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We present a theoretical background for the data analysis of the gravitational-wave signals from spinning
neutron stars for Earth-based laser interferometric detectors. We introduce a detailed model of the signal
including both the frequency and the amplitude modulations. We include the effects of the intrinsic frequency
changes and the modulation of the frequency at the detector due to Earth’s motion. We estimate the effects of
the star’s proper motion and of relativistic corrections. Moreover we consider a signal consisting of two
components corresponding to a frequencyf and twice that frequency. From the maximum likelihood principle
we derive the detection statistics for the signal and we calculate the probability density function of the
statistics. We obtain the data analysis procedure to detect the signal and to estimate its parameters. We show
that for optimal detection of the amplitude modulated signal we need four linear filters instead of one linear
filter needed for a constant amplitude signal. Searching for the doubled frequency signal increases further the
number of linear filters by a factor of 2. We indicate how the fast Fourier transform algorithm and resampling
methods commonly proposed in the analysis of periodic signals can be used to calculate the detection statistics
for our signal. We find that the probability density function of the detection statistics is determined by one
parameter: the optimal signal-to-noise ratio. We study the signal-to-noise ratio by means of the Monte Carlo
method for all long-arm interferometers that are currently under construction. We show how our analysis can
be extended to perform a joint search for periodic signals by a network of detectors and we perform a Monte
Carlo study of the signal-to-noise ratio for a network of detectors.@S0556-2821~98!00718-8#

PACS number~s!: 95.55.Ym, 04.80.Nn, 95.75.Pq, 97.60.Gb
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I. INTRODUCTION

Spinning neutron stars are one of the primary candid
sources of gravitational waves for long-arm laser interfe
metric detectors~@1#, see@2# for a review!. Detectors with a
sufficient sensitivity to see strong neutron star sources a
where in the Galaxy will be taking data within two or thre
years@3–6#. A rotating body, perfectly symmetric about i
rotation axis does not emit gravitational waves. If the sp
ning neutron star is to emit gravitational waves over e
tended periods of time, it must have some kind of long-liv
asymmetry. Several mechanisms have been given for suc
asymmetry to arise@7–10#. During the crystallization period
the crust of the neutron star may develop deviations fr
axisymmetry that will be supported by anisotropic stresse
the solid crust@7#. The strong magnetic field present in th
neutron star may not be aligned with the rotation axis a
consequently the distortion produced by the magnetic p
sure results in the neutron star being asymmetric@8#. Also
the rotation axis may not coincide with a principal axis of t
star’s moment of inertia tensor. Then the star will prec
and emit gravitational waves@9,10#. There are other mecha
nisms that can produce gravitational waves from neut
0556-2821/98/58~6!/063001~24!/$15.00 58 0630
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stars. Accretion of matter on a neutron star can drive it int
nonaxisymmetric configuration and power steady radiat
with a considerable amplitude. This mechanism has b
pointed out by Wagoner~@11#, see also@12#!. It applies to a
certain class of neutron stars, including accreting stars
binary systems that have been spun up to the first instab
point of the Chandrasekhar-Friedman-Schutz~CFS! instabil-
ity @13,14#. Recently Andersson@16# suggested a similar in
stability in r modes of rotating relativistic stars. The effe
tiveness of these instabilities depends on the viscosity of
star which in turn is determined by the temperature of
star @17#.

This paper initiates a series of papers where theoret
problems of data analysis of gravitational-wave signals fr
spinning neutron stars are considered, independently of
mechanisms generating the waves.

The data analysis of monochromatic signals for interfe
metric antennas was investigated by one of us@15#. A search
strategy for such signals was proposed and the compu
power required estimated. The basic method to detect p
odic signals is to Fourier analyze the data, and an effic
computational tool is the fast Fourier transform. The ma
problem is that to do the search one has to take into acc
© 1998 The American Physical Society01-1
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the modulation of the signal due to the Earth’s motion re
tive to the solar system barycenter. If the position of t
source on the sky is unknown this introduces two additio
parameters in the signal and this vastly increases the com
tational time to do the search. It is clear that the main lim
on the sensitivity of such a search will be the available co
puting power. Variants of the proposed search strategy h
been implemented with test data from the prototype detec
where the search was carried out only over a limited reg
of the parameter space@18–20#.

The problem of computational requirements has rece
been reconsidered by Bradyet al. @21#. They realized that in
the model of the signal the effect of the intrinsic frequen
modulation due to spin-down or spin-up of the neutron s
needs to be considered. This increases the parameter s
and consequently the computational power required to se
all the parameter space. Assuming access to teraflops c
puting power it was shown that coherent integration tim
will be limited to days for an all-sky search for young, ra
idly spinning stars and to weeks for more directed searc
A simplified model of the signal where modulation due
diurnal rotation of the Earth was neglected has also b
examined by one of us@22# and the computational require
ments to do the search were estimated.

In this series of papers we consider a more general m
of the signal than in the work cited above. We take in
account not only the modulation of the phase of the sig
but also the amplitude modulation. Moreover we conside
signal consisting of two components corresponding to a
quencyf and twice that frequency. In general neither of t
components is dominant.

In this work, which is Paper I of the series, we introdu
the signal and we derive an optimal data analysis proced
for its detection. In future works we will examine the acc
racy of estimation of the parameters of the signal, the ch
acteristics of the detection statistics derived in this paper,
the computational power required to calculate it. We sh
also investigate the least-squares method to estimate a
physically interesting parameters of the signal from the e
mators of the amplitudes derived in this paper.

The plan of this paper is as follows. In Sec. II we derive
general formula for the response of a laser interferomete
our two component signal including both the phase and
amplitude modulation. In Sec. III from the maximum likel
hood principle we derive the data analysis procedure to
tect the signal introduced in Sec. II and to estimate its
rameters. We obtain the basic probability density functio
of the detection statistics. We show that probability of det
tion is determined by one parameter: the optimal signal
noise ratio. We study this quantity by means of the Mo
Carlo simulations for all the interferometric detectors that
currently under construction. We conclude Sec. III by sho
ing how one can take advantage of the speed of the
Fourier transform~FFT! algorithm to evaluate efficiently ou
detection statistics. This involves application of the resa
pling techniques proposed earlier for the case of a sim
signal model@15,21#. In Sec. IV we show that our analys
can easily be extended to networks of detectors and we
06300
-
e
l
u-
t
-
ve
rs
n

ly

y
r
ace
ch
m-
s

s.

n

el

l
a
-

re

r-
d

ll
ro-
i-

to
e

e-
-
s
-
-

e
e
-
st

-
er

er-

form a Monte Carlo study of the signal-to-noise ratio for
network. In Appendix A we discuss the model of the pha
of the gravitational-wave signal and in particular we estim
the effect of the proper motion of the neutron star and
relativistic corrections. In Appendix B we give the gener
analytic formula for the optimal signal-to-noise ratio.

II. NOISE-FREE RESPONSE OF THE INTERFEROMETRIC
DETECTOR

A. Beam-pattern functions

The response of a laser interferometric detector to a w
plane gravitational wave in the long wavelength approxim
tion @i.e. when the size of the detector is much smaller th
the reduced wavelengthl/(2p) of the wave# is well known
~see, e.g.,@23# and Sec. II A of@24#, and references therein!.
The dimensionless detector’s response functionh is defined
as the difference between the wave induced relative len
changes of the two interferometer arms and can be comp
from the formula~cf. Eq. ~5! of @24#!

h~ t !5
1

2
n1•@H̃~ t !n1#2

1

2
n2•@H̃~ t !n2#, ~1!

wheren1 andn2 denote the unit vectors parallel to the ar
number 1 and 2, respectively~the order of arms if defined
such that the vectorn13n2 pointsoutwardsfrom the surface
of the Earth!, H̃ is the three-dimensional matrix of the spati
metric perturbation produced by the wave in the proper r
erence frame of the detector, and a dot stands for the s
dard scalar product in the three-dimensional Cartesian sp
The matrixH̃ is given by

H̃~ t !5M ~ t !H~ t !M ~ t !T, ~2!

whereM is the three-dimensional orthogonal matrix of tran
formation from the wave Cartesian coordinates (xw ,yw ,zw)
to the Cartesian coordinates (xd ,yd ,zd) in the detector’s
proper reference frame~the definition of these coordinates
given below!, T denotes matrix transposition. In the wav
coordinate system the gravitational wave travels in the1zw
direction. In this frame the matrixH has the form

H~ t !5S h1~ t ! h3~ t ! 0

h3~ t ! 2h1~ t ! 0

0 0 0
D , ~3!

where the functionsh1 and h3 describe two independen
wave’s polarizations. Collecting Eqs.~1!–~3! together one
can see that the response functionh is a linear combination
of the functionsh1 andh3 :

h~ t !5F1~ t !h1~ t !1F3~ t !h3~ t !, ~4!

whereF1 andF3 are called thebeam-patternfunctions.
Because of the diurnal motion of the Earth the beam p

ternsF1 andF3 are periodic functions of time with a perio
equal to one sidereal day. We want now to extract explic
this time dependence as well as to expressF1 and F3 as
1-2
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functions of right ascensiona and declinationd of the
gravitational-wave source and polarization anglec ~the
anglesa, d, and c determine the orientation of the wav
reference frame with respect to the celestial sphere refer
frame defined below!. Our treatment partially follows that o
Sec. V of@8#. We represent the matrixM of Eq. ~2! as

M5M3M2M1
T , ~5!

whereM1 is the matrix of transformation from wave to ce
lestial sphere frame coordinates,M2 is the matrix of trans-
formation from celestial coordinates to cardinal coordina
and M3 is the matrix of transformation from cardinal coo
dinates to detector proper reference frame coordinates
celestial sphere coordinates thez axis coincides with the
Earth’s rotation axis and points toward the North pole, thx
andy axes lie in the Earth’s equatorial plane, and thex axis
points toward the vernal point. In cardinal coordinates
(x,y) plane is tangent to the surface of the Earth at detect
location withx axis in the North-South direction andy axis
it
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in the West-East direction, thez cardinal axis is along the
Earth’s radius pointing toward zenith. In detector coordina
the z axis coincides with thez axis of cardinal coordinates
and thex axis is along the first interferometer arm~then the
y axis is along the second arm if the arms are at a ri
angle!. Under the above conventions the matricesM1 , M2 ,
and M3 are as follows~matricesM1 and M2 given below
coincide with matricesA andB from Ref. @8#, cf. Eqs.~52!
and ~60! of @8#!

TABLE I. Positions and orientations of detectors.

Detector l
~degrees!

L
~degrees!

g
~degrees!

z
~degrees!

GEO600 52.25 29.81 68.775 94.33

LIGO Hanford 46.45 119.41 171.8 90

LIGO Livingston 30.56 90.77 243.0 90

VIRGO 43.63 210.5 116.5 90

TAMA300 35.68 2139.54 225.0 90
M15S sin a cosc2cosa sin d sin c 2cosa cosc2sin a sin d sin c cosd sin c

2sin a sin c2cosa sin d cosc cosa sin c2sin a sin d cosc cosd cosc

2cosa cosd 2sin a cosd 2sin d
D , ~6!

M25S sin l cos~f r1V r t ! sin l sin~f r1V r t ! 2cosl

2sin~f r1V r t ! cos~f r1V r t ! 0

cosl cos~f r1V r t ! cosl sin~f r1V r t ! sin l
D , ~7!

M35S 2sin~g1z/2! cos~g1z/2! 0

2cos~g1z/2! 2sin~g1z/2! 0

0 0 1
D . ~8!
-

In Eq. ~7! l is the latitude of the detector’s site,V r is the
rotational angular velocity of the Earth, andf r is a deter-
ministic phase which defines the position of the Earth in
diurnal motion att50 ~the sumf r1V r t coincides with the
local sidereal time of the detector’s site, i.e. with the an
between the local meridian and the vernal point!. In Eq.~8! g
determines the orientation of the detector’s arms with resp
to local geographical directions:g is measured counterclock
wise from East to the bisector of the interferometer arms,
z is the angle between the interferometer arms. The vec
n1 andn2 from Eq.~1! in the detector’s reference frame ha
coordinates

n15~1,0,0!, n25~cosz,sin z,0!. ~9!
s

e

ct

d
rs

The values of the anglesl, g, z, and the longitudesL ~mea-
sured positively westwards! for different detectors can be
found in Table I@25#.

To find the explicit formula forF1 and F3 we have to
combine Eqs.~1!–~9!. After extensive algebraic manipula
tions we arrive at the expressions:

F1~ t !5sin z @a~ t !cos 2c1b~ t !sin 2c#, ~10!

F3~ t !5sin z @b~ t !cos 2c2a~ t !sin 2c#, ~11!

where
1-3
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a~ t !5
1

16
sin 2g~32cos 2l!~32cos 2d!cos@2~a2f r2V r t !#2

1

4
cos 2g sin l~32cos 2d!sin@2~a2f r2V r t !#

1
1

4
sin 2g sin 2l sin 2d cos@a2f r2V r t#2

1

2
cos 2g cosl sin 2d sin@a2f r2V r t#1

3

4
sin 2g cos2l cos2d,

~12!

b~ t !5cos 2g sin l sin d cos@2~a2f r2V r t !#1
1

4
sin 2g~32cos 2l!sin d sin@2~a2f r2V r t !#

1cos 2g cosl cosd cos@a2f r2V r t#1
1

2
sin 2g sin 2l cosd sin@a2f r2V r t#. ~13!
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By means of Eqs.~10!–~13! the beam-pattern functions ca
be computed directly for any instant of time.

Equivalent explicit formulas for the beam-pattern fun
tionsF1 andF3 ~for the casez5p/2) can be found in Ref.
@26# where different angles describing the position of t
gravitational-wave source in the sky and the orientation
the detector on the Earth are used. Also for the casz
5p/2 the functionsa andb can be found in Ref.@19#, where
still another set of angles is used@27#.

B. The phase of the gravitational-wave signal

In Appendix A we derive the time dependence of t
phase of the gravitational-wave signal observed at the de
tor’s location. We consider the significance of the correctio
due to the motion of both the detector and the neutron
with respect to the the solar system barycenter~SSB! refer-
ence frame as well as the importance of relativistic corr
tions. On the basis of the discussion presented in Appen
A we adopt the following model of the phase of th
gravitational-wave signal:

C~ t !5F012p(
k50

s

f 0

~k! tk11

~k11!!
1

2p

c
n0•rd~ t !(

k50

s

f 0

~k! tk

k!
,

~14!

where f 0

(k)
is thekth time derivative of the instantaneous fr

quency evaluated att50 at the SSB,n0 is the constant unit
vector in the direction of the star in the SSB reference fram
and rd is the position vector of the detector in that frame.

The signal analysis presented in the remaining part of
paper does not depend on the numbers of the spindown
parameters and therefore we keeps unspecified.

We associate a coordinate system with the SSB refere
frame. Thex axis of the system is parallel to thex axis of the
celestial sphere coordinate system, thez axis is perpendicular
06300
f
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to the ecliptic and coincides with the orbital angular mome
tum vector of the Earth. In that system the unit vectorn0
pointing towards the star has the components

n05S 1 0 0

0 cos« sin «

0 2sin « cos«

D S cosa cosd

sin a cosd

sin d

D , ~15!

where« is the angle between ecliptic and the Earth’s equa
The position vectorrd of the detector has in this coordina
system the components

rd5RESS cos~f01V0t !

sin~f01V0t !

0

D
1RES 1 0 0

0 cos« sin «

0 2sin « cos«
D S cosl cos~f r1V r t !

cosl sin~f r1V r t !

sin l
D ,

~16!

where RES51 AU is the mean distance from the Earth
center to the SSB,RE is the mean radius of the Earth,V0 is
the mean orbital angular velocity of the Earth, andf0 is a
deterministic phase which defines the position of the Earth
its orbital motion att50. We recall that we neglect the ec
centricity of the Earth’s orbit and the motion of the Ear
around the Earth-Moon barycenter.

Substituting Eqs.~15! and ~16! into Eq. ~14! one gets
1-4
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C~ t !5F01F~ t !, ~17!

F~ t !52p(
k50

s

f 0

~k! tk11

~k11!! 1
2p
c $RES@cosa cosd cos~f01V0t !1~cos« sin a cosd1sin « sin d!sin~f01V0t !#

1RE@sin l sin d1cosl cosd cos~a2f r2V r t !#%(
k50

s

f 0

~k! tk

k! . ~18!
e
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C. Wave polarization functions

We use the following two-component model of th
gravitational-wave signal:

h~ t !5h1~ t !1h2~ t !, ~19!

where

h1~ t !5F1~ t !h11~ t !1F3~ t !h13~ t !,

h2~ t !5F1~ t !h21~ t !1F3~ t !h23~ t !, ~20!

h11~ t !5
1

8
h0sin 2u sin 2i cosC~ t !,

h21~ t !5
1

2
h0sin2u~11cos2i !cos 2C~ t !, ~21!

h13~ t !5
1

4
h0sin 2u sin i sin C~ t !,

h23~ t !5h0sin2u cos i sin 2C~ t !. ~22!

The beam-pattern functionsF1 ,F3 are given by Eqs.~10!–
~13! and the phaseC is given by Eqs.~17! and ~18!.

The model of the signal defined by Eqs.~19!–~22! repre-
sents the quadrupole gravitational wave that is emitted b
freely precessing axisymmetric star. The angleu, called the
wobble angle, is the angle between the total angular mom
tum vector of the star and the star’s axis of symmetry andi is
the angle between the total angular momentum vector of
star and the direction from the star to the Earth. The am
tudeh0 is given by

h05
16p2G

c4

eI f 2

r
, ~23!

where f is the sum of the frequency of rotation of the st
and the frequency of precession,I is the moment of inertia
with respect to the rotation axis,e is the poloidal ellipticity
of the star andr is the distance to the star. For small wobb
angle the signalh1 is dominant. Details of the model can b
found in @9#. Whenu5p/2 theh1 component vanishes. Fo
this special case theh2 component is the quadrupole wav
from a triaxial ellipsoid rotating about a principal axis wi
06300
a

n-

e
i-

frequencyf . In this case the amplitudeh0 is again given by
Eq. ~23! except thate is now the ellipticity of the star defined
by

e5
I 12I 2

I
, ~24!

whereI 1 and I 2 are the moments of inertia of the star wi
respect to the principal axes orthogonal to the rotation a
This model was considered in@21#.

Replacing the physical constants in Eq.~23! by their nu-
merical values results in

h054.23310225d0S f

100 HzD
2

, ~25!

where

d0ªS e

1025D S I

1045 g cm2D S 1 kpc

r D . ~26!

By means of Eqs.~10! and~11! the signal described by Eqs
~19!–~22! can be written in the form

h~ t !5(
i 51

4

A1i h1i~ t !1(
i 51

4

A2i h2i~ t !, ~27!

where the eight amplitudesA1i andA2i are given by

A115h0sin z sin 2uF1

8
sin 2i cos 2c cosF0

2
1

4
sin i sin 2c sin F0G , ~28!

A125h0sin z sin 2uF1

4
sin i cos 2c sin F0

1
1

8
sin 2i sin 2c cosF0G , ~29!

A135h0sin z sin 2uF2
1

8
sin 2i cos 2c sin F0

2
1

4
sin i sin 2c cosF0G , ~30!
1-5
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A145h0sin z sin 2uF1

4
sin i cos 2c cosF0

2
1

8
sin 2i sin 2c sin F0G , ~31!

A215h0 sin z sin2uF1

2
~11cos2i !cos 2c cos 2F0

2cos i sin 2c sin 2F0G , ~32!

A225h0 sin z sin2uF1

2
~11cos2i !sin 2c cos 2F0

1cos i cos 2c sin 2F0G , ~33!

A235h0 sin z sin2uF2
1

2
~11cos2i !cos 2c sin 2F0

2cos i sin 2c cos 2F0G , ~34!

A245h0 sin z sin2uF2
1

2
~11cos2i !sin 2c sin 2F0

1cos i cos 2c cos 2F0G . ~35!

The amplitudesA1i andA2i depend on the parametersh0 , u,
c, i, and F0 . They also depend on the anglez. The time
dependent functionshli have the form

hl15a~ t !cos lF~ t !, hl25b~ t !cos lF~ t !,

l 51,2, ~36!

hl35a~ t !sin lF~ t !, hl45b~ t !sin lF~ t !,

where the functionsa andb are given by Eqs.~12! and~13!,
respectively, andF is the phase given by Eq.~18!. The
modulation amplitudesa and b depend on the right ascen
sion a and the declinationd of the source~they also depend
on the anglesl and g!. The phaseF depends on the fre

quency f 0 , s spin-down parametersf 0

(k)
(k51, . . . ,s), and

on the anglesa, d. We call parametersf 0 , f 0

(k)
,a,d the phase

parameters. Moreover the phaseF depends on the latitudel
of the detector. The whole signalh depends on 81s un-

known parameters:h0 , u, c, i, F0 , a, d, f 0 , f 0

(k)
.

It is useful to consider the frequency domain characte
tics of our gravitational-wave signal. The signal consists
two components with carrier frequenciesf 0 and 2f 0 that are
both amplitude and phase modulated. The amplitude mo
lation, determined by functionsa and b, splits each of the
two components into five lines corresponding to frequenc
f 022 f r , f 02 f r , f 0 , f 01 f r , f 012 f r , wheref r is the fre-
06300
-
f

u-

s

quency of rotation of Earth (f r.1025 Hz) and the same for
frequency 2f 0 . The frequency modulation broadens th
lines. For the extreme case of the gravitational-wave f
quency of 103 Hz, the spin-down aget540 years, and the
observation timeT05120 days the maximum frequenc
shifts due to the neutron star spin down, Earth’s orbital m
tion and Earth’s diurnal motion are, respectively,;8,
;0.1, and;1023 Hz. As an example, in Fig. 1 we hav
plotted the power spectrum of the noise-free response
detector located near Hannover to the gravitational w
from the Crab pulsar. We took only the componenth2 with
twice the rotational frequency. We have generated a 24-
long signal.

III. OPTIMAL FILTERING FOR THE AMPLITUDE
MODULATED SIGNAL

A. Maximum likelihood detection

The signal given by Eq.~27! will be buried in the noise of
a detector. Thus we are faced with the problem of detec
the signal and estimating its parameters. A standard me
is the method ofmaximum likelihood detectionwhich con-
sists of maximizing the likelihood functionL with respect to
the parameters of the signal. If the maximum ofL exceeds a
certain threshold calculated from the false alarm probabi
that we can afford we say that the signal is detected. T
values of the parameters that maximizeL are said to be the
maximum likelihood (ML) estimatorsof the parameters o
the signal. The magnitude of the maximum ofL determines
the probability of detection of the signal.

We assume that the noisen in the detector is an additive
stationary, Gaussian, and zero-mean continuous random
cess. Then the datax ~if the signal h is present! can be
written as

x~ t !5n~ t !1h~ t !. ~37!

The log likelihood function has the form

ln L5~xuh!2
1

2
~huh!, ~38!

where the scalar product~•u•! is defined by

~xuy!ª4 ReE
0

` x̃~ f !ỹ* ~ f !

Sh~ f !
d f , ~39!

where˜ denotes the Fourier transform,* is complex conju-
gation, andSh is theone-sidedspectral density of the detec
tor’s noise.

The gravitational-wave signal given by Eq.~27! consists
of two narrow-band components around the frequenciesf 0
and 2f 0 and therefore to a very good accuracy the likeliho
ratio is given by

ln L>~xuh1!2
1

2
~h1uh1!1~xuh2!2

1

2
~h2uh2!. ~40!
1-6
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FIG. 1. Power spectrum of the noise-free response of an interferometer located near Hannover to gravitational-wave signal from

pulsar at twice the rotation frequency. We have assumed the frequencyf 0529.937 Hz and the spin-down parametersf 0

(1)
523.773

310210 s22, f 0

(2)
50.976310220 s23, f 0

(3)
520.615310230 s24. A 24-day long signal was analyzed corresponding to the frequency resol

of around 4.831027 Hz. The power spectrum shows 24 main peaks resulting from the periodic phase modulation of the signal.
interval between the main peaks there are additional subsidiary peaks arising from the amplitude modulation of the signal.
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This suggests that we consider the two components of
response function~27! as two independent signals. Let u
take the first componenth1 of the signal. We can assume th
over the bandwidth of the signalSh( f ) is nearly constant and
equal toSh( f 0) wheref 0 is the frequency of the signalh1 at
t50. Thus in our case the above scalar product can be
proximated by

~xuh1!>
2

Sh~ f 0!
E

2T0/2

T0/2

x~ t !h1~ t !dt, ~41!

whereT0 is the observation time and where the observat
interval is@2T0/2,T0/2#. It is useful to introduce the follow-
ing scalar product:

~xuuy!ª
2

T0
E

2T0/2

T0/2

x~ t !y~ t !dt. ~42!

As long as the detector’s noise is stationary over the ob
vation period, this is a good scalar product. In realistic o
servations, the detector’s noise will vary slowly during t
observation period. We do not treat this important issue
this paper.
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The log likelihood function for this signal is approx
mately given by

ln L1>
T0

Sh~ f 0! F ~xuuh1!2
1

2
~h1uuh1!G . ~43!

The maximum likelihood estimators can be found by ma
mizing the followingnormalized log likelihood function

ln L185~xuuh1!2
1

2
~h1uuh1!. ~44!

The normalized log likelihood function does not involve e
plicitly the spectral density of the noise in the detector.

The signalh1 depends linearly on four amplitudesA1i .
The amplitudes depend on the five unknown parametersh0 ,
u, c, i, and F0 and are independent. The likelihood equ
tions for the amplitudesA1i are given by

] ln L18

]A1i
50, i51, . . . ,4. ~45!

One easily finds that in our case the above set of equation
equivalent to the following set of linear algebraic equatio
1-7
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(
j 51

4

Mi j A1 j5~xuuh1i !, i 51, . . . ,4, ~46!

where the componentsMi j of the 434 matrixM are given
by

Mi j ª~h1i uuh1 j !. ~47!

Since over a typical observation timeT0 the phaseF will
have very many oscillations, then to a very good accur
we have

~h11uuh13!>0, ~h11uuh14!>0, ~h12uuh13!>0,

~h12uuh14!>0, ~48!

and also

~h11uuh11!>~h13uuh13!>
1

2
A,

~h12uuh12!>~h14uuh14!>
1

2
B, ~49!

~h11uuh12!>~h13uuh14!>
1

2
C,

where Aª(auua), Bª(buub), Cª(auub). With these ap-
proximations the matrixM is given by

M5S C O
O C D , ~50!

whereO is a zero 232 matrix andC equals

C5
1

2 S A C

C BD . ~51!

ThusM splits into two identical 232 matrices. Assuming
that aÞb, AÞ0, and BÞ0 the explicit expressions fo
maximum likelihood estimatorsÂ1i of the amplitudesA1i are
readily obtained and they are given by

Â1152
B~xuuh11!2C~xuuh12!

D
,

Â1252
A~xuuh12!2C~xuuh11!

D
,

~52!

Â1352
B~xuuh13!2C~xuuh14!

D
,

Â1452
A~xuuh14!2C~xuuh13!

D
,

whereD is defined by

D5AB2C2. ~53!
06300
y

The second partial derivatives of the log likelihood functi
with respect toA1i are given by

]2ln L18

]A1i]A1 j
52Mi j . ~54!

Since aÞb it follows from Schwarz inequality thatD.0.
Thus asA.0 andB.0 the matrixM is positive definite.
Therefore the extrema of the log likelihood function wi
respect toA1i are the local maxima. The above ML estim
tors of the amplitudesA1i are substituted for the amplitude
A1i in the likelihood function~44! giving the reduced nor-
malized likelihood functionL195exp(F1) whereF1 is given
by

F15
B~xuuh11!

21A~xuuh12!
222C~xuuh11!~xuuh12!

D

1
B~xuuh13!

21A~xuuh14!
222C~xuuh13!~xuuh14!

D
.

~55!

Thus to obtain the maximum likelihood estimators of t
parameters of the signal one first finds the maximum of
functionalF1 with respect to the frequency, the spin dow
parameters, and the anglesa andd and then one calculate
the estimators of the amplitudesA1i from the analytic for-
mulas ~52! with the correlations (xuuh1i) evaluated at the
values of the parameters obtained by the maximization of
functional F1 . Thus we see that filtering for the
gravitational-wave signal from a neutron star requiresfour
linear filters. Efficient numerical methods to calculate th
statisticsF1 are discussed in Sec. III D.

Exactly the same procedure applies to the second com
nent of the signal. The formulas for the estimators of t
amplitudesA2i and the normalized reduced statisticsF2 are
obtained from the above formulas by replacingh1i by h2i .

To consider the optimal detection of the whole tw
component signal we need to remember that the eight am
tudesAli are not independent. They depend on five para
eters:h0 , u, c, i, andF0 . To find the maximum likelihood
estimators of the independent five parameters we would h
to maximize the total likelihood function@given by Eq.~40!#
with respect to these parameters. This however leads to
intractable set of nonlinear algebraic equations which wo
have to be solved numerically, thereby increasing the co
putational cost of the search for the signal. Instead we p
pose the following procedure:

We form the statistics

F5
T0

Sh~ f 0!
F11

T0

Sh~2 f 0!
F2 . ~56!

This is just the reduced likelihood function assuming that
eight amplitudes are independent. We first maximize
functionalF with respect to the frequency, spin down para
eters, and anglesa andd and we calculate the eight ampl
tudes from the analytic formulas. We then find the estimat
of the five independent parameters from the estimators of
1-8
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amplitudes by least-squares method. We use the invers
the Fisher matrix for the covariance matrix in the lea
squares method. We shall consider this problem in fut
work.

To announce the detection of the signal the functionaF
must exceed a certain threshold calculated on the basis o
false alarm probability that one can afford. OnceF is above
the threshold its magnitude determines the probability of
tection of the signal. Consequently we need to determine
probability density function ofF both when the signal is
absent and present.

We shall first calculate these probabilities when the
rameters whichF depends on are known, i.e., when the fi
tershli are known functions of time. We shall then expla
how to obtain approximate formulas for the false alarm a
the detection probabilities when parameters of the filters
unknown.

B. Detection statistics

We shall first consider the probability density function
the normalized reduced functionalF1 . Let us suppose tha
filters h1i are known functions of time, i.e. the phase para

eters f 0 , f 0

(k)
,a,d are known, and let us define the followin

random variables:

x1i ª~xuuh1i !, i 51, . . . ,4. ~57!

Sincex is a Gaussian random process the random varia
x1i being linear inx are also Gaussian. LetE0$x1i% and
E1$x1i% be, respectively, the means ofx1i when the signal is
absent and when the signal is present. One easily gets

E0$x1i%50, i51, . . . ,4, ~58!

and

m11ªE1$x11%5
1

2
~AA111CA12!, ~59!

m12ªE1$x12%5
1

2
~CA111BA12!, ~60!

m13ªE1$x13%5
1

2
~AA131CA14!, ~61!

m14ªE1$x14%5
1

2
~CA131BA14!. ~62!

One finds that the covariance matrix for the random variab
x1i is the same whether the signal is present or not an
splits into two identical 232 covariance matricesC for the
pairs (x11,x12) and (x13,x14) of random variables whereC is
given by Eq.~51!. Hence the covariance matrix is exact
equal to the matrixM given by Eq.~50! above.

Thus in effect (x11,x12) and (x13,x14) are pairs of corre-
lated Gaussian random variables, with pairs being indep
dent of each other. For Gaussian variables their first
moments determine uniquely their probability density fun
06300
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tion ~PDF!. Consequently the joint probability density func
tion p(x11,x12,x13,x14) is equal to a product
pa(x11,x12)pb(x13,x14), where pa and pb are bivariate
Gaussian PDF’s with the same covariance matrixC:

pa~x11,x12!5
1

pAD
expS 2

Bx̃11
2 1Ax̃12

2 22Cx̃11x̃12

D
D ,

~63!

and a similar formula forpb(x13,x14), wherex̃1i5x1i when
the signal is absent andx̃1i5x1i2m1i when the signal is
present. It is interesting to note that when the signal is abs
the joint PDFp0 is simply given by

p05
1

p2D
exp~2F1!, ~64!

whereF1 is our optimal statistics. We want to find the PD
of F1 when the signal is absent and present. We first dec
relate the variablesx1i . For the case of Gaussian variabl
this can always be done by means of a linear transformat
Let us consider the following transformation matrixL:

L5SN O
O ND , ~65!

whereO is a zero 232 matrix andN is given by

N5S 1/AA1CAA/B 1/AB1CAB/A

21/AA2CAA/B 1/AB2CAB/A
D . ~66!

Let us introduce new random variablesz1i ( i 51,...,4) such
thatz1i5( j 51

4 Li j x1 j . In the new variables the PDF takes th
form

p~z11,z12,z13,z14!5
1

~2p!2 expF2
1

2
~ z̃11

2 1 z̃12
2 1 z̃13

2 1 z̃14
2 !G .
~67!

Thus z1i are independent Gaussian random variables w
unit variances. When the signal is absent we havez̃1i5z1i

and when the signal is presentz̃1i5z1i2m1i8 , where m1i8
5( j 51

4 Li j m1 j . The functionalF1 in the new variables is
given by

F15
1

2
~z11

2 1z12
2 1z13

2 1z14
2 !. ~68!

The probability density distributions ofF1 both when the
signal is absent and present are well known. When the sig
is absent 2F1 has ax2 distribution with four degrees o
freedom and when signal is present it has a noncentrax2

distribution with four degrees of freedom and noncentra
parameterl5( i 51

4 (m1i8 )2.
In exactly the same way one obtains the PDF for

normalized reduced functional for the second componen
the signal. The second component depends on four am
1-9
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tudesA2i . The decorrelation is achieved by the same ma
L. Let us denote the four decorrelated random variables
the second component byz2i and their means bym2i8 ( i
51, . . . ,4).

To obtain the PDF of the statisticsF for the detection of
the two-component signal it is convenient to introduce
following normalized random variableszi

n :

zi
n5z1iA T0

Sh~ f 0!
, z41 i

n 5z2iA T0

Sh~2 f 0!
, i 51, . . . ,4,

~69!

so that each random variablezi
n has a unit variance. Conse

quently 2F5( i 51
8 (zi

n)2 has ax2 distribution with eight de-
grees of freedom when the signal is absent and noncentrax2

with eight degrees of freedom when signal is present. T
noncentrality parameterl is given by

l5
T0

Sh~ f 0! (
i 51

4

m1i8 1
T0

Sh~2 f 0! (
i 51

4

m2i8 . ~70!

After some algebra one finds thatl5d2 where

dªA~huh!. ~71!

The quantityd is called theoptimal signal-to-noise ratio. It
is the maximum signal-to-noise ratio that can be achieved
a signal in additive noise with thelinear filter @30#. This fact
does not depend on the statistics of the noise.

Consequently the PDF’sp0 and p1 , when, respectively,
the signal is absent and present are given by

p0~F!5
F 3

6
exp~2F!, ~72!

p1~d,F!5
~2F!3/2

d3 I 3~dA2F!expS 2F2
1

2
d2D , ~73!

whereI 3 is the modified Bessel function of the first kind an
order 3. The false alarm probabilityPF is the probability that
F exceeds a certain thresholdF0 when there is no signal. In
our case we have

PF~F0!ªE
F 0

`

p0~F!dF

5S 11F01
1

2
F 0

21
1

6
F 0

3Dexp~2F0!. ~74!

The probability of detectionPD is the probability thatF
exceeds the thresholdF0 when the signal-to-noise ratio i
equal tod:

PD~d,F0!ªE
F0

`

p1~d,F!dF. ~75!

Thus we see that when the noise in the detector is Gaus
and the phase parameters are known the probability of de
tion of the signal depends on a single quantity: the optim
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signal-to-noise ratiod. In view of its importance we shal
investigate in detail the dependence of the optimal signal
noise ratio on the parameters of the signal in the next sect

Let us introduce a vector parameteru i
ph5( f 0 , f 0

(k)
,a,d) de-

noting the phase parameters. When parametersu i
ph are

known the optimal statisticsF is a random variable with
probability density functions given above. When the pha
parameters are not known we can think ofF as a multidi-
mensional random processF(u i

ph) with dimension equal to
the number of phase parameters. Such a process is c
random field. For each realizationx(t) of the data random
process the corresponding realization of the random fiel
obtained by evaluatingF for filters hli with continuously
varying parametersu i

ph . For such a process we can defin
the autocorrelation functionC just in the same way as w
define the autocorrelation function for a one parameter r
dom process:

C5E@F~u i
ph!F~u i8

ph!#. ~76!

Let us first assume that the signal is absent, i.e.x(t)5n(t).
For many cases of interest the autocorrelation function w
tend to zero as the differencesD i5u i8

ph2u i
ph increase. Thus

we can divide the parameter space into elementary cells s
that in each cellC is appreciably different from zero. Th
realizations of the random field within a cell will be corre
lated ~dependent! whereas realizations of the random fie
within each cell and outside the cell are almost uncorrela
~independent!. Thus the number of cells covering the param
eter space estimates the number of independent sampl
the random field. For some signals the autocorrelation fu
tion will depend only on the differencesD i and not on the
absolute values of the parameters. Then the random fieldF is
called a homogeneous random field. In this case one can
introduce the notion of the correlation hyperellipse as a g
eralization of the correlation time of a stationary process a
estimate the area of the elementary cell by the area of
correlation hyperellipse. For the general case of a rand
field the number of elementary cellsNc can be estimated
from Owen’s formula@28,21# with an appropriate choice o
the mismatch parameterm and for the case of a homoge
neous random field from a formula proposed by one of
@22#. For the parameter values in each cell the probabi
distribution ofF(u i

ph) can be approximated by probabilit
p0(F) given by Eq.~77!. Thus the probability distribution of
F is given by product ofNc copies of PDFp0(F). The
probability thatF does not exceed the thresholdF0 in a
given cell is 12PF(F0), wherePF(F0) is given by Eq.~74!.
The probability thatF does not exceed the thresholdF0 in
all theNc cells is@12PF(F0)#Nc. The probabilityPF

T thatF
exceedsF0 in one or more cellis given by

PF
T~F0!512@12PF~F0!#Nc. ~77!

This is the false alarm probability when the phase parame
are unknown. WhenPF(F0)!1 andNcPF(F0),1 we have
PF

T>NcPF(F0). When the signal is present a precise calc
lation of the PDF ofF would be very difficult because th
1-10
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presence of the signal makes the data random processx(t)
nonstationary. As a first approximation we can approxim
the probability of detection of the signal when parameters
unknown by the probability of detection when the para
eters of the signal are known@given by Eq.~75!#. This ap-
proximation assumes that when the signal is present the
values of the phase parameters fall within the cell whereF
has a maximum. This approximation will be the better t
higher the signal-to-noise ratiod. An accurate probability of
detection can be obtained by numerical simulations. P
metric plot of probability of detection vs probability of fals
alarm with optimal signal-to-noise ratiod as a parameter is
called thereceiver operating characteristic. Detailed calcu-
lations of the number of cellsNc and false alarm probabili
ties as well as plots of receiver operating characteristic
the case of the signal considered here will be given in fut
work.

The above reasoning is a generalization to the case
many parameters of the idea of aneffective sampling rate
introduced by one of us@15# and further developed in@29#.
Related ideas can also be found in Ref.@31#.

For large signal-to-noise ratios, the rms errors of the e
mators of the parameters of the signal are approxima
given by the square roots of the diagonal elements of
inverse of the Fisher information matrixG with the compo-
nents given by

G i j 5S ]h

]u i
U ]h

]u j
D . ~78!

We shall study these errors in detail in future work. F
smaller signal-to-noise ratios~e.g.&10) the errors are large
~see Ref.@32# for a discussion in the context of coalescin
binaries!.

C. Signal-to-noise ratio

In this subsection we use the following models of t
noise spectral densitiesSh in the individuals detectors. Th
noise curves for the VIRGO and the initial-advanced La
Interferometric Gravitational Wave Observatory~LIGO! de-
tectors are taken from@34#, and the noise curve for th
TAMA300 detector is taken from@6,35#. Wide-band and
narrow-band versions of the GEO600 detector noise
based on@36#.

The optimal signal-to-noise ratiod is given by the for-
mula ~71!:

dªA~huh!. ~79!

The gravitational-wave signal defined by Eqs.~19!–~22!
consists of two narrow-band components around the frequ
cies f 0 and 2f 0 and therefore to a very good accuracy t
signal-to-noise ratio~79! for that signal can be written as

d>Ad1
21d2

2, ~80!

whered1 and d2 are the signal-to-noise ratios for the ind
vidual components of the signal. They are given by
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d1ªA~h1uh1!>H 2

Sh~ f 0!
E

2T0/2

T0/2

@h1~ t !#2dtJ 1/2

, ~81!

d2ªA~h2uh2!>H 2

Sh~2 f 0!
E

2T0/2

T0/2

@h2~ t !#2dtJ 1/2

. ~82!

We substitute Eqs.~19!–~22! to Eqs.~81!–~82! and drop out
terms which oscillate around zero with multiples of the fr
quencyf 0 . We obtain

d1
2>F 1

64
sin22iE

2T0/2

T0/2

F1
2 dt

1
1

16
sin2iE

2T0/2

T0/2

F3
2 dtG h0

2sin22u

Sh~ f 0!
, ~83!

d2
2>F1

4
~11cos2i !2E

2T0/2

T0/2

F1
2 dt

1cos2iE
2T0/2

T0/2

F3
2 dtG h0

2sin4u

Sh~2 f 0!
. ~84!

After performing integrations in Eqs.~83! and ~84! we get

d1
2>@A1~d,c,i !T01B1~a,d,c,i;T0!#

3sin2z
h0

2sin22u

Sh~ f 0!
, ~85!

d2
2>@A2~d,c,i !T01B2~a,d,c,i;T0!#

3sin2z
h0

2sin4u

Sh~2 f 0!
. ~86!

The functionsB1 andB2 are periodic in the observation tim
T0 with the period of two sidereal days@cf. Eq. ~B2! from
Appendix B#. For simplicity we suppress the explicit depe
dence of the functionsAk and Bk on the anglesl and g.
Detailed expressions for the functionsAk andBk are given in
Appendix B.

For the observation timesT0 longer than several days th
signal-to-noise ratiosd1 , d2 , andd are dominated by terms
proportional to the square root of the observation timeT0 .
This can be seen in Figs. 2 and 3.

The signal-to-noise ratiosd1
2 andd2

2 are complicated func-
tions of the anglesa, d, c, i, and u. We have studied the
different averages ofd1

2 andd2
2 over these angles. Averagin

is performed according to the definition

^¯&a,d,c,i,u ª
1

2p E
0

2p

da3
1

2 E
21

1

d sin d

3
1

2pE0

2p

dc3
1

2 E
21

1

d cos i

3
1

p E
0

p

du~••• !. ~87!
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Note that becausedP@2p/2,p/2# integration over sind
rather than cosd is involved in Eq.~87!.

Averaging over the anglea discards the oscillatory part
B1 andB2 of the signal-to-noise ratiosd1

2 andd2
2:

^d1
2&a>A1~d,c,i !sin2z

h0
2T0sin22u

Sh~ f 0!
, ~88!

FIG. 2. The relative contribution of the partdsqr of the signal-
to-noise ratio proportional to the square root of the observation t
T0 to the total signal-to-noise ratiod for the GEO600 detector with
the wide band noise curve„dsqr'h0 sin z@A1sin22u/Sh( f 0)
1A2sin4u/Sh(2 f 0)#1/2AT0, cf. Eqs.~79!, ~84!, and ~85!…. A hypo-
thetical neutron star is assumed to be in the distance of 40 pc
the Earth and to emit gravitational waves with frequencyf 0

5100 Hz, star’s ellipticity is 1025, its moment of inertia with re-
spect to the rotation axis is 1045 g cm2. We also seta2f r515°,
d535°, c511.25°, i522.5°, andu545°.
06300
^d2
2&a>A2~d,c,i !sin2z

h0
2T0sin4u

Sh~2 f 0!
. ~89!

Further averaging over the orientation anglesc and i gives

^d1
2&a,c,i>

1

20
e2~d!sin2z

h0
2T0sin22u

Sh~ f 0!
, ~90!

^d2
2&a,c,i>

4

5
e2~d!sin2z

h0
2T0sin4u

Sh~2 f 0!
. ~91!

FIG. 4. The plot of the producte2(d)sin2 z against the declina-
tion d of the gravitational-wave source for different detectors. It c
be shown~cf. Appendix B! that for a hypothetical detector locate
at the latitudel56arccosA2/3'635.26° there exist eight differ-
ent orientationsg of its arms such that the functione251/5, i.e.e2

does not depend on the declinationd of the gravitational-wave
source. These orientation angles are:g0 , 90°6g0 , 180°
6g0 , 270°6g0 , 360°2g0 , whereg05

1
2 arcsinA3/5'25.38°.

e

m

FIG. 3. The total signal-to-noise ratiod as a function of the observation timeT0 for the GEO600 detector~with the wideband noise
curve!. The neutron star parameters are the same as in Fig. 2.
1-12
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FIG. 5. Cumulative distribution functions of the simulated signal-to-noise ratiosd1 , d2 , andd for the VIRGO~V!, initial Hanford ~H!,
and initial Livingston~L! detectors. We assume that star’s ellipticity is 1025, its moment of inertia with respect to the rotation axis
1045 g cm2 and its distance from the Earth is 1 kpc. The observation time is 120 days. The left column is forf 05100 Hz and the right one
is for f 05500 Hz. We have also shown the cumulative distribution function of the signal-to-noise ratiod2 for the GEO600~G! detector with
the narrow-band noise tuned to 1 kHz with the band-width of 30 Hz.
ra
th
on

the

The functione2 ~its definition can be found in Appendix B!
in the above equations is a fair representation of the ave
sensitivity of a detector at a given location. It depends on
declinationd of the gravitational-wave source as well as
the latitudel of the detector’s site and the angleg describing
the orientation of its arms. The producte2(d)sin2z is plotted
against the declinationd for different detectors in Fig. 4.
06300
ge
e

Averaging over the anglesa, d, c, and i yields results
which do not depend on the position of the detector on
Earth and on the orientation of its arms:

^d1
2&a,d,c,i>

1

100
sin2z

h0
2T0sin22u

Sh~ f 0!
, ~92!
1-13
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JARANOWSKI, KRÓLAK, AND SCHUTZ PHYSICAL REVIEW D 58 063001
^d2
2&a,d,c,i>

4

25
sin2z

h0
2T0sin4u

Sh~2 f 0!
. ~93!

For the special case of the model of neutron star as a tria
ellipsoid the angleu5p/2 and then the contributiond1

2 to
the signal-to-noise ratio vanishes. However for small ang
u the termd1

2 may dominate over the termd2
2. The averaging

of the above formulas over the angleu gives

^d1
2&a,d,c,i,u>

1

200
sin2z

h0
2T0

Sh~ f 0!
, ~94!

^d2
2&a,d,c,i,u>

3

50
sin2z

h0
2T0

Sh~2 f 0!
. ~95!

We observe that when the noise spectral density at freq
cies f 0 and 2f 0 is the same the average~95! of d2

2 is more
than one order of magnitude greater than the average~94! of
d1

2.
We have studied the distribution of the signal-to-no

ratiosd1 , d2 , andd over the anglesa, d, c, i, andu with the
aid of the Monte Carlo simulations for the observation tim
T05120 days. For each case we have generated 10 000
of angles according to the probability measure defined by
right-hand side of Eq.~87!. We have assumed that the p
rameterd0 given by Eq.~26! is equal to 1. The results ar
shown in Figs. 5–7 where we have plotted cumulative d
tribution functions of the simulated signal-to-noise ratiosd1 ,
d2 , andd for the initial/advanced Hanford, initial/advance
Livingston, VIRGO, GEO600, and TAMA300 detectors. W
have performed simulations for two gravitational-wave f
quenciesf 0 : 100 and 500 Hz. The shapes of the distributio
of the signal-to-noise ratiosd1 andd2 do not depend on the
frequencyf 0 @cf. Eqs. ~81!, ~82!# and will be the same for
nonaxisymmetries generated by different physical mec
nism, e.g., for the case of CFS instability.

In Table II we have given the means and the quartiles
the Monte Carlo simulated cumulative distribution functio
of the signal-to-noise ratiosd1 , d2 , andd for the individual
detectors.

From Figs. 5, 6, and Table II we see that the simula
distributions of the signal-to-noise ratiosd1 , d2 , andd de-
pend weakly on the position of the detector on the Earth
on the orientation of its arms~cf. plots and data for the
initial/advanced Hanford and Livingston detectors!. This is
related to the fact that the averages~92! and~93! are idepen-
dent of the position of the detector on the Earth and of
orientation of its arms.

D. Data analysis method

It is important to calculate the optimum statistics as e
ciently as possible. One way to achieve this is to take adv
tage of the speed of thefast Fourier transform~FFT!. Let us
consider first the normalized reduced functionalF1 . One ob-
serves that the phaseF of the signal can be written as@cf.
Eq. ~18!#
06300
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F~ t !52p f 0@ t1Fm~ t;a,d!#1Fs~ t; f 0

~k!

,a,d!, ~96!

where functionsFm andFs do not depend on the frequenc
parameterf 0 . Let us define the following two integrals:

F1a5E
2T0/2

T0/2

x~ t !a~ t !exp@2 iFs~ t !#

3exp$2 i2p f 0@ t1Fm~ t !#%dt, ~97!

F1b5E
2T0/2

T0/2

x~ t !b~ t !exp@2 iFs~ t !#

3exp$2 i2p f 0@ t1Fm~ t !#%dt. ~98!

One can write the statisticsF1 in terms of the above two
integrals as

F15
4

T 0
2

BuF1au21AuF1bu222CR~F1aF1b* !

D
. ~99!

We can introduce a new time coordinatetb :

tb~ t !5t1Fm~ t !. ~100!

From the explicit expression for the phaseF given by Eq.
~18! the time shiftFm and its time derivativeḞm can be
estimated by

uFm~ t !u&
RES

c
.53102 s,

~101!

uḞm~ t !u&
V0RES

c
.131024.

Assuming the maximum observation timeT05120 days to a
very good approximation we have

Tbªtb~T0!>T0 ,
dt

dtb
>1. ~102!

Thus in the new time coordinate the integralsF1a and F1b
can be very well approximated by

F1a>E
2T0/2

T0/2

x@ t~ tb!#a@ t~ tb!#exp$2 iFs@ t~ tb!#%

3exp~2 i2p f 0tb!dtb , ~103!

F1b>E
2T0/2

T0/2

x@ t~ tb!#b@ t~ tb!#exp$2 iFs@ t~ tb!#%

3exp~2 i2p f 0tb!dtb . ~104!

Hence we see that with the new time coordinatetb the two
integrals~103! and~104! are Fourier transforms of the func
tions

x@ t~ tb!#a@ t~ tb!#exp$2 iFs@ t~ tb!#%
1-14
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FIG. 6. Cumulative distribution functions of the simulated signal-to-noise ratiosd1 , d2 , and d for the advanced Hanford~H! and
advanced Livingston~L! detectors. The observation time is 120 days. The left column is forf 05100 Hz and the right one is forf 0

5500 Hz. The neutron star parameters are the same as in Fig. 5.
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x@ t~ tb!#b@ t~ tb!#exp$2 iFs@ t~ tb!#%,

respectively. To calculate these integrals for a given se
phase parameters we need to perform the following num
cal operations. For the chosen values of the parametersa and
d we resample the original time series according to the
mula ~100! and then we multiply the resampled time ser
x(tb) by functions a(tb)exp$2iFs@t(tb)#% and b(tb)exp
06300
of
ri-

r-

$2iFs@t(tb)#%. Then we calculate the two Fourier transform
~using FFT algorithm!. The resampling technique has be
proposed by one of us@15# and considered as an effectiv
data analysis tool for searches of gravitational waves fr
periodic sources@21#.

Alternatively one could define new spin-down paramet

f kª
f 0

~k!

f 0
, k51,...,s, ~105!
1-15
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FIG. 7. Cumulative distribution functions of the simulated signal-to-noise ratiosd1 , d2 , andd for the GEO600~G! with the wide band
noise curve and TAMA300~T! detectors. The observation time is 120 days. The left column is forf 05100 Hz and the right one is fo
f 05500 Hz. The neutron star parameters are the same as in Fig. 5.
ula

en-
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data
and introduce a different time coordinate

tb8~ t !5t1Fm~ t !1Fs8~ t !, ~106!

where

Fs8~ t !5 (
k51

s

f k

tk11

~k11!!
~107!
06300
and perform the resampling process according to the form
~106!.

The functionsa, b and consequentlyA, B, C, andD are
known and they depend on the declination, the right asc
sion, and the time of observation. Their values can be ca
lated and stored for a fine grid of positions of the neutron s
on the sky and appropriate observation times before the
analysis is carried out.
1-16
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TABLE II. The means and the quartiles for the Monte Carlo simulated distribution functions o
signal-to-noise ratiosd1 , d2 , andd for the individual detectors and for the three detector network of
VIRGO and two initial LIGO detectors. For the GEO600 detector we use two noise curves: wide ban
narrow band tuned to 1 kHz with the bandwidth of 30 Hz. The observation time is 120 days. We assum
star’s ellipticity is 1025, its moment of inertia with respect to the rotation axis is 1045 g cm2 and its distance
from the Earth is 1 kpc. Quantileqx gives a valuezx of random variablez such that probability thatz,zx is
less than or equal tox. The quantile values atx50.25, 0.5, and 0.75 are called the quartiles.

Detector

f 05100 Hz f 05500 Hz

Mean q0.25 q0.5 q0.75 Mean q0.25 q0.5 q0.75

GEO600 d1 0.70 0.37 0.72 1.0 14 7.5 15 21
wide-band noise d2 3.1 0.79 2.7 4.7 21 5.4 18 32

d 3.2 1.1 2.9 4.7 28 17 28 37

GEO600 d1 1.2 0.64 1.3 1.8
narrow-band noise d2 180 47 160 280

d 180 47 160 280

Initial Hanford d1 2.8 1.5 2.9 4.2 48 25 49 70
d2 12 3.2 11 19 72 19 63 110
d 13 4.7 12 19 95 56 96 120

Advanced Hanford d1 89 46 90 130 480 250 490 700
d2 140 37 120 210 720 190 630 1100
d 180 100 180 240 950 560 960 1200

Initial Livingston d1 2.9 1.5 3.0 4.3 48 25 50 71
d2 12 3.2 11 19 72 19 64 110
d 13 4.8 12 19 95 58 97 120

Advanced Livingston d1 89 47 92 130 480 260 500 720
d2 140 37 130 220 720 190 640 1100
d 180 110 180 240 950 580 970 1200

VIRGO d1 1.5 0.78 1.5 2.2 46 24 48 68
d2 5.8 1.5 5.2 8.9 86 22 76 130
d 6.2 2.3 5.7 9.0 110 57 100 140

TAMA300 d1 0.094 0.049 0.098 0.14 13 6.9 14 19
d2 1.1 0.28 0.97 1.7 29 7.3 25 44
d 1.1 0.30 0.98 1.7 34 17 33 46

Initial LIGO/VIRGO d1 4.3 2.3 4.5 6.4 82 43 86 120
network d2 19 4.8 17 28 130 35 120 200

d 20 7.1 18 29 170 100 170 230
po
er

al
r

and
The normalized reduced functional for the second com
nent of the signal can be calculated in a similar way. H
the corresponding Fourier transforms are given by

F2a>E
2T0/2

T0/2

x@ t~ tb!#a@ t~ tb!#exp$2 i2Fs@ t~ tb!#%

3exp~2 i4p f 0tb!dtb , ~108!

F2b>E
2T0/2

T0/2

x@ t~ tb!#b@ t~ tb!#exp$2 i2Fs@ t~ tb!#%

3exp~2 i4p f 0tb!dtb . ~109!
06300
-
e
The statisticsF for the whole signal is then calculated from
the formula

F5
4

Sh~ f 0!T0

BuF1au21AuF1bu222CR~F1aF1b* !

D

1
4

Sh~2 f 0!T0

BuF2au21AuF2bu222CR~F2aF2a* !

D
.

~110!
The statisticsF needs to be calculated on a multidimension
grid of parameter values~excluding the frequency paramete
f 0) covering sufficiently densely the parameter space,
compared against a threshold.
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FIG. 8. Cumulative distribution functions of the simulated signal-to-noise ratiosdn1 , dn2 , anddn for the three detector network of th
VIRGO and two initial LIGO detectors. The observation time is 120 days. The left column is forf 05100 Hz and the right one is forf 0

5500 Hz. The neutron star parameters are the same as in Fig. 5.
d
-
r
he
i-

c

late
as.
eters
e
ndi-

m

IV. NETWORKS OF DETECTORS

The analysis of the previous section can be generalize
the case of a network ofN interferometers in a straightfor
ward manner. Assuming that the noise in each detecto
uncorrelated with the others, the likelihood function for t
network is the sum of the likelihood functions for the ind
vidual detectors. Therefore we define a statisticsFn for the
whole network as the sum of the individual statistics of ea
06300
to

is

h

detector given by Eq.~56!. We maximizeFn with respect to
the phase parameters to obtain their estimators. We calcu
the estimators of the amplitudes from the analytic formul
Then we use a least-squares fit to estimate the param
(h0 ,u,c,i,F0) from the 8N amplitude estimators. When th
phase parameters of the signal are known each of the i
vidual statisticsFi multiplied by a factor of 2 hasx2 prob-
ability density distribution with eight degrees of freedo
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when the signal is absent and noncentralx2 distribution with
noncentrality parameterdi

2 when the signal is present. Th
Gaussian variables entering each statistics@normalized ran-
dom variableszi

n given by Eqs.~69!# have the same uni
variance. Thus 2Fn has thex2 distribution with 8N degrees
of freedom when signal is absent and noncentralx2 distribu-
tion with noncentrality parameterdn

25( i 51
N di

2 when the sig-
nal is present. The quantitydn can be defined as thetotal
signal-to-noise ratioof the network. Probability of detection
is then calculated by Eq.~75!. When the phase parameters
the signal are unknown similarly like in the one-detector c
one can consider a random field which is a sum of the r
dom fields for the individual detectors and investigate
correlation function for this random field to obtain an ind
pendent number of cellsNc of the field. One can then calcu
late the false alarm probability for the network by means
Eq. ~77!.

We have studied the distribution of the network signal-
noise ratiosdn1 , dn2 , and the total network signal-to-nois
ratio dn>Adn1

2 1dn2
2 over the anglesa, d, c, i, andu with

the aid of the Monte Carlo simulations for the observat
time T05120 days. We have restricted ourselves to the th
detector network of the VIRGO and two initial LIGO dete
tors. For each case we have generated 10 000 sets of a
according to the probability measure defined by the rig
hand side of Eq.~87!. We have assumed that the parame
d0 given by Eq.~26! is equal to 1. The results are shown
Fig. 8. We have performed simulations for two gravitation
wave frequenciesf 0 : 100 and 500 Hz.

In Table II we have put the means and the quartiles for
Monte Carlo simulated cumulative distribution functions
the signal-to-noise ratiosdn1 , dn2 , anddn for the three de-
tector network of the VIRGO and two initial LIGO detector
Adding the GEO600 and TAMA300 detectors will not si
nificantly change these signal-to-noise ratio values, but
smaller detectors can play an important role in making co
cident detections by improving the confidence that the c
didate events registered by larger detectors are not du
unmodeled noise.
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APPENDIX A: THE PHASE OF THE GRAVITATIONAL-
WAVE SIGNAL

We assume that in the rest frame of the neutron star
time dependence of the phase of the gravitational-wave
nal can be written as a power series of the form:

Cns~t!5F012p(
k50

s

f ns

~k! tk11

~k11!! , ~A1!
06300
e
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e

f
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wheret is the proper time in the neutron star rest frame. T
assumption~A1! means that the instantaneous frequency
the signal in the rest frame of the neutron star is given a

f ns~t!ª
1

2p
dCns~t!

dt 5 (
k50

s

f ns

~k! tk

k! , ~A2!

so f ns

(k)
is thekth time derivative of the frequency evaluated

t50.
We assume that the neutron star is moving with respec

the SSB uniformly along a straight line according to t
equation

rns~ t !5r 0n01vnsnvS t1
r 0

c D , ~A3!

where r 0ªurns(t52r 0 /c)u, n0ªrns(t52r 0 /c)/r 0 . If we
denote byvns the constant velocity vector of the neutron st
thenvnsªuvnsu andnv ªvns/vns. The timet in Eq. ~A3! is
the time coordinate in the SSB rest frame. We do not all
the neutron star to have an intrinsic acceleration. This me
we exclude binary neutron stars, except for the binary p
ods so long that the acceleration effects may be accura
approximated by a Taylor series during the observation tim

The phase observed at the SSB at some timet was emit-
ted by the star at the coordinate timet8 such that

t5t81
urns~ t8!u

c
. ~A4!

One can show that the relation between the timet8 and the
star’s proper timet is as follows:

t5A12bns
2 S t81

r 0

c D , ~A5!

where bnsªvns/c. In Eq. ~A5! the time dilation effect is
taken into account. We have also assumed thatt50 when
the star’s position vector with respect to the SSB isr 0n0 . We
can now write

CSSB~ t !5Cns„t~ t !…, ~A6!

whereCSSB(t) is the phase observed at the SSB at timet,
and the timet can be expressed in terms oft by means of
Eqs.~A4! and ~A5!.

Collecting Eqs.~A1! and ~A4!–~A6! together we can
write

CSSB~ t !5F012p(
k50

s
f ns

~k!

~k11!! ~12bns
2 !~k11!/2

3 S t8~ t !1
r 0

c D k11

, ~A7!

where t8 is the solution of Eq.~A4! for a given timet. It
reads
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t85
1

12bns
2 H t1

r 0

c
bns@bns1~n0•nv!#2Abns

2 t212
r 0

c
bns@bns1~n0•nv!#t1

r 0
2

c2 @11bns~n0•nv!#J . ~A8!

We expand the functionCSSB given by Eqs.~A7! and ~A8! with respect to timet aroundt50. The first few terms of the
expansion read

CSSB~ t !2F0

2p 5 f SSB

~0!

t1H f SSB

~1!

1
~~n0•nv!221!bns

2

~11~n0•nv!bns!
2~r 0 /c!

f SSB

~0! J t2

2

1H f SSB

~2!

1
3~~n0•nv!221!bns

2

~11~n0•nv!bns!
2~r 0 /c! F f SSB

~1!

2
~bns1~n0•nv!!bns

~11~n0•nv!bns!
2~r 0 /c!

f SSB

~0! G J t3

6 1O~ t4!, ~A9!
t t

q
of
t

he
:

m

at an

time

s

where

f SSB

~k!

ª

~12bns
2 !~k11!/2

@11~n0•nv!bns#
k11

f ns

~k!

, k50,...,s. ~A10!

As a result of the motion of the neutron star with respec
the SSB the Taylor expansion~A9! of the phaseCSSB con-
tains infinitely many terms, even if we restrict, as in E
~A1!, the intrinsic spindown of the star to finite number
terms. When the neutron star moves radially with respec
the SSB then (n0•nv)251 and the functionCSSBcanexactly
be written as the finite sum:

CSSB~ t !5F012p(
k50

s

f SSB

~k! tk11

~k11!! . ~A11!

We shall assume the following polynomial model of t
phase of the gravitational radiation observed at the SSB

CSSB~ t !5F012p(
k50

s

f 0

~k! tk11

~k11!! , ~A12!

where the new spin-down parametersf 0

(k)
do not in general

coincide with the Doppler scaled intrinsic spin-down para

etersf SSB

(k)
defined by Eq.~A10!.

We write the position vectorrd of the detector with re-
spect to the SSB as
06300
o

.

to

-

rd~ t !5r d~ t !nd~ t !, ~A13!

where r d(t)ªurd(t)u and nd(t)ªrd(t)/r d(t). The phase of
the gravitational-wave signal at the timet at the detector’s
location corresponds to the phase near the neutron star
earlier instant of timet9, where t9 is the solution of the
equation

t5t91
urns~ t9!2rd~ t !u

c
. ~A14!

The same value of the phase is observed at the SSB at

t91
urns~ t9!u

c
,

thus using Eq.~A12! we can write

Cd~ t !5F012p(
k50

s
f 0

~k!

~k11!! S t9~ t !1
urns„t9~ t !…u

c D k11

,

~A15!

where t9(t) is the solution of Eq.~A14! for given time t.
Using Eqs.~A3! and~A13! we express the solutiont9 to Eq.
~A14! in terms of the timet and the two small parameter
bns andxªr d /r 0 :
t9~x,bns!5
1

12bns
2 H t1

r 0

c
bns@~n0•nv!2~nd•nv!x1bns#2F S t1

r 0

c
bns@~n0•nv!2~nd•nv!x1bns# D 2

1~12bns
2 !S r 0

2

c2 @11bns
2 22~n0•nd!x1x212„~n0•nv!2~nd•nv!x…bns#2t2D G1/2J . ~A16!
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Using Eq.~A13! we also find that

urns~ t9!u
c

5Ar 0
2

c2 12
r 0

c S t91
r 0

c D ~n0•nv!bns1S t91
r 0

c D 2

bns
2 .

~A17!

We now study how to simplify the phaseCd given by Eqs.
~A15!–~A17!.

An optimal method to detect our signal in noise dev
oped in Sec. III involves correlating the data with templa
of the signal. In general if the phase of the template diff
from that of the signal by as little as 1/4 of a cycle t
correlation will be significantly reduced. Thus we adopt t
criterion that we exclude an effect from the model of t
signal in the case when it contributes less than1/4 of a cycle
to the phase of the signal during the observation time. That
this criterion is only a sufficient condition but not necessa
follows from the correlations among parameters of the pha
The shifts in the values of the parameters in the temp
phase away from the true values of the parameters in
signal phase can compensate for the effects in the signa
taken into account in the templates. This effect was obser
for the case of coalescing binaries@33,37–39#. Finally we
stress that such shifts in the template parameter values m
that the estimators of the parameters of the signal when u
an inaccurate template will be biased. It may happen
these biases are much larger than the rms errors of the
mators. Thus templates accurate to 1/4 of a cycle over
observation time may not be needed to detect the signal
they will be needed to obtain accurate estimates of the er
in parameter measurements.

In calculating the number of cycles we assume a lo
observation time of 120 days, the maximum gravitatio
wave frequency of 1 kHz, and the extreme case of a neu
star at a distancer 0540 pc with vns5103 km/s. For this
extreme case the parametersx andbns assume the values~as
to a good approximationr d>1 AU!:

x51.2131027, bns53.3431023. ~A18!

The numerical values of the spin-down parametersf 0

(k)

we
estimate by means of the relation:

u f 0

~k!

u.k!
f 0

tk
, ~A19!

where f 0 is the radiation frequency andt is the spin-down
age of the neutron star. As the extreme case we will cons
t540 years.

It is convenient to carry out the Taylor expansion of t
phase~A15! with respect to the parametersx and bns. We
note that for anyn

]nCd

]bns
n ~x50, bns50!50.
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Analysis of the first few terms of the Taylor expansio
shows that for the observation timesT0<120 days, neutron
star distancesr 0>40 pc, velocitiesvns<103 km/s, frequen-
cies f 0<1 kHz, and spin-down agest>40 years, the only
terms which can contribute more than 1/4 of a cycle to
phase of the signal, read

Cd>F012p(
k50

4

f 0

~k! tk11

~k11!!

1
2p

c S n01
vns'

r 0
t D •rd(

k50

3

f 0

~k! tk

k!
, ~A20!

wherevns' ªvns2(n0•vns)n0 is the component of the veloc
ity vns perpendicular to the vectorn0 . The ratiovns' /r 0 de-
termines the proper motion of the star. The term in the ab
expansion proportional tovns' /r 0 contributes at most;4
cycles. We shall not consider it in this paper. We shall lo
at the possibility of its determination in the next paper of th
series. Consequently we restrict ourselves to a phase m
at the detector of the form

Cd>F012p(
k50

4

f 0

~k! tk11

~k11!!
1

2p

c
n0•rd(

k50

3

f 0

~k! tk

k!
.

~A21!

The model~A21! contains the positionrd of the Earth rela-
tive to the SSB, which we now consider. In addition we mu
consider extra, purely relativistic effects left out of~A21!.

Motion of the Earth with respect to the SSB is very we
determined and there are several computer ephemeris
tines available@20#. In this paper we assume for simplicit
that the Earth moves on a circular orbit around the Sun. T
eccentricity of the Earth’s orbit (e% 50.017) introduces a
change of about 8.33103 cycles in the phase with respect
the phase for circular orbit for 1 kHz signal, so it must
included in realistic filters. But it introduces no new param
eters so we ignore it here. We also ignore the motion of
Earth around the Earth-Moon barycenter.

There are two types of relativistic corrections. One ori
nates in the difference between the coordinate timet which
we used in the derivation of the phase model and the pro
time t in the detector’s reference frame. The difference
due to the combined effect of the gravitational redshift a
the time dilation. The other correction is the Shapiro de
caused by propagation of the gravitational wave through
curved spacetime of the solar system. We estimate the
tribution to the number of cycles in the phase produced
these corrections.

The difference between the coordinate timet in the first-
order post-Newtonian coordinate system which is assume
be the rest frame of the SSB and the proper timet kept by a
terrestial clock is discussed in detail in Ref.@40#. The differ-
enceDEªt2t is given by the integral

DE5
1

c2 E0

t H U@r ~ t8!#1
v~ t8!2

2 J dt8, ~A22!
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wherer is the position vector of the clock with respect to t
SSB,vª ṙ is the clock’s coordinate velocity, andU@r (t)# is
the instantaneous gravitational potential at the clock’s lo
tion. The time difference described by the integral~A22! can
be split into the secular and periodic part. The secular dif
ence is due to the practically constant rotational velocity a
the Earth’s gravitational potential at the detector’s locat
as well as the average orbital velocity of the Earth and
average gravitational potential along the Earth’s orbit. T
secular difference corresponds to the rescaling of the t
coordinate and can be incorporated into the definition of
spin-down parameters. The main contribution to the perio
part of the integral~A22! was calculated by Clemence an
Szebehely@41# and then corrected by Blandford and Teuko
sky @42#. It can be written as

~DE!periodic>
2GM(e%

c2a%~12e%

2 !V0
F S 12

1

8
e%

2 D sin M %

1
1

2
e%sin 2M % 1

3

8
e%

2 sin 3M % G , ~A23!

where M ( is the mass of the Sun,a% 51 AU, V0 is the
mean orbital angular velocity of the Earth,e% and M % are
the eccentricity and mean anomaly of the Earth’s orbit. T
quantity (DE)periodic varies in time with the period of one
year and has the amplitude.1.731023 s, so for a 1 kHz
gravitational wave the contribution of this correction to t
total number of cycles is not greater than;two cycles. Even
when it must be included in a filter, it introduces no ne
parameters.

The magnitude of the Shapiro delay can be estima
from the relation@43# ~neglecting the eccentricity of th
Earth’s orbit!

DS5
2GM(

c3 ln
1

11cosu
, ~A24!

whereu is the star-Sun-detector angle at the time of obs
vation. To estimate the maximum value of the Shapiro de
we consider a neutron star in such a position that at so
instant of time the line of sight from the detector to t
neutron star is tangent to the surface of the Sun. Theu
5u1.p2z, where z.R( /1 AU.4.6531023 rad (R( is
the radius of the Sun!. Six months lateru5u2.z, so the
amplitude of the correction is

DS~u5u1!2DS~u5u2!

.
2GM(

c3 ln
11cosu2

11cosu1
.1.231024 s.

For a 1 kHz gravitational wave this gives;0.1 cycles. So
the Shapiro delay will be unobservable.

We see that the relativistic corrections that need to
applied to our formula are small. By our 1/4 of a cycle c
terion they can be neglected if we search for signals w
frequencies less than;100 Hz. We shall not consider thes
corrections in this and the following papers of the ser
06300
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since they are unlikely to influence our results. However th
may need to be included in filters.

APPENDIX B: SIGNAL-TO-NOISE RATIO

In this appendix we give the detailed expressions for
functionsA1 , A2 , B1 , andB2 from Eqs.~84! and~85!. They
read

Ak~d,c,i !5Fk~i !e1~d!cos 4c1Gk~i !e2~d!, ~B1!

Bk~a,d,c,i;T0!5
1

V r
(
n51

4

sinS n
V r

2
T0D

3$Ckn~d,c,i !cos@n~a2f r !#

1Dkn~d,c,i !sin@n~a2f r !#%,

~B2!

whereV r is the rotational frequency of the Earth,T0 is the
observation time, and where

Ckn~d,c,i !5Fk~i !@ f 1n~d!cos 4c1g1n~d!sin 4c#

1Gk~i !h1n~d!, ~B3!

Dkn~d,c,i !5Fk~i !@ f 2n~d!cos 4c1g2n~d!sin 4c#

1Gk~i !h2n~d!, ~B4!

F1~i !52
1

16
sin4i, F2~i !5

1

4
sin4i, ~B5!

G1~i !5
1

16
sin2i~11cos2i !,

G2~i !5
1

4
~116 cos2i1cos4i !. ~B6!

The functionse1 , e2 , f kn , and gkn (k51,2, n51, . . . ,4)
entering Eqs.~B1!, ~B3!, and~B4! are equal to

e1~d!54 j 1cos4d, e2~d!54 j 22 j 3cos 2d1 j 1cos22d,

f 11~d!524 j 4cos3d sin d,

f 12~d!5 j 5cos2d~32cos 2d!,

f 13~d!52 j 6~72cos 2d!sin 2d,

f 14~d!52 j 7~35228 cos 2d1cos 4d!,

f 21~d!5228j 8cos3d sin d,

f 22~d!527 j 9~32cos 2d!cos2d,

f 23~d!52 j 10~72cos 2d!sin 2d,

f 24~d!52 j 11~35228 cos 2d1cos 4d!,

g11~d!528j 8cos3d,
1-22
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g12~d!528j 9cos2d sin d,

g13~d!52 j 10~523 cos 2d!cosd,

g14~d!516j 11~32cos 2d!sin d,

g21~d!524 j 4cos3d,

g22~d!54 j 5cos2d sin d,

g23~d!522 j 6~523 cos 2d!cosd,

g24~d!5216j 7~32cos 2d!sin d,

h11~d!5~ j 122 j 4cos 2d!sin 2d,

h12~d!5~ j 132 j 5cos 2d!cos2 d,

h13~d!54 j 6cos3d sin d,

h14~d!528 j 7cos4d,

h21~d!5 j 8~127 cos 2d!sin 2d,

h22~d!52 j 9~527 cos 2d!cos2d,

h23~d!54 j 10cos3d sin d, h24~d!528 j 11cos4d,

where the coefficientsj 1 , . . . ,j 13 depend on the anglesl
andg:

j 1~l,g!5
1

256
~4220 cos2l135 sin22g cos4l!,

j 2~l,g!5
1

1024
~68220 cos2l213 sin22g cos4l!,
AV

,

A

-
al
d

.
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j 3~l,g!5
1

128
~28244 cos2l15 sin22g cos4l!,

j 4~l,g!5
1

32
~227 sin22g cos2l!sin 2l,

j 5~l,g!5
1

32
~327 cos 4g27 sin22g cos2l!cos2l,

j 6~l,g!5
1

96
~2 cos 4g1sin22g cos2l!sin 2l,

j 7~l,g!5
1

1024
~4 cos 4g sin2l2sin22g cos4l!,

j 8~l,g!5
1

32
sin 4g cos3l,

j 9~l,g!5
1

32
sin 4g cos2l sin l,

j 10~l,g!5
1

192
sin 4g~523 cos 2l!cosl,

j 11~l,g!5
1

1024
sin 4g~32cos 2l!sin l,

j 12~l,g!5
1

32
~142sin22g cos2l!sin 2l,

j 13~l,g!5
1

32
~925 cos 4g25 sin22g cos2l!cos2l.
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