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Pseudoscalar glueball mass: QCD versus lattice gauge theory prediction
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We study whether the pseudoscalar glueball mass in full QCD can differ from the prediction of quenched
lattice calculations. Using properties of the correlator of the vacuum topological susceptibility we derive an
expression for the upper bound on the QCD glueball mass. We show that the QCD pseudoscalar glueball is
lighter than the pure Yang-Mills theory glueball studied in quenched lattice calculations. The mass difference
between those two states is of the order &L/ The value calculated for the’d QCD glueball mass cannot
be reconciled with any physical state observed so far in the corresponding channel. The glueball decay constant
and its production rate id/ ¢ radiative decays are calculated. The production rate is large enough to be studied
experimentally[S0556-282(98)04315-X]

PACS numbdss): 12.60.Jv, 11.55.Hx, 14.80.Ly

INTRODUCTION However, the situation for the pseudoscalar channel is
problematic. One can expect that, because of the axial
Glueballs are one of the intriguing theoretical predictionsanomaly, quarks are crucial for @ channel physic$15].
of QCD [1]. The search for these composites is a long-As we mentioned above, the lightest 0 glueball predicted
standing problem of theory and experiment. We now havey the lattice calculations has mass about 2.3 G&V On
detailed experimental studies of the resonances in the masise other hand, there is evidence that #{&¢410) can have a
region up to 2.3 GeV, as well as great progress in lattic&ubstantial gluonic componeri8].?2 Hence, an important
QCD calculations. A number of interesting particles havequestion is how the quark degrees of freedom may shift the
been detected2]. Some of them, thep(1410,0 *), the  glueball mass in the 0" channel and whether one can iden-
fo(1500,0" "), the fo(1710,0"") and thef(2230,2" ") ap- tify the QCD glueball with any observed state. We examine
pear to have a rich gluon contelor a recent discussion of pgre these questions.
the phenomenology of these composites and a full set of |, ow energy QCD they’ (958) makes the dominant con-
refere'nces ses].) The'glueball candldates. can be COn.“:""‘redtribution to correlators in the 0" flavor singlet channel. It is
to lattice QCD prediction$.These calculations argue in fa- well known that the mass and decays of the meson are

vor of the following hierarchy of glueball masses: thé ™0 :

glueball is the Iighgt]est one vgith agmass about 1.5-1.7 Ge\;tr_ongly affected b)_/ the gluonic sector of the_theory. T_he

[9.10; the 2 * state, having a mass 2—2.2 GE8, is the axial anomaly and instantons play a key role in generating
t - finally, the 0+ d | lueball, bei _the mass and decay constant of th(? [15J (see also the

next ans, finaty, e pseudoscalar giuebat, being pre é)apers[5,20,2]] and references therginThis suggests that

dicted in the lattice calculations to have a mass 2. A ;
+0.2 GeV[9], is the heaviest one. Various studies of puretn® Pure 0 " glueball should be also affected by the singlet

Yang-Mills (YM) theory also support the picture outlined aq admixture in full QCD[22]. In what follows we will refer
above. In Ref[11] the theorem was proved that in pure to this mixed gluebalq state as a QCD glueball in distinc-
gluodynamics the pseudoscalar glueball is heavier than thgon with the pure YM glueball and the physical .
scalar one. Instanton calculatioff2] also confirm this pic- We are going to derive an inequality between the mass of
ture. _ _ ~the QCD pseudoscalar glueball and the mass of the YM
Notice that all the theoretical facts listed above are f'rmlyglueball as measured in quenched lattice calculati@hsin
established results of pure YM theory. One might wondere qerivation we closely follow the argumentation of Witten
whether this picture is affected when quarks are also |n[23] and Veneziand24], but keep track of the finiteN
cluded in the theory. Recent analysg®,13,3,14 of the effects by using the meihod of QCD sum rues. The dé-

scalar glueball candidates indicate an important mixing Wlthcay constant and mass for the QCD pseudoscalar glueball

the nearbyqq resonances. This leads to a modification of the | pe determined. We show that the QCD glueball is lighter
mass spectrum and the decay constants of the glueball statgs, the one of pure YM theory. Finally, we will ook &ty

[3,14]. The mass shifts due to mixing are approximately,iative decays and predict the production rate for the QCD
100 MeV or so, and the lattice predictions are in gOOdglueball state.

agreement at this level with the experimental data for the
0** and the 2* channeld3,14).

Note that the structure originally identified a%1440) is in fact
two states, then(1410) and then(1490) [16—19. The lighter

*Email address: gabad@physics.rutgers.edu 7(1410) seems to have a rich gluon contf8lt while the heavier
1The earliest theoretical predictions were based on QCD sum rulg(1490) is dominantlyss state possibly with some admixture of
[4] calculationg5-§]. glue[3].
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I. QCD SUM RULES AND THE WITTEN-VENEZIANO the NLO corrections it is convenient to adopt the Brodsky-
RELATION Lepage-MackenziéBLM) scale fixing procedurf25]. In the

In this section we are going to study the properties of theBL'vI scheme NLO quark loop insertions into the gluon
correlator of the vacuum topological susceptibility. In propagator are summed up into the redefinition of the effec-

. . . . . tive scale of the strong coupling constant. Hence, in the
Minkowski space-time this is defined as . L~ .
BLM scheme, the perturbative expansion fagcp in the
g° \2 iax( 0| T G2 next-to-leading order formally coincides with that fogy, .
3072 '] ¢ (0[TG], Keeping in mind that we have adopted the BLM scheme one
3 5 can write down the following relation for the spectral densi-
XG2,(x)Gh4Gh4(0)[0)d*x, (1)  ties in QCD and pure Yang-Mills thecty7]:

2

x(@*>=—Q%=

where G2,=3 €,,,3G5%; and @*327%)G,,G,, is the ~ ~ g2 |22 o
renormalized composite operator wighbeing the running pQCD:pYM:<E§) p 1+5? s’=as. 3

coupling constant.

This correlator has a different behavior in the vicinity of
Q2=0 depending on whether it is evaluated in full QCD or Before we turn to the resonance part of the spectral density
in pure Yang-Mills theory[23]. If light quarks are included Igt us make an i.mportant.comment. It (_jeals with the_ defini-
in the theory,xocp(0) is proportional to the product of the tion of the running coupling constant in QCD and in YM
quark masses and vanishes in the chiral limit. This fact igheory. The expression fary(s/ ) depends on the number
related to the absence of the theta angle in massless QCD. ® flavors Ny present in the theory. In pure YM theofy
general, the theta angle can always be rotated away by an0 and the coupling constant of this theory differs from the
appropriate chiral transformation of a massless fermioni@ne defined in full QCD. However, our goal is to stay maxi-
field. On the other hand, there are no massless fermions ifally close to what is used in quenched lattice calculations.
pure YM theory. As a result, the explicit theta dependencdn those calculations only gluon degrees of freedom are
cannot be removef23] and yyy(0) turns out to be a non- taken into account. But this is not the whole story. Quenched

zero number. lattice calculations effectively include some of the virtual
Let us consider the dispersion relation for the functionquark effects through the formal substitution of the QCD
x(Q?)/Q2: running coupling withN;= 3 instead of the coupling of YM
theory withN;= 0 (see Ref[10] for this discussioh We are
x(0)—x(Q% 1 (= p(s)ds ) using this formal method through the paper. In particular, the
o ;fo WJF subtractions.  (2)  theory to which we refer as pure YM is actually the theory

with some of the virtual quark loops effectively included

Following the standard QCD sum rule approdeH], the through the use of the QCD running coupling constagt

spectral density for this correlatop, can be decomposed instead of the pure YM running coupling. Thus, YM theory
into two parts. The first one consists of resonafipele) in our context refers to the model which has the full QCD
contributions and the second one is determined by the pefoupling constant, but nevertheless, differs from true QCD

turbative expansion by the absence afq bound states and the absence of quark
_ condensate effects. Let us stress again that these conventions
p(s)=pPo'es) +p(s/u?) B(s—so( 1)), differ from the ones normally use@dopted for example in
Ref.[26]) and are motivated by the quenched lattice calcu-
pPo'eY(s)= c,8(s—m?), lation procedure.
n After this remark let us turn to the resonance part of the

spectral density. This part for YM theory is assumed to be
where thec,’s are resonance residues,’s are corresgond— saturated by the pure glueball stag, and for QCD by the
ing masses, and, denotes the continuum threshold;is  »’ meson and QCD glueball staf The expressions for the
given by the perturbative expansion of the correspondingpectral densities are
correlator. We are going to work in the next-to-leading order
(NLO) of the perturbative expansion. In the case at hand, the

leading contribution t is scale and scheme independent.
However, the next-to-leading term depends on the renormal-

pym(S)= féom?;05(3_ m(zao) +pym(s) 8(s—sp),

ization scheme. In leading orderis fixed by the diagram poco(s) = famgs(s— mé)+ff],mi,5(s— mf],)
which contains only gluon propagators. This diagram is the _
same for QCD and pure Yang-Mills theory. Hence, in lowest + poco(S) (s—sy), 4

order pocp=pym - However, this relation does not hold in

the NLO. There are quark loop corrections to the gluon

propagator in QCD. Hence, the result forin NLO QCD 3In this case the BLM scheme leads to the better convergence of
differs from the one of pure YM theory by quark loop con- the perturbation expansion. The NLO corrections are large in the
tributions. In order to fix the scale or scheme ambiguity ofminimal subtraction MSchemd7].
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wheres, ands; denote the continuum thresholds for YM densate appears at ordeQf/and yields a new term in ad-
theory and full QCD respectively. Other quantities in thesedition to the operato®g. The additional term is proportional

equations are defined as follows: to a§<aq>2_
9 Now we can turn to the QCD sum rule analysis. It is
(0 9 ,G2 G2 |Go)y=fg m2 useful to apply the Borel transformati¢d] (with the Borel
32me YT o o parameter denoted by1?) to Eq. (2) with the phenomeno-

) logical part on its left-hand sidéLHS) and the operator

g a =a . 2 product expansioffOPE) on its RHS. This leads to the fol-
(0l 3272 Gwew|G>_meG' ) lowing sum rules:
2 pole ~
(0| 32772G;wGuv|77 y=f,m., . e S ds= . e S ds
with mg being the QCD glueball mass)g, being the YM +7-r( g2 )2 o . &+ . )
glueball mass, andg and fg  the corresponding decay 327* 4 M2
constanté. -

Before we turn to the application of the QCD sum rule
method let us first compare the operator product expansions pole ~
(OPB for the quantityB(Q?) = — x(Q%/Q? in QCD and in f me_stszcos(S) ds— f Sle_s/szocD(S) ds
YM theory. In leading order only the gluon fields contribute Jo S 0 S
in both cases. The results of calculation of these OPE’s can

!

be found in Refs[5,7,6]: 9* \¥ _, 6
[ g +7T(_327T2) D4+W+--- .
9> \? 2 > Dy Dg| .
OPE 2y _ 2
Bou1Q )_<32ﬂ.2) Q (?IOQMELMJF of " ge) Tinst. Taking now the limitM2—c« we get
2 2 > 2 / / 2 o @ g \?
g 4 6| . —xym(0)+femg =—+m7 ) Dy, (8
OPE 2y — 2 YM Gy ''G 2 4
BQCD(Q )= ( 3277_2) Q (?b%'f' a + & +Inst., 0 P 2 327
(6) as? 2 )2
2 2,2 2 331 9 '
where meG+f ,m_,= 2 + W) D4. (9)
D,=4(0|G3,G2,|0), Dg=8gf*"(0|G3,GbsG5,/0), We have mentioned already that our goal is to study how
the QCD glueball mass differs from the one of quenched
D,=D,+ O(asmq<a(1>), D4=Dg+O0(2(qa)?). lattice gauge theory. However, Ed8), (9) alone are not yet

(7) enough to determine whether that difference really exists.
We need an additional relation. One way to get the new
The instanton contributions in E¢p) are suppressed § ",  relation is to use the dispersion relation for the correlator of
wheren=12[5]. Since for practical calculations we use Eg. the topological susceptibility (Q?) itself
(3), the NLO perturbative corrections are not explicitly

shown in Eq.(6) for brevity. Let us make some comments a1 »p(s)ds )
about the quantitB35. As we mentioned above, the per- X(Q9)=— o 5+0Q2 + subtractions.

turbative part of this correlator in the NLO is the same as that

O%ESI\FA’E-ZHOW?VEE there are nonperturbative contributions injn order to get rid of the subtractions let us use again the
BS(P:D(Q) which do not appear in the expression for Borel transformation. Applying this transformation to the
B

Yu(Q?). Those are related to the quark condensate. Theorrelator one gets the following relation:

first such contribution modifies theQ# term in the OPE for

B9es. The new contribution is proportional tasmq(qq). 1

*© 1 (so o~
—s/M? pole —— —s/IM?
The next nonperturbative correction related to the quark con- TJO PP s)ds ﬂfo € p(s)ds

g2 2 1
: (e [Povolize] )
“The gluonic operatorg?/3272)GG appearing in Eq(5) has an
anomalous dimension so that the constdats fg andf,, are not
renormalization group invariant quantitiga7]. For any of thred’s
one can construct the renormalization group invariant constant by °In this way one derives the finite energy sum rJlg8] modified

means of a finite multiplicative renormalization 86 [28,29. by condensate contributiof81].
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where we dropped the subscripts distinguishing QCD from asg _ asg _
YM theory. Taking the limitM2— o we obtain the following —xym(0)+ féomé(): —-+Da, féom‘é(): — ~Ds.
relations:
(12
3 2 2
asy g as; as
2 4 _ 79 2 2 = 2 4 =
fe,Me,= 3 W(ﬁz) Ds, fémé+f”,mﬂ,=7+D4, féméJrf”,mﬂ,:?—DG.
(13
as g2 \2
fém‘éJrffI,rni‘y,:?_W(m Dg. (10) Before we go further let us make some comments. Two

equations given irf12) contain only two unknown$G0 and
So (assuming that the YM glueball masg;  is known from

tions between the quantities defined in YM theory and in fuIIIattlce calculationg9)). Hence, those two equatlon_s can in
QCD. For that goal we are going to use the Witten_general be solved and the valuesf@[) andsg can uniquely
Veneziano arguments’ but a|0ng with |eading terms we keeEe determined. Th|S iS done in the next Section. On the Other
corrections of order N;. In the large N, limit fim3 and, the two equations if13) contain three unknownsg
—fg,mz,, and in accordance with the Witten-Veneziano @1dS1 andmg . So one cannot determimag uniquely. The

ot 5 9 only thing one can do is to calculate the decay constgnt
(WV) relatior? [23, 24 xym(0)=—f7,m; . As aresult the 504 massn for chosen values of the continuum threshold

left hand sides of Eq48) and(9) are equal in the largBl; s, which are dictated by previous analyses of the flavor sin-
limit. On the other hand, the second terms on the RHS ofjjet pseudoscalar channel. This calculation is also carried out
Egs.(8), (9) are also equal in that limitdifference between pejow. Before we turn to the numerical simulations we can
them is of order MZ). So, we come to the conclusion that try to extract some analytic relations for the QCD glueball
limy_.~(S1—Sp)=0. The same result can be drawn from mass and decay constant studying the system of equations
consideration of Eqg10) in the largeN, limit. (12), (13). The relation between the continuum threshold pa-
Since we are going to keepN{ corrections as well as rameters(11) allows one to set the equation$2), (13) as
leading order terms let us introduce the following parametrifollows:
zation for the continuum thresholds

Having Eqs.(8)—(10), one can use them to find the rela-

ao
FEm2+12,m2, == xyu(0)+ 3 mé + =5, (14)

5 Ne
$1=Sp+ —, (11
Ne aéd
famg+12,m), =2 mé +—s3. (15)
where § is an unknown quantity which is of order of the o o N

unity in the largeN, limit. In what follows we are going to L .
Y 9&Ne going Now the key observation is that in pure YM theory there are

solve the system of equatiof®)—(11) keeping track of M. )
corrections. It is convenient to introduce the following nota-"° light meson states, thus the de€ay— 3 does not occur

in this theory. On the other hand, this decay should easily go

tions . )
in QCD. Hence, the continuum threshold for QGPshould
2\ 2 2\ 2 be less than or equal to the continuum threshold for YM
D4<e>577(§2) D) » DQ(G)EW(@Z) D) - theory’

$1<sy or 6=<0. (16)

Based on the rules of the lar§ expansion one can see that 5 ) S )
Thus, up to order N7 and in the chiral limit the following

) inequalities exist between the quantities defined in pure YM

-~ 1 qq)?
DA_D4OCO<mq,W), Dé—DGOCO <q,\?4>
c c

theory and in full QCD:

2 2
famG+17,m?,=<—xym(0)+fg mg | (17)
Using the notations given above, and neglecting all contribu-
tions of order 1NZ and higher, in the chiral limit one can fémé+f2,m4,sf(23 mg . (18
. n 7 0 0
rewrite the system of Eq$8)—(10) as follows:
Let us point out that the inequalitfl?7) yields the Witten-
Veneziano relation in the limit of infinit&l.. Indeed, in the
®n our conventionsy is defined in Minkowski space-time and largeN¢ limit fémé_,féoméo, Sp— S1. Hence, in that limit
turns out to be a negative quantity. One can turn to Euclidean
space-time in Eq(1) making the substitutiong,— —ix, and GG
—iGG. The Euclidean quantity, which is used in the lattice calcu- I am grateful to Glennys Farrar for bringing this line of argu-
lations, is a positive numbey5Lc'(0)= — xWrk(0). ments to my attention.
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(17) is saturated and it turns into the Witten-Venezianothe following numerical values forf, ,=(29+3) MeV,

(WV) relation[23,24) xy(0)=—f%,m?,. m, =(957.77:0.14) MeV, mg =(2.3+0.2) GeV [9],
Let us rewrite(18) in the following form: ag(2 GeV)=0.33+0.05. There are a number of estimates
for the gluon condensate in the literatse=e Refs[4,33]).
A fGO 2 A f 2 . We take the world average value of these calculations
Me= To) Moo | Fg) M 19 ((as/m)G2,)=(2.5+0.9) 102 GeV*. The corresponding

values forD, and Dg are D,=(4.0+1.7)10 * GeV* and

This inequality allows one to calculate the upper bound orPg=(0.7+0.3)10 * Ge\~.
the pseudoscalar glueball mass in QCD. The inequality There are also several lattice estimates for the topological
shows that if the values fdig_andfg are sufficiently close susceptibilityxyy (0) (for a recent review se84]). For our

0 T i Eucl _
to each other, then the QCD glueball is lighter than the glue€stimates we take the result of R¢85], xyy (0)=(175
ball of YM theory. In the next section, based on numerical=5 MeV)*, which is also in good agreement with an earlier
studies, we demonstrate that this indeed is the case. theoretical estimat8 [24].

It is interesting to check the largd, behavior of(19). Now we can make the prediction for the matrix elements
Notice that, since the anomaly disappears in the limit wherPf the gluonic operator acting on the pseudoscalar pure YM
N.—, there is no flavor singlet meson-glueball mixing 9lueball state with massic =(2.3+0.2) GeV
term anymore in the effective Lagrangifd2] in that limit. _

One should therefore expect to have equal masses for the <0|g2GZVwa|GO>=(45i 9) Ge\l. (20
glueballs in QCD and pure YM theory whé&h— . Recall-
ing that f o Ng, m?,o1/Ng, f&,m& ~1 and substituting
these into Eq(19) we get

The uncertainty in this result dominantly comes from the
error bars associated with the value for the topological sus-
ceptibility and also with the valdéof f,, . The same matrix
element for they’ meson state has the following numerical
m2 _méo(i, value (0|g?G3,G3,|7')=(8.4+0.8) Ge\’. The values of
0 N¢ the matrix element for the QCD glueball st&ewill also be
given below. Notice that all the numerical results for the
which is consistent with one’s expectation. scale dependent quantities such as the decay congignts

fe and the matrix element in E§20) are to be taken at the
normalization point approximately equal to the value of the
Il. SOME ESTIMATES AND PREDICTIONS glueball mass. Also, all the results presented above should be
. . . given 10-20 percent systematic error bars associated with
. Let us now turn to.numencal estimates. First of all let USihe approximations and the method we have used.
list all the approximations we made deriving E¢E2)—(15). As we mentioned already we checked whether the pres-

There are scheme dependent NLO perturbative correctio
involved in the derivation. Besides that, we worked in thenesnce of then(1295), then(1410) and thep(1490) mesons

chiral limit neglectingu, d and, most importantlys quark
masses. Hence, the— 7' mixing and all other nonsinglet _ _
pseudoscalar mesons are also neglettBelow we show _Q\Nh'Ch corresponds td-,=(105-12) MeV taken in conven-
that the contributions of they(1295), the»(1410) and the tional normalization for the singlet axial current.
7(1490) in the sum rules are rather small and can also beloln order to study whether our results are sensitive to the numeri-
neglected cal value of yyu(0) we varied the value of this quantity from
. , : . .

If one knew all the numerical values for the quantities on(100 MeV)" to (190 MeV)'. Outside of the interval given by

the RHS of Eq(19), one would be able to predict the upper these numbers the system of equations does not have a solution. On

the other hand, inside the interval the results are rather insensitive to
bound on the QCD glueball mass. Unfortunateilé(d andfg the value ofyyy(0); varying xy(0), So changes in the region

are not known. We can use however the sum rules derived i 8_g Gev and_varies in the interval 24—34 MeV.

. . 0
the previous section to calculate the value fgr. Indeed, The only available lattice calculations for the matrix elements of
consider the equations given (b2). One can solve this sys- the gluonic operators were presented in R86]. The predictions
tem with fg ands, treated as unknowns. The numerical of Ref. [36] differ from the theoretical estimates in the case 6f0

solution for that system yields the following results_ gha_nr;_el by a factor oLZtortg[d|2]. 'f“ ”;e psfegdcisoczl_?fr channel the
eviation IS more substantial; a Tactor o — Irrerence occurs
=(27+3) MeV ands,=7.4+0.5 Ge\~.

- . hen one compares the results of the QCD sum rule calculations of

In calculating the numbers given above we have Use‘ﬁ:e matrix elemen(20) (our result and the result of R¢B7]) with
the respective prediction of Ref36]. That discrepancy could be
decreased by a factor of 2.7 if one uses the results of[R&fwith

8All these corrections are expected to be of orderthe updated value of the pseudoscalar glueball mess-2.3 GeV
O(My g.s/Agueba), WhereA g epai=1.5-2 GeV is an effective [9] (instead of the old vaIumGO=l.4 GeV implied in Ref[36]);
scale above which the existence of glueballs becomes important fdrowever further theoretical and lattice studies are needed to clarify
hadron physics. this issue completely.
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TABLE I. Sum rule results.

s, GeV? fo MeV mg GeV s, GeV? fe MeV mg GeV
7.4 29+2 2.27+0.04 5.0 21.52.5 1.9-0.05
7.0 28+ 2 2.2+0.04 45 26-3 1.8+0.1
6.5 26.5-1.5 2.15-0.05 4.0 1&35 1.73-0.12
6.0 25+ 2 2.07+0.05 35 164 1.61+0.14
5.5 232 1.97+0.05 3.0 13.55.5 1.470.20

could affect our results. We have included the contributionsvas worked out in Ref.39].* One can consider the ratio
of these resonances in the sum rules used above. In order to

determine the decay constants of these resonances we used r= M
the experimental data for the production rate of these states L3l p—n'"y)

in J/¢ radiative decay416,38. The values of the decay
constantgdefined as in Eq95)] are rather small numbers: and is completely defined by the properties of the pseudo-

Fo(1a90=(7.521.9) MeV, f,1410=(4.8-6.7) MeV and  gq1ar mesons produced in the decay. Assuming that the de-

fy(1205= (4.521.0) MeV. Including these numbers into the ¢4y dominantly goes through the exchange of the intermedi-
sum rules one can see that the final results for the gluebale gluons in the pseudoscalar state, the ratioan be

This ratio is independent of th& ¢ meson wave function

mass and decay constants change unsubstantially. rewritten as followg 39];
Now let us turn to the calculation of the mass and decay 5 5
constant of the QCD pseudoscalar glueball. Unfortunately, |(0|92GZVGiV|G)|2/ mﬁ,w— ma

2
our method does not allow one to determine these values +0O(ag).

uniquely. The set of two equations given ({3) contains

three unknown_st, mG_and s;. Below we present th? re- Using the numerical results listed above in the table one can
sults of numerical solutions of these equations for different5icylate the ratiacr, matrix eIemen&z(OlgzeivGZV|G>

values of the continuum threshotd. The values fols, are  ang decay widtH (J/— Gy) for the QCD glueball state.
chosen between the upper bound determineds@ss,  These results are summarized in Table II.
=7.4 GeV and the lower bound given t3(=3 Ge\* (be- The numerical values for the decay width of thes me-
low this value the continuum threshold comes very close tGon into the QCD glueball and photon are substantially large
the resonance mass square and applicability of the sum rubend this decay can be observed in recent experimental stud-
alpzproach breaks downThe results are summarized in Table jes.
l.

As we see from the table the QCD glueball is lighter than CONCLUSIONS
the glueball of YM theory. However, it is hard to identify the
QCD glueball with then(1410). The very low value for the
continuum threshold is needed in order to have QCD glue
ball mass at about 1.4 GeV.

Though we cannot determine uniquely the value for the TABLE II. Some predictions.
continuum threshold from our consideration, one can use the

r= = ; 2
(0/g?G2,83,| ') |2\ m2,—m?,

Let us summarize our results. We studied whether the
pseudoscalar glueball mass in full QCD differs from the one
determined in the quenched lattice calculations.

estimate given in Ref26] s;~10m>=~6 Ge\2. If this num- fo Mev  mg GeV  k GeV rratio I' kev

ber is accepted, then in accordance with Table | the QCDg+2 2927-0.04 47.2-5.0 4.2+1.1 1570.4

glueball mass iang=[2.07+0.05+-0.3 (syst.] GeV and

decay constant;=[25+2*+4 (syst.) MeV. 28+2 2.2+0.04 42847 4210 1570.37
Having these numbers at hand one can predictJihe 25+ 2 2.07+0.05 33.8-4.5 3.7-1.0 1.38+0.37

decay width into a glueball state and photdhy radiative
decays are very effective tools in studying the spectroscopyl->-25  1.9-0.06  24.5-46  2.8-11 1.0:0.4

on light mesons. In the present case we are going to degk, 5 ¢ 173012 17.0:5.2 1812 0.67-045
with the processes likd/#—R(0~ ")y, whereR stands for
the resonance being considered. The theory of these decay85+5.5 147020 9.2-75 0.75-1.4 0.28:0.53

2In Table I and also Table Il below only the error bars associated
with the method of numerical calculations are given. 135ee also the approach developed40, 3.
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An inequality which sets the upper bound on the mass ofiuction rate of the QCD glueball in the radiative decay of the
the pseudoscalar glueball in QJEq. (19)] is derived. In  J/4 meson,I'(J/y—Gy). For a 2.07 GeV glueball' (J/
order to calculate that bound numerically one needs to know-G1y) is about three or four times greater than for the
the decay constant of the QCD 0 glueball and also the meson. Thus, the prediction for the branching ratio for that
mass and decay constant of the pure YM glueball. process is large enough to be studied experimentally.

The decay constants in this work are calculated using the Note addedAfter this work was done we became aware
QCD sum rule approach, while the value for the YM glueballof the papef37] where the QCD sum rule method was used
mass is taken from lattice calculations. The value calculatetb calculate glueball masses and decay constants in scalar,
for the decay constant of pure YM glueball is shown to bepseudoscalar and tensor channels. The calculations in Ref.
important for self-consistency checks of lattice results. [37] are done(without referring to lattice resultausing the

We found numerically that the mass of the QCD glueballoptimization procedure with respect to Borel parameters and
is less than the mass of the glueball of pure YM theory. Thecontinuum thresholds. Our results for the mass and decay
values for the 0" QCD glueball mass and decay constantconstant of the pseudoscalar glueball are in good agreement
(for the phenomenologically preferred value of the con-with the predictions of37]. We are grateful to M. Schwetz
tinuum threshold parameber are mg=[2.07=-0.05 for bringing Ref.[37] to our attention.
+0.3 (syst] GeV and fg=[25=2+4 (syst) MeV. If
these numbers are accepted, then there is no particle discov-
ered so far which might be identified with the QCD pseudo-
scalar glueball. Further experimental searches in the 2 GeV | am grateful to Glennys R. Farrar for bringing this prob-
region are needed. In this case the status of#f410) is lem to my attention and for valuable discussions and sugges-
unclear. tions. The author wishes to thank H. Neuberger and T.

In order to help resolve this question, we predict the pro-DeGrand for useful discussions.
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