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Gravitational radiation arising from the inspiral and merger of binary black H@B#i's) is a promising
candidate for detection by kilometer-scale interferometric gravitational wave observatories. This Rapid Com-
munication discusses a serious obstacle to searches for such radiation and to the interpretation of any observed
waves: the inability of current computational techniques to evolve a BBH through its ldsbrbits of inspiral
(~100 radians of gravitational-wave phasé new set of numerical-relativity techniques is proposed for
solving this “intermediate binary black hole(IBBH) problem: (i) numerical evolutions performed in coor-
dinates co-rotating with the BBH, in which the metric coefficients evolve on the long timescale of inspiral, and
(i) techniques for mathematically freezing out gravitational degrees of freedom that are not excited by the
waves.[S0556-282(98)50218-4

PACS numbd(s): 04.25.Dm, 04.30.Db, 04.78s

I. MOTIVATION that, in the next several years, this approach will be able to
evolve a BBH through the gap for the requiredL200 dy-
Among all gravitational wave sources that theorists havenamical time scales. This motivates exploring alternative
considered, the one most likely to be detected first is the fingbrocedures for computing the evolution and waves during
inspiral and merger of binary black holé8BH’s) with  the IBBH phase.
massesM;~M;,~10-20M, [1]. Detailed analyses of the  One possible method of extending the PN approximation
evolution of stellar and black-hole populatiof@] predict to the waveforminto and through the IBBH region is to
event rates as high as one per year in the first LIGO and augment it with Padepproximants6]. However, there is
VIRGO interferometers(2002-2003 and a thousand per |ite hope, via PN Padapproximants, to evolve the binary’s

year in enh.anced interferometers for which research and desiarnal spacetime geometry in the IBBH region and thereby
velopment is currently under way, but the rates could also bg,qyige (i) initial data for numerical relativity's analysis of

far lower than this. the merger, andii) a connection between those initial data

the gravitational waveforms. The waveforms from the earlyta.nd the binary’s ea_rly_lnsp|ral propertiemasses, spins, or-
it). For these crucial issues we must turn elsewhere.

binary inspiral phase, when the holes are far apart, are cal- H | it i tratefyl cal
culated by a post-NewtonigfPN) expansiori3]. The merger ere we explore an alternative strategyl. numericaj
|relat|V|ty computations performed not in asymptotically in-

phase, beginning at the innermost stable circular orbit, will = . . . ;
be calculated by numerical relativity. Unfortunately, there is€Mti@! coordinatesas is normally don but instead using

a gap[4] between the failure of the PN expansiavhich, for spa@ial coordinates Which.co-rotgte Wi_th the holes’ orbitgl
concreteness, we take to occur when its Taylor series makd80tion and a temporal slicing which adjusts, as the potential
a 2% error in the energy loss rdtg]) and the beginning of Well between the holes deepens, so as to keep all the metric
merger. Filling this gap is called the intermediate binarycoefficients as slowly evolving as possible. In such coordi-
black hole(IBBH) problem[4]. nates one hopes to achieve a timescajg for dynamical
We estimatg5] the PN failure point, for calculations at €volution of the metric coefficients that is of the order of the
3PN ordef O(v®) beyond Newtonian gravity and quadrupo- timescaler, on which radiation reaction drives the holes
lar radiation reactioh to be at the orbital speed together: Since the orbital frequency changes by only a fac-
=(MQ)¥3=0.3(whereM is the system’s total mas§,isits  tor of ~2—3 through the IBBH phase, this phase may last
orbital angular velocity, anG=c=1); there the remaining ©only ~3 dynamical timescales in the co-rotating frame—an
time to merger, remaining number of orbits, and remaininggnormous reduction from the 1200 timescales in the as-
number of gravitational-wave radians areT  ymptotically inertial coordinates of standard numerical rela-
=1200M, Ngpis=8, and®=100. For 2.5PN calculations, tivity.
the PN failure is ab=0.25 whereT=500M, N1 20, Although the metric coefficients’ true dynamical times-
and®=250. For optimal detection of the waves, the wave-cale will be 7, in these co-rotating coordinates, numerical
form must be accurately modeled in the IBBH d&p). The approximations may excite spurious gravitational waves with
wave frequency in this gap isf=Q/7~(50-
200 Hz)(2M /M), which is the band of optimal LIGO and
VIRGO sensitivity. This adds urgency to the IBBH problem. 1 the holes are spinning with axes inclined to the orbital angular
For numerical simulations of the merger phase, the conmomentum, then in these coordinates the evolution timescale may
ventional approach uses asymptotically inertial coordinatege shorter:r, ~ (spins’ precession perigdFor simplicity we shall
in which the dynamical timescaleg,,~ M, is set by the task ignore this possibility, though our analysis presumably can be
of moving the holes across the coordinate grid. It is unlikelyadapted to handle it.
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wavelengths of the order of the spatial grid size. A goodwhereD; is the spatial gradient compatible with the 3-metric
numerical scheme must freeze out these unphysical modes #; . By minimizing the action with respect to variationsef
order to achieve stable evolution while using long time stepsand 8;, we obtain four coupled equations:
Correspondingly, a concrete implementation of our strategy

must include two elements: first, a method to choose the KI[—-2aK;;+2D;;]=0, (5a)
lapse and shift so the coordinates co-rotate with the binary;
second, a numerical scheme that evolves stably with time Dj[—ZaKij+2D(i[3,-)]=O. (5h)

steps constrained only by, . Such a scheme differs from
that of previous co-rotating neutron-star-binary calculation
[7], which have not evolved the gravitational field but in-
stead computed sequences of equilibria.

SEquation (5a) is easily solved to givex in terms of §;.
When thata is inserted into Eq(5b), the result is a linear,
homogeneous differential equation fgy. If the lapse were
not fixed via Eq(5@) but instead were chosen independent of
[l. CHOOSING THE LAPSE AND SHIFT B;. e.g., via maximal slicing, then the shift equatithb)
would reduce to the minimal strain shift of Smarr and York
[8]. We therefore refer to Eq5) as minimal strain equa-
tions
20420 o di L pi i1 i Notice the geometrical nature of the spatial coordinates
ds’=—a’dt®+y,;(dx'+ g'dt)(dx + pldD). @) carried by this lapse and shift: The action princif8 mini-
Herea is the lapse functiong' is the shift vector, angy; is ~ M'#€S the rate of change, along, of the infinitesimal
the metric of the 3-dimensional slices of constant tirishe ~ ProPer distance between neighboring points at fixed spatial
coordinates. Thigpresumably will be achieved, in the bi-

lapse and shift are specified freely during the evolution, X ; ) X
thereby fixing the spacetime coordinates. nary itself, by making the coordinates co-rotate with the

We propose to construct the initial IBBH co-rotating co- holgs, and in the radiation zone by attaching the'spatial co-
ordinates and metric from the PN metric near the PN failurrdinates to the wave pattern, i.e., Bimos} freezing the
point by adjusting the lapse and shift3; so as to make the Wave pqttern into the. spatial cqordmate grid. A direct conse-
metric coefficients evolve on the inspiri’:tl timescale. Sub-  duence is that evolution along is nearly shape and volume

sequentlya and 8; must be chosen so as to make the coor-P"€S€"VINg.

dinate time derivatives of all metric coefficients stay small, In_ the IBBH problem, this approach is not W|thout_short-
i.e.. to make comings: there is no guarantee that the minimal strain equa-

tions, which are solved on each spatial slice, will force the

£,9=0, ) lapse and shift to evolve slowly. However, if the initial data

t are constructed in coordinates that are close to co-rotémg
. . I . . they will be using the known PN metjicand if appropriate
where £;,g is the Lie derivative of the spacetime metdc . change boundary conditions are enforceggpnear the
with respect to the coordinate system’s time generatofo  holes’ apparent horizons and at the outer edge of the coordi-
make this statement precise, we think of the left side of Eqpate grid, then it is reasonable to expacand 3; to evolve
(2) as a velocity, construct a kinetic energy from this veloc-gn the same slow timescatg as the spatial metrig;; . This
ity, and choose a lapse and shift that minimize this kinetiGs pecausen and g; inherit their dynamics from the time
energy. We will discuss several such action principlesdor ayglution of ;; andKj; . Note that the minimal strain equa-

Numerical relativity is based on at31 decomposition of
the metric:

and g; in the next two subsections. tions become degenerate for time-symmetric initial data;
such a situation will not arise in the IBBH problem. A
A. The minimal-strain lapse and shift method of enforcing a variant of E¢5a whereK" is re-

placed byy'l has been explored by Balakrishaaal. [9].
The following (far from rigoroug argument makes it

shift, we construct an action principle based on minimizing . N A
the Lie derivative of the spatial metrig;; rather than the seem likely that this sch.eme will S“CQ?ed forthc_e .lBBH prob-
lem. The IBBH spacetime has an “almost Killing vector

spacetime metric. Specifically, we presume that the numeriz” " ; i . o
cal evolution has proceeded up to some slice of constant timféeId & which embodies co-rotation and satisfies
t that has intrinsic metrig;; and extrinsic curvaturk;; , and

we choose the lapse and shift 8; on this slice so as to

minimize the positive definite action

In the spirit of Smarr and York’$8] minimal distortion

Leg=s~\IT, . (6)

Here A~M is the length scale over which the spacetime
Ce curvature varies, and, >\ is the inspiral timescale, s®is
— 3 Ak Al ! : S T
la[a, By f d*yy YiiVY Yk 3 small. In terms of the 31 spacetime foliation being gener-
ated by the minimal-strain lapse and shift, we decomg@se

Here 'yij =dv;;j/dt (the Lie derivative ofy;; along 4;) is  into a spatial piec® and a piece in the directiamnormal to

expressed in terms &;; , «, B; via the surfaces of constanté=An+ B, whereB-n=0 by defi-
_ nition. We wish to determine the effectiveness of the mini-
¥ij=—2aK;;+2DB;, (4)  mal strain equations at attaching the coordinate grid ie.,

061501-2



RAPID COMMUNICATIONS

COMPUTING THE MERGER OF BLACK-HOE . .. PHYSICAL REVIEW D 58 061501

at making&= g, or equivalentlyA=« andB= B. First, we  Mminimal-strain equations have we managed to demonstrate
project Eq.(6) into the spatial slic& to get that the desired solution fof; is an attractor; this needs
further study.
Next, becauser and 8' satisfy Eq.(5), Ill. NUMERICAL EVOLUTION
. " on To fully solve the IBBH problem will require combining
DI[—2K;;K Dy /KoK ™"+ 2D i 8;)]=0. 8 one of our methods to choose the lapse and shift with the
Einstein equations in some concrete numerical scheme. Al-
though the binary’s metric coefficients should evolve on the
long timescaler, in our proposed co-rotating coordinate
system, there is danger that the time steps will be driven
Di[—2Kij Kk'Dkb| IK o K 2D ib] down tolless than the size of the spatial grid k_)y t_he numerical
scheme’s attempt to follow spurious gravitational waves
:Dj[_Kij(KklskI/KmnKmn)+Sij]- 9) and/or to control numerical instabiliti€gthe Courant condi-
tion). To avoid these pitfalls while taking time steps con-
Assuming(without proof that the boundary value problem trolled only by the inspiral timescale, , it will be necessary
for Eq.(8) is well posed, we see that there exists a solution tdo stabilize the integration scheme and freeze out the degrees
Eg. (9) that scales ab'~\/7, ; Eq. (58 then implies that of freedom that are physically present but unphysically ex-
a—A~N/7, . Therefore, the minimal-strain shift and lapse cited.
can maked, equal to the almost Killing vector field that
embodies co-rotation, aside from fractional differences of or- A. Freezing out unwanted degrees of freedom
der\/7, , as desired.
Notice that if &=An+B is a Killing vector field on the
spacetime thes;;=0, andb'=0 is a trivial solution to Eq.
(9) corresponding tav=A and 8'=B".

Finally, substitutingd'=B'—b' into this equation and using
Eq. (7) we find thatb', the difference between the minimal-
strain shift and the shift we would like, satisfies

It is well known that implicit differencing schemes freeze
small-scale structures and produce unconditionally stable
evolutions. For this reason, we envisage using an implicit
scheme to evolve the Einstein equations in co-rotating coor-
dinates.

B. Other choices of lapse and shift While implicit differencing may be sufficient to achieve a

There is much freedom in choosing the lapse and shift tgtable evolution on the timescate , we propose an addi-
achieve the goal of slowly evolving metric coefficients. An- tional technique that should also help. The idea is to convert
other class of action principles that might work is based orthe ADM equations fory;; andK;; into a parabolic system,
minimizing an integral over spacetime rather than over 3thereby removing all spurious waves while keeping the real
space as in Eq(). Let at:aﬁJrB be the vector field to ©Nes(which are nearly frozen into the co-rotating coordi-

which our coordinates are tied, and denote the Lie derivativeates: _ o
of the 4-metric alongs, by jM:Lath_ Let » be some The evolution equations in ADM form are

other vecto;l‘leld Lndepegdent of, and from it c_onstr_uct 'yij: — 20K+ Ly, (129
the tensoH{”=g*”+v*v”. Then our class of actions is

Kij=—DiDja+ a[*Rij+ ¥¥(KjjKyy — 2K K ) ]+ LK

. — H MPL VO ijo
|2[ﬂt,v] fM(]ﬂva Hv qu’)' (10) (12b)

3 . . . .
On varying d,, while holdingv and the spacetime metric Where °Rjj is the Ricci tensor constructed from; . This
fixed. we arrive at first-order system can be re-expressed as a second order sys-

tem by solving Eq(12a for the extrinsic curvature and sub-
V(HEPH ) =0. (11  stituting it into Eq.(12b). Since the fields evolve on the very
long timescaler, in the co-rotating frame, and since
This is a dynamical system of equations for the lapse andidy)inertia™ (9t) co-rotatingt (294, the terms with two time de-
shift. Certain values ob might be considered most natural. rivatives in co-rotating coordinates will be smaller, by a fac-

If v= 2% (some unit timelike vectdr thenH"" is positive ~ tor ~1/(Q27,), than at least some of those with a single time
definite and there is a solution of EL1) that truly mini-  derivative. Thus, the double-time-derivative terms can be ne-

mizes the action. Ib=0, then Eq.(11) is a simple conser- glected(or back-differenced, if desired, so they are treated as
vation law, but the action is not positive definite. It is trivial Sources arising from data on previous time slicésparticu-

to show that a spacetime Killing vector field is a solution tolar, the term involving y;; can be neglectedor back-

Eg. (11) independent of the choice of and straightforward differenced. (Since « and 3; are not dynamical fields, we
to extend the analysis of Eqé7)—(9) to show that for the suggest that their time derivatives also be back-differenced.
IBBH problem one of the solutions of E@L1) differs from  The resulting parabolic system of equations fgy can be
the “almost Killing vector field” of Eqg.(6) by an amount evolved using an implicit scheme, which should be stable for
that scales as\/r, . However, neither here nor for our large time steps.
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B. Initial data and boundary conditions time. We doubt, however, that these difficulties will actually
In addition to the evolution scheme, we must specify suit-211S€; Since we have seen no sign of them in a toy problem

able initial data and boundary conditions. One can construdf'at retains the relevant features of the IBBH problem.
the initial data, just before the PN failure point, by using . Our toy problem is a rotating, radiating sphere of scalar
matched asymptotic expansions to join the post—Newtoniar‘fhargei in flat spacetime. We adopt spherical polar coordi-
exterior metric onto the metrics of two tidally distorted Kerr Natesx'={r,,¢} and a line element given by E¢l) with

black holes, and by then transforming to co-rotating coordi-Yij =diaq1,r2,.rzsin20] andB'=0. The sphere has radit
nates[10]. angular velocity()(t), moment of inertid and scalar charge

The method of Cauchy characteristic matchiegy., Ref. ~ densityp[r,6,¢—®(t)] whered(t)=f'dt’((t"). The sca-
[11]) seems a promising candidate for constructing boundariﬁr field ¥ p_roduced by this charge distribution satisfies the
data for the evolution ofy;; in the co-rotating frame. Such Wave equation
matching could conceivably be done around each of the
holes and at an outer boundary in the radiation Zdr#. It
may be possible to impose outgoing-wave boundary condi- g“BVaVﬁ\If:l
tions as a constraint on the spatial derivativesygfat the
outer boundary. The shift there =4, whered,, is the
generator of rotations in the orbital plane, and outgoingaAs the sphere rotates, scalar waves are radiated to infinity,

waves are constant alog+ B (aside from their ¥/ ampli-  decreasing its angular momentuhf) according to the
tude falloff), whereas spurious ingoing waves would be con-radiation-reaction equation

stant alongd, — B.
We also need boundary conditions for the differential O
equation used to compute the shift. Fortunately, these seem J; d3x\/; (pas¥). (15)

Ad7p if r<R
. (14
0 otherwise.

! ; > |—=4
easy to construct. Since the matching to characteristics ot m

would be done on the history of closed spatial 2-surfaces on

the outer boundary and around each black hole, the deriva-

tions of the equations for the lapse and shift can be repeatdg” & duadrupolar distribution of scalar charge, separation of

for these surfaces. For example, the minimal strain equa/2iables reduces the problem to solving @+1)-

tions, obtained by the variations of an action of the square@imensional hyperbolic system; we evolved the system in the
velocity of the metric on the 2-surfadéhe analogue of Eq. Inertial frame using standard finite-difference methods and

phere

(3)], are time steps constrained by the Courant condition.
' We have also evolved thist11 system in the co-rotating
k2P[ —2akapt2D,8,]=0, (138 frame {r,0,¢=p—d(t),t} with ®(t) inferred from the
radiation-reaction equatiofl5) and not from some variant
D3 —2akapt 2D(aBp) =0, (13  of our minimal-strain equations. In this co-rotating evolution,

we discarded thésmall second time derivatives oF and
wherek,,, is the extrinsic curvature of the 2-surface embed-applied an implicit differencing scheme to the resulting para-
ded in its history,D, is the spatial gradient compatible with bolic system. We succeeded in making the time steps as
the metric on the 2-surface, aiy] is the 3-dimensional shift large as the rotational timescale of the charged spimoeh
vector projected into the 2-surface. Since the boundary ifarger than the Courant condition would allpvend we be-
closed, these equations can be solved to obtain the lapdieve that the time steps could be made as large as the radia-
function and the tangential components of the shift vector ortion reaction timescalévhich is much larger than the rota-
the boundary. The normal component of the shift would betional timescalg since the limiting factor was the simple
set to zero, so the evolution will not attempt to follow wave outer boundary condition that we used. There were no nu-
crests as they leave the numerical grid. Among the variougerical instabilities. Moreover, no numerical problems were
solutions to Eqs(13), the one we want will be that which is encountered at the speed-of-light surface(Q)sind) ! [and
closest to the solution on the previous time slice. This boundwe expected none, since the transformation to co-rotating
ary solution, combined with our 3-dimensional differential coordinates does not change the fact that the wave equation
equations for the lapse and shift, presumably will producg14) is manifestly hyperbolit There was good agreement
the desiredr and B;, which evolve on the slow time scale between the results computed in the inertial and co-rotating
7, and co-rotate with the holes. frames. Further details will appear elsewh¢ie]. Addi-
tional evidence that evolution in rotating coordinates need
not cause problems comes from the work of Bisheial.
[14].

Two conceivably serious difficulties with our approach  Based on these results, it seems likely that an implemen-
are (i) in our co-rotating reference frame, the almost Killing tation of the methods presented here will allow a numerical
vector becomes spacelike beyond the speed-of-light surfaceyolution of a binary system through the IBBH phase. Since
which might cause problems for the evolution, diglwhen  a better understanding of this phase is important—and per-
the second time derivatives are discarded, the resulting evdwaps critical—for the LIGO and VIRGO detection of waves
lution might not represent the true evolution of the spacefrom binary black hole systems, and since such systems are
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