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Phase diagram of a lattice U„1… gauge theory with gauge fixing
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As a first step towards a nonperturbative investigation of the gauge-fixing~Rome! approach to lattice chiral
gauge theories we study a U~1! model with an action that includes a local gauge-fixing term and a mass
counterterm for the gauge fields. The model is studied on the trivial orbit so that only the dynamics of the
longitudinal gauge degrees of freedom is taken into account. Mean-field and numerical calculations reveal that
the phase diagram of this ‘‘reduced’’ model contains, in addition to ferromagnetic~FM!, antiferromagnetic
~AM ! and paramagnetic~PM! phases, also a novel so-called helicoidal ferromagnetic~FMD! phase with
broken U~1! symmetry and a nonvanishing condensate of the vector field. The continuum limit is defined by
approaching the FM-FMD phase transition from within the FM phase. We show that the global U~1! symmetry
is restored in this continuum limit, both numerically and in perturbation theory. The numerical results for the
magnetization in the FM and FMD phases are in good agreement with perturbation theory.
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I. INTRODUCTION

All existing lattice fermion formulations have in commo
that they are in conflict with chiral gauge invariance. It
well known that for example the Wilson term@1#, which is
used to remove the 15 unwanted species doublers at the
ners of the four dimensional Brillouin zone, is not invaria
under chiral gauge transformations, because it has the s
ture of a mass term.

Most fermion formulations can be rendered gauge inv
ant by inserting Higgs fields. The Wilson term for instan
turns into a Wilson-Yukawa term which is invariant und
chiral gauge transformations@2,3#. These Higgs fields do no
need to be added by hand. They appear automatically in
gauge noninvariant model when performing the integrat
over all gauge fields in the lattice path integral with the Ha
measure@4#. The Higgs fields can be identified with the lon
gitudinal gauge degrees of freedom.

The failure of most proposals for lattice chiral gauge the
ries, such as the Eichten-Preskill model@5#, the domain wall
fermion model with waveguide@6# or the Wilson-Yukawa
~Smit-Swift! model@7# is connected to the dynamics of the
Higgs fields.

In the Wilson-Yukawa model, for example, it has be
shown, that the 15 unwanted species doublers can indee
removed from the spectrum by means of the Wilson-Yuka
term in the strong Wilson-Yukawa coupling symmetr
phase. The model fails however because the left-handed
mion, which is the one that is supposed to couple to
gauge field, forms a fermionic bound state with the Hig
field that does not transform under the gauge group. T
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neutral left-handed fermion pairs up with the right-hand
fermion to form a Dirac fermion which in the continuum
limit decouples from the gauge field@7#. Later, arguments
have been given that the spectrum in a symmetric phase
general vector-like@8,9#.

The details of the mechanism which spoils the chiral n
ture of the fermions differ from model to model, but remar
ably the Higgs fields~longitudinal gauge degrees of free
dom! play the key role~for recent reviews see Refs.@9, 10#!.
It is therefore natural that one should try to use gauge fix
to control the effect of these longitudinal gauge degrees
freedom@11#.

Gauge fixing has been put forward some time ago a
method to discretize chiral gauge theories on the lattice@12#.
It was proposed in Ref.@12# to use perturbation theory in th
continuum as guideline and transcribe the gauge-fixed c
tinuum path integral to the lattice. Since the fermion part
the action breaks chiral gauge invariance, the lattice mod
not invariant under Becchi-Roaet-Stora-Tyutin~BRST! sym-
metry. The symmetry-breaking terms are compensated
counterterms that have to be added to the action. In f
dimensions only the counterterms with dimension sma
than or equal to four need to be considered. They sho
furthermore respect all exact symmetries of the lattice mo
The coefficients of these terms then have to be adjusted
that BRST invariance is restored in the continuum limit.
lattice discretization of a nonlinear gauge,(m$]mAm1Am

2 %
50, has been introduced in Ref.@11#, while a lattice discreti-
zation of the Lorentz gauge(m]mAm50 was later given in
Ref. @13#. It was pointed out in Ref.@11# that the lattice
action of the gauge-fixing approach can be rewritten w
Higgs fields and that on the trivial orbit the gauge-fixin
term reduces to a higher-derivative scalar field theo
Higher-derivative scalar field theories have been studied
cently in a series of papers@14#, but in a very different con-
text.
© 1998 The American Physical Society06-1
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BOCK, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D58 054506
The Higgs field represents the longitudinal modes of
gauge field. The central question is then whether the fluc
tions of the longitudinal modesalias the Higgs field are suf-
ficiently reduced by the gauge-fixing term that the chiral n
ture of the fermions does not get spoiled@11#. In order to
study this question, it is useful to introduce the notion o
reduced model. The reduced model is obtained by keepi
only the Higgs fields, setting the gauge field equal to ze
~In the model without explicit Higgs field, this correspon
to restricting the gauge field to the trivial orbit.! This reduced
model should then have a continuum limit with free fermio
in the desired chiral representations of the gauge group.

In this paper, we will consider the reduced version of t
purely bosonic model with compact U~1! symmetry that
apart from the usual plaquette term includes the Lore
gauge-fixing term of Ref.@13# and a mass counterterm fo
the gauge field. We will derive the phase diagram of
reduced model, using mean-field and numerical techniq
We will demonstrate the existence of a continuous ph
transition between a phase with broken symmetry~FM
phase! and a so-calledhelicoidal ferromagnetic~FMD!
phase, where a continuum limit can be defined. The natur
this continuum limit will be investigated using both pertu
bation theory and numerical simulations. In the framewo
of the Smit-Swift model we will demonstrate in two forth
coming publications @15,16# that the unwanted Higgs
fermion bound states do indeed not emerge, when ferm
are coupled to this model. The spectrum of this fermio
Higgs model contains only left-handed fermions whi
couple to the gauge field, if we would turn it on again, a
right-handed free fermions which decouple from the gau
field in the continuum limit.

The outline of the paper is as follows: In Sec. II we st
from the full action of the gauge-fixing~Rome! approach and
reduce it step by step to the ‘‘reduced model’’ which will b
the subject of this paper. In Sec. III we determine the ph
diagram of the reduced model in the mean-field approxim
tion as a function of two parametersk and k̃. The magneti-
zation is calculated in the weak coupling expansion in S
IV. We demonstrate that the magnetization vanishes w
approaching the FM-FMD phase transition. Section V de
with the results of the numerical simulation. The numeri
results for the phase diagram are presented and comp
with the mean-field results in Sec. V A. The perturbati
results for the magnetization are compared with numer
data of high precision in Sec. V B. A brief summary of o
results and an outlook is given in Sec. VI.

We conclude the introduction with a note about metho
ology. As follows from the results of Sec. IV, the continuu
limit of the purely bosonic theory is described by afree
scalar field u(x) that has an unconventional—highe
derivative—kinetic term, and which is periodic underu(x)

→u(x)12pA2k̃. The fieldu(x) is critical in the sense tha
the coefficient of the conventional kinetic term, (]mu)2, van-
ishes at the FM-FMD phase transition. On the latticeu(x) is
not free, and 1/k̃ plays the role of a coupling constant. Th
weak-coupling expansion in 1/k̃ is systematic, except fo
infra-red divergences, which occur onlyat the FM-FMD
05450
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transition, and for a certain class of observables. The si
tion on the FM-FMD line closely resembles massless tw
dimensional field theories, whose infra-red divergences w
extensively studied long ago@17#. The infra-red divergences
are removed by performing a resummation, and we beli
that the resummed weak-coupling expansion is reliable
all observables. This expectation, which is based on the c
relationship with two-dimensional theories, is supported
the quantitative agreement with the numerical results of S
V B.

As for the mean-field approximation of Sec. III, we ha
not established that it is the leading term in any systema
~e.g., 1/d) expansion. However, in view of the qualitativ
agreement with the numerical results, the mean-field
proximation provides an explanation for the structure of
phase diagram. We emphasize here that our analytical un
standing is on a much better footing in the important largek̃
region, where, as discussed above, the~resummed! weak-
coupling expansion is valid.

II. THE MODEL

In the continuum, gauge fixing is needed in order to ma
the integration over gauge orbits well-defined. The co
tinuum gauge-fixed action for a chiral gauge theory can
written as

Sc5Sc,G~Am
a !1Sc,F~Am

a ;cL ,cR!

1Sc,g.f.~Am
a !1Sc,ghost~Am

a ; c̄,c!. ~2.1!

Here

Sc,F~Am
a ;cL ,cR!5E d4x$c̄L~x!D” cL~x!1c̄R~x!]”cR~x!%

~2.2!

is the fermionic part of the action. Only the left-handed co
ponent of the fermion couples to the gauge field.Sc,G(Am

a ) is
the gauge action,Sc,g.f.(Am

a ) the gauge-fixing action and

Sc,ghost(Am
a ; c̄,c) is the Faddeev-Popov ghost action. For t

Lorentz gauge,

Sc,g.f.~Am
a !5

1

2j (
a

S (
m

]mAm
a D 2

, ~2.3!

Sc,ghost~Am
a ; c̄,c!5(

a,b
c̄a@da,bh21g fabcAm

c ]m#cb ,

~2.4!

wherec designates the complex ghost field,j is the gauge-
fixing parameter,g the gauge coupling,Am

a the gauge field
and f abc are the structure constants of the gauge group.
continuum path integral is invariant under BRST transform
tions which replace the local gauge invariance.

The action is transcribed to the lattice using the comp
lattice link variables

Umx5exp~ iagAmx!PG, ~2.5!
6-2
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PHASE DIAGRAM OF A LATTICE U~1! GAUGE . . . PHYSICAL REVIEW D 58 054506
wherea denotes the lattice spacing. In the following we w
seta equal to one. The compact link variables are eleme
of the gauge group G and are assigned to the lattice l
(x,x1m̂). The action on the lattice can then be written in t
form

S5SG~U !1SF~U;cL ,cR!1Sg.f.~U !

1Sghost~U; c̄,c!1Sc.t.~U;cL ,cR ; c̄,c!. ~2.6!

Only the plaquette actionSG(U) is manifestly gauge invari-
ant. To transcribe the fermion action~2.2! to the lattice one
has to choose a particular lattice fermion formulation~like
Wilson, domain wall or staggered fermions!. All known lat-
tice fermion formulations are in conflict with local chira
gauge invariance and, as a consequence,SF(U;cL ,cR) is not
invariant under BRST symmetry. This means that coun
terms have to be added to the action so that this symmet
restored in the continuum limit. We have to consider
terms with dimension smaller than or equal to four, whi
respect all exact symmetries of the lattice model.

In this paper we will not consider fermions and focus on
on the discretization of the bosonic part of the action~2.1!. It
turns out that also the gauge-fixing part of the action, i.e.
combinationSg.f.(U)1Sghost(U; c̄,c), should be formulated
on the lattice such that BRST symmetry is broken. The r
son is a theorem@18# which states that the partition functio
itself, as well as expectation values of gauge invariant
servables, vanish in a lattice model with exact BRST inva
ance, due to the existence of lattice Gribov copies~see also
Ref. @19#!.

As a second simplification we choose U~1! as gauge
group. This choice makes both the analytical and numer
calculations considerably easier since the ghost action in
~2.4! does not depend on the gauge potential and there
also no counterterms which couple the ghosts to other fi
in the action. This implies that in the Abelian case the gh
sector can be dropped completely from the path integral

Finally, as a third simplification we include only th
gauge-boson mass counterterm for the gauge field~this is the
only counterterm of dimension two! and ignore all counter-
terms of higher dimension. The coefficient of this ma
counterterm has to be tuned such that the photons are m
less. For all dimension-four counterterms without derivativ
it has been argued in Ref.@13# that they do not alter the
phase structure of the physically relevant region of the ph
diagram~the existence of a continuous FM-FMD phase tra
sition!. We believe that this remains also true if all oth
counterterms are included in the action.

The U~1! model we are studying in this paper is the
defined by the path integral,

Z5E DU exp„2S~U !… ~2.7!

where the action is given by

S~U !5SG~U !1Sg.f.~U !1Sm~U !, ~2.8!
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SG~U !5
1

g2 (
xmn

$12Re Umnx%, ~2.9!

Sg.f.~U !5k̃H (
x,y,z

h~U !xyh~U !yz2(
x

Bx
2J ,

~2.10!

Sm~U !52k(
mx

$Umx1Umx
† %. ~2.11!

Here Umnx5UmxUnx1m̂Umx1 n̂
†

Unx
† is the usual plaquette

variable,

h~U !xy5(
m

$Umxdx1m̂,y1Umx2m̂
† dx2m̂,y22dx,y%

~2.12!

is the covariant lattice Laplacian,

Bx5(
m

S Vmx2m̂1Vmx

2 D 2

, ~2.13!

with

Vmx5
1

2i
~Umx2Umx

† !5gAmx1O„~gAmx!
3
…, ~2.14!

and

k̃5
1

2jg2 . ~2.15!

The reader can easily verify that the gauge-fixing act
~2.10! reduces in the classical continuum limit to Eq.~2.3!.
The gauge-fixing term~2.3! can be transcribed to the lattic
in many different ways. The choice in Eq.~2.10! is moti-
vated by the following important properties@13#:

~1! The action ~2.10! has a unique absolute minimum
Umx51, validating the weak coupling expansion.

~2! The action~2.10! is not BRST invariant. This is related
to the fact that it cannot be written as a square of~a
discretized version of! the gauge-fixing functional,
(m]mAm . The theorem of Ref.@18# therefore does no
apply in our case.

~3! The action~2.10! leads to critical behavior in the con
tinuum limit g→0.

In connection with item~1! we note that the naive discret
zation of the gauge-fixing action

Sg.f.~U !5
1

2jg2 (
x

S (
m

~Vmx2Vmx2m̂! D 2

, ~2.16!

where Eq.~2.14! was used to transcribeAmx in Eq. ~2.3! in
terms of Umx , does not have a unique minimum. It wa
demonstrated in Ref.@11# that this action gives rise to a
dense set of lattice Gribov copies. Such a dense set of Gr
6-3



gi
a

th
hi

w

ex
l

h

F

e

on
hi

ti
t

u
e
b

ns
ase

ath
is
q.

-
ap-
in
n-
in

the

BOCK, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D58 054506
copies may still give rise to strong fluctuations of the lon
tudinal gauge degrees of freedom, a situation which we w
to avoid from the start.

Some first information about the phase structure of
model is obtained in the constant field approximation. In t
approximation the lattice link field in Eq.~2.5! is replaced by
a constant gauge field that is independent ofx. All terms
which contain derivatives of the gauge field vanish when
insert this constant gauge field into Eq.~2.8! and therefore
we obtain an expression for the classical potential. After
panding the resulting expression for the classical potentia
powers ofg we find

Vcl~Am!5kH g2(
m

Am
2 1¯J

1
g4

2j H S (
m

Am
2 D S (

m
Am

4 D 1¯J , ~2.17!

where the¯ represent terms of higher order ing2. The
coefficient of the term quadratic inAm has to be tuned suc
that the gauge-boson mass vanishes. The value ofk where
the gauge-boson mass vanishes at a given value ofg2 defines
a critical pointkFM-FMD(g2). Using Eq.~2.15! we can also
replaceg2 everywhere in the series byk̃. At tree-level we
find, from Eq.~2.17!,

kFM-FMD~ k̃ !50, ~2.18!

which is a good approximation only in the largek̃ region of
the phase diagram. A first glance at the phase diagram in
1 ~which was obtained on the trivial orbit, i.e.Umx

5gxgx1m̂
† ) shows that the mean field~Fig. 1~a!! and numerical

results~Fig. 1~b!! for the FM-FMD phase transition at larg
k̃ are indeed very close to thek50 axis. We will show later
that the critical couplingkFM-FMD(k̃) is shifted by perturba-
tive corrections to a small positive value.

The minimization of Eq.~2.17! shows that

^gAm&50 for k>kFM-FMD ,
~2.19!

for k,kFM-FMD , ^gAm&56„uk2kFM-FMDu/~6k̃ !…1/4

for all m51,...,4@13#. This implies thatk5kFM-FMD50 cor-
responds to a phase transition between a ferromagnetic~FM!
phase, wherêAm& vanishes and the gauge boson has a n
zero mass, and a so-called FMD phase with a nonvanis
vector condensatêAm&. It will become clear shortly why
these phases are called ferromagnetic. The abbrevia
FMD stands forferromagnetic directionalto express the fac
that the vectorial vacuum expectation value^Am& induces a
space-time direction and that, as a consequence, hyperc
rotation invariance is broken. The continuum limit of th
model corresponds to the continuous phase transition
tween the FM phase and the FMD phase.
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To investigate the properties of the model~2.8! beyond
the constant field approximation we can study fluctuatio
around the classical ground state in the FM and FMD ph
by expanding the observables in powers ofg2, or alterna-
tively powers of 1/k̃, cf. Eq. ~2.15!.

Next we demonstrate that the model defined by the p
integral~2.7! is equivalent to a gauge-Higgs model which
manifestly gauge invariant. The lattice path integral in E
~2.7! can be rewritten as@4#

FIG. 1. The (k,k̃) phase diagram of the reduced model~2.24!
contains four different phases: a ferromagnetic~FM!, an antiferro-
magnetic~AM !, a paramagnetic~PM! and a directional ferromag
netic ~FMD! phase. The phase boundaries in the mean-field
proximation, obtained in the infinite volume limit, are displayed
Fig. ~a!. Figure~b! shows the numerical results for the phase tra
sitions which were obtained by scanning the parameter spacek
direction on 44 ~triangles!, 64 ~crosses! and 84 ~circles! lattices. The
error bars are omitted in all cases since they are smaller than
symbol size.
6-4
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PHASE DIAGRAM OF A LATTICE U~1! GAUGE . . . PHYSICAL REVIEW D 58 054506
Z5E DU exp„2S~Umx!…

5E DU exp„2S~gxUmxgx1m̂
†

!…

5E DUDf exp„2S~fx
†Umxfx1m̂!… ~2.20!

where in the second line we have performed a local ga
transformation,Umx→gxUmxgx1m̂

† , gxPG and made use o
the gauge invariance of the Haar measure. Thegx’s drop out
of the plaquette action because it is manifestly gauge inv
ant. The third line is obtained after integrating both sides
the equation~2.20! over the gauge degrees of freedom w
gx5fx

† and using the fact that*Df51. This simple trans-
formation shows that the longitudinal gauge degrees of fr
dom turn into group-valued Higgs fields. The new acti
S(fx

†Umxfx1m̂) is now invariant under the gauge transfo
mations

Umx→hxUmxhx1m̂
† , fx→hxfx . ~2.21!

We will refer in the following toSV5S(Umx) in Eq. ~2.8! as
the action in thevectorpicture and toSH5S(fx

†Umxfx1m̂)
in Eq. ~2.20! as the action in theHiggs picture. The two
actions are related by

SV~Umx!5SH~Umx ;fx!uf51 ~2.22!

and all observables in the vector picture are mapped o
corresponding observables in the Higgs picture~see also Ref.
@11#!.

In this paper we will study areducedmodel defined by
the action~2.8! on the trivial orbit,Umx5gx1gx1m̂

† . In the
Higgs picture, cf. Eq.~2.20!, the reduced model is obtaine
by settingUmx51. The reduced model is then defined by t
following lattice path integral

Z5E Df exp„2S~f!… ~2.23!

S~f!52k(
x

fx
†~hf!x

1k̃(
x

$fx
†~h2f!x2Bx

2%, ~2.24!

whereBx is given by Eq.~2.13! with

Vmx5
1

2i
~fx

†fx1m̂2fx1m̂
†

fx!. ~2.25!

Equation ~2.24! defines a higher-derivative scalar fie
theory.

As a first step we will investigate in the following th
phase diagram of the reduced model. Equation~2.24! shows
that the partition function is invariant under the symmetry
05450
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k→2k232k̃, k̃→k̃, fx→exfx , ~2.26!

where

ex5~21!S~x!, S~x!5(
m

xm . ~2.27!

This implies that the phase diagram is symmetric under
flection with respect to the line

k116k̃50. ~2.28!

For k̃50 we recover the XY model in four dimension
whose phase diagram consists of three different pha
a broken or ferromagnetic~FM! phase atk.kFM-PM.0, a
symmetric or paramagnetic~PM! phase at kPM-AM,k
,kFM-PM and an antiferromagnetic~AM ! phase at
k,kPM-AM,0. The symmetry~2.26! implies that,kPM-AM
52kFM-PM. Numerically it has been found thatkFM-PM
'0.15. The order parameters which allow us to distingu
between these phases are the magnetization

v5u^fx&u ~2.29!

and the staggered magnetization

vAM5u^exfx&u. ~2.30!

Both quantities are not invariant under the global U~1! sym-
metry, and we have taken the modulus to eliminate the a
biguity due to the constant field mode. The FM phase
characterized byv.0, vAM50, whereas in the AM phase
v50, vAM.0. Both order parameters vanish in the interm
diate PM phase.

As explained above, at largek̃ we expect to find a new
phase transition between the FM and the FMD phase, wh
at tree level is given by Eq.~2.18!. ~In the following we will
retain the name FMD also for the reduced-model version
the FMD phase.! The FMD phase is characterized by a ne
vector order parameterqm , 0,qm,2p, which is nonzero in
the FMD phase and vanishes in the FM phase. It is equa
~p,p,p,p! in the AM phase. As a generalization ofv and
vAM we define a helicoidal magnetization

vH5U K fxexpS 2 i(
m

qmxmD L U, ~2.31!

which is nonzero in the FMD phase. It is easy to see thatvH
reduces tov in the FM and tovAM in AM phase.

When ignoring fluctuations around the ground state,
vector field Vmx , cf. Eqs. ~2.14! and ~2.25!, in the FMD
phase is given by

Vmx5vH
2qm1O~qm

3 !, ~2.32!

showing thatqm plays the role of the vector condensate
the reduced model. We mention in passing that phases
nonvanishingqm have been intensively investigated in low
6-5
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BOCK, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D58 054506
dimensions in condensed matter physics and are know
helicoidal-ferromagnetic phases~see Ref.@20# for a recent
review!.

To further substantiate the statements about the phase
gram made in this section we will determine in the ne
section the phase diagram of the reduced model~2.24! in the
mean-field approximation. Numerical data for the phase d
gram are presented in Sec. V A and compared with
mean-field results.

III. THE PHASE DIAGRAM
IN THE MEAN-FIELD APPROXIMATION

In the following we will perform a mean-field analysis o
the phase diagram ind dimensions.

A central problem of the mean-field approximation
more complicated ferromagnetic systems is the choice of
mean-field ansatz which in a given region of the parame
space leads to the absolute minimum of the free energy. U
ally there exist many different choices and it is not straig
forward to pick an ansatz which leads to the absolute m
mum of the free energy. Based on the discussion of
previous section we decided to consider the ansatz

fx5w expS i(
m

qmxmD , ~3.1!

whereqm , 0<qm,2p are real phases andw plays the role
of a magnetization. Depending on the value ofqm this ansatz
can distinguish between phases with ferromagnetic (qm50,
m51,...,d), w5v, antiferromagnetic (qm5p, m51,...,d)
ordering,w5vAM , and phases with a helicoidal magnetiz
tion (qmÞ0,p, for at least one componentm!, w5vH . Simi-
larly, we take for the magnetic fieldhx the ansatz

hx5h expS i(
m

qmxmD , ~3.2!

whereh is the mean-field magnetic field.
Using Eqs.~3.1! and ~3.2! and following the steps of the

standard mean-field calculation~see for example Ref.@21#!,
we obtain, for the free energy of the reduced model~2.24!,

F~w,h,q;k̃,k!5LdH 2wh2 log I 0~2h!

1(
i 51

4

w2i f ~ i !~q;k̃,k!J , ~3.3!

whereL is the extent of the lattice in spatial and tempo
directions,

f ~1!~q;k̃,k!522~4dk̃1k!F~q!12k̃„2F~q!22d…

1
k̃

16
F~2q!~2d11!, ~3.4!

f ~2!~q;k̃,k!52
k̃

64
„6F~2q!224~3d11!F~2q!
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1d~10d21!…, ~3.5!

f ~3!~q;k̃,k!52
k̃

16
„2F~2q!222~d21!F~2q!2d…,

~3.6!

f ~4!~q;k̃,k!52
k̃

32
„F~2q!2d…2, ~3.7!

F~q!5(
m

cosqm ~3.8!

and

I 0~h!5
1

p E
0

p

da exp~6h cosa! ~3.9!

is the modified Bessel function of zeroth order. We ha
dropped in Eq.~3.3! all terms that depend neither onw nor
on q. The saddle-point equations read

]F
]w

5LdH 2h1(
i 51

4

w2i 212i f ~ i !~q;k̃,k!J 50, ~3.10!

]F
]qm

5Ldw2sin qmH (
i 51

4

w2i 22gm
~ i !~q;k̃,k!J 50,

~3.11!

]F
]h

52LdH w2
I 1~2h!

I 0~2h! J 50, ~3.12!

where

gm
~1!~q;k̃,k!52~4dk̃1k!28k̃F~q!2

k̃

4
~2d11!cosqm ,

~3.13!

gm
~2!~q;k̃,k!5

k̃

16
„12F~2q!212d24…cosqm ,

~3.14!

gm
~3!~q;k̃,k!5k̃„F~2q!2 1

2 ~d21!…cosqm , ~3.15!

gm
~4!~q;k̃,k!5

k̃

4
„F~2q!2d…cosqm , ~3.16!

and

I 1~h!5
dI0~h!

dh
~3.17!

is the modified Bessel function of first order.
From thesed12 equations we can compute thed12

fields w, qm and h as functions of the parametersk̃ and k.
The phase boundaries are defined as the lines in the (k̃,k)
parameter space where various combinations of the o
parametersw andqm vanish.
6-6
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The variableh can be eliminated from the saddle-poi
equations in regions wherew is very small~which is the case
close to the PM phase, wherew vanishes! and the ratio
I 1(2h)/I 0(2h) in Eq. ~3.12! can be expanded in powers ofh,
I 1(2h)/I 0(2h)5h1O(h3).

Usually there does not exist a unique solution of t
saddle-point equations in a certain region of the param
space. It is therefore important to substitute the various
lutions back into the expression for the free energy~3.3! and
to pick out the solution that corresponds to the absolute m
mum. In practice it can happen that certain phases rem
undetected because the mean-field ansatz was too simp
the following we will consider also another ansatz to sea
for a ferromagnetic~FI! phase in a certain region of the p
rameter space which cannot be probed with the ansatz~3.1!.
Because of this uncertainty of the mean-field calculation i
important to determine the phase diagram also numerica

We furthermore note that the free energy in Eq.~3.3! is
invariant under the symmetry~2.26!,

qm→p2qm , k→2k28dk̃, k̃→k̃, ~3.18!

which implies that also the phase diagram in the mean-fi
approximation is symmetric~but for the interchange
qm↔p2qm , which maps the FM onto the AM phase, etc!

with respect to the linek14dk̃50 which in four dimen-
sions turns into Eq.~2.28!.

In the following paragraph we present our mean-field
sults for the phase boundaries and briefly explain how t
were obtained:

FM-PM and PM-AM transitions: The transition be-
tween the FM and PM~PM and AM! phases is obtained
by approaching the transitions from within the FM~AM !
phase whereF(q)5d, F(2q)5d (F(q)52d, F(2q)
5d) andw5v (w5vAM) approaches zero. The relatio
for the FM-PM~PM-AM! phase boundary is obtained b
expanding Eq.~3.10! in powers ofw and equating the
part that is linear inw with zero. Equation~3.11! is trivi-
ally fulfilled because sinqm50 in the FM ~AM ! phases.
The FM-PM and PM-AM phase boundaries are resp
tively given by the relations,

kFM-PM5
1

2d
2~2d11!

31

32
k̃, ~3.19!

kPM-AM52
1

2d
2S 194

32
d2

31

32D k̃. ~3.20!

The reader can easily verify that the two solutions
related to each other by the transformation~3.18!. The
FM-PM and PM-AM phase transition lines intersect

k̃5k̃15@d( 31
16 2 33

8 d)#21. The corresponding solution o
the saddle-point equations minimizes the free ene
~3.3! only in the interval

k̃1<k̃<
16

35
@d~2d11!#215k̃2 , ~3.21!
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and the two straight lines~3.19! and ~3.20! therefore
form the boundary of the PM phase only in that interv
FMD-PM transition: The magnetizationw5vH van-
ishes when we approach the phase boundary from
FMD side which means that Eqs.~3.10! and ~3.11! can
be expanded in powers ofw. Unlike in the previous case
sinqmÞ0 for at least one componentm51,...,d and
hence2d,F(q),1d. From the term in Eq.~3.10! that
is proportional tow we obtain

2~4dk̃1k!F~q!22k̃„2F~q!22d…

2
k̃

16
F~2q!~2d11!51. ~3.22!

After summing thei 51 term inside the curly brackets i
Eq. ~3.11! over m we obtain forF(q) the formula

F~q!58d
4dk̃1k

~34d11!k̃
, ~3.23!

and after first multiplying the same term with cosqm and
then summing overm we obtain an expression fo
F(2q),

k̃

16
~2d11!F~2q!5~4dk̃1k!F~q!24k̃F~q!2

2
k̃

16
~2d11!d. ~3.24!

After substituting these two solutions into Eq.~3.22! and
after a few trivial algebraic manipulations we obtain t
following solution for the FMD-PM phase transition:

kFMD-PM524dk̃6A k̃

8d
F12

k̃

16
d~2d133!G ~34d11!.

~3.25!

This solution describes an ellipse located around
symmetry axis,k14dk̃50. Equation~3.25! forms the
boundary of the PM phase in the interval

k̃2<k̃<16@d~2d133!#215k̃3 , ~3.26!

as the corresponding mean-field solution does not lea
an absolute minimum of the free energy~3.3! in the
region wherek̃<k̃2 .
FM-AM phase transition: Above we pointed out tha
the FM-PM and PM-AM phase transitions intersect
k̃5k̃1 . This means that the FM and AM meet at th
value of k̃. Two different scenarios are imaginable fo
the phase structure in the regionk̃,k̃1 : 1! The FM and
AM phases meet at the 4dk̃1k50 symmetry line with
the magnetizationsv andvAM exhibiting a jump at this
line, or 2! the FM and AM phases are separated by a
phase in which both order parametersv and vAM are
simultaneously nonzero. The mean-field ansatz~3.1! is
6-7
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not suited to detect such an intermediate FI phase s
qm cannot be equal to 0 andp at the same time. We
therefore calculated the free energy also for the ansat
the form

fx5v1vAMex , ~3.27!

which allows us to probe for a FI phase. Our calculati
however shows that scenario~2! leads to a larger value
of the free energy. Also our numerical data in four d
mensions give clear evidence for the correctness of
first scenario.
FM-FMD and FMD-AM transitions: The FM-FMD
~FMD-AM ! phase transition is characterized byqm→0
(qm→p) for all m51,...,d. It is difficult to determine
the location of these phase transitions analytically
causew does not vanish at these two phase transiti
and Eqs.~3.10!–~3.12! cannot be expanded inw. We
will show in the next section that the magnetization a
tually vanishes at the FM-FMD~FMD-AM ! phase tran-
sition. This phenomenon is connected to the infra-
behavior of the higher-derivative action and therefo
cannot be understood in the framework of the mean-fi
approximation.
The FM-FMD phase transition is determined by elim
nating the fieldsh andw from Eq. ~3.12! and

24dk24dk̃~2d11!1
k̃

8
d~2d11!

1
1

16
k̃d~24d15!w22

3

8
k̃dw412

h

w
50,

~3.28!

2k2
k̃

4
~2d11!2

1

4
k̃w21

k̃

2
~d11!w450. ~3.29!

Equation~3.28! and~3.29! are obtained from Eqs.~3.10!
and ~3.11! in the limit q→0. Note that Eqs.~3.12!,
~3.28! and ~3.29! can only hold simultaneously on th
FM-FMD transition curve, whereF(q)5F(2q)5d.
The location of the FM-FMD transition can be calc
lated analytically in two special cases: at the PM-ph
boundary, the terms in Eq.~3.29! which are quadratic
and quartic inw can be ignored, and the FM-FMD tran
sition is given by the intersection of the PM-pha
boundary and the line

kFM-FMD5
k̃

8
~2d11!. ~3.30!

Similarly the FMD-AM phase transition is given by th
intersection of the PM-phase boundary and the line

kFMD-AM528dk̃2
k̃

8
~2d11!. ~3.31!
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The FM-FMD phase transition can also be calcula
analytically in the limit k̃→`. Equation~3.28! implies
that h5k̃d(128d163)/321O(1) for k̃→`, and the
expansion ofw, cf. Eq. ~3.12!, gives w5121/(4h)
1O(1/h2). After substituting these two formulas int
Eq. ~3.29! we find

kFM-FMD→
2~4d13!

~128d163!d
, k̃→`. ~3.32!

In four dimensions we have determinedkFM-FMD(k̃) also
at a series of intermediatek̃ values by solving Eqs.
~3.12!, ~3.28! and ~3.29! numerically. The results for
kFM-FMD(k̃) are listed~with an accuracy of four decima
places! in the second column of Table I. We have al
included the mean-field value ofw evaluated atk
5kFM-FMD(k̃) ~third column!. The corresponding nu
merical values of the FMD-AM phase transition can
easily obtained from the data in the second column
Table I by making use of the symmetry~3.18!.

The mean-field phase diagram ford54 is displayed in
Fig. 1~a!. The phase boundaries are represented in this
by the solid lines. The FM-FMD phase transition line w
computed by solving Eqs.~3.12!, ~3.28! and ~3.29! numeri-
cally. The FMD-AM transition was computed from the th
FM-FMD phase transition data by making use of the sy
metry ~3.18!. The results of the numerical simulation a
shown in Fig. 1~b! and will be explained later.

IV. WEAK COUPLING EXPANSION

Equation~2.15! suggests that the weak coupling expa
sion should be performed in 1/k̃. To facilitate the expansion
we separate the unitary fieldfx into a classical and a quan
tum part. Explicitly,

TABLE I. The mean-field results for the critical couplin

kFM-FMD(k̃) and the order parameterw evaluated at k

5kFM-FMD(k̃) are given in columns two and three for several v

ues ofk̃. The value ofkFM-FMD at k̃5` was calculated from Eq.
~3.32!.

k̃ kFM-FMD w

0.013 0.01467 0.21887
0.014 0.01566 0.42089
0.015 0.01597 0.52455
0.020 0.01639 0.73962
0.025 0.01621 0.81831
0.030 0.01609 0.85916
0.050 0.01608 0.92369
0.1 0.01626 0.96377
1 0.01649 0.99651

10 0.01651 0.99965
100 0.01651 0.99997

` 0.01652 1.00000
6-8
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fx5expS i(
m

qmxm1 iux /A2k̃ D . ~4.1!

The term involving qm accounts for the classical field
whereas the fluctuations are described by the Goldstone
ux . This parametrization holds both in the FM phase, wh
the classical vacuum is translationally invariant (qm50),
and the FMD phase, whereqmÞ0,p, for at least one com-
ponentm51,...,4.

To calculatev in perturbation theory, we first insert Eq
~4.1! into the action~2.24! of the reduced model and expan
it in powers ofux ,

S5 1
2 E

k
u~2k!Dq

21~k!u~k!

1E
k1 ,k2 ,k3 ,k4

Vq~k1 ,k2 ,k3 ,k4!

3u~k1!u~k2!u~k3!u~k4!1¯ , ~4.2!

where

E
k
5E

0

2p d4k

~2p!4 . ~4.3!

The subscriptq indicates that the propagatorDq(k) and four-
point vertex functionVq(k1 ,k2 ,k3 ,k4) depend on the phase
qm . The inverse propagatorDq

21(k) is given by

Dq
21~k!5H(

m
cosqm2~12coskm!J 2

28„F~q!24…(
m

cosqm~12coskm!

1H 2(
m

sin qmsin kmJ 2

14(
mn

sin2qmsin2 qn~12coskn!

2H(
m

sin 2qmsin kmJ 2

22(
mn

sin2qncos2qmsin2 km

1m2(
m

cosqm2~12coskm!, ~4.4!

with

m25
k

k̃
. ~4.5!

@The expression for the propagator simplifies ifq is a solu-
tion of the classical saddle-point equations, cf. Eq.~4.13!
below. As we will discuss below, however, this is not
05450
ld
e

general the case in finite volume.# At tree level, the FM-
FMD phase transition line is given bym250, cf. Eq.~2.18!.
When approaching the FM-FMD phase transition line, E
~4.4! reduces to

Dq~k!}1/~k2!2, k→kFM-FMD ~4.6!

for small k. The propagator~4.6! leads to infra-red diver-
gences. A similar situation is encountered in two space-t
dimensions where infra-red divergences occur for mass
bosons with an ordinary kinetic term@17#. These infra-red
divergences are not only an artifact of the tree-level pro
gator, but occur in the full theory when the continuum lim
k→kFM-FMD is performed. The qualitative agreement wi
the two-dimensional behavior will be demonstrated bel
both analytically and numerically. Here we note that the si
ation we encounter in the reduced model is similar to
situation of the XY model in two dimensions. The FM-FM
phase transition line behaves like the spin-wave phase, w
critical exponents depend continuously on the coupling c
stant. Below we will show that the magnetizationv ~helicoi-
dal magnetizationvH) vanishes}uk2kFM-FMDuh(k̃) when
k↘kFM-FMD (k↗kFM-FMD) and that the critical exponen
h(k̃) depends continuously onk̃.

It is useful to distinguish between observables which
invariant under the global U~1! symmetry~symmetric!, like
the two-point function^fx

†fy&, and others which are no
invariant ~nonsymmetric!, like the magnetization̂fx&. For
symmetric observables, the weak coupling expansion
infra-red finite, because all interactions involve derivativ
The situation is different for nonsymmetric observables, su
as the magnetization. The real expansion parameter is
1/k̃ in this case, but (logm2)/k̃. This means that in order to
obtain a nondivergent result in the limitm2→0, one should
perform a resummation of infinitely many diagrams.

Using Eqs. ~4.1! and ~4.2! the magnetization, cf. Eq
~2.31!, can be calculated to one-loop in perturbation theo

vH512
1

4k̃
E

k
Dq~k!1higher order corrections.

~4.7!

The integral in Eq.~4.7! is infra-red divergent in the limit
m2→0 and, as mentioned in the previous paragraph, in or
to obtain a finite result we have to resum the higher or
diagrams~with two and more lines! in Fig. 2~a! which arise
from the terms proportional toux

2n in Eq. ~4.1! with n.1.
This resummation of diagrams gives

vH5expS 2
1

4k̃
E

k
Dq~k! D 1higher order corrections

~4.8!

;S uku

k̃
D h

1higher order corrections, ~4.9!
6-9
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where we used that at tree-levelkFM-FMD50. The higher
order corrections in Eqs.~4.8! and ~4.9! are due to quartic
and higher order interactions which we have ignored. T
critical exponenth in Eq. ~4.9! is given by

h5
1

64p2k̃
. ~4.10!

Equation~4.9! shows that the magnetization vanishes at
FM-FMD phase transition with a critical exponenth that
depends onk̃ and differs from the Gaussian exponent 1/2
the XY model atk̃50. @In order to show that also the hel
coidal magnetizationvH vanishes fork↗kFM-FMD with the
critical exponent~4.10!, one uses Eq.~4.4! whereq is the
nontrivial solution of Eq.~4.13! below.#

Using relation~4.8! and replacing the integral by a lattic
sum, we can computevH on a finite volume at any value o
k̃ andk in the FM and FMD phases provided that we kno
the function q5q(k̃,k). On a finite lattice with periodic
boundary conditions for the scalar fields the phasesqm can
only take the values

qm52nmp/L, nm50,...,L21, ~4.11!

whereL designates the extent of the lattice in temporal a
spatial directions. Theq’s can be calculated at tree level b
minimizing the classical action

S0~q;k̃,k!5L4H 22~16k̃1k!F~q!14k̃F~q!2

2k̃S (
m

sin2 qmD 2J , ~4.12!

whereL4 is the volume of the lattice andF(q) is defined in
Eq. ~3.8!. We note that after expanding Eq.~4.12! in powers
of q and settingqm5gAm , we recover to leading order th
classical potential in Eq.~2.17!. In infinite volume, the
phasesq can be determined from the four saddle-point eq
tions,

F2~16k̃1k!28k̃F~q!24k̃S (
m

sin2qmD cosqnGsin qn50.

~4.13!

FIG. 2. Feynman diagrams for the magnetization~a! and the
scalar field propagator~b!.
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In finite volume, the value ofq that minimizesS0(q;k̃,k) at
a given (k̃,k) point in the FMD phase is determined b
computingS0(q;k̃,k) for all L4 vectorsq numerically, and
picking out the ones with the smallest value ofS0(q;k̃,k).
~The minimum will respect the lattice symmetries and hen
will in general not be unique.! From the resultingq-values
we have computed the observableF(q), cf. Eq. ~3.8!, for
several (k̃,k) points in the FMD phase. The discussion
this quantity will be postponed to Sec. V B where we w
compare it with the results of the numerical simulation.

We will from now on focus on the physics in the FM
phase whereq50, and calculate the magnetization to o
higher order in perturbation theory. From this calculation
will obtain another estimate for the critical couplin
kFM-FMD(k̃).

The vertex functionV0(k1 ,k2 ,k3 ,k4) in Eq. ~4.2! is given
by

V0~k1 ,k2 ,k3 ,k4!52
1

4k̃
H 2F(

m
„12cos~k11k2!m…G2

1 4
3 F(

m
~12cosk1m

!G2

1(
mn

sin k1m
sin k2m

sin k3n
sin k4n

1 1
2 m2(

m
„12cos~k11k2!m…

2 2
3 m2(

m
~12cosk1m

!J
3d~k11k21k31k4!, ~4.14!

where the first three terms arise from thek̃(x$fx
†(h2f)x

2Bx
2% term and the two terms proportionalm2 from the

2k(xfx
†(hf)x term in the action~2.24!. We note that the

vertex function~4.14! can be easily rewritten such that it
symmetric with respect to the momentak1 , k2 , k3 andk4 .
For the perturbative calculation it does not matter wh
form is used.

After carrying out the higher-order calculation, the ma
netization can be written in the form

v5expS 2
1

4k̃
E

k
D0,1-loop~k! D

1higher order corrections, ~4.15!

D0,1-loop~k!5
D0~k!

11D0~k!S~k!
5

1

D0
21~k!1S~k!

~4.16!

whereD0(k) is the tree-level propagator in the FM phase@cf.
Eq. ~4.4! with q50# andS(k) is the self-energy,
6-10
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S~k!5
1

k̃
E

p
H 2F(

m
„12cos~p1k!m…G2

2S F(
m

~12coskm!G2

1F(
m

~12cospm!G2D 2(
m

sin2km(
n

sin2pn

22S (
m

sin km sin pmD 2

1m2S (
m

„12cos~p1k!m…2(
m

~12coskm!2(
m

~12cospm! D J D0~p!. ~4.17!
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The propagator~4.16! already involves a resummation o
diagrams shown in Fig. 2~b!. The magnetization in Eq.~4.15!
has been obtained by performing the resummation of
grams in Fig. 2~a!, but now using the propagatorD0,1-loop(k)
instead ofDq(k). In order to compare the perturbative fo
mulas ~4.8! and ~4.15! with the results of the numerica
simulations~see Sec. V B! we have to evaluate the lattic
integrals in Eqs.~4.8! and ~4.15! on a finite lattice. The in-
tegrals are replaced by sums over the lattice momenta. In
context we note that these finite lattice sums do not incl
the zero mode,k50. The zero mode decouples from th
action, and gives rise to a phase which disappears after
ing the modulus in the definition ofv andvH in Eqs.~2.29!
and ~2.31!.

The critical coupling can be calculated by expandi
D0,1-loop(p)21 for small momenta in powers ofp2,

D0,1-loop~p!215D0~p!211S~p!

5a~ k̃,k!~p2!1b~ k̃,k!~p2!21¯

~4.18!

and equating the coefficienta(k̃,k) to zero,

a~ k̃,k!5
k

k̃
1

1

k̃
E

p
H 1

2 (
m

~12cospm!

3(
n

cospn2(
m

sin2 pm

1
k

k̃
S 1

8 (
m

cos2pm2 1
2 D J

3D0~p!50. ~4.19!

This leads to the one-loop estimate

kFM-FMD~ k̃ !52E
p
H 1

2 (
m

~12cospm!

3(
n

cospn2(
m

sin2pmJ
3F(

m
~12cospm!G22

~4.20!

'0.02993, ~4.21!

which is about a factor two larger than the mean-field val
cf. Table I.
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V. NUMERICAL RESULTS

A. Phase diagram

To simulate the reduced model defined by the path in
gral ~2.23! we have implemented two different Monte Car
algorithms, a five-hit Metropolis and a Hybrid Monte Car
algorithm. The results for the various observables ag
nicely within the AM, FM and PM phases. We find howev
that the hybrid Monte Carlo algorithm gets much more eas
stuck in metastable non-equilibrium states in the FMD pha
We therefore have generated the bulk of the data presente
this paper with a five-hit Metropolis algorithm.

To map the phase diagram we have measured the foll
ing observables:

The magnetization

v5K U 1

L4 (
x

fxU L , ~5.1!

which is the order parameter for ferromagnetism and
the staggered magnetization

vAM5K U 1

L4 (
x

fxexU L , ~5.2!

which is the order parameter for antiferromagnetism.
The helicoidal magnetization

vH5K U 1

L4 (
x

fxexpS 2 i(
m

qmxmDU L ~5.3!

was used to map the FMD phase, where the four r
phasesqm , m51,...,4 were determined for each con
figuration from

qm5Im LogF 1

L4 (
x

fx
†fx1m̂G . ~5.4!

Apart from these quantities we have also measured
internal energy density

z25K 1

4L4 (
mx

Re~fx
†fx1m̂!L ~5.5!

of the mass counterterm and
the quantity

c~qm!5^cosqm&, ~5.6!

where the phasesqm were calculated for each configura
tion by means of Eq.~5.4!.
6-11
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FIG. 3. Scans ink direction on a 44 lattice atk̃50.2 @Fig. ~a!# k̃50.1 @Fig. ~b!# k̃50.02@Fig. ~c!# andk̃520.03@Fig. ~d!#. The results
for v, vAM andvH are represented in the plots by the circles, triangles and crosses. The error bars are omitted because they are i
smaller than the symbol size. The dashed lines in Figs.~c! and ~d! are obtained in the mean-field approximation.
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We have taken the modulus in Eqs.~5.1!–~5.3! for each con-
figuration, because, in a finite volume, the constant fi
mode gives rise to a slow drift of the magnetization throu
the group space.~Taking the absolute value is a standa
method which allows us to avoid the introduction of an e
ternal magnetic field.!

The discreetness of the phases~4.11! poses a problem fo
the simulation in the FMD phase because each transi
from oneq to anotherq behaves very much like a first orde
phase transition and hence is accompanied by metastabil
We find that these metastabilities become more severe w
the lattice size is increased.

To determine the phase diagram we kept the parametk̃
fixed and performed simulations at a large number ofk val-
ues. Each of these vertical scans, cf. Fig. 1~b!, has been
started in the FM phase. We loweredk in fixed steps and
used the last configuration of a run as the initial configu
tion at the next smaller value ofk. At each point we skipped
103 sweeps for equilibration and performed 104 measure-
ment sweeps. The error of an observableO was estimated
using the relation

D^O&5D^O&stA2t int, ~5.7!
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where D^O&st is the standard deviation andt int designates
the integrated autocorrelation time, defined ast int

5(DtG(Dt)/G(0) ~see for example@22#!. The quantity
G(Dt)5^O(t)O(t1Dt)&2^O&2 is the autocorrelation func
tion. We find that the autocorrelation times for the bulk o
servables defined in Eqs.~5.1!–~5.6! vary from 2 to 30 in the
parameter range where the simulations were performed. W
the statistics of 104 sweeps, the autocorrelation times can
estimated with an accuracy of about 10%. We note howe
that errors are underestimated on larger lattices in the F
phase where metastabilities occur~see below!.

In Figs. 3~a!–~d! we have displayed the numerical resu
for the order parametersv ~circles!, vAM ~triangles! andvH
~crosses! for four exemplary scans on a 44 lattice. Figure
3~a! shows that there are three different phases atk̃50.2, an
FM phase atk*20.43, wherev5vH.0, vAM50, an AM
phase atk&25.97, wherevAM5vH.0, v50 and the FMD
phase at intermediatek in which vH.0, v5vAM50. The
helicoidal magnetizationvH exhibits jumps at certaink val-
ues within the FMD phase. These jumps invH occur because
the phasesqm can change only in discrete steps and hen
have to be considered as a finite volume artifact. In Fig. 4~a!
we have plotted the quantityc(qm), m51,...,4 for thesame
6-12
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PHASE DIAGRAM OF A LATTICE U~1! GAUGE . . . PHYSICAL REVIEW D 58 054506
scan atk̃50.2 as a function ofk. A comparison of Figs. 3~a!
and 4~a! shows that the jumps invH occur at the samek
values where one of the componentsc(qm) exhibits a jump.
All qm’s are zero in the FM phase. Atk'20.43 the first
component ofq condenses~dotted line! and becomes equa
to 2p/L5p/2. The next jump occurs when also the seco
component ofq becomes equal top/2 ~solid line!. The k
value where finally all values ofq are equal top/2 coincides
nicely with the symmetry point,k5216k̃523.2, cf. Eq.
~3.18!. We note that the order in which the jumps occur
arbitrary ~because of hypercubic symmetry!. The jumps at
k,216k̃ follow a similar pattern, with theqm’s jumping
from p/2 to p. We will show in Sec. V B that the compli
catedk-dependence ofvH in the FMD phase can at leas
qualitatively be explained by the one-loop formula~4.8!. In

FIG. 4. The observablesc(qm) @Fig. ~a!# andz2 @Fig. ~b!# as a

function of k for k̃50.2. The lattice size is 44. The four observ-
ablesc(qm), m51,...,4 aredistinguished by the line type~solid,
dots, long and short dashes!. The error bars are omitted in bot
figures because they are not larger than the symbol size in Fig~b!
and also not much bigger than the linewidth in Fig.~a!.
05450
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Fig. 4~b! we have plotted the internal energy densityz2 as a
function of k. In the mean-field theory this quantity is give

by vH
2 1

4 (mcosqm and sincevH
2 5O(1), weexpect this quan-

tity to jump wheneverq changes. The comparison of Fig
4~a! and 4~b! shows that this is indeed the case.

A different situation is encountered in Fig. 3~b! which

shows the result of the scan atk̃50.1. Besides the FM, AM
and FMD phases we find now clear evidence for a PM ph
~wherev5vAM5vH50) which, as predicted by the mean
field calculation, extends into the FMD phase. The gra
shows that four different phase boundaries are crossed w
k is lowered from the FM to the AM phase. The small pe

at k5216k̃'21.6 appears to be a finite size effect becau
it becomes smaller when the lattice size is enlarged.

The FMD phase gradually disappears whenk̃ is lowered
further. The situation atk̃50.02 is depicted in Fig. 3~c!. The
FMD phase has now completely disappeared, and the o
three phases we are left with are the FM, PM and A
phases. We find that the PM phase extends down tok̃'

20.02. The result of the scan atk̃520.03 is displayed in
Fig. 3~d!. It shows that the phase transition between the F
and AM phase coincides with the symmetry linek5216k̃
and is obviously of first order. Both the internal energy de
sity z2 and the order parametersv andvAM exhibit a gap at
this phase transition. This gap grows from zero to one wh
one follows the symmetry linek5216k̃ from the triple
point where the FM, PM and AM phases meet tok̃52`.
The two dashed lines in Figs. 3~c! and ~d! represent the
mean-field result for the magnetizationw5v in the FM and
for the staggered magnetizationw5vAM in the AM phase,
which we obtained by solving the mean-field equatio
~3.10! and ~3.12! for q5(0,0,0,0) andq5(p,p,p,p) nu-
merically.

We have read off the positions of the various phase tr
sitions from plots like the ones depicted in Figs. 3~a!–~d! and
then compiled them in thek-k̃ phase diagram plot in Fig
1~b!. The triangles were obtained on a 44 lattice, the crosses
represent the phase boundaries on a 64 lattice and the circles
mark the phase transitions points on an 84 lattice. The com-
parison of Figs. 1~a! and ~b! shows that the numerical est
mates for the FM-AM, FM-PM, PM-AM, FM-FMD and
FMD-AM phase boundaries agree nicely with the mean-fi
prediction. The agreement seems to be worse for
FMD-PM phase transition. The numerical data indicate ho
ever that both the horizontal and vertical width of the P
phase shrink when the lattice size is increased and that
numerical results could come out closer to the mean-fi
result for larger volumes.

In Fig. 5 we have displayed the magnetizationv as a
function ofk for k̃50.2 and a series of different lattice size
Again, we have loweredk in small steps, and used the la
configuration of a run as initial configuration for the ne
run, skipping 103 sweeps for equilibration.

First we discuss the results on the smaller lattices of s
34 ~filled circle!, 44 ~filled square! and 54 ~filled triangles!.
The magnetizationv exhibits a jump on these lattices. Th
6-13



e
is

si
ha
he

t

io

t
t a

en
d
in

su

l-
he
rie
in
e
o
to

th
he

her
he
f the

t of

the
to-
e
ior
in
ata

ve

r
e
e

on

-

of

ba-

BOCK, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D58 054506
helicoidal magnetizationvH is identical with v in the FM
phase and~unlike v) remains ofO(1) when crossing the
FM-FMD phase transition towards the FMD phase~the data
for vH are not included in Fig. 5!. It can be seen that th
curves forv bend in more strongly when the lattice size
increased, indicating thatv scales to zero at the FM-FMD
phase transition as predicted by the weak coupling expan
in Sec. IV. We will demonstrate in the next subsection t
the data forv in the FM phase are nicely consistent with t
perturbative formula~4.15! according to whichv↘0 in the
limit k↘kFM-FMD and L→`. The plot also shows tha
kFM-FMD increases with increasing lattice size.

On the larger lattices we encounter a different behav
The magnetization first starts to bend over whenk is lowered
but then instead of jumping to the FMD phase continues
decrease slowly. The jump to the FMD occurs finally a
large negative value ofk. The jump on the 64 lattice
~crosses! for instance occurs atk'20.9 and not atk'
20.2. At k*20.9 we did not observe a tunnel event ev
after increasing the statistics by one order of magnitu
which means that the probability for a transition to occur
this k range is very small.

The appearance of these large metastabilities can pre
ably be explained by the discreetness of the phasesqm on a
finite lattice. The tunneling probability between different va
ues of qm decreases exponentially with the product of t
height of the barrier and a power of the volume. The bar
is expected to be proportional to a power of the spac
betweenqm’s, or inversely proportional to a power of th
length of the lattice. The fact that tunneling is suppressed
larger volumes apparently indicates that the volume fac
still wins over the barrier factor.

In this context we also note that on larger lattices
system in the FMD phase ends up in different states w

FIG. 5. The magnetizationv as a function ofk at k̃50.2 on 34

~filled circle!, 44 ~filled square!, 54 ~filled triangle!, 64 ~crosses!, 84

~open circle!, 104 ~open triangle! and 124 ~open square! lattices.
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using different starting configurations and transitions to ot
states occur very rarely or not at all. The results for t
various observables in the FMD phase are independent o
initial configuration only on the smaller lattices of size 34,
44 and 54. ~In all other phases, our results are independen
the initial configurations on all volumes.!

Figure 5 shows that the region in the FM phase where
magnetization starts to bend over is shifted in all cases
wards larger values ofk when the lattice size is enlarged. W
will show in the next subsection that this finite size behav
is in nice agreement with the perturbative formula given
Sec. IV. This good agreement between the numerical d
and lattice perturbation theory lead us to identifykFM-FMD on
the larger lattices, i.e. forL>6, with the point where the
slope inv is largest, and not with the point at large negati
k, wherev exhibits the jump andvH becomes different from
v. All phase transition points on the 64 and 84 lattice which
are included in Fig. 1~b! were obtained with this criterion.

B. Comparison with perturbation theory

In this subsection we compare the simulation results fov
in the FM andvH in the FMD phase with the perturbativ
formulas which we derived in Sec. IV. In Fig. 6 we hav
plotted once more thev andvH data of Fig. 3~a! which were
obtained atk̃50.2 on a 44 lattice. The circles in Fig. 6 were
obtained by evaluating the one-loop formula forvH ~4.8!
numerically on both sides of the FM-FMD phase transiti
on the same lattice and at the same values ofk where we
performed the numerical simulations. The phasesq(k̃,k) at
a given value ofk were determined analytically by minimiz

FIG. 6. The magnetizationv ~squares! and the helicoidal mag-
netizationvH ~crosses! in the FM and FMD phases as a function

k for k̃50.2. The same data were presented already in Fig. 3~a!.
The circles were obtained by numerically evaluating the pertur

tive expression~4.8!. The phasesqm5qm(k̃,k) were obtained by
minimizing Eq.~4.12!.
6-14
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PHASE DIAGRAM OF A LATTICE U~1! GAUGE . . . PHYSICAL REVIEW D 58 054506
ing the classical action in Eq.~4.12! with L54. Figure 6
shows that the numerical results are nicely reproduced by
analytic formula ~4.8! at large values ofk. At smaller k
values the deviations start to become larger. While we do
understand this phenomenon in detail, we believe that it m
be related to the metastabilities mentioned in Sec. V
~Higher orders in perturbation theory could also be siza
though.! The jumps at which the components ofq condense
occur slightly delayed. This distorts thek-dependence of the
propagator, which depends also explicitly onk and not only
implicitly through the phasesq(k̃,k). From the minimizing
phasesq(k̃,k) on the 44 lattice we have computed the func
tion F(q), cf. Eq. ~3.8!, which we plotted in Fig. 7~a!
~dashed line! versusk. The numerical results forz2, which in
the mean-field approximation are proportional toF(q) are
represented in this graph by the crosses. It can be seen
the discrepancy between the two curves becomes la

FIG. 7. The quantity1
4 F(q) ~dashed line!, obtained from the

minimization of the classical action~4.12!, and the internal energy
densityz2 ~crosses!, obtained from the numerical simulation, as

function of k for k̃50.2 on 44 @Fig. ~a!# and 34 @Fig. ~b!# lattices.
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whenk is lowered, which is presumably due to the syste
atic delay of the transition events in the numerical simu
tion. We should observe a smaller shift on a smaller lattic
this scenario is correct. Figure 7~b! shows that the discrep
ancy between the two curves shrinks indeed on the 34 lattice.
We also checked that the numerical metastabilities on a4

lattice get stronger making the agreement with the anal
results worse. Note that the discrepancies between pertu
tion theory and numerical data occur at the same location
Figs. 6 and 7~a!.

In the following we will discuss only the FM phase. Th
numerical metastabilities mentioned in the previous pa
graph have an effect on the simulation results only in
near vicinity of the FM-FMD phase transition.

In Fig. 8 the magnetizationv for k̃50.1 is displayed as a
function ofk. The lattice size is 84. At eachk point we have
accumulated a statistics of 105 Metropolis sweeps. The mag
netization was measured after each sweep and its error
estimated by means of Eq.~5.7!. To compare the numerica
data with the perturbative formulas, we have numerica
evaluated the integrals~replaced by lattice sums! in Eqs.
~4.8! and ~4.15! for a large number ofk values in the FM
phase on the same lattice which we used in the numer
simulations. The obtained results forv in Eqs. ~4.8! and
~4.15! are represented by the dashed and solid curves. Fi
8 shows that the two-loop formula~4.15! provides, as ex-
pected, a much better description of the numerical data t
the one-loop formula~4.8!. The fact that perturbation theor
in 1/k̃ remains valid down to such small values ofk̃ is be-
cause the actual expansion parameter is not 1/k̃ but
1/(16p2k̃) where the factor 1/(16p2) comes from the loop
integrals.

FIG. 8. The magnetizationv as a function ofk for k̃50.1. The
lattice size is 84. The one-loop and two-loop results forv are rep-
resented by the dashed, cf. Eq.~4.8!, and solid, cf. Eq.~4.15!,
curves.
6-15
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BOCK, GOLTERMAN, AND SHAMIR PHYSICAL REVIEW D58 054506
The k̃-dependence of the magnetizationv is shown in
Fig. 9, where we have plotted the magnetization data for

different k̃ values versusk. The lattice size is also in this
case 84 and the statistics at eachk point the same as in Fig
8. The solid lines represent again the perturbative result
cording to Eq.~4.15!. The agreement between the numeric
data and the analytic curve is in all cases excellent. T
graph shows that the drop to the critical point is becom

steeper whenk̃ is increased. This phenomenon is a con
quence of the fact that the critical exponenth in Eq. ~4.10!

decreases with increasingk̃.
Finally we demonstrate that also the volume depende

of the magnetization data in the FM phase, cf. Fig. 5,
nicely reproduced by the perturbative formula~4.15!. In Fig.
10 we have plottedv as a function ofk for k̃50.2 and five
different lattices ranging in size from 34 to 84. The statistics
at eachk value is about 1053(8/L)2 Metropolis sweeps. In
order to better monitor the drop of the magnetization near
FM-FMD phase transition we have increased the density
points in that region. The solid lines represent again the p
turbative results according to Eq.~4.15!. The two-loop curve
agrees nicely with the numerical data down to the value ok
where the analytic curve has a minimum, but starts to dev
when k is lowered beyond that value. The two-loop cur
increases while the numerical data continue to fall off. T
shows that the two-loop formula~4.15! is valid only in thek
interval above the minimum. The self-energyS(k) in Eq.
~4.16! diverges at

k5kmin522k̃~12cos 2p/L !, ~5.8!

FIG. 9. The magnetizationv as a function ofk for several

values ofk̃. The five curves correspond, from the bottom to the t

to k̃50.1, 0.2, 0.3, 0.4 and 0.5. The lattice size is in all cases4.
The solid lines were obtained by evaluating expression~4.15! for a
large number ofk values numerically.
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because the inverse tree-level propagatorD0
21(k) has a zero

eigenvalue~for some nonzerok) at this value ofk. This
implies that v in Eq. ~4.15! approaches one in the limi
k↘kmin . @Lowering k beyond this value would lead to
negative eigenvalue of the tree-level inverse propagator,
this instability causesq to condense to the smallest possib
value, cf. Eq.~4.11!.# The plot shows that the minimum o
the two-loop curve gets smaller and also narrower when
size of the lattice is increased. The minimum drops to zero
the infinite volume limit at thek-value wherea(k̃,k) van-
ishes, cf. Eq.~4.19!. This k-value coincides with the one
loop estimate~4.20! only in the limit k→`. At k̃50.2 we
find that v drops to zero atk'0.03446 which is by abou
15% larger than the one-loop estimate in Eq.~4.20!.

From Eq. ~5.8! we find that for k̃50.2, kmin520.6,
20.4, '20.2764,20.2 and20.1 for L53, 4, 5, 6 and 8.
Figure 10 shows that the two-loop curve approaches on
these values ofk.

VI. SUMMARY AND OUTLOOK

In this paper we have calculated the phase diagram of
reduced modelfor a gauge-fixed U~1! lattice gauge theory
numerically. The phase diagram contains a ferromagn
~FM!, antiferromagnetic~AM !, paramagnetic~PM! and, as a
novelty, also a ferromagnetic directional~FMD! phase,
where not only the U~1! symmetry is broken but also th
vector fieldVm @cf. Eq. ~2.25!# condenses. The locations o
the various phase transition lines are in qualitative agreem
with a mean-field analysis.

The main result of this paper is that the magnetizat

,
FIG. 10. The magnetizationv versusk for k̃50.2 and several

values ofL. The five curves correspond, from the left to the righ
to L53, 4, 5, 6 and 8. The five solid lines were obtained by co
puting ~4.15! numerically on lattices of the same size.
6-16
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PHASE DIAGRAM OF A LATTICE U~1! GAUGE . . . PHYSICAL REVIEW D 58 054506
vanishes continuously as the FM-FMD phase transition
is approached from the FM phase. This allows us to defin
continuum limitwhere the global U~1! symmetry is restored
which is an important prerequisite for the construction o
chiral gauge theory. This phenomenon has its origin in
infra-red properties of the transition. While the critical b
havior of the magnetization cannot be understood in
mean-field approximation, it is well accounted for by t
~resummed! weak coupling expansion. The latter, in turn,
in good quantitative agreement with the numerical data in
FM phase. In the FMD phase, numerical computations
hampered by strong metastabilities as the lattice size is
creased, and it may therefore be very difficult in practice
study the continuous nature of the FM-FMD phase transit
from the FMD side. However, this should not be a proble
in the application to lattice chiral gauge theories, since i
most natural to take the continuum limit from the FM sid

As a next step we will take up again various proposals
lattice chiral gauge theories and investigate whether
problems associated with the strongly fluctuating gauge
grees of freedom can be overcome by gauge fixing. In R
@15# and @16# we will show for the case of the reduced ab
lian Wilson-Yukawa~Smit-Swift! model that~a! the species
doublers decouple in the continuum limit, and~b! that the
fermion spectrum contains only the desired states, name
massless charged left-handed fermion that couples to
gauge field and a massless neutral right-handed fermion
decouples. We expect to find similar positive results also
other fermion formulations, using a Majorana-Wilson te
instead of a Dirac-Wilson term@23#, domain wall fermions
with waveguide@6#, or staggered fermions@24#.
nk
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It is challenging to study the U~1! model with gauge fields
turned on. It should be possible to determine the ferm
spectrum in the Coulomb phase and see if it remains u
fected at small values of the gauge coupling. A change of
fermion spectrum should manifest itself as a new phase t
sition in the fermion sector.

It is also important to extend the gauge-fixing approach
nonabelian gauge theories. This implies that we first hav
specify how to discretize and simulate the ghost part of
action ~2.1!. The non-Abelian case is very interesting b
cause in this case we can ask whether confinement eme
at small values of the gauge coupling.
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