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Solution to the inverse problem for a noisy spherical gravitational wave antenna
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A spherical gravitational wave antenna is distinct from other types of gravitational wave antennas in that
only a single detector is necessary to determine the direction and polarization of a gravitational wave. Zhou and
Michelson showed that the inverse problem can be solved using the maximum likelihood method if the
detector outputs are independent and have normally distributed noise with the same variance. This paper
presents an analytic solution using only linear algebra that is found to produce identical results as the maximum
likelihood method but with less computational burden. Applications of this solution to gravitational waves in
alternative symmetric metric theories of gravity and impulsive excitations also are discussed.
@S0556-2821~98!04018-1#

PACS number~s!: 04.80.Nn, 04.30.Nk, 95.55.Ym
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I. INTRODUCTION

Several resonant-mass gravitational wave~GW! antennas
are now in continuous operation with strain sensitivities
the order 10221 Hz21/2 @1#. With further improvements to
these detectors and the addition of several large laser in
ferometers now under construction@2#, the prospects for
gravitational wave astronomy are quite good. The underly
non-gravitational physics associated with these detector
reasonably understood and further improvements can
based on solid technological guidelines.

Many believe the next generation of resonant-mass an
nas will be of spherical shape@3#. Confirmed detection of
gravitational waves will require a coincidence between s
eral detectors; thus the unique features of a sphere may
an essential role in a network of gravitational wave antenn
Two important features of a sphere are its equal sensitivit
gravitational waves from all directions and polarizations a
its ability to determine the directional information and te
sorial character of a gravitational wave@4#.

To take full advantage of these capabilities, one need
be able to interpret the data such a detector will produ
Recently, much work has been done to understand the ou
of a spherical antenna equipped with resonant transdu
@5,6#. All of these proposals operate on the principle that
response of the transducers can be transformed into a q
tity that has a one-to-one correspondence with the tens
components of a gravitational wave. With the measurem
of these components, it is possible to solve the inverse p
lem to obtain the direction and polarization amplitudes o
gravitational wave.

The solution to the inverse problem for a noiseless sph
cal antenna first was outlined in the mid 1970s by Wago
and Paik@4#. More recently, the solution for a network o
five noiseless bar antennas or interferometers was solve
Dhurandhar and Tinto@7#. This method assumed that th
detectors were co-located but oriented in different directio
This solution is quite elegant because the exact solution
be found using straightforward algebra. Since a sphere
be thought of as five bar detectors occupying the same sp
this solution can be adapted for a spherical antenna@8,9#. In
addition, Lobo outlined a procedure that can be used if
0556-2821/98/58~6!/062002~9!/$15.00 58 0620
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correct theory of gravity is not general relativity but u
known@10#. What all these proposals have in common is th
they use basic symmetry properties of the matrices desc
ing the detectors and their response to a gravitational wa
This makes them intuitive and easy to visualize@11#.

The solution to the inverse problem in the presence
noise is more complicated. Gu¨rsel and Tinto solved the prob
lem for three noisy interferometers using a maximum like
hood method@12#. This solution required the measureme
of the time delay of the signal between widely separa
detectors to triangulate the direction of the source. Zhou
Michelson showed that the inverse problem for a spher
antenna can be solved in the presence of noise, also us
maximum likelihood method@8#.

What is disappointing about the maximum likelihoo
method is that the original simplicity of the Dhurandha
Tinto noiseless solution is lost. In addition, an exact solut
for the spherical detector was not found, making it necess
to solve the problem numerically. This solution can be co
putationally expensive, especially if the signal-to-noise ra
~SNR! is low. For the three interferometer case, the nume
cal solution often can lead to an incorrect estimate at l
SNR @12#. This appears not to be a problem for a spheri
antenna; a global maximum usually exists and is align
with the correct direction. This leads us to believe that
problem for a spherical antenna can be solved analytica

On experiments with the room-temperature prototy
spherical antenna@truncated icosahedral GW antenn
~TIGA!# at Louisiana State University, we used a proced
to solve the inverse problem for impulsive excitations a
plied to the sphere surface@13,14#. This solution was similar
to Dhurandhar and Tinto’s original solution for gravitation
waves, but we used a perturbation argument~presented be-
low! to take into account the finite SNR of the experime
The case of an impulsive excitation is more simple than
gravity wave because fewer parameters are involved, h
ever, we show below that this method also can be use
find an analytic solution for gravitational waves.

We begin by reviewing the response of a spherical
tenna to gravitational waves in general relativity and sh
how the Dhurandhar-Tinto original method can be applied
solve for the wave direction and polarization amplitudes. W
© 1998 The American Physical Society02-1
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STEPHEN M. MERKOWITZ PHYSICAL REVIEW D58 062002
then generalize the arguments to any symmetric me
theory of gravity as well as to impulsive excitations. In Se
III we show how this technique can be extended to a no
antenna with independent and equally sensitive detector
puts. This solution is found to be equivalent to the maxim
likelihood method under the same noise requirements.
general approach taken allows this solution to be ea
adapted to other types of excitations with similar symme
properties. We conclude the paper with a discussion of
limitations of the solution and possible extensions of t
method.

II. DETECTOR RESPONSE OF AN ELASTIC SPHERE

Dhurandhar and Tinto solved the inverse problem fo
bar antennas as well as 5 interferometers@7#. Others have
used their method to solve the problem for a spherical
tenna@8,9#. Their technique involves constructing a matr
sayA, that describes the response of the detector to a gr
tational wave. They found that in general relativity the eige
vector of A with zero eigenvalue points in the propagati
direction of the wave. In the following we will also use th
concept, but will derive the equations in the context of line
algebra as this will lead us directly into the solution for t
noisy antenna. For a more complete discussion of the
sponse of an elastic sphere to gravitational waves the re
is referred to Refs.@15,16,10#.

A. Detector response in general relativity

A gravitational wave is a traveling time-dependent dev
tion of the metric perturbation, denoted byHmn(t). We fol-
low a common textbook development for the metric dev
tion of a gravitational wave, which finds that only the spat
componentsHi j (t) are non-zero, and further can be taken
be transverse and traceless@17#. This tensor is simplified if
we initially write it in the ‘‘wave-frame,’’ denoted by primed
coordinates and indices. This is a coordinate frame with
gin at the center of mass of the detector and thez8 axis
aligned to the propagation direction of the wave. We rest
ourselves to detectors much smaller than the gravitatio
wavelength so only the time dependence ofHi j (t) will have
significant physical effects. A general form for the spat
components of the metric deviation in the wave-frame can
written as

H8~ t !5F h1~ t ! h3~ t ! 0

h3~ t ! 2h1~ t ! 0

0 0 0
G , ~1!
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whereh1(t) andh3(t) are the wave amplitudes for the tw
allowed states of linear polarization and are called the p
and cross amplitudes.

The detector is more easily described in the ‘‘lab-frame
denoted by unprimed coordinates and indices, with origin
the center of mass of the detector and thez axis aligned with
the local vertical. In this frame, the primary physical effect
a passing gravitational wave is to produce a time depend
‘‘tidal’’ force density f GW(x,t) on the material with mass
densityr at coordinate locationxi . This force is related to
the metric perturbation by

f i
GW~x,t !5

1

2
r(

j
Ḧ i j ~ t !xj . ~2!

It is natural to look for an alternate expression that se
rates the coordinate dependence into radial and angular p
Because the tensorHi j (t) is traceless, the angular expansio
can be done completely with the five second order real v
ued spherical harmonicsY2m(u,f), where the indexm
51,...,5. We call the resulting time dependent expansion
efficients, denoted byhm(t), the ‘‘spherical amplitudes’’
@16#. They are a complete and orthogonal representation
the Cartesian metric deviation tensorHi j (t). They depend
only on the two wave-frame amplitudes and the direction
propagation.

To transform the metric perturbation to the lab-frame
perform the appropriate rotations using the y-convention
the Euler angles shown in Fig. 1. We denote the rotat
about the wavez8 axis by a, the rotation about the newy
axis (h8) by b, and the rotation about the final labz axis by
g. The rotation matrix for the y-convention is

FIG. 1. The y-convention of the Euler angles.
R5F cosg cosb cosa2sin g sin a cosg cosb sin a1sin g cosa 2cosg sin b

2sin g cosb cosa2cosg sin a 2sin g cosb sin a1cosg cosa sin g sin b

sin b cosa sin b sin a cosb
G . ~3!
2-2
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SOLUTION TO THE INVERSE PROBLEM FOR A NOISY . . . PHYSICAL REVIEW D 58 062002
At this point we arbitrarily set the rotationa about the wave
z8 axis equal to zero; inclusion of this rotation will onl
‘‘mix’’ the two polarizations of the wave. The spherical am
plitudes can now be written in terms of the polarization a
plitudes and the source direction:

h1~ t !5h1~ t !
1

2
~11cos2 b!cos 2g1h3~ t !cosb sin 2g,

~4a!

h2~ t !52h1~ t !
1

2
~11cos2 b!sin 2g

1h3~ t !cosb cos 2g, ~4b!

h3~ t !52h1~ t !
1

2
sin 2b sin g1h3~ t !sin b cosg,

~4c!

h4~ t !5h1~ t !
1

2
sin 2b cosg1h3~ t !sin b sin g,

~4d!

h5~ t !5h1~ t !
1

2
) sin2 b. ~4e!

The mechanics of a spherical antenna can be describe
ordinary elastic theory. One finds that the eigenfunctions
an uncoupled sphere can be written in terms of the sphe
harmonics:

Cnlm~r ,u,f!5~anl~r ! r̂1bnl~r !a“ !Ylm~u,f!. ~5!

The radial eigenfunctionsanl(r ) and bnl(r ) determine the
motion in the radial and tangential directions respectiv
and depend on the radiusa and the material of the spher
@4,16#.

In general relativity, only the 5 quadrupole modes of
bration will strongly couple to the force density of a grav
tational wave. For an ideal sphere they are all degene
having the same eigenfrequency, and are distinguished
by their angular dependence. The effective forceF12m(t) that
a gravitational wave will exert on a fundamental quadrup
modem of the sphere is given by the overlap integral b
tween the eigenfunctions of the sphere and the gravitatio
tidal force:

F12m~ t ![E C12m~x!•fGW~x,t !d3x5
1

2
ḧm~ t !Mxa. ~6!

Each spherical component of the gravitational field de
mines uniquely the effective force on the correspond
mode of the sphere and they are all identical in magnitu
We can interpret the effective forceF12m(t) in each mode as
the product of: the physical mass of the sphereM , an effec-
tive lengthxa ~a fraction of the sphere radius!, and the gravi-
tational acceleration12 ḧm(t). The value of the coefficientx
depends on the sphere material, but is typically.0.6 @16#.
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By monitoring the quadrupole modes of the sphere, o
has a direct measurement of the effective force on the sp
and thus the spherical amplitudes of the gravitational wa
The standard technique for doing so on resonant detecto
to position resonant transducers on the surface of the sp
that strongly couple to the quadrupole modes. A numbe
proposals have been made for the type and positions of
transducers@5,6,8#. What all of these proposals have in com
mon is that the outputs of the transducers are combined
‘‘mode channels’’gm(t) that are constructed to have a on
to-one correspondence with the quadrupole modes of
sphere and thus the spherical amplitudes of the gravitatio
wave @16,18#,

gm~ t !}F12m~ t !}hm~ t !. ~7!

The mode channels can be collected to form a ‘‘detec
response’’ matrixA(t) that in the absence of noise is equal
the Cartesian strain tensorH(t) in the lab frame

A~ t ![3
g1~ t !2

1

)

g5~ t ! g2~ t ! g4~ t !

g2~ t ! 2g1~ t !2
1

)

g5~ t ! g3~ t !

g4~ t ! g3~ t !
2

)

g5~ t !
4 .

~8!

For the remainder of this discussion we drop the notation
time dependence (t) for brevity.

The strain tensor in the lab frameH is a symmetric trace-
less matrix. Consequently, it can be orthogonally diagon
ized and has an orthonormal set of three eigenvectors.
can construct from the eigenvectors a transformation ma
R that diagonalizesH. The matrixR is also orthogonal, thus
it can be considered a rotation matrix~it may also include a
reflection!. The physical interpretation of this transformatio
is to rotate the lab frame such that thez axis points in the
direction of the source. The matrixR ~the eigenvectors! will
tell us the angles of rotation and thus the direction of
wave.

In the wave frame,H8 is not normally diagonal but it can
be diagonalized by rotating Eq.~1! about the propagation
axes using the Euler anglea. a may be a constant or a
function of time depending upon the situation. This rotati
changes the polarization components of the tensor but no
wave direction relative to the lab frame.

To calculate the rotation matrixR we need to solve the
general eigenvalue equation for the strain tensor

Hx5lxx. ~9!

SinceA andH are equal in the absence of noise we are f
to substituteA in Eq. ~9! for H. By inspection of Eq.~1! we
see that in general relativity the eigenvector ofH with lx
50 points in the propagation direction of the wave. T
direction can be calculated from this eigenvector by rec
2-3
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STEPHEN M. MERKOWITZ PHYSICAL REVIEW D58 062002
nizing that it corresponds to the last column vector ofR in
Eq. ~3!. Dividing the elements of this column we find

tan g52
y

x
, ~10!

tan b5
y

z

1

sin g
. ~11!

The unusual minus sign in Eq.~10! comes from the use o
the y-convention of the Euler angles. Expanding Eq.~9! for
lx50 and substituting in a particular choice of matrix e
ments from Eq.~8! we find

tan g5
3g4g322)g2g5

2)g1g512g5
213g3

2
, ~12!

tan b56
)g3g422g5g2

)g1g41g5g41)g3g2

1

sin g
.

~13!

This solution is valid only for a noiseless antenna; it w
fail otherwise because we can no longer replaceH with A
and their eigenvectors and eigenvalues will no longer
equal. The6 in Eq. ~13! illustrates the unavoidable fact tha
a single sphere cannot distinguish between antipodal sou
This ambiguity is a characteristic of all gravity wave dete
tors, but can be removed by measuring the time delay of
signal between two widely separated antennas.

Once the direction is calculated we can determine the
polarization amplitudes by taking a linear combination
Eqs.~4!. These equations are actually overdetermined so
eral solutions exist~we have 5 equations but only 4 un
knowns!. In the absence of noise any particular solution
them is valid, but in anticipation of the noisy case we w
take a systematic approach to the solution.

We need only the anglesb andg to rotateH to H8, so at
this point we again seta50. The amplitudes are found b
equating them to the corresponding matrix elements ofH8 in
Eq. ~1!. Again, we may substituteA for H andA8 for H8 so
we haveh15A118 52A228 andh35A128 5A218 . A andA8 are
symmetric soA128 and A218 will always be identical even
when noise is introduced. However, no such restriction
placed onA118 and A228 . We will use the average (A118
2A228 )/2 to calculateh1 for reasons that will become clea
later.

Multiplying A85RTAR for a50 and selecting the prope
elements we find
06200
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h15g1

1

2
~11cos2 b!cos 2g2g2

1

2
~11cos2 b!sin 2g

2g3

1

2
sin 2b sin g1g4

1

2
sin 2b cosg

1g5

)

2
sin2 b. ~14!

h35g1 cosb sin 2g1g2 cosb cos 2g

1g3 sin b cosg1g4 sin b sin g. ~15!

These equations can also be derived by taking a linear c
bination of Eqs.~4!. This is not the only valid solution in the
noiseless case, but it is particularly symmetric: the coe
cients of each componentgm is the same as the correspon
ing coefficients ofh1 or h3 in Eqs.~4! for hm . The fact that
h3 does not contain ag5 contribution is an artifact of using
the y-convention of the Euler angles; in other conventio
this term may be non-zero.

B. Detector response in alternative theories of gravity

Experiments in the solar system and pulsar-timing te
have ruled out many competing theories of gravity, howev
general relativity is not the only theory of gravity that pass
these weak field tests@19#. One measurement that can pote
tially rule out certain gravitational theories is the propert
of gravitational waves@20#, such as the speed of propagatio
and allowable polarization states. It was shown above ho
single sphere can measure the quadrupole components o
strain tensor, but a scalar wave can excite both the mono
mode and the quadrupole modes of a sphere@10,21#. By
monitoring both types of modes, a single spherical detec
can measure all the tensor components of a gravitatio
wave. This makes it possible for a single spherical detec
to determine all of the six polarization states predicted by
most general symmetric metric theory of gravity@22#.

We can rewrite Eq.~6! in terms of the electric compo
nents of the Riemann tensor@20# Ei j 5R0i0 j ,

Fnlm52
1

M
Ei j E Cnlm

i xjrd3x, ~16!

where we now include both thel 52 quadrupole modes an
the l 50 monopole mode. The monopole mode of an elas
sphere is actually at a higher frequency than the quadru
modes. If the source is not wide-band enough for detectio
both of these modes, a second sphere with the mono
mode tuned to the quadrupole modes of the first will
needed to measure this component. If the first sphere i
relatively low frequency, one might consider making the s
ond sphere hollow to keep it of a practical size@23#. An
alternative to a second sphere is to monitor then52 quad-
rupole modes and the monopole mode of a single sph
These modes are not far in frequency from each other
also have relatively large cross-sections@24,10#.
2-4
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SOLUTION TO THE INVERSE PROBLEM FOR A NOISY . . . PHYSICAL REVIEW D 58 062002
Expanding Eq.~16! into radial and angular parts we fin
an additional spherical amplitudeh0 corresponding to thel
50 spherical harmonic. The detector response in the
frame can now be written as

A[3
g12

1

)

g51g0 g2 g4

g2 2g12
1

)

g51g0 g3

g4 g3
2

)

g51g0

4 .

~17!

To determine how to solve the inverse problem we ne
to examine the form ofEi j . It is a symmetric tensor so it ha
only six independent components. It can be written in ter
of the complex Newman-Penrose parameters@25# which al-
low the identification of the spin content of the metric theo
responsible for the generation of the wave

Ei j 5F 2RC42F22 IC4 2A8RC3

IC4 RC42F22 A8IC3

2A8RC3 A8IC3 26C2

G . ~18!

We can divide the theories of gravity into categories us
the E~2! classification scheme shown in Table I@26#. The
tensorEi j is symmetric for all of these classes, thus it
orthogonally diagonalizable, but classesII 6 and III 5 have
more degrees of freedom~direction plus polarization states!
than we are capable of measuring with a single spher
detector. These two classes are often referred to
‘‘observer-dependent’’ because different observers will d
agree upon which polarization states are present. As a
sequence, the polarization amplitudes for a particular
server must be known before the direction of the wave
be estimated.

For the ‘‘observer-independent’’ classesO0 , O1 , N2 ,
and N3 , the situation is more straightforward.O0 is obvi-
ously uninteresting as it does not predict any gravitatio
waves~this class along withO1 have essentially been rule
out by previous experiments@19#!. We notice thatEi j for the
observer-independent classes can be diagonalized by a
tion a about the propagation axis, therefore, we can use
same arguments presented above for general relativit
solve for the wave direction.

TABLE I. The E~2! classification scheme.

Class Allowable polarization states Example

II 6 F22,C4 ,C3 ,C2 Most general
III 5 F22,C4 ,C3 Kaluza-Klein
N3 F22,C4 Brans-Dicke
N2 C4 General relativity
O1 F22 Purely scalar
O0 None No wave
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The most general observer-independent class isN3 ,
which has

Ei j 5F 2RC42F22 IC4 0

IC4 RC42F22 0

0 0 0
G . ~19!

Looking at the form ofEi j we see that the same procedu
for calculating the direction of the wave in general relativ
holds for all the observer-independent classes: the eigen
tor of A with eigenvalue equal to zero points at the sour
The one exception to this statement is the case where
driving forces remain in a fixed line, for exampleIC450,
RC45F22. In this situation the direction of the wave ca
only be determined within the plane defined by the tw
eigenvectors with eigenvalues equal to zero.

C. Detector response to impulsive excitations

Impulsive excitations are often used on resonant-mass
tectors to calibrate the antenna@27#. The excitations are usu
ally administered by either a short electrical burst applied
a calibrator attached to the surface or a hammer blow.
pulsive excitations were also used to test the analysis te
niques used for experiments with the prototype spherical
tenna at Louisiana State University@13,14#.

A radial impulse excitation can be easily described if w
choose thez8 axis to be along the direction of the impuls
By examining the quadrupole eigenfunctions of the spher
this frame we notice that out of these modes only theC125
mode will be excited~other sphere modes will also be e
cited but their response can be removed by narrow-band
tering!. All of the other quadrupole modes have a vanishi
radial component of their eigenfunctions at this locati
which makes their ‘‘overlap’’ integral with the impulse van
ish. In this frame the detector response is

A853
2

1

)

g58 0 0

0 2
1

)

g58 0

0 0
2

)

g58
4 . ~20!

In the lab frameA is still given by Eq.~8!.
Again, the direction can be found by calculating the

genvalues and eigenvectors of the lab frameA. In the ab-
sence of noise, the eigenvector corresponding to the direc
has a non-zero eigenvalue that is opposite in sign and tw
as large as the two other eigenvalues.

III. SOLUTION TO THE INVERSE PROBLEM
IN THE PRESENCE OF NOISE

We now return to the case of a gravitational wave
general relativity to solve the inverse problem in the pr
ence of noise. At the end of this section we present the
2-5
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STEPHEN M. MERKOWITZ PHYSICAL REVIEW D58 062002
plication of this solution to the other types of excitatio
mentioned above. For this discussion we assume that
mode channelsg are independent and have normally distr
uted noise with the same variance. This is a reasonable
sumption as the truncated icosahedral arrangement of id
cal transducers ideally satisfies these conditions@5#. In
addition, several other proposals of transducer arrangem
also produce independent mode channels@8,18# ~but the sen-
sitivity of each mode channel is different under normal co
ditions @28#!.

A. Solution for general relativity

Noise in the mode channelsg will change the eigenvalue
and eigenvectors ofA such that they are no longer equal
those ofH. To gain some insight into this situation, let u
consider the noise as a perturbationN to the matrixH

A5H1N. ~21!

The matrix N is constructed from the noise in each mo
channelg, thus it has the same form as Eq.~8!. The matrixA
is therefore still symmetric and traceless and has the eig
value equation

Ax85kx8x8. ~22!

The eigenvectors ofH can be expanded in terms of th
eigenvectors ofA

x5(
x8

Cxx8x8, ~23!

where the matrixC is close to the identity matrix if the
perturbation is small. However, since we do not know
values of the matrixN we cannot calculate any corrections
the matrix elementsCxx8 , thus the best approximation tox
we can find isx8.

Also from perturbation theory we see that the eigenva
corresponding to the estimated direction of the wave iskx8
'0 if the perturbation is small. Its magnitude will increa
as the SNR decreases, but it should remain smaller than
other two eigenvalues ofA for SNR.1. Consequently the
eigenvector corresponding to the estimated direction of
wave can be selected from the three eigenvectors ofA by
choosing the one whose eigenvalue is ‘‘closest’’ to ze
Oncex8 is found, it can be used to estimate the direction
the source using Eqs.~10! and ~11!.

The perturbation approach gives us a conceptual fee
the solution, but a more rigorous proof seems necessary.
problem we wish to solve is to estimate the direction a
polarization that makes the measured five mode channelgm
most ‘‘look like’’ the expected signal from a gravitationa
wave,hm from Eqs.~4a!–~4e!. Zhou and Michelson used
statistical argument to justify using the least square erro
their maximum likelihood method to fit for the direction an
polarization@8#. Given the poor statistics in this estimatio
~only five samples! one might question their statistical ap
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proach, nevertheless the least squares error seems to
reasonable choice to make under the conditions on the n
stated above.

The least squares error can be written as

Q5 (
m51

5

~gm2hm!2. ~24!

The values ofh1 andh3 that minimizeQ can be found by
simultaneously solving the equations]Q/]h150 and
]Q/]h350. Doing so using Eqs.~4a!–~4e! we find

h15g1

1

2
~11cos2 b!cos 2g2g2

1

2
~11cos2 b!sin 2g

2g3

1

2
sin 2b sin g1g4

1

2
sin 2b cosg

1g5

)

2
sin2 b, ~25!

h35g1 cosb sin 2g1g2 cosb cos 2g

1g3 sin b cosg1g4 sin b sin g. ~26!

Note that Eqs.~25! and ~26! are identical to Eqs.~14! and
~15! found for the noiseless case. This connection will
useful below.

We might also look for the minimum ofQ with respect to
the direction of the wave by taking partial derivatives wi
respect tob andg. This procedure leads to very complicate
non-linear equations whose solution is not easily obtain
For this reason we instead will look at howQ varies close to
our eigenvector solution. We begin by rewritingQ in terms
of the detector response

Q5
1

2 (
j 51

3

(
i 51

3

~Ai j 2hi j !
2 ~27!

5
1

2
Tr~@A2H#@A2H#T! ~28!

[
1

2
iA2Hi2. ~29!

The inner productiA2Hi2 can be interpreted as the distan
betweenA and H which we know to be invariant to rota
tions. If R is the matrix that diagonalizesH such thatH8
5RTHR, we can write

Q5
1

2
iRTAR2H8i2. ~30!

It is now clear that the least squares fit is the matrixR that
minimizes the distanceQ. Geometrically, this minimum oc-
curs whenA85RTAR is the projection ofH8 onto A. Given
that H8 is diagonal one might guess that this minimum o
curs whenA8 is also diagonal. Let us proceed to prove th
conjecture.
2-6



o

e

ri-
uc

e

s

by

ua

or

w

the

e
ec-
of
al

e

tor
di-
ame
ctor
le.

ate

m-
ity.
the

the
al
tor
sed

dent
of
de.
apt
the
nd-
ign
es.
om

he
lue
ng
ata
on-
ave
ctors
ex-

SOLUTION TO THE INVERSE PROBLEM FOR A NOISY . . . PHYSICAL REVIEW D 58 062002
Let R0 be the matrix constructed from the eigenvectors
A so thatR0

TAR05D whereD is a diagonal matrix. Let us
also assumeR0 differs from R by a small rotationeW such
that

R5R0F I1eW1
1

2
e2W2G , ~31!

whereW is a skew-symmetric matrix with zeros along th
diagonal. Substituting Eq.~31! into Eq. ~30! and keeping
terms only up toe2 we find

Q.
1

2 ID2H81e@DW2WD#

1
1

2
e2@DW222WDW1W2D# I 2

. ~32!

Expanding Eq.~32! and remembering that the trace is inva
ant under cyclic permutations of the matrices in a prod
and thatH8D5DH8 we find

Q.
1

2
iD2H8i21e2 Tr~H8WDW2DH8W2!. ~33!

All the first order terms ine have vanished so we hav
proven thatQ is stationary nearR5R0 . To show this point
is a minimum we need to evaluate the second order term
e.

W can be written in terms of a unit vectorn representing
the axis of rotation, so the square of this matrix is given

@W2# i j 5ninj2d i j . ~34!

Recalling the procedure for deriving Eqs.~14! and~15! in the
noiseless case and that they are identical to the least sq
minimum Eqs.~25! and ~26! we can set

H118 52H228 5
1

2
~D112D22!. ~35!

The matrixD is also traceless soD111D221D3350. Now
the second order terms can be written as

O~e2!5
1

2
„D11

2 ~223n1
2!1D22

2 ~223n2
2!

1D11D22~2413n1
213n2

2!…. ~36!

Using n1
21n2

21n3
251 and 0<ni

2<1 we find thatO(e2) is
not guaranteed to be positive for all possible real values
D11 andD22. Fortunately we may also assume we have
dered the eigenvalues ofA such thatD33 is the eigenvalue
closest to zero. Now we have an additional conditionD11
52bD22, where 0.5,b,2. Substituting this into Eq.~36!
we find

O~e2!5
1

2
D22

2 ~b11!~2b1223bn1
223n2

2!. ~37!
06200
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By inspection we see thatO(e2) is always positive under the
conditions stated above, thereforeQ is always a minimum
nearR5R0 .

We further used a Monte Carlo type simulation to sho
that this point is always the global minimum ofQ. For a
wave of a given direction and polarization we calculated
spherical amplitudeshm and added a random number~vari-
ancesh

2 and zero mean! to obtain the mode channels. Th
direction and polarization were estimated using the eigenv
tor method as well as by numerically finding the minimum
Q from Eq. ~24!. We found the two methods gave identic
results, even for high values ofsh

2 , confirming thatR5R0 is
a global minimum ofQ. Therefore, the diagonal form ofA is
the best approximation toH8 and can be used to estimate th
direction and polarization of the wave.

Both the maximum likelihood method and the eigenvec
solution minimize the mean square error under the con
tions on the noise stated above, therefore, produce the s
answer for the estimated values. However, the eigenve
solution is more straightforward and computationally simp
We construct the matrixA from the mode channelsg and
compute its eigenvalueskx8 and eigenvectorsx8. We choose
the eigenvector with eigenvalue closest to zero and estim
the direction of the wave using Eqs.~10! and ~11!. The po-
larization amplitudes can be estimated using Eqs.~25! and
~26!.

B. Extensions of the eigenvector solution

The detector response matrixA for other metric theories
of gravity as well as for impulse excitations satisfy the sy
metry arguments used in the discussion for general relativ
This means we can easily adapt the noiseless solutions to
case where noise is present in the same fashion.

For observer-independent gravitational theories
method for estimating the direction of the wave is identic
to that of general relativity: the eigenvector of the detec
response matrix with eigenvalue closest to zero can be u
to estimate the direction of the source. Observer-depen
theories require prior knowledge of the polarization states
the wave before any estimate of the direction can be ma
Once these are known it should be straightforward to ad
the eigenvector technique to estimate the direction. In
case of an impulsive excitation, the eigenvector correspo
ing to the direction has an eigenvalue that is opposite in s
and greater in magnitude than the two other eigenvalu
Converting the eigenvectors to a direction again comes fr
Eqs.~10! and ~11!.

IV. DISCUSSION

The eigenvector solution is very convenient in that t
inverse problem is reduced to solving a trivial eigenva
problem. The solution is computationally simple, maki
this technique very efficient for use in an automated d
analysis system. This feature may be important if one c
siders using a large number of candidate gravitational w
events in a coincidence exchange between several dete
where the source direction is used as a criterion to veto
cess coincidences.
2-7
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The main restrictions on the eigenvector solution are t
the mode channels must be independent and the noise
mally distributed with equal variance. These restrictions c
ideally be satisfied for a number of transducer arrangem
@5,8#. We found that the eigenvector solution correspon
exactly to the maximum likelihood method under these c
ditions. It may be possible to apply this solution when t
noise is not gaussian or is different for each mode chan
however further research is necessary to verify this ex
sion.

Through a number of numerical simulations as well
examination of the work of others@8,28# we found that the
errors due to the noise on a direction estimation are indep
dent of the source location and wave amplitude for a giv
SNR. However, the estimation of the polarization amplitud
using Eqs.~25! and ~26! lead to direction dependent unce
tainties. For example, Fig. 2 shows the variance on the

FIG. 2. The results of a numerical simulation describing
variance of the polarization anglea for a range of SNR and severa
values of the direction angleb. Each line was computed by a 50
trial Monte Carlo simulation for 100 logarithmically spaced SN
for the corresponding value ofb.
v
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06200
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larization anglea5tan21(h3 /h1) for a range of SNR and
several values ofb found from a Monte Carlo type simula
tion. Notice that the variance increases for low values ofb.
This realization is disturbing given that a spherical antenn
equally sensitive to waves from all directions and polariz
tions.

One might consider using a different coordinate system
try to avoid the directions with very poor estimates of t
two polarization amplitudes. For example, use the x
convention of the Euler angles where the first and the
rotations are not the same. This actually will not solve o
problem, but instead change the directions in the sky wh
lead to the poor estimates. If we transform back from t
coordinate system to the y-convention we just reintrodu
the errors and thus have gained nothing.

This dependency on the source direction is not unique
sphere, a network of bars or interferometers will also suf
from this problem@12#. This leads us to believe that we a
excluding a piece of information from our procedures. T
solution may lie in using the information from the two oth
eigenvectors of the detector response. In the above de
tions these eigenvectors were simply discarded, but they
contain information about the gravitational wave that m
eliminate these direction dependent errors. This appro
will be the topic of a future paper@29#.

While there are a few limitations to the eigenvector so
tion, its simplicity makes it easily extendable to other typ
of excitations. As discussed above, impulsive excitations
be located using this technique. As a practical example
recall that this solution was successfully tested on exp
ments with the LSU prototype spherical antenna@14#. This
practical confirmation of its validity gives us the confiden
that it can be implemented on a real spherical ante
searching for gravitational waves.
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