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Computing the merger of black-hole binaries: The IBBH problem
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Gravitational radiation arising from the inspiral and merger of binary black holes~BBH’s! is a promising
candidate for detection by kilometer-scale interferometric gravitational wave observatories. This Rapid Com-
munication discusses a serious obstacle to searches for such radiation and to the interpretation of any observed
waves: the inability of current computational techniques to evolve a BBH through its last;10 orbits of inspiral
~;100 radians of gravitational-wave phase!. A new set of numerical-relativity techniques is proposed for
solving this ‘‘intermediate binary black hole’’~IBBH! problem:~i! numerical evolutions performed in coor-
dinates co-rotating with the BBH, in which the metric coefficients evolve on the long timescale of inspiral, and
~ii ! techniques for mathematically freezing out gravitational degrees of freedom that are not excited by the
waves.@S0556-2821~98!50218-4#

PACS number~s!: 04.25.Dm, 04.30.Db, 04.70.2s
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I. MOTIVATION

Among all gravitational wave sources that theorists ha
considered, the one most likely to be detected first is the fi
inspiral and merger of binary black holes~BBH’s! with
massesM1;M2;10220M ( @1#. Detailed analyses of the
evolution of stellar and black-hole populations@2# predict
event rates as high as; one per year in the first LIGO an
VIRGO interferometers~2002–2003! and a thousand pe
year in enhanced interferometers for which research and
velopment is currently under way, but the rates could also
far lower than this.

Optimal search techniques require prior information ab
the gravitational waveforms. The waveforms from the ea
binary inspiral phase, when the holes are far apart, are
culated by a post-Newtonian~PN! expansion@3#. The merger
phase, beginning at the innermost stable circular orbit,
be calculated by numerical relativity. Unfortunately, there
a gap@4# between the failure of the PN expansion~which, for
concreteness, we take to occur when its Taylor series m
a 2% error in the energy loss rate@5#! and the beginning of
merger. Filling this gap is called the intermediate bina
black hole~IBBH! problem@4#.

We estimate@5# the PN failure point, for calculations a
3PN order@O(v6) beyond Newtonian gravity and quadrup
lar radiation reaction#, to be at the orbital speedv
[(MV)1/3.0.3 ~whereM is the system’s total mass,V is its
orbital angular velocity, andG5c51); there the remaining
time to merger, remaining number of orbits, and remain
number of gravitational-wave radians are T
.1200M , Norbits.8, andF.100. For 2.5PN calculations
the PN failure is atv.0.25 whereT.5000M , Norbits.20,
andF.250. For optimal detection of the waves, the wav
form must be accurately modeled in the IBBH gap@5#. The
wave frequency in this gap is f 5V/p;(50–
200 Hz)(20M ( /M ), which is the band of optimal LIGO and
VIRGO sensitivity. This adds urgency to the IBBH problem

For numerical simulations of the merger phase, the c
ventional approach uses asymptotically inertial coordina
in which the dynamical timescale,tdyn;M , is set by the task
of moving the holes across the coordinate grid. It is unlik
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that, in the next several years, this approach will be able
evolve a BBH through the gap for the required*1200 dy-
namical time scales. This motivates exploring alternat
procedures for computing the evolution and waves dur
the IBBH phase.

One possible method of extending the PN approximat
to the waveform into and through the IBBH region is to
augment it with Pade´ approximants@6#. However, there is
little hope, via PN Pade´ approximants, to evolve the binary’
internal spacetime geometry in the IBBH region and there
provide ~i! initial data for numerical relativity’s analysis o
the merger, and~ii ! a connection between those initial da
and the binary’s early inspiral properties~masses, spins, or
bit!. For these crucial issues we must turn elsewhere.

Here we explore an alternative strategy@4#: numerical
relativity computations performed not in asymptotically i
ertial coordinates~as is normally done!, but instead using
spatial coordinates which co-rotate with the holes’ orbi
motion and a temporal slicing which adjusts, as the poten
well between the holes deepens, so as to keep all the m
coefficients as slowly evolving as possible. In such coor
nates one hopes to achieve a timescaletdyn for dynamical
evolution of the metric coefficients that is of the order of t
timescalet* on which radiation reaction drives the hole
together.1 Since the orbital frequency changes by only a fa
tor of ;2 – 3 through the IBBH phase, this phase may l
only ;3 dynamical timescales in the co-rotating frame—
enormous reduction from the*1200 timescales in the as
ymptotically inertial coordinates of standard numerical re
tivity.

Although the metric coefficients’ true dynamical time
cale will be t* in these co-rotating coordinates, numeric
approximations may excite spurious gravitational waves w

1If the holes are spinning with axes inclined to the orbital angu
momentum, then in these coordinates the evolution timescale
be shorter:t* ;~spins’ precession period!. For simplicity we shall
ignore this possibility, though our analysis presumably can
adapted to handle it.
© 1998 The American Physical Society01-1



o
es
p

eg
th
ar
im

n
n-

on

o-
ur

or
ll

Eq
c
ti

r

ng

e
tim

ric

of

rk

tes

tial

he
co-

se-
e

rt-
ua-
he
ta

rdi-

-
ta;

A

b-
r

e

r-
e

ni-

RAPID COMMUNICATIONS

BRADY, CREIGHTON, AND THORNE PHYSICAL REVIEW D58 061501
wavelengths of the order of the spatial grid size. A go
numerical scheme must freeze out these unphysical mod
order to achieve stable evolution while using long time ste
Correspondingly, a concrete implementation of our strat
must include two elements: first, a method to choose
lapse and shift so the coordinates co-rotate with the bin
second, a numerical scheme that evolves stably with t
steps constrained only byt* . Such a scheme differs from
that of previous co-rotating neutron-star-binary calculatio
@7#, which have not evolved the gravitational field but i
stead computed sequences of equilibria.

II. CHOOSING THE LAPSE AND SHIFT

Numerical relativity is based on a 311 decomposition of
the metric:

ds252a2dt21g i j ~dxi1b idt!~dxj1b jdt!. ~1!

Herea is the lapse function,b i is the shift vector, andg i j is
the metric of the 3-dimensional slices of constant timet. The
lapse and shift are specified freely during the evoluti
thereby fixing the spacetime coordinates.

We propose to construct the initial IBBH co-rotating c
ordinates and metric from the PN metric near the PN fail
point by adjusting the lapsea and shiftb j so as to make the
metric coefficients evolve on the inspiral timescalet* . Sub-
sequentlya andb j must be chosen so as to make the co
dinate time derivatives of all metric coefficients stay sma
i.e., to make

L] t
g.0, ~2!

whereL] t
g is the Lie derivative of the spacetime metricg

with respect to the coordinate system’s time generator] t . To
make this statement precise, we think of the left side of
~2! as a velocity, construct a kinetic energy from this velo
ity, and choose a lapse and shift that minimize this kine
energy. We will discuss several such action principles foa
andb j in the next two subsections.

A. The minimal-strain lapse and shift

In the spirit of Smarr and York’s@8# minimal distortion
shift, we construct an action principle based on minimizi
the Lie derivative of the spatial metricg i j rather than the
spacetime metric. Specifically, we presume that the num
cal evolution has proceeded up to some slice of constant
t that has intrinsic metricg i j and extrinsic curvatureKi j , and
we choose the lapsea and shift b i on this slice so as to
minimize the positive definite action

I 1@a,bk#5E d3xAg ġ i j g
ikg j l ġkl . ~3!

Here ġ i j 5]g i j /]t ~the Lie derivative ofg i j along ] t) is
expressed in terms ofKi j , a, b j via

ġ i j 522aKi j 12D ( ib j ) , ~4!
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whereDi is the spatial gradient compatible with the 3-met
g i j . By minimizing the action with respect to variations ofa
andb i , we obtain four coupled equations:

Ki j @22aKi j 12Dib j #50, ~5a!

D j@22aKi j 12D ( ib j )#50. ~5b!

Equation ~5a! is easily solved to givea in terms of b j .
When thata is inserted into Eq.~5b!, the result is a linear,
homogeneous differential equation forb j . If the lapse were
not fixed via Eq.~5a! but instead were chosen independent
b j , e.g., via maximal slicing, then the shift equation~5b!
would reduce to the minimal strain shift of Smarr and Yo
@8#. We therefore refer to Eq.~5! as minimal strain equa-
tions.

Notice the geometrical nature of the spatial coordina
carried by this lapse and shift: The action principle~3! mini-
mizes the rate of change, along] t , of the infinitesimal
proper distance between neighboring points at fixed spa
coordinates. This~presumably! will be achieved, in the bi-
nary itself, by making the coordinates co-rotate with t
holes, and in the radiation zone by attaching the spatial
ordinates to the wave pattern, i.e., by~almost! freezing the
wave pattern into the spatial coordinate grid. A direct con
quence is that evolution along] t is nearly shape and volum
preserving.

In the IBBH problem, this approach is not without sho
comings: there is no guarantee that the minimal strain eq
tions, which are solved on each spatial slice, will force t
lapse and shift to evolve slowly. However, if the initial da
are constructed in coordinates that are close to co-rotating~as
they will be using the known PN metric!, and if appropriate
slow-change boundary conditions are enforced onb i near the
holes’ apparent horizons and at the outer edge of the coo
nate grid, then it is reasonable to expecta andb i to evolve
on the same slow timescalet* as the spatial metricg i j . This
is becausea and b i inherit their dynamics from the time
evolution ofg i j andKi j . Note that the minimal strain equa
tions become degenerate for time-symmetric initial da
such a situation will not arise in the IBBH problem.
method of enforcing a variant of Eq.~5a! whereKi j is re-
placed byg i j has been explored by Balakrishnaet al. @9#.

The following ~far from rigorous! argument makes it
seem likely that this scheme will succeed for the IBBH pro
lem. The IBBH spacetime has an ‘‘almost Killing vecto
field’’ j, which embodies co-rotation and satisfies

Ljg[s;l/t* . ~6!

Here l;M is the length scale over which the spacetim
curvature varies, andt* @l is the inspiral timescale, sos is
small. In terms of the 311 spacetime foliation being gene
ated by the minimal-strain lapse and shift, we decomposj

into a spatial pieceB and a piece in the directionn̂ normal to
the surfaces of constantt: j5An̂1B, whereB•n̂50 by defi-
nition. We wish to determine the effectiveness of the mi
mal strain equations at attaching the coordinate grid toj, i.e.,
1-2
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at makingj5] t or equivalentlyA5a and B5b. First, we
project Eq.~6! into the spatial sliceS to get

2D ( iBj )22AKi j 5si j . ~7!

Next, becausea andb i satisfy Eq.~5!,

D j@22Ki j K
klDkb l /KmnK

mn12D ( ib j )#50. ~8!

Finally, substitutingb i5Bi2bi into this equation and using
Eq. ~7! we find thatbi , the difference between the minima
strain shift and the shift we would like, satisfies

D j@22Ki j K
klDkbl /KmnK

mn12D ( ibj )#

5D j@2Ki j ~Kklskl /KmnK
mn!1si j #. ~9!

Assuming~without proof! that the boundary value problem
for Eq. ~8! is well posed, we see that there exists a solution
Eq. ~9! that scales asbi;l/t* ; Eq. ~5a! then implies that
a2A;l/t* . Therefore, the minimal-strain shift and lap
can make] t equal to the almost Killing vector fieldj that
embodies co-rotation, aside from fractional differences of
der l/t* , as desired.

Notice that if j[An̂1B is a Killing vector field on the
spacetime thensi j [0, andbi50 is a trivial solution to Eq.
~9! corresponding toa5A andb i5Bi .

B. Other choices of lapse and shift

There is much freedom in choosing the lapse and shif
achieve the goal of slowly evolving metric coefficients. A
other class of action principles that might work is based
minimizing an integral over spacetime rather than over
space as in Eq.~3!. Let ] t5an̂1b be the vector field to
which our coordinates are tied, and denote the Lie deriva
of the 4-metric along] t by j mn5L] t

gmn . Let v be some

other vector field independent of] t , and from it construct
the tensorHv

mn5gmn1vmvn. Then our class of actions is

I 2@] t ;v#5E
M

~ j mnHv
mrHv

ns j rs!. ~10!

On varying ] t , while holding v and the spacetime metri
fixed, we arrive at

¹n~Hv
mrHv

ns j rs!50. ~11!

This is a dynamical system of equations for the lapse
shift. Certain values ofv might be considered most natura
If v5A23~some unit timelike vector!, thenHv

mn is positive
definite and there is a solution of Eq.~11! that truly mini-
mizes the action. Ifv50, then Eq.~11! is a simple conser-
vation law, but the action is not positive definite. It is trivi
to show that a spacetime Killing vector field is a solution
Eq. ~11! independent of the choice ofv, and straightforward
to extend the analysis of Eqs.~7!–~9! to show that for the
IBBH problem one of the solutions of Eq.~11! differs from
the ‘‘almost Killing vector field’’ of Eq. ~6! by an amount
that scales asl/t* . However, neither here nor for ou
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minimal-strain equations have we managed to demonst
that the desired solution for] t is an attractor; this need
further study.

III. NUMERICAL EVOLUTION

To fully solve the IBBH problem will require combining
one of our methods to choose the lapse and shift with
Einstein equations in some concrete numerical scheme.
though the binary’s metric coefficients should evolve on
long timescalet* in our proposed co-rotating coordina
system, there is danger that the time steps will be driv
down to less than the size of the spatial grid by the numer
scheme’s attempt to follow spurious gravitational wav
and/or to control numerical instabilities~the Courant condi-
tion!. To avoid these pitfalls while taking time steps co
trolled only by the inspiral timescalet* , it will be necessary
to stabilize the integration scheme and freeze out the deg
of freedom that are physically present but unphysically
cited.

A. Freezing out unwanted degrees of freedom

It is well known that implicit differencing schemes freez
small-scale structures and produce unconditionally sta
evolutions. For this reason, we envisage using an imp
scheme to evolve the Einstein equations in co-rotating co
dinates.

While implicit differencing may be sufficient to achieve
stable evolution on the timescalet* , we propose an addi
tional technique that should also help. The idea is to conv
the ADM equations forg i j andKi j into a parabolic system
thereby removing all spurious waves while keeping the r
ones ~which are nearly frozen into the co-rotating coord
nates!.

The evolution equations in ADM form are

ġ i j 522aKi j 1Lbg i j , ~12a!

K̇ i j 52DiD ja1a@3Ri j 1gkl~Ki j Kkl22KikKl j !#1LbKi j ,

~12b!

where 3Ri j is the Ricci tensor constructed fromg i j . This
first-order system can be re-expressed as a second orde
tem by solving Eq.~12a! for the extrinsic curvature and sub
stituting it into Eq.~12b!. Since the fields evolve on the ver
long timescalet* in the co-rotating frame, and sinc
(] t) inertial.(] t)co-rotating1V]f , the terms with two time de-
rivatives in co-rotating coordinates will be smaller, by a fa
tor ;1/(Vt* ), than at least some of those with a single tim
derivative. Thus, the double-time-derivative terms can be
glected~or back-differenced, if desired, so they are treated
sources arising from data on previous time slices!. In particu-
lar, the term involving g̈ i j can be neglected~or back-
differenced!. ~Sincea and b i are not dynamical fields, we
suggest that their time derivatives also be back-differenc!
The resulting parabolic system of equations forg i j can be
evolved using an implicit scheme, which should be stable
large time steps.
1-3
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B. Initial data and boundary conditions

In addition to the evolution scheme, we must specify su
able initial data and boundary conditions. One can const
the initial data, just before the PN failure point, by usi
matched asymptotic expansions to join the post-Newton
exterior metric onto the metrics of two tidally distorted Ke
black holes, and by then transforming to co-rotating coor
nates@10#.

The method of Cauchy characteristic matching~e.g., Ref.
@11#! seems a promising candidate for constructing bound
data for the evolution ofg i j in the co-rotating frame. Such
matching could conceivably be done around each of
holes and at an outer boundary in the radiation zone@12#. It
may be possible to impose outgoing-wave boundary co
tions as a constraint on the spatial derivatives ofg i j at the
outer boundary. The shift there isb.V]f , where]f is the
generator of rotations in the orbital plane, and outgo
waves are constant along] r1b ~aside from their 1/r ampli-
tude falloff!, whereas spurious ingoing waves would be co
stant along] r2b.

We also need boundary conditions for the different
equation used to compute the shift. Fortunately, these s
easy to construct. Since the matching to characteris
would be done on the history of closed spatial 2-surfaces
the outer boundary and around each black hole, the der
tions of the equations for the lapse and shift can be repe
for these surfaces. For example, the minimal strain eq
tions, obtained by the variations of an action of the squa
velocity of the metric on the 2-surface@the analogue of Eq
~3!#, are

kab@22akab12Dabb#50, ~13a!

D a@22akab12D(abb)#50, ~13b!

wherekab is the extrinsic curvature of the 2-surface embe
ded in its history,Da is the spatial gradient compatible wit
the metric on the 2-surface, andba is the 3-dimensional shif
vector projected into the 2-surface. Since the boundar
closed, these equations can be solved to obtain the l
function and the tangential components of the shift vector
the boundary. The normal component of the shift would
set to zero, so the evolution will not attempt to follow wa
crests as they leave the numerical grid. Among the vari
solutions to Eqs.~13!, the one we want will be that which i
closest to the solution on the previous time slice. This bou
ary solution, combined with our 3-dimensional different
equations for the lapse and shift, presumably will produ
the desireda andb i , which evolve on the slow time scal
t* and co-rotate with the holes.

IV. WORRIES

Two conceivably serious difficulties with our approa
are~i! in our co-rotating reference frame, the almost Killin
vector becomes spacelike beyond the speed-of-light surf
which might cause problems for the evolution, and~ii ! when
the second time derivatives are discarded, the resulting
lution might not represent the true evolution of the spa
06150
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time. We doubt, however, that these difficulties will actua
arise, since we have seen no sign of them in a toy prob
that retains the relevant features of the IBBH problem.

Our toy problem is a rotating, radiating sphere of sca
charge in flat spacetime. We adopt spherical polar coo
natesxi5$r ,u,f% and a line element given by Eq.~1! with
g i j 5diag@1,r 2,r 2sin2u# andb i50. The sphere has radiusR,
angular velocityV(t), moment of inertiaI and scalar charge
densityr@r ,u,f2F(t)# whereF(t)5* tdt8V(t8). The sca-
lar field C produced by this charge distribution satisfies t
wave equation

gab¹a¹bC5H 4pr if r ,R

0 otherwise.
~14!

As the sphere rotates, scalar waves are radiated to infi
decreasing its angular momentumIV according to the
radiation-reaction equation

I
]V

]t
54pE

sphere
d3xAg ~r]fC!. ~15!

For a quadrupolar distribution of scalar charge, separatio
variables reduces the problem to solving a~111!-
dimensional hyperbolic system; we evolved the system in
inertial frame using standard finite-difference methods a
time steps constrained by the Courant condition.

We have also evolved this 111 system in the co-rotating
frame $r ,u,f̄5f2F(t),t% with F(t) inferred from the
radiation-reaction equation~15! and not from some variant
of our minimal-strain equations. In this co-rotating evolutio
we discarded the~small! second time derivatives ofC and
applied an implicit differencing scheme to the resulting pa
bolic system. We succeeded in making the time steps
large as the rotational timescale of the charged sphere~much
larger than the Courant condition would allow!, and we be-
lieve that the time steps could be made as large as the ra
tion reaction timescale~which is much larger than the rota
tional timescale!, since the limiting factor was the simpl
outer boundary condition that we used. There were no
merical instabilities. Moreover, no numerical problems we
encountered at the speed-of-light surfacer 5(Vsinu)21 @and
we expected none, since the transformation to co-rota
coordinates does not change the fact that the wave equa
~14! is manifestly hyperbolic#. There was good agreemen
between the results computed in the inertial and co-rota
frames. Further details will appear elsewhere@13#. Addi-
tional evidence that evolution in rotating coordinates ne
not cause problems comes from the work of Bishopet al.
@14#.

Based on these results, it seems likely that an implem
tation of the methods presented here will allow a numeri
evolution of a binary system through the IBBH phase. Sin
a better understanding of this phase is important—and
haps critical—for the LIGO and VIRGO detection of wave
from binary black hole systems, and since such systems
1-4
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highly promising candidate sources for LIGO and VIRG
we hope to inspire researchers in numerical relativity to
dress the IBBH problem via our proposed techniques
others.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants AS
9417371, AST-9731698 and PHY-9424337 and NAS
d

es
an
ns
ith
on

ar
ig

ith

.
-
on
wn
ro
a
in

ea
at

ti

n-

in
a

06150
,
-
r

-

grants NAGW-4268/NAG5-4351 and NAG5-6840. P.R.B.
grateful to the Sherman Fairchild Foundation for financ
support, and J.C. is grateful for partial support from t
Natural Sciences and Engineering Research Council
Canada. The authors thank Sam Finn for helpful discussi
and for helpful critiques of an earlier version of this man
script, they thank Miguel Alcubiere, Bernd Bruegmann, Jo
Centrella, Carsten Gundlach, Richard Matzner, Ed Sei
Stuart Shapiro, and James York.
re
rm
ly

are

ki,

ua-

o

. D

3;
. D

nd
@1# For M1.M2 , the volume of the Universe that LIGO an
VIRGO can search scales approximately asM1

2.5, so M1

.M2.15M ( BBH’s can be seen through a volume 400 tim
larger than binary neutron stars. This is likely to more th
make up for the lower formation rate of BBH’s, and it mea
that the first BBH’s seen are likely to be the rarer ones w
M1;10– 20M ( rather than the presumably more comm
ones withM1,10M ( . See V. M. Lipunov, K. A. Postnov,
and M. E. Prokhorov, New Astron.2, 43 ~1997!; also É. É.
Flanagan and S. A. Hughes, Phys. Rev. D57, 4535~1998!.
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as;1 per year in a sphere of radius 200 Mpc~the distance to
which the first LIGO and VIRGO interferometers can see w
signal to noise ratio 5.5 ifM1.M2.15M (), but the rate
could be much lower. V. M. Lipunov, K. A. Postnov, and M
E. Prokhorov, New Astron.2, 43 ~1997! argue for a rate rang
ing up to this same value based on the evolution of populati
of massive main-sequence binaries in galaxies like our o
but S. F. Portegies Zwart and L. R. Yungelson, Astron. Ast
phys.332, 173 ~1998!, in a similar type of analysis, obtain
vanishing rate of such BBH mergers. The enhanced LIGO
terferometers are expected to see a volume 1000 times gr
than the initial ones, and thus a 1000 times higher event r
see K. S. Thorne, inCritical Problems in Physics, edited by
Val L. Fitch, Daniel R. Marlow, and Margit A. E. Demen
~Princeton University Press, Princeton, New Jersey, 1997!, p.
167.

@3# L. Blanchet, B. Iyer, C. Will, and A. Wiseman, Class. Qua
tum Grav.13, 575~1996!; L. Blanchet, Phys. Rev. D54, 1417
~1996!.

@4# L. S. Finn and K. S. Thorne identified the IBBH Problem
spring 1996 and organized an August 1996 workshop
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@5# We take a 2% error in energy loss rate to signal PN failu
because the remaining number of radians of inspiral wavefo
is F*100, and an error of more than 2 radians will serious
affect the LIGO and VIRGO data analysis. Our values ofv at
PN failure are independent of the black-hole spins and
inferred from calculations in the limith[~reduced mass!/~total
mass!!1 @Figure 1 of T. Tanaka, H. Tagoshi, and M. Sasa
Prog. Theor. Phys.96, 1087 ~1996!; Figure 1 of H. Tagoshi,
M. Shibata, T. Tanaka, and M. Sasaki, Phys. Rev. D54, 1439
~1996!#, extrapolated toh51/4 ~equal masses!. Our values of
T, Norbits, andF are based on the Newtonian-quadrupole eq
tions T5( f M /256h)n28,Norbits5(1/64ph)n25, and F

54pNorbits with h51/4, which are known to be accurate t
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