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Lorentz symmetry and the internal structure of the nucleon

Xiangdong Ji
Department of Physics, University of Maryland, College Park, Maryland 20742

~Received 3 October 1997; published 31 July 1998!

To investigate the internal structure of the nucleon, it is useful to introduce quantities that do not transform
properly under Lorentz symmetry, such as the four-momentum of the quarks in the nucleon, the amount of the
nucleon spin contributed by quark spin, etc. In this paper, we discuss to what extent these quantities provide
Lorentz-invariant descriptions of the nucleon structure.
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In field theory, one often encounters variousdensities
consisting of elementary fields, space-time coordinates,
their derivatives: baryon current, momentum density, ang
momentum density, etc. These densities are Lorentz cov
ant, i.e., under Lorentz tranformations, they transform pr
erly as four-vectors or four-tensors. In many cases, we
interested also in thechargesdefined from these densities
Considering a generic densityj ma•••, one can define a
charge according to

Qa•••5E d3x j0a•••. ~1!

Generally speaking,Qa••• no longer transforms properly un
der Lorentz transformations. The condition forQa••• to be
Lorentz covariant is well known@1#: The density j ma•••
must be conserved relative to the indexm,

]m j ma•••50. ~2!

Indeed in most of the applications, one considers char
from conserved densities.

Nevertheless, it is useful to consider charges defined f
nonconserved densities. For instance, in quantum chrom
namics~QCD!, the energy-momentum density consists of t
sum of quark and gluon contributions

Tmn5Tq
mn1Tg

mn . ~3!

The total density is conserved because of translational inv
ance ]mTmn50. Therefore, the total momentum operat
Pm,

Pm5E d3xT0m, ~4!

tranforms in a manner similar to a four vector under Lore
symmetry. Meanwhile, one can also introduce the notion
the four momenta carried separately by quarks and gluo

Pq,g
m ~m!5E d3xTq,g

0m , ~5!

where the nonconservation ofTq,g
0m calls for a renormalization

scale m. It is quite obvious thatPq,g
m does not transform

similar to four-vectors, and therefore the significance of su
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quantities appears doubtful. However, the exact transfor
tion property of the expectation values ofPq,g

m is simple to
derive.

The forward matrix element of the total energ
momentum density in a nucleon state is

^puTmnup&52pmpn. ~6!

Here the covariant normalization of the nucleon state is us
From the above equation, one can easily obtain the u
matrix element of the momentum operator. The matrix e
ments of the quark and gluon parts of the density involve t
Lorentz structures

^puTq,g
mn up&52Aq,g~m!pmpn12Bq,g~m!gmn, ~7!

whereAq,g andBq,g are scalar constants. In comparison w
Eq. ~6!, one has the following constraints:

Aq~m!1Ag~m!51,

Bq~m!1Bg~m!50. ~8!

Moreover, the quark and gluon contributions to the nucle
four momentum are

^puPq,g
m up&5Aq,g~m!pm1Bq,g~m!gm0/~2p0!. ~9!

The above equation defines transformation properties of
expectation values ofPq,g

m . The presence of the second ter
denies them a proper Lorentz transformation.

On the other hand, if one is interested in thethree mo-
mentumof the nucleon only, the second term in Eq.~9! drops
out and three components of the matrix elements transf
just like those of a four-vector. BecauseAq,g(m) are Lorentz
scalars, one concludes that the fractions of the nucleon t
momentum carried by quarks and gluons are invariant un
Lorentz tranformations. Such a statement, although dra
for non-Lorentz-covariant quantities, does carry importa
physical significance. Phenomenologically,Aq,g(m) have
been extracted from the parton distributions, which ha
simple interpretations only in the infinite momentum fram
According to the above discussion, the fractions of t
nucleon mometum carried by quarks and gluons are also
same in ordinary frames. In particular, if a nucleon has
momentum of 1 GeV/c, then according to the recent analys
© 1998 The American Physical Society03-1
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in Ref. @2#, roughly 420 MeV/c is carried by gluons in the
form of the Poynting vector*d3xEW 3BW in the MS scheme
and atm51.6 GeV.

A more intriguing example concerns the spin structure
the nucleon, which depends on the QCD angular momen
density. The total densityMmab is a mixed Lorentz tensor
expressible in terms of the energy-momentum densityTmn in
the Belinfante form@3#

Mmab5Tmbxa2Tmaxb. ~10!

The relevant chargesJab5*d3xM0ab are the usual Lorentz
generators~including the angular momentum operatorJW ),
which transform as the Lorentz tensor~1,0!1~0,1!.

According to Eq.~10!, the angular momentum density ha
both quark and gluon contributionsMmab5Mq

mab1Mg
mab

where

Mq,g
mab5Tq,g

mbxa2Tq,g
maxb. ~11!

Furthermore, the quark part contains the spin and orb
contributionsMq

mab5MqL
mab1MqS

mab where

MqS
mab5

i

4
c̄gm@ga,gb#c,

MqL
mab5c̄gm~xaiD b2xbiD a!c.

~12!

Accordingly, the QCD angular momentum operator can
written as a sum of three gauge-invariant contributions,

JW5E d3xc†
SW

2
c1E d3xc†xW3~2 iDW !c1E d3xEW 3BW

[Sq
W1Lq

W1Jg
W . ~13!

An individual term in the above expression does not tra
form as a part of~1,0!1~0,1! and does not satisfy the angul
momentum algebra by itself. Nonetheless, as we will arg
the decomposition is useful in studying the spin structure
the nucleon.

The angular momentum operator in Eq.~13! not only gen-
erates the spin of a composite particle, but also describes
orbital motion of its center of mass. To separate the tw
Pauli and Lubanski introduced a spin vectorWm @4#,

Wm52emabgJabPg /~2AP2!, ~14!

which reduces to the angular momentum operator only in
rest frame of the particle. The spin quantum numbers char-
acterizes the eigenvalues(s11) of the scalar Casimir
WmWm in a representation of Poincare algebra. The sep
tion of internal and external motions in a general Lore
frame comes with a price:Wm contains not only the angula
momentum operators but also the boost operators. Co
quently, the scalar character~or invariant notion! of the spin,

^puWmWmup&/^pup&5
1

2S 1

2
11D , ~15!
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is maintained in an elaborated way in different referen
frames. The above equation does not offer a convenient s
ing point to investigate the spin structure of the nucleon.

To specify the spin states of a nucleon, a polarizat
vectorsm is usually introduced@5#. In the rest frame of the
nucleon,sm specifies the direction of the spin quantizatio
axis; the convention in the literature is such thatsm repre-
sents a state with positive spin projection 1/2. Thus, in a
Lorentz frame,

^psuWmsmups&/^psups&5
1

2
. ~16!

The above equation is linear in angular momentum opera
and is suitable for studying the spin structure if the bo
operators are not present. This is the case for a special ch
of sm5(upW u/M ,p0p̂/M ), wherep̂5pW /upW u. Wmsm then is just
the well-known helicity operatorh5JW• p̂ and the above
equation reduces to

^p1uJ• p̂up1&/^p1up1&5
1

2
, ~17!

where1 denotes the positive helicity. Because of the spec
choice, Eq.~17! is invariant only under a special class
Lorentz transformations, i.e., the boosts along the mom
tum without reversing its direction and rotations around
momentum axis. While the conclusion is quite obvious, o
analysis shows that the study of the spin structure can at
be done in a restricted class of Lorentz frames.

In the remainder of the paper, we are going to show t
when the angular momentum operator is split into a sum
in Eq. ~13!, the individual contributions to the spin of th
nucleon are invariant under the special Lorentz transform
tions that preserve the helicity.

Without loss of generality, let us assume that the nucle
momentum is in the positivez direction. Then the helicity
operator is justJz5J125*d3xM012. Consider the matrix el-
ements of*d4xMmab in the nucleon state,

K pU E d4xMmabUpL 5Ū~p!F i

2
A~pm@ga,gb#

1gm@gbpa2gapb#!

1B~gmagb2gmbga!GU~p!

3~2p!4d4~0!1•••, ~18!

where the elipsis denotes terms with derivatives on thd
function which are related to the orbital motion. Takin
m50, a51, andb52, we have

^p1uJzup1&/^p1up1&5A. ~19!

Thus A must be 1/2. Now supposeMmab5( iM i
mab . The

Lorentz symmetry yields
3-2
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K pU E d4xMi
mabUpL 5Ū~p!F i

2
Ai~m!pm@ga,gb#

1Bi~m!gm~gbpa2gapb!

1Ci~m!~gmagb2gmbga!G
3U~p!~2p!4d4~0!1•••, ~20!

whereAi(m), Bi(m), andCi(m) are scalar constants. The
the consistency between Eqs.~18! and ~20! yields

(
i

Ai~m!5A5
1

2
. ~21!

Equation~20! allows us to calculate the contributions
the nucleon spin from different terms inJW5( iJW i ,

^p1uJi
zup1&/^p1up1&5Ai~m!, ~22!

whereJi
z5*d3xMi

012. The result isindependentof the mag-
nitude of the nucleon momentum. Futhermore, Eq.~21!
05600
yields a nucleon spin sum rule invariant under the spe
Lorentz transformations. Denoting the scalar matrix eleme
Ai of the angular momentum densities in Eqs.~11!,~12! as

AqS[
1
2 DS, AqL[Lq , andAg[Jg , Eq. ~21! becomes@6#

1

2
DS~m!1Lq~m!1Jg~m!5

1

2
. ~23!

As the nucleon momentum goes to infinity, the result can
interpreted according to light-front quantization, in which t
Lorentz generators are defined according to*d3xM1ab. As
such, the quark spin and orbital and gluon angular mom
tum contributions to the nucleon are the same in both o
nary and light-front coordinates.
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