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Lunar laser ranging and the equivalence principle signal
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The fitting of 28 years of lunar laser ranging data for a possible range signal indicating an equivalence
principle-violating difference in the gravitational acceleration rate of Earth and the Moon toward the Sun is
performed and then examined, both analytically and by computer simulations. The EP-violating signal is
synodic, being predominately proportional to &gD is the synodic phaseBecause LLR data do not
uniformly sample the synodic month cycle, almost any hypothesis of a specific post-model synodic range
signal responds strongly and with bias to the presence of most any other un-modeled synodic range effect.
Since the physical and operational structure of the LLR experiment is of synodic periodicity, many of its
modeling problems tend to be synodic: so we have created a synodic phase, bin-averaged presentation of the
experiment’s post-fit range residuals. By this technique the entire structure of the synodic modeling inadequa-
cies can be detected without preconceptions or hypotheses as to their particular form. A synodic post-model
residual signal of characteristic size 1 cm is found in the data. An observation “worth” function has been
found which quantifies the potency of each additional observation for reducing the rms noise uncertainty in the
fit of the cosD amplitude. It strongly indicates that LLR observations should, for some time into the future,
preferentially be made on the new moon side of the quarter moon fl&3%56-282(198)06216-X]

PACS numbegs): 04.80.Cc, 95.10.Ce, 95.30.5f

I. INTRODUCTION gravity model parameters determines this Newtonian ampli-
tude with uncertainty of less than a millimeter.
If Earth and Moon accelerate toward the Sun at different By fitting over 11 000 lunar laser rangifgLR) measure-
rates, the resulting perturbation of the Earth-Moon distancenents accumulated over the last 28 years to a detailed model

is [1] for the Earth-Moon range, analysis groups now place what
are called “realistic uncertainty” limits on the EP-violating
Of em™Agp COSD amplitude of slightly more than a centimeter,

+small harmonic and eccentric sideband$) Williams et al. [4]

D is the synodic lunar phase. The subscript EP stands for

equivalence principlethe foundation for Einstein’s equiva- Agp=—0.8 cm with “realistic uncertainty” 1.3 cm,
lence principle is the apparent fact that all bodies accelerate 4
at the same rate in gravitjneglecting tidal gradientsThe )

proportionality of this range perturbation amplitude to theMuller etal. [5]

fractional differenced,,, in the acceleration rates of Earth

and the Moon toward the Sun has recently been reevaluated Agp=+1.1 cm with “realistic uncertainty” 1.1 cm,

both analytically and by computer methdds3] and is 5
Agp=2.9x 10'%5,,, cm 2 indicating near equality of acceleration rates of Earth and the
h Moon toward the Sun and “realistic uncertainty”:
wit
.. Sem=4Xx10"13, (6)
So= | e 2m 3
em Js @ The almost 2 cm difference between these two recent values

for Agp is notable and is discussed further in our Conclu-
There is a Newtonian perturbation of the lunar orbit, due tosions section. For perspective on these &t& cmamplitude
the tidal gradient of the Sun’s gravity, which also produceswill be produced by a metric theory of gravity with param-
Earth-Moon range variations proportional to d<histori-  etrized post-NewtonianPPN coefficients 8—3— y=7
cally called theparallactic inequality, but the fixing of the =~ x10™ 4. General relativity yields a null value for this ampli-

tude.
As remarkable as these fits are, the potential exists for
*Email address: jxmx@alpha.fesg.tu-muenchen.de measuring the amplitud&z,=Ap to even higher precision.
"Email address: kennordtvedt@one800.net If N well distributed observations with rms measurement er-
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rors o are available to fit solely for such a signal amplitude, observables—the round trip times of flight of laser pulses
one can ideally achieve a formal rms estimation precision obetween stations on Earth and passive reflectors on the
Moon. The model contains a large numtbdérof parameters
2 whose values are natpriori known with sufficient precision
| 6Ap|= \/% o () to match the quality of the observations, and they are there-
fore best determined by using the LLR data. These param-

A rough estimate of this measurement ideal is made by Coneters.include the initial conditio.r($)ositions, velocities, ori-
sidering the highest quality observations of the last de&ntations, etg.of the key bodies such as Earth and the
cade: N=5000, =4 cm. This suggests a potential formal Moon, Io<_:at|_0ns of Ias_er stations and reflectors, body masses
rms error of about .08 cm for the amplitude. In this paper weNd gravitational multipole strengths, etc. A more specific
seek to better understand the reasons for the difference bescription of the model is given in the Appendix. The
tween the ideal formal precision and the “realistic” preci- Model gives theN range observables as functions of the

sion of the lunar laser rangin@LR) fits for this amplitude, Many model parameters and of the tifmenich also must be
and then work toward modifications or additions to the ex-élativistically modelet
erimental and analysis procedures so as to produce experi- . .

&ental fits closer to){he fF())rmaI limits of the daeca. P 0i=0(Py.tj) with m=1to M, i=1to N. (8
Much of this investigation is concerned with the conse-

guences of a key property of the actual LLR data: the non

uniformity of the data density over the synodic phase. Rang

ing measurements are rare near new and full moon an

Small changes in the parameter values will then change the
calculated values of the range observables by the small
'gmounts

cluster around quarter moon phases, and their occurrence is M0
significantly biased toward a full moon. For a couple of rea- 50;= E _'5pm_ (9)
sons, this reduces the “realistic” precision which can be m=1 JP

given to the measurement of the synodic signal amplitude . . .
Ao . First, and perhaps most importantly, this synodic modu-F PUrPoses of streamlining equations, we here switch to a
lation of the data density increases the tendency of otheY€Ctor notation by introducindi-dimensional vectors iob-
unmodeled synodic effects in the data to bias the estimation/Vation spacethe previous equation is then expressed as
of the amplitudeAp, and second, it weakens the effective M N
§trength of the coB signal by confining t.he fit to the vicin- s6="3 F(m)5pm with  f(m)= ﬁ (10)
ity of the quarter phase, and thereby increases the formal m=1 apP
error for estimating its amplitude. The ease with which the
presence of one synodic signal can bias the estimation d?icking an initial set of values for thkl parameters of the
another in an actual fit of the LLR model has led us to con-model, P, the initial residuals are then defined as the
struct and present synodic phase, bin-averaged post-fit rebserved-minus-calculated values of the ranges
siduals. Viewing the plots of these quantities facilitates per-
ceiving the entire structure and quality of the(fit misfit) of r=0(ob9—O(P?). (11
synodic effects, without preconceptions as to the shape and
origins of any statistically significant structure in these bin-Optimally adjusted values for the model parameters
averaged post-fit residuals.

We find a synodically periodic post-fit residual signal in P — P+ 5Py, (12
the Earth-Moon range of 1 cm characteristic size over the ] o ) i
synodic phase range of about 40D < 150° (from the near-  are thep obtained by finding the weighted least-squares-fit of
est new mooh The statistical significance of the post-fit the residuals,
residual averages nearer to new and full moons is presently
negligible due to sparce data. The bin-averaged presentation mjinimize (F_E f(m) 5pm) .(F_E F(n)éPn),
of post-fit residuals can also be used for the various other m n
periodicities of the LLR data which are related to testing 13
different scientifically interesting range signals.

m

with the solution

Il. LLR MODEL . . . -
SP,=2, [f(n)-f(m)]~H(m)-r. (14)
A brief overview is given of the procedure for fitting LLR m

data to a multi-parameter theoretical modsée alsd6]). ) )

Details of this procedure touch on the ability to then test forThe inverse of thev X M matrix formed by the scalar prod-
the presence of scientifically interesting post-model signalgicts of the parameter partial functions is indicated. Scalar
such as the EP-violating signal previously mentioned. Théroducts are defined with respect to a weighting matrix:
LLR basic model (hereafter referred to as simply “the

model”) is the comprghensive thepry which is used to pre- 5.552 W a;b; (15)

dict, by computer-assisted calculation, the values of the LLR i
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The weighting matrix which minimizes the formal estimation Moo
uncertainties for the model parameters is the inverse of the Pu= E u(myu(m). (23
matrix of expected values of observation error products: m=1

W;;=(80;60;) . (16) Consider a situation in which an extra sigiékHh is

. . _ added to the model as a post-model hypothesis. This might
If the observation errors are uncorrelated, this weighting mag. yone. for instance. in an attempt to explain unexpected

trix is simply the diagonal matrix of reciprocal mean squared,, strctured post-fit residuals. The post-model hypothesis

errors, and this is the working assumption in most a”alyse$ector will necessarily be composed of a part lying within
1 the model subspace and a remainder which lies without:

Wij = ;Z 5” . (17) N N N N N
The post-fit residual vector consists of what is left of the

residuals after the parameter adjustments given in(Eg). Only the latter part of the vector from this hypothesis, the

part lying outside the model subspace, plays a role in esti-

are made: i ) ,
mating the hypothesis parameter; the least-squares-fit proce-
Lo R R R R dure gives
*=r— > f(m[f(n)-f(m)] *f(m).r
m,n=1 N N
po (25)
=(1-Py)-r. (18) iR

Post-fit residuals are more fundamental than the initial re-

siduals. The latter depend on the accidental initial choices ofNote that when one takes a scalar product of two vectors
model parameter values. The former are invariant quantitie¥hich are orthogonalized to the model sub-space, it is un-
reflecting real noise and inadequacies of the model. The praiecessary to orthogonalize bgth.The part of the vectoh
jection operatorP,, defined above establishes the model'slying within the model subspace readjusts the estimated val-
M-dimensional subspace within tiNdimensional observa- ues of the model's originaM parameters. These readjust-
tion space of the experiment. This matrix operator consists afnents may be improvements which eliminate biasing of the
the sum of outer products of any set I orthogonal unit  original estimates of the model parameters if the post-model
vectors which span the sub-space of the model parametertyypothesis comes close to correcting the actual inadequacies

partial functionsf(1)---f(M). This can be seen by consid- in the model.

ering the special case of orthogonal combinations of the pa- Think of the residual vector as composed of three
rameter partial vectors, in which case parts: (1) a signal proportional to the actual form assumed

in the post-model hypothesi§2) a signal representing yet

M 1 . . Mo R other unmodeled, perhaps unknown, features of the experi-
Pu=> ———— f(m)’'f(m)’= 2>, G(m)u(m). ment, and(3) random noise
m=1 f(m)’.f(m)’ m=1
(19 r=Hoh+x+n (26)

Although this projection operator is a unique matrix object, it

can be expressed by an unlimited number of representation‘é’,'th

of which certain ones are particularly useful for its construc- .

tion and use. Selecting any of the orderings of kemodel (ny=0 and(nin;)=0?5;. 27
parameters, a corresponding seiMfrthogonal unit vectors

defining the model's subspace is constructed by the sequeithe estimate for the parametdrwill then include(1) a true
tial process recovery of the actual parameter value in redhty, plus(2)

a bias of this estimate due to the yet-unmodeled signahd

AL 1 2 _ (3) a noise-induced error of zero expected value but finite
u(l)= [f(l)-f(l)]l’z f(1) then for m=2,....M variance,
(20 o
* .
- > m-1 ~ ~ N <H>:HO+ N ) (28)
g(m=f(m- 2 a(m"u(m’)-f(m) (D) h*-h
m'=1
1 and noise-induced variance:
a(m)= —————g(m) (22)
[g(m)-g(m)]* ,
(H=(H))=—. (29)
and then h*-h
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FIG. 1. Density of 1985-1997 LLR range data is shown as a FIG. 2. Density of 1985-1997 LLR observations is shown as a
function of synodic angle. The absence of data near new and fullunction of sidereal angle, measured from the cosmic microwave
moons, and asymmetry of data density about quarter niber00 radiation dipole asymmetry direction projected into the ecliptic
and 270 degreesveakens the quality of the fit for an equivalence plane. Observations are less frequent from the northern hemisphere
principle violating signal. laser stations when the Moon is in the southern sky. These sidereal

data density modulations can mix annual effects with synodic ef-
The “realistic uncertainties” in estimating hypothesis pa- fects in the analysis.
rameters found in the literature result from attempts to take

into account both the noise errors and bias errors of this NeT
example. 2, cosD; cos Dj=—=(C,+Cy) (32
Ill. DATA DENSITY MODULATIONS noT2
AND THEIR CONSEQUENCES > t; cosD; sin D;= 3 ($+S;) (33
I
Because of operational realities, such as the difficulty to
target laser reflector stations on the Moon when they are in noT
darkness or excessive background solar illumination noise E Ccos Di:Tcl (34)
near new and full moons, LLR data have become concen- '
trated near quarter moon synodic phases and are sparce as
new and full moon phases are approached, though favpring E coZ D= ﬂ( 1+ ECZ).
the full moon side of the quarter moon phase. A distribu- i 2 2
tional plot over the synodic phase of the 7364 LLR observa- (35
tions between 1985 and early 1997 is presented in Fig. 1. A
Fourier representation of this data density distribution, These properties have major consequences for understanding

outcomes of LLR data analysis and play an important role

) throughout the rest of this paper.
n(D)=no| 1+ > [C, cognD)+S; sin(nD)]|, (30) There is also substantial sidereal modulation of the data
" density as seen in Fig. 2. This results from the shorter time
periods available from laser observatories in the northern

yields the Fourier coefficient values x .
hemisphergGrasse, France; Haleakala, Hawaii; McDonald

Cy=—.50, C,=—1.09, C;3=.61, _Opsclervatory’, Texador good o_bservation of the Moon when
it is in Earth’s southern hemisphere skyhich occurs with
S;=.01, S,=-.20, S;=.25. (3D sidereal period By contrast, annual and lunar anomalistic

(perigee to perigeemodulations of the data density are
The coefficientC, quantifies the rarity of observations near found to be minimal.
new and full moons, while the coefficien®; and C5 indi-
cate asymmetry about a quarter moon &3ndS; asym- |y EQUIVALENCE PRINCIPLE VIOLATION SIGNAL
metry about a new moon. If the data distribution were uni-
form across the synodic phase, the various synodic harmonic A most significant scientific effect which is sought in the
signals would be quasi-orthogonal, but now they substantLR data is the previously mentioned synodic ésignal
tially project onto each other and acquire altered normswith amplitude proportional to any difference in the accel-
Some typical scalar products among such signals are eration of Earth and the Moon toward the Sun. This could
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occur if the Sun’s gravity couples in a non-universal way tosynodically periodic signals such as the EP-violating signal.
the Earth’s and Moon’s various forms of energy content—These partials are those of the model parameteid): the
nuclear, electromagnetic, weak, gravitatioh@l—or if part  mean distance of the laser reflectors from Earth @dhe

of the coupling is in proportion to some other attributes ofNewtonian gravitational mass parameteM,, ,, of Earth

the participating bodies. All of these cases would require glus Moon. The dominant synodic parts of these partial vec-
modification of gravitational theory and/or the addition of tors are

new long-range interaction fields to physical law. If such a . .

post-model signal is hypothesizéthe model assumes gen- f(1);=1, f(2);=cosD,. (38

eral relativity theory,
Y ¥ For brevity we denote these vectd® and |2D), respec-

H(D)=Ap cosD, (36)  tively. Applying the procedure for constructing orthonormal

o ) _ ) ~unit vectors of the model as outlined in Eq80)—(22), we
then the formal precision with which the amplitude of this gptain

hypothesis can be measured is obtained by application of Eq.

29 0(0)= — |0) (39
u =
. 1 X V(0|0)
®" J(cosD|cosD*)’ 37 (0|2D)

The shorthand notation of Dirac is here adopted for express-
ing vector scalar products in th¢-dimensional observation These vectors then are used to orthogonalize the vector
space. And one is reminded that the asterisk on a VeCt%osD)E|D> from the model:
indicates that the vector has been orthogonalized to the mod-
el's M-dimensional subspace. (0|D) (D|2D*)

As previously mentioned, construction of the model's [D*)=|D)~ (0[0) |0>_<2D|2D*> [2D*).  (4))
projection operator can be done by using any convenient
ordering of the model'sM partial vectors. For our purposes The analytic estimate of the formal error for estimatig,
of studying synodic signals, we choose the first two modelsing Eq.(37) and the projections from Sec. Il which result
partials to be those which project strongest into the space dfom the synodic variations of the data density, is then

2 \/ 2
Oho= \/% "N 2+C,—CF(Ci+ Cy-CiCplz—cg) > o™ e
|

which should be compared with the ideal estimate given in =|D)+.540)+.532D) (44
Eq. (7). The synodic modulations of the data density have
almost doubled the formal error in estimating this amplitude. =0 because|2D)
The actual formal error for th&y amplitude is found to be
0.19 cm. is close to one of the

The post-fit residual signal which results from various

model signals 45
unit cosfD) residual signals can also be analytically ap- g 49
proximated using the results from Eq®29 and (40) and _ B _
Sec. lll. We find strong distortion of these signals, =[3D)~.420)-.21i2D) (46)
=|4D)+.730)+1.342D) 47
1
|nD*>z|nD>—§Cn|O) =|5D)—-.410)—.76/2D).... (48
Cln—2/+Cni2—C,C,y 1 The analytically estimated post-fit residual sigfaf) from
- 5 |2D) - 5C,|0) |, this list is plotted in Fig. 3 along with the actual post-fit
signal. The latter is obtained by a computer simulation pro-
(43 cess in which a unit cod signal is added to the actual LLR
range data, a new-least-squares-fit of the model is made, and
the changes in the post-fit residuals are noted. This actual
which, forn=1,2, ..., post-fit residual signal resulting from a unit dosresidual
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Post-Fit Residuals of a cosD Residual Signal, analytic (o) and actual (x) D — 1200~ _ O 05 (53)

2O o . ]
D=150°~ —0.00 (54)

full moon D=180°~—0.01. (55)

o
O

< © As balance is restored between the total data on the two

sides of the quarter moon phase by implementing the actions

indicated by this “worth” function, the numerical coeffi-

cients(.54, .53 in Eq. (44) will tend toward zero, and the

. . _ naive “worth” function — cos’ D will be approached. In fun-

Q damental respects, the asymmetry of the data density about

the quarter moon phase has become a more detrimental fea-

ok & K o] ture of the data set than the sparcity of data near new and full
d X% 5 o moons. But fortunately, this asymmetry is correctable by a

h e e e T T e o selective schedule_ o_f future obseryatlons. _ _

Synodic Angle D [degrees from New Moon] The formal precision for measuring the synodic amplitude

Ap is only part of the basis for the published “realistic un-

. F'?.‘ 3t.hThe p.gSt'T't ! esc:dtuals_aggag rtehsyltlng flrom ? unitBos  ertainties” of over 1 cm. These conservatively stated preci-
signal in the residuals Is determined both in analytical approximagj o a6 not so much a measure of noise er(thrsugh
tion and by actual computer simulation. The asymmetry of this

post-fit signal is a result of the asymmetry of the experiment’s ac_s_ome arrl\_/e.at their .reallstlc uncertal_ntl_es by using a heu-
cumulated data density about a quarter moon. ristic multiplier of their formal uncertaintigsthey are rather

the result of the generous allowance deemed necessary by
gnalysts for possible systematic errors and inadequate mod-
eling of the experiment. Improving the scientific product
from the LLR data depends on reducing these modeling er-

rors or omissions, but a first step must be to obtain clues

Post-Fit Residuals [cm]
X
(o]

o
o
T
X
i

signal is also included in various other plots to serve as
calibrator for comparison with actual post-fit results.

The square of the components of this post-fit residual sig
nal [D*) as a function of synodic angl® has additional o .
interesting significance. Since LLR is an ongoing experi-200ut the structure of these modeling inadequacies.
ment, it is useful to know the relative value of different ad- _B€cause of synodic modulations of the data density as
ditional observations in reducing the formal noise error in thes,hO\,Nn |n.F|g. 1', the presence of almost any syno.dlcally pe-
estimation of the coB amplitude. Noting from Eq(37) that riodic reglduql S'gf?aR(D) W'”. lead to a blaged estlm{:\te Of.
this rms uncertainty is the minus one-half the power of thethe EP-V|_oIat|r_1g _S|gna}l amphtudt_a when this Iat_ter signal is
norm of the post-fit signakafter orthogonalization from the YPOthesized in isolation. If we fit the hypothesis
mode] we find that the reduction i@A(D),ns from an ad-

ditional observation made at synodic ph&sés (in arbitrary H(D)=Ap cosD (56)

units) the estimate of the amplitude is

new moon D =00°6A(D),ns~ —4.32 (49 B (R(D)|cosD*) -

D=30°~—2.81 (50) P~ (cosD|cosD*)"
D=60°~—0.60 (52) For various possible unit amplitude residual sign(D)

=coshD) we have analytically approximated the biased es-
quarter moonD =90°~ —0.00 (52 timates which will occur for this simple hypothesis:
|
bias in A ~<cosD|cos(nD)*) f =345 58
ias in Ap= {cosD|cosD*) or n=3,456... (58
_ (2= C3)(Cq-1Cns1~C1Cn) —(C1+C3—C1Cp)(Cp_2Cpy2— CoCy) (59
N (2—C35)(2+C,—C§) —(Cy+C3—C,Cy)?

=-1.60 from R(D)=cos D (60)
=+0.09 from R(D)=cos D (61
=+4+0.75 from R(D)=cos D (62)
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=+0.00 from R(D)=cos ©. (63

The actual biased estimates Af, resulting from these re- of the post-fit range residuals. For annual phase, or lunar

siduals R(D)=cosfD) are obtained from the computer sidereal, synodic or anomalistic phases, etc., the 360° phase

simulation procedure described previously, and they areange is divided intd@ bins of width 360°B. The weighted

found to be—1.78, 0.30, 0.95, and-.023, respectively, in average of the residuals in each bin are constructed,

fair agreement with the analytical approximations. If there is 1

then a synodpally periodic reS|quaI signal in thg LLR data r(b)* :(2 1/Ui2> s ri*/aiz for eachb=1,... B

resulting from incomplete modeling of the experiment, only i®) i®)

limited significance can be given to testing the simple hy- (66)

pothesis which represents an EP-violating signal. A biased ) _ ) _ _

(fals® estimate for that EP-violating amplitude will result With the sum oveii(b) including all observations with the

from almost any other synodic effect. appropriate phase angle lying between 3@06°()/B and
One can try to improve the estimation process by enlarg360°b/B. Our bins will typically be 10° wide B=36). The

ing the post-model hypothesis to include both abBasnd a  Weighting factoro; quantities are provided by the observers

cos D signal as range “normal point” uncertainties and include effects
due to the finite laser pulse width, number of observed pho-
H(D)'=A} cosD+Aj, cos D. (64)  tons composing the normal point, short term noise fluctua-

tions in the system electronics or in the atmospheric propa-

(A cos D signal is not here considered in the post-modeldation delays, etc. Experimental noise which only varies
hypothesis because such a signal is about equal to the part@@nificantly on time scales longer than the time span of nor-
vector for one of the model's parameters. However, this ign@! point construction is not included in these weights.

not exactly the case, and this possibility is considered in the The bin-averaged residuals acquire smaller noise-induced
Conclusions section of this paper.The analytical fit for Uuncertainties by the averaging over the large number of in-
this two-amplitude hypothesis given by H4) results from dividual range normal points contained in most of the bins:
the coupled equations

1 1
=2, 3. (67)
(D[D*) <D|3D*>) Ap <<r|D*> 5 o(b)” im0
(3D|D*) (3D[3D*)/\ A}/ \(r[3D*)/" This particular bin weighted average definition also permits a

useful reexpression of E@25) for estimating a post-model
Although the estimated amplitude of the d@ssignal in this  parameter whose corresponding partial functforis peri-
solution is not now biased by the presence of any &s 3 odic. Constructing bins defined with respect to the appropri-

signal in the actual residuals, the estimate of both amplitudegte periodicity, Eq(25) takes the form of a sum over bins of
of this hypothesis will still be biased by the presence of anyyin-defined attributes,

higher synodic Fourier components in the residuals. This

route of expanding the hypothesis to include ever-higher

-1
Fourier terms can be continued. H= % [h(b)* 1%/ (b)? Eb h(b)*r(b)*/a(b)?,
But finding that the synodic modulations of the data den- (68)

sity make it difficult to make an unbiased estimate of any
particular synodic signal in the presence of other unknowrwhich can conveniently be used both visually and quantita-
synodic signals in the residuals, we have developed a procéively in conjunction with the plots of bin-averaged residuals.
dure in which bin-averaged post-fit residuals are formed as a Another virtue of these bin-averages defined for a particu-
function of synodic phase. This permits a global viewing oflar periodicity is that a residual signal having a different
the entire synodically periodic post-fit residual signal, with- periodicity will be suppressed. Contributions from other re-
out preconceptions as to its particular shape or physical orisidual signals will average out to near zero wh&hmany
gin(s). Such a procedure is better matched to what, in factcycles are present in the LLR dai@) the periodicities are
we believe is the present chief task for LLR analysis: map-well sampled across phase, a@lthe two frequencies differ
ping out the complete structure of the unmodeled synodiby a modest amount. For example, a unit amplitude signal of
(and relateg signals in the range data. frequencyw’ will affect bin averages defined for frequency
w, with experiment time spam, by an amount

V. BIN-AVERAGED RESIDUALS Si(w— o) T/2]

or(w)~ (0—w')T/2

To enhance the visualization of the total structure in the (69

post-fit residuals, having one of the periodicities in the Sun-
Earth-Moon system dynamics or in the operational proceThe bin-averaged post-fit residuals of the LLR data are
dures of the experiment, it is useful to construct bin averageshown in Figs. 4—8, constructed for several system dynami-
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FIG. 4. Thirty-six bin weighted averages of the post-fit range FIG. 6. Bin weighted averages of the post-fit residuals are
residuals are shown as function of synodic phase. All observationshown as function of the annual phase, measured, like the sidereal
during 1985-1997 which fall within each 10° interval of synodic phase, from the cosmic microwave radiation dipole asymmetry di-
phase(see Fig. 1. contribute to the bin average. Bin error bars are rection projected onto the ecliptic plane.
composed only from the observer-supplied normal point errors.

indicates that there is noise of a characteristic time scale
cal frequencies of interest: synodiD}, sidereal §), an-  longer than the time periods needed to construct the typical
nual (Y), anomalistic [), and “meaningless( X) (chosen range normal point, and which therefore does not show up in
to ber/4X the synodic phageThe bars shown in these plots the noise or uncertainty values supplied by the observers.
represent the formal noise errors for each bin average &But for purposes of using the entire collection of LLR data to
computed from Eq(67). fit the model, this extra noise is relevant to the correct esti-

To obtain even better statistics for reducing noise errorsmation of the noise uncertainties in the parameter fits. Our
we plot in Fig. 9 weighted averages of the bins combinedestimate is that this inter-normal point noise about doubles
symmetrically about a new moon. This plot also shows thahe effective rms noise level from the observer-supplied val-
post-fit residuals signdindicated byx’s) which would re-  ues.
sult from a unit coD signal in the residuals. It is common for residual signals to be proportional to

The plot of the “meaningles” phase was performed to seepowers of both time and periodic signals. This occurs, for
what magnitude of noise fluctuations would exist in bin av-example, when frequencies or their time rates of change are
erages for a phase which should have no connection witimitially mismodeled. If the synodic post-fit residuals are pro-
areal signal in the dynamics of the Sun-Earth-Moon systemportional to the combination
This plot, along with that for the lunar anomalistic phase,

Anomalistic Bins

Sidereal Bins

I
3
b
3
T

—e

Post-Fit Residuals [cm]
(=)

Post-Fit Residuals [cm]
(=]
—=
]
ed
(S,

|
bt
o

i

1k

0

1 1 1 1
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-15 L ' v ! L . . L . L ! Anomalistic Angle L [degrees]
30 60 90 120 150 180 210 240 270 300 330 360

Sidereal Angle S [degrees]

FIG. 7. Bin weighted averages of the post-fit residuals are
FIG. 5. Bin weighted averages of the post-fit range residuals arehown as function of the lunar anomalisiiperigee to perigee
shown as function of the lunar sidereal phase. phase.
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with

Si=2> (t/T)"o?. (73)
i(b)
We have not here produced these separated bin averages for
the synodic post-fit residuals because theoretical consider-
ations conclude that thg(D) function should be antisym-
metric about a new moofproportional to the Fourier com-
ponent sin D), and therefore not strongly interfere with the
structure of the even synodic function. However, a deeper
analysis of the data using this separation procedure should be
made.

VI. CONCLUSIONS

The result given in Eqg4) and(5), that there is an almost
2 cm difference between the recent fits for the EP-violating

FIG. 8. Bin weighted averages of the post-it residuals aréP@rameterAp made by two analyst groups, requires com-

ment. This difference cannot be due to the true noise in the

phasg. This plot is performed to assess the size of additional noisd-LR data. Since both results depend on almost the same
fluctuations not captured in the observer-supplied normal point erfange data, they are subject to the same set of noise values in

rors.

in which f(D) andg(D) are synodically periodict is the
time of observation, and is the total time of the data set,

r(D,t)*=f(D)+(t/T)g(D)

(70

the observations, and this will produce almost equal noise
errors in the two estimated values f8f, . There must be
some significant difference between the two models used for
the fits to produce such different values fiag . It is impor-
tant to find these differences.

We have fit the LLR data with a sequence of increasingly

then bin averages can be defined which isolate the two syreomplex hypotheses, beginning with the basic model alone,
odically periodic functions:

Post-Fit Residuals [cm]

1
f(D)y=o—o— —SitIMr¥le? (71
( )b S()Sz_sii(b) (SZ 1l ) i 10 ( )
g(D) :#2 (Soti IT—=S)r*lo?
b SOSZ_S]_ |(b) I 1 I 1
(72)
Symmetric Combination of Synodic Bins
1.5 xT T T T
X
T x
05 X
. Fﬁ ¥ el .. %
T\—}‘ x % x X T
-0.5
-1}
-15 ‘ ' . : '
o] 30 60 90 120 150 180

Synodic Angle D [degrees from New Moon]

FIG. 9. For purposes of reducing noise fluctuations and improv-
ing the ability to see any cd3 signal, we combine the data from
binsD and 360% D into 18 bins. The post-fit residual signal which

will result from a unit coD residual signal is also indicated.

and then the model plus the post-model synodic signals:

H(D)=Ap cosD (74

H(D)'=Aj cosD+Aj, cos D (75)
7

H(D)"=A} cosD+ >, Al'; cognD). (76)
n=3

For the model alone we obtained the estimated value for the
Earth-Moon mass paramefell = values below are the for-
mal (1—o) uncertainties based only on the observer-
supplied normal point uncertainties; we find there to be ad-
ditional noise between the normal poihts
GMY), =403 503.2415% .0004 knt/s?

e+m

(77

expressed in TDBbarycentric dynamical timeunits. For
the three fits which included the successive post-model hy-
potheses we obtained

GM¢, =403 503.2393%.00055 kn¥/s®  (78)

Ap=1.15-0.19 cm (79
GM,, ,=403 503.2369% .00068 kni/s?

(80)

AL=2.68+0.32 cm (81)

A;r=0.85+0.14 cm (82
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1, 2 and 6-Parameter Fits, F(D) = Sum A(n) cos(nD)

GM”, =403 503.23492 .00108 kni/s’

e+m 1.5 T T T T
(83
A}=3.32+0.40 cm (84) ks,
A%5=1.64+0.30 cm (85) o5l
A)p=0.77£0.24 cm (86) E i
Al,=0.80+0.25 cm (87) £
AL =0.51+0.17 cm 88) h
5=0.13+0.13 cm. (89) gl
)

Suspecting that a pure coB2signal may weakly separate
from the partial signal for the Earth-Moon mass parameter,
rendering its amplitude measurable, we also fitted the post-
model hypothesis

15 ) . !
60 20 120

Synodic Angle D [degrees from New Moon)]

FIG. 10. The one-, two-, and six-parameter post-mode| .
(78)—(89)] for synodic residuals in the LLR observations are com-

H(D)"” =A% cosD+ Ay, cos D (90) pared in one plot. An unknown amount Af- B cos D could also
be present in the unmodeled range signal, but that signal would
and obtained mostly be absorbed by adjustmebias of the model parameters.
These three fits are consistent within the noise fluctuations of the
G Mggrm:403 503.235% .0012 kn¥/s? (91 data over the range of synodic angle of 40 <150° for which a
plentiful quantity of data exists.
/I/: 4+
p=107=0.19 cm (92 tine and other future missions which directly mapped out the
Moon’s gravitational field. This model change would signifi-
Al =—1.29+0.31 cm. (93) g g 9

cantly increase the precision for measuring the EP-violating
?mplitudeAD. The realistic error associated with such a
mass parameter is about .0025%shwhich is equivalent to
about 0.6 cm uncertainty in the coB2amplitude in the
Moon'’s motion. So our exploratory fit given by Eq®€1)—

The estimates of the amplitudes in the two-parameter fi
given by Egs.(81) and (82) are actually highly correlated,
and a better way to express those values is

R(D)es=(—.12+.07)(cos D—.37 cosD)  (94) (99 indicates some significant unmodeled c@s 2ignal
which is accompanying the rest of the unmodeled synodic

+(2.63+30)(cosD +.37 cos ®) cm. signal we are finding in the fits of Eq$78)—(89). At this
(95)  time we view the chief goal of LLR data analysis to be the

discovery of the detailed shape of the total unmodeled syn-
Actually, all multi-parameter solutions consist of a least-odic range signal without preconceptions as to its origins,
squares-fit “point” in multi-parameter space, plus a sur-and by this approach to acquire clues as to what are the
rounding formal error ellipsoid. The axes of the error ellip- particular inadequacies in the model.
soid do not in general align themselves with the parameter The three fits for the unmodeled range signal presented in
axes, and the length of the different ellipsoid axes may varfgs.(78)—(89) are plotted in Fig. 10, including differences in
greatly among themselves, indicating that certain parametehe amplitude of a cosl2 contribution which are implied by
combinations are estimated with much higher precision thathe differences in the obtained values of the Earth-Moon

others.

The larger formal errors of the co®2amplitude and the
Earth-Moon mass parameter given by E¢81) and (93)
reflect the high correlatiofabout 0.9 of those parameters’
partial vectors. Comparing this fit with the basic model esti-
mate in Eq{(77), the high sensitivity of the Earth-Moon mass

mass parameter which accompanied eaclifitiere is still a
common but unknown amount of a cdd 2ontribution to all
three of the curves which is not included, though the fit given
in Egs. (91)—(93) suggests the size of this common ampli-
tude)

The three fits are rather consistent with each other in rep-

parameter estimate to the presence and nature of other syresenting the unmodeled synodic signal over the range 40°
odically periodic post-model hypotheses is noted. This re<<D<150° for which a good quantity and quality LLR data
flects the ease with which the presence of any unmodeledave been collected. These curves begin to seriously diverge
synodic signal will bias that basic model parameter, suggests the new and full moon phases are approached, but that is
ing that it may become preferable to use a fixed value for thisvhere the data are sparce and the fits naturally have less
mass parameter which can be obtained from a combinatiogignificance. The robust information which has been discov-
of laser ranging to satellites, from Viking ranging data whichered concerning the unmodeled synodic residual signal is
measures the Earth/Moon mass ratio, and from the Clemenhat it includes a sloping line or curve which decreases by
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Synodic Bins, 1-Parameter Fit A cosD Subtracted From Actual Residuals in the noise internal to a normal point and estimated by the
1.5 T T T T T . . . .
observers. We estimate that this consideration about doubles
the actual data noise.

T 1 The most evident inadequacy in the model which we have
identified concerns the tidal displacements of laser station
positions on Earth and reflector positions on the Moon. The

model presently computes these quantities under the ideali-

—L-L I ’_I_‘FI'\’_I_‘% I zation that Earth and the Moon tidally distort as fluid bodies

I_ 1 LFLH_I_‘ ) ]_ characterized by constant vertical and horizohiae num-

I
S
T

bers:

Post-Fit Residuals [cm]
(=]

|
bt
o

* 4

or =5 —=5{Ha[3(R-a)’~1]a+6L,R-a(R-R-aa)}
(96)

s ‘ . . . . m anda are the mass and radius of the bodies being tidally
0 % ynothAngle D [dogees fom NewMoon] % distorted, andn* andR are the mass and distance of the
bodies producing the tidal distortions. The unit vectors point
FIG. 11. The fit of the one-parameter hypothesiscosD was  toward the appropriate sites and bodies, whileandL , are
subtracted from the actual LLR residual data, and the synodic binthe geophysical quadrupolar Love numbers for vertical and
averaged post-fit residuals reobtained and here plotted. The errgjorizontal displacement. The model uses the nominal values

bars are doubled from the observer-supplied normal point errorsecommended by the IERS Conventionsi,=.6026 and
reflecting our determination that additional noise error between norp ,=.0831. On Earth

mal points exists.

m*a*
about 2 cm over the interval of synodic angle of 4@ 2mR3:18 cm and 8 cm for lunar
<150°. Further details of the actual signal cannot be reliably
specified with the present data. and solar tides, respectively. (97)

We constructed “corrected” synodic phase bin-averaged

post-fit residuals by subtracting either the one-parameter hyFhe Moon’s next order octupolar tide on Earth is smaller by

pothesis fit given by Eq(79) or the two-parameter hypoth- the factora/R~ 1/60 and has the characteristic size of a few

esis fit given by Eqs(81) and(82) from the actual LLR data, millimeters. It is not presently included in the model, but we

obtaining a new model fit and bin-averaged post-fit residualadded it as a post-model correction and found it changed the

in each case. The results are plotted in Figs. 11 and 12. Theynodic post-fit residuals by at most a small fraction of a

bin-average error bars used in these plots have been doubledllimeter over the range of the synodic phase, 4@

from the formal errors shown in the original synodic plot of <150°.

Fig. 5. This was done because of our discovery that there We tested the simplified tidal model by letting the Love

apparently is inter-normal-point noise which is not capturechumbers for the laser stations be independent, to-be-fit-for
parameters in the model. We found statistically significant

1'55ynodic Bins, I2—F'arameterl?itA’ cosD+Bl’ c0s3D Subtrlamed From A‘ctual Residuals Changes from the nominal values fOf the two stations WhICh

have supplied the bulk of the LLR data, Grasse, France and

McDonald Observatory in Texas:

SH2(G)=+.036x.011, SL,(G)= +.040+=.004
(98)

0Ho(M)=—.022=.011, JL,(M)=—.013*.006.

\_P (99

. These fits represent changes in the magnitude of station dis-

placements due to lunar tides of characteristic size 2 cm and

L | —1 cm for the Grasse and McDonald sites, respectively.
- { These tidal displacements will have some synodic periodic-

Post-Fit Residuals [cm]
o
(=] o
—
I
——
——
H—
-
H
=
— )

1
ed
5

ity. This occurs directly for the solar tide because the scalar

50 %0 120 150 180 productR-a will vary as cosD (the station unit vector will
Synodic Angle D [degrees from New Moon] . . .
point approximately toward the Moon, as best as possible, at

FIG. 12. The fit of the two-parameter hypothe#i$ cosD  the times of ranging measurementshile the synodic peri-
+A}; cos D was subtracted from the actual LLR residual data, andodicity occurs indirectly for the lunar tide because the previ-
the synodic bin-averaged post-fit residuals reobtained and here plodusly mentioned scalar product will diminish with synodic
ted. Error bars are doubled from the supplied normal point errors.periodicity as observers tend to range with the Sun as low in

0 30
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the sky as possible near a new moon phase. Although our fitsates. The non-spherical gravitational interactions between
for the Love numbers showed substantial shifts from theEarth and the Moon are included up to the fourth order
nominal model values, we found changes in the synodic binspherical harmonics.
averaged post-fit residuals of no more than 1 mm over the The Moon’s orientation is obtained from Eulerian equa-
useful range of synodic phase. tions of rotational motion, modified by elasticity and energy
Because of the rotation of Earth and movement of the Sugiissipation processes in the Moon. Torques are produced by
and Moon, a site’s actual tidal displacement consists of ghe Sun and Earth, including the latter's quadrupole moment
superposition of a number of oscillatory motions of differentfie|q. The lunar librations are integrated, and the relativistic
frequencies. The Love numbers which represent the reSponP%odetic precession of the lunar spin is included.

of Earth to tidal forces appear to be frequency-dependent, ¢, nqtants adopted for the computations are from the IAU-

especially in the diurnal band@requencies clustered close to recommended IERS 1996 Conventions Standiiiswhile
a cycle per daly and the displacement of each frequency has‘Earth’s rotation is described using the IAU 1980 nutation

different dependence on the site latitude. Forcing the Lov%eries and the values of Zlai al. [9] for the 9.3 y, annual

numbers to be frequency-independent is a possible eXpl""n%"emi-annual and semi-monthly nutation periods. The preces-

tion for the strong site-dependence of our Love number fits, .
this dependence then becoming a surrogate for the su sion angles of Liesket al. [10] are employed, but the 18.6 y

X - eriod coefficients and the luni-solar precession constant are
pressed latitude dependence which would be a consequen

of the frequency dependence. An improved dynamical Love Stermined in the multi-parameter mode fit.
q y dep o~ pro y . Earth orientation parameters are taken from a combined
number model should be introduced into the LLR basic

) ; solution produced by R. Gross at JREOMB95) [17]. Tid-
model. But the existence of other site-dependent phenomer}ﬂ\ly driven diurnal and semi-diurnal UT1 variations from

cannot yet be ruled out as reasons for the results given iEzayet al.[11] are added to the UT1 input file

Eqs.(_98) and (99), af‘d _the po_ssm_lllty of the co_rrelatlon of Tidal effects in the solid earthL(=2 only) on station
our site-dependent findings with similar effects in data accu-

mulated by satellite laser and global positioning systas coordinates are evaluated using the assumption of(weo
; y . 99 P g systg tical and horizontal displacemgntonstant Love numbers.
ranging needs to be investigated.

Ocean loading corrections are madd, and plate tectonic
motion is taken from the Nuvel NNR-1 modelZ2].
The general relativistic transformations between isotropic
K.N. was supported by National Aeronautics and Spacéolar system barycentric coordinates and geocentric coordi-
Administration contract NASW-97008, and he thanks Jimhates(e.g.[13]) are carried out for laser station and reflector
Williams of the Jet Propulsion Laboratory for numerousPositions. The Hirayamat al. [14] series is used to trans-
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helpful discussions on the topic of this paper. form geocentric time TDT(terrestrial dynamical timeto
barycentric time TDB(barycentric dynamical time
APPENDIX The laser propagation times are corrected for the gravita-
tional potentials of the Sun and Ear¢8hapiro effect
Starting from initial conditions contained in tHeE200 The model of Marini and Murraj15] is used to make the

solar system ephemeris, the trajectories of the relevant bodtmospheric corrections to the laser propagation times.

ies are obtained by numerical integration of the Einstein- Correction of the lunar orbifrelative to Earth due to the
Infeld-Hoffman relativisticN-body equations of motion as solar radiation pressure forces on these bodies is made using
represented in isotropic, solar system barycentric coordithe analysis of Vokrouhlicky16].
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