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As a first step towards a nonperturbative investigation of the gauge-fiRame approach to lattice chiral
gauge theories we study a(1) model with an action that includes a local gauge-fixing term and a mass
counterterm for the gauge fields. The model is studied on the trivial orbit so that only the dynamics of the
longitudinal gauge degrees of freedom is taken into account. Mean-field and numerical calculations reveal that
the phase diagram of this “reduced” model contains, in addition to ferromag(feli), antiferromagnetic
(AM) and paramagneti€PM) phases, also a novel so-called helicoidal ferromagn@iD) phase with
broken U1) symmetry and a nonvanishing condensate of the vector field. The continuum limit is defined by
approaching the FM-FMD phase transition from within the FM phase. We show that the gidhaychmetry
is restored in this continuum limit, both numerically and in perturbation theory. The numerical results for the
magnetization in the FM and FMD phases are in good agreement with perturbation theory.
[S0556-282198)06417-0

PACS numbd(s): 11.15.Ha

[. INTRODUCTION neutral left-handed fermion pairs up with the right-handed
fermion to form a Dirac fermion which in the continuum
All existing lattice fermion formulations have in common limit decouples from the gauge field]. Later, arguments
that they are in conflict with chiral gauge invariance. It is have been given that the spectrum in a symmetric phase is in
well known that for example the Wilson terfii], which is  general vector-likg8,9].
used to remove the 15 unwanted species doublers at the cor- The details of the mechanism which spoils the chiral na-
ners of the four dimensional Brillouin zone, is not invariant ture of the fermions differ from model to model, but remark-
under chiral gauge transformations, because it has the struably the Higgs fields(longitudinal gauge degrees of free-
ture of a mass term. dom) play the key rolgfor recent reviews see Ref®, 10).
Most fermion formulations can be rendered gauge invaridt is therefore natural that one should try to use gauge fixing
ant by inserting Higgs fields. The Wilson term for instanceto control the effect of these longitudinal gauge degrees of
turns into a Wilson-Yukawa term which is invariant under freedom[11].
chiral gauge transformationg,3]. These Higgs fields do not ~ Gauge fixing has been put forward some time ago as a
need to be added by hand. They appear automatically in th@ethod to discretize chiral gauge theories on the laficg
gauge noninvariant model when performing the integratiorlt was proposed in Ref12] to use perturbation theory in the
over all gauge fields in the lattice path integral with the Haarcontinuum as guideline and transcribe the gauge-fixed con-
measurd4]. The Higgs fields can be identified with the lon- tinuum path integral to the lattice. Since the fermion part in
gitudinal gauge degrees of freedom. the action breaks chiral gauge invariance, the lattice model is
The failure of most proposals for lattice chiral gauge theo-not invariant under Becchi-Roaet-Stora-TyutBRST) sym-
ries, such as the Eichten-Preskill mo@g), the domain wall metry. The symmetry-breaking terms are compensated by
fermion model with waveguidg6] or the Wilson-Yukawa counterterms that have to be added to the action. In four
(Smit-Swift) model[7] is connected to the dynamics of these dimensions only the counterterms with dimension smaller
Higgs fields. than or equal to four need to be considered. They should
In the Wilson-Yukawa model, for example, it has beenfurthermore respect all exact symmetries of the lattice model.
shown, that the 15 unwanted species doublers can indeed fB&e coefficients of these terms then have to be adjusted such
removed from the spectrum by means of the Wilson-Yukawahat BRST invariance is restored in the continuum limit. A
term in the strong Wilson-Yukawa coupling symmetric lattice discretization of a nonlinear gaug%u{aMAﬂJrAi}
phase. The model fails however because the left-handed fer 0, has been introduced in R¢L1], while a lattice discreti-
mion, which is the one that is supposed to couple to thezation of the Lorentz gaugg ,d,A,=0 was later given in
gauge field, forms a fermionic bound state with the HiggsRef. [13]. It was pointed out in Ref[11] that the lattice
field that does not transform under the gauge group. Thiaction of the gauge-fixing approach can be rewritten with
Higgs fields and that on the trivial orbit the gauge-fixing
term reduces to a higher-derivative scalar field theory.
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The Higgs field represents the longitudinal modes of theransition, and for a certain class of observables. The situa-
gauge field. The central question is then whether the fluctudion on the FM-FMD line closely resembles massless two-
tions of the longitudinal modealias the Higgs field are suf- dimensional field theories, whose infra-red divergences were
ficiently reduced by the gauge-fixing term that the chiral na-extensively studied long add7]. The infra-red divergences
ture of the fermions does not get spoilgtl]. In order to  are removed by performing a resummation, and we believe
study this question, it is useful to introduce the notion of athat the resummed weak-coupling expansion is reliable for
reduced modelThe reduced model is obtained by keeping@ll observables. This expectation, which is based on the close
only the Higgs fields, setting the gauge field equal to zero'€lationship with two-dimensional theories, is supported by
(In the model without explicit Higgs field, this corresponds the quantitative agreement with the numerical results of Sec.

to restricting the gauge field to the trivial orbiThis reduced

model should then have a continuum limit with free fermions . N . ) .
in the desired chiral representations of the gauge group. not established that it is the leading term in any systematic

In this paper, we will consider the reduced version of the(6-9- 1d) expansion. However, in view of the qualitative
purely bosonic model with compact(l symmetry that agre_eme_nt with _the numerical r_esults, the mean-field ap-
apart from the usual plaquette term includes the LorentProximation provides an exp_lana'uon for the structure of the
gauge-fixing term of Ref{13] and a mass counterterm for phase diagram. We emphasize here that our analytlcal~under—
the gauge field. We will derive the phase diagram of thestanding is on a much better footing in the important lakge-
reduced model, using mean-field and numerical techniquegegion, where, as discussed above, tressummetl weak-

We will demonstrate the existence of a continuous phasgoupling expansion is valid.

transition between a phase with broken symmetfM

phaseé and a so-calledhelicoidal ferromagnetic(FMD) Il. THE MODEL

phase, where a continuum limit can be defined. The nature of ) L _

this continuum limit will be investigated using both pertur- !N the continuum, gauge fixing is needed in order to make
bation theory and numerical simulations. In the frameworkiN€ integration over gauge orbits well-defined. The con-
of the Smit-Swift model we will demonstrate in two forth- inUUM gauge-fixed action for a chiral gauge theory can be
coming publications[15,16 that the unwanted Higgs- Writtenas

fermion bound states do indeed not emerge, when fermions _ a a.

are coupled to this model. The spectrum of this fermion- Se= Se.6(Aw) T Ser Ay YL R

Higgs model contains only left-handed fermions which a a. s

couple to the gauge field, if we would turn it on again, and Seg (A + Seghost A 1€.€)- @D
right-handed free fermions which decouple from the gauggyee

field in the continuum limit.

The outline of the paper is as follows: In Sec. Il we start _ _
from the full action of the gauge-fixindRome approach and ~ ScH A% ¥, ¥r) = f d*x{ i () D ¢ (X) + ¢h(X) Bipr(X)}
reduce it step by step to the “reduced model” which will be 2.2
the subject of this paper. In Sec. Ill we determine the phase
diagram of the reduced model in the mean-field approximais the fermionic part of the action. Only the left-handed com-
tion as a function of two parameteksand’x. The magneti- ponent of the fermion couples to the gauge fiddg(A7) is
zation is calculated in the weak coupling expansion in Secthe gauge actionscyg,f_(Ai) the gauge-fixing action and
IV. We demonstrate that the magnetization vanishes wheg_ ahostAZ ;) is the Faddeev-Popov ghost action. For the
approaching the FM-FMD phase transition. Section V deal§ grentz gauge,
with the results of the numerical simulation. The numerical

As for the mean-field approximation of Sec. Ill, we have

results for the phase diagram are presented and compared 1 2
with the mean-field results in Sec. V A. The perturbative Sc,g.f.(AZ)zz_g > (2 %AZ) ; (2.3
results for the magnetization are compared with numerical a e
data of high precision in Sec. V B. A brief summary of our
results and an outlook is given in Sec. VI. a s =S ¢ 2 c

We conclude the introduction with a note about method- SoghostA,1¢.C) az:? Cal 92,607+ OTabcAud,u] o,
ology. As follows from the results of Sec. IV, the continuum 2.4

limit of the purely bosonic theory is described byfree . o
scalar field 6(x) that has an unconventional—higher- Wherec designates the complex ghost fieidis the gauge-

derivative—kinetic term, and which is periodic undegx)  fixing parameterg the gauge couplingd;, the gauge field

008 22, The o) i crial nhe sense tha 20616 76 e Sucle consants of he gsuge g, The
the coefficient of the conventional kinetic terna, )2, van- . mp 9 . .
: s e . tions which replace the local gauge invariance.
ishes at the FM-FMD phase transition. On the latti¢®) is o . : .

~ } The action is transcribed to the lattice using the compact
not free, and I plays the role of a coupling constant. The |5ttice link variables

weak-coupling expansion in &/is systematic, except for
infra-red divergences, which occur ongt the FM-FMD U x=expliagA,y) G, (2.5
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wherea denotes the lattice spacing. In the following we will 1
seta equal to one. The compact link variables are elements Se(U) = 7 > {1-ReU,,}, 29
of the gauge group G and are assigned to the lattice links X

(x,x+ u). The action on the lattice can then be written in the

form Ser(U)=%{ > O(U),0(U),,— > B2,
X,Y,Z X
S=Sa(U)+S(U: i, the) + Sy0(U) (.10
+SghosfU;C,0) + S (Ui, ¥r;€,0).  (2.6) Su(U)=—x2 {U,+ Ul (2.11)
X

Only the plaquette actioBg(U) is manifestly gauge invari- _ ot i

ant. To transcribe the fermion acti¢®.2) to the lattice one  HEre Uum=U o zU y sUs 18 the usual plaquette

has to choose a particular lattice fermion formulatiike ~ Vvariable,

Wilson, domain wall or staggered fermign#ll known lat-

tice fer.m|on. formulations are in conflict thh Ioce_ll chiral D(U)xy=2 {UMx5x+;L,y+UTX,

gauge invariance and, as a conseque8g@); ¥, ,¥g) is not 3 s

invariant under BRST symmetry. This means that counter- (2.12

terms have to be added to the action so that this symmetry is . ) .

restored in the continuum limit. We have to consider alliS the covariant lattice Laplacian,

terms with dimension smaller than or equal to four, which Voo V2

respect all exact symmetries of the lattice model. BXZE M) 1
In this paper we will not consider fermions and focus only u 2

on the discretization of the bosonic part of the acti@ri). It )

turns out that also the gauge-fixing part of the action, i.e. thavith

combinationSy ; (U) + Syes{ U C,C), should be formulated 1
on the lattice such that BRST symmetry is broken. The rea- VMX:_‘(UMX_ULX):gA/LX+ O((gA,0%), (214
son is a theorerfil8] which states that the partition function 2i
itself, as well as expectation values of gauge invariant ob-
servables, vanish in a lattice model with exact BRST invari-and

ance, due to the existence of lattice Gribov cofiese also

6,

xf;},y_ 25x,y}

s

(2.13

~ 1
Ref.[19]). K=57—. (2.15
As a second simplification we choose(1) as gauge 249

group. This choice makes both the analytical and numerical . . - .
calculations considerably easier since the ghost action in Ed,1€ reader can easily verify that the gauge-fixing action
(2.4 does not depend on the gauge potential and there afg-10 reduces in the classical continuum limit to Hg.3).
also no counterterms which couple the ghosts to other fieldsne 9auge-fixing terni2.3) can be transcribed to the lattice
in the action. This implies that in the Abelian case the ghost! Many different ways. The choice in E@.10 is moti-
sector can be dropped completely from the path integral. Vated by the following important propertig$3]:

Finally, as a third simplification we include only the (1) The action(2.10 has a unique absolute minimum at
gauge-boson mass counterterm for the gauge fikid is the U =1, validating the weak coupling expansion.

only counterterm of dimension twand ignore all counter- (2) The action(2.10 is not BRST invariant. This is related
terms of higher dimension. The coefficient of this mass  {y the fact that it cannot be written as a square(@f

counterterm has to be tuned such that the photons are mass- discretized version of the gauge-fixing functional,
less. For all dimension-four counterterms without derivatives
it has been argued in Ref13] that they do not alter the 2,0,A,. The theorem of Ref18] therefore does not
phase structure of the physically relevant region of the phas
diagram(the existence of a continuous FM-FMD phase tran-
sition). We believe that this remains also true if all other
counterterms are included in the action.

The U1) model we are studying in this paper is then
defined by the path integral,

apply in our case.
&) The action(2.10 leads to critical behavior in the con-
tinuum limit g—0.

In connection with item(1) we note that the naive discreti-
zation of the gauge-fixing action

23 (s 2
Syr(U)= Vix—Vux-a)| » (2.18
Z=JDU exp(—S(U)) (2.7) 0tV = 2597 < m Vi Vixi
o where Eq.(2.14 was used to transcrib&,,, in Eq. (2.3 in
where the action is given by terms of U, does not have a unique minimum. It was
demonstrated in Refl11] that this action gives rise to a
S(U)=Sg(U)+Sy1(U)+Sy(U), (2.8  dense set of lattice Gribov copies. Such a dense set of Gribov
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copies may still give rise to strong fluctuations of the longi-
tudinal gauge degrees of freedom, a situation which we want
to avoid from the start.

Some first information about the phase structure of the
model is obtained in the constant field approximation. In this
approximation the lattice link field in Eq2.5) is replaced by
a constant gauge field that is independentxofAll terms
which contain derivatives of the gauge field vanish when we
insert this constant gauge field into EQ.8) and therefore L
we obtain an expression for the classical potential. After ex-
panding the resulting expression for the classical potential in
powers ofg we find

VCI(A#):K{QZE AL+
o

4
2 (2 A2><2 A+l (21 .
2¢ m " m 13 b
K
where the--- represent terms of higher order gf. The :%é@; ' ' IFNII L |
coefficient of the term quadratic iA, has to be tuned such 0 b B:ézao“ e
that the gauge-boson mass vanishes. The value where I ?@ mgggﬁﬁ%%ﬁ%%%%ﬁﬁiﬁg
the gauge-boson mass vanishes at a given valgé défines s P e o QQgAAA .
a critical point kgyevp(92). Using Eq.(2.15 we can also - ‘g PMXX 1
replaceg? everywhere in the series by. At tree-level we Rr gggéx x ]
find, from Eq.(2.17), | eéAszxx i
© | AM 86 AL i
~ 4l ; 4 FMD |
Kem-emp( ) =0, (2.18 | : 88 |
z 2
L ; R _
L . . . ~ . L (a2 4
which is a good approximation only in the largeregion of 6 5 68A
the phase diagram. A first glance at the phase diagram in Fig. Rl 68A j
1 (which was obtained on the trivial orbit, i.eU,,, L 88,
=9ng+;) shows that the mean fiel#Fig. 1(a)) and numerical - (b) 6&5@:
results(Fig. 1(b)) for the FM-FMD phase transition at large -8 o | oy
« are indeed very close to the=0 axis. We will show later 0 0.1 0.2
that the critical couplingcgm.rvp(%) is shifted by perturba- K
tive corrections to a small positive value. - _
The minimization of Eq(2.17 shows that FIG. 1. The ,«) phase diagram of the reduced mod224

contains four different phases: a ferromagnét1), an antiferro-
magnetic(AM), a paramagneti€PM) and a directional ferromag-
(2.19 netic (FMD) phase. The phase boundaries in the mean-field ap-
proximation, obtained in the infinite volume limit, are displayed in
Fig. (a). Figure (b) shows the numerical results for the phase tran-
sitions which were obtained by scanning the parameter spage in
direction on 4 (triangles, 6* (crossesand & (circles lattices. The
for all w=1,...,4[13]. This implies thatk= kgym.rmp=0 COr-  error bars are omitted in all cases since they are smaller than the
responds to a phase transition between a ferromagi@ds  symbol size.
phase, wheréA ,) vanishes and the gauge boson has a non-
zero mass, and a so-called FMD phase with a nonvanishing TO investigate the properties of the modgl8) beyond
vector condensatéA ). It will become clear shortly why the constant field approximation we can study fluctuations
these phases are called ferromagnetic. The abbreviatictfound the classical ground state in the FM and FMD phase
FMD stands foferromagnetic directionalo express the fact by expanding the observables in powersgsf or alterna-
that the vectorial vacuum expectation val#e,) induces a tively powers of 1%, cf. EqQ.(2.15.
space-time direction and that, as a consequence, hypercubic Next we demonstrate that the model defined by the path
rotation invariance is broken. The continuum limit of the integral(2.7) is equivalent to a gauge-Higgs model which is
model corresponds to the continuous phase transition benanifestly gauge invariant. The lattice path integral in Eq.
tween the FM phase and the FMD phase. (2.7) can be rewritten af4]

(9A,)=0 for k=Kem.rvp

for k<«ememp, <gA,u>:i(|K_KFM-FMD|/(67<))l/4
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Z:f DU eXIO(—S(U#x)) K~>—K—327<, 7(%7(, by— €xy s (2.26

where
= f DU exp(— S(g.U ,,0y, 2))
&=(—1)*, I(x)=2 x,. (2.27)
=J DUD ¢ exp(—S($iU xbes;))  (2.20 g

This implies that the phase diagram is symmetric under re-
where in the second line we have performed a local gaugliection with respect to the line
transformation,UMX—>gXUnglﬂ;, 0y e G and made use of
the gauge invariance of the Haar measure. @lie drop out

of the plaquette action because it is manifestly gauge invari- ~ . . .
ant. The third line is obtained after integrating both sides of FOr =0 we recover the XY model in four dimensions
the equation2.20 over the gauge degrees of freedom with whose phase diagram 90n5|sts of three different phases:
g,= . and using the fact thatD ¢=1. This simple trans- a broken_ or ferromagneU(FM) phase atc> kgy.py>0, a
formation shows that the longitudinal gauge degrees of fregSymmetric or paramagneho{PM) ph_ase &l Kp-Am < K

dom turn into group-valued Higgs fields. The new action = KFM-PM and an antiferromagnetic(AM) phase  at

S(piu -) is now invariant under the gauge transfor- < <<Pn-am<0. The symmetry(2.26 implies that, kpw.aw
m(;:f‘on’gx(ﬁ““) gaug =—kewpm- Numerically it has been found thatgy.py

~0.15. The order parameters which allow us to distinguish
between these phases are the magnetization

= 2.2
We will refer in the following toS,=S(U ,,) in Eq.(2.8) as v=H{l (229
the aCtiOI’l in tha/eCtOI’piCture al’ld tCSH:S(¢lU,U,X¢X+,LAL) and the staggered magnetization
in Eq. (2.20 as the action in thediggs picture. The two
actions are related by vam={€xd)]- (2.30

K+ 16Kk=0. (2.28

U;Lx_’hxu,uxhl.,_;bv dx—hyby. (2.21

Sv(U 1) =Su(U ;6] 41 (222 Both quantities are not invariant under the glob&l)Usym-
metry, and we have taken the modulus to eliminate the am-
and all observables in the vector picture are mapped ontgjguity due to the constant field mode. The FM phase is
corresponding observables in the Higgs pictisee also Ref.  characterized by >0, vay=0, whereas in the AM phase

[11]). _ _ v=0, vay>0. Both order parameters vanish in the interme-
In this paper we will study aeducedmodel defined by diate PM phase.
. . . t -
the action(2.8) on the trivial orblt,U#ngxlngr,;- In the As explained above, at large we expect to find a new

Higgs picture, cf. Eq(2.20, the reduced model is obtained phase transition between the FM and the FMD phase, which
by settingU ,,=1. The reduced model is then defined by theat tree level is given by Ed2.18. (In the following we will

following lattice path integral retain the name FMD also for the reduced-model version of
the FMD phasg.The FMD phase is characterized by a new
_ _ vector order parametey, , 0<q,, <2, which is nonzero in
z f D exp(=S(4)) 2.23 the FMD phase and vanishes in the FM phase. It is equal to

(7r,m,7) in the AM phase. As a generalization of and
vam We define a helicoidal magnetization

S<¢>=—K§ SO ),

SR ) vH=‘<¢xexp(—i2 qﬂx#)> : (2.30
+K§ {$](02¢),— B2, (2.24 Z
which is nonzero in the FMD phase. It is easy to see that
whereB, is given by Eq.(2.13 with reduces tw in the FM and tov 5y in AM phase.

When ignoring fluctuations around the ground state, the

1 . .
_ + A t vector fieldV ,,, cf. Egs.(2.14 and (2.25, in the FMD
VMX_E(¢X¢X+M_ ¢X+/;¢x)- (2-25) phase is giveﬁxby

Equation (2.24 defines a higher-derivative scalar field V,x=v50a,+0(a), (2.32
theory.

As a first step we will investigate in the following the showing thatq, plays the role of the vector condensate in
phase diagram of the reduced model. Equatih84 shows the reduced model. We mention in passing that phases with
that the partition function is invariant under the symmetry: nonvanishingy,, have been intensively investigated in lower
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dimensions in condensed matter physics and are known as +d(10d—1)), (3.5
helicoidal-ferromagnetic phasésee Ref[20] for a recent
review). _ A
To further substantiate the statements about the phase dia- f®(q;k,x)=— 1—6(2F(2q)2—2(d— 1)F(2q)—d),
gram made in this section we will determine in the next (3.6
section the phase diagram of the reduced m¢&¥) in the ‘
mean-field approximation. Numerical data for the phase dia- ~
gram are presented in Sec. VA and compared with the f(4)(q;7<’K):_£(F(Zq)_d)Z, (3.7
mean-field results. 32

lll. THE PHASE DIAGRAM F(q)=> cosq 3.8
IN THE MEAN-FIELD APPROXIMATION g

In the following we will perform a mean-field analysis of and
the phase diagram id dimensions.

A central problem of the mean-field approximation in
more complicated ferromagnetic systems is the choice of the
mean-field ansatz which in a given region of the parameter
space leads to the absolute minimum of the free energy. Usis the modified Bessel function of zeroth order. We have
ally there exist many different choices and it is not straight-dropped in Eq(3.3 all terms that depend neither @nnor
forward to pick an ansatz which leads to the absolute minion gq. The saddle-point equations read
mum of the free energy. Based on the discussion of the
previous section we decided to consider the ansatz

=9 exp(i% qﬂxﬂ>, (3.1

|0(h)=% fowda exp(=h cosa) 3.9

IF ‘
%zLd|2h+E <p2i—12if“>(q;7<,,<)] =0, (3.10
i=1

4
oF ~
o L9p2sin g [2 ©?2g4)(q; K,K)] =0,
whereq,,, 0<q,<27 are real phases angdplays the role q,u =1
of a magnetization. Depending on the valueggfthis ansatz (3.11
can distinguish between phases with ferromagnegic<0, oh
u=1,..d), o=v, antiferromagneticq,=mw, u=1,...d) ﬁ:: d[(p_ 1( )] 0 (3.12
ordering,¢=vay , and phases with a helicoidal magnetiza- oh lo(2h) ’
tion (q,# 0,m, for at least one componepd, ¢=v. Simi- h
larly, we take for the magnetic field, the ansatz where
Kk
he=h exp(iE qﬂxﬂ), (2 OP(a%K)=2(Adi+ K~ BRF(Q)~ 5 (20+1)cosq,,
# (3.13
whereh is the mean-field magnetic field. -
Using Egs.(3.1) and(3.2) and following the steps of the %), o~
standard mean-field calculatigeee for example Ref21]), 9, (aik, &) = 75(12F(2q) — 12d—4)cosq, ,
we obtain, for the free energy of the reduced ma@e24), (3.19
~ (3) - _ _
f(@,h,q;K,K):LerQDh_bg |0(2h) (q K K)= K(F(ZQ) (d 1))005%“ (315)
s o\ (ak, k)= = (F(2q)—d)cosa,, (3.1
+2 o2t O(qrk,K) [, (3.3 4
i=1
and
wherelL is the extent of the lattice in spatial and temporal
directions, dly(h)

Il(h):W (3.1
fO(q:«,k)=—2(4dk + k)F(q) + 2k (2F(q)?—d)

is the modified Bessel function of first order.

p :
+ ZE2q)(2d+ 1), 3.4 . From thesed+2 equatl_ons we can computie thaet 2
16 fields ¢, g, andh as functions of the parameteksand «.
~ The phase boundaries are defined as the lines inhe) (
(2)(q;7(,K)———(6F(2q)2 4(3d+1)F(2q) parameter space where various combinations of the order

parametersp andq,, vanish.
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The variableh can be eliminated from the saddle-point
equations in regions whekegis very small(which is the case
close to the PM phase, wherg vanisheg and the ratio
[1(2h)/1o(2h) in EqQ.(3.12 can be expanded in powersiof
11(2h)/15(2h) =h+0O(h3).

Usually there does not exist a unique solution of the
saddle-point equations in a certain region of the parameter
space. It is therefore important to substitute the various so-
lutions back into the expression for the free enef@yy) and
to pick out the solution that corresponds to the absolute mini-
mum. In practice it can happen that certain phases remain
undetected because the mean-field ansatz was too simple. In
the following we will consider also another ansatz to search
for a ferromagnetic¢Fl) phase in a certain region of the pa-
rameter space which cannot be probed with the anSatr
Because of this uncertainty of the mean-field calculation it is
important to determine the phase diagram also numerically.

We furthermore note that the free energy in E8.3 is
invariant under the symmetri2.26),

(3.18

which implies that also the phase diagram in the mean-field
approximation is symmetric(but for the interchange
d,< 7—d,, which maps the FM onto the AM phase, ¢tc.

with respect to the linec+4dx=0 which in four dimen-
sions turns into Eq(2.28.

In the following paragraph we present our mean-field re-
sults for the phase boundaries and briefly explain how they
were obtained:

du—m—0,, KH_K_Sd’;(, 7(%7(,

FM-PM and PM-AM transitions: The transition be-
tween the FM and PMPM and AM) phases is obtained
by approaching the transitions from within the KM )
phase wherd-(q)=d, F(2q)=d (F(q)=—d, F(2q)
=d) ande=v (¢=wvam) approaches zero. The relation
for the FM-PM(PM-AM) phase boundary is obtained by
expanding Eq(3.10 in powers of¢p and equating the
part that is linear inp with zero. Equation{3.11) is trivi-
ally fulfilled because sij,=0 in the FM(AM) phases.
The FM-PM and PM-AM phase boundaries are respec-
tively given by the relations,

1 31.
KFM—PM:E_(Zd"’l) 35 1 (3.19
1 194 31\~
Kpv-aM™ ~ 54 7| 35 47 35/ K- (3.20

The reader can easily verify that the two solutions are
related to each other by the transformati@?l18. The
FM-PM and PM-AM phase transition lines intersect at
k=r1=[d(3 —2d)]"L. The corresponding solution of
the saddle-point equations minimizes the free energy
(3.3) only in the interval

~ =~ 16 ~
K1$K$ ﬁ[d(2d+l)]7l:K2, (32])
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and the two straight line$3.19 and (3.20 therefore
form the boundary of the PM phase only in that interval.
FMD-PM transition: The magnetizationp=vy van-
ishes when we approach the phase boundary from the
FMD side which means that Eg&3.10 and(3.11) can

be expanded in powers gf Unlike in the previous case
sing,#0 for at least one component=1,...d and
hence—d<F(q)<+d. From the term in Eq(3.10 that

is proportional top we obtain

2(4dx+ k)F(q)— 2k (2F ()% —d)

K
~ TeF(2a)(2d+1)=1. (3.22

After summing thé =1 term inside the curly brackets in
Eq. (3.11) over u we obtain forF(q) the formula

4dk+ K
(34d+ 1)k

F(aq) (3.23

and after first multiplying the same term with agsand
then summing overu we obtain an expression for

F(2a),

156(2d+ 1)F(2q) = (4d¥x+ x)F(q) — 4xF(q)?

K
- g(2d+ . (3.24

After substituting these two solutions into E§.22 and
after a few trivial algebraic manipulations we obtain the
following solution for the FMD-PM phase transition:

1— %d(2d+33) (34d+1).

(3.29

This solution describes an ellipse located around the

symmetry axis,«+4dx=0. Equation(3.25 forms the
boundary of the PM phase in the interval

- Kk
Kemp-pm= —4dk = \/@

Ko<rk<16d(2d+33)] 1=%s, (3.2

as the corresponding mean-field solution does not lead to
an absolute minimum of the free energy.3 in the
region wherex<Xk,.

FM-AM phase transition: Above we pointed out that
the FM-PM and PM-AM phase transitions intersect at
k=K. This means that the FM and AM meet at this
value of k. Two different scenarios are imaginable for
the phase structure in the regi@r<x;: 1) The FM and

AM phases meet at thed4+ =0 symmetry line with
the magnetizations anduv y exhibiting a jump at this
line, or 2 the FM and AM phases are separated by a Fl
phase in which both order parametersand v,y are
simultaneously nonzero. The mean-field ang&ti) is
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not suited to detect such an intermediate Fl phase since TABLE I. The mean-field results for the critical coupling
g, cannot be equal to 0 ang at the same time. We kememp(k)  and the order parameterp evaluated at «
therefore calculated the free energy also for the ansatz of ., -,,o(x) are given in columns two and three for several val-

the form ues ofx. The value ofkpy.reup at k= was calculated from Eq.
(3.32.
¢X:U+UAMEX1 (327)
P KFEM-FMD ¢

which allows us to probe for a FI phase. Our calculation

however shows that scenari@) leads to a larger value 0.013 0.01467 0.21887
of the free energy. Also our numerical data in four di- 0.014 0.01566 0.42089
mensions give clear evidence for the correctness of the 0.015 0.01597 0.52455
f|rst Scenario_ 0.020 0.01639 0.73962
FM-FMD and FMD-AM transitions: The FM-FMD 0.025 0.01621 0.81831
(FMD-AM) phase transition is characterized gy—0 0.030 0.01609 0.85916
(g,—m) for all w=1,...d. It is difficult to determine 0.050 0.01608 0.92369
the location of these phase transitions analytically be- 0.1 0.01626 0.96377
causee does not vanish at these two phase transitions 1 0.01649 0.99651
and Egs.(3.10—(3.12 cannot be expanded ip. We 10 0.01651 0.99965
will show in the next section that the magnetization ac- 100 0.01651 0.99997
tually vanishes at the FM-FMODFMD-AM) phase tran- % 0.01652 1.00000

sition. This phenomenon is connected to the infra-red
behavior of the higher-derivative action and therefore

cannot be understood in the framework of the mean-field
approximation.
The FM-FMD phase transition is determined by elimi-

The FM-FMD phase transition can also be calculated
analytically in the limitk— . Equation(3.28 implies
that h=xd(128d+63)/32+O(1) for k—=, and the

nating the fieldsh and ¢ from Eq.(3.12 and expansion ofg, cf. Eq. (3.12, gives ¢=1—1/(4h)

+0(1/h?). After substituting these two formulas into
Eg. (3.29 we find

— 4dk—Adw(2d+ 1) + gd(2d+1)
204d+3) .

KPMEMD T (Toai+63)d’ K7 (3.32

1~d 4d+5)¢? 3~o|4 2h—o
+1—6K(— +)(p—§l<(p+ Z—,

In four dimensions we have determinegy.qyp(x) also

at a series of intermediate values by solving Egs.
(3.12, (3.28 and (3.29 numerically. The results for

kemevp( k) are listed(with an accuracy of four decimal
place$ in the second column of Table I. We have also
included the mean-field value o evaluated atx

= kememp(x) (third column. The corresponding nu-
merical values of the FMD-AM phase transition can be
easily obtained from the data in the second column of
Table | by making use of the symmet($.18.

(3.28

K 1,., K
2k=7(2d+1)— 7 ke®+ 5(d+1)¢?=0. (3.29

Equation(3.28 and(3.29 are obtained from Eq$3.10
and (3.1 in the limit g—0. Note that Eqgs(3.12,
(3.28 and (3.29 can only hold simultaneously on the
FM-FMD transition curve, whereF(q)=F(2q)=d.
The location of the FM-FMD transition can be calcu-
lated analytically in two special cases: at the PM-phase The mean-field phase diagram fde=4 is displayed in
boundary, the terms in Ed3.29 which are quadratic Fig. 1(a). The phase boundaries are represented in this plot
and quartic ing can be ignored, and the FM-FMD tran- py the solid lines. The FM-FMD phase transition line was
sition is given by.the intersection of the PM-phasecomputed by solving Eqg3.12), (3.28 and(3.29 numeri-
boundary and the line cally. The FMD-AM transition was computed from the the
FM-FMD phase transition data by making use of the sym-
metry (3.18. The results of the numerical simulation are
shown in Fig. 1b) and will be explained later.

K
KFM—FMD:§(2d+ 1). (3.30

Similarly the FMD-AM phase transition is given by the IV. WEAK COUPLING EXPANSION

intersection of the PM-phase boundary and the line Equation (2.15 suggests that the weak coupling expan-

sion should be performed ind/ To facilitate the expansion,
we separate the unitary field, into a classical and a quan-
tum part. Explicitly,

KEMD-AM — _8d7(_ g(2d+ 1) (33])
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_ ) — general the case in finite volunjeAt tree level, the FM-
by=expy 1 X, +i6,/\2k|. (4.1 FMD phase transition line is given by?=0, cf. Eq.(2.18.
a When approaching the FM-FMD phase transition line, Eq.
The term involving q, accounts for the classical field, (4.4) reduces to
whereas the fluctuations are described by the Goldstone field
0, . This parametrizatio_n holds bo_th in th(_e FM_phase, where Aq(k)oc]_/(kz)Z, K— KEM-EMD (4.6)
the classical vacuum is translationally invariam, &0),

and the FMD phase, wheeg,# 0,7, for at least one com- ) )
ponentu=1,...,4. for small k. The propagatof4.6) leads to infra-red diver-

To calculatev in perturbation theory, we first insert Eq. 9€NCeS: A similar situation is encountered in two space-time

(4.1) into the action(2.24) of the reduced model and expand dimensions where infra-red divergences occur for massless
it in powers of bosons with an ordinary kinetic terfii7]. These infra-red
X

divergences are not only an artifact of the tree-level propa-
1 gator, but occur in the full theory when the continuum limit
S=%f 0(—k)Aq “(k) O(k) k— Kememp 1S performed. The qualitative agreement with
K the two-dimensional behavior will be demonstrated below
both analytically and numerically. Here we note that the situ-
+fk . Va(K1,Ka,K3,Ks) ation we encounter in the reduced model is similar to the
172:78:04 situation of the XY model in two dimensions. The FM-FMD
X 0(Kq) 0(Ky) 0(K3) O(Kg) ++++ 4.2) phase transition line behaves like the spin-wave phase, where
critical exponents depend continuously on the coupling con-
where stant. Below we will show that the magnetizatiorhelicoi-
2 4 dal magnetizationv ) vanisheso<|K—KFM_FM,_3|’7(") when
f:J' —. (4.3 k\.Kem-emp (K kem-evp) @nd that the critical exponent
k Jo (2m) n(x) depends continuously o.
It is useful to distinguish between observables which are
invariant under the global (@) symmetry(symmetrig, like
the two-point function(¢:§¢y>, and others which are not
invariant (nonsymmetrig, like the magnetizatiod ¢,). For
2 symmetric observables, the weak coupling expansion is
Aql(k):|2 coquZ(l—coskM)] infra-red finite, because all interactions involve derivatives.
5 The situation is different for nonsymmetric observables, such
as the magnetization. The real expansion parameter is not

—8(F(q)—4)>, cosq,(1—cosk,) 1/x in this case, but (log)/x. This means that in order to
K’ obtain a nondivergent result in the limit>—0, one should
2 perform a resummation of infinitely many diagrams.
+|22 sin q,sin kM] Using Egs.(4.1) and (4.2) the magnetization, cf. Eq.
" (2.31), can be calculated to one-loop in perturbation theory,

The subscripy indicates that the propagatag(k) and four-
point vertex functionVy(ky,k;,Kk3,k,) depend on the phases
q,. The inverse propagatox;l(k) is given by

+42, sirfq,sir? q,(1—cosk,) .
" vH=1—4—~ qu(kH—higher order corrections.
K Jk

2
—[E sin 2,,sin kM] 4.7)

o
—2 in? 2a siré k The integral in Eq.(4.7) is infra-red divergent in the limit

% SITG,C08q,SIT K, m?—0 and, as mentioned in the previous paragraph, in order

to obtain a finite result we have to resum the higher order
+m22 c0sq,2(1—cosk,), (4.4 diagrams(with two and more Iinzen)s_in Fig. 2(a) Which arise
“ from the terms proportional t@;" in Eq. (4.1) with n>1.
This resummation of diagrams gives

with
! f A4(k) | +high d ti
K =exp ——= igher order corrections
m2=:. (45) OH 4k Jk 4 g

K 4.9
[The expression for the propagator simplifiegjifs a solu- PiE
tion of the classical saddle-point equations, cf. E413 | +higher order corrections, (4.9
below. As we will discuss below, however, this is not in K

054506-9
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In finite volume, the value o that minimizesso(q;},x) at
Va= Q + @ +©+ ...... a given {<,x) point in the FMD phase is determined by
° computingSy(q; «, «) for all L* vectorsq numerically, and
picking out the ones with the smallest valueS{(q; x, ).
(b) (The minimum will respect the lattice symmetries and hence
will in general not be uniqug.From the resultingy-values
— + O +0O00+ we have computed the observalfi¢q), cf. Eq. (3.8), for
several ,«) points in the FMD phase. The discussion of
FIG. 2. Feynman diagrams for the magnetizatiah and the this quantity will be postponed to Sec. V B where we will
scalar field propagatab). compare it with the results of the numerical simulation.
We will from now on focus on the physics in the FM
phase wheregy=0, and calculate the magnetization to one
where we used that at tree-leveky.rup=0. The higher higher order in perturbation theory. From this calculation we
order corrections in Eqg4.9 and (4.9) are due to quartic will obtain another estimate for the critical coupling
and higher order interactions which we have ignored. Thecr,, ryp(x).
critical exponenty in Eq. (4.9) is given by The vertex functioVy(ky K5 ,k3,ks) in Eq. (4.2) is given
by

1

=—. (4.10
64wk

2

E (1—cogk; +kz),)

1
Vo(ka, Kz, ks, k4)—_4 {
Equation(4.9) shows that the magnetization vanishes at the K
FM-FMD phase transition with a critical exponegt that

depends orx and differs from the Gaussian exponent 1/2 of
the XY model atx=0. [In order to show that also the heli-

2
+4[ > (1—cosk, )}
I 13

coidal magnetizatiow, vanishes fork /" kgpm.emp With the + sink. sink- sin ka sin k
critical exponent(4.10, one uses Eq(4.4) whereq is the ,LEV u %u 3 4
nontrivial solution of Eq.(4.13 below]
Using relation(4.8) and replacing the integral by a lattice + %mzz (1—cogk; +ky),)
y22

sum, we can compute on a finite volume at any value of
« andx in the FM and FMD phases provided that we know

the functionq=q(x,«). On a finite lattice with periodic —Zm?Y, (1_C05k1u)]

boundary conditions for the scalar fields the phaggsan #

only take the values X 8(Ky+ Ko+ Ka+Ky), (4.14
q,=2n,7/L, n,=0,..L-1, (4.11)

where the first three terms arise from tﬁ@x{@([l b)x

whereL designates the extent of the lattice in temporal and— Bz} term and the two terms proportionai® from the
spatial directions. The’s can be calculated at tree level by — «2,¢1(C1¢), term in the actior(2.24. We note that the
minimizing the classical action vertex function(4.14) can be easily rewritten such that it is
symmetric with respect to the momerita, k,, ky andky,.
~ ~ ~ For the perturbative calculation it does not matter which
so(q;K,K)zL“[ —2(16k+ k)F(q) +4kF(q)? form is used.

After carrying out the higher-order calculation, the mag-

~ ] 2 netization can be written in the form
—K(E Sir? qﬂ) ] (4.12
M
1
whereL* is the volume of the lattice anél(q) is defined in UZeXD( i kaO,l-loop(k))
Eq. (3.8. We note that after expanding E@.12 in powers
of g and settingg,,=gA,,, we recover to leading order the +higher order corrections, (4.19

classical potential in Eq(2.17). In infinite volume, the
phaseg) can be determined from the four saddle-point equa-

tions, Ao(k) 1

BoaoodK) = T8 (105 (0 ~ 35 [ +3(K)

(4.19

2(16k+ k) — 8kF(q) —47<( > sinzq#> cosq,,}sin q,=0

m whereA (k) is the tree-level propagator in the FM phask

(4.13 Eq. (4.4) with g=0] and (k) is the self-energy,

054506-10
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1 2
k)== -
002 |

—2(2 sink, sinp,, 2 (1—cos(p+k)ﬂ)—2 (1—COSk#)—E (1—cospﬂ)>]A0(p). (4.17)
" M " M

2
+

2
% (1—cosp,,)

> (1-codp+k),) > (1—cosk,) — 2 sir’k, >, sirfp,
1 1 M v

2
+m?

The propagaton(4.16 already involves a resummation of V. NUMERICAL RESULTS
diagrams shown in Fig.(B). The magnetization in E¢4.15
has been obtained by performing the resummation of dia-
grams in Fig. 2a), but now using the propagatdr .00 K) To simulate the reduced model defined by the path inte-
instead ofA (k). In order to compare the perturbative for- gral (2.23 we have implemented two different Monte Carlo
mulas (4.8) and (4.15 with the results of the numerical algorithms, a five-hit Metropolis and a Hybrid Monte Carlo
simulations(see Sec. V Bwe have to evaluate the lattice algorithm. The results for the various observables agree
integrals in Eqs(4.8) and (4.15 on a finite lattice. The in- nicely within the AM, FM and PM phases. We find however
tegrals are replaced by sums over the lattice momenta. In thi§at the hybrid Monte Carlo algorithm gets much more easily
context we note that these finite lattice sums do not includétuck in metastable non-equilibrium states in the FMD phase.
the zero modek=0. The zero mode decouples from the We therefore have generated the bulk of the data presented in
action, and gives rise to a phase which disappears after takis paper with a five-hit Metropolis algorithm.
ing the modulus in the definition af andv, in Egs.(2.29 To map the phase diagram we have measured the follow-
and (2.31). ing observables:

The critical coupling can be calculated by expanding  The magnetization
Ao 11004 P) " for small momenta in powers gf,

A. Phase diagram

1
_ _ v=_|rz : 5.0)
Ao1100dP) " 1=A0(p) T+ 3(p) <‘ L4; ¢X> (
=a(x,k)(p?)+b(k,k)(p?)2+-- which is the order parameter for ferromagnetism and
4.18 the staggered magnetization
~ 1
and equating the coefficieal( x, k) to zero, Uam= < ’ K E Dy > (5.2
X
~ 1
alk, k)= ~5 + = f [ 1> (1-cos P which is the order parameter for antiferromagnetism.
K kJp| m The helicoidal magnetization
. 1
XZV cospv—% Si p,, UH=<‘FE ¢Xex;{—i2 qu#) > (5.3
X M
+~f 1> cogp _%> was used to map the FMD phase, where the four real
K\ m g phasesq,, u=1,...,4were determined for each con-
figuration from
X Ag(p)=0. (4.19
1
This leads to the one-loop estimate q,=Im Log K > ¢I¢x+,; . (5.9
X
Kem-evp(K) = —f {%E (1—cosp,) Apart from these quantities we have also measured the
PL & internal energy density
X >, cosp,— >, sir 1
2 cosp,~2 s pﬂ] 7=( 73 > Re¢ldys) (5.5
4L% X
-2
X E (1—cosp,) (4.20 of the mass counterterm and
® the quantity
~(0.02993, (4.21 c(qM)=(coqu>, (5.6)

which is about a factor two larger than the mean-field value, ~where the phases, were calculated for each configura-
cf. Table I. tion by means of Eq(5.4).
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FIG. 3. Scans inc direction on a 4 lattice atk=0.2[Fig. (8)] k=0.1[Fig. (b)] x=0.02[Fig. (c)] andx= — 0.03[Fig. (d)]. The results
for v, vaw andvy are represented in the plots by the circles, triangles and crosses. The error bars are omitted because they are in all cases
smaller than the symbol size. The dashed lines in Rigsand(d) are obtained in the mean-field approximation.

We have taken the modulus in E¢5.1)—(5.3) for each con- where A(O); is the standard deviation and, designates
figuration, because, in a finite volume, the constant fieldhe integrated autocorrelation time, defined ag;
mode gives rise to a slow drift of the magnetization through=73 ,,I"(At)/T'(0) (see for example[22]). The quantity
the group space(Taking the absolute value is a standardr(m):<o(t)o(t+m)>_<o>2 is the autocorrelation func-
method which allows us to avoid the introduction of an ex-tion, We find that the autocorrelation times for the bulk ob-
ternal magnetic field. servables defined in Eq&.1)—(5.6) vary from 2 to 30 in the
The discreetness of the phagddsll) poses a problem for 53 meter range where the simulations were performed. With
the simulation in the FMD phase because each transitiog,e gtaristics of 10sweeps, the autocorrelation times can be
from oneq to anothery behaves very much like a first order o qyinated with an accuracy of about 10%. We note however
phase transition and hence is accompanied by metastabilitieﬁl.at errors are underestimated on larger lattices in the FMD
We finq tha@ thgsg metastabilities become more severe Wheﬂhase where metastabilities ocdaee below:
the lattice S'Z_e Is increased. ] - In Figs. 3a)—(d) we have displayed the numerical results
_ To determine the phase cﬂagram we kept the parameter or the order parametets (circles, vy (triangles andv
fixed and performed simulations at a large numbek ol- (crosses for four exemplary scans on a*d4attice. Figure

ues. Each of these vertical scans, cf. Figh)1has been , ~
) A 3(a) shows that there are three different phases=a0.2, an
started in the FM phase. We loweradin fixed steps and FM phase atc= — 0.43, wherev =v,,>0, v =0, an AM

used the last configuration of a run as the initial configura- - = -
tion at the next smaller value af At each point we skipped pﬂgzz aalt;isnte?ﬁ?géiz\;\gei?mi;ﬁH>g,0v —(iandih(;a EmeD
16® sweeps for equilibration and performed*iteasure- VRV, U= Dam =Y.

: helicoidal magnetizationy exhibits jumps at certair val-
ment sweeps. The error of an observablevas estimated I . :
using the relation ues within the FMD phase. These jumpsigoccur because

the phaseg,, can change only in discrete steps and hence
have to be considered as a finite volume artifact. In Fig) 4
A(O)=A(O)sp\2Tin, (5.7 we have plotted the quantit(q,), «=1,...,4 for thesame
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FIG. 4. The observables(q,,) [Fig. ()] andz? [Fig. (b)] as a
function of k for k=0.2. The lattice size is%4 The four observ-
ablesc(q,), u=1,...,4 aredistinguished by the line typésolid,
dots, long and short dashes'he error bars are omitted in both
figures because they are not larger than the symbol size inl#ig.
and also not much bigger than the linewidth in Hig.

scan atc=0.2 as a function ok. A comparison of Figs. @)
and 4a) shows that the jumps im, occur at the same
values where one of the components],,) exhibits a jump.
All g,’s are zero in the FM phase. At~ —0.43 the first
component ofg condensegdotted ling and becomes equal
to 2@w/L=m/2. The next jump occurs when also the secon
component ofg becomes equal tar/2 (solid ling). The «
value where finally all values af are equal tar/2 coincides

nicely with the symmetry pointx=—16x=—3.2, cf. Eq.

PHYSICAL REVIEW D 58 054506

Fig. 4b) we have plotted the internal energy dengityas a
function of k. In the mean-field theory this quantity is given

by v § = ,cosq, and sincesj=0(1), weexpect this quan-
tity to jump wheneverg changes. The comparison of Figs.
4(a) and 4b) shows that this is indeed the case.

A different situation is encountered in Fig(l3 which

shows the result of the scan7at0.1. Besides the FM, AM

and FMD phases we find now clear evidence for a PM phase
(wherev=vay=vy=0) which, as predicted by the mean-
field calculation, extends into the FMD phase. The graph
shows that four different phase boundaries are crossed when
k is lowered from the FM to the AM phase. The small peak

at k= — 16k~ — 1.6 appears to be a finite size effect because
it becomes smaller when the lattice size is enlarged.

The FMD phase gradually disappears wheis lowered

further. The situation at=0.02 is depicted in Fig.(®). The
FMD phase has now completely disappeared, and the only
three phases we are left with are the FM, PM and AM

phases. We find that the PM phase extends dowm =0

—0.02. The result of the scan at=—0.03 is displayed in
Fig. 3(d). It shows that the phase transition between the FM

and AM phase coincides with the symmetry lire= — 16«

and is obviously of first order. Both the internal energy den-
sity z2 and the order parametessanduv y exhibit a gap at
this phase transition. This gap grows from zero to one when

one follows the symmetry linec=—16x from the triple

point where the FM, PM and AM phases meetxte — .
The two dashed lines in Figs.(@ and (d) represent the
mean-field result for the magnetizatigr=v in the FM and
for the staggered magnetizatian=uv »y in the AM phase,
which we obtained by solving the mean-field equations
(3.10 and (3.12 for q=(0,0,0,0) andq=(,,m, ) Nu-
merically.

We have read off the positions of the various phase tran-
sitions from plots like the ones depicted in Fig&)3-(d) and

then compiled them in th&-«x phase diagram plot in Fig.
1(b). The triangles were obtained on 4 lttice, the crosses
represent the phase boundaries orf daftice and the circles
mark the phase transitions points on ghl&tice. The com-
parison of Figs. (@) and(b) shows that the numerical esti-
mates for the FM-AM, FM-PM, PM-AM, FM-FMD and
FMD-AM phase boundaries agree nicely with the mean-field
prediction. The agreement seems to be worse for the
FMD-PM phase transition. The numerical data indicate how-
ever that both the horizontal and vertical width of the PM
CEhase shrink when the lattice size is increased and that the

umerical results could come out closer to the mean-field
result for larger volumes.

In Fig. 5 we have displayed the magnetizationas a

function of x for k=0.2 and a series of different lattice sizes.

(3.18. We note that the order in which the jumps occur isagain, we have lowered in small steps, and used the last

arbitrary (because of hypercubic symmetnfihe jumps at
k<—16x follow a similar pattern, with theg,,’'s jumping
from /2 to 7. We will show in Sec. V B that the compli-
cated k-dependence ob in the FMD phase can at least
qualitatively be explained by the one-loop formag). In

configuration of a run as initial configuration for the next
run, skipping 16 sweeps for equilibration.

First we discuss the results on the smaller lattices of size
3% (filled circle), 4* (filled square and 5' (filled triangles.
The magnetizatiom exhibits a jump on these lattices. The
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FIG. 5. The magnetization as a function ofc at k=0.2 on 3 FIG. 6. The magnetization (squaresand the helicoidal mag-

(filled circle), 4* (filled square, 5* (filled triangle), 6° (crossel 8% netizationv , (crossepin the FM and FMD phases as a function of
(open circlg, 10 (open triangl¢ and 12 (open squarelattices. « for k=0.2. The same data were presented already in Fa). 3

The circles were obtained by numerically evaluating the perturba-

helicoidal magnetizatiow,, is identical withv in the FM  tive expression(4.8). The phases),=q,(«,«) were obtained by
phase andunlike v) remains ofO(1) when crossing the minimizing Eq.(4.12.

FM-FMD phase transition towards the FMD phatiee data

for vy are not included in Fig.)5 It can be seen that the Using different starting configurations and transitions to other
curves forv bend in more strongly when the lattice size is States occur very rarely or not at all. The results for the
increased, indicating that scales to zero at the FM-FMD various observables in the FMD phase are independent of the
phase transition as predicted by the weak coupling expansidhitial configuration only on the smaller lattices of sizé, 3

in Sec. IV. We will demonstrate in the next subsection that* and 5'. (In all other phases, our results are independent of
the data fow in the FM phase are nicely consistent with the the initial configurations on all volumes.

perturbative formulg4.15 according to whichv\,0 in the Figure 5 shows that the region in the FM phase where the
limit «\,kpmpvp @nd L—o. The plot also shows that Magnetization starts to bend over is shifted in all cases to-
kemevp iNCreases with increasing lattice size. wards larger values of when the lattice size is enlarged. We

On the larger lattices we encounter a different behaviorWill show in the next subsection that this finite size behavior
The magnetization first starts to bend over wien lowered IS in nice agreement with the perturbative formula given in
but then instead of jumping to the FMD phase continues to>€C. IV. This good agreement between the numerical data
decrease slowly. The jump to the FMD occurs finally at aand lattice perturbation theory lead us to identfy.Fvp On
|arge negative value ofk. The Jump on the 6 |lattice the Iarger Iattices, i.e. fOI’_BG, with the pOint where the
(crosses for instance occurs ak~—0.9 and not atk~ slope inv is largest, and not with the point at large negative
—0.2. Atk=-0.9 we did not observe a tunnel event evenx, Wherev exhibits the jump and becomes different from
after increasing the statistics by one order of magnitude- All phase transition points on the'@nd & lattice which
which means that the probability for a transition to occur inare included in Fig. (b) were obtained with this criterion.
this « range is very small.

The appearance of these large metastabilities can presum- B. Comparison with perturbation theory
ably be explained by the discreetness of the phagesn a In this subsection we compare the simulation results for
finite lattice. The tunneling probability between different val- in the EM andv. in the FM[[)) hase with the perturbative
ues ofqg, decreases exponentially with the product of the | hi ﬁ” derived | pS V. In Fi p6 h
height of the barrier and a power of the volume. The barrielIormu as which we derived in Sec. 1v. in =g. b we have
is expected to be proportional to a power of the spacing[)lottfad once more the andvﬂ data of E'g' $a). Wh!Ch were
betweenq,’s, or inversely proportional to a power of the obta!ned atk=0.2 ona 4 |attice. The circles in Fig. 6 were
length of the lattice. The fact that tunneling is suppressed ofPtained by evaluating the one-loop formula fog (4.8)
larger volumes apparently indicates that the volume factopumerically on both sides of the FM-FMD phase transition
still wins over the barrier factor. on the same lattice and at the same valuex @fhere we

In this context we also note that on larger lattices theperformed the numerical simulations. The phagés, «) at
system in the FMD phase ends up in different states when given value ok were determined analytically by minimiz-
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FIG. 8. The magnetization as a function ofk for k=0.1. The
lattice size is 8. The one-loop and two-loop results forare rep-
resented by the dashed, cf. E@.8), and solid, cf. Eq.(4.15,
curves.

F(q)/4, z?

when « is lowered, which is presumably due to the system-
atic delay of the transition events in the numerical simula-
tion. We should observe a smaller shift on a smaller lattice if
this scenario is correct. Figurdbj shows that the discrep-
ancy between the two curves shrinks indeed on thiatice.

We also checked that the numerical metastabilities off a 5
lattice get stronger making the agreement with the analytic
results worse. Note that the discrepancies between perturba-
tion theory and numerical data occur at the same locations in
Figs. 6 and 7a).

In the following we will discuss only the FM phase. The
numerical metastabilities mentioned in the previous para-
graph have an effect on the simulation results only in the
near vicinity of the FM-FMD phase transition.

In Fig. 8 the magnetization for k=0.1 is displayed as a
ing the classical action in Eq4.12 with L=4. Figure 6 function of . The lattice size is 8 At eachk point we have
shows that the numerical results are nicely reproduced by thdccumulated a statistics of 1®letropolis sweeps. The mag-
analytic formula(4.8) at large values of«. At smaller x  hetization was measured after each sweep and its error was
values the deviations start to become larger. While we do ndtstimated by means of E¢p.7). To compare the numerical
understand this phenomenon in detail, we believe that it maglata with the perturbative formulas, we have numerically
be related to the metastabilites mentioned in Sec. V Aévaluated the integraléreplaced by lattice sumsin Eqgs.
(Higher orders in perturbation theory could also be sizabld4.8) and (4.15 for a large number ok values in the FM
though) The jumps at which the componentsg@tondense Phase on the same lattice which we used in the numerical
occur slightly delayed. This distorts thedependence of the Simulations. The obtained results forin Egs. (4.8) and
propagator, which depends also explicitly @rand not only ~ (4.19 are represented by the dashed and solid curves. Figure
implicitly through the phaseg(x, ). From the minimizing 8 shows that the two-loop f_ormuléﬂ.lS) prowde_s, as ex-
phasesy(k,«) on the 4 lattice we have computed the func- phected, Eli mu<f:h betltei ge?crzlp';lon O; the num;zrlgal dﬁta than
fion F(q), cf. Eq. (3.8, which we plotted in Fig. @) the one-loop formuld4.8). The fact that perturbation theory

(dashed lingversusk. The numerical results fa?, which in in 1/« remains valid down to such small values :oiis be-
the mean-field approximation are proportionalR¢q) are cause the actual expansion parameter is not but
represented in this graph by the crosses. It can be seen thb{(167%«) where the factor 1/(16°) comes from the loop
the discrepancy between the two curves becomes largéntegrals.

FIG. 7. The quantity%1 F(q) (dashed ling obtained from the
minimization of the classical actiof@.12, and the internal energy
densityz? (crossey obtained from the numerical simulation, as a

function of « for k=0.2 on 4' [Fig. (8)] and 3 [Fig. (b)] lattices.
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FIG. 9. The magnetizatiom as a function of« for several FIG. 10. The magnetization versusk for k=0.2 and several
values ofx. The five curves correspond, from the bottom to the top,yalues ofL. The five curves correspond, from the left to the right,
to k=0.1, 0.2, 0.3, 0.4 and 0.5. The lattice size is in all casks 8 to L=3, 4, 5, 6 and 8. The five solid lines were obtained by com-
The solid lines were obtained by evaluating expres¢bhd) for a  puting (4.15 numerically on lattices of the same size.
large number ok values numerically.

because the inverse tree-level propagAt@fL(k) has a zero
@igenvalue(for some nonzerdk) at this value ofk. This
implies thatv in Eq. (4.19 approaches one in the limit

The k-dependence of the magnetizationis shown in
Fig. 9, where we have plotted the magnetization data for fiv

different x values versus. The lattice size is also in this K\ ki [Lowering « beyond this value would lead to a
case 8 and the statistics at eashpoint the same as in Fig. pegative eigenvalue of the tree-level inverse propagator, and
8. The solid lines represent again the perturbative result agpis instability causes to condense to the smallest possible
cording to Eq.(4.15. The agreement between the numericalyg|ye, cf. Eq.(4.11).] The plot shows that the minimum of
da.ta and the ana|ytiC curve iS in a” cases exce”ent. Th%e two_|oop curve gets smaller and also narrower when the
graph shows that the drop to the critical point is becomingsize of the lattice is increased. The minimum drops to zero in

steeper wherx is increased. This phenomenon is a consethe infinite volume limit at thex-value Wherea(7<,f<) van-
quence of the fact that the critical exponeptn Eq. (4.10  ishes, cf. Eq.(4.19. This x-value coincides with the one-

decreases with increasing loop estimate(4.20 only in the limit k—o. At x=0.2 we
Finally we demonstrate that also the volume dependencind thatv drops to zero ak~0.03446 which is by about

of the magnetization data in the FM phase, cf. Fig. 5, is15% larger than the one-loop estimate in E420.

nicely reproduced by the perturbative form@a15). In Fig. From Eq. (5.8) we find that for k=0.2, kmj,=—0.6,

10 we have plotted as a function of« for k=0.2 and five ~—0.4, ~—0.2764,—0.2 and—0.1 forL=3, 4, 5, 6 and 8.

different lattices ranging in size fronf'3o 8*. The statistics Figure 10 shows that the two-loop curve approaches one at

at eachx value is about 10x (8/L)2 Metropolis sweeps. In these values ok.

order to better monitor the drop of the magnetization near the

FM-FMD phase transition we have increased the density of

points in that region. The solid lines represent again the per- VI. SUMMARY AND OUTLOOK

turbative results according to E@l.15. The two-loop curve , .

agrees nicely with the numerical data down to the value of !N this paper we have calculated the phase diagram of the

where the analytic curve has a minimum, but starts to deviatgfduced modefor a gauge-fixed () lattice gauge theory

when « is lowered beyond that value. The two-loop curve NUmerically. The phase diagram contains a ferromagnetic

increases while the numerical data continue to fall off. This(FM), antiferromagneti¢AM), paramagneti¢PM) and, as a

shows that the two-loop formul@.19 is valid only in thex ~ NOVelty, also a ferromagnetic directiondFMD) phase,

interval above the minimum. The self-energyk) in Eq.  Where not only the () symmetry is broken but also the
(4.16 diverges at vector fieldV,, [cf. Eq.(2.29] condenses. The locations of

the various phase transition lines are in qualitative agreement
3 with a mean-field analysis.
K= Kmin=—2k(1—cos 27/L), (5.8 The main result of this paper is that the magnetization

054506-16



PHASE DIAGRAM OF A LATTICE U(1) GAUGE . . . PHYSICAL REVIEW D 58 054506

vanishes continuously as the FM-FMD phase transition line It is challenging to study the (1) model with gauge fields
is approached from the FM phase. This allows us to define turned on. It should be possible to determine the fermion
continuum limitwhere the global (1) symmetry is restored, spectrum in the Coulomb phase and see if it remains unaf-
which is an important prerequisite for the construction of afected at small values of the gauge coupling. A change of the
chiral gauge theory. This phenomenon has its origin in théermion spectrum should manifest itself as a new phase tran-
infra-red properties of the transition. While the critical be- sition in the fermion sector.
havior of the magnetization cannot be understood in the Itis also important to extend the gauge-fixing approach to
mean-field approximation, it is well accounted for by the nonabelian gauge theories. This implies that we first have to
(resummeglweak coupling expansion. The latter, in turn, is specify how to discretize and simulate the ghost part of the
in good quantitative agreement with the numerical data in thection (2.1). The non-Abelian case is very interesting be-
FM phase. In the FMD phase, numerical computations areause in this case we can ask whether confinement emerges
hampered by strong metastabilities as the lattice size is imat small values of the gauge coupling.
creased, and it may therefore be very difficult in practice to
study the continuous nature of the FM-FMD phase transition
from the FMD side. However, this should not be a problem
in the application to lattice chiral gauge theories, since it is We thank M. Ogilvie for discussions. W.B. was supported
most natural to take the continuum limit from the FM side. by the Deutsche ForschungsgemeinsckigftG) under the

As a next step we will take up again various proposals fogrant Wo 389/3-2. M.G. was supported by the U.S. Depart-
lattice chiral gauge theories and investigate whether thenent of Energy, and Y.S. was supported in part by the U.S.-
problems associated with the strongly fluctuating gauge delsrael Binational Science Foundation, and the Israel Acad-
grees of freedom can be overcome by gauge fixing. In Refemy of Science. The numerical calculations were performed
[15] and[16] we will show for the case of the reduced abe-on the SP2 at DESY-IfH Zeuthen and numerous worksta-
lian Wilson-Yukawa(Smit-Swift) model that(a) the species tions and PCs at the Physics Departments of Washington
doublers decouple in the continuum limit, afig) that the  University, St. Louis, and Humboldt University, Berlin.
fermion spectrum contains only the desired states, namely Some of the first explorative calculations were performed on
massless charged left-handed fermion that couples to thiae HP-cluster of the Center for Computational Physics of
gauge field and a massless neutral right-handed fermion théte University of Tsukuba. W.B. thanks Washington Univer-
decouples. We expect to find similar positive results also fosity, St. Louis for hospitality and M.G. thanks the Center for
other fermion formulations, using a Majorana-Wilson term Computational Physics of the University of Tsukuba, the Be-
instead of a Dirac-Wilson terrf23], domain wall fermions nasque Center for Physics and Humboldt University for hos-
with waveguid€g 6], or staggered fermior24]. pitality.
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