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We present results for the spectrumtﬁbound states in the quenched approximation for three different
values of the lattice spacing, in the range 0.05 fm to 0.15 fm. We find our results for spin-independent splittings
in physical units to be independent of the lattice spacing, indicating the absence of systematic errors from
discretization effects. Spin-dependent splittings are more sensitive to the lattice spacing and higher order
corrections to the action; we discuss the size of these effects and what can be done to arrive at a physical result.
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[. INTRODUCTION putational cost. Multiple sources can be used on a single
configuration because the bound states are much smaller than
Accurate calculations of the hadron spectrum in latticethe volume of a typical lattice. Also sources for both ground
QCD require control of systematic errors. This has become and excited states can be used, allowing multi-exponential
very important issue now that statistical errors have beeffits to hadron correlators and improving the confidence in the
reduced in recent years to the point where systematic errofgited masses. These techniques mean that very small statis-
can dominate the results reported. tical errors can be obtained and the improvement of system-
A major source of systematic error is that arising from theatic errors becomes a priority. In this paper we discuss the
use of a space-time lattice with finite lattice spacing. Allissue of discretization errors for the bottomonium spectrum
operators in the continuum Lagrangian must be replacefb].
with discrete versions and discretization errors consequently The approach that we use, non-relativistc QCD
appear. This means that physical res(fits example a mass (NRQCD) [4,5], is an effective field theory. Its Lagrangian is
in GeV) depend on the value of the lattice spacing. This issuited to a description of non-relativistic quarks since opera-
obviously wrong. Since the lattice is simply a regulator fortors are classified according to the powersudfc? they
the theory, physical results must not depend upon its valuecontain, wherev is the velocity of the heavy quark. The
One approach has been to extrapolate to zero lattice spacimymber of operators to be included can then be truncated at
for a “continuum” result. This is difficult numerically, es- a fixed order inv?/c? and this is clearly a sensible thing to
pecially if the variation with lattice spacing is severe. How- do if v?/c?<1. The renormalizability of QCD is lost in this
ever, recent progress in understanding discretization errofsrocess but physical results are still obtained by putting an
and how to formulate an improved acti¢h,2] has meant explicit momentum cutoff into NRQCD. This cutoff should
that we can obtain essentially continuum results at finite valexclude relativistic momenta and thus be of the same order,
ues of the lattice spacing. The lattice spacing dependence ¢ smaller, than the heavy quark mass. On the lattice this
reduced to such a low level that extrapolation is unnecessargutoff is provided by the lattice spacing, witla=1. The
The spectrum of bottomonium bound states is one of thexcluded momenta cause renormalization of the coefficients
most accurate calculations that can be done on the I48ice of the NRQCD operators when, say, lattice NRQCD is
Since theb quarks are non-relativistic in these systemsmatched to full continuum QCD. The coefficients will be
(v%/c?~0.1), a non-relativistic action can be usf#l5].  well-behaved and essentially cutoff independent provided
This allows ab quark propagator to be calculated on onethat the cutoff is not too large. Any attempt to take the cutoff
sweep through the gluon field configuration with low com-to infinity (lattice spacing to zepowill cause them to diverge
as the non-renormalizability of the theory becomes apparent.
Thus, no continuum extrapolation can be done for lattice
*Member of the UKQCD Collaboration. NRQCD. However, as discussed above, a continuum ex-
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TABLE |. The parameters used in calculations at 3 different values of the QCD coupling(g?.

aMS n Ugp \% No. configurations No. sources  Collaboration
B=5.7 3.15 1 0.861 1x24 200 82 UKQCD
B=6.0 1.71 2 0.878 1832 149 8x 4 Kogutet al.
B=6.2 1.22 3 0.885  Zx48 216 8[Z(2)] UKQCD

trapolation is not necessary for a suitably improved actionthe spin-independerti, as well as the first spin-dependent

All that is necessary is to demonstrate lattice spacing indeterms that give rise to spin-splittings in the spectrum:

pendence of physical results. For the bottomonium spectrum

from NRQCD this should be possible in a region of lattice (A?)?2 ig

spacingMya=1, and this is what we show in this paper. = G 8(Mg)3 R 8(M
The size of discretization errors will vary from one quan-

5 (A-E—E-A)
b)

tity to another. In general it is to be expected that the coef- g g

ficient of the dependence @nshould represent some typical “Cgm? ” (AXE- EXA)_C42_Mg o B
momentum scale appropriate to that quantfifi. For the

light hadron spectrum this would then be a few hundred a’A® a(A?)?

MeV. For heavy hadrons the scale of discretization errors is +Cs 24Mg ~Ce 16n(Mg)2' ©)

likely to be larger. The scale isot set by the heavy quark

mass since this is an irrelevant scale to the dynamics of th?he last two terms inSH come from finite lattice spacing
bound states. It is set rather by typical momenta exchange, rrections to the lattice Laplacian and the lattice time de-

'an'dre 1th§ r:}a\drno;s. ngr brOttticzm';ior::unr]r t?esr‘ﬁi ru?r;?ent;\ ar? vative respectively5]. A is the symmetric lattice derivative
orge €V ana so discretization errors might be EXpECIel, A 4) s a lattice version of the continuum opera®D? .

to present a problem on coarse lattices if the action is "Ave used the standard traceless cloverleaf operators for the

'mpro".ed-.Here we report results W'th I_eadlng order)( chromo-electric and magnetic fields: andgB. The param-
discretization errors removed from spin-independent termsétern is introduced to remove instabilities in the heavy quark
but not from the spin-dependent terrivghich are of lower Y4

order in the non-relativistic expansion propagator caused by the highest momentum modes of the
ttheory.

Section Il describes the lattice calculations and results a We tadpole-improvéa] our lattice action by dividing all
three different values of the lattice spacing. Section Il dis- P p y 9

cusses the scaling behavior of spin-independent and Spi'ﬁgtetic?eauc?eeri\f/l;tlg/se% ftigﬁ;tsa%pear IfﬁeB}oarl?htr:?)oiO\é?nt?lgt
dependent splittings. Section IV contains our conclusions. Wop , u

plaquette. This is most easily done as the's are read by
the code that evolves propagators. Tadpole-improvement of
Il. NRQCD CALCULATIONS AND RESULTS the action allows us to work with tree-level values for the

¢i's in 8H (i.e. 1) without, we believe, having to worry about

Quark propagators in lattice NRQCD are determined, in o . .
single pass through the gauge-field configuration, from evc?_arge renormalizationgl0]. Hence our lattice action depends

lution equations that specify the propagatortiorO in terms only on two parameters, the bare mdﬂﬁ and the QCD

of its value att=0. We use her¢3,8 coupling constanig. . :
€3.8] Table | shows the parameters used in the calculations at 3

different values of3. The configurations were all generated

Gl=(1— a_HO)“UT 1— a_HO " -5 using the standard unimproved Wilson plaquette action and
2n 4 2n ) 7 generously made available to us by the UKQCD Collabora-
tion [11] and by Kogutet al.[12]. The results described here
aHg\" at B=6.0 agree with our previous result3] but generally

aHy\"
Gi+1= 1—2—) UZ 1 have higher precision, because of an increased number of
n ) ) ; .
sources on different time slices and the increased length of
X(1l—adsH)G; (t>1). (1) the lattice in the time direction.

Once the quark propagators have been calculated it is
straightforward to obtain anti-quark propagators and meson
correlation functions. We used the standard interpolating op-
erators described if3] with source and sink “smearing
2 functions.” We worked in Coulomb gauge and took wave
A? . . . . .

S — (2)  functions for smearing functions, either from a Richardson
2My, potential (3=6.0 and 6.20r from a Coulomb potentidlvith
modifications,=5.7). We took a ground state wave func-
The correction terms to the Hamiltonian that we include intion and 2Z1) radial excitations for S states gt=6.0 and 6.2
SH are O(v?*/c*). They comprise relativistic corrections to (8="5.7). For P states we used a ground state wave function

H, is the kinetic energy operator, the lowest or@larv?/c?)
term in the Hamiltonian:

H0=
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TABLE Il. Fitted results for a two exponential fit to twds, correlators, 1S;);, and €S,),, . Fitted energies in lattice units are given
with errors as well as th® value for the fit at all three values @

B 5.7 6.0 6.2
tmin E,a E,a Q E,a E,a Q E,a E,a Q
2 0.31283) 0.51713) 0.00
3 0.51866) 0.8885) 0.01 0.3131B) 0.5083) 0.00
4 0.51866) 0.901(7) 0.37 0.31313) 0.5044) 0.00
5 0.51866) 0.91(1) 0.64 0.454®) 0.7172) 0.00 0.31313) 0.4994) 0.02
6 0.51886) 0.931) 0.73 0.453®) 0.71Q3) 0.14 0.313®) 0.4995) 0.04
7 0.51886) 0.953) 0.70 0.453®) 0.7083) 0.14 0.313®3) 0.4936) 0.10
8 0.51876) 0.934) 0.65 0.453®) 0.7054) 0.13 0.31383) 0.4917) 0.08
9 0.51866) 0.936) 0.70 0.453®B) 0.6976) 0.15 0.3133) 0.4888) 0.07
10 0.45393) 0.6976) 0.14 0.31313) 0.491) 0.07
11 0.45393) 0.69Q7) 0.14 0.313(B) 0.491) 0.06
12 0.45383) 0.681) 0.13 0.31304) 0.481) 0.05
13 0.453713) 0.691) 0.30 0.31314) 0.492) 0.05
14 0.45313) 0.702) 0.24 0.313®) 0.502) 0.04

a_nd X0) radial excitations. We also used local sources gncbf fit, Q generally increases sharply with;, until it reaches
sinks which were delta functions for S states and combinaa plateau. The first fit for which this happens is taken as the
tions of delta functions for higher orbital excitations. In ad- preferred value. In general timth excited energy is taken as
dition we looked at S-state mesons with small non-zero morejiaple from a fit ton+1 exponentials. Table Il shows the
menta. In the following discussion correlation functions atquality of our fitted results foa 2 exponential fit to 2 corr-
zero momentum will be denoted' 'L ;).p, wherea is the  gjators for the3S,, (3S,)y and @S,),, at each value.
source smearing function artrithe sink smearing function \qtice how Q increases from small values tgf, as con-

. . n
with | for a delta functionlocal operatox, 1 for the ground y» ination from a third state dies away. Notice also how

state, 2 for the first excited state and so on. : :
B S : stable the fitted ground state energies are for a very large
At B=5.7 we summed over both initial quark spins. At
range oft,,, values.

$=6.0 and 6.2 we saved CPU time by fixing the initial It is interesting to study how the noise in the meson cor-

uark spin to+1/2, since the spin-flip operators in the X
d P P P op relators changes witj. We expect the ground state meson

Hamiltonian are suppressed with respectHg. We then | h . dbv th
used the strong correlations between different polarizationSO!"e!ators {S) to have noise governed by the same mass as

to obtain reduced errors on the spin splittings for P sgggs (€ Signal since it is the lightest mass availatid]. This

We used 8 different spatial origins for our quark Means thatthe errors in an effective mass plot will not grow
propagators at (2)(4)(1) different time slices atg  Withlattice time. Figure 1 shows this clearly for the effective
=(5.7)(6.0)(6.2) to improve statistics. AB=6.2 all 8 spatial masses from the'G,),, correlator. The size of the errors at
origins were handled simultaneously by usin@)Znoise at different values ofg reflects partly the different statistics
each origin, 1 set per configurati¢h3]. available for the different sets of configuratiaisee Table)l

As described i3] we used multi-exponential fits to the If we multiply the errors a of 5.7 byv2 and at 6.0 by 2, for
multiple correlation functions obtained by different combina-the different number of time origin@ssuming these are in-
tions of source and sink. This allowed us to obtain grounddependent then the errors are in the ordering 5.8.0
state energies and one or two excited state energies. Twa6.2. The error depends on the overlap between the squared
different types of fit were employed; the “matrix” fit and the correlation function and twd'S, particles[14]. On coarser
“row” fit. The matrix fit used the matrix of correlators ob- lattices, the local sink will provide a better overlap with two
tained with ground and excited state sources and sinks. ThES, particles than on finer lattices and so we would expect
row fit used the row of correlators with ground and excitedthe error to be larger. If instead we compare correlation func-
state sources and local operator sinks. We found the correldions in which the ground state smearing is applied at both
tors with both local source and sink to be of very little use insource and sink,'G;)1,, then the errors at all three values of
fitting. We had a large number of measurements in every3 are very similar when adjustments for statistics are made
case and so did not run into problems with our covarianceés above. This reflects the fact that the noise should not
matrix, even for multi-exponential fits with several param-change if the physical overlap with twtS, states does not
eters. The two different fits gave consistent results within thehange.
errors that we quote. For higher states than the ground state the noise grows

Final fitted values were chosen by monitoring the qualityexponentially with time according to the splitting between
of the fits(Q) for given ranges of fitting timet, i, t0 tma, @s  that state and théS,. Figure 2 shows this effect for thkP,
well as the stability of the fitted parameters. For a given typecorrelator with ground state smearing at the source and a
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TABLE IIl. Fit results for dimensionles®b energies and splittinggaE and adE for the quenched
approximation, at three different values @fBelow these are given the kinetic masse textand the wave
function at the origin, in lattice units.

B 5.7 6.0 6.2
EnergiesaE

11Sy( 75) 0.50295) 0.44153) 0.30282)
135,(Y) 0.51866) 0.45375) 0.31323)
21Sy( ) 0.923) 0.6788) 0.4786)
235,(Y") 0.944) 0.6868) 0.4898)
333,(Y") - 0.833) 0.654)
1P, (hy) 0.8436) 0.6273) 0.4385)
2P, (hy) - 0.82314) 0.607)
1%P(xp) 0.8456) 0.6283) 0.440Q5)
Splittings,asE

135, —1's, 0.015758) 0.0123714) 0.0103814)
2835, —21s, - 0.0061) -
333,315, - 0.0053) -
13p,—13P, 0.0202) 0.014717) 0.02%7)
13p,—13%P, 0.01%2) 0.007§15) 0.0106)
13pP,—1%P, 0.00795) 0.006912) 0.01Q7)
1P, —1°P, 0.003(2) 0.0028(6) 0.003(4)
1°P,—1°%P 0.00597) 0.00425) 0.005824)
13P—1°p, 0.005212) 0.00368) 0.004637)
13P—1°p, 0.013711) 0.010%10) 0.014852)
13p—11p, 0.0022) 0.00088) 0.001828)
Kinetic massaMy;, :

M (13S)) 7.067) 3.943) 2.893)
Wave function at the origin

|4(0)|a%? for 185, 0.3855) 0.152514) 0.111612)
|4(0)|a%? for 285, 0.302) 0.11§14) -
|4(0)|a%? for 3%S, - 0.193) -
|4(0)|a%? for 11S, - 0.162113 0.131412)
| 4(0)|a%? for 21S, - 0.11512) -
|4(0)|a%? for 21S, - 0.203) -

local sink. We expect the doubling time for the error to be Because the quark mass term is missing from our Hamil-
In(2)/(1P—19=1.6 GeV'%, and this is roughly true at all tonian, the zero of energy becomes shifted so that the ener-
three values of. Again the absolute size of the error at fixed gies measured in the simulation and given in Table Il cannot
physical time is very similar between all @ values when be directly converted to hadron masses. Differences in en-
adjustments for the different statistics are made as abovergy can be converted directly to physical units using a value
However, on the coarser lattice many fewer lattice timefor the lattice spacing, but to obtain absolute masses we need
points occur before the noise grows overwhelmingly large. to know the energy shift. It is sufficient to calculate an ab-

Table Il shows energies in dimensionless units obtainedolute mass for one meson only, and the one for which the
from our fits at each value g8. Three exponential fits were most accurate calculation can be done and compared to ex-
used in general, and so the values for tiSs8ates should be periment is the iS,, the Y.

used with some cautiorfP is the spin average of théP,,, 10 calculate the absolute mass of fiiewe measure the
states defined by dispersion relation from the energy of meson correlation
functions at small, non-zero momenta, and fit to a non-
B 5M(3P,)+3M(3P;) + M(3Py) | @ relativistic energy-momentum form:

9 . _aE a2p2 c a4p4 5
This is obtained by measuring spin splittingsee below aBy(p)=aByry+ 2aMy “lgadm¥’ ©
between the®P states and théP;, and the energy of the
p,. Eng IS the energy at zero momentum normally measured
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v Tttt T the ratio of appropriate polarization components to maximize
05— Traarrrira e — the correlations, as discussed above. Table Ill shows the re-
sults for different splittings in lattice units at the 3 different
values of 8. Table IV gives a more detailed breakdown for
i 1 different polarization components of thé fine structure at
L B i B=6.0 and 6.2. For a given splitting there is no significant
difference between different polarization components, and so
we average to get a final value and allow for variations in the
0.4 — — error. We see no significant difference betwedh, T states
and °P,E states. This has been checked explicitly by taking
ratios of those correlators. For the hyperfine splitting (
—1,) We are able to extract both ground and excited split-
L 4 tings (for the first time in a lattice calculatigrirom simulta-
neous fits to the 3 matrix of correlators for théS, and
3S,. These results are also given in Table IlI.

Megd

0.3 — o The wave function at the origin is calculated from the
0 5 0 15 50 ratio of amplitudes of row and matrix fits as described in
t / GeV—l Ref. [3]
FIG. 1. Effective mass plots for thé%,), correlator at all three lll. DISCUSSION

values off3, in order with3=5.7 at the top. The time axis has been
converted to physical units of GeV using they,— Y splitting to
set the scalé€Table V). One of the useful features of the spectrum of heavy quark
bound states is that the splittings between radial and orbital
(and given in Table I)i. C; is a constant to be obtained from €xcitations, spin-averaged, are to a good approximation in-
the fit. aE(p) —aEyg is obtained accurately by a single ex- dependent of quark mass in the region between bottom and
ponential fit to the bootstrapped ratio of correlators at finiteCharm. Since not all the bottomonium fine structure has been
and zero momentum. We use the lowest 1 or 2 non-zer§€en experimentally, this statement relies to some extent on
momenta in the fit. Table Il shows the kinetic masses inéStimates of the spin splittings that have not been measured.
lattice units,aMy , obtained at the 3 different values fgr ~ However, since spin splittings are very small for bottomo-
for the bare quark masses given in Table I. The value afium systems £10% of spin-averaged splittingswe still
B=6.0 is taken from Ref[3] and has not been recalculated €xpect little quark mass dependence for radial and orbital
on the Kogutet al. configurations. splittings in the region oMy, when non-spin-averaged split-
P-wave Spin Sp||tt|ngs can also be obtained most accuUngS are used. This allows us to set the scale from lattice

rately from ratio fits. Single exponential fits are performed toCalculations, independently of the requirement to tune the
bare lattice quark mass to get the right kinetic mass for the

10— | | | | ] In Table V we show values for the lattice spacing, ob-
L - tained by fixing various radial and orbital splittings to experi-
Lo . ment(spin-averaging where possiblat the 3 different val-

v I I - 1 ues of B. These lattice spacing determinations are very
r IR I I 1 accurate ones for setting the scale in the determinatian, of
0.8— [15]. Notice that different splittings at a given value gf
give slightly different values foa™ . This is a feature of the
quenched approximation which we return to below. First we
L 1 11T HI 1T ] describe how the determination af ! is done and how er-
0.6 — I — rors are assigned.
- - . Since the NRQCD action of E¢3) is corrected through
" 1 O(a?) for discretization errors, we would also like to remove
e [ ] I 1 T other(’)_(az) errors that come from _using gluon fields gener-

Sy IH HII ated with the simple plaquette action. Fortunately, these er-
04— T rors can be corrected for after the calculation. Perturbatively
- the correction appears as a shift to energies and is related to
the wave function at the origin. It can then be written in
terms of the hyperfine splitting fas states(for p states the
FIG. 2. Effective mass plots for the'R;),, correlator at all ~ shift is zerg. We use[15]

three values o, in order with3="5.7 at the top. The time axis has
been converted to physical units of GeMusing they,—Y split- aAM :3
ting to set the scaléTable V). 9 40

A. Setting the scale

Mg

|||T

0 2 4 6 8 10 12
t / Gev!

(aMp)?aAMyy,, (6)
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TABLE IV. Individual 1P spin splittings in lattice units with quantum numbers, polarizations and smear-
ing combinations specified, along with the final value used in Tabl&€IHndT stand for the different lattice
representations of the continuum spin 2 operator.

Splitting B=6.0 Result B=6.2 Result
3P,T,(1]oc)—Pyy(1]oc) 0.00647) 0.005@14) 0.007247) 0.007642)
3P,T,(1,1)~'Pyy(1,1) 0.00487)
3p,T,,(1]oc)—*Pyx(1loc) 0.00658) 0.006@52)
3P, T,,(1,1)—P;x(1,1) 0.004%7)
3p,E,(1)oc)—*P,z(1]oc) 0.005@8) 0.008341)
3P,E,(1,1)-'P,2(1,1) 0.00467)
®P,E,(1]oc)—'P,z(1]oc) 0.00488) 0.007240)
3P,E,(1,1)-'Py2(1,1) 0.003%5)

P,x(1loc)—3Py(1]oc) 0.00324) 0.00286) 0.002739) 0.002843)
IPx(1,1)-3Pyy(1,1) 0.00265)

P,y(1)oc)—2P,x(1oc) 0.00313) 0.003942)
Py(1,1)-3Pyx(1,1) 0.00244) 0.001963)
P,z(1]oc)—3Py(1loc) 0.009710) 0.009710) 0.013949) 0.0135)
'P,12(1,1)—3Py(1,1) 0.012064)

with M, set to 5 GeV. The resulting shift to the splittings of in energy caused by the relativistic and discretization correc-
Table V is given in column 4. This shift is added to the tions of §H that wehaveincluded and compared those to the
splittings in lattice units before they are divided into the results of NRQCD calculations3]. The potential model es-
physical splitting to obtai~*. For the shift for 2S states we timates for the sum of relativistic and discretization correc-
use the ratio of 2S to 1S hyperfines determineda6.0 and  {ions in 6H at B=6.0 give a resulting shift to theb 1P

gi}/letn ijn J abAIeN:II/.ZTQefstatistilcall etr.ror tlrr: thet: stplti_ttinlg is thgn — 1S splitting of —10 MeV, made up of- 10 MeV from the
inflated byaa elore caiculaling the statistical errorin o | ivistic corrections(10 MeV from the p* term and

a~! given in column 5. > 2 . -
This determination o& ! also has systematic errors, as in — 20 MeV from theD - E term) and cancelling contributions

all lattice determinations. We attempt here to quantify the®ach of around 10 MeV in magnitude from the two discreti-
errors relevant to our calculation. There are two sourceszation correctiong16]. The 25—1S splitting has smaller
physical and unphysical. The errors from higher order relashifts because the expectation values on which the shifts de-
tivistic corrections which have been ignored are physical angpend are more similar for the2and 1S than the P and 1S.
will give the same percentage error at all values of the latticdhe expected result from adding all the terms is still
spacing. The unphysical systematic errors come from higher 10 MeV. The NRQCD results show aPt-1S splitting
order discretization corrections that have not been includedhat is 2@30) MeV larger withoutéH than with, and a 3
These are all much larger at the coarsest lattice spacing thanlS splitting that is %25 MeV larger. This is in good
elsewhere. agreement with expectations, albeit with statistical errors that

As a guide to estimating the size of these errors we havare too large to show a clear effect. However, if the shifts
estimated, using a potential modé&b], the size of the shifts had been much larger than the estimates, they would have

been visible above the noise.

TABLE V. a~! values at the three different values Bt-the . _From th_is res_ult we can ex_trapolate to the size o_f relativ-
first error given is statistical, the second, systematic from highetStic @nd discretization corrections that we have not included.
order relativistic corrections and the third, systematic from higher! N€ terms that we can estimate most readily are those in-

order discretization corrections. The experimental values for th&/0lving powers of quark momenta since these are easy to

splittings are 440 MeV ¥,—Y) and 563 MeV I’ —Y). relate to lower order terms. The terms involving chromo-
electric and magnetic fields and those terms with a structure
B Splitting aAM aAM, a~l (Gev that appears for the first time at higher order are much harder
— and we have not estimated these. There is no reason, how-
5.7 xo—Y ~ 0.3266) —0.015 1.414)(2)(5) ever, to suppose from our study abdvehich compares the
Y'-Y 0.424) —0.007 1.3613)(2)(4) p* and Darwin termsthat these terms should be any larger
6.0 X0~ Y 0.1743)  —0.004 2.59%)(3)(1) than the ones we can easily estimate.
Y' =Y 0.2328) —0.002 2.4%8)(3)(1) Higher order relativistic corrections would appearués
6.2 =Y 0.1275) —0.002 3.5214)(4)(0) terms inSH, i.e. (’)(04) relative to the leading terms. The
Y —Y 0.1758) —0.001 3.2415)(4)(0) percentage error we expect is then naively 7694%. On

the other hand, the estimates above using potential models
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[16] of the v* spin-independent relativistic corrections that ~ TABLE VL. Values for theY mass at the three different values
we haveincluded show them each to be less than half of theof 3, using different prescriptions faa~*. The first error comes
10% (=50 MeV) naively expected. In addition we actually from the statistical error imMy, , the second, the statistical error
need the difference between the corrections for, sayafd in a~ ! from Table V. The experimental value for themass is 9.46
1S, to get the shift in the splitting. This indicates that higherGeV-

order corrections could be smaller than 1% too. Another type

of similar higher order correction is that from radiative cor- o M{(lGeV) M{(lGeV)
rections to thec; coefficients beyond tadpole-improvement. aM, aMin A1) ay’-v)

These should appear at the levelsgfat an ultra-violet scale 5.7 315 7.067) 9.95(10)(30) 9.60(10)(90)
times thev* relativistic corrections, giving 0.5% g8=>5.7 6.0 1.71 3.06)  10.208)(20) 9.657)(30)
and less at higheg values. To encompass both these higher ¢, 1.22 2.8() 10.1710)(40) 9.30(10)(40)

order physical corrections a 1% error is given as the second
error in column 5 of Table V.

The NRQCD action, Eq(3), includes the leading and s some mass dependence for these splittings on the lattice
a’ corrections which appear in power counting form as[18], and this is increased if spin-averaging is not done. It is
p?a?v? andKav? relative to the leading order term (Ho).  therefore true that a tuned bare quark mass is necessary to
p andK are a typical momentum and kinetic energy associget the right radial and orbital splittings. The spin splittings
ated with the bound state. Estimates of these terms usingre much more sensitive to the quark méssighly as its
potential modelg16] yield shifts of 40 MeV at3=5.7, 10 inversg, and it is essential to tune the quark mass to get
MeV at 8=6.0 and 5 MeV a{3=6.2, in the P—1S split-  these correct. The way in which we tune the quark mass is to
ting. Higher order discretization errors not included could beadjust it until the kinetic mass of th¥ agrees with experi-
radiative corrections to those includéoeyond the tadpole- ment. Table VI shows the kinetic mass of thfe(given in
improvement of these terms which has been darel we Ilattice units in Table 1l in GeV, for each of the 3 values of
can estimate these ag(w/a) [15] times the leading errors. B, usinga™! from Table V. There is reasonable agreement
This gives 7 MeV at=5.7, 1.5 MeV at=6.0 and 0.7 with the experimental result 9.46 GeV in each case, provided
MeV at 8=6.2. Higher order terms im (such asp*a*?  that the value fom ! is taken from thér'’ — Y splitting. The
termg would give a percentage effect roughly the square okystematic errors in the determinationadfl,;, are at the 1%
the leading order terms, i.e. 4 MeV gt=5.7, 0.2 MeV at level from the same sources as systematic errors in the de-
B=6.0 and essentially 0 @#=6.2. We should also consider termination ofa~!. This is smaller in every case than the
the first discretization corrections to the first relativistic cor-statistical error, dominated by the statistical uncertainty in
rections, i.e. terms of ordgs?a?v®. These are very similar a~ 1.
looking terms to thep*a*v? terms and so we can use thisto  The difference between the kinetic mass of a meson and
estimate their size. Including powers bfa and numerical its energy at zero momentum is calculable in perturbation
factors we get a similar size correction@t5.7. At higher  theory[19]. The formula which relategyr and the kinetic
values of B these corrections are actually more importantmassM is
than those which are higher orderarbut not suppressed by 0
powers ofv?. However, all discretization corrections be- M=2(ZyMy—Eo) +Enr (7)
come smaller at highgB, and so they are still negligible, 0.5 . o
MeV at B3=6.0 and 0 at8=6.2. The third error given in Wh_ere Zy is the_ mass renormalization arkg} th_e energy
column 5 of Table V is then conservatively estimated by theShift Table Vil gives values foZ, andE, appropriate to the
sum of the three errors given above from discretization errordifférent bare masses used at each valugBofTadpole-
in the NRQCD action. It is interesting to note that the dis-Improved lattice perturbation theory has been used for these

cretization corrections are smaller than the anticipated highdfarameters and the scale of set using the Brodsky-
order relativistic corrections except At=5.7. Note also that Lepage-MackenzieBLM) schemg 19]. The values obtained
the statistical errors are generally larger than the systematf€” My from the perturbative expression, Eg), are given
errors—to see any effect from including higher order terms" lattice units in the sixth _column and should be compared
we would have to improve our statistical error significantly. With the results foraM,, in Table VI. There should be
Higher order discretization corrections from the gluon action@dreement at all values q# independent of whether the
are anticipated to be negligible given the size of @2 quark mass is well tuned to that appropriate to lther not,
correction in Table V.

The a™ ! determination aj3=6.0 agrees with our previ-
ous determinatiof3] and at3=6.2 agrees with previous
UKQCD results[17].

TABLE VII. Values for the’Y mass in lattice unitgsixth col-
umn) at the three different values @, derived from perturbative
renormalization parametegs, andE, (see text

B aMg Zm aEO aENR a(MY)caIc

B. Determining the quark mass 57 315 1.26) 04520 0.51866) 7.5155)

As discussed above, experimental spin-averaged radial 6.0 171 1.1 0.3009) 0.45375)  3.91(23
and orbital splittings are very insensitive to the value of the g2 122 1.30110) 0.214) 0.31323) 3.0926)
guark mass. However, in the quenched approximation there
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FIG. 4. Dimensionless ratios of various splittings to thg
=Y splitting against the lattice spacing in f(eet by they,—Y
splitting). Circles represent the ratio for tR¢”—Y splitting (ex-
periment, short dashed linand crosses for thie), —Y (experiment
using xy, for h] dot-dashed line The diamonds show th¥’'—Y
ratio with a? gluonic correctiongas described in the texand the

squares uncorrected resu(experiment, dashed lineThe squares

- - I
and we see that there is. The perturbative error i©@ts)  and crosses have been offset slightly in the horizontal direction for
and is taken here as the square of thgr) term. Note that  clarity.

the relationship in Eq(7) is well defined perturbatively.
Non-perturbative values for the shift betweBRg andM o The plot also shows, in comparison to the GF11 re-

can also be measured on the lattice for, seyand used, gyits; that if an unimproved calculation is done of thenass

divided by 2, forB physics[20]. _ [24], an absence of scaling is quite evidéntthis case linear
We can use the information above to determine lthe in a).

guark masg21] in two independent ways and ask whether
the renormalized quark mass we obtain scales from one
value of B to the next. These results will be presented else

FIG. 3. Dimensionless ratios of thE—Y splitting to the pa-
rameter A, (diamond and to the UKQCDp mass[11] (circle)
against the lattice spacing in fiset by theE—Y splitting). Re-
sults using the GF1p mass[24] are given by squares. The burst
represents the experimental value fofy,— Y)/m,.

The ratio A(X_b—Y)/mp shows a big discrepancy with
experiment. This we believe is an error from the quenched
approximation. The scales intrinsic to a light hadron system

where[22]. and theY are quite different and the coupling constant does
_ _ o not run correctly between these scales in the quenched ap-
C. Radial and orbital splittings proximation. Again, these errors are masked by discretiza-
From the results of Table Il we can investigate the scaltion errors for an unimproved light hadron spectrum.
ing of spin-averaged splittings across the ranggofalues Figure 3 also shows the ratio of thg—Y splitting to the

we have used. Our analysis of systematic errors in Sec. Il A\ parameter of QCD in the scheme based on the heavy quark
already implied that we do not expect to see violations ofpotential () [9]. Again good scaling is seen over this lim-
scaling in these quantities. ited range of lattice spacings. . . _
Figure 3 shows with circles the ratio of ox,—Y split- _ Figure 4 shows the d|m¢n5|onless ratios of various split-
ting to thep mass, obtained by the UKQCD Collaboration at tings within theY system(spin-averaged where possipkes
the same three values @f[11,23. The p mass was calcu- & function of lattice spacing. The ratios shown are for the
lated using an action witt(a) errors removed using a clo- Y'—Y, Y'=Y and theh;—Y (experiment for the latter
ver term with tadpole-improved coefficient, i.e. a similar phi- case usingy,, for h;). The ratios are constant as a function
losophy to that used here to remove discretization errorsf lattice spacing, although the statistical errors are rather
from theY splittings. The remaining errors in thedetermi-  large for the 3S and 2P cases. This means that we can inter-
nation may then be of(a?). For the P— 1S splitting we  pret our results as continuum results. Note that our current
have removed thé&(a?) gluonic errors, and so, as discussedvalue for the energy of the 3S, at 3=6.0 has dropped by
earlier, the remaining errors are higher orderaimand/or 1o from our previous calculatiof3] with slightly smaller
suppressed by powers of. The plot is very flat, showing statistical errors. Our 1P, energy has not changed and the
that good scaling is obtained. We can rule out scaling violaerror has fallen by a factor of 2. Our best value for the ratio
tions in this ratio with a scale larger than a few hundred(2S—1S)/(1P—1S) is now 1.3%6) and the discrepancy
MeV, and it would be very unlikely for the mass and th&  with experiment remaingl—2o, controlled by the uncer-
system to have identical and cancelling large scaling violatainty in the 2S; energy. The discrepancy with experiment

054505-8



SCALING OF THEY SPECTRUM IN LATTICE . .. PHYSICAL REVIEW D 58 054505

50 r T T T T | T T T T | T T T T ] : T T T 1 I T _|_ LI | L I L B :
C ] 20— m ]
i ] I O o i
0§ g —_ : @ % ]
- - 0 — —
- 43 % E _ % L o } —_ : 3 . ® 4
- 4 = + 1 u
= — _ - _
é) 30 L EB i ™~ - 1} @§ a
ST ¢ ’ R0 5 ]
e — ] S - -
220 — 3 - 1
- N 7y - 3 b
i ] -40— °p, « —
i ] - o .
10 — — i 7
i i -60 — —
: : C 1 11 | T | | T | | T R B
0 I 1 1 1 | 1 1 1 1 | 1 1 1 1
-0.01 0.00 0.01 0.02 0.03
0.00 0.01 0.02 0.03 a? / fm?

a® / tm?®
FIG. 6. The splitting in MeV between variousR states and the
3p H ’r_ it 2 2
ting to set the scale, & in fm?. Plain squares indicate our results rp using dt.hEY Y splllttln%_to se; thﬁ scalel, vaf n fmh
from Table Ill. The diamonds indicate the results from Reb] _Squares Indicate our resu_ts, ramon s_,t € resulfasg] ?t r_natc i}
' ing values ofp but offset slightly for clarity. The bursts indicate the

using a higher order action. They are at matching valueg biit . -
. - I experimental values. The error bars shown are statistical only and
offset slightly for clarity. Fancy squares indicate our results, res-

caled by the square df, calculated toO(e) in [30]. The fancy include some _of the error from the uncertalr_lty in the sdake
. . . text). Thex axis errors are not shown for clarity—they are of the
diamonds indicate the result from RgR5] shifted by the same . o
- . same size as those in Fig. 5.
amount as our results to account for radiative corrections tarthe
-B term. The error bars shown are statistical only and include some

FIG. 5. The hyperfine splitting in MeV using thé' —Y split-

of the error from the uncertainty in the scdkee text Thex axis To investigate scaling we show in Figs. 5 and 6 various
errors from uncertainty in the scale are shown only for the squarespin splittings in MeV setting the scale from thé' —Y
for clarity. splitting as a function of?. The Y’ —Y splitting is used

since this is the one for which our quark masses are closest to
ybeing tuned and this is important for spin splittiig$]. The
results from Table Il are given as squares. We include in the
figures the direct uncertainty in the spin splittings from sta-
tistical errors in the lattice spacing. There is an additional
Spin splittings in lattice units are given in Table Ill. This error, which we have not included, from the uncertainty in
includes, for the first time, the radially excited hyperfinethe kinetic mass from the error in the lattice spacing. This
splittings, Y’ — n}, andY"— »{ at 8=6.0 where our results uncertainty leads to an uncertainty in the tuned quark mass
are most precise. No hyperfine splitting has yet been seewhich affects the spin splittings. If the spin splittings vary as
experimentally for theY' system, and a radially excited hy- the inverse quark mageoughly true at least for the hyperfine
perfine splitting is still awaited for charmonium. We find the splitting), then this second uncertainty is actually equal in
2S hyperfine splitting to be about half that of the ground statesize, correlated with and in the same direction as the error
here. A proper analysis, however, has to study the latticghat we have included. This would lead to an approximate
spacing dependence and the effect of unquenching on thdoubling of the error bars in the figures.
ratio. A clear dependence on the lattice spacing is visible for the
In this section we investigate the dependence in physicdiyperfine splitting,Y — »,. For the 1P fine structure it is
units of the ground state spin splittings on the lattice spacingess clear because statistical errors, particularly3at6.2,
We also compare to recent UKQCD resyl®s| in which a  are so much higher. The lattice spacing dependence in our
systematic study at next order in relativistic and discretizaresults is not surprising since the Hamiltonian we have used
tion corrections has been done for spin-dependent terms, i.bas only leading order spin-dependent terms with no correc-
those which affect the spin splittings, only. By comparing thetions for discretization errors in these terms. These errors are
scaling of our results with their results we can untangle toexpected to b&(a?) relative to the leading term and there-
some extent the difference between the discretization errofere in relative terms significantly larger than for our spin-
at fixeda, which are unphysical, and the relativistic correc- independent splittings. In addition, in a potential model pic-
tions, which are physical. Whether or not the spin-dependerture the fine structure is provided by potentials which are
relativistic correctiongi.e. terms of©®(Mv®)] are sizable or generally of much shorter range than the central potential,
not is important since these are terms outside the scope aihd so we would expect the fine structure to have a harder
potential models. scale for discretization errors than the radial and orbital split-

for the ratios involving the 3S and 2P could be affected b
finite volume errors as well as quenching errors.

D. Spin splittings
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tings. If we parameterize the scaling violations in the hyper<{! . Figure 5 shows with fancy squares our results for the

fine splitting by[7] hyperfine splitting rescaled byl + ap(3.4/)c§Y]%. Values
splitting [ splitting - for ap were taken fronf15]. cﬁ}l) increases abla increases,
55-1S | 25-1% (1—pcas), (8)  which gives a larger correction at lo@. Since this is also

0 the direction in whichap(3.4/a) increases, the correction at

we find the paramete to take a value around 0.8 GeV for B="5-7 IS large, 50%. AB=6.2 the correction fronef!) is
the squares. 20% [31]. The fancy diamonds show the rescaled results
For the TP fine structure we have the advantage that weffom [25] in which we have simply rescaled the leading or-
can compare to experimental results as well as comparinger piece; i.e., we have applied the same shift in MeV to
results at different values of the lattice spacing. In Fig. 6 wethese results as to ours. It is clear from this figure that the
notice a clear disagreement with experiment for the squarg@diative corrections act in the same direction as discretiza-
in that both the overall scale of splittings is too small and thetion corrections discussed earlier and absorb some of them,
ratio softening the value of. in Eq. (8).
3 3 For the hyperfine splitting, we will assume that the dis-
_ACP;—"Py) (9)  Cretization corrections g#=6.0 in the ©°,a%v*) action[25]
P~ ACP,—3Py) are ofO(a*) and therefore negligible already At=6.0. For
. . . . . _the (% action (this work we will take the result aiB
is too large. Similar results were noticed in our charmonium_ 6.2 as being the least affected by discretization erfwes

spectrum calculatiof27]. The dlsagreemt_ent vv_|th experi- | " expect more than a 5% effect herhe difference
ment overp was suggested there as a discretization effec

and results here tend to confirm that discretization errors d Ejn between theﬁ rezqut in physical units betwen 6'.2.
have an effect in this ratio. Our value fprat beta=5.7 is " ) and5=6.0 (v°,a’v") represents the effect of relativis-
1.43) and, at 6.0, 1.B). The experimental value is 0.66. t|g correcnons. From Fig. 5ywth fancy squares _arjd diamonds
The comparison between the squaresfat5.7 and 6.0 this gives a 15% decreage in the hyperfine splitting and fr_om
shows that scaling violations are just about visible for theth® plain squares and diamonds a 20% decrease, consistent
3p, and 3P, above the statistical errors. The slope of theWwith the expectation of around 10% from power counting in
scaling violations is similar to that for the hyperfine splitting v“/c*.
(but with large errors Also in agreement with the hyperfine ~ For thep fine structure, the radiative corrections are not
splitting we can see that adding discretization correctiongvailable and they would in any case be much harder to
would increase the splittings and this would make the 1P fin@pply without doing the full lattice calculation including
structure closer to experiment. them. We therefore just compare the results witiamonds

In Figs. 5 and 6 we also show results from Mareteal.  and without(squaresthe v® anda?v* corrections in Fig. 6.
[25] at 3=6.0 and 5.7 with diamonds. They have used theThe lattice spacing dependence is apparently reduced by the
same bare quark masses as us at both valugg lmft in-  a%y* corrections, although the statistical errors make it hard
cluded higher order spin-dependent relativiti®(v®)] and  to quantify this result. The relativistic corrections again act
discretization[ O(a’v*)] corrections to the actiof5], all  to reduce the splittings, now to something like 50% of ex-
tadpole-improved withigp . We take their spin splittings in - periment. The size of the relativistic corrections is signifi-
lattice units and convert to physical units using alt—Y  cant, possibly several times the naive estimate of 10%. They
splitting since, as explained earlier, this is &e' for which  ¢ouid be offset by radiative corrections, however, in a fully
the quark masses are best tL_Jned_. Our result for this splittingynsistent calculation that includes the next ordepin a2
should be the same as theirs since they have added onl,q , over our calculation. Radiative corrections which in-
spin-dependent terni28] and ours is more precise. The lat- ¢rease the spin splittings, as for the hyperfine case, would
tice spacing dependence of their results should be much rgyhrove the agreement with experiment, but unless these are
duced over ours, and we see that it is. By comparing theigprisingly large, the splittings will remain too small in the
results and ours, we can see that the relativistic correctiongyenched approximation. Initial unquenched results for the
act in the opposite direction to the discretization corrections, 4 action[15] and thev®,a%* action[32] have indicated an
in agreement with the findings ¢29]. increase in the spin splittings, but currently statistical er-

By comparing the resﬁults ¢£5] with ours we can attempt 45 are too large to clearly determine the size of unquench-
to untangle the size af” relativistic corrections to the fine ing effects.

structure. First, however, we should also include radiative Referencd 25] points out that theu®,a2v*) action has a
corrections to the leading order terms, beyond tadpole imy,,ch improved value of [Eq. (9)] over the ¢%) action.
provement. These are d¥(aw?) and therefore of a similar They quote 0.5@9) at 3=6.0 in the quenched approxima-
size to the relativistio’® corrections. Theg; in Eq. (3) take tion, now in agreement with experiment, confirming the dis-
the form 1+cPag(q*) +... with c{*) of O(1). Preliminary  cretization effects for this ratio discussed above. In fact, we
perturbative results are availadlgQ] for cﬁ,,l), for theo B do not expect this ratio to agree exactly with experiment in
term in the action, and confirm this expectation. In perturbathe quenched approximation. An analysispdbr the simple
tion theory the hyperfine splitting then picks up a factor of Cornell potentia[ 33] shows that for a quenchee, which is

the square of this correction, and so it is quite sensitive tdoo small, the value op is reduced. With better statistics it
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may become clear that the quenched valuegfis actually 1.0
smaller than the experimental result.

Another way to study the sensitivity of the fine structure
to higher order terms in the action is to change the value of 0.8
the tadpole coefficienty,. Several calculationgl] have in-
dicated that the average link in Landau gaugg,, is to be

@ 1S
preferred over the fourth root of the plaquetligy , that we L% +
have used here. Changing, is equivalent to resumming &
various terms to all orders in the . It is again easy to ~ }
rescale the hyperfine splitting after the simulation to account < 0.4 23

>

for a different value ofig, by counting the powers af, that

appear in front of ther- B term. The hyperfine splitting is
very sensitive tauy, scaling as 15, when allowing foru, 0.2
factors inH{y which change the renormalized quark mass.
The expected scaling is confirmed by calculations at differ-

o

]
l||||||||||l|l|||||||l|l

i
l||||||||||l|l|||||||l|l

ent values ofug [3] (although here a fixed bare quark mass 0.0+
was usell The hyperfine splitting increases most on using -0.01 0.00 ,o0r 002 0.03
Ug. at B=5.7. There the ratio ofigp/ug, is 1.045; atB a” / tm

=6.0 it is 1.020 and ap3=6.2, 1.013[34]. The hyperfine FIG. 7. The wave function at the origin in G&¥vs a? in fm?
splitting with ug. then has a somewnhat reduced lattice Spacsetting the scale from th¥’ —Y splitting. Points for the 4S, are

ing dependence. Note thef will be different for the action  shown as squares and®, as diamonds. The errors shown are
with ug_, since a different amount of the radiative correctionstatistical only and the errors on tieaxis are shown only for the
has been absorbed by the tadpole factm(‘é). in fact is  squares. The bursts show experimental points derived from the lep-
larger, by 0.24, being the cube of the ratio of thfactors to  tonic widths of theY and Y’ using the naive Van Royen-
O(a). The size of relativistic and discretization correctionsWeisskopf formula.

will change by differing amounts on changing because .
they have different effective powers of, in their coeffi- done for lower order actions than the one used H8f.
cients. There will also be terms aP(1/M,,as/My) from mixing of

From the above we can conclude that systematic errors i{I€ Vector current with higher dimension operatéirs a
the fine structure still exceed 10%, even in the quenchedMmilar way to the mixing forfg which has been worked out
approximation. To improve the accuracy thé and a%y* N some detai[20]). : : .
action must be used, with radiative corrections included for A lot of the radiative corrections cancel in the ratio of

the leading spin-dependent terms. For the hyperfine splittingEPtonic widths for the $and 25 states. Experimentally this
the sensitivity to thec; is such that thed(a?) term also ratio is 2.52). Our result ai3=6.0 simply from the ratio of

needs to be knowfor at least boundedThe determination |q'(9)|2 is 1.714). We expect errors in the quenched approxi-
of the ¢, is in progresg30]. More accurate meson kinetic mation which would suppress the 1S wave function at the

masses and lattice spacing determinations are also requir@§9in refative to the 2S, so that it is not surprising that our

so that the quark mass can be tuned more accurately, sinE%SUIt is somewhat smaller than experiment. We cannot yet

the spin splittings are sensitive to this. say whether the reduction observed is reasonable.
The wave function at the origin is another short distance, 1© obtain results for the real world from simulations in
quantity but one which does not vanish as the spin-dependeft€ duenched approximation and at 2 flavors of dynamical

terms are switched off. In Fig. 7 we show results §60) for ~duarks, extrapolations iN; (=the number of flavors of dy-
the Y and Y’ as a function ofa?, again setting the scale namical quarkswill be required. For this it is important to

from theY — Y’ splitting since the wave function is sensitive have scaling quantities, as we have discussed here. It is also

to quark mass. The lattice spacing dependence does not sedfcessary to use'quantitie.s WhiCh. are sensitive to the same
severe but the statistical errors are large. They are dominatéﬂ”,nl_:’er of dynamical fermions. Th's.’ means th"’.‘t for agiven
by those froma~ % which here is raised to the 3/2 power. The splitting we should set the scale using a quantity which has

bursts show experimental values based on the Ieptoniéim"ar internal momentum scales. For example, for the fine
widths and the naive Van Royen—Weisskopf formula structure it may not be optimal to use the softer radial and
orbital splittings to set the scale. Typical momentum scales

for radial and orbital splittings are around 1 GeV, and so
(100  they can be expected to “see” 3 flavors of dynamical fermi-

ons in the real world15]. The fine structure may instead

“see” 4 flavors and this would imply that an extrapolation in
whereM, is the vector meson mass. There will be radiativeN; can only be done in terms of a quantity which also sees 4
corrections to this formula o®O(«ag). For potential model flavors.
wave functions these radiative corrections have coefficient In Fig. 8 we show a plot of the hyperfine splitting in MeV
16/3m but this does not have to be the same for NRQCDagainst the square of the lattice spacing using tAE,1
Calculations of the renormalization factors have only been-13P, splitting to set the scale. Statistical errors are now

V(0)|?
F|+|—=167Tazeé|—,\(/|2l.
v
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O — T ues when combined with results on dynamical configurations
i ] [15,32.
L T J For spin-dependent splittings there is some visi@le-
L g physica) lattice spacing dependence. This is not surprising
60 — — since our spin splittings are only accurate to leading order,
given the terms in the Hamiltonian that we have used. A
L 4 comparison to a calculatiof25] which does include higher
L . order relativistic and discretization corrections to spin-
dependent terms shows that the relativistic spin-dependent
corrections could be as large as 20% for the hyperfine split-
L ] ting where they can be quantified. They act to reduce spin-
- - dependent splittings in all cases, and this increases the dis-
20— — agreement with experiment for the fine structure in the
quenched approximation.
L 1 For extrapolations to real world values bf; we may
need to employ different techniques for fine structure to that
for radial and orbital splittings since different momentum
scales are involved and this may lead to a different number
of dynamical flavors being “seen.” Statistical errors are cur-
FIG. 8. The hyperfine splitting in MeV using théR,—13p,  rently too high to use & spin splitting to set the scale in
splitting to set the scale, va? in fm?. Squares show our results, SUch a program.
diamonds the results ¢£5].

hyp / MeV
S
o
|
|

O i Il 1 1 1 | 1 1 1 1 | 1 1 1 1
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