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Solution to the inverse problem for a noisy spherical gravitational wave antenna
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A spherical gravitational wave antenna is distinct from other types of gravitational wave antennas in that
only a single detector is necessary to determine the direction and polarization of a gravitational wave. Zhou and
Michelson showed that the inverse problem can be solved using the maximum likelihood method if the
detector outputs are independent and have normally distributed noise with the same variance. This paper
presents an analytic solution using only linear algebra that is found to produce identical results as the maximum
likelihood method but with less computational burden. Applications of this solution to gravitational waves in
alternative symmetric metric theories of gravity and impulsive excitations also are discussed.
[S0556-282198)04018-1

PACS numbgs): 04.80.Nn, 04.30.Nk, 95.55.Ym

[. INTRODUCTION correct theory of gravity is not general relativity but un-
known[10]. What all these proposals have in common is that
Several resonant-mass gravitational wa@aV) antennas they use basic symmetry properties of the matrices describ-
are now in continuous operation with strain sensitivities ofing the detectors and their response to a gravitational wave.
the order 102 Hz Y2 [1]. With further improvements to This makes them intuitive and easy to visualjid].
these detectors and the addition of several large laser inter- The solution to the inverse problem in the presence of
ferometers now under constructid@], the prospects for noise is more complicated. @&el and Tinto solved the prob-
gravitational wave astronomy are quite good. The underlyindem for three noisy interferometers using a maximum likeli-
non-gravitational physics associated with these detectors isood method12]. This solution required the measurement
reasonably understood and further improvements can baf the time delay of the signal between widely separated
based on solid technological guidelines. detectors to triangulate the direction of the source. Zhou and
Many believe the next generation of resonant-mass anterMichelson showed that the inverse problem for a spherical
nas will be of spherical shag&]. Confirmed detection of antenna can be solved in the presence of noise, also using a
gravitational waves will require a coincidence between sevmaximum likelihood method8].
eral detectors; thus the unique features of a sphere may play What is disappointing about the maximum likelihood
an essential role in a network of gravitational wave antennasnethod is that the original simplicity of the Dhurandhar-
Two important features of a sphere are its equal sensitivity td@into noiseless solution is lost. In addition, an exact solution
gravitational waves from all directions and polarizations andor the spherical detector was not found, making it necessary
its ability to determine the directional information and ten-to solve the problem numerically. This solution can be com-
sorial character of a gravitational wa{4]. putationally expensive, especially if the signal-to-noise ratio
To take full advantage of these capabilities, one needs t(SNR) is low. For the three interferometer case, the numeri-
be able to interpret the data such a detector will producecal solution often can lead to an incorrect estimate at low
Recently, much work has been done to understand the outp®NR [12]. This appears not to be a problem for a spherical
of a spherical antenna equipped with resonant transduceentenna; a global maximum usually exists and is aligned
[5,6]. All of these proposals operate on the principle that thewith the correct direction. This leads us to believe that the
response of the transducers can be transformed into a quaproblem for a spherical antenna can be solved analytically.
tity that has a one-to-one correspondence with the tensorial On experiments with the room-temperature prototype
components of a gravitational wave. With the measuremergpherical antenna[truncated icosahedral GW antenna
of these components, it is possible to solve the inverse prodTIGA)] at Louisiana State University, we used a procedure
lem to obtain the direction and polarization amplitudes of ato solve the inverse problem for impulsive excitations ap-
gravitational wave. plied to the sphere surfa¢&3,14. This solution was similar
The solution to the inverse problem for a noiseless spherito Dhurandhar and Tinto’s original solution for gravitational
cal antenna first was outlined in the mid 1970s by Wagonewaves, but we used a perturbation argumgmesented be-
and Paik[4]. More recently, the solution for a network of low) to take into account the finite SNR of the experiment.
five noiseless bar antennas or interferometers was solved Byhe case of an impulsive excitation is more simple than a
Dhurandhar and Tint¢7]. This method assumed that the gravity wave because fewer parameters are involved, how-
detectors were co-located but oriented in different directionsever, we show below that this method also can be used to
This solution is quite elegant because the exact solution cafind an analytic solution for gravitational waves.
be found using straightforward algebra. Since a sphere can We begin by reviewing the response of a spherical an-
be thought of as five bar detectors occupying the same spadenna to gravitational waves in general relativity and show
this solution can be adapted for a spherical antd@8@. In how the Dhurandhar-Tinto original method can be applied to
addition, Lobo outlined a procedure that can be used if thesolve for the wave direction and polarization amplitudes. We
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then generalize the arguments to any symmetric metric
theory of gravity as well as to impulsive excitations. In Sec.
Il we show how this technique can be extended to a noisy
antenna with independent and equally sensitive detector out-
puts. This solution is found to be equivalent to the maximum
likelihood method under the same noise requirements. The
general approach taken allows this solution to be easily
adapted to other types of excitations with similar symmetry
properties. We conclude the paper with a discussion of the
limitations of the solution and possible extensions of this
method.

FIG. 1. The y-convention of the Euler angles.

Il. DETECTOR RESPONSE OF AN ELASTIC SPHERE

) ) whereh, (t) andhy(t) are the wave amplitudes for the two
Dhurandhar and Tinto solved the inverse problem for 5

: allowed states of linear polarization and are called the plus
bar antennas as well as 5 interferometefg Others have . P P
. . and cross amplitudes.
used their method to solve the problem for a spherical an

. . . i " The detector is more easily described in the “lab-frame,”
tenna[8,9]. Thelr_ technigue involves constructing a matrix, denoted by unprimed coordinates and indices, with origin at
sayA, that describes the response of the detector to a grav, y

tational wave. They found that in general relativity the eigen-{he center of mass of the detector and s aligned with

vector of A with zero eigenvalue points in the propa ationthe local vertical. In this frame, the primary physical effect of

direction of the wave Ingthe foIIovSin we will algo Esg this a passing gravitational wave is to produce a time dependent

concept, but will deriv.e the e uationsgin the context of Iinear“tidaln force density f¥(x,t) on the material with mass
PL, L 9 ; . density p at coordinate locatiow; . This force is related to

algebra as this will lead us directly into the solution for the : :

) . . the metric perturbation by
noisy antenna. For a more complete discussion of the re-
sponse of an elastic sphere to gravitational waves the reader

is referred to Refd15,16,1Q.

. . 1 .
A. Detector response in general relativity fOWV(x,t) = EPE Hij ()X . 2)
]

A gravitational wave is a traveling time-dependent devia-
tion of the metric perturbation, denoted b, ,(t). We fol-
low a common textbook development for the metric devia-
tion of a gravitational wave, which finds that only the spatial
componentsH;; (t) are non-zero, and further can be taken to

be transverse and traceldd¥]. This tensor is simplified if Because the tensot; (t) is traceless, the angular expansion

we initially write it in the “wave-frame,” denoted by primed X .
. L o . . .can be done completely with the five second order real val-
coordinates and indices. This is a coordinate frame with ori-

gin at the center of mass of the detector and zheaxis ued spherical harmonic¥,m(0,¢), where the indexm

. . ; . . =1,...,5. We call the resulting time dependent expansion co-
aligned to the propagation direction of the wave. We restrict fficients, denoted by (1), the “spherical amplitudes”

ourselves to detectors much smaller than the gravitation%?

. ; 16]. They are a complete and orthogonal representation of
wavelength so only the time dependencegf(t) will have : : -
significant physical effects. A general form for the spatialthe Cartesian mefric deviation tensidf;(t). They depend

components of the metric deviation in the wave-frame can b% rn(%ggatt?oenmo wave-frame amplitudes and the direction of
written as To transform the metric perturbation to the lab-frame we

perform the appropriate rotations using the y-convention of
the Euler angles shown in Fig. 1. We denote the rotation
hie(t) he(t) O _ .
) about the wave' axis by «, the rotation about the new
H' (D) =] hx(t) —h.(t) Of, @ axis (n') by B, and the rotation about the final labaxis by
0 0 0 v. The rotation matrix for the y-convention is

It is natural to look for an alternate expression that sepa-
rates the coordinate dependence into radial and angular parts.

COS 7y €cOoSB cosa—sin y sin « COSy cosB sina+siny cose —cosvy sin B
R=| —sinycosB cosa—cosy sina —sinycosB sina+cosy cosa sinysing |, 3
sin B cosa sin B sin a cospB
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At this point we arbitrarily set the rotatiom about the wave By monitoring the quadrupole modes of the sphere, one
z' axis equal to zero; inclusion of this rotation will only has a direct measurement of the effective force on the sphere
“mix” the two polarizations of the wave. The spherical am- and thus the spherical amplitudes of the gravitational wave.
plitudes can now be written in terms of the polarization am-The standard technique for doing so on resonant detectors is
plitudes and the source direction: to position resonant transducers on the surface of the sphere
that strongly couple to the quadrupole modes. A number of
1 . proposals have been made for the type and positions of the
hy(t)=h..(t) §(1+C°52 B)cos 2y+hy(t)cos B sin 2y, transducer$s,6,8. What all of these proposals have in com-
(4g  mon is that the outputs of the transducers are combined into
“mode channels’g,(t) that are constructed to have a one-

1 to-one correspondence with the quadrupole modes of the
h,(t) = —h+(t)§(1+0052 B)sin 2y sphere and thus the spherical amplitudes of the gravitational
wave[16,18,
+hy(t)cos B cos 2y, (4b)
Im(t) = F 1om(t)chpy(t). (7)
h3(t)=—h+(t)%sin 28 sin y+hy(t)sin B cosvy, The mode channels can be collected to form a “detector

response” matriXA(t) that in the absence of noise is equal to

(40 the Cartesian strain tensbi(t) in the lab frame
1 - -
h,(t)=h_(t) = sin 28 cos y+h.(t)sin B sin vy, 1
AD=N(07 SN2 cosyTh(isin B siny 91() — —gs(t) ga(t) 9a(t)
(4d) v3
1 At)= (t) t ! t (t)
The mechanics of a spherical antenna can be described by g4(t) ga(t) —0gs(t)
ordinary elastic theory. One finds that the eigenfunctions of L V3 _
an uncoupled sphere can be written in terms of the spherical 8

harmonics: . S . .
armonics For the remainder of this discussion we drop the notation of

- time dependencet) for brevity.

Waim(1,6,4) = (an (1)1 + Bu(1)aV)Yim(6,¢).  (5) The Strain tensgr in the Ia)b/ frank is a symmetric trace-
less matrix. Consequently, it can be orthogonally diagonal-
ized and has an orthonormal set of three eigenvectors. One

Yean construct from the eigenvectors a transformation matrix
R that diagonalize$i. The matrixR is also orthogonal, thus

it can be considered a rotation matik may also include a

bra:tri]o%e\r/]vﬁlr aSItISLaII'V'tgléuor}g ttct]?hg ?:racirlélzzlseitmggzs cr);\\llll reflection. The physical interpretation of this transformation
gy P y 9 is to rotate the lab frame such that theaxis points in the

tatiqnal wave. For an ideal sphere they are "’.1” dE.“gener""teirection of the source. The matr (the eigenvectoyswill
having the same eigenfrequency, and are distinguished on il us the angles of rotation and thus the direction of the
by their angular dependence. The effective fdfgg,(t) that ave
a gravitational wave will exert on a fundamental quadrupole In ihe wave frameH’ is not normally diagonal but it can
modem of the spher_e is given by the overlap mtegr_al .be'l1e diagonalized by rotating Eql) about the propagation
tween the eigenfunctions of the sphere and the graV|tat|on%XeS using the Euler angle. @ may be a constant or a
tidal force: function of time depending upon the situation. This rotation
1 changes the polarization components of the tensor but not the
FlZn(t)Ef W () - fOY(x,t)d3x= = h(t)Mya. (6)  wave direction relative to the lab frame.
2 To calculate the rotation matriR we need to solve the

. o . general eigenvalue equation for the strain tensor
Each spherical component of the gravitational field deter-

mines uniquely the effective force on the corresponding HX =X (9)
mode of the sphere and they are all identical in magnitude.

We can interpret the effective forée () in each mode as  SjnceA andH are equal in the absence of noise we are free
the product of: the physical mass of the sphiefean effec-  to substituteA in Eq. (9) for H. By inspection of Eq(1) we

tive lengthya (a fraction of the sphere radiysind the gravi-  see that in general relativity the eigenvectortbfwith A,
tational acceleratiogh,,(t). The value of the coefficieny =0 points in the propagation direction of the wave. The
depends on the sphere material, but is typicall§.6[16]. direction can be calculated from this eigenvector by recog-

The radial eigenfunctiong,,(r) and B,,(r) determine the
motion in the radial and tangential directions respectivel
and depend on the radias and the material of the sphere
[4,16].
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nizing that it corresponds to the last column vectomRoin 1 1 _
Eq. (3). Dividing the elements of this column we find h+=91§(1+0052 B)cos 2)’—925(1+COS2 B)sin 2y
1 : 1
—035 Sin 28 sin y+g,= Sin 28 cos vy
Y 2 2
tan y=— X (10
V3
+05 > sir? B. (14)
_y 1
tanﬁ—gm- 1D hx=g, cosB sin 2y+g, cos B cos 2y
+03 sin B cosy+g, sin B sin . (15

The unusual minus sign in EGL0) comes from the use of ) ) ) )

the y-convention of the Euler angles. Expanding By.for ~ These equations can also be derived by taking a linear com-
\,=0 and substituting in a particular choice of matrix ele-Pination of Eqs(4). This is not the only valid solution in the
ments from Eq/(8) we find noiseless case, but it is particularly symmetric: the coeffi-

cients of each component, is the same as the correspond-
ing coefficients oh, or hy in Egs.(4) for h,,. The fact that

h, does not contain g5 contribution is an artifact of using
the y-convention of the Euler angles; in other conventions

tan y= 39493~ 2v39205 (12 this term may be non-zero.
239105+ 203 +303’
B. Detector response in alternative theories of gravity
Experiments in the solar system and pulsar-timing tests
have ruled out many competing theories of gravity, however,
tan g= + V3934~ 29502 1 general relativity is not the only theory of gravity that passes

T V30104+ 9504+ V3gsg, SIN v’ these weak field tesf49]. One measurement that can poten-
(13)  tially rule out certain gravitational theories is the properties
of gravitational wave$20], such as the speed of propagation
and allowable polarization states. It was shown above how a
This solution is valid only for a noiseless antenna; it will single sphere can measure the quadrupole components of the
fail otherwise because we can no longer replecavith A strain tensor, but a scalar wave can excite both the monopole
and their eigenvectors and eigenvalues will no longer benode and the quadrupole modes of a spHd®21. By
equal. The+ in Eq. (13) illustrates the unavoidable fact that monitoring both types of modes, a single spherical detector
a single sphere cannot distinguish between antipodal sourcegan measure all the tensor components of a gravitational
This ambiguity is a characteristic of all gravity wave detec-wave. This makes it possible for a single spherical detector
tors, but can be removed by measuring the time delay of th& determine all of the six polarization states predicted by the
signal between two widely separated antennas. most general symmetric metric theory of gravig2].
Once the direction is calculated we can determine the two We can rewrite Eq(6) in terms of the electric compo-
polarization amplitudes by taking a linear combination ofnents of the Riemann tens20] E;; = Rgjq; ,
Egs.(4). These equations are actually overdetermined so sev-
eral solutions exisf{we have 5 equations .but only 4 un- Fnlm:_iEi'f Tl X pd3x, (16)
knowns. In the absence of noise any particular solution to M nim
them is valid, but in anticipation of the noisy case we will
take a systematic approach to the solution.
We need only the anglgd and y to rotateH to H', so at
this point we again setx=0. The amplitudes are found by

where we now include both tHe=2 quadrupole modes and
thel=0 monopole mode. The monopole mode of an elastic
) , ) , sphere is actually at a higher frequency than the quadrupole
equating them to the corresponding matrix elementdoin 5465 if the source is not wide-band enough for detection in
Eq. (2). Again, we may substituté f?r H z:mdA for H" S0 poth of these modes, a second sphere with the monopole
we haveh, =A;=—A;, andh, =A;,=Az . AandA’ are  pode tuned to the quadrupole modes of the first will be
symmetric soA;, and Ay will always be identical even needed to measure this component. If the first sphere is at
when noise is introduced. However, no such restriction i5re|ative|y low frequency' one m|ght consider making the sec-
placed onAj; and A),. We will use the averageAj;  ond sphere hollow to keep it of a practical si28]. An
—Aj,)/2 to calculateh, for reasons that will become clear alternative to a second sphere is to monitor tive2 quad-

later. rupole modes and the monopole mode of a single sphere.
Multiplying A’=R"AR for &=0 and selecting the proper These modes are not far in frequency from each other and
elements we find also have relatively large cross-secti¢@d,10.
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TABLE I. The E(2) classification scheme. The most general observer-independent classNis
which has
Class Allowable polarization states Example
—9{‘1’4—CI)22 j’\P4 O

Il Doy, Wy, V3, ¥, Most general
g Doy, W, Vs, Kaluza-Klein Eij= v, RV~ Dy 0. (19
N3 D,,, ¥, Brans-Dicke 0 0 0
NP v, General relativity
0, ®,, Purely scalar Looking at the form ofE;; we see that the same procedure
0o None No wave for calculating the direction of the wave in general relativity

holds for all the observer-independent classes: the eigenvec-

tor of A with eigenvalue equal to zero points at the source.
Expanding Eq(16) into radial and angular parts we find The one exception to this statement is the case where the

an additional spherical amplitud®, corresponding to thé  driving forces remain in a fixed line, for examplel ,=0,

=0 spherical harmonic. The detector response in the lali¥,=d,,. In this situation the direction of the wave can

frame can now be written as only be determined within the plane defined by the two

eigenvectors with eigenvalues equal to zero.

- L -
91~ ‘7395+g° 92 9a C. Detector response to impulsive excitations
1 Impulsive excitations are often used on resonant-mass de-
= [P — 01— —0s5+0o O3 ) tectors to calibrate the antenf7]. The excitations are usu-

V3 ally administered by either a short electrical burst applied to

> a calibrator attached to the surface or a hammer blow. Im-
J4 g3 —gs+0go pulsive excitations were also used to test the analysis tech-

L V3 nigques used for experiments with the prototype spherical an-

(17)  tenna at Louisiana State Univers[ty3,14.

A radial impulse excitation can be easily described if we
oose the’' axis to be along the direction of the impulse.
y examining the quadrupole eigenfunctions of the sphere in
his frame we notice that out of these modes only thgs
mode will be excitedother sphere modes will also be ex-
cited but their response can be removed by narrow-band fil-
tering. All of the other quadrupole modes have a vanishing

To determine how to solve the inverse problem we nee%h
to examine the form oE;; . It is a symmetric tensor so it has B
only six independent components. It can be written in termsg
of the complex Newman-Penrose paramef@fg which al-
low the identification of the spin content of the metric theory
responsible for the generation of the wave

_ _ ~ _ radial component of their eigenfunctions at this location
R4 Pz IV \/5%\1,3 which makes their “overlap” integral with the impulse van-
Eij= IV, RY,— Dy \BIV; |, (18 ish. In this frame the detector response is
—-\8mv,;  \JBIV; -6V, oy 1
We can divide the theories of gravity into categories using B ‘/_395 0 0
the H2) classification scheme shown in Tabld26]. The
tensorE;; is symmetric for all of these classes, thus it is A= 0 _i , 0 20)
orthogonally diagonalizable, but classdg and 11l 5 have B ‘/395
more degrees of freedofdlirection plus polarization states
than we are capable of measuring with a single spherical 0 0 3 ,
detector. These two classes are often referred to as ‘/395

“observer-dependent” because different observers will dis- - -
agree upon which polarization states are present. As a COfln the lab frameA is still given by Eq.(8).

sequence, the polarization amplitudes for a particular ob- Again, the direction can be found by calculating the ei-
server must be known before the direction of the wave cagenvalues and eigenvectors of the lab frafeln the ab-

be estimated. sence of noise, the eigenvector corresponding to the direction
For the “observer-independent” class€, O;, N>,  has a non-zero eigenvalue that is opposite in sign and twice

and N3, the situation is more straightforwar@, is obvi-  as large as the two other eigenvalues.

ously uninteresting as it does not predict any gravitational

waves(this class along wittD; have essentially been ruled IIl. SOLUTION TO THE INVERSE PROBLEM

out by previous experimeni49]). We notice thag;; for the IN THE PRESENCE OF NOISE

observer-independent classes can be diagonalized by a rota-

tion a about the propagation axis, therefore, we can use the We now return to the case of a gravitational wave in

same arguments presented above for general relativity tgeneral relativity to solve the inverse problem in the pres-
solve for the wave direction. ence of noise. At the end of this section we present the ap-
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plication of this solution to the other types of excitations proach, nevertheless the least squares error seems to be a
mentioned above. For this discussion we assume that theasonable choice to make under the conditions on the noise
mode channelg are independent and have normally distrib- stated above.

uted noise with the same variance. This is a reasonable as- The least squares error can be written as

sumption as the truncated icosahedral arrangement of identi-

. . g L. 5
cal transducers ideally satisfies these conditiss In
Q=2 (gn—hm)?. (24

addition, several other proposals of transducer arrangements |

also produce independent mode chanp@/$8] (but the sen-
SIthlty of each mode channel is different under normal CON-The values 0h+ and h>< that minimizeQ can be found by
ditions [28]). simultaneously solving the equationsQ/sh,=0 and
dQ/éh,=0. Doing so using Eq94a—(4e) we find
A. Solution for general relativity

1 1
Noise in the mode channegswill change the eigenvalues  h.= 915(1+0052 B)cos 2V—92§(1+CO§ B)sin 2y
and eigenvectors oA such that they are no longer equal to

those ofH. To gain some insight into this situation, let us 1 . 1
consider the noise as a perturbatidrto the matrixH ~Ggs5 SN 2B sin y+ ga35 SIn 2B cosy
A=H-+N. (21 V3
+05> Sir? S, (25
The matrixN is constructed from the noise in each mode
channelg, thus it has the same form as &@). The matrixA hy =g, cosg sin 2y+g, cos B cos 2y
is therefore still symmetric and traceless and has the eigen- . . _
value equation +0; sin B cosy+g, sin B sin y. (26
AX' = ko X' 22) Note that Eqs(25) and (26) are identical to Eqs(14) and

(15) found for the noiseless case. This connection will be
useful below.
The eigenvectors of can be expanded in terms of the  \ye might also look for the minimum d® with respect to
eigenvectors oA the direction of the wave by taking partial derivatives with
respect tgB andy. This procedure leads to very complicated
. non-linear equations whose solution is not easily obtained.
X= E CunrX’ (23 For this reason we instead will look at ha@varies close to
X our eigenvector solution. We begin by rewritiQgin terms

o . . L of the detector response
where the matrixC is close to the identity matrix if the P

perturbation is small. However, since we do not know the
values of the matrixN we cannot calculate any corrections to Q=75
the matrix element€,,, , thus the best approximation to !
we can find isx’.

Also from perturbation theory we see that the eigenvalue :l TrH[A—H][A—H]T) (28)
corresponding to the estimated direction of the wave,is 2
~0 if the perturbation is small. Its magnitude will increase
as the SNR decreases, but it should remain smaller than the
other two eigenvalues oA for SNR>1. Consequently the
eigenvector corresponding to the estimated direction of the
wave can be selected from the three eigenvectord by  The inner productA— H||? can be interpreted as the distance
choosing the one whose eigenvalue is “closest” to zerobetweenA andH which we know to be invariant to rota-
Oncex’ is found, it can be used to estimate the direction oftions. If R is the matrix that diagonalizeld such thatH’
the source using Eq$10) and (11). =R"HR, we can write

The perturbation approach gives us a conceptual feel for
the solution, but a more rigorous proof seems necessary. The
problem we wish to solve is to estimate the direction and
polarization that makes the measured five mode champels
most “look like” the expected signal from a gravitational It is now clear that the least squares fit is the maRithat
wave, h,, from Egs.(4a—(4e). Zhou and Michelson used a minimizes the distanc®. Geometrically, this minimum oc-
statistical argument to justify using the least square error ircurs whenA’ =RTAR is the projection oH’ onto A. Given
their maximum likelihood method to fit for the direction and thatH' is diagonal one might guess that this minimum oc-
polarization[8]. Given the poor statistics in this estimation curs whenA’ is also diagonal. Let us proceed to prove this
(only five samplesone might question their statistical ap- conjecture.

3 3

N -

(Aj;—h;j)? (27)

1

1i

|A—=H]2. (29

N| =

1
Q= E||RTAR—H’H2. (30)
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Let R, be the matrix constructed from the eigenvectors ofBy inspection we see th@(e?) is always positive under the
A so thatRJAR,=D whereD is a diagonal matrix. Let us conditions stated above, therefa@eis always a minimum
also assum&, differs from R by a small rotationeW such  nearR=R;.

that We further used a Monte Carlo type simulation to show
that this point is always the global minimum &f. For a

1,5 wave of a given direction and polarization we calculated the
R=Ro| [+ eW+ 5 "W, (3D spherical amplitudes,, and added a random numbsari-

anceo? and zero meanto obtain the mode channels. The

whereW is a skew-symmetric matrix with zeros along the direction and polarization were estimated using the eigenvec-
diagonal. Substituting Eq31) into Eq. (30) and keeping tor method as well as by numerically finding the minimum of
terms only up toe? we find Q from Eqg. (24). We found the two methods gave identical

results, even for high values of , confirming thaiR=R,, is

a global minimum ofQ. Therefore, the diagonal form éfis

the best approximation td’ and can be used to estimate the

direction and polarization of the wave.

(32 Bqth the_ maximum likelihood method and the eigenvecto_r
solution minimize the mean square error under the condi-
tions on the noise stated above, therefore, produce the same

Expanding Eq(32) and remembering that the trace is invari- answer for the estimated values. However, the eigenvector

ant under cyclic permutations of the matrices in a produckolution is more straightforward and computationally simple.

and thatH’D=DH’" we find We construct the matri¥A from the mode channelg and
compute its eigenvalues,, and eigenvectors’. We choose

the eigenvector with eigenvalue closest to zero and estimate

the direction of the wave using Eqgdl0) and (11). The po-

larization amplitudes can be estimated using E85) and

All the first order terms ine have vanished so we have (26).

proven thatQ is stationary neaR=R,. To show this point

is a minimum we need to evaluate the second order terms in B. Extensions of the eigenvector solution

€.

~1
Q=3

‘D—H’—FE[DW—WD]

1 2
+5 €’[ DW?— 2WDW-+ W?D]

1
Q=3 [D—H’|[[*+€* Tr(H'WDW-DH'W?).  (33)

) i i , The detector response matrxfor other metric theories
W can be written in terms of a unit vectarrepresenting ot gravity as well as for impulse excitations satisfy the sym-
the axis of rotation, so the square of this matrix is given by ety arguments used in the discussion for general relativity.
[W2], =nin; — 6, (34) This means we can easily adgpt the noiseless _solutions to the
L case where noise is present in the same fashion.

For observer-independent gravitational theories the
'newgthod for estimating the direction of the wave is identical
to that of general relativity: the eigenvector of the detector
response matrix with eigenvalue closest to zero can be used

1 to estimate the direction of the source. Observer-dependent

Hi=— Hézzz(Dn— Dy)). (35  theories require prior knowledge of the polarization states of
the wave before any estimate of the direction can be made.

Once these are known it should be straightforward to adapt
the eigenvector technique to estimate the direction. In the
case of an impulsive excitation, the eigenvector correspond-
ing to the direction has an eigenvalue that is opposite in sign

Recalling the procedure for deriving Eq$4) and(15) in the
noiseless case and that they are identical to the least squa
minimum Egs.(25) and (26) we can set

The matrixD is also traceless sD;+ D+ D33=0. Now
the second order terms can be written as

1 : ; .
0(62):_(Dil(2_3ni)+D§2(2_3ng) and greater in magnitude than the two other eigenvalues.
2 Converting the eigenvectors to a direction again comes from
+Dy4D oA —4+3n2+3n2)). (36 E0s-(10 and(11).
Using n?+n2+n2=1 and 0<n’<1 we find thatO(e?) is IV. DISCUSSION

not guaranteed to be positive for all possible real values of Tphe eigenvector solution is very convenient in that the
Dy, andDo,. Fortunately we may also assume we have orinyerse problem is reduced to solving a trivial eigenvalue
dered the eigenvalues & such thatD; is the eigenvalue problem. The solution is computationally simple, making
closest to zero. Now we have an additional conditdfy  this technique very efficient for use in an automated data
= —bDy,, where 0.5<b<<2. Substituting this into Eq36)  analysis system. This feature may be important if one con-
we find siders using a large number of candidate gravitational wave
1 events in a coincidence exchange between several detectors
O(e?)= §D§z(b+ 1)(2b+2-3bn2—3n2).  (37) \év:sesrict)?r:acazt:]rgssfjwectlon is used as a criterion to veto ex
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larization anglea=tan (h, /h,) for a range of SNR and
several values of found from a Monte Carlo type simula-
tion. Notice that the variance increases for low valueg.of
This realization is disturbing given that a spherical antenna is
equally sensitive to waves from all directions and polariza-
tions.

One might consider using a different coordinate system to
try to avoid the directions with very poor estimates of the
two polarization amplitudes. For example, use the xyz-
convention of the Euler angles where the first and the last
rotations are not the same. This actually will not solve our
problem, but instead change the directions in the sky which
lead to the poor estimates. If we transform back from this
coordinate system to the y-convention we just reintroduce
the errors and thus have gained nothing.
10° This dependency on the source direction is not unique to a

sphere, a network of bars or interferometers will also suffer

FIG. 2. The results of a numerical simulation describing theffom this problem{12]. This leads us to believe that we are
variance of the polarization angtefor a range of SNR and several €xcluding a piece of information from our procedures. The
values of the direction anglg. Each line was computed by a 500 solution may lie in using the information from the two other

trial Monte Carlo simulation for 100 logarithmically spaced SNR €igenvectors of the detector response. In the above deriva-
for the corresponding value ¢. tions these eigenvectors were simply discarded, but they also

contain information about the gravitational wave that may
The main restrictions on the eigenvector solution are thagliminate these direction dependent errors. This approach
the mode channels must be independent and the noise no¥ill be the topic of a future papd29].
mally distributed with equal variance. These restrictions can While there are a few limitations to the eigenvector solu-
ideally be satisfied for a number of transducer arrangement#on, its simplicity makes it easily extendable to other types
[5,8]. We found that the eigenvector solution correspond$f excitations. As discussed above, impulsive excitations can
exactly to the maximum likelihood method under these conbe located using this technique. As a practical example we
ditions. It may be possible to apply this solution when therecall that this solution was successfully tested on experi-
noise is not gaussian or is different for each mode channements with the LSU prototype spherical anterittd]. This
however further research is necessary to verify this extenPractical confirmation of its validity gives us the confidence
sion. that it can be implemented on a real spherical antenna
Through a number of numerical simulations as well assearching for gravitational waves.
examination of the work of othef$,28 we found that the
errors due to the noise ona direction estimqtion are inde_pen- ACKNOWLEDGMENTS
dent of the source location and wave amplitude for a given
SNR. However, the estimation of the polarization amplitudes | thank M. Bassan, M. Bianchi, E. Coccia, and E. Mauceli
using Egs.(25) and(26) lead to direction dependent uncer- for many useful discussions on this work. In particular, |
tainties. For example, Fig. 2 shows the variance on the pathank J. A. Lobo for his assistance and advice.
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