if29]. ~Tol2
Related ideas can also be found in Ré&fl]. Tol2 h2sin’6

For large signal-to-noise ratios, the rms errors of the esti- +coge szdt} 5T (84
mators of the parameters of the signal are approximately ~Tol2 Sh(2fo)

given by the square roots of the diagonal elements of th
inverse of the Fisher information matrix with the compo-
nents given by

?After performing integrations in Eq$83) and (84) we get

di=[Ay(8,¢,0)To+B1(a, 8,4, To)]

dh ﬁh) hsir?26
Fi=|—=|—|. 78 i 0

ij (a@i J6; (78) X Sirf{ S (fo) (85
We shall study these errors in detail in future work. For d2=[A,(8,,0) To+Bola,8,4,0:To)]
smaller signal-to-noise ratige.g.=<10) the errors are larger . B
(see Ref[32] for a discussion in the context of coalescing ) hgsin“a
binaries. X Slrlz§m : (86)

C. Signal-to-noise ratio The functionsB; andB, are periodic in the observation time

T, with the period of two sidereal daysf. Eq. (B2) from
Appendix B|. For simplicity we suppress the explicit depen-
ence of the functiong, and B, on the angles\ and vy.

In this subsection we use the following models of the
noise spectral densities, in the individuals detectors. The
noise curves for the VIRGO and the initial-advanced Lase ; . ) : .
Interferometric Gravitational Wave ObservatdiyyGO) de- Detalleq expressions for the functioAg andB are given in
tectors are taken fromi34], and the noise curve for the Appendix B. . .

TAMA300 detector is taken fronj6,35). Wide-band and For the observation timeg, longer than several days the

narrow-band versions of the GEO600 detector noise argdnal-to-noise ratios;, dz, andd are dominated by terms
based orf36]. proportional to the square root of the observation tifige

The optimal signal-to-noise ratid is given by the for- NS can be seen in Figs. 2 and 3,

mula (71): The signal-to-noise ratias? andd3 are complicated func-
tions of the anglesy, 4, ¢, ¢, and 6. We have studied the
d:=/(h|h). (790  different averages af? andd3 over these angles. Averaging

is performed according to the definition
The gravitational-wave signal defined by Eq4.9)—(22)

consists of two narrow-band components around the frequen- () ._i 2ﬂd xl 1 dsins
ciesf, and 2f, and therefore to a very good accuracy the adynd = | NERy |
signal-to-noise ratid@79) for that signal can be written as
1 2w 1 1
X=— dyx = f d cos
d=d%+d?, (80) ZvJo vxg ) 0 eose
whered; andd, are the signal-to-noise ratios for the indi- % E Trdg )
; . : (). 87)

vidual components of the signal. They are given by 7™ Jo
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FIG. 4. The plot of the produa,(8)sir? £ against the declina-
tion & of the gravitational-wave source for different detectors. It can
%e shown(cf. Appendix B that for a hypothetical detector located

FIG. 2. The relative contribution of the padtt,, of the signal-
to-noise ratio proportional to the square root of the observation tim

:—hoeto \t/\klllg;ota:)l:rl]%nalntoolsr;0|s§urr?/tené)(;‘or~thhe (;‘.ﬁ?{ioggggg:(rfv;lth at the latitude = + arccos/2/3~ +35.26° there exist eight differ-
sqr— ' 0 1 0 ent orientationsy of its arms such that the functian=1/5, i.e.e,

12 i
+ASIM OS2 1o)] \To, cf. Eqs.(79), (84), and (85)). A hypo does not depend on the declinatidhof the gravitational-wave
thetical neutron star is assumed to be in the distance of 40 pc from

source. These orientation angles arey,, 90°* y,, 180°
the Earth and to emit gravitational waves with frequerfey o o 1 i o
=100 Hz, star’s ellipticity is 10°, its moment of inertia with re- ~ 70’ 270°% 7o, 360°= yo, Whereyo=3 arcsiny3/5~25.38°.

spect to the rotation axis is 40g cn?. We also setr— ¢, =15°,

0=35°, y=11.25°,,=22.5°, andd=45°. oTosm 0

Sn(2fo)

Further averaging over the orientation angeand . gives

(d2) o =As( 8,49, 0)SIPL e (89)
Note that becausée[— w/2,7m/2] integration over sid
rather than co$ is involved in Eq.(87).

Averaging over the angle discards the oscillatory parts

2 .
B, andB, of the signal-to-noise ratiod? and d3: () inez( 5)sirs hoToS|n220’ -
Sh(fo)
haT,sin?26 _4 h3T,si n40
d2) = Ay (8, ¢, 1) SIPE —~— 88 d2 —e,(8)SIPl ———— 91
30
e 120
25
/’ 100 /
20 / 80 /
a 2
o 15 ° 60 /
/ /
10 1 a0l /|
5 / 20 /
0
0 " ] 20 40 60 80 100 120
] . (day‘ls) S [ 7 T, (days)

FIG. 3. The total signal-to-noise ratib as a function of the observation tinig for the GEO600 detectawith the wideband noise
curve). The neutron star parameters are the same as in Fig. 2.
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1 1
0.8 0.8
0.6 0.6

fo = 100 Hz

0 50 100 150 200 250 300
d

FIG. 5. Cumulative distribution functions of the simulated signal-to-noise rdtogsl,, andd for the VIRGO (V), initial Hanford (H),
and initial Livingston(L) detectors. We assume that star’s ellipticity is 10its moment of inertia with respect to the rotation axis is
10* g cn? and its distance from the Earth is 1 kpc. The observation time is 120 days. The left columr jsft®0 Hz and the right one
is for f;=500 Hz. We have also shown the cumulative distribution function of the signal-to-noiselsdtiothe GEO60QG) detector with
the narrow-band noise tuned to 1 kHz with the band-width of 30 Hz.

The functione, (its definition can be found in Appendix)B Averaging over the angles, 6, ¢, and. yields results

in the above equations is a fair representation of the averagehich do not depend on the position of the detector on the
sensitivity of a detector at a given location. It depends on thé&arth and on the orientation of its arms:

declinationé of the gravitational-wave source as well as on
the latitude\ of the detector’s site and the angfelescribing 1 h2T -sir?20
the orientation of its arms. The produst(8)sir?¢ is plotted (02), 5 4 /= —— Sir? oo - (92)
against the declination for different detectors in Fig. 4. Va2dtT 100 Sn(fo)
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27 sint (k)
(d%)aﬁ,,ﬁwz:—issinz ;h(OZSIf )0 (93 O(t)=27f[t+ P, (t;a,8) ]+ Py(t;fg,a,8), (96)

where functionsb,,, and® do not depend on the frequency
For the special case of the model of neutron star as a triaxiglarameterf,. Let us define the following two integrals:
ellipsoid the angleg= /2 and then the contributiod? to T
the S|gnal—t§)-n0|se rat!o vanishes. However for small angles Fla:J 0 X(t)a(t exd — i dy(1)]
0 the termd; may dominate over the tern‘ﬁ. The averaging
of the above formulas over the anglegives

—Tpl2

Xexg{ —i2afo[t+d,(t)]}dt, (97)
1 hTo Tol2
CENPE zoosngsh(f ) (99 Flbzf / X(t)b(t)ex —iP(t)]
- o
, h2T Xexp{—i2mfo[t+ ], (t)]}dt. (989
(d%) 5,41, Sln2§ (95)
2= Sh(2f ) One can write the statistic; in terms of the above two
integrals as
We observe that when the noise spectral density at frequen-
ciesfq and 2f, is the same the averag®5) of d3 is more 4 B|F 4%+ A|F1p|2— 2CR(F1.F 1)
than one order of magnitude greater than the ave{@¢jeof Fa= T2 D - (99

d2
We have studied the distribution of the signal-to-noiseyye can introduce a new time coordinate

ratiosd,, d,, andd over the angleg;, &, ¢, ¢, and 6 with the

aid of the Monte Carlo simulations for the observation time tp(t)=t+ D (1). (100

To=120 days. For each case we have generated 10 000 sets

of angles according to the probability measure defined by th&rom the explicit expression for the phagegiven by Eg.

right-hand side of Eq(87). We have assumed that the pa- (18) the time shift®,, and its time derlvatlved) can be

rameterd, given by Eq.(26) is equal to 1. The results are estimated by

shown in Figs. 5-7 where we have plotted cumulative dis-

tribution functions of the simulated signal-to-noise ratigs

Res
d,, andd for the initial/advanced Hanford, initial/advanced [Pm(V)]= T_SX 10°s,

Livingston, VIRGO, GEO600, and TAMA300 detectors. We (109)
have performed simulations for two gravitational-wave fre- . QoRes

R i =——=1x10"%
qguenciedy: 100 and 500 Hz. The shapes of the distributions | Prm(1)] C

of the signal-to-noise ratiod; andd, do not depend on the
frequencyf, [cf. Egs.(81), (82)] and will be the same for Assuming the maximum observation tifig= 120 days to a
nonaxisymmetries generated by different physical mechayery good approximation we have
nism, e.g., for the case of CFS instability.
In Table Il we have given the means and the quatrtiles for

the Monte Carlo simulated cumulative distribution functions Th =tp(To)=To, d_tbzl' (102
of the signal-to-noise ratiod;, d,, andd for the individual
detectors. Thus in the new time coordinate the integrélg, and F 4,

From Figs. 5, 6, and Table Il we see that the simulatectan be very well approximated by
distributions of the signal-to-noise ratids, d,, andd de-

pend weakly on the position of the detector on the Earth and To/2 .
on the orientation of its armgcf. plots and data for the a= | O,zx[t(tb)]a[t(tb)]e)(p{_'q)S[t(tb)]}
initial/advanced Hanford and Livingston detecjorghis is
related to the fact that the averag68) and(93) are idepen- xXexp(—i2mfoty)dt,, (103
dent of the position of the detector on the Earth and of the
orientation of its arms. To/2 .
Flb:f ; /ZX[t(tb)]b[t(tb)]eXp[—I<I>s[t(tb)]}
—lo
D. Data analysis method X expl — i 27f oty dty . (104)

It is important to calculate the optimum statistics as effi-
ciently as possible. One way to achieve this is to take advarHence we see that with the new time coordingte¢he two
tage of the speed of tHast Fourier transform(FFT). Let us  integrals(103) and(104) are Fourier transforms of the func-
consider first the normalized reduced functioffal One ob-  tions

serves that the phask of the signal can be written dsf. _
Eq. (18)] X[t(tp)]alt(ty) Jexpy —i P t(ty) ]}
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1
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0.6 0.6
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,,,,,,,,, L
0 0
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d d

FIG. 6. Cumulative distribution functions of the simulated signal-to-noise ratigsd,, andd for the advanced Hanfor@H) and
advanced Livingstor(L) detectors. The observation time is 120 days. The left column i ferl00 Hz and the right one is fof,
=500 Hz. The neutron star parameters are the same as in Fig. 5.

and {—idJt(t,)]}. Then we calculate the two Fourier transforms
, (using FFT algorithm The resampling technique has been
X[t(ty) b[t(ty) Jexp{ —i Py t(ty) ]} proposed by one of ugl5] and considered as an effective

. . . ata analysis tool for searches of gravitational waves from
respectively. To calculate these integrals for a given set of g iqgic source§21].

phase parameters we need to perform the following numeri- - Ajternatively one could define new spin-down parameters
cal operations. For the chosen values of the paramatarsl

6 we resample the original time series according to the for- (f")
mula (100 and .then we multiply the resampled time series f\ .:_0' k=1,...s, (105
x(t,) by functions a(t,)exp{—i®Jt(t)]} and b(ty)exp fo
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FIG. 7. Cumulative distribution functions of the simulated signal-to-noise rdtiogl,, andd for the GEO600G) with the wide band
noise curve and TAMA30QT) detectors. The observation time is 120 days. The left column i$ferl00 Hz and the right one is for
fo,=500 Hz. The neutron star parameters are the same as in Fig. 5.

and introduce a different time coordinate and perform the resampling process according to the formula
(106).
tp(t)=t+ P (1) +D(1), (1006 The functionsa, b and consequenthy, B, C, andD are
known and they depend on the declination, the right ascen-
where sion, and the time of observation. Their values can be calcu-
lated and stored for a fine grid of positions of the neutron star
, > thtt on the sky and appropriate observation times before the data
‘Ds(t):gl IrE (109 analysis is carried out,
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TABLE Il. The means and the quartiles for the Monte Carlo simulated distribution functions of the
signal-to-noise ratiosl;, d,, andd for the individual detectors and for the three detector network of the
VIRGO and two initial LIGO detectors. For the GEO600 detector we use two noise curves: wide band and
narrow band tuned to 1 kHz with the bandwidth of 30 Hz. The observation time is 120 days. We assume that
star’s ellipticity is 10°°, its moment of inertia with respect to the rotation axis i€>i@cn? and its distance
from the Earth is 1 kpc. Quantilg, gives a value, of random variable such that probability that<z, is
less than or equal t®. The quantile values at=0.25, 0.5, and 0.75 are called the quartiles.

f0=100 Hz f0:500 Hz
Detector Mean Qo.25 Jos Jo7s Mean dozs  QGos  Gors
GEO600 d; 0.70 0.37 0.72 1.0 14 7.5 15 21
wide-band noise  d, 3.1 0.79 2.7 4.7 21 5.4 18 32
d 3.2 11 2.9 4.7 28 17 28 37
GEO600 d, 1.2 0.64 1.3 1.8
narrow-band noise d, 180 47 160 280
d 180 47 160 280
Initial Hanford d; 2.8 15 2.9 4.2 48 25 49 70
d, 12 3.2 11 19 72 19 63 110
d 13 4.7 12 19 95 56 96 120
Advanced Hanford d; 89 46 90 130 480 250 490 700
d, 140 37 120 210 720 190 630 1100
d 180 100 180 240 950 560 960 1200
Initial Livingston d; 2.9 15 3.0 4.3 48 25 50 71
d, 12 3.2 11 19 72 19 64 110
d 13 4.8 12 19 95 58 97 120
Advanced Livingston d; 89 47 92 130 480 260 500 720
d, 140 37 130 220 720 190 640 1100
d 180 110 180 240 950 580 970 1200
VIRGO d; 15 0.78 15 2.2 46 24 48 68
d, 5.8 15 5.2 8.9 86 22 76 130
d 6.2 2.3 5.7 9.0 110 57 100 140
TAMA300 d; 0.094 0.049 0.098 0.14 13 6.9 14 19
d, 11 0.28 0.97 1.7 29 7.3 25 44
d 11 0.30 0.98 1.7 34 17 33 46
Initial LIGO/VIRGO  d; 4.3 2.3 4.5 6.4 82 43 86 120
network d, 19 4.8 17 28 130 35 120 200
d 20 7.1 18 29 170 100 170 230

The normalized reduced functional for the second compoThe statisticsF for the whole signal is then calculated from

nent of the signal can be calculated in a similar way. Herghe formula
the corresponding Fourier transforms are given by

Tol2
anEJ X[ t(tp)]a[t(ty) Jexp{—i2PJ t(ty) ]}
~Tyl2

0

XeXF(—i47Tfotb)dtb,

(108

Tol2
Fa= | XLt TbIt(t) Texpl~ 2 01}

To

><eX[.‘(—i47Tf0tb)dtb .

(109

4 B|Fy|*+A|F1p|* = 2CR(F 1,F3p)

F=
Sh(fo)To D
4 B|Fgq|*+A|F2|°—2CR(F54F3,)
Sn(210)To D '

(110
The statisticsF needs to be calculated on a multidimensional
grid of parameter value@&xcluding the frequency parameter
fo) covering sufficiently densely the parameter space, and
compared against a threshold.
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FIG. 8. Cumulative distribution functions of the simulated signal-to-noise rdtjpsd,,, andd, for the three detector network of the
VIRGO and two initial LIGO detectors. The observation time is 120 days. The left column ig 0100 Hz and the right one is fdf,
=500 Hz. The neutron star parameters are the same as in Fig. 5.

IV. NETWORKS OF DETECTORS detector given by Eq56). We maximizeF, with respect to

The analysis of the previous section can be generalized '€ Phase parameters to obtain their estimators. We calculate
the case of a network dfl interferometers in a straightfor- the estimators of the amplltudes_ from the analytic formulas.
ward manner. Assuming that the noise in each detector i$hen we use a least-squares fit to estimate the parameters
uncorrelated with the others, the likelihood function for the(ho.6.%,t,Po) from the 8N amplitude estimators. When the
network is the sum of the likelihood functions for the indi- phase parameters of the signal are known each of the indi-
vidual detectors. Therefore we define a statistigsfor the  vidual statistics7; multiplied by a factor of 2 hag? prob-
whole network as the sum of the individual statistics of eaclability density distribution with eight degrees of freedom
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when the signal is absent and noncengabistribution with ~ wherer is the proper time in the neutron star rest frame. The
noncentrality parametet? when the signal is present. The assumption(A1l) means that the instantaneous frequency of
Gaussian variables entering each statisfiesrmalized ran- the signal in the rest frame of the neutron star is given as
dom variablesz! given by Egs.(69)] have the same unit

variance. Thus Z, has they? distribution with 8 degrees 1 dPdn) < k7
of freedom when signal is absent and noncengradlistribu- fnd 7)e=o7 _dr_:gfo fas g (A2)

tion with noncentrality parametet:==" ,d? when the sig-

nal is present. The quantity, can be defined as thetal (k) . o

signal-to-noise raticof the network. Probability of detection S {nsiS thekth time derivative of the frequency evaluated at
is then calculated by E@75). When the phase parameters of 7~ 0. . _ _

the signal are unknown similarly like in the one-detector case W€ assume that the neutron star is moving with respect to
one can consider a random field which is a sum of the ranth® SSB uniformly along a straight line according to the
dom fields for the individual detectors and investigate thefauation
correlation function for this random field to obtain an inde-
pendent number of cell, of the field. One can then calcu-

late the false alarm probability for the network by means of

Eq. (77).

We have studied the distribution of the network signal-to-wherer g :=|r,{t=—ry/c)|, ng:=r t=—rq/c)/rq. If we
noise ratiosd,,;, d,,, and the total network signal-to-noise denote by, the constant velocity vector of the neutron star
ratio d,=\/d%, +d2, over the anglesr, &, ¢, 1, and @ with  thenuv,g:=|vad andn, :=vys/vns. The timet in Eq. (A3) is
the aid of the Monte Carlo simulations for the observationthe time coordinate in the SSB rest frame. We do not allow
time To= 120 days. We have restricted ourselves to the threghe neutron star to have an intrinsic acceleration. This means
detector network of the VIRGO and two initial LIGO detec- We exclude binary neutron stars, except for the binary peri-
tors. For each case we have generated 10 000 sets of angR@s So long that the acceleration effects may be accurately
according to the probability measure defined by the right2pproximated by a Taylor series during the observation time.
hand side of Eq(87). We have assumed that the parameter The phase observed at the SSB at some timas emit-

d, given by Eq.(26) is equal to 1. The results are shown in ted by the star at the coordinate tirtfesuch that
Fig. 8. We have performed simulations for two gravitational- ,
wave frequencie$,: 100 and 500 Hz. =t 4 [rag(t")] (Ad)

In Table Il we have put the means and the quartiles for the c
Monte Carlo simulated cumulative distribution functions of
the signal-to-noise ratios,,;, d,,, andd, for the three de- One can show that the relation between the tirhand the
tector network of the VIRGO and two initial LIGO detectors. star’s proper timer is as follows:

Adding the GEO600 and TAMA300 detectors will not sig-

nificantly change these signal-to-noise ratio values, but the

smaller detectors can play an important role in making coin- T=N1=Brs
cident detections by improving the confidence that the can-

didate events registered by larger detectors are not due {Qhere g, :=v,¢/c. In Eq. (A5) the time dilation effect is

Fndt) =TroNo+vnd, ) (A3)

.
t+—
Cc

, ., To
t +€), (A5)

unmodeled noise. taken into account. We have also assumed t¥a0 when
the star’s position vector with respect to the SSByis,. We
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APPENDIX A: THE PHASE OF THE GRAVITATIONAL- 0
WAVE SIGNAL s

fnS
Vs t)=Do+27 >, qrgyr(1-Ba)* Y7
We assume that in the rest frame of the neutron star the ssdt)=Po kZO (k+ 1 (1~ Bnd

time dependence of the phase of the gravitational-wave sig- K1

nal can be written as a power series of the form: x(t’(t)+ %O , (A7)
St K wheret’ is the solution of Eq(A4) for a given timet. It
\P”S(T):q)ﬁzwgo fos (k)T (A1) reads |
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1

t'=
1_ﬁﬁs

r r 5
{t+ Eoﬁnsl:lgns"'(no' nv)]_ \/:8%5t2+2€0:8n5[18ns+(n0' nv)]t+ C_2[1+,an(n0' nv)] . (A8)

We expand the functio g5 given by Eqgs.(A7) and (A8) with respect to time aroundt=0. The first few terms of the
expansion read

Vssdt) =P (© ®  ((ng'n)’-1)Bh  © | t?
2w sl {fSSB+(1+<no-nv)ﬁns>2<ro/c> SSB]7
{f§;8+(1i((<:§ n ))ﬁn;)f;;c) oo (1i€;2+r(1n;ﬁns))2)(€zjc) fo| rowh, o)
[
where rg(t)=rq(t)ng(t), (A13)
® (1=-BR% D2 where r(t) :=|r4(t)| and ng(t) :=r4(t)/ry(t). The phase of

fsspi= [1+(ng- ) A<+ frs, k=0,...s. (A10) o gravitational-wave signal at the tinteat the detector’s
vrrn location corresponds to the phase near the neutron star at an

As a result of the motion of the neutron star with respect tof@lier instant of timet”, wheret” is the solution of the

the SSB the Taylor expansigA9) of the phasel g5 con- equation

tains infinitely many terms, even if we restrict, as in Eq.

(A1), the intrinsic spindown of the star to finite number of Irndt") =1 4(t)]

terms. When the neutron star moves radially with respect to t=t"+ - a— (A14)

the SSB thenrf,-n,)?=1 and the function sgg canexactly

be written as the finite sum: ) )
The same value of the phase is observed at the SSB at time

oo gkt
Vsset)= q’o+2772 fSSB(k+1)I (A11) L Iredt)]
Cc

We shall assume the following polynomial model of the
phase of the gravitational radiation observed at the SSB: thus using Eq(A12) we can write

i K tk+1 (k)
Vosgt) =D+ 27 f , Al12
ssdt)=Po oD A1 ®0+2W2

yeen o Irad ()]}
(k+1)' vOr——=—]

. (k) . (A15)
where the new spin-down parametdgs do not in general

comude with the Doppler scaled intrinsic spin-down param- wheret’(t) is the solution of Eq(A14) for given timet.

etersfSSB defined by Eq(A10). Using Egs.(A3) and(A13) we express the solutiati to Eq.
We write the position vectory of the detector with re- (Al14) in terms of the time and the two small parameters
spect to the SSB as Bnsandx:=rgy/ry:

1 2
t”(xvﬁns) [t+ an[(no n ) (nd n )X+,an] t+rEOIan[(nO'nv)_(nd'nu)x+,3ns])

1- 6%

2

112
+(1- ﬁns)( =[1+ 852 (nO'nd)X+X2+2((n0'nv)—(nd'nu)x)ﬁns]_tzﬂ } (A16)
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Using Eq.(A13) we also find that Analysis of the first few terms of the Taylor expansion
shows that for the observation tim&g= 120 days, neutron
Irdt") star distances,=40 pc, velocities ,=<10* km/s, frequen-
c cies fo=<1 kHz, and spin-down ages=40 years, the only
terms which can contribute more than 1/4 of a cycle to the
phase of the signal, read

2 2
Mo o

_ 2

= ?4—2? an.

(A17)

tr/+r_0
C

Mo
t"+ ?) (nO’ nu)ﬁns+
4k gkl

V=0, + Zﬂgo fo(k-l-—l)!
We now study how to simplify the phask, given by Eqs.
(A15)—(A17). 2

An optimal method to detect our signal in noise devel- + ry
oped in Sec. lll involves correlating the data with templates
of the signal. In general if the phase of the template differs .
from that of the signal by as little as 1/4 of a cycle the WNereVns, =Vns—(No-Vnd o is the component of the veloc-
correlation will be significantly reduced. Thus we adopt the! Vns perpendicular to t.he vectar,. The ratlovnﬂl/ro de-
criterion thatwe exclude an effect from the model of thet€rmines the proper motion of the star. The term in the above

signal in the case when it contributes less tHa# of a cycle expansion proportional s /r.o. con.trlbutes at most-4
to the phase of the signal during the observation tiffieat cycles. We. s_hall not CO”S'deF itin th.|s paper. We shall quk
at the possibility of its determination in the next paper of this

this criterion is only a sufficient condition but not necessary™ . c " ict | ¢ h del
follows from the correlations among parameters of the phasege”es' onsequently we restrict ourselves 1o a phase mode

The shifts in the values of the parameters in the templat@t the detector of the form
phase away from the true values of the parameters in the 4 i1 3 .
signal phase can compensate for the effects in the signal not _ gkt 2m Wt
. \ . V=0t 27D, form——t —Np 1D for.

taken into account in the templates. This effect was observed =0 &0 O(k+1)! T ¢ 0 d& Ok
for the case of coalescing binari€33,37—-39. Finally we (A21)
stress that such shifts in the template parameter values mean
that the estimators of the parameters of the signal when usinghe model(A21) contains the positiony of the Earth rela-
an inaccurate template will be biased. It may happen thafive to the SSB, which we now consider. In addition we must
these biases are much larger than the rms errors of the esgonsider extra, purely relativistic effects left out @?21).
mators. Thus templates accurate to 1/4 of a cycle over the Motion of the Earth with respect to the SSB is very well
observation time may not be needed to detect the signal, bfetermined and there are several computer ephemeris rou-
they will be needed to obtain accurate estimates of the errofgnes availablg 20]. In this paper we assume for simplicity
in parameter measurements. that the Earth moves on a circular orbit around the Sun. The

In calculating the number of cycles we assume a longeccentricity of the Earth’s orbite(,=0.017) introduces a
observation time of 120 days, the maximum graVitatiOﬂa'Change of about 8:310° Cyc|es in the phase with respect to
wave frequency of 1 kHz, and the extreme case of a neutrothe phase for circular orbit for 1 kHz signal, so it must be
star at a distance,=40 pc with v,=10°> km/s. For this included in realistic filters. But it introduces no new param-
extreme case the parameterand 8,s assume the valugas  eters so we ignore it here. We also ignore the motion of the

3
v (k) tk

Mo+ —— t) re> for,  (A20)
ro k=0 kI

to a good approximationg=1 AU): Earth around the Earth-Moon barycenter.
_ - B 5 There are two types of relativistic corrections. One origi-
Xx=121xX1077,  Bps=3.34x10°" (A18) nates in the difference between the coordinate tinagich

®) we used in the derivation of the phase model and the proper
The numerical values of the spin-down parametiysve  time 7 in the detector’s reference frame. The difference is
estimate by means of the relation: due to the combined effect of the gravitational redshift and
the time dilation. The other correction is the Shapiro delay

(k) fo caused by propagation of the gravitational wave through the

|fo|2k!;, (A19)  curved spacetime of the solar system. We estimate the con-

tribution to the number of cycles in the phase produced by

wheref is the radiation frequency andis the spin-down these corrections.

age of the neutron star. As the extreme case we will consider The difference t_)etween t_he coordinate “F“'*‘ .the first-
7=40 years. order post-Newtonian coordinate system which is assumed to

It is convenient to carry out the Taylor expansion of thebe the rest frame of the SSB and the proper tinkept by a

phase(A15) with respect to the parametexsand B... We terrestial clock is discussed in detail in Ref0]. The differ-
note that for anyn ns’ enceAg :=t— 7 is given by the integral

My P 1 [t Loou(thH?)
m(X—O,BnS—O)—O- AE=? MU[r(t )+ — ]dt, (A22)
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wherer is the position vector of the clock with respect to the since they are unlikely to influence our results. However they

SSB,v:=r is the clock’s coordinate velocity, and[r(t)] is ~ May need to be included in filters.

the instantaneous gravitational potential at the clock’s loca-

tion. The time difference described by the integ#22) can APPENDIX B: SIGNAL-TO-NOISE RATIO
be split into the secular and periodic part. The secular differ-

ence is due to the practically constant rotational velocity anqu
the Earth’s gravitational potential at the detector’s location
as well as the average orbital velocity of the Earth and thd

In this appendix we give the detailed expressions for the
nctionsA;, A,, By, andB, from Eqs.(84) and(85). They
ead

average gravitational potential along the Ear'gh’s orbit. T_his Al(8,4,0)=F(1)e,(8)cos 46+ Gy(1)ey(5), (Bl)
secular difference corresponds to the rescaling of the time

coordinate and can be incorporated into the definition of the 1 A Q

spin-down parameters. The main contribution to the periodic B («,8,¢,4,Tg) = — > sin( n—’TO)

part of the integralA22) was calculated by Clemence and O i=1 2

Szebehely41] and then corrected by Blandford and Teukol-

sky [42]. It can be written as *{Cun( 880,11 c0N(@ = Gp)]

1 +Dynl( 8,4, 0)sinn(a— ¢) 1},
(1—§e§;)sin M, (B2)

where(), is the rotational frequency of the Earthy is the
(A23) observation time, and where

Cin(0,h,0) =F(0)[ f1n(5)COS 4)+gy1n(5)sin 4]

_ 2GM o€g
(Ag) periodi= Fa,(1-€2)0,

1 3, .
+§e®sm Mg+ §e® sin Mg

where Mg is the mass of the Sugg,=1 AU, (, is the
mean orbital angular velocity of the Earth, andM are +Gi(0)hin(9), (B3)
the eccentricity and mean anomaly of the Earth’s orbit. The _ .

quantity (Ag) perocic Varies in time with the period of one Din( 8, 4,6) = Fie()[ f2n( 8)COS 4p+ gan( 8)sin 4]
year and has the amplitude1.7x10 % s, so for a 1 kHz +G(t)hon( ), (B4)
gravitational wave the contribution of this correction to the

total number of cycles is not greater thattwo cycles. Even 1 1
when it must be included in a filter, it introduces no new Fi(v)=- 1—63In4t, Fa()=7 sirf*e, (B5)
parameters.
The magnitude of the Shapiro delay can be estimated 1
from the relation[43] (neglecting the eccentricity of the Gl(b):1—65inzb(l+C052L),
Earth’s orbi}
1
2GM 1 i
Aem . © I e (A24) Gy(1)=7(1+6 cogi+cosh). (B6)

. . The functionseq, e,, fy,, and gy, (k=1,2,n=1,...,4)
whgree is the_ star—Sun—dethtor angle at the time qf Obser'entering Eqgs(B1), (B3), and(B4) are equal to
vation. To estimate the maximum value of the Shapiro delay
we consider a neutron star in such a position that at some e, (8)=4j,cod's, e,(5)=4j,—j3c0s B+ j,C0$25,

instant of time the line of sight from the detector to the

neutron star is tangent to the surface of the Sun. Then f11(8)=—4j,c086 sin 6,
=0,=m—{, where /=R /1 AU=4.65x10 3 rad Ry is
the radius of the Sun Six months laterd= 6,={, so the f18)=]5c0$8(3— cos ),

amplitude of the correction is
f13(6)=—]jg(7—cC0S 2)sin 25,
Ag(0=61)—Ag(6=6>)
f14(8)=—j+(35—28 cos D+ cos &),

2GM 1+coséd
~ © 21210 %s.

@ "M 1+cosé, f11(8) = —28j4c0SS sin &,

For a 1 kHz gravitational wave this gives0.1 cycles. So fol(8)=—7jo(3—COS 25)c0< S,
the Shapiro delay will be unobservable.

We see that the relativistic corrections that need to be foa(8)=—]1o(7—cCOs 2)sin 25,
applied to our formula are small. By our 1/4 of a cycle cri-
terion they can be neglected if we search for signals with fo4(6)=—j11(35—28 cos B+ cos &),
frequencies less thar 100 Hz. We shall not consider these
corrections in this and the following papers of the series 911(6) =28j5c0S 5,
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8)=28j 4,co< S sin 8, 1
910)=28]s ia(N,y)= 1og(28-44 co$\ +5 sirf2y cosn),

013(8)=2j1o(5—3 cos D)cos 4,
014(9)=101(3~cos D)sin &, 40 7)= 55(2=7 sif2y co$\)sin 2,

921(0)=—4j 4COS?5,

' _2 in? &€\)cod
9o 8) =4j5c0£5 sin &, 15()\,7)—3—2(3—7cos4y—75| 27y COSA)COS\,

023(0)=—2j&(5—3 cos D)cos 6, . 1 . _
is(\,y)= 62 cos 4+ Sirf2y cos)sin 2\,
024(0) = —16],(3—cos 2)sin 4,

S : 1
h11(8) = (12— ] 4C0S Z)sin 25, J7(\y)= 15544 cOs 4 sir?\ —sirP2y cog\),
hy(8) = (j 13— jsCc0S 2)cos 3, .

hyo( 8) = 4j5C0SS sin &, js(\, )= 35 sin 4y cos\,

h14(8)=—8jcos's,

1
jo(N,y)= == sin 4y cog\ sin\,
h,1(8) =jg(1—7 cos &)sin 25, 32

haa( )= —jo(5—7 cos B)cos’s, j1dX,7) = 7g5 Sin 4y(5—3 cos A)cos\,

hp3(8)=4]j10€0S'8 siN 3, hyy(8)=— 8,085,

1
where the coefficient$,, . .. ,j;3 depend on the angles j11(N,¥) = === sin 4y(3—cos )sin \,
and y: 1024
1 . 1 . .
J1(\ )= 555(4-20 co@\ + 35 sirf2y coé\), i\, y)= 3—2(14—sm227 co$\)sin 2\,
. 1 . . 1 .
ja(N,y)= T024.68-20 coé\ — 13 sirf2y cogh), j1s(\,y)= 33(9-5cos4-5 Sirf2y co$\)cog\.
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