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Longitudinal distribution of fast charged particles traversing through matter

Takao Nakatsuka
Okayama Shoka University, Okayama, Japan

~Received 19 June 1997; published 31 July 1998!

The Yang equation describing the excess-path-length distribution under the multiple Coulomb scattering
process is improved to take into account the continuous energy loss by ionization. The equation gives the
simultaneous distribution of the direction of motion, lateral displacement, and longitudinal distribution of fast
charged particles traversing through matter. The equation is analytically solved completely in the image space
of Laplace transforms and the excess-path-length distributions corresponding to the most general conditions of
geometry are obtained by the inverse Laplace transforms, exactly in series expansion or asymptotically through
the saddle point method. The distributions after receiving ionization loss are indicated in figures and the effect
of including ionization loss is discussed. The means and the variances of the distribution are also tabulated.
@S0556-2821~98!02613-7#

PACS number~s!: 11.80.La, 02.50.Ey, 29.40.Rg, 96.40.Pq
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I. INTRODUCTION

Since Fermi wrote down the multiple Coulomb scatteri
theory in the Fokker-Planck approximation@1# it has become
very simple and plain to investigate fluctuation propert
concerning the passage of charged particles traver
through material. It gave a Gaussian distribution of William
type @2# for both the probability densities of the deflectio
angle and the lateral displacement, respectively, and the
mal distribution for the simultaneous distribution of both e
ements, so that the method has been called the Gau
approximation ever since@3#. All the distributions are ob-
tained as exact analytical solutions through a fairly fun
mental way of mathematics. Efforts to extend the applica
ity of the Fermi equation have been continued. The equa
taking into account energy loss by ionization was solved
Eyges@4# by applying a simple alteration of the variable. Th
improvement of the Fermi equation to simultaneously ta
into account the excesses of the path length was propose
Yang@5# and was solved in the most general condition in o
preceding paper~PP! @6#.

Although the Gaussian approximation is less accurate
describing the multiple scattering process than the Moli`re
method@7,8#, the fact that we can get the simultaneous d
tribution @3,9# for the arbitrary combination among those e
ements is the most valuable feature of the Gaussian app
mation. From the practical point of view, it was a defect
the Molière theory that not much distributions other than t
single distributions for any linear combination of the defle
tion angle and the lateral displacement had been obta
from the theory itself @3,10#. It should be noticed tha
Kamata and Nishimura proposed a method to build the M
lière theory in the Fermi formulation@11,12#, equivalent in
mathematics@6#. According to the Kamata-Nishimura for
mulation, the probability density under the Molie`re theory
can be obtained as a power series in 1/V in the space of
Fourier transforms, where the first term is the solution o
diffusion equation under the Fermi formulation and the f
lowing terms are obtained successively by solving the sa
equation with the known inhomogeneous term containing
0556-2821/98/58~5!/056002~15!/$15.00 58 0560
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precedingly determined term, as Kamata and Nishimura
plied in their cascade shower theory@11,12# and we did in
the excess-path-length distribution in PP. Thus we can
that the multiple scattering theory under the Fermi formu
tion is not a different theory from the Molie`re theory but
rather they are equivalent in the way in which the latter c
be constructed from the former.

The very significance of the Yang equation is that it h
enabled us to simultaneously describe the longitudinal dis
bution of fast charged particles traversing through mat
just as the Fermi equation simultaneously described the
eral distribution. The excess-path-length distribution of Ya
gives the detour distribution of arrived particles observed a
fixed thickness. From the other point of view, the Ya
equation gives the deficiency distribution of contracted thi
ness of traverse from the actual path length as formulated
Scott@13#. The Yang and the Scott equations are mathem
cally equivalent to each other under the small angle and
Fokker-Planck approximations.

According to the latter point of view, the existing analyt
cal results describing the properties of charged partic
propagating in matter, e.g., the angular distribution@7,8#, the
lateral distribution@1#, the energy-loss distribution by colli
sion @14–17#, and the range and its fluctuation of charg
particles@15,18–20#, must be corrected in the longitudina
direction of development since the visually observed p
length is reduced from the actual one measured along
trajectory itself as noted by Rossi@18# and others@21–23#.
Modern computer codes of Monte Carlo simulation@24–26#
are not relevant to this correction in principle as they tra
particle passages as actual propagations. But some prob
remain also in this method. The highly-accurate multip
scattering theories used in the code describe only the ang
distribution, so that the lateral displacement and the exc
of path length are approximated in the code, together w
their correlations. And the step size applied in the code c
not be taken infinitesimal, so that too long a step size mi
cause the difference between the step size and the actual
length. To determine the appropriate step size or to exam
the reliability of correlation among those passage eleme
© 1998 The American Physical Society02-1



bl

u
re

nd
cl
th

th
te
re
tio
th
ng
g
P
lts
b

nd
pl

pa

rg
e

,
on
s

t
ac

th

.,

ugh

oss

of
as

is

rgy

i-

s:

TAKAO NAKATSUKA PHYSICAL REVIEW D 58 056002
@9#, investigations using Fermi and Yang theory is inevita
@27,28#.

In PP, we showed the general solution of the Yang eq
tion and gave the simultaneous distribution among the di
tion of motion, the lateral displacement, and the excess
path length for charged particles in the most general co
tions of geometry, assuming the energy of charged parti
constant. In actual propagations, charged particles lose
energy by ionizations and radiations@1#, so that particles
with the decreasing energy receive more effects from
multiple scattering process. For the particles of modera
relativistic energy@9# and even those of higher energy befo
occasional radiations of high-energy photons, the ioniza
loss plays dominant roles for the energy dissipation of
particles. So we will improve the Yang equation by taki
into account continuous energy loss by the ionization and
the distributions in the same geometrical conditions as
This improvement will make the existing analytical resu
describing the propagation of charged particles more relia
by correcting the predictions in the longitudinal direction a
making the excess distribution of path length more ap
cable in tracing charged particles in simulations@29# or de-
signing and analyzing experiments concerning charged
ticles @9#.

II. THE YANG EQUATION WITH IONIZATION

Charged particles traversing through materials unde
the multiple Coulomb scattering, so that they change th
directions of motionuW and lateral displacementsrW, as well as
excesses of path lengthD. Starting from the Yang equation
we obtained in PP the correlated probability densities am
these components of charged particles, having pas
t0 with uW 0, rW0, andD0 and having reachedt with uW , rW, and
D: F(t,uy ,y,Dy ,t0 ,uy0 ,y0 ,Dy0)duydydDy for projected
components to thet-y plane, and A(t,uW ,rW,D,t0 ,uW 0 ,rW0 ,
D0!duW drWdD for spatial components. This time we will ge
probability densities of the same conditions taking into
count energy loss by ionization.

We improve the Yang equation as follows:

]F

]t
1u

]F

]y
2

1

w2

]2F

]u2
1

1

2
u2

]F

]D
2«

]F

]E

5d~ t2t0!d~E2E0!d~u2u0!d~y2y0!d~D2D0!,

~1!

wheret, rW, andD are all measured in radiation lengths@1#.
The last term on the left-hand side is added to include
effect that the charged particles with the initial energyE0
dissipate their energy in constant rate,« in unit radiation
length @1,12#, in the small angle approximation@3#. In the
third term, we approximatew by

w52E/Es , ~2!
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instead ofw52pv/Es of PP, as traditional works of, e.g
Landau @30#, Nishimura @12#, and others@31#, which is a
good approximation when the rest energy is small eno
compared toE. We can also put zeros tot0, y0 , andD0, due
to the translational invariance of those variables without l
of generality, as PP.

Under our assumption of ionization, the energies
charged particles are determined by traversed thickness

E5E02«t, ~3!

so that, if we take into account this dependence ofE on t, the
last term on the left-hand side of Eq.~1! vanishes. The maxi-
mum thicknessR the particles traverse in this process
called the range in the ionization process@1,18#. We intro-
duce a tentative constantk in place of 1/R:

R5E0 /« and k51/R. ~4!

Thenkt means the fraction of traversed thickness toR which
is identical with the fraction of dissipated energy toE0, and
gives the supplementary relation with the fractional ene
E/E0:

kt5t/R512E/E0 . ~5!

Applying the Fourier and Laplace transforms withy and
D, respectively, we get

F5
1

4p2i
E dleDlE eiyhc~ t,u,h,l,u0!dh. ~6!

Then, the diffusion equation~1! becomes

]c

]t
1 ihuc2

1

w0
2~12kt!2

]2c

]u2
1 1

2 lu2c5d~ t !d~u2u0!,

~7!

wherew0 is w of the incident particle. Introducing new var
ables

v825
l

2w0
2

1
k2

16
, q5w0Av8A12ktS u1

ih

l D , ~8!

the homogeneous equation of~7! becomes

12kt

v8
S ]

]t
1

h2

2l D c5S ]2

]q2
1

k

2v8
q

]

]q
2

l

2w0
2v82

q2D c;

~9!

thus it can be solved by separating variables:

c5 f ~ t !g~q!e2~1/8!kq2/v8. ~10!

The solution satisfying inhomogeneous term of Eq.~7! is
obtained by the linear combination of orthogonal function
2-2
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c5w0Av8~12kt!k21v811/4 exp@2 1
2 h2t/l2 1

8 w0
2k~12kt!~u1 ih/l!21 1

8 w0
2k~u01 ih/l!2#

3 (
n50

`

~12kt!2nk21v8cn„w0Av8~u01 ih/l!…cn„w0Av8A12kt~u1 ih/l!…, ~11!

wherecn(x) is the same function as defined in PP:

cn~x!5~Ap2nn! !21/2Hn~x!e2x2/2. ~12!

Sum of the series~11! can be derived by using the generalized generating function indicated in Eq.~2.9! of PP. Introducing
the new variables@32#

t852k21 ln~12kt!, or t5 1
2 kt85 1

2 ln~E0 /E!, ~13!

and

As852t8v8, ~14!

we get

c5
w0Ake2t/2

@8pt sinhAs8/As8#1/2
expS 2

w0
2ke2t

8t sinhAs8/As8
H h2

l2
@222 cosht coshAs81~t22s811!t sinh t sinhAs8/As8#

12
ih

l
@~coshAs81t sinhAs8/As82et!e2tu1~coshAs82t sinhAs8/As82e2t!etu0#

1@~coshAs81t sinhAs8/As8!e2tu222uu01~coshAs82t sinhAs8/As8!etu0
2#J D . ~15!

Applying inverse Fourier transforms toh, we get

jdudy5
w0

2k2~t22s821!dudy

16p@222 cosht coshAs81~t22s811!t sinh t sinhAs8/As8#1/2

3expH 2
w0

4k4~t22s821!2

256@222 cosht coshAs81~t22s811!t sinh t sinhAs8/As8#

3F 32~sinh t coshAs82t cosht sinhAs8/As8!e22t

w0
2k3~t22s821!

~u222uu01u0
2e2t!

2
32~coshAs81t sinhAs8/As82et!e2t

w0
2k2~t22s821!

uS y2
2

k
u0e2t sinh t D2

32~coshAs82t sinhAs8/As82e2t!et

w0
2k2~t22s821!

u0y

1
8~t sinhAs8/As8!et

w0
2k

y2G J . ~16!
g
a

on
Mean square spatial angle and displacement,^u2&av and
^r 2&av, for normally-incident particles after traversin
through thickness oft in our process can be obtained by
method in Appendix A:

^u2&av5
8

w0
2k

et sinh t, ~17!
05600
^r 2&av5
16

w0
2k3

e22t~cosht sinh t2t!. ~18!

If we introduce nondimensional variables for deflecti
angle and lateral displacement,

fW 5uW /^u2&av
1/2 , ~19!
2-3
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TABLE I. List of D ’s and relating functions.

Functions

D I (C12tC8)e2t

D II
2t

sinht
C8

D III
2t2

cosht sinht2t

C sinht22tC8 cosht

s82t2

Dgen
4t4

(cosht sinht2t)e2t sinht

12C cosht1(s81t2)C8 sinht/t

(s82t2)2

DX
2A2t2

A(cosht sinht2t)e2t sinht

(C12tC8)e2t21

s82t2

DY
2A2t2

A(cosht sinht2t)e2t sinht

(C22tC8)et21

s82t2

C coshAs8

C8 1
2 sinhAs8/As8
ck

A

ro
n

gi-

ob-
s-

nal

in

th
rW 5rW/^r 2&av
1/2 , ~20!

together with those relative to the axis of the incident tra

fW 85~uW 2uW 0!/^u2&av
1/2 5fW 2fW 0 , ~21!

rW 85~rW2uW 0t !/^r 2&av
1/25rW 2S 2et sinh3 t

cosht sinh t2t D 1/2

fW 0 ,

~22!

then

jduydy5
dfydry

pDgen
1/2

expH 2
1

Dgen
@D III ~fy

222fyfy0

1fy0
2 e2t!2DXfyry82DYfy0ry1D IIry

2#J ,

~23!

whereD ’s and their relating functions are given in Table I.
relation

DX
254 ~D IID III 2D IDgen! ~24!

satisfies among the coefficients.
The excess distribution of the path length for the p

jected components is derived by the inverse Laplace tra
forms tol:

F~ t,uy ,y,D,uy0!duydydD

5
duydydD

2p i E
l02`

l01`

eDlj~ t,uy ,y,l,uy0!dl, ~25!
05600
,

-
s-

where the path of integration is taken parallel to the ima
nary axis in the half plane of convergence ofj. Likewise, the
excess distribution for the spatial components can be
tained by using the folding property of the Laplace tran
forms:

A~ t,uW ,rW,D,uW 0!duW drWdD

5
duW drWdD

2p i E eDlj~ t,uy ,y,l,uy0!

3j~ t,uz ,z,l,uz0!dl

5e2t2u8
dfW drW du8

2p i E eu8s8Jgen~fW ,rW ,s8,fW 0!ds8

[B~fW ,rW ,u8,fW 0!dfW drW du8, ~26!

where we introduced a nondimensional variable proportio
to D,

u85 1
2 w0

2D/t82, ~27!

and rewrote the image function of the Laplace transforms
the nondimensional variables:

JgendfW drW 5
dfW drW

p2Dgen

expH 2
1

Dgen
@D III ~f222fW fW 0

1f0
2e2t!2DXfW rW 82DYfW 0rW 1D IIr

2#J .

~28!

The coefficientsD ’s depend only ons8 andt as indicated
in Table I @33#, so we find the excess distribution of the pa
2-4
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TABLE II. J ’s and their abscissas of convergence. The equations to derivem I , m III , and mgen are
indicated in Sec. II of the text.

Laplace transform of the distribution Abscissa of convergence

J I 5
1

DI
2m I

2

J II,IV dfW 5
dfW

pDII
expF2 DI

D II
f2G 2p2

JIII,V drW 5
drW

pD III
expF2 DI

D III
r2G 2m III

2

JgendfW drW 5
dfW drW

p2Dgen

expF2 1

Dgen
$D III (f

222fW fW 01f0
2e2t) 2mgen

2

2DXfW rW 82DYfW 0rW 1D IIr
2%G
he
s
t

th

tr
i

io

er

th
pl

e

in
length represented inu8 is the function of onlyt or the
fraction of residual energyE/E0, not depending onE0, E, t,
or e explicitly, if we measure the deflection angle and t
lateral displacement by those root mean square value
defined in Eqs.~19!–~22!. It can be easily confirmed tha
limiting the value ofJgen ast→0 gives the solution of the
Yang equation without ionization in the image space of
Laplace transforms, obtained in PP.

The Laplace transforms of the excess-path-length dis
bution for the respective geometrical conditions, indicated
Table I of PP, are obtained by integrating the image funct
for case gen,Jgen, overfW and/orrW with u050: that withuW

and rW integrated~case I!, that with rW integrated anduW fixed
~case IV! or fixed to 0~case II!, and that withuW integrated
and rW fixed ~case V! or fixed to 0~case III!. TheseJ ’s are
listed in Table II together with their abscissas of conv
gence, wherem I , m III , and mgen are the smallest positive
solutions to satisfy

m I cot m I1t50, ~29!

m III cot m III 2t coth t50, ~30!

and

222 cosht cosmgen

2~t21mgen2mgen
21t!sinh t sin mgen50, ~31!

respectively.

III. CALCULATION OF THE EXCESS-PATH-LENGTH
DISTRIBUTION

We will show the joint distributions of the excess pa
length under the respective geometrical conditions by ap
05600
as

e

i-
n
n

-

y-

ing inverse Laplace transforms toJ ’s.

A. Case I

J I5~coshAs81t sinhAs8/As8!21et

5
2etAs8

~As81t!e
As81~As82t!e2As8

5
2et

As81t
As8e2As82

2et

~As81t!2

3~s82tAs8!e23As81•••. ~32!

Thus using the formulas indicated in Appendix C we hav

BI~u8!5
2

Apu8
S 2t1

1

2u8
D et2t2u821/~4u8!

12t2e2t erfcS 1

2Au8
1tAu8D

1
4t3

Ap/u8
S 21

3

2t2u8
2

3

4t3u82D
3et2t2u829/~4u8!22t3S 4tu8161

5

t De4t

3erfcS 3

2Au8
1tAu8D 1•••. ~33!

By taking the asymptotic approximations, good to with
1%,
2-5



BI~u8!5

2

Apu8
S 2t1

1

2u8
D et2t2u821/~4u8!12t2e2t erfc S 1

2Au8
1tAu8D for u8<0.3,

2
~34!

TAKAO NAKATSUKA PHYSICAL REVIEW D 58 056002
5 2m I sin m I

m I2cosm I sin m I
et2~t21m I

2
!u8 for u8>0.3,

wherem I is defined in Eq.~29!.

B. Case II

J IIdfW 5
dfW

p

sinh t/t

sinhAs8/As8
5

2 sinhtdfW

pt
@As8e2As81As8e23As81•••#. ~35!

Thus using the formulas indicated in Appendix C we have

BII~u8!dfW 5
sinh tdfW

tAp3u83
e2t2u8F S 1

2u8
21D e21/~4u8!1S 9

2u8
21D e29/~4u8!1•••G . ~36!

By taking the asymptotic approximations, good to within 1%,

BII~u8!dfW 5H t21 sinh t

Ap3u83 S 1

2u8
21D e2t2u821/~4u8!dfW for u8<0.4,

2pt21 sinh te2~t21p2!u8dfW for u8>0.4.

~37!

C. Case III

J IIIdrW 5
drW

2p

~cosht sinh t2t!~t22s821!

sinh t coshAs82t cosht sinhAs8/As8

5
~cosht sinh t2t!drW

pt2 sinh t
H s82t2

As82t coth t
As8e2As82F s82t2

As82t coth t
1

2t~s82t2!coth t

~As82t coth t!2GAs8e23As81•••J .

~38!

Thus using the formulas indicated in Appendix C we have

BIII ~u8!drW 5
cosht sinh t2t

t2 sinh tAp3u8
e2t2u8drW H F t3 cosht

sinh3 t
2

t~cosht sinh t2t!

2u8 sinh2 t
1

t coth t23

4u82
1

1

8u83Ge21/~4u8!

1
t4 cosh2 t

sinh4 t
et2u8 coth2 t2t coth t erfcS 1

2Au8
2tAu8coth t D 2F 4t5 cosh3 t

sinh5 t
1

7t3 coth3 t23t3 coth t

u8

1
15t2 coth2 t23t coth t23t2

2u82
1

27t coth t29

4u83
1

27

8u84 Gu8e29/~4u8!2F4t6u8 cosh4 t

sinh6 t
2

6t5 cosh3 t

sinh5 t

19t4 coth4 t25t4 coth2 tGet2u8 coth2 t23t coth t erfcS 3

2Au8
2tAu8coth t D 1•••J . ~39!

By taking the asymptotic approximations, good to within 1%,
056002-6



BIII ~u8!drW 55
F S t3 cosht

sinh3 t
2

t~cosht sinh t2t!

2u8 sinh2 t
1

t coth t23

4u82
1

1

8u83D e21/~4u8!

1
t4 cosh2 t

sinh4 t
et2u8 coth2 t2t coth t erfcS 1

2Au8
2tAu8coth t D Gcosht sinh t2t

t2 sinh tAp3u8
e2t2u8drW for u8<0.15,

2~t21m III
2 !~cosht sinh t2t!m III

2 sin m III
e2~t21m III

2
!u8drW for u8>0.15,

tributions

II.

ined by
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ith
t
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gies,

e
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p~m III 2cosm III sin m III !t
2 sinh t

~40!

wherem III is defined in Eq.~30!.

D. Cases IV, V, and gen

Image functions have essential singularities in cases of IV, V, and gen, as PP. In those cases we can obtain the dis
asymptotically with the saddle point method:

B~u8!du85e2t2u8
du8

2p i E eu8s8 J~s8!ds8

>@2p~]2/]s82!ln J~ s̄8!#21/2 J~ s̄8!e2~t22 s̄8!u8du8, ~41!

where

u852~]/]s8!ln J~ s̄8!. ~42!

The saddle points̄8 is taken on the real axis at the right-hand side of the abscissa of convergence indicated in Table

E. Moments and statistical values

Zeroth moment, that is, integration of the distribution with respect to the excess of the path length can be obta
limiting the value ofj ass8→t2:

lim
s8→t2

jduydy5
1

p F2~cosht sinh t2t!e2t sinh t

sinh2 t2t2 G 1/2

dfydry

3expH 2
2~cosht sinh t2t!e2t sinh t

sinh2 t2t2 Ffy8
22

2~t2e2t sinh t!fy8ry8

@2~cosht sinh t2t!e2t sinh t#1/2
1ry8

2G J . ~43!

This solution gives the Fermi distribution of the multiple Coulomb scattering indicating the joint distribution of defle
angle and lateral displacement with a finite incident angleuy0, taking into account the ionization loss. The solution w
uy050, which changesfy8 andry8 to fy andry , gives Eyges’ solution regarding hisW(t) as our Eq.~2!. This fact means tha

the Fermi solution with a finite incident angle can be obtained by simple replacements,uW and rW, in the solution for normal
incidence withuW 2uW 0 and rW2uW 0t.

Equation~43! gives the covariant value betweenfW 8 andrW 8, which is identical with the correlation coefficient between t
projected components,uy8 andy8:

^fW 8rW 8&av5
^uy8y8&av

^uy8
2&av

1/2 ^y82&av
1/2

5
t2e2t sinh t

@2~cosht sinh t2t!e2t sinh t#1/2
. ~44!

This value was a constant,A3/2, irrespective of traversed thickness in the case of no ionization loss@6,9#, but this time it
decreases gradually fromA3/2 with loss of energy and rapidly falls to 0 just before they dissipate their whole ener
reflecting the decrease of correlation between them.

From the limiting values ass8→t2 of the first and the second logarithmic derivatives ofJ(s8)’s, we get the means and th
variances of the excess-path-length distribution for the respective cases:
056002-7
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TABLE III. Mean values of excess-path length distribution.

Case ^u8&av

I
1

2t2
$2e2t sinht1t%

II,IV
2sinht1t cosht

2t2 sinht
1

f2e2t

2t2 sinht
$cosht sinht2t%

III,V
23 cosht sinht1t~3 cosh2 t2sinh2 t!

4t2~cosht sinht2t!

1
r2e2t

4t2~cosht sinht2t!
$cosht sinht~3 cosht1sinht!2t~3 cosht2sinht!22t2et%

gen
22 sinh2 t1t cosht sinht1t2

2t2~sinh2 t2t2!

1
~f222fW fW 01f0

2e2t!e2t sinht

2t2~sinh2 t2t2!2

3$cosht sinh3 t23t sinh2 t13t2 cosht sinht2t3~cosh2 t1sinh2 t!%

2
fW rW8A~cosht sinht2t!e2t sinht

A2t2~sinh2 t2t2!2

3$2e2t sinh3 t13t sinh2 t2t2 sinht~3 cosht22 sinht!1t3e22t2t4%

2
fW 0rWA~cosht sinht2t!e2t sinht

A2t2~sinh2 t2t2!2

3$et sinh3 t23t sinh2 t1t2 sinht~3 cosht12 sinht!2t3e2t2t4%

1
r2e2t~cosht sinht2t!

t2~sinh2 t2t2!2
$sinh3 t2t3 cosht%
fo
th

ith
e

ity
nly
ral
, as

rac-

ess
^u8&av52 lim
s8→t2

~]/]s8!ln J~s8!, ~45!

and

^u82&av2^u8&av
2 5 lim

s8→t2

~]2/]s82!ln J~s8!. ~46!

Results are shown in Tables III and IV.

IV. THE EXCESS DISTRIBUTION OF THE PATH
LENGTH AND THE EFFECTS OF TAKING

INTO ACCOUNT IONIZATION LOSS

We discuss the excess distribution of the path length
the respective geometrical conditions. In order to discuss
effect of ionization loss and compare results with those w
out ionization obtained in PP, it may be better to repres
the excess path length byu defined in PP:

u5 1
2 w0

2D/t2. ~47!
05600
r
e
-

nt

Thus the distribution becomes

A~D!dD5B~u!du

5~t21e2t sinh t!2B„~t21e2t sinh t!2u…du.

~48!

It can be easily understood that the probability dens
B(u)’s for the respective cases also are the functions of o
t, or E/E0, if we describe the deflection angle and late
displacement in units of their root mean square values
B(u8)’s are.

The probability densities,BI(u)’s, for charged particles
having traversed the fractional thicknesst/R of 0.25, 0.50,
and 0.75 in the material and having dissipated the same f
tion of energy toE0 are shown in Fig. 1@34#. The result
without ionization obtained in PP is also shown ast/R50.
The more the fraction of traversed thicknesst/R increases,
the more the distributions move to the larger ward of exc
2-8
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TABLE IV. Variances of excess-path length distribution.

Case ^u82&av2^u8&av
2

I
e2t

4t4
$2e2t sinht~3 cosht12 sinht!1t~3 cosht2sinht!%

II,IV
22 sinh2 t1t cosht sinht1t2

4t4 sinh2 t
1

f2e2t

4t4 sinh2 t
$cosht sinh2 t1t sinht22t2 cosht%

III,V
1

48t4~cosht sinht2t!2
$233 cosh2 t sinh2 t16t cosht sinht~11 cosh2 t29 sinh2 t!

23t2e2t~11 cosht23 sinht!116t3 cosht sinht24t4%

1
r2

24t4(cosht sinht2t)2$3 cosh2 t sinh2 t26t cosht sinht

13t2~cosh2 t13 sinh2 t!28t3 cosht sinht24t4%

gen
1

24t4~sinh2 t2t2!2
$221 sinh4 t16t cosht sinh3 t142t2 sinh2 t

218t3 cosht sinht2t4(9cosh2 t216 sinh2 t)2t6%

1
~f222fW fW 01f0

2e2t!e2t sinht

12t4~sinh2 t2t2!3
$3 cosht sinh5 t23t sinh4 t218t2 cosht sinh3 t

12t3 sinh2 t~21 cosh2 t211 sinh2 t!2t4 cosht sinht~33 cosh2 t226 sinh2 t!

13t5~3 cosh2 t12 sinh2 t!25t6 cosht sinht1t7%

2
fW rW8A~cosht sinht2t!e2t sinht

6A2t4~sinh2 t2t2!3
$23e2t sinh5 t13t sinh4 t

16t2 sinh3 t~3 cosht22 sinht!22t3 sinh2 t~21 cosh2 t29cosht sinht211 sinh2 t!

1t4e2t sinht~33 cosh2 t118 cosht sinht28 sinh2 t!

23t5~3 cosh2 t22 cosht sinht12 sinh2 t!15t6e2t sinht2t7%

2
fW 0rWA(cosht sinht2t)e2t sinht

6A2t4(sinh2 t2t2)3 $3et sinh5 t23t sinh4 t

26t2 sinh3 t~3 cosht12 sinht!12t3 sinh2 t~21 cosh2 t19cosht sinht211 sinh2 t!

2t4et sinht~33 cosh2 t218 cosht sinht28 sinh2 t!

13t5~3 cosh2 t12 cosht sinht12 sinh2 t!25t6et sinht1t7%

1
r2e2t~cosht sinht2t!

12t4~sinh2 t2t2!3
$3 sinh5 t212t2 sinh3 t118t3 cosht sinh2 t

2t4 sinht~15 cosh2 t28 sinh2 t!16t5 cosht25t6 sinht%
tr
ls

d
on

un

and
in

he
the
dle
path length increasing their widths, even at the same
versed thicknesst depending on the difference of materia
through«.

The probability densities for case II, IV, case III, V, an
case gen are indicated in Figs. 2–4, respectively, corresp
ing to their fractional thicknessest/R of 0.25 and 0.50. They
can be compared with the results not taking into acco
05600
a-

d-

t

ionization loss (t/R50), derived in PP.
The results obtained exactly by the series expansion

asymptotically by the saddle point method are compared
Fig. 2 and Fig. 3 for case II and case III, respectively: t
exact ones in the solid line and the asymptotic ones in
dotted line. The asymptotic approximation by the sad
point method shows good accuracy in these cases.
2-9



in

th

e
o-

o
et
l
p

nt
is
es
ac-

-

the

u

in

a

al

at

uare
int

the

e

am-

TAKAO NAKATSUKA PHYSICAL REVIEW D 58 056002
In case V and gen, the distributions have the start
pointsuG’s depending on the lateral displacementr:

uG5~ t8/t !2 lim
s8→`

u85 1
2 ~cosht sinh t2t!r2et sinh23 t.

~49!

They agree with the geometrical difference between
chord length@13# and the thickness of the material,r 2/(2t),
under the small angle approximation, same as PP. Mean
cesŝ u8&av of case V, shown in Table III, includes this ge
metrical excess in the value. Figure 5 shows the fraction
pure scattering excess or the excess excluding the geom
cal one to the total, (̂uV&av2uG)/^uV&av, against the latera
displacement measured in its root mean square value
dicted without ionization loss, r /r rms with r rms

FIG. 1. Excess distributions of path length in case I at vario
fractional thicknessest/R, without the ionization loss (t/R50).
Abscissa meansD/(2t2/w0

2) or the excess-path length measured
units of twice of^D I&av predicted without the ionization loss.

FIG. 2. Excess distributions of path length in cases II and IV
the fractional thicknesses of~a! 0.25 and~b! 0.50. The parameterf
shows the deflection angle measured in its root mean square v
The distribution in case II obtained by the saddle point method
indicated together in the dotted line.
05600
g

e

x-

f
ri-

re-

52t3/2/(A3w0). In the region of small lateral displaceme
(r /r rms!1), where the existence probability of the particle
extremely high, the pure multiple scattering contribut
much dominantly to the excess of the path length. The fr
tion decreases gradually with increase ofr /r rms, and reaches
to some finite value asr /r rms→`, depending on the frac
tional thicknesst/R. The limiting value, having taken16 in
case without ionization loss, increases gradually with
fractional thickness and reaches to1

2 with dissipation of their

s

t

ue.
is

FIG. 3. Excess distributions of path length in cases III and V
the fractional thicknesses of~a! 0.25 and~b! 0.50. The parameterr
shows the lateral displacement measured in its root mean sq
value. The distribution in case III obtained by the saddle po
method is indicated together in the dotted line.

FIG. 4. Excess distributions of path length in case gen at
fractional thicknesses of~a! 0.25 and~b! 0.50. In the figure, the
incident angle is fixed to 0 (f050), and the absolute value of th
nondimensional deflection angle is fixed to 1 (f51) and that of the
nondimensional lateral displacement is distinguished by the par

eter r, where the angles betweenfW and rW are 0 ~solid line!, 1
8 p

~dashed line!, and 1
4 p ~dot-dashed line!.
2-10
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whole energies. This fact shows that the excess of the
length due to the pure multiple Coulomb scattering becom
more and more important than the geometrical excess w
we take into account the ionization loss in propagation
charged particles.

Table V shows the mean square deflection angle, lat
displacement, and the mean and the variance of the ex
path length averaged over all normally-incident partic
~case I!, before taking into account the ionization loss a
after, together with the correction factors defined by the
tios of the latter to the former. Without the ionization los
^u2&av, ^r 2&av, and ^D&av increased linearly, cubically, an
quadratically witht. On the other hand, after receiving th
ionization loss, they are corrected additively by factors
pending only on fractional thicknesst/R or fraction of dissi-
pated energy (E02E)/E0, not explicitly depending on tra
versed thicknesst nor difference of materials through«, as
shown in Fig. 6.

FIG. 5. Fraction of the pure multiple scattering excess, excl
ing the geometrical excess, at various fractional thicknesses.
scissa means lateral displacement measured in its root mean s
value predicted without ionization loss.
05600
th
s

en
f

al
ss

s

-
,

-

The influence of the fluctuation of the excess path len
on the energy-loss distribution of charged particles, d
cussed in PP, increases still more with increase of the f
tional thickness due to increase of the correction factor in
cated above, when we take into account the ionization lo

At the limit for charged particles to reach to the maximu
thicknessR, ^u2&av diverges, and̂r 2&av reaches to the finite
value, 3 times that of the predicted result without the ioniz
tion loss.^D&av diverges logarithmically on the other han
The divergence of mean excess path lengths with dissipa
of their whole energies leads to a contradiction and sho
the limit of applicability of our present theory, because t
charged particles have to dissipate infinite energies pro
tional to their path lengths. The divergence does not co
from our approximation, w52E/Es instead of w
52pv/Es , nor from the Gaussian approximation neglecti
the higher moments of the single scattering formula@12,6#. It

-
b-
are

FIG. 6. Correction factors by taking into account ionization lo
to the mean squares of deflection angle~solid line! and lateral dis-
placement~dashed line!, and to the mean excess~dot line! and the
square root of variance~dot-dashed line! of path length.
TABLE V. Comparison of mean values and a variancesD
2 5^D2&av2^D&av

2 before taking into account ionization loss and after.

«50 with ionization correction factor

^u2&av
4

w0
2

t 4t

w0
2

E0

E

E0

E

^r2&av
4

3w0
2 t3

4E0
3

w0
2«3

E

E0
H E0

E
2

E

E0
12 ln

E

E0
J 3

~12E/E0!
3

E

E0
H E0

E
2

E

E0
12 ln

E

E0
J

^D&av
1

w0
2

t2
22E0

2

w0
2«2 H 12

E

E0
1 ln

E

E0
J 22

~12E/E0!
2 H12

E

E0
1ln

E

E0
J

sD
2 2

3w0
4
t4

24E0
4

w0
4«4 HS12

E

E0
DS51

E

E0
D 26

~12E/E0!
4 HS12

E

E0
DS51

E

E0
D

14S121
E

E0
Dln E

E0
J 14S121

E

E0
Dln E

E0
J

2-11
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comes strictly from violations to the small angle approxim
tion @3#. To solve this problem, we have to improve th
multiple scattering theory more accurately than the sm
angle approximation.

Introducing the variables for the actual path length a
done by Scott@13# and measuring the path length along t
trajectory itself as noted by Rossi@18#, we tried a more ac-
curate evaluation of mean values than that through the s
angle approximation: for mean thickness^t&av of traverse
and mean excesŝD&av of the path length averaged over th
all normally-incident particles~case I! in Appendix B, ne-
glecting the fluctuation ofu2. The mean thicknesses define
by the projections of the actual path length onto the ini
direction of the incident particle are shown in Fig. 7 f
several incident-energy parameters,E0«/Es

2 , together with
those under the small angle approximation. They might
observed in visible detectors as the contracted thickness
traverse due to the multiple Coulomb scattering. The m
excesses defined by the differences between the actual
length and the mean thickness are indicated in Fig. 8
those parameters, together with the result predicted thro
the small angle approximation which does not depend
E0«/Es

2 . The comparison indicates that the mean excess
rived from the small angle approximation, 12 1

2 u2 instead of
cosu, has high accuracy when the incident energyE0 is
larger thanEs

2/« or the traversed thicknesst is smaller
enough than the rangeR.

s, t, andD defined above are identical withs, x, andu in
Scott formulation@13#. But it should be noticed that unde
our assumption of ionization loss proportional tos, the av-
erage of Scott’s deficiency of the path length defined
^u&av5s2^x&av also diverges at the limit of dissipation o
their whole energies due to the small angle approximat
so that the average of traversed thickness,^x&av, diverges
instead toward backward direction.

These divergences are caused by the infinite increas
approximated term, 12 1

2 u2 in place of oscillating cosu, at
large angles ofu2@2. The divergence is so weak that a

FIG. 7. Mean fractional thicknesses of path length^t&av/R for
various incident energies evaluated more accurately than the s
angle approximation for assumed particles traversing with the m
square deflection angle~solid line!, together with those under th
small angle approximation~dot line!. Abscissa meanss/R.
05600
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other approximation, (11 1
2 u2)21 in place of cosu by the

small angle approximation, gives no more divergence to
average ofD, as shown in Appendix B. But we can confirm
that the accuracy of the result is not improved by the n
approximation.

V. CONCLUSION

The diffusion equation of Yang to describe the longitud
nal distribution of fast charged particles under the multip
Coulomb scattering process has been improved to take
account continuous energy loss by ionization and the eq
tion has been completely solved in the image space
Laplace transforms under the most generalized condition
geometry~in Tables I and II!. Applying the inverse Laplace
transforms, we have obtained the excess distributions of
path length exactly in series expansion~cases I–III! and as-
ymptotically in the saddle point method~cases IV, V, and
gen!. The distributions corresponding to the respective g
metrical conditions are shown in Figs. 1–4, together w
their means and variances in Tables III and IV.

Contributions to the mean excess of the path length
compared between the two exclusive factors, the p
multiple-scattering excess and the geometrical excess.
have confirmed in Fig. 5 that the contribution from th
former is dominant at the smaller distance from the incid
axis where the charged particles traverse in extremely h
probability, and the fraction increases much with dissipat
of their energies.

The correction factors by taking into account the ioniz
tion loss to those obtained in PP are evaluated for m
square deflection angles, lateral displacements, and mean
variance of the excess path length averaged over all
normally-incident particles~Table V and Fig. 6!. The restric-
tions for the present result due to the small angle approxi
tion are also discussed~Figs. 7 and 8!.

Although there exist limits of applicability caused by th

all
an

FIG. 8. Mean excesses of path length for various incident en
gies evaluated more accurately than the small angle approxima
~solid lines!, together with the mean excess evaluated with the sm
angle approximation~dot line!. Abscissa meanss/R for the former
and t/R for the latter, both indicating the fraction of dissipate
energy.
2-12



io
ou
tic
at
n

ro

r
fu
on
oy

er
a

tin
c-

a

ick-
ngle
nal

a-

LONGITUDINAL DISTRIBUTION OF FAST CHARGED . . . PHYSICAL REVIEW D 58 056002
Gaussian approximation and the small angle approximat
the present investigations for the process of multiple C
lomb scattering will be very useful in predicting stochas
properties of fast charged particles traversing through m
rials if we take much care about the effects of single a
plural scatterings discussed in PP and the restrictions f
the small angle approximation discussed in this paper.
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APPENDIX A: MEAN VALUES OF DISTRIBUTION
IN MULTIPLE SCATTERING PROCESS

We can obtain mean square deflection angle and lat
displacement as well as mean excess of the path length
eraged over all the normally-incident particles~case I! by
directly integrating our basic equation~1!. We can remove
the last term on the left hand side of Eq.~1! by taking into
account the dependence ofE on t. Multiplying u2, uy, and
y2 on both sides of the equation, respectively, and integra
overu, y, andD, we get differential equations for the respe
tive mean values for projected component to thet-y plane:

d

dt
^uy

2&av5
2

w2~ t !
, ~A1!

d

dt
^uyy&av5^uy

2&av, ~A2!

d

dt
^y2&av52^uyy&av. ~A3!

Thus

^uy
2&av5E

0

t 2

w2~ t8!
dt8, ~A4!

^uyy&av5E
0

t

dt8E
0

t8 2

w2~ t8!
dt852E

0

t t2t8

w2~ t8!
dt8, ~A5!

^y2&av5E
0

t

dt8E
0

t8
dt8E

0

t8 4

w2~ t8!
dt852E

0

t~ t2t8!2

w2~ t8!
dt8.

~A6!

These formulas give other physical and mathematical me
ings of Eyges’ functions ofA0(t), A1(t), and A2(t) @4#.
Likewise

d

dt
^Dy&av5

1
2 ^uy

2&av, ~A7!
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^Dy&av5E
0

t

dt8E
0

t8 1

w2~ t8!
dt85E

0

t t2t8

w2~ t8!
dt8. ~A8!

In the case of our approximation~2! of w52E/Es , we get

^uy
2&av5

Es
2

2E0« S E0

E
21D , ~A9!

^Dy&av5
1
2 ^uyy&av5

Es
2

4«2 S E

E0
211 ln

E0

E D , ~A10!

^y2&av5
Es

2E0

2«3 H 12S E

E0
D 2

2
2E

E0
ln

E0

E J . ~A11!

APPENDIX B: MORE ACCURATE DERIVATION OF
MEAN THICKNESSES AND EXCESSES OF THE PATH
LENGTH THAN THE SMALL ANGLE APPROXIMATION

We make a more accurate evaluation of averaged th
ness and the excess of the path length than the small a
approximation. We assume ionization loss to be proportio
to the actual path lengths:

dE52«ds. ~B1!

Under the Fokker-Planck approximation and our approxim
tion ~2! of w52E/Es ,

d^u2&av5
Es

2

E2
ds, ~B2!

then

E

E0
512

s

R
, ~B3!

^u2&av5
Es

2

E0«

s

RY S 12
s

RD . ~B4!

The mean thicknesŝt&av and the mean excess^D&av of the
path length can be derived from

d^t&av5^cosu&avds, ~B5!

d^D&av5~12^cosu&av!ds. ~B6!

If we neglect the fluctuation ofu2, ^cosu&av can be approxi-
mated by

^cosu&av>coŝ u2&av
1/2 . ~B7!

Then ^t&av and ^D&av can be obtained numerically as

^t&av5E
0

s

coŝ u2&av
1/2 ds, ~B8!

^D&av5s2^t&av. ~B9!
2-13
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In the case where

E0@Es
2/« or s/R!1, ~B10!

^u2&av is small enough, so we can approximate

coŝ u2&av
1/2 >12 1

2 ^u2&av. ~B11!

Thus we get

^D&av/R52
Es

2

2E0« F s

R
1 lnS 12

s

RD G , ~B12!

which is equivalent to the result~A10! indicated above and
^D I&av indicated in Table III if we reads/R as the fraction of
dissipated energy.

Another approximation instead of Eq.~B11!,

coŝ u2&av
1/2 >@11 1

2 ^u2&av#
21 ~B13!

under the small angle approximation, gives an approxima
formula,

^D&av/R5S Es
2

2E0«
21D 21 Es

2

2E0«

3H s

R
2S Es

2

2E0«
21D 21

3 lnF11S Es
2

2E0«
21D s

RG J , ~B14!

which does not diverge at the limit ass→R. But the accu-
racy of the result is not improved by the new approximatio

APPENDIX C: INVERSE LAPLACE TRANSFORMS
OF THE RELEVANT IMAGE FUNCTIONS

From the basic formula of inverse Laplace transfor
@35#

L21@~As2a!21s21/2e2kAs#5ea2t2ak erfcS k

2At
2aAt D ,

~C1!

we get the following formulas by sequential differentiatio
with k:

L21@~As2a!21s1/2e2kAs#

5a2ea2t2ak erfcS k

2At
2aAt D

1
a

Apt
S 11

k

2atD e2k2/~4t !, ~C2!

L21@~As2a!21se2kAs#
05600
d

.

s

5a3ea2t2ak erfcS k

2At
2aAt D

1
a2

Apt
S 11

ak21

2a2t
1

k2

4a2t2D e2k2/~4t !, ~C3!

L21@~As2a!21s3/2e2kAs#

5a4ea2t2ak erfcS k

2At
2aAt D 1

a3

Apt

3S 11
ak21

2a2t
1

ak23

4a3t2
k1

k3

8a3t3D e2k2/~4t !.

~C4!

Differentiating these formulas witha, we get

L21@~As2a!22s1/2e2kAs#

5a2S 2at2k1
2

aD ea2t2ak erfcS k

2At
2aAt D

1
2a2

Ap/t
S 11

1

2a2t
D e2k2/~4t !, ~C5!

L21@~As2a!22se2kAs#

5a3S 2at2k1
3

aD ea2t2ak erfcS k

2At
2aAt D

1
2a3

Ap/t
S 11

1

a2t
1

k

4a3t2D e2k2/~4t !, ~C6!

L21@~As2a!22s3/2e2kAs#

5a4S 2at2k1
4

aD ea2t2ak erfcS k

2At
2aAt D

1
2a4

Ap/t
S 11

3

2a2t
1

2ak21

4a4t2
1

k2

8a4t3D e2k2/~4t !,

~C7!

L21@~As2a!22s2e2kAs#

5a5S 2at2k1
5

aD ea2t2ak erfcS k

2At
2aAt D

1
2a5

Ap/t
S 11

2

a2t
1

3ak22

4a4t2

1
2ak223k

8a5t3
1

k3

16a5t4D e2k2/~4t !. ~C8!
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