
PHYSICAL REVIEW D, VOLUME 58, 054505
Scaling of theY spectrum in lattice nonrelativistic QCD

C. T. H. Davies,* A. Lidsey,* and P. McCallum*
University of Glasgow, Glasgow, G12 8QQ, United Kingdom

K. Hornbostel
Southern Methodist University, Dallas, Texas 75275

G. P. Lepage
Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

J. Shigemitsu
The Ohio State University, Columbus, Ohio 43210

J. Sloan
University of Kentucky, Lexington, Kentucky 40506

~Received 23 February 1998; published 4 August 1998!

We present results for the spectrum ofbb̄ bound states in the quenched approximation for three different
values of the lattice spacing, in the range 0.05 fm to 0.15 fm. We find our results for spin-independent splittings
in physical units to be independent of the lattice spacing, indicating the absence of systematic errors from
discretization effects. Spin-dependent splittings are more sensitive to the lattice spacing and higher order
corrections to the action; we discuss the size of these effects and what can be done to arrive at a physical result.
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I. INTRODUCTION

Accurate calculations of the hadron spectrum in latt
QCD require control of systematic errors. This has becom
very important issue now that statistical errors have b
reduced in recent years to the point where systematic er
can dominate the results reported.

A major source of systematic error is that arising from t
use of a space-time lattice with finite lattice spacing. A
operators in the continuum Lagrangian must be repla
with discrete versions and discretization errors conseque
appear. This means that physical results~for example a mass
in GeV! depend on the value of the lattice spacing. This
obviously wrong. Since the lattice is simply a regulator f
the theory, physical results must not depend upon its va
One approach has been to extrapolate to zero lattice spa
for a ‘‘continuum’’ result. This is difficult numerically, es
pecially if the variation with lattice spacing is severe. Ho
ever, recent progress in understanding discretization er
and how to formulate an improved action@1,2# has meant
that we can obtain essentially continuum results at finite v
ues of the lattice spacing. The lattice spacing dependenc
reduced to such a low level that extrapolation is unnecess

The spectrum of bottomonium bound states is one of
most accurate calculations that can be done on the lattice@3#.
Since theb quarks are non-relativistic in these system
(v2/c2'0.1), a non-relativistic action can be used@4,5#.
This allows ab quark propagator to be calculated on o
sweep through the gluon field configuration with low com

*Member of the UKQCD Collaboration.
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putational cost. Multiple sources can be used on a sin
configuration because the bound states are much smaller
the volume of a typical lattice. Also sources for both grou
and excited states can be used, allowing multi-exponen
fits to hadron correlators and improving the confidence in
fitted masses. These techniques mean that very small s
tical errors can be obtained and the improvement of syst
atic errors becomes a priority. In this paper we discuss
issue of discretization errors for the bottomonium spectr
@6#.

The approach that we use, non-relativistic QC
~NRQCD! @4,5#, is an effective field theory. Its Lagrangian
suited to a description of non-relativistic quarks since ope
tors are classified according to the powers ofv2/c2 they
contain, wherev is the velocity of the heavy quark. Th
number of operators to be included can then be truncate
a fixed order inv2/c2 and this is clearly a sensible thing t
do if v2/c2!1. The renormalizability of QCD is lost in this
process but physical results are still obtained by putting
explicit momentum cutoff into NRQCD. This cutoff shoul
exclude relativistic momenta and thus be of the same or
or smaller, than the heavy quark mass. On the lattice
cutoff is provided by the lattice spacing, withMa*1. The
excluded momenta cause renormalization of the coefficie
of the NRQCD operators when, say, lattice NRQCD
matched to full continuum QCD. The coefficients will b
well-behaved and essentially cutoff independent provid
that the cutoff is not too large. Any attempt to take the cut
to infinity ~lattice spacing to zero! will cause them to diverge
as the non-renormalizability of the theory becomes appar
Thus, no continuum extrapolation can be done for latt
NRQCD. However, as discussed above, a continuum
© 1998 The American Physical Society05-1
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TABLE I. The parameters used in calculations at 3 different values of the QCD coupling,b56/g2.

aMb
0 n u0P V No. configurations No. sources Collaboration

b55.7 3.15 1 0.861 123324 200 832 UKQCD
b56.0 1.71 2 0.878 163332 149 834 Kogut et al.
b56.2 1.22 3 0.885 243348 216 8@Z(2)# UKQCD
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trapolation is not necessary for a suitably improved acti
All that is necessary is to demonstrate lattice spacing in
pendence of physical results. For the bottomonium spect
from NRQCD this should be possible in a region of latti
spacingMba*1, and this is what we show in this paper.

The size of discretization errors will vary from one qua
tity to another. In general it is to be expected that the co
ficient of the dependence ona should represent some typic
momentum scale appropriate to that quantity@7#. For the
light hadron spectrum this would then be a few hund
MeV. For heavy hadrons the scale of discretization error
likely to be larger. The scale isnot set by the heavy quark
mass since this is an irrelevant scale to the dynamics of
bound states. It is set rather by typical momenta exchan
inside the hadrons. For bottomonium these momenta ar
order 1 GeV and so discretization errors might be expec
to present a problem on coarse lattices if the action is
improved. Here we report results with leading order (a2)
discretization errors removed from spin-independent ter
but not from the spin-dependent terms~which are of lower
order in the non-relativistic expansion!.

Section II describes the lattice calculations and result
three different values of the lattice spacing. Section III d
cusses the scaling behavior of spin-independent and s
dependent splittings. Section IV contains our conclusions

II. NRQCD CALCULATIONS AND RESULTS

Quark propagators in lattice NRQCD are determined, i
single pass through the gauge-field configuration, from e
lution equations that specify the propagator fort.0 in terms
of its value att50. We use here@3,8#

G15S 12
aH0

2n D n

U4
†S 12

aH0

2n D n

dxW ,0

Gt115S 12
aH0

2n D n

U4
†S 12

aH0

2n D n

3~12adH !Gt ~ t.1!. ~1!

H0 is the kinetic energy operator, the lowest order~in v2/c2)
term in the Hamiltonian:

H052
D~2!

2Mb
0 . ~2!

The correction terms to the Hamiltonian that we include
dH areO(v4/c4). They comprise relativistic corrections t
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the spin-independentH0 as well as the first spin-depende
terms that give rise to spin-splittings in the spectrum:

dH52c1

~D~2!!2

8~Mb
0!3 1c2

ig

8~Mb
0!2 ~D•E2E•D!

2c3

g

8~Mb
0!2 s•~D3E2E3D!2c4

g

2Mb
0 s•B

1c5

a2D~4!

24Mb
0 2c6

a~D~2!!2

16n~Mb
0!2 . ~3!

The last two terms indH come from finite lattice spacing
corrections to the lattice Laplacian and the lattice time
rivative respectively@5#. D is the symmetric lattice derivative
andD (4) is a lattice version of the continuum operator(Di

4 .
We used the standard traceless cloverleaf operators for
chromo-electric and magnetic fields,gE andgB. The param-
etern is introduced to remove instabilities in the heavy qua
propagator caused by the highest momentum modes of
theory.

We tadpole-improve@9# our lattice action by dividing all
the gauge fields,U, that appear inE, B, and the covariant
lattice derivatives fields byu0P , the fourth root of the
plaquette. This is most easily done as theUm’s are read by
the code that evolves propagators. Tadpole-improvemen
the action allows us to work with tree-level values for t
ci ’s in dH ~i.e. 1! without, we believe, having to worry abou
large renormalizations@10#. Hence our lattice action depend
only on two parameters, the bare massMb

0 and the QCD
coupling constant,g.

Table I shows the parameters used in the calculations
different values ofb. The configurations were all generate
using the standard unimproved Wilson plaquette action
generously made available to us by the UKQCD Collabo
tion @11# and by Kogutet al. @12#. The results described her
at b56.0 agree with our previous results@3# but generally
have higher precision, because of an increased numbe
sources on different time slices and the increased lengt
the lattice in the time direction.

Once the quark propagators have been calculated
straightforward to obtain anti-quark propagators and me
correlation functions. We used the standard interpolating
erators described in@3# with source and sink ‘‘smearing
functions.’’ We worked in Coulomb gauge and took wa
functions for smearing functions, either from a Richards
potential (b56.0 and 6.2! or from a Coulomb potential~with
modifications,b55.7). We took a ground state wave fun
tion and 2~1! radial excitations for S states atb56.0 and 6.2
(b55.7). For P states we used a ground state wave func
5-2
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TABLE II. Fitted results for a two exponential fit to two3S1 correlators, (3S1)1l and (3S1)2l . Fitted energies in lattice units are give
with errors as well as theQ value for the fit at all three values ofb.

b 5.7 6.0 6.2

tmin E1a E2a Q E1a E2a Q E1a E2a Q

2 0.3128~3! 0.517~3! 0.00
3 0.5186~6! 0.888~5! 0.01 0.3130~3! 0.508~3! 0.00
4 0.5186~6! 0.901~7! 0.37 0.3131~3! 0.504~4! 0.00
5 0.5186~6! 0.91~1! 0.64 0.4540~2! 0.717~2! 0.00 0.3131~3! 0.499~4! 0.02
6 0.5188~6! 0.93~1! 0.73 0.4539~2! 0.710~3! 0.14 0.3132~3! 0.499~5! 0.04
7 0.5188~6! 0.95~3! 0.70 0.4539~2! 0.708~3! 0.14 0.3133~3! 0.493~6! 0.10
8 0.5187~6! 0.93~4! 0.65 0.4539~2! 0.705~4! 0.13 0.3133~3! 0.491~7! 0.08
9 0.5186~6! 0.93~6! 0.70 0.4539~3! 0.697~6! 0.15 0.3132~3! 0.488~8! 0.07

10 0.4539~3! 0.697~6! 0.14 0.3131~3! 0.49~1! 0.07
11 0.4539~3! 0.690~7! 0.14 0.3130~3! 0.49~1! 0.06
12 0.4538~3! 0.68~1! 0.13 0.3130~4! 0.48~1! 0.05
13 0.4537~3! 0.69~1! 0.30 0.3131~4! 0.49~2! 0.05
14 0.4537~3! 0.70~2! 0.24 0.3133~4! 0.50~2! 0.04
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and 1~0! radial excitations. We also used local sources a
sinks which were delta functions for S states and comb
tions of delta functions for higher orbital excitations. In a
dition we looked at S-state mesons with small non-zero m
menta. In the following discussion correlation functions
zero momentum will be denoted (2S11LJ)ab wherea is the
source smearing function andb the sink smearing function
with l for a delta function~local operator!, 1 for the ground
state, 2 for the first excited state and so on.

At b55.7 we summed over both initial quark spins.
b56.0 and 6.2 we saved CPU time by fixing the initi
quark spin to11/2, since the spin-flip operators in th
Hamiltonian are suppressed with respect toH0 . We then
used the strong correlations between different polarizati
to obtain reduced errors on the spin splittings for P states@3#.

We used 8 different spatial origins for our qua
propagators at ~2!~4!~1! different time slices at b
5~5.7!~6.0!~6.2! to improve statistics. Atb56.2 all 8 spatial
origins were handled simultaneously by using Z~2! noise at
each origin, 1 set per configuration@13#.

As described in@3# we used multi-exponential fits to th
multiple correlation functions obtained by different combin
tions of source and sink. This allowed us to obtain grou
state energies and one or two excited state energies.
different types of fit were employed; the ‘‘matrix’’ fit and th
‘‘row’’ fit. The matrix fit used the matrix of correlators ob
tained with ground and excited state sources and sinks.
row fit used the row of correlators with ground and excit
state sources and local operator sinks. We found the cor
tors with both local source and sink to be of very little use
fitting. We had a large number of measurements in ev
case and so did not run into problems with our covaria
matrix, even for multi-exponential fits with several param
eters. The two different fits gave consistent results within
errors that we quote.

Final fitted values were chosen by monitoring the qua
of the fits~Q! for given ranges of fitting time,tmin to tmax, as
well as the stability of the fitted parameters. For a given ty
05450
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of fit, Q generally increases sharply withtmin until it reaches
a plateau. The first fit for which this happens is taken as
preferred value. In general thenth excited energy is taken a
reliable from a fit ton11 exponentials. Table II shows th
quality of our fitted results for a 2 exponential fit to 2 corr-
elators for the3S1 , (3S1)1l and (3S1)2l , at eachb value.
Notice how Q increases from small values oftmin as con-
tamination from a third state dies away. Notice also h
stable the fitted ground state energies are for a very la
range oftmin values.

It is interesting to study how the noise in the meson c
relators changes withb. We expect the ground state meso
correlators (1S0) to have noise governed by the same mass
the signal since it is the lightest mass available@14#. This
means that the errors in an effective mass plot will not gr
with lattice time. Figure 1 shows this clearly for the effectiv
masses from the (1S0)1l correlator. The size of the errors a
different values ofb reflects partly the different statistic
available for the different sets of configurations~see Table I!.
If we multiply the errors atb of 5.7 by& and at 6.0 by 2, for
the different number of time origins~assuming these are in
dependent!, then the errors are in the ordering 5.7.6.0
.6.2. The error depends on the overlap between the squ
correlation function and two1S0 particles@14#. On coarser
lattices, the local sink will provide a better overlap with tw
1S0 particles than on finer lattices and so we would exp
the error to be larger. If instead we compare correlation fu
tions in which the ground state smearing is applied at b
source and sink, (1S0)11, then the errors at all three values
b are very similar when adjustments for statistics are m
as above. This reflects the fact that the noise should
change if the physical overlap with two1S0 states does no
change.

For higher states than the ground state the noise gr
exponentially with time according to the splitting betwe
that state and the1S0 . Figure 2 shows this effect for the1P1
correlator with ground state smearing at the source an
5-3
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TABLE III. Fit results for dimensionlessb̄b energies and splittings,aE and adE for the quenched
approximation, at three different values ofb. Below these are given the kinetic mass~see text! and the wave
function at the origin, in lattice units.

b 5.7 6.0 6.2
Energies,aE
11S0(hb) 0.5029~5! 0.4415~3! 0.3028~2!

13S1(Y) 0.5186~6! 0.4537~5! 0.3132~3!

21S0(hb8) 0.92~3! 0.678~8! 0.478~6!

23S1(Y8) 0.94~4! 0.686~8! 0.488~8!

33S1(Y9) - 0.83~3! 0.65~4!

11P1(hb) 0.843~6! 0.627~3! 0.438~5!

21P1(hb8) - 0.823~14! 0.60~7!

13P̄(xb) 0.845~6! 0.628~3! 0.440~5!

Splittings,adE
13S1211S0 0.01575~8! 0.01237~14! 0.01038~14!

23S1221S0 - 0.006~1! -
33S1231S0 - 0.005~3! -
13P2213P0 0.020~2! 0.0147~17! 0.021~7!

13P2213P1 0.011~2! 0.0078~15! 0.010~6!

13P1213P0 0.0079~5! 0.0069~12! 0.010~7!

11P1213P1 0.003(2) 0.0028(6) 0.003(4)

13P2213P̄ 0.0059~7! 0.0042~5! 0.0058~24!

13P̄213P1
0.0052~12! 0.0036~8! 0.0046~37!

13P̄213P0
0.0137~11! 0.0105~10! 0.0148~52!

13P̄211P1
0.002~2! 0.0008~8! 0.0018~28!

Kinetic mass,aMkin :
M (13S1) 7.06~7! 3.94~3! 2.89~3!

Wave function at the origin
uc(0)ua3/2 for 13S1 0.385~5! 0.1525~14! 0.1116~12!

uc(0)ua3/2 for 23S1 0.30~2! 0.118~14! -
uc(0)ua3/2 for 33S1 - 0.19~3! -
uc(0)ua3/2 for 11S0 - 0.1621~13! 0.1314~12!

uc(0)ua3/2 for 21S0 - 0.115~12! -
uc(0)ua3/2 for 21S0 - 0.20~3! -
be
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local sink. We expect the doubling time for the error to
ln(2)/(1P21S)51.6 GeV21, and this is roughly true at al
three values ofb. Again the absolute size of the error at fixe
physical time is very similar between all 3b values when
adjustments for the different statistics are made as ab
However, on the coarser lattice many fewer lattice tim
points occur before the noise grows overwhelmingly larg

Table III shows energies in dimensionless units obtain
from our fits at each value ofb. Three exponential fits were
used in general, and so the values for the 3S states should be
used with some caution.3P̄ is the spin average of the3P0,1,2
states defined by

3P̄5
5M ~3P2!13M ~3P1!1M ~3P0!

9
. ~4!

This is obtained by measuring spin splittings~see below!
between the3P states and the1P1 , and the energy of the
1P1 .
05450
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e
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Because the quark mass term is missing from our Ham
tonian, the zero of energy becomes shifted so that the e
gies measured in the simulation and given in Table III can
be directly converted to hadron masses. Differences in
ergy can be converted directly to physical units using a va
for the lattice spacing, but to obtain absolute masses we n
to know the energy shift. It is sufficient to calculate an a
solute mass for one meson only, and the one for which
most accurate calculation can be done and compared to
periment is the 13S1 , theY.

To calculate the absolute mass of theY we measure the
dispersion relation from the energy of meson correlat
functions at small, non-zero momenta, and fit to a no
relativistic energy-momentum form:

aEY~p!5aENR,Y1
a2p2

2aMY
2C1

a4p4

8a3MY
3 . ~5!

ENR is the energy at zero momentum normally measu
5-4
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SCALING OF THEY SPECTRUM IN LATTICE . . . PHYSICAL REVIEW D 58 054505
~and given in Table III!. C1 is a constant to be obtained from
the fit. aE(p)2aENR is obtained accurately by a single e
ponential fit to the bootstrapped ratio of correlators at fin
and zero momentum. We use the lowest 1 or 2 non-z
momenta in the fit. Table III shows the kinetic masses
lattice units,aMY , obtained at the 3 different values forb
for the bare quark masses given in Table I. The value
b56.0 is taken from Ref.@3# and has not been recalculate
on the Kogutet al. configurations.

P-wave spin splittings can also be obtained most ac
rately from ratio fits. Single exponential fits are performed

FIG. 1. Effective mass plots for the (1S0)1l correlator at all three
values ofb, in order withb55.7 at the top. The time axis has bee

converted to physical units of GeV21 using thex b̄2Y splitting to
set the scale~Table V!.

FIG. 2. Effective mass plots for the (1P1)1l correlator at all
three values ofb, in order withb55.7 at the top. The time axis ha
been converted to physical units of GeV21 using thexb2Y split-
ting to set the scale~Table V!.
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the ratio of appropriate polarization components to maxim
the correlations, as discussed above. Table III shows the
sults for different splittings in lattice units at the 3 differe
values ofb. Table IV gives a more detailed breakdown f
different polarization components of the 1P fine structure at
b56.0 and 6.2. For a given splitting there is no significa
difference between different polarization components, and
we average to get a final value and allow for variations in
error. We see no significant difference between3P2T states
and 3P2E states. This has been checked explicitly by taki
ratios of those correlators. For the hyperfine splitting (Y
2hb) we are able to extract both ground and excited sp
tings ~for the first time in a lattice calculation! from simulta-
neous fits to the 333 matrix of correlators for the1S0 and
3S1 . These results are also given in Table III.

The wave function at the origin is calculated from th
ratio of amplitudes of row and matrix fits as described
Ref. @3#.

III. DISCUSSION

A. Setting the scale

One of the useful features of the spectrum of heavy qu
bound states is that the splittings between radial and orb
excitations, spin-averaged, are to a good approximation
dependent of quark mass in the region between bottom
charm. Since not all the bottomonium fine structure has b
seen experimentally, this statement relies to some exten
estimates of the spin splittings that have not been measu
However, since spin splittings are very small for bottom
nium systems ('10% of spin-averaged splittings!, we still
expect little quark mass dependence for radial and orb
splittings in the region ofMb when non-spin-averaged spli
tings are used. This allows us to set the scale from lat
calculations, independently of the requirement to tune
bare lattice quark mass to get the right kinetic mass for
Y.

In Table V we show values for the lattice spacing, o
tained by fixing various radial and orbital splittings to expe
ment~spin-averaging where possible!, at the 3 different val-
ues of b. These lattice spacing determinations are ve
accurate ones for setting the scale in the determination oas
@15#. Notice that different splittings at a given value ofb
give slightly different values fora21. This is a feature of the
quenched approximation which we return to below. First
describe how the determination ofa21 is done and how er-
rors are assigned.

Since the NRQCD action of Eq.~3! is corrected through
O(a2) for discretization errors, we would also like to remov
otherO(a2) errors that come from using gluon fields gene
ated with the simple plaquette action. Fortunately, these
rors can be corrected for after the calculation. Perturbativ
the correction appears as a shift to energies and is relate
the wave function at the origin. It can then be written
terms of the hyperfine splitting fors states~for p states the
shift is zero!. We use@15#

aDMg5
3

40
~aMb!2aDMhyp, ~6!
5-5
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TABLE IV. Individual 1P spin splittings in lattice units with quantum numbers, polarizations and sm
ing combinations specified, along with the final value used in Table III.E andT stand for the different lattice
representations of the continuum spin 2 operator.

Splitting b56.0 Result b56.2 Result

3P2Tyz(1,loc)21P1y(1,loc) 0.0060~7! 0.0050~14! 0.0072~47! 0.0076~42!
3P2Tyz(1,1)21P1y(1,1) 0.0048~7!
3P2Tzx(1,loc)21P1x(1,loc) 0.0065~8! 0.0060~52!
3P2Tzx(1,1)21P1x(1,1) 0.0045~7!
3P2Ezx(1,loc)21P1z(1,loc) 0.0050~8! 0.0083~41!
3P2Ezx(1,1)21P1z(1,1) 0.0046~7!
3P2Eyz(1,loc)21P1z(1,loc) 0.0048~8! 0.0072~40!
3P2Eyz(1,1)21P1z(1,1) 0.0039~5!

1P1x(1,loc)23P1y(1,loc) 0.0032~4! 0.0028~6! 0.0027~38! 0.0028~43!
1P1x(1,1)23P1y(1,1) 0.0026~5!
1P1y(1,loc)23P1x(1,loc) 0.0031~3! 0.0039~42!
1P1y(1,1)23P1x(1,1) 0.0024~4! 0.0019~63!

1P1z(1,loc)23P0(1,loc) 0.0097~10! 0.0097~10! 0.0139~49! 0.013~5!
1P1z(1,1)23P0(1,1) 0.0120~64!
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with Mb set to 5 GeV. The resulting shift to the splittings
Table V is given in column 4. This shift is added to th
splittings in lattice units before they are divided into t
physical splitting to obtaina21. For the shift for 2S states w
use the ratio of 2S to 1S hyperfines determined atb56.0 and
given in Table III. The statistical error in the splitting is the
inflated byaDMg/2 before calculating the statistical error
a21 given in column 5.

This determination ofa21 also has systematic errors, as
all lattice determinations. We attempt here to quantify
errors relevant to our calculation. There are two sourc
physical and unphysical. The errors from higher order re
tivistic corrections which have been ignored are physical
will give the same percentage error at all values of the lat
spacing. The unphysical systematic errors come from hig
order discretization corrections that have not been includ
These are all much larger at the coarsest lattice spacing
elsewhere.

As a guide to estimating the size of these errors we h
estimated, using a potential model@16#, the size of the shifts

TABLE V. a21 values at the three different values ofb—the
first error given is statistical, the second, systematic from hig
order relativistic corrections and the third, systematic from hig
order discretization corrections. The experimental values for
splittings are 440 MeV (xb2Y) and 563 MeV (Y82Y).

b Splitting aDM aDMg a21 ~GeV!

5.7 xb2Y 0.326~6! 20.015 1.41~4!~2!~5!

Y82Y 0.42~4! 20.007 1.36~13!~2!~4!

6.0 xb2Y 0.174~3! 20.004 2.59~5!~3!~1!

Y82Y 0.232~8! 20.002 2.45~8!~3!~1!

6.2 xb2Y 0.127~5! 20.002 3.52~14!~4!~0!

Y82Y 0.175~8! 20.001 3.24~15!~4!~0!
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in energy caused by the relativistic and discretization corr
tions ofdH that wehaveincluded and compared those to th
results of NRQCD calculations@3#. The potential model es
timates for the sum of relativistic and discretization corre

tions in dH at b56.0 give a resulting shift to thebb̄ 1P
21S splitting of 210 MeV, made up of210 MeV from the
relativistic corrections~10 MeV from the p4 term and

220 MeV from theDW •EW term! and cancelling contributions
each of around 10 MeV in magnitude from the two discre
zation corrections@16#. The 2S21S splitting has smaller
shifts because the expectation values on which the shifts
pend are more similar for the 2S and 1S than the 1P and 1S.
The expected result from adding all the terms is s
210 MeV. The NRQCD results show a 1P21S splitting
that is 20~30! MeV larger withoutdH than with, and a 2S
21S splitting that is 5~25! MeV larger. This is in good
agreement with expectations, albeit with statistical errors t
are too large to show a clear effect. However, if the sh
had been much larger than the estimates, they would h
been visible above the noise.

From this result we can extrapolate to the size of rela
istic and discretization corrections that we have not includ
The terms that we can estimate most readily are those
volving powers of quark momenta since these are eas
relate to lower order terms. The terms involving chrom
electric and magnetic fields and those terms with a struc
that appears for the first time at higher order are much ha
and we have not estimated these. There is no reason, h
ever, to suppose from our study above~which compares the
p4 and Darwin terms! that these terms should be any larg
than the ones we can easily estimate.

Higher order relativistic corrections would appear asv6

terms indH, i.e. O(v4) relative to the leading terms. Th
percentage error we expect is then naively 10%251%. On
the other hand, the estimates above using potential mo

r
r
e

5-6



at
th
ly

e
yp
r-
t.

e
o

as

c
si

b
-

.

o

r
r

r
to

n
y
e-
5

th
ro
is
h

a
m
ly
io

-

d
th
e

ttice
t is
ry to
gs

get
s to

f
nt

ded

de-
e
in

and
ion

ese

red

e

s

r

SCALING OF THEY SPECTRUM IN LATTICE . . . PHYSICAL REVIEW D 58 054505
@16# of the v4 spin-independent relativistic corrections th
we haveincluded show them each to be less than half of
10% ~550 MeV! naively expected. In addition we actual
need the difference between the corrections for, say 1P and
1S, to get the shift in the splitting. This indicates that high
order corrections could be smaller than 1% too. Another t
of similar higher order correction is that from radiative co
rections to theci coefficients beyond tadpole-improvemen
These should appear at the level ofas at an ultra-violet scale
times thev4 relativistic corrections, giving 0.5% atb55.7
and less at higherb values. To encompass both these high
order physical corrections a 1% error is given as the sec
error in column 5 of Table V.

The NRQCD action, Eq.~3!, includes the leadinga and
a2 corrections which appear in power counting form
p2a2v2 andKav2 relative to the leading orderv2 term (H0).
p andK are a typical momentum and kinetic energy asso
ated with the bound state. Estimates of these terms u
potential models@16# yield shifts of 40 MeV atb55.7, 10
MeV at b56.0 and 5 MeV atb56.2, in the 1P21S split-
ting. Higher order discretization errors not included could
radiative corrections to those included~beyond the tadpole
improvement of these terms which has been done! and we
can estimate these asas(p/a) @15# times the leading errors
This gives 7 MeV atb55.7, 1.5 MeV atb56.0 and 0.7
MeV at b56.2. Higher order terms ina ~such asp4a4v2

terms! would give a percentage effect roughly the square
the leading order terms, i.e. 4 MeV atb55.7, 0.2 MeV at
b56.0 and essentially 0 atb56.2. We should also conside
the first discretization corrections to the first relativistic co
rections, i.e. terms of orderp2a2v4. These are very simila
looking terms to thep4a4v2 terms and so we can use this
estimate their size. Including powers ofMa and numerical
factors we get a similar size correction atb55.7. At higher
values ofb these corrections are actually more importa
than those which are higher order ina but not suppressed b
powers of v2. However, all discretization corrections b
come smaller at higherb, and so they are still negligible, 0.
MeV at b56.0 and 0 atb56.2. The third error given in
column 5 of Table V is then conservatively estimated by
sum of the three errors given above from discretization er
in the NRQCD action. It is interesting to note that the d
cretization corrections are smaller than the anticipated hig
order relativistic corrections except atb55.7. Note also that
the statistical errors are generally larger than the system
errors—to see any effect from including higher order ter
we would have to improve our statistical error significant
Higher order discretization corrections from the gluon act
are anticipated to be negligible given the size of theO(a2)
correction in Table V.

The a21 determination atb56.0 agrees with our previ
ous determination@3# and atb56.2 agrees with previous
UKQCD results@17#.

B. Determining the quark mass

As discussed above, experimental spin-averaged ra
and orbital splittings are very insensitive to the value of
quark mass. However, in the quenched approximation th
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is some mass dependence for these splittings on the la
@18#, and this is increased if spin-averaging is not done. I
therefore true that a tuned bare quark mass is necessa
get the right radial and orbital splittings. The spin splittin
are much more sensitive to the quark mass~roughly as its
inverse!, and it is essential to tune the quark mass to
these correct. The way in which we tune the quark mass i
adjust it until the kinetic mass of theY agrees with experi-
ment. Table VI shows the kinetic mass of theY ~given in
lattice units in Table III! in GeV, for each of the 3 values o
b, usinga21 from Table V. There is reasonable agreeme
with the experimental result 9.46 GeV in each case, provi
that the value fora21 is taken from theY82Y splitting. The
systematic errors in the determination ofaMkin are at the 1%
level from the same sources as systematic errors in the
termination ofa21. This is smaller in every case than th
statistical error, dominated by the statistical uncertainty
a21.

The difference between the kinetic mass of a meson
its energy at zero momentum is calculable in perturbat
theory @19#. The formula which relatesENR and the kinetic
massM is

M52~ZmMb
02E0!1ENR ~7!

where Zm is the mass renormalization andE0 the energy
shift. Table VII gives values forZm andE0 appropriate to the
different bare masses used at each value ofb. Tadpole-
improved lattice perturbation theory has been used for th
parameters and the scale ofas set using the Brodsky-
Lepage-Mackenzie~BLM ! scheme@19#. The values obtained
for MY from the perturbative expression, Eq.~7!, are given
in lattice units in the sixth column and should be compa
with the results foraMkin in Table VI. There should be
agreement at all values ofb independent of whether th
quark mass is well tuned to that appropriate to theb or not,

TABLE VI. Values for theY mass at the three different value
of b, using different prescriptions fora21. The first error comes
from the statistical error inaMkin , the second, the statistical erro
in a21 from Table V. The experimental value for theY mass is 9.46
GeV.

b aMb
0 aMkin

MY(GeV)
a(x̄b2Y)

21
MY(GeV)
a(Y82Y)

21

5.7 3.15 7.06~7! 9.95~10!~30! 9.60~10!~90!

6.0 1.71 3.94~3! 10.20~8!~20! 9.65~7!~30!

6.2 1.22 2.89~3! 10.17~10!~40! 9.30~10!~40!

TABLE VII. Values for theY mass in lattice units~sixth col-
umn! at the three different values ofb, derived from perturbative
renormalization parametersZm andE0 ~see text!.

b aMb
0 Zm aE0 aENR a(MY)calc

5.7 3.15 1.25~6! 0.45~20! 0.5186~6! 7.51~55!

6.0 1.71 1.19~4! 0.30~9! 0.4537~5! 3.91~23!

6.2 1.22 1.31~10! 0.21~4! 0.3132~3! 3.09~26!
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and we see that there is. The perturbative error is atO(as
2)

and is taken here as the square of theO(as) term. Note that
the relationship in Eq.~7! is well defined perturbatively
Non-perturbative values for the shift betweenENR and M
can also be measured on the lattice for, say,Y and used,
divided by 2, forB physics@20#.

We can use the information above to determine theb
quark mass@21# in two independent ways and ask wheth
the renormalizedb quark mass we obtain scales from o
value ofb to the next. These results will be presented el
where@22#.

C. Radial and orbital splittings

From the results of Table III we can investigate the sc
ing of spin-averaged splittings across the range ofb values
we have used. Our analysis of systematic errors in Sec. I
already implied that we do not expect to see violations
scaling in these quantities.

Figure 3 shows with circles the ratio of ourxb2Y split-
ting to ther mass, obtained by the UKQCD Collaboration
the same three values ofb @11,23#. The r mass was calcu
lated using an action withO(a) errors removed using a clo
ver term with tadpole-improved coefficient, i.e. a similar ph
losophy to that used here to remove discretization er
from theY splittings. The remaining errors in ther determi-
nation may then be ofO(a2). For the 1P21S splitting we
have removed theO(a2) gluonic errors, and so, as discuss
earlier, the remaining errors are higher order ina and/or
suppressed by powers ofv2. The plot is very flat, showing
that good scaling is obtained. We can rule out scaling vio
tions in this ratio with a scale larger than a few hundr
MeV, and it would be very unlikely for ther mass and theY
system to have identical and cancelling large scaling vio

FIG. 3. Dimensionless ratios of thexb2Y splitting to the pa-
rameterLV ~diamond! and to the UKQCDr mass@11# ~circle!
against the lattice spacing in fm~set by thexb2Y splitting!. Re-
sults using the GF11r mass@24# are given by squares. The bur
represents the experimental value forD(xb2Y)/mr .
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tions. The plot also shows, in comparison to the GF11
sults, that if an unimproved calculation is done of ther mass
@24#, an absence of scaling is quite evident~in this case linear
in a).

The ratio D(xb2Y)/mr shows a big discrepancy with
experiment. This we believe is an error from the quench
approximation. The scales intrinsic to a light hadron syst
and theY are quite different and the coupling constant do
not run correctly between these scales in the quenched
proximation. Again, these errors are masked by discret
tion errors for an unimproved light hadron spectrum.

Figure 3 also shows the ratio of thexb2Y splitting to the
L parameter of QCD in the scheme based on the heavy q
potential (V) @9#. Again good scaling is seen over this lim
ited range of lattice spacings.

Figure 4 shows the dimensionless ratios of various sp
tings within theY system~spin-averaged where possible! as
a function of lattice spacing. The ratios shown are for t
Y92Y, Y82Y and thehb82Y ~experiment for the latter
case usingxb8 for hb8). The ratios are constant as a functio
of lattice spacing, although the statistical errors are rat
large for the 3S and 2P cases. This means that we can i
pret our results as continuum results. Note that our curr
value for the energy of the 23S1 at b56.0 has dropped by
1s from our previous calculation@3# with slightly smaller
statistical errors. Our 11P1 energy has not changed and th
error has fallen by a factor of 2. Our best value for the ra
(2S21S)/(1P21S) is now 1.35~6! and the discrepancy
with experiment remains~1–2!s, controlled by the uncer-
tainty in the 23S1 energy. The discrepancy with experime

FIG. 4. Dimensionless ratios of various splittings to thexb

2Y splitting against the lattice spacing in fm~set by thexb2Y
splitting!. Circles represent the ratio for theY92Y splitting ~ex-
periment, short dashed line! and crosses for thehb82Y ~experiment
using xb8 for hb8 dot-dashed line!. The diamonds show theY82Y
ratio with a2 gluonic corrections~as described in the text! and the
squares uncorrected results~experiment, dashed line!. The squares
and crosses have been offset slightly in the horizontal direction
clarity.
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for the ratios involving the 3S and 2P could be affected
finite volume errors as well as quenching errors.

D. Spin splittings

Spin splittings in lattice units are given in Table III. Th
includes, for the first time, the radially excited hyperfi
splittings,Y82hb8 andY92hb9 at b56.0 where our results
are most precise. No hyperfine splitting has yet been s
experimentally for theY system, and a radially excited hy
perfine splitting is still awaited for charmonium. We find th
2S hyperfine splitting to be about half that of the ground st
here. A proper analysis, however, has to study the lat
spacing dependence and the effect of unquenching on
ratio.

In this section we investigate the dependence in phys
units of the ground state spin splittings on the lattice spac
We also compare to recent UKQCD results@25# in which a
systematic study at next order in relativistic and discreti
tion corrections has been done for spin-dependent terms
those which affect the spin splittings, only. By comparing t
scaling of our results with their results we can untangle
some extent the difference between the discretization er
at fixeda, which are unphysical, and the relativistic corre
tions, which are physical. Whether or not the spin-depend
relativistic corrections@i.e. terms ofO(Mv6)# are sizable or
not is important since these are terms outside the scop
potential models.

FIG. 5. The hyperfine splitting in MeV using theY82Y split-
ting to set the scale, vsa2 in fm2. Plain squares indicate our resul
from Table III. The diamonds indicate the results from Ref.@25#
using a higher order action. They are at matching values ofb but
offset slightly for clarity. Fancy squares indicate our results, r
caled by the square ofc4 calculated toO~a! in @30#. The fancy
diamonds indicate the result from Ref.@25# shifted by the same
amount as our results to account for radiative corrections to ths
•B term. The error bars shown are statistical only and include so
of the error from the uncertainty in the scale~see text!. Thex axis
errors from uncertainty in the scale are shown only for the squ
for clarity.
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To investigate scaling we show in Figs. 5 and 6 vario
spin splittings in MeV setting the scale from theY82Y
splitting as a function ofa2. The Y82Y splitting is used
since this is the one for which our quark masses are close
being tuned and this is important for spin splittings@26#. The
results from Table III are given as squares. We include in
figures the direct uncertainty in the spin splittings from s
tistical errors in the lattice spacing. There is an additio
error, which we have not included, from the uncertainty
the kinetic mass from the error in the lattice spacing. T
uncertainty leads to an uncertainty in the tuned quark m
which affects the spin splittings. If the spin splittings vary
the inverse quark mass~roughly true at least for the hyperfin
splitting!, then this second uncertainty is actually equal
size, correlated with and in the same direction as the e
that we have included. This would lead to an approxim
doubling of the error bars in the figures.

A clear dependence on the lattice spacing is visible for
hyperfine splitting,Y2hb . For the 1P fine structure it is
less clear because statistical errors, particularly atb56.2,
are so much higher. The lattice spacing dependence in
results is not surprising since the Hamiltonian we have u
has only leading order spin-dependent terms with no cor
tions for discretization errors in these terms. These errors
expected to beO(a2) relative to the leading term and there
fore in relative terms significantly larger than for our spi
independent splittings. In addition, in a potential model p
ture the fine structure is provided by potentials which a
generally of much shorter range than the central poten
and so we would expect the fine structure to have a ha
scale for discretization errors than the radial and orbital sp

-

e

es

FIG. 6. The splitting in MeV between various 13P states and the

13P̄ using theY82Y splitting to set the scale, vsa2 in fm2.
Squares indicate our results, diamonds the results of@25# at match-
ing values ofb but offset slightly for clarity. The bursts indicate th
experimental values. The error bars shown are statistical only
include some of the error from the uncertainty in the scale~see
text!. The x axis errors are not shown for clarity—they are of th
same size as those in Fig. 5.
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tings. If we parameterize the scaling violations in the hyp
fine splitting by@7#

splitting

2S21S
5S splitting

2S21SD
0

~12m2a2!, ~8!

we find the parameterm to take a value around 0.8 GeV fo
the squares.

For the 1P fine structure we have the advantage that
can compare to experimental results as well as compa
results at different values of the lattice spacing. In Fig. 6
notice a clear disagreement with experiment for the squ
in that both the overall scale of splittings is too small and
ratio

r5
D~3P223P1!

D~3P123P0!
~9!

is too large. Similar results were noticed in our charmoni
spectrum calculation@27#. The disagreement with exper
ment overr was suggested there as a discretization ef
and results here tend to confirm that discretization errors
have an effect in this ratio. Our value forr at beta55.7 is
1.4~3! and, at 6.0, 1.1~3!. The experimental value is 0.66
The comparison between the squares atb55.7 and 6.0
shows that scaling violations are just about visible for
3P0 and 3P2 above the statistical errors. The slope of t
scaling violations is similar to that for the hyperfine splittin
~but with large errors!. Also in agreement with the hyperfin
splitting we can see that adding discretization correcti
would increase the splittings and this would make the 1P
structure closer to experiment.

In Figs. 5 and 6 we also show results from Mankeet al.
@25# at b56.0 and 5.7 with diamonds. They have used
same bare quark masses as us at both values ofb but in-
cluded higher order spin-dependent relativistic@O(v6)# and
discretization@O(a2v4)# corrections to the action@5#, all
tadpole-improved withu0P . We take their spin splittings in
lattice units and convert to physical units using ourY82Y
splitting since, as explained earlier, this is thea21 for which
the quark masses are best tuned. Our result for this split
should be the same as theirs since they have added
spin-dependent terms@28# and ours is more precise. The la
tice spacing dependence of their results should be much
duced over ours, and we see that it is. By comparing th
results and ours, we can see that the relativistic correct
act in the opposite direction to the discretization correctio
in agreement with the findings of@29#.

By comparing the results of@25# with ours we can attemp
to untangle the size ofv6 relativistic corrections to the fine
structure. First, however, we should also include radiat
corrections to the leading order terms, beyond tadpole
provement. These are ofO(asv

4) and therefore of a simila
size to the relativisticv6 corrections. Theci in Eq. ~3! take
the form 11ci

(1)as(q* )1... with ci
(1) of O~1!. Preliminary

perturbative results are available@30# for c4
(1) , for the sW •BW

term in the action, and confirm this expectation. In pertur
tion theory the hyperfine splitting then picks up a factor
the square of this correction, and so it is quite sensitive
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c4
(1) . Figure 5 shows with fancy squares our results for

hyperfine splitting rescaled by@11aP(3.4/a)c4
(1)#2. Values

for aP were taken from@15#. c4
(1) increases asMa increases,

which gives a larger correction at lowb. Since this is also
the direction in whichaP(3.4/a) increases, the correction a
b55.7 is large, 50%. Atb56.2 the correction fromc4

(1) is
20% @31#. The fancy diamonds show the rescaled resu
from @25# in which we have simply rescaled the leading o
der piece; i.e., we have applied the same shift in MeV
these results as to ours. It is clear from this figure that
radiative corrections act in the same direction as discret
tion corrections discussed earlier and absorb some of th
softening the value ofm in Eq. ~8!.

For the hyperfine splitting, we will assume that the d
cretization corrections atb56.0 in the (v6,a2v4) action@25#
are ofO(a4) and therefore negligible already atb56.0. For
the (v4) action ~this work! we will take the result atb
56.2 as being the least affected by discretization errors~we
do not expect more than a 5% effect here!. The difference
then between the result in physical units betweenb56.2
(v4) andb56.0 (v6,a2v4) represents the effect of relativis
tic corrections. From Fig. 5 with fancy squares and diamo
this gives a 15% decrease in the hyperfine splitting and fr
the plain squares and diamonds a 20% decrease, cons
with the expectation of around 10% from power counting
v2/c2.

For thep fine structure, the radiative corrections are n
available and they would in any case be much harder
apply without doing the full lattice calculation includin
them. We therefore just compare the results with~diamonds!
and without~squares! the v6 anda2v4 corrections in Fig. 6.
The lattice spacing dependence is apparently reduced by
a2v4 corrections, although the statistical errors make it h
to quantify this result. The relativistic corrections again a
to reduce the splittings, now to something like 50% of e
periment. The size of the relativistic corrections is sign
cant, possibly several times the naive estimate of 10%. T
could be offset by radiative corrections, however, in a fu
consistent calculation that includes the next order inv2, a2

and a over our calculation. Radiative corrections which i
crease the spin splittings, as for the hyperfine case, wo
improve the agreement with experiment, but unless these
surprisingly large, the splittings will remain too small in th
quenched approximation. Initial unquenched results for
v4 action@15# and thev6,a2v4 action@32# have indicated an
increase in thep spin splittings, but currently statistical er
rors are too large to clearly determine the size of unquen
ing effects.

Reference@25# points out that the (v6,a2v4) action has a
much improved value ofr @Eq. ~9!# over the (v4) action.
They quote 0.56~19! at b56.0 in the quenched approxima
tion, now in agreement with experiment, confirming the d
cretization effects for this ratio discussed above. In fact,
do not expect this ratio to agree exactly with experiment
the quenched approximation. An analysis ofr for the simple
Cornell potential@33# shows that for a quenchedas which is
too small, the value ofr is reduced. With better statistics
5-10
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SCALING OF THEY SPECTRUM IN LATTICE . . . PHYSICAL REVIEW D 58 054505
may become clear that the quenched value forr is actually
smaller than the experimental result.

Another way to study the sensitivity of the fine structu
to higher order terms in the action is to change the value
the tadpole coefficient,u0 . Several calculations@1# have in-
dicated that the average link in Landau gauge,u0L , is to be
preferred over the fourth root of the plaquette,u0P , that we
have used here. Changingu0 is equivalent to resumming
various terms to all orders in theci . It is again easy to
rescale the hyperfine splitting after the simulation to acco
for a different value ofu0 , by counting the powers ofu0 that
appear in front of thesW •BW term. The hyperfine splitting is
very sensitive tou0 , scaling as 1/u0

6, when allowing foru0

factors in H0 which change the renormalized quark ma
The expected scaling is confirmed by calculations at diff
ent values ofu0 @3# ~although here a fixed bare quark ma
was used!. The hyperfine splitting increases most on usi
u0L at b55.7. There the ratio ofu0P /u0L is 1.045; atb
56.0 it is 1.020 and atb56.2, 1.013@34#. The hyperfine
splitting with u0L then has a somewhat reduced lattice sp
ing dependence. Note thatc4 will be different for the action
with u0L , since a different amount of the radiative correcti
has been absorbed by the tadpole factors.c4

(1) in fact is
larger, by 0.24, being the cube of the ratio of theu0 factors to
O~a!. The size of relativistic and discretization correctio
will change by differing amounts on changingu0 because
they have different effective powers ofu0 in their coeffi-
cients.

From the above we can conclude that systematic error
the fine structure still exceed 10%, even in the quenc
approximation. To improve the accuracy thev6 and a2v4

action must be used, with radiative corrections included
the leading spin-dependent terms. For the hyperfine split
the sensitivity to theci is such that theO(a2) term also
needs to be known~or at least bounded!. The determination
of the ci is in progress@30#. More accurate meson kineti
masses and lattice spacing determinations are also req
so that the quark mass can be tuned more accurately, s
the spin splittings are sensitive to this.

The wave function at the origin is another short distan
quantity but one which does not vanish as the spin-depen
terms are switched off. In Fig. 7 we show results forc~0! for
the Y and Y8 as a function ofa2, again setting the scal
from theY2Y8 splitting since the wave function is sensitiv
to quark mass. The lattice spacing dependence does not
severe but the statistical errors are large. They are domin
by those froma21 which here is raised to the 3/2 power. Th
bursts show experimental values based on the lept
widths and the naive Van Royen–Weisskopf formula

G l 1 l 2516pa2eQ
2 uC~0!u2

M v
2 , ~10!

whereM v is the vector meson mass. There will be radiat
corrections to this formula ofO(as). For potential model
wave functions these radiative corrections have coeffic
16/3p but this does not have to be the same for NRQC
Calculations of the renormalization factors have only be
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done for lower order actions than the one used here@35#.
There will also be terms ofO(1/Mb ,as /Mb) from mixing of
the vector current with higher dimension operators~in a
similar way to the mixing forf B which has been worked ou
in some detail@20#!.

A lot of the radiative corrections cancel in the ratio
leptonic widths for the 1S and 2S states. Experimentally this
ratio is 2.5~2!. Our result atb56.0 simply from the ratio of
uC(0)u2 is 1.7~4!. We expect errors in the quenched appro
mation which would suppress the 1S wave function at
origin relative to the 2S, so that it is not surprising that o
result is somewhat smaller than experiment. We cannot
say whether the reduction observed is reasonable.

To obtain results for the real world from simulations
the quenched approximation and at 2 flavors of dynam
quarks, extrapolations inNf ~5the number of flavors of dy-
namical quarks! will be required. For this it is important to
have scaling quantities, as we have discussed here. It is
necessary to use quantities which are sensitive to the s
number of dynamical fermions. This means that for a giv
splitting we should set the scale using a quantity which
similar internal momentum scales. For example, for the fi
structure it may not be optimal to use the softer radial a
orbital splittings to set the scale. Typical momentum sca
for radial and orbital splittings are around 1 GeV, and
they can be expected to ‘‘see’’ 3 flavors of dynamical ferm
ons in the real world@15#. The fine structure may instea
‘‘see’’ 4 flavors and this would imply that an extrapolation
Nf can only be done in terms of a quantity which also see
flavors.

In Fig. 8 we show a plot of the hyperfine splitting in Me
against the square of the lattice spacing using the 13P2
213P0 splitting to set the scale. Statistical errors are n

FIG. 7. The wave function at the origin in GeV3/2 vs a2 in fm2

setting the scale from theY82Y splitting. Points for the 13S1 are
shown as squares and 23S1 as diamonds. The errors shown a
statistical only and the errors on thex axis are shown only for the
squares. The bursts show experimental points derived from the
tonic widths of the Y and Y8 using the naive Van Royen–
Weisskopf formula.
5-11
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very large, despite using the most accurate of theP fine
structure splittings. Much higher accuracy will be needed
use this ratio forNf extrapolations.

IV. CONCLUSIONS

We have calculated the spectrum of bottomonium bou
states at 3 different values of the lattice spacing us
NRQCD in the quenched approximation. Ratios of sp
independent splittings are constant in this region, indep
dent of the lattice spacing. This is a necessary requirem
for the results to make physical sense. There is no nece
to extrapolate to vanishing lattice spacing~impossible any-
way for NRQCD!. The constancy of the results implies th
they can now be used in extrapolations to real-worldNf val-

FIG. 8. The hyperfine splitting in MeV using the 13P2213P0

splitting to set the scale, vsa2 in fm2. Squares show our results
diamonds the results of@25#.
l

A

K
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ues when combined with results on dynamical configurati
@15,32#.

For spin-dependent splittings there is some visible~un-
physical! lattice spacing dependence. This is not surpris
since our spin splittings are only accurate to leading ord
given the terms in the Hamiltonian that we have used.
comparison to a calculation@25# which does include highe
order relativistic and discretization corrections to sp
dependent terms shows that the relativistic spin-depen
corrections could be as large as 20% for the hyperfine s
ting where they can be quantified. They act to reduce sp
dependent splittings in all cases, and this increases the
agreement with experiment for theP fine structure in the
quenched approximation.

For extrapolations to real world values ofNf we may
need to employ different techniques for fine structure to t
for radial and orbital splittings since different momentu
scales are involved and this may lead to a different num
of dynamical flavors being ‘‘seen.’’ Statistical errors are cu
rently too high to use aP spin splitting to set the scale in
such a program.
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