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Longitudinal distribution of fast charged particles traversing through matter

Takao Nakatsuka
Okayama Shoka University, Okayama, Japan
(Received 19 June 1997; published 31 July 1998

The Yang equation describing the excess-path-length distribution under the multiple Coulomb scattering
process is improved to take into account the continuous energy loss by ionization. The equation gives the
simultaneous distribution of the direction of motion, lateral displacement, and longitudinal distribution of fast
charged particles traversing through matter. The equation is analytically solved completely in the image space
of Laplace transforms and the excess-path-length distributions corresponding to the most general conditions of
geometry are obtained by the inverse Laplace transforms, exactly in series expansion or asymptotically through
the saddle point method. The distributions after receiving ionization loss are indicated in figures and the effect
of including ionization loss is discussed. The means and the variances of the distribution are also tabulated.
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PACS numbeps): 11.80.La, 02.50.Ey, 29.40.Rg, 96.40.Pq

[. INTRODUCTION precedingly determined term, as Kamata and Nishimura ap-
plied in their cascade shower thedr/1,12 and we did in
Since Fermi wrote down the multiple Coulomb scatteringthe excess-path-length distribution in PP. Thus we can say
theory in the Fokker-Planck approximatipt] it has become that the multiple scattering theory under the Fermi formula-
very simple and plain to investigate fluctuation propertiestion is not a different theory from the Molie theory but
concerning the passage of charged particles traversingather they are equivalent in the way in which the latter can
through material. It gave a Gaussian distribution of Williamsbe constructed from the former.
type [2] for both the probability densities of the deflection  The very significance of the Yang equation is that it has
angle and the lateral displacement, respectively, and the noenabled us to simultaneously describe the longitudinal distri-
mal distribution for the simultaneous distribution of both el- bution of fast charged particles traversing through matter,
ements, so that the method has been called the Gaussiarst as the Fermi equation simultaneously described the lat-
approximation ever sincg3]. All the distributions are ob- eral distribution. The excess-path-length distribution of Yang
tained as exact analytical solutions through a fairly funda-gives the detour distribution of arrived particles observed at a
mental way of mathematics. Efforts to extend the applicabilfixed thickness. From the other point of view, the Yang
ity of the Fermi equation have been continued. The equatioequation gives the deficiency distribution of contracted thick-
taking into account energy loss by ionization was solved byness of traverse from the actual path length as formulated by
Eyges[4] by applying a simple alteration of the variable. The Scott[13]. The Yang and the Scott equations are mathemati-
improvement of the Fermi equation to simultaneously takecally equivalent to each other under the small angle and the
into account the excesses of the path length was proposed Bpkker-Planck approximations.
Yang[5] and was solved in the most general condition in our  According to the latter point of view, the existing analyti-
preceding pape(PP [6]. cal results describing the properties of charged particles
Although the Gaussian approximation is less accurate ipropagating in matter, e.g., the angular distribufiésg], the
describing the multiple scattering process than the Melie lateral distribution[1], the energy-loss distribution by colli-
method[7,8], the fact that we can get the simultaneous dis-sion [14—17, and the range and its fluctuation of charged
tribution [3,9] for the arbitrary combination among those el- particles[15,18—20, must be corrected in the longitudinal
ements is the most valuable feature of the Gaussian approxilirection of development since the visually observed path
mation. From the practical point of view, it was a defect oflength is reduced from the actual one measured along the
the Moliere theory that not much distributions other than thetrajectory itself as noted by Rosgi8] and otherd21-23.
single distributions for any linear combination of the deflec-Modern computer codes of Monte Carlo simulat[@d—26
tion angle and the lateral displacement had been obtaineate not relevant to this correction in principle as they trace
from the theory itself[3,10]. It should be noticed that particle passages as actual propagations. But some problems
Kamata and Nishimura proposed a method to build the Mofemain also in this method. The highly-accurate multiple
liere theory in the Fermi formulatiofil1,12, equivalent in  scattering theories used in the code describe only the angular
mathematicq6]. According to the Kamata-Nishimura for- distribution, so that the lateral displacement and the excess
mulation, the probability density under the Moketheory of path length are approximated in the code, together with
can be obtained as a power series if) Iih the space of their correlations. And the step size applied in the code can-
Fourier transforms, where the first term is the solution of anot be taken infinitesimal, so that too long a step size might
diffusion equation under the Fermi formulation and the fol-cause the difference between the step size and the actual path
lowing terms are obtained successively by solving the samiength. To determine the appropriate step size or to examine
equation with the known inhomogeneous term containing th¢he reliability of correlation among those passage elements
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[9], investigations using Fermi and Yang theory is inevitableinstead ofw=2pv/Eg of PP, as traditional works of, e.g.,
[27,28. Landau[30], Nishimura[12], and otherqd31], which is a

In PP, we showed the general solution of the Yang equagood approximation when the rest energy is small enough
tion and gave the simultaneous distribution among the direceompared td&E. We can also put zeros tg, Yo, andA,, due
tion of motion, the lateral displacement, and the excess ofo the translational invariance of those variables without loss
path length for charged particles in the most general condief generality, as PP.
tions of geometry, assuming the energy of charged particles Under our assumption of ionization, the energies of
constant. In actual propagations, charged particles lose thetharged particles are determined by traversed thickness as
energy by ionizations and radiatioi$], so that particles
with the decreasing energy receive more effects from the E=Ey—et, 3
multiple scattering process. For the particles of moderately
relativistic energy 9] and even those of higher energy before so that, if we take into account this dependencg ont, the
occasional radiations of high-energy photons, the ionizatiomast term on the left-hand side of Ed) vanishes. The maxi-
loss plays dominant roles for the energy dissipation of thenum thicknessR the particles traverse in this process is
particles. So we will improve the Yang equation by takingcalled the range in the ionization procd4s18]. We intro-
into account continuous energy loss by the ionization and gejuce a tentative constaktin place of 1R:
the distributions in the same geometrical conditions as PP.
This improvement will make the existing analytical results R=Eqy/e and k=1/R. 4
describing the propagation of charged particles more reliable

by correcting the predictions in the longitudinal direction andThenkt means the fraction of traversed thicknes®tahich
making the excess distribution of path length more applijs identical with the fraction of dissipated energyHg, and
cable in tracing charged particles in simulatid@8] or de-  gives the supplementary relation with the fractional energy
signing and analyzing experiments concerning charged PaE/E,:
ticles[9].

kt=t/R=1-E/E,. (5)

IIl. THE YANG EQUATION WITH IONIZATION Applying the Fourier and Laplace transforms withand

Charged particles traversing through materials undergé. respectively, we get
the multiple Coulomb scattering, so that they change their

directions of motiord and lateral displacemerlfsas well as F— 1
excesses of path length. Starting from the Yang equation, A7

we obtained in PP the correlated probability densities among

these components of charged particles, having passeghen, the diffusion equatiofl) becomes
to with 50, FO, andA, and having reachetlwith 6, r, and

fdxe“f eY7y(t, 8, 7,\,00)d7. (6)

Ar F(t,60,,Y,Ay,t0,6y0,Y0,Ay0)d6,dydA, for projected ap 1 2y e
components to thet-y plane, andA(t,6,r,A,to,60.r0, il mWﬂM = 05(1)8(6— by),
Ag)dédrdA for spatial components. This time we will get 0 @
probability densities of the same conditions taking into ac-
count energy loss by ionization. wherew, is w of the incident particle. Introducing new vari-
We improve the Yang equation as follows: ables
gF  9F 1 @F 1 _oF oF o M K Wy VIZKt g 7 ®
g — = s © T w16 ATove N

—+
at vy w2 a2 2 A TOE

= 0(t—t9) S(E—E) 6(6— o) 5(y—Yo) (A —Ag), the homogeneous equation @) becomes

@ 1—kt a+n2 a2+ k o L)
. o' |t 2\ v i? 2w’ q‘?q ZWSw'zq ¥
wheret, r, andA are all measured in radiation lengtf. 9
The last term on the left-hand side is added to include the

effect that the charged particles with the initial eneigy  thus it can be solved by separating variables:
dissipate their energy in constant rate,in unit radiation

length[1,12], in the small angle approximatidr8]. In the ¢:f(t)g(q)e_(1/8)kq2/w/_ (10)
third term, we approximates by

The solution satisfying inhomogeneous term of Eg). is
w=2E/E;g, (2)  obtained by the linear combination of orthogonal functions:
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P=Wovo (1—k)K @ 14 exf — L 52t/\ — 2w2k(1—Kt) (041 /) 2+ Bw2K( 0o+ 7/N)?]

X 3, (1=k0?M T oo (Go i /N (W NI=KH(0+i 7)), (19

where ¢,(x) is the same function as defined in PP:

Po(X) = (Y2"nl) " 12H (x)e *72, (12)

Sum of the serie€l1) can be derived by using the generalized generating function indicated {2.Bgof PP. Introducing
the new variable$32]

t'=—k tIn(1—kt), or r=3kt'=3 In(E,x/E), (13
and
Js'=2t'w’, (14)

we get

[2—2 coshr cosh/s’ + (728’ +1) 7 sinh 7 sinhys’/ /s’ ]

woke 72 p( wike " [ 7
= exp — -
v [877 sinhy/s'/ /s |12 87 sinhys'/\s' | A2

i
* 2%[(C°Sw?+ 7 sinhys'/\/s" —e")e” 76+ (cosh/s’ — 7 sinhy/s'/\/s' — e~ ")e"6,]

+[(cosh/s’ + 7 sinhys'/\/s')e” 7622606, + (cosh/s' — 7 siths—'/Js—')eTag]} ) . (15)

Applying inverse Fourier transforms tp, we get
w3k?(772s’ —1)d6dy
167[2—2 coshr cosh/s’ + (77 2s'+ 1) sinh 7 sinhys’//s']*2

wok*(772s" —1)2
256 2—2 coshr cosh(s’ + (7725’ + 1) 7 sinh 7 sinhy/s'/+/s’ ]

édody=

32(sinh 7 cosh/s' — 7 cosh 7 sinhy/s’/\/s")e ™27

wok3(r %" — 1)

X (6°—200,+ 03€>7)

32(cosh/s’ + 7 sinhy/s’/\/s' —eNe " 2 32(cosh/s’' — 7 sinhy/s'/\/s' —e ")e”
- ECY 0l y— —6pe” " sinht|— YR 0oy
wak?(77%s'— 1) k wak?(77%s'— 1)
8(7 sinhys'/\s’)e”
 BrsinSTher | | 19
wok
|
Mean square spatial angle and displacemé#it),, and 16
(r¥,, for normally-incident particles after traversing (r¥) = > 3e‘ZT(coshr sinh7—17). (19
through thickness of in our process can be obtained by a wok

method in Appendix A: ) ) . i .
If we introduce nondimensional variables for deflection

angle and lateral displacement,

8
6%, =——e" sinh , 1 ..
< >av Wék T ( 7) d): 0/<02>;</2 , (19)
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TABLE I. List of D’s and relating functions.

Functions
D (C+27C)e "
D, 27 ,
sinhr
D 272 Csinh7—27C’ coshr
coshrsinh7—r § — 2
Dgen 474 1-Ccoshr+(s' +AC’ sinhdr
(coshrsinh7—7)e""sinh 7 (s —7)?
Dx 2|27 (C+27C")e "~
J(coshrsinh7—7e "sinh 7 s —7
Dy 2\27 (C—21C")e"—1
J(coshrsinhT—7e " sinh~ s —7
c cosh/s”
c’ 1 sinhys’/ys”
5: F/<r2>;(,2 , (20) where the path of integration is taken parallel to the imagi-

nary axis in the half plane of convergencetotikewise, the

together with those relative to the axis of the incident track @Xcess distribution for the spatial components can be ob-
tained by using the folding property of the Laplace trans-

(Z,:(é_ éo)/<02>;<,2=<;5—(z0, (22) forms:
267 sink® |12 A(t,6,r,A,6)dédrdA
o =(r—0 a2 [ &SN T T
P =(r 00t)/<|’ >av P (COShTSinhT—T o, déd-}dA
22 _aedrda -\,
( - 27T| fe g(taey;y,)\,eyo)

then Xg(taeznzr)\1020)d)\

- zu,dq*sdﬁdu'f
e ™Y —

do.d _d¢ydpy 1 2 2 s’ 7~ 7
¢doydy= #DL2 ex _@[DIII((ﬁy_ bydyo e'* Eged ¢.p.S" o) dS’

gen 27i
2 o , 2 EB((Z,E,U’,(zo)d(zdﬁdU,, (26)
+ ¢y0e°") —Dxdypy—Dydyopy+Dupyl |, . _ . . .
where we introduced a nondimensional variable proportional
to A,
(23)
whereD’s and their relating functions are given in Table I. A u'=3W5A/t'2, (27)
relation
and rewrote the image function of the Laplace transforms in
Dx2=4 (DyDyy— D Dgen (24) the nondimensional variables:
. . . — e d(zd,; l 2 - >
satisfies among the coefficients. Bgeflpdp= — exp — D—[D|||(d> —2¢¢g
The excess distribution of the path length for the pro- 7T Dgen gen
jected components is derived by the inverse Laplace trans-
forms toh: 2 25 4>, - o )
+ ¢$5e”) —Dx¢p' =Dy op+Dyp<] ;.
F(t,0,,y,A,0,0)d6,dydA
(28)
Ao+
= MJ 0 MMt By .Y.\, Oy0)dN, (25) The coefficientd’s depend only ors’ and 7 as indicated
2mi No—o in Table 1[33], so we find the excess distribution of the path

056002-4



LONGITUDINAL DISTRIBUTION OF FAST CHARGH . ..

PHYSICAL REVIEW D 58 056002

TABLE Il. E’s and their abscissas of convergence. The equations to dafivew , and uge, are

indicated in Sec. Il of the text.

Laplace transform of the distribution

Abscissa of convergence

- _ 1
R de D,
Euvd =— —— 2
nivde D, XF{ D, ¢ }
- dp D,
Eunyvdp __7TD||| XF{D_”I }

.. _ dédp 1 .
Sgefl$dp T eX[{—D—{D”,(¢2—2¢¢0+¢3327)

gen gen

—Dy¢p' —Dyop+Dyp?}

—uf

_ 2
M

_ 2
Mgen

length represented im’ is the function of onlyr or the
fraction of residual energi/E,, not depending oftg, E, t,
or € explicitly, if we measure the deflection angle and the
lateral displacement by those root mean square values as
defined in Eqgs.(19)—(22). It can be easily confirmed that
limiting the value ongen as 7—0 gives the solution of the
Yang equation without ionization in the image space of the
Laplace transforms, obtained in PP.

The Laplace transforms of the excess-path-length distri-
bution for the respective geometrical conditions, indicated in
Table | of PP, are obtained by integrating the image function

for case gen e, 0over ¢ and/orp with 6,=0: that with 8
andr integrated(case J, that withr integrated and fixed
(case IV or fixed to O(case 1), and that withd integrated

andr fixed (case V or fixed to O(case Il). TheseE's are
listed in Table Il together with their abscissas of conver-
gence, whereu;, wy, and uge, are the smallest positive
solutions to satisfy

iy cot u,+7=0, (29)
M cot wy — 7 coth 7=0, (30
and
2—2 cosht coS pgen
— (7 1,u,gen— Mgen 17)sinh 7 sin Mgen=0, (3D

respectively.

Ill. CALCULATION OF THE EXCESS-PATH-LENGTH
DISTRIBUTION

We will show the joint distributions of the excess path By taking

length under the respective geometrical conditions by apply1%,
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By(u")=

ing inverse Laplace transforms 's.

A. Case |
E.z(cosh\/§+rsinh\/s—’/\/§)*le7
B 2eT\/s—’
(Ve (e

2e” 2e’
_ 2 melo 2
\/§+T (\/;-1- 7')2
X(s'— s )e 3V ... (32)

Thus using the formulas indicated in Appendix C we have

2 (—7+ 1 )effzu’l/mu’)

wu’ 2u’
+ 272627 erfg ! +mu’
2\u’
LA /2+ 3 3 )
Tr/u’\ 272u’  47°%'?

><e7‘72”"9’(4“')—273(47u’ 1ot et
T

T (33

3
Xerfe| —=+ ryu’
(zw !

the asymptotic approximations, good to within
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2 1

1
— |7 T U 1 92627 erfc +7-\/T) for u’'<0.3,
) wu’ 2u’ 2Ju’
B(u")= 0,2 s (34)
SN e (2 for u'=0.3,
/.L|_COS,(L| Sin M

whereu, is defined in Eq(29).

B. Case Il
R d¢ sinh7/r  2sinhrdé o ~
B Js'e Vs 4+ (s’ 3V .. (35)
ndé= smh\/_/\/_ ar L |
Thus using the formulas indicated in Appendix C we have
. sinhrdg 1 , 9 ,
By(u)dgp=——=e "V || ——1|e V)| — 1| M. .| 36)
T 20 ) 2w (
By taking the asymptotic approximations, good to within 1%,
71 .
. —T sinf 7-<i—1)e U g g for u'<0.4,
B||(U,)d¢: VU 2u’ (37)
27 L sinhre~ (P g g for u'=0.4.
C. Case lll
- dp (coshrsinhr—7)(773s' —1)
ST 2 sinh 7 cosh/s' — 7 cosh sinhy/s'/\/s”
: e ' ' 2 ' 2
_ (coshr smh T— T)dpJ s’ — 72 e T s'—7 . 27(s'—7%)coth 7 \/?e*3JS—'+ s
77 sinh 7 l\/s—'—TCOthT \/E—TCOthT (\/?—7'C0th7')2
(38)
Thus using the formulas indicated in Appendix C we have
- coshrsinhr—7 _,, - 73 coshr 7(coshrsinh7—7) 7coth7—3 1|
By(u)dp= ———=—=e"" . - : —+ e~ l4u")
72 sinh 7/m3u’ sink® 7 2u’ sink? 4u’ 8u’3

7 cosif 7 2y

1 47° cosi r 77° coth® 7—37° coth 7
g™y’ cotff 77 coth - erfc( —— —ryu’coth 7') - +

sintt 7 2\u’ sintP 7 u’
157'2 cot? 7—37 coth 7— 372 277 coth7—9 . 27 olau’) 475" cost + 67° cosit 7
u'e - -
2u'? 4u’3 8u’* sintf 7 sint? 7
4 4 2y’ cott? r— 37 coth 3
+97* cotlt 7—57* cotl? r|e” 737 o7 arfg et (39
2Ju’

By taking the asymptotic approximations, good to within 1%,
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y
—1/(4u’)

e

72 coshr 7(coshr sinh7—7) 7 coth7—3 . 1
sink® 7 2u’ sint? 7 4u'? 8u’?

4 .
. Pcostr ,, 1 coshrsinhT—7 L, .
By (u)dp= ¢ —e™! °°‘¥T‘T°°‘h7erfc(——r\/u’cothr - e "U{dp for u’'=0.15,
n(u’)dp sintf* 7 2\Ju’ 72 sinh 7 m3u’ P
— (724 u?))(coshr sinh 7— 7) u2, sin -
S g 7 T SN p e (Pruipu dp for u’=0.15,

\ (o — COS yy SN uyy) 7 sinh 7
(40)

whereu,, is defined in Eq(30).

D. Cases IV, V, and gen

Image functions have essential singularities in cases of IV, V, and gen, as PP. In those cases we can obtain the distributions
asymptotically with the saddle point method:

’
2

' r_ 7ru’d_u u's’ =rar ’
B(u')du' =e e E(s')ds

2
=[2m(d?/35'?)In E(s')] Y2 E(s')e ("W du, (42)
where
u'=—(dlas")In E(s). (42)

The saddle poin? is taken on the real axis at the right-hand side of the abscissa of convergence indicated in Table II.

E. Moments and statistical values

Zeroth moment, that is, integration of the distribution with respect to the excess of the path length can be obtained by
limiting the value of¢ ass’ — 72:

lim £d6.d 1|2(cosh7 sinh7—7)e" " sinht 1/2d¢ d
im =—
o 2 vey ™ sinkt 7— 72 y=Py
2(cosh7 sinh7—7)e™ 7" sinh 2(r—e " sinh )¢ p!
% expl — ( T | T—17) T 2 ( - ¢>yl?y o 43
sint? 7— 72 [2(coshr sinh 7— 7)e 7 sinh 7]*2

This solution gives the Fermi distribution of the multiple Coulomb scattering indicating the joint distribution of deflection
angle and lateral displacement with a finite incident angjjg taking into account the ionization loss. The solution with
yo=0, which change@{, andp)’, to ¢, andp,, gives Eyges’ solution regarding Hig(t) 95 oui Eq(2). This fact means that
the Fermi solution with a finite incident angle can be obtained by simple replacemeatsir, in the solution for normal
incidence with6— 6, andr — .

Equation(43) gives the covariant value betweér andp’, which is identical with the correlation coefficient between the
projected componentﬁ,{, andy’:

<6)//y,>av _ T—e "sinhrt
(0,2)22(y'> & [2(cosht sinh7—7)e” " sinh 742

<9z,5/>av: (44)

This value was a constany3/2, irrespective of traversed thickness in the case of no ionization g8k but this time it

decreases gradually froni3/2 with loss of energy and rapidly falls to O just before they dissipate their whole energies,
reflecting the decrease of correlation between them.

From the limiting values as’ — 72 of the first and the second logarithmic derivativesS(k’)’s, we get the means and the
variances of the excess-path-length distribution for the respective cases:
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TABLE lll. Mean values of excess-path length distribution.

Case (U )ay

1
| —{-e "sinh7+7
> i

—sinh 7+ rcosh e
I,V rtrcoshr &

+ Icoshrsinh7—17
27sinhr 272sinhr )

—3 coshrsinh 7+ (3 cosi r—sini? 7)
47%(coshrsinh7— 1)

ln,v

Ze*T
N p
472(coshrsinhr—1)

{coshr sinh 7(3 coshr+sinh 7)— 3 coshr—sinh 7)—27%7}

—2 sint? 7+ 7 coshr sinh 7+ 72
272(sintf 7— 7%

N (¢?*—2hdo+ P2e?)e sinh 7
27(sint? 7— 7#)?

x{coshrsini? r— 37 sint? 7+37? coshr sinh 7— 7*(costt r+sint? 7)}

gen

- ép'J(coshrsinh7— e " sinhr
\/ETZ(SiI'ﬂ"F —7?)?

x{—€ " sink® 7+37sint? 7—7* sinh 73 coshr—2 sinh7)+ e #"— 7%

dop\(coshrsinh7— e " sinh 7
V273(sinkt 7— )2
x{e” sint? 7— 37 sint? 7+ 72 sinh 7(3 coshr+2 sinh7)— 7¢— 4

p%e "(coshrsinh7—7)

2(sint? 7— 72)?

{sink® 7—7° cosh7}

(U o=— lim (9/3s")In E(s"), (45) Thus the distribution becomes

S'~>7'2

and A(A)dA=B(u)du
(U2 (2= lim (%3s'2)in E(s'). (46) =(7 e 7 sinh 7)2B((7 e~ 7 sinh 7)%u)du.
s'—7? (48

Results are shown in Tables Il and IV.
It can be easily understood that the probability density

IV. THE EXCESS DISTRIBUTION OF THE PATH B(u)’s for the respective cases also are the functions of only
LENGTH AND THE EFFECTS OF TAKING 7, or E/E,, if we describe the deflection angle and lateral
INTO ACCOUNT IONIZATION LOSS displacement in units of their root mean square values, as
B(u')’s are.

We discuss the excess distribution of the path length for The probability densitiesB,(u)’s, for charged particles
the respective geometrical conditions. In order to discuss thgaving traversed the fractional thickneg& of 0.25, 0.50,
effect of ionization loss and compare results with those with-and 0.75 in the material and having dissipated the same frac-
out ionization obtained in PP, it may be better to represenfion of energy toE, are shown in Fig. 134]. The result

the excess path length hydefined in PP: without ionization obtained in PP is also showntd=0.
e The more the fraction of traversed thickndsR increases,
u=3zWoA/t=. (47) the more the distributions move to the larger ward of excess
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TABLE IV. Variances of excess-path length distribution.

Case (U2 —(u"s,

—

e
p{fe”sinh 7(3 coshr+2 sinh7)+ (3 coshr—sinh 7)}
;

I,V

—2sintf r+rcoshrsinhr+72  ¢% " ) ,
- —{coshrsint? r+7sinh 7—27% cosh7}
47 sink? 7 47* sintf 7

1
/
48*(coshrsinh7—7)2'

v —33 cosR 7sintf 7+67coshrsinh {11 cosk 79 sint? 7)

—37%¢7 (11 coshr—3 sinh7)+167° coshrsinh 7—47%

2

2 P 5{3 cosft 7sint? 7—67 coshrsinh 7
247%(coshrsinh7—17)

+372(coslt 7+3 sint? 7)—87° coshr sinh 7—47+%}

1
gen ——— 21 sin#f 7+6rcoshrsint? r+4272 sinl? 7
2474(sint? 7—72)?

— 1873 coshrsinh 7— 7*(9cosk r—16 sintf 7)— %}

(P2 —2ddy+ Pp2e?e sinh 7
n ¢~ 2¢ _¢° {3 coshrsint? 7—3rsint' 7— 1872 coshrsint? 7
1274(sint? —72)3

+27 sintf (21 cosR 7—11 sintf 7)—#* coshrsinh 733 cosR 26 sintt 7)

+37°(3 cosi 7+2 sint? 7)—57° coshrsinh 7+ 7'}

$p’\/(coshr sinh 7—1)e” " sinh
_ de'(coshr 77 T3 7sintP 7+ 37sinif
6\274(sintt 7— )3

+672 sint? #3 coshr—2 sinh7)—27 sint? {21 cosk r—9coshrsinh7—11 sinlf 7)

+ 7% "sinh (33 cosB 7+18 coshrsinh7—8 sint? 7)

—37°(3 cosht 7—2 coshrsinh 7+2 sink? 7)+575% " sinh7— 7}

bopr/(coshrsinh7— e " sinh
_ dor 4T 7 ? 3 T{3e7 sint? 7—37sintf 7
6\274(sint? 7— A
—67 sink® #(3 coshr+2 sinh7)+27 sint? 7(21 cosRk 7+9coshrsinh 7—11 sinif 7)

—7*¢" sinh {33 cosk 7—18 coshrsinh 7—8 sinit 7)

+37°(3 cosi 7+2 coshrsinh 7+2 sint? 7)—57%" sinh -+ 7}

p’e "(coshrsinh7— 7,
12A4(sink 7— 23

3 sink? 7—1272 sink? 7+187° coshrsint? 7

—7*sinh7(15 cosRk 7—8 sintf 7)+67° coshr—57° sinh 7}

path length increasing their widths, even at the same traionization loss {/R=0), derived in PP.

versed thickness depending on the difference of materials  The results obtained exactly by the series expansion and

throughe. asymptotically by the saddle point method are compared in
The probability densities for case Il, 1V, case lll, V, and Fig. 2 and Fig. 3 for case Il and case lll, respectively: the

case gen are indicated in Figs. 2—4, respectively, corresponéxact ones in the solid line and the asymptotic ones in the

ing to their fractional thicknessasR of 0.25 and 0.50. They dotted line. The asymptotic approximation by the saddle

can be compared with the results not taking into accounpoint method shows good accuracy in these cases.
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FIG. 1. Excess distributions of path length in case | at various 0 0.4 0.8
fractional thicknesses$/R, without the ionization losst(R=0). EXCESS OF PATH LENGTH-(u)
Abscissa meanA/(ZtZIWS) or the excess-path length measured in
units of twice of(A),, predicted without the ionization loss. FIG. 3. Excess distributions of path length in cases Ill and V at

the fractional thicknesses ¢d) 0.25 and(b) 0.50. The parameter
In case V and gen, the distributions have the startinghows the lateral displacement measured in its root mean square
p0|ntSUG’S dependlng on the |atera| d|sp|acem$nt value. The distribution in case lll obtained by the saddle pOint
method is indicated together in the dotted line.
ug=(t'/t)? lim u’ = %(coshr sinh 7— 7)p2e” sinh 3 7.
s’ (49) =2t¥%(\/3wy). In the region of small lateral displacement
(r/rms<1), where the existence probability of the particle is

They agree with the geometrical difference between théaxtremely high, the pure multiple scaitering coniributes

chord length13] and the thickness of the materiaf/(2t), much dominantly to the Eexcess of the path length. The frac-
under the small angle approximation, same as PP. Mean efon decreas_es gradually with lncreaserbfr,_ns, and reaches
cess(u'),, of case V, shown in Table Ill, includes this geo- 1© SOme finite value as/r s, depending on the frac-
metrical excess in the value. Figure 5 shows the fraction ofional thicknesst/R. The limiting value, having takeg in
pure scattering excess or the excess excluding the geometr#2S€ without ionization loss, increases gradually with the
cal one to the total,((y)ay— Ug)/(Uy)ay, against the lateral fractional thickness and reachesitwiith dissipation of their

displacement measured in its root mean square value pre-

dicted without ionization loss, r/r with r y r —
rms ms [ T (A) /R 025
1.5 T T T T T T T CO6 ]
¢ = (a) t/R=025 s
& I
0.2 >0.4 N
2 1r 1 S
= [ 0.4 Z |
2 Woo ]
E >
9 0.5 08 . E I
gt 3
% r 0.8 g C
> | 7o $0.4
|: 1 ] : O
3 © . = A
5% (b) t/R=0.50 A I/\\ ]
m 02 /_~\ A
Q [ A II \ p=15
& 0.5¢ I RN
0 0.5 1 1.5
3 0 EXCESS OF PATH LENGTH (u)
" 1 " 1 "
0 04 0.8 FIG. 4. Excess distributions of path length in case gen at the

EXCESS OF PATHLENGTH (u) fractional thicknesses ofa) 0.25 and(b) 0.50. In the figure, the

FIG. 2. Excess distributions of path length in cases Il and IV atincident angle is fixed to O¢,=0), and the absolute value of the
the fractional thicknesses ¢) 0.25 and(b) 0.50. The parametes nondimensional deflection angle is fixed to#<€ 1) and that of the
shows the deflection angle measured in its root mean square valugondimensional lateral displacement is distinguished by the param-
The distribution in case Il obtained by the saddle point method iseter p, where the angles betweeh and p are 0(solid line),
indicated together in the dotted line. (dashed ling and%ar (dot-dashed ling

056002-10



LONGITUDINAL DISTRIBUTION OF FAST CHARGHB . .. PHYSICAL REVIEW D 58 056002

[4)] 1 ~ T T T T T 10 T T T T T T -

9] NN = ]

L 3 W\ (a 7

O e N ®) £

> AR 1]

Ll W\ \ |_ :_

9] AN Q !

= “\\ N < ,',‘

E:.l | s \\ ~ (18 !

[ ‘\‘ N \~\ = KK

:: 0.5r x\\\\ [N ~.075 i C—) Il'/ p

(/O) N . \\\ e~ = ":/ /

w el =050 O K /

© e 925 ] L 2]

z - o Ry

O t/R=0 m ¢'¢/ -

E (@) R //

Q L

< (@] o

o L I R i . =

L 0 1 2 1 i R R N
LATERAL DISPLACEMENT (r/r,,c} 0 0.5 1

FRACTIONAL THICKNESS
FIG. 5. Fraction of the pure multiple scattering excess, exclud-
ing the geometrical excess, at various fractional thicknesses. Ab- FIG. 6. Correction factors by taking into account ionization loss,
scissa means lateral displacement measured in its root mean squé®ethe mean squares of deflection andelid line) and lateral dis-
value predicted without ionization loss. placementdashed ling and to the mean excegdot line) and the
square root of variancelot-dashed lineof path length.
whole energies. This fact shows that the excess of the path

length due to the pure multiple Coulomb scattering becomes The influence of the fluctuation of the excess path length
more and more important than the geometrical excess whemn the energy-loss distribution of charged particles, dis-
we take into account the ionization loss in propagation ofcussed in PP, increases still more with increase of the frac-
charged patrticles. tional thickness due to increase of the correction factor indi-
Table V shows the mean square deflection angle, lateralated above, when we take into account the ionization loss.
displacement, and the mean and the variance of the excess At the limit for charged particles to reach to the maximum
path length averaged over all normally-incident particlesthicknessR, (6%),, diverges, andr?),, reaches to the finite
(case ), before taking into account the ionization loss andvalue, 3 times that of the predicted result without the ioniza-
after, together with the correction factors defined by the ration loss.(A),, diverges logarithmically on the other hand.
tios of the latter to the former. Without the ionization loss, The divergence of mean excess path lengths with dissipation
(0%, (r®)a, and(A),, increased linearly, cubically, and of their whole energies leads to a contradiction and shows
guadratically witht. On the other hand, after receiving the the limit of applicability of our present theory, because the
ionization loss, they are corrected additively by factors decharged particles have to dissipate infinite energies propor-
pending only on fractional thickne$&R or fraction of dissi-  tional to their path lengths. The divergence does not come
pated energy Eq—E)/E,, not explicitly depending on tra- from our approximation, w=2E/E; instead of w
versed thickness nor difference of materials through as  =2pv/Eg, nor from the Gaussian approximation neglecting
shown in Fig. 6. the higher moments of the single scattering formaf,6]. It

TABLE V. Comparison of mean values and a variamce=(A2),,— (A)2, before taking into account ionization loss and after.

=0 with ionization correction factor
4
<'92>av —2t ﬂ& E
WO Wg E E
4E3 E E E 3 E E E
(P 4, —E';_{E(’_+2|n_] _3_[5_0_+2|n_]
3w2 wielEo B Eo Eo (1-EE)PEE Eo Eo
() L —_ZEg{l —y E] —— {1 = E]
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FIG. 7. Mean fractional thicknesses of path length,,/R for FIG. 8. Mean excesses of path length for various incident ener-
various incident energies evaluated more accurately than the smajles evaluated more accurately than the small angle approximation
angle approximation for assumed particles traversing with the mearsolid lines, together with the mean excess evaluated with the small
square deflection anglsolid line), together with those under the angle approximatiotidot ling). Abscissa means/R for the former
small angle approximatiofdot ling). Abscissa means/R. and t/R for the latter, both indicating the fraction of dissipated

. . . . energy.
comes strictly from violations to the small angle approxima-

tion [3]. To solve this problem, we have to improve the
multiple scattering theory more accurately than the smal
angle approximation.

Introducing the variables for the actual path length as
done by Scotf13] and measuring the path length along the
trajectory itself as noted by Roggi8], we tried a more ac-
curate evaluation of mean values than that through the small
angle approximation: for mean thickneét,, of traverse
and mean excesa\),, of the path length averaged over the
all normally-incident particlegcase )} in Appendix B, ne-
glecting the fluctuation o#?. The mean thicknesses defined
by the projections of the actual path length onto the initial

Pther approximation, (%62~ in place of co9 by the
small angle approximation, gives no more divergence to the
average ofA, as shown in Appendix B. But we can confirm
that the accuracy of the result is not improved by the new
approximation.

V. CONCLUSION

The diffusion equation of Yang to describe the longitudi-
nal distribution of fast charged particles under the multiple
Coulomb scattering process has been improved to take into
s o : A account continuous energy loss by ionization and the equa-
dlrectlon. of the incident particle are sr;own in Fig. 7 for tion has been completely solved in the image space of
several incident-energy parametess/Es, together with | o5j4ce transforms under the most generalized conditions of
those und_er t_h(_a small angle approximation. The_y might b%eometry(in Tables | and II. Applying the inverse Laplace
observed in visible detectors as the contracted thicknesses ﬂﬁnsforms, we have obtained the excess distributions of the
traverse due to the multiple Coulomb scattering. The MeaPath length exactly in series expansi@ases -1} and as-
excesses defined by the differences between the actual pa}thtoticalIy in the saddle point methadases IV, V, and
length and the mean thickness are indicated in Fig. 8 fc;%er). The distributions corresponding to the respective geo-
those parameters, together with the result predicted throughetrical conditions are shown in Figs. 1-4, together with
the small angle approximation which does not depend ORneir means and variances in Tables Ill and IV.

Eoe/EZ. The comparison indicates that the mean excess de- Contributions to the mean excess of the path length are
rived from the small angle approximation;-% 6° instead of  compared between the two exclusive factors, the pure
cosd, has high accuracy when the incident eneffly is  multiple-scattering excess and the geometrical excess. We
larger thanEZ/e or the traversed thickness is smaller have confirmed in Fig. 5 that the contribution from the

enough than the rangr. former is dominant at the smaller distance from the incident

s, t, andA defined above are identical with x, andu in  axis where the charged particles traverse in extremely high
Scott formulation[13]. But it should be noticed that under probability, and the fraction increases much with dissipation
our assumption of ionization loss proportionaldpthe av-  of their energies.
erage of Scott's deficiency of the path length defined by The correction factors by taking into account the ioniza-
(U)ay=5—{X)4 also diverges at the limit of dissipation of tion loss to those obtained in PP are evaluated for mean
their whole energies due to the small angle approximationsquare deflection angles, lateral displacements, and mean and
so that the average of traversed thickn€ss,,, diverges variance of the excess path length averaged over all the
instead toward backward direction. normally-incident particle¢Table V and Fig. & The restric-

These divergences are caused by the infinite increase tibns for the present result due to the small angle approxima-
approximated term, 4 362 in place of oscillating co$, at  tion are also discusseFigs. 7 and &
large angles of?>2. The divergence is so weak that an-  Although there exist limits of applicability caused by the
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Gaussian approximation and the small angle approximation, ¢ o1 tt—t’
the present investigations for the process of multiple Cou- <Ay>a\,:f dt’f > dt’=f Y dt’. (A8)
lomb scattering will be very useful in predicting stochastic 0 o w(t') ow=(t")

properties of fast charged particles traversing through mate- h ¢ N f =
rials if we take much care about the effects of single and" the case of our approximatid@) of w=2E/Es, we get

plural scatterings discu_sse(_j in I_DP and th_e re_strictions from E§ Eq
the small angle approximation discussed in this paper. <0§>a":2Eos (E_l>’ (A9)
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APPENDIX A: MEAN VALUES OF DISTRIBUTION APPENDIX B: MORE ACCURATE DERIVATION OF
IN'MULTIPLE SCATTERING PROCESS MEAN THICKNESSES AND EXCESSES OF THE PATH

We can obtain mean square deflection angle and lateraFENGTH THAN THE SMALL ANGLE APPROXIMATION
displacement as well as mean excess of the path length av- \yje make a more accurate evaluation of averaged thick-

eraged over all the normally-incident particlesse ) by  hegs and the excess of the path length than the small angle

directly integrating our basic equatidf). We can remove  ,noroximation. We assume ionization loss to be proportional
the last term on the left hand side of HA) by taking into {5 the actual path lengt

account the dependence Bfon t. Multiplying 62, 8y, and

y2 on both sides of the equation, respectively, and integrating dE=—¢ds. (B1)

overd, y, andA, we get differential equations for the respec-

tive mean values for projected component to theplane: Under the Fokker-Planck approximation and our approxima-
tion (2) of w=2E/E,,

Yy — (A1) 2
T )= E
deT wi (%) 0= 50 B2)
d 2
a( eyy>av: ( 0y>av: (A2) then
d E =1 > (B3)
a<y2>av: 2( ayy>av- (A3) Eo R’
E2 s s
2y S = -
(62) = Jt 2 dt’ (A4) The mean thicknes&),, and the mean excega),, of the
A Jow2(ty path length can be derived from
! d<t>aV: <COS 0>avd S, (BS)
(6,y) —ftdt’ft’ 2 dt’—zftt_t dt’, (A5)
W o5 Jo wat) owA(t) d(A)a= (1~ (C08 6)4)ds. (B6)

t N v 4 t(t—t")2 If we neglect the fluctuation of?, (cos#),, can be approxi-
(Y?)a= | dt"| dt’ dt’'=2 dt’. mated by
av Y EY
0 0 0 w(t") o w(t")
(A6) (cos 6) =cog 6222 . (B7)

These formulas give other physical and mathematical mearFhen(t),, and(A),, can be obtained numerically as
ings of Eyges’ functions ofAy(t), Ai(t), and Ay(t) [4].
H 4 S
Likewise ()= fo cog 0?2 s, (B8)
S (A= H62) A7)
de)—y/av 2 tysan <A>av: s—(Dav- (B9)
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In the case where , K
=ale? " erfd — —a\t

E;>E%e or sIR<1, (B10) 24t
(6%),, is small enough, so we can approximate N a? 1+ ak—1 N k? \ian ©3
Jat 2a’t  4a’t? ¢ '
cog %) 37 = 1= 3(6%)ay. (B12)
-1 _ —1a3/2,— kS
Thus we get LY (Vs—a) ts¥%ekE]
2 k a3
__ s |S _s —glea’t-ak erfc{——a\ﬁ)Jr—
(A)/R= Eq.e R+|n 1 R } (B12 2.t Jat
which is equivalent to the resulA10) indicated above and y ak—1 N <’:1|<—3k+ k® o K40
(A ), indicated in Table Il if we read/R as the fraction of 222t  4adt? 8a%t3 '
dissipated energy.
Another approximation instead of EB11), (C4
cog 62) 2 =[1+1(6?),]"* (B13) Differentiating these formulas with, we get
-1 _ —2o1/2,—k\s
under the small angle approximation, gives an approximateé [(‘/g a) *si%e )
formula,
2 2 a%t—ak k
E§ -1 E§ =a 2at—k+5 € erfc z—ﬁ—aﬁ
<A>3V/R:(2Eos _1) 2Eqe
2 -1 22 1 —K2/(4t)
s ES + T 1+ E e , (C5)
—— — T
IR 264
In| 1 s 1]2 B14 ¢St
Xin| 1+ 2E08_ Rl ( )

2 k
edt-ak grfel — —a\t
(M J)

2a8 1 k
+ ( 1+ —- ) e K4, (C6)

3

— a3
. . - =a°| 2at—k+ =
which does not diverge at the limit &s—R. But the accu- a ( a a

racy of the result is not improved by the new approximation.

+
APPENDIX C: INVERSE LAPLACE TRANSFORMS pr a’t  4adt2
OF THE RELEVANT IMAGE FUNCTIONS

-1 —2:3/2,— ks
From the basic formula of inverse Laplace transformsZ [(\/E—a) s¥%e ]
[35]
4 k
=a% 2at—k+ — | e 2 erfd — —a
a 24t
4 _ 2
N 2a N 3 +2ak 1+ k e*kz/(4t)’
(Cy it 2a’t  4a*t? gat®

we get the following formulas by sequential differentiations (C7)
with k:

_ k
-1 _ —1a—1/24—kys7— a’t—ak _
LY (Js—a) s Ve k=g en‘c(—z\/f at

E*l[( \/g_ a) 7252€*k\3§]
E*l[( \/g_ a) 7lslIZe*kv‘§]

5 k
K =a5( 2at—k+ — | edt-ak erfc(— —a\ﬁ)
= a2e*t-ak erfc( —\/_—a\/f) a 2\t
24\t

2a5( 2  3ak-2

|1t =+ —
4 i 1+ L) e K2/(4t) (C2 it a’t 4a*t?
t 2at '
vt 2ak’~3k  k® | o @
L7 (Vs—a) tse k5 i 8ast® i 16a°t* ¢ ' €8
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