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Topology, fermionic zero modes, and flavor singlet correlators in finite temperature QCD
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We compute the screening correlators in thes andh8 flavor singlet channels in finite temperature QCD with

2 light quark flavors. Together with the correlators in thepW anddW channels, these are used to discuss several
issues related to symmetry restoration and the nature of the QCD phase transition. Our calculations span a
range of temperature extending from approximately 125 MeV to 170 MeV and are carried out in the context
of a staggered fermion formulation on a 16338 lattice. In addition to the computation at a fixed quark mass
(amq50.00625), we discuss the issue of the chiral limit. After careful consideration of the zero-mode shift
lattice artifact, we present rather strong~topological! arguments in favor of the non-restoration ofUA(1) atTc .
@S0556-2821~98!03517-6#

PACS number~s!: 12.38.Gc, 11.10.Wx, 11.15.Ha, 11.30.Rd
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I. INTRODUCTION

The lattice approach has been quite successful in des
ing the general aspects of the finite temperature QCD ph
transition~for recent reviews see@1–3#!. However the adven
of relativistic heavy ion experiments as well as purely the
retical motivations calls for even more precise and quant
tive simulations. Questions such as the determination of
critical exponents and the universality class of the ph
transition ~assuming a second order transition, which is
vored but not yet proven@1#! still have to be answered in
detail. Among other things, this will require simulations
@4# or close to the chiral limit and may necessitate new sim
lation algorithms. In this paper, we would like to delineate
small subset of the issues that one is likely to encounte
part of such a program: namely, those questions which
associated with the anomalous U~1! axial symmetry. This
includes a measurement of flavor singlet mesonic correla
together with the extraction of flavor singlet susceptibiliti
and screening lengths~Sec. IV! and lays the groundwork fo
a study of the interplay between topology and the ch
phase transition~Sec. V!. These topics are closely related
a question which has recently attracted much attention in
literature@5,6#, namely ‘‘which chiral symmetry is restore
at the finite temperature phase transition?’’ Attempts at g
eral proofs in the continuum that UA(1) should be restored a
Tc @7# have been shown to be flawed@8,9#.1 In fact, lattice
simulations seem to indicate that this symmetry is only
stored at higher temperatures@10,11# ~although there remain
real uncertainties concerning the proper method of extra

1In this respect, it is also worth mentioning that QED with tw
flavors in 111 dimensions provides a counterexample to the kind
general arguments proposed in@7#. There is no spontaneous sym
metry breaking in D52, but the effects of the axial anomaly are st
manifest for 2 flavors as is seen in exact analytical solutions of
massless theory@14#.
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lation to the chiral limit@11,12#!. In this paper, we identify
the zero-mode shift phenomenon@13# as a clear source o
difficulties in the chiral limit~see Sec. VI!. We therefore take
the position that a rigorous quantitative extrapolation to
chiral limit will only be possible once this problem has be
solved. For the time being, we do two things: first, we wo
at a fixed but small value of the quark mass (ma50.00625 in
lattice units! and vary the temperature~thereby exploring the
direction orthogonal to Refs.@11,12#!. Then we use genera
topological arguments~i.e., the Atiyah-Singer index theo
rem! to decide on the question of restoration or no
restoration of the UA(1) symmetry. We also realize that a
present, the investigation of topics related to topology is o
possible in finite volumes and leave the questions relate
the extrapolation to the infinite volume limit for future stud
ies.

The measurement of flavor singlet meson correlators
screening lengths at finite temperature~Sec. IV! had not been
attempted previously,2 but is quite important both theoreti
cally and phenomenologically. First, thes ~flavor singlet
scalar meson! is the degree of freedom which becomes lig
at the transition~again assuming a second order phase tr
sition! and therefore drives the long distance dynamics
gether with the pion. Second, a determination of the temp
ture at which the U(1) axial symmetry is effectively restor
is very interesting because it will affect the production rate
h8 mesons~relative to pions for example! in relativistic
heavy ion collisions@15,16#. Some of the questions consid
ered here have also been investigated through different m
ods: instanton simulations were used in@17# and Nambu–
Jona-Lasinio models in@18#.

f

e

2Earlier measurements of the ‘‘s meson screening length’’ which

appeared in the literature were in fact representing thedW ([a0
W )

flavor triplet scalar rather than thes([ f 0) flavor singlet scalar,
since they only took into account the diagram with connected
mionic lines~and not the one with an intermediate pure glue sta!.
© 1998 The American Physical Society04-1
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In view of the existence of the lattice artifacts mention
above, we adopt in this paper a two step strategy to study
restoration of symmetries in finite temperature QCD. Fi
we discuss the general properties of mesonic correlator
the continuum chiral limit~Sec. II!. Then we use this as
basis for analyzing the implications of our lattice measu
ments at a non-zero value of the quark mass. The contin
computation allows us in particular to identify the ro
played by topology and fermionic zero modes. Sincea→0
and mq→0 define the ‘‘target’’ of symmetry restoratio
studies, the general results obtained in this case play an
portant role in ‘‘benchmarking’’ the actual lattice simula
tions, which are discussed in Secs. III to VI. In Sec. III, w
introduce the parameters of our simulation and discuss s
of the techniques used in the computation. Then in Sec.
we present our results for the susceptibilities and scree
masses as functions of temperature at a fixed quark m
(ma50.00625). In Sec. V, we compute the low lying eige
values and eigenvectors of the Dirac operator on our c
figuration sample and use them to ‘‘interpret’’ the resu
obtained for the disconnected correlators in Sec. IV. T
issues associated with taking the chiral limit are then stud
in Sec. VI. In particular, we show here the importance
‘‘correcting’’ for the zero-mode shift lattice artifact. Sectio
VII describes a first attempt at finding fermionic lattice a
tions which would have the Atiyah-Singer index theore
built-in and would therefore allow for a simplified and qua
titative extrapolation to the chiral limit. Finally, in Sec. VII
we summarize our results and present our conclusions.

II. SCREENING CORRELATORS AND SYMMETRY
RESTORATION

As is well known, when the SU(2)L3SU(2)R chiral sym-
metry of QCD with 2 massless flavors is realized explici
~rather than being spontaneously broken!, it implies degen-
eracies between mesonic correlators. In the high tempera
phase, we will have, for example~the signs will be worked
out later!,

uGpW u5uGsu and uGdW u5uGh8u ~1!

wheres, pW , dW and h8 stand respectively for the operato
c̄c, c̄g5tWc/A2, c̄tWc/A2, c̄g5c andtW are the Pauli matri-
ces in flavor space withc5(u,d). Similarly, if the UA(1)
axial symmetry were to be effectively restored at high te
peratures, we would have the additional degeneracies:

uGpW u5uGdW u and uGsu5uGh8u. ~2!

In other words, all the correlators in thes, pW , dW and h8
channels become identical if the symmetries of both type
restored.

In this section, we will explore in some detail how the
degeneracies come about. This will help us to set the fra
work for the discussions that follow. The basic tool that w
use is the spectral decomposition of the quark propagato
05450
he
t,
in

-
m

m-

e
,
g
ss

n-

e
d
f

re

-

re

e-

:

S~x,y!5(
l

cl~x!cl
†~y!

il1m
. ~3!

We will assume a situation where chiral symmetry is
stored and there is a gap in the eigenvalue spectrum.3 In
other words, there will be gauge field configurations w
exact zero modes~e.g., the configurations which carry a no
trivial topological charge! or configurations which do no
have any infinitesimally small mode. Taking the chiral lim
m→0 on a finite volume is then relatively straightforwa
~compared to the situation in the broken phase where one
to takeV→` first!. When analyzing the flavor singlet corr
elators (s and h8) we will have to consider both the con
nected and disconnected quark loop contributions. For
flavor triplets (pW and dW ), only the connected propagato
appear. In each case, we will have to distinguish betw
those configurations which have one zero mode per fla
~and therefore a fermionic determinant which vanishes l
m2 for Nf52) and those which have no zero mode.4

We start by analyzing the connected correlators defi
by

C~x,y![TrS~x,y!S~y,x! ~4!

C55~x,y![Trg5S~x,y!g5S~y,x!. ~5!

Using Eq.~3!, we can write

S~x,y!5
c0~x!c0

†~y!

m
1 (

lÞ0

cl~x!cl
†~y!

il1m
~6!

g5S~x,y!g55
c0~x!c0

†~y!

m
1 (

lÞ0

cl~x!cl
†~y!

2 il1m
~7!

where the first term is present or absent depending
whether there is or is not an exact zero mode on the confi
ration considered and we have used the basic propertie
the Dirac operator that the zero modes are eigenstates og5
~i.e. either left or right! and that forlÞ0: c2l5g5cl . On
configurations without zero modes, we will respective
have, for the scalar and pseudoscalar connected correla

C~x,y!5Tr(
lÞ0

cl~x!cl
†~y!

il1m (
mÞ0

cm~y!cm
† ~x!

im1m
~8!

3This second condition is certainly fulfilled on the relatively sm
‘‘boxes’’ currently considered in lattice simulations. The requir
ment of a finite volume however may not be necessary to its r
ization ~in the high temperature phase!.

4Configurations with more than one exact zero mode per fla
cannot contribute in the chiral limit to the average of mesonic
point functions, simply because they come with a fermionic de
minant which vanishes like a higher power ofm2 and which cannot
be compensated by the maximum of two factors of 1/m coming
from the two quark propagators.
4-2
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C55~x,y!5Tr(
lÞ0

cl~x!cl
†~y!

2 il1m (
mÞ0

cm~y!cm
† ~x!

im1m
~9!

and in the chiral limit, we see that on such configurations,
two correlators simply differ by a sign:

lim
m→0

C~x,y!52 lim
m→0

C55~x,y!5K~x,y! ~10!

where

K~x,y!5 (
lÞ0

(
mÞ0

cm
† ~x!cl~x!cl

†~y!cm~y!

2lm
. ~11!

On configurations with zero modes on the other hand,
first terms in Eqs.~6! and~7! will become dominant at smal
m and we will get

lim
m→0

C~x,y!5 lim
m→0

C55~x,y!5L~x,y! ~12!

where

L~x,y!5
c0

†~x!c0~x!c0
†~y!c0~y!

m2
. ~13!

Note that in this case, there is no change of sign between
scalar and pseudoscalar correlators, so that the two rec
identical contributions on such configurations.

Then, we consider the disconnected contributions wh
are defined by

D~x,y![TrS~x,x!TrS~y,y! ~14!

D55~x,y![Trg5S~x,x!Trg5S~y,y! ~15!

and constructed from

TrS~x,x!5
c0

†~x!c0~x!

m
1 (

l.0

cl
†~x!cl~x!

l21m2
2m ~16!

Trg5S~x,x!5
c0

†~x!g5c0~x!

m
1 (

l.0

cl
†~x!g5cl~x!

l21m2
2m.

~17!

On configurations without zero modes, we get

lim
m→0

D~x,y!5 lim
m→0

D55~x,y!50 ~18!

whereas on configurations with zero modes, we get

lim
m→0

D~x,y!5 lim
m→0

D55~x,y!5L~x,y! ~19!

i.e. again identical contributions for the scalar and pseu
scalar correlators in the chiral limit. Now, we put all of th
contributions together and construct the 2 point functions
the s, pW , dW andh8 in the chiral limit. For this purpose, we
have to remember that disconnected contributions~for the
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flavor singlets! come with a relative factor of2Nf with re-
spect to the connected contribution~the 2 sign comes from
Fermi statistics and the factor ofNf from the 2-loop versus
1-loop!. We then get

Gs~x,y!5
1

ZF E
0
K~x,y!1E

1
L~x,y!22E

1
L~x,y!G

~20!

GpW ~x,y!5
1

ZF2E
0
K~x,y!1E

1
L~x,y!G ~21!

GdW~x,y!5
1

ZF E
0
K~x,y!1E

1
L~x,y!G ~22!

Gh8~x,y!5
1

ZF2E
0
K~x,y!1E

1
L~x,y!22E

1
L~x,y!G

~23!

where *n represents the functional integral restricted
gauge field configurations which admit exactly n fermion
zero modes per flavor andZ5(n*n . As a reminder,*1 in-
volves a fermionic determinant proportional tom2 which
cancels the 1/m2 in L(x,y) and produces a smooth chira
limit. From the Atiyah-Singer index theorem:

nL2nR5Qtop ~24!

the sector with one zero mode per flavor is identical to
sector of topological charge61, while the sector with no
zero mode is a subset of the sector with topological charg

From Eqs.~20!–~23!, we find that

GpW 52Gs and GdW52Gh8 ~25!

which is simply the consequence of our assumption that
ral symmetry is restored~i.e. that we could take them→0
limit naively!. We also see that the restoration of the UA(1)
symmetry

GpW 52GdW and Gs52Gh8 ~26!

would be equivalent to the absense of contribution from
sector with one fermionic zero mode per flavor and hence
any disconnected contributions. This observation will pl
an important role later when we study the role of topolo
and the link with the Atiyah-Singer index theorem. At th
stage, it is worth mentioning that finite temperature QED
one space dimension with 2 flavors provides an example
model where the integrals appearing in Eqs.~20!–~23! can
be computed exactly@14#. As is well known, there is no
chiral symmetry breaking in D52 @19#, although in the case
of ~111!-dimensional QED (QED111), T50 can be inter-
preted as a critical point@20,21# which can only be ap-
proached from above. In this sense, the entire phase diag
of QED111 is mapped~qualitatively! onto the high tempera
ture phase of QCD311. What is seen from the QED111 com-
putation is that in this theory, the configurations with top
logical charge 1 give rise to a non-trivial contribution and t
4-3
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J. B. KOGUT, J.-F. LAGAË, AND D. K. SINCLAIR PHYSICAL REVIEW D 58 054504
UA(1) symmetry is not restored@although the SU(2)L
3SU(2)R chiral symmetry is obviously not broken#. In the
following sections, we will attempt the computation of th
correlators~20!–~23! in QCD311 in the context of lattice
gauge theory with staggered quarks.

III. PARAMETERS AND TECHNICAL ASPECTS
OF THE SIMULATION

Our Nf52 simulations were carried out on a lattice
size 16338 and with staggered quarks of massma
50.00625. Theb values which were studied areb55.45,
5.475, 5.4875, 5.5, 5.525, and 5.55. All of our configuratio
were ‘‘borrowed’’ from the HTMCGC Collaboration@22#
except for those atb55.4875 which we generated in orde
to improve the resolution in the crossover region. Using
formulas given in@23#, we identify the above values ofb
with the temperatures:T'125, 135, 140, 145, 157, and 17
MeV. The diagram for the chiral condensate and the Wils
line ~containing the data from@22# together with the new
point atb55.4875) is presented in Fig. 1. The crossover
this value of the quark mass is now placed betweenb
55.475 andb55.4875.

In addition to these full QCD simulations, we have al
carried out a few quenched computations in order to cla
some technical aspects. We used the same lattice size3

38) and considered theb valuesb55.8, 5.9, 6.0, 6.1 and
6.2 . The phase transition which is expected to be first or
in this case occurs aroundb56.0 .

In all of the computations of the mesonic correlators d
scribed below, the operators representing thepW , s, dW andh8
mesons are respectively taken to beg5^ j5, I ^ I , I ^ j5 and
g5^ I ~in standard ‘‘spin^ flavor’’ staggered fermion nota
tion!. The first two of these operators are local and the
two 4-link operators. The connected and disconnected pie
of the correlators were computed using a U(1) noisy estim

FIG. 1. ^c̄c& and Wilson line as a function ofb (Nf52,ma
50.00625).
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zero temperature QCD.

In order to help in the interpretation of our results, we a
computed the low lying spectrum of the Dirac operator~in
practice the lowest 8 eigenvalues and associated eigen
tors! on each of our configurations. This was done using
conjugate gradient algorithm in the form investigated
Kalkreuter and Simma in Ref.@26#.5

We have analyzed 160, 240, 140, 160, 160 and 80 c
figurations atb55.45, 5.475, 5.4875, 5.5, 5.525 and 5.
respectively. These configurations are spaced by 5 unit
molecular dynamics time~except for those atb55.55 which
are spaced by 10 units! @22#. The disconnected correlator
were computed using a U(1) noisy source spread over
entire volume. From 8 to 32 random sources were used
configuration. Eight were found to be sufficient in gene
for our purposes and were used in the bulk of our compu
tions. The correlators were then measured in the direction
y and z and averaged over direction. The connected corr
tors were computed using a U(1) source defined on a gi
z slice, or 2 adjacent z slices for the 4-link operators. In
later case, a second inversion was carried out after ‘‘tra
porting’’ the source across the hypercube as prescribed
the form of the non-local staggered operator. The whole p
cedure was repeated on 2 slices separated by distance 8
slices separated by distance 4. Alternatively, we used 1 s
in each of the 3 x, y and z directions which gives equivale
or even better results.

IV. SUSCEPTIBILITIES AND SCREENING LENGTHS

To start with, we consider our results for the scalar a
pseudoscalar susceptibilities. We separate the connected@i.e.
volume integral of Eqs.~4! or ~5!# and disconnected@i.e.
volume integral of Eqs.~14! or ~15!# contributions which are
represented respectively as functions ofb in Fig. 2 and Fig.
3. We will first discuss the scalar susceptibility. Our resu
at Nt58 are compatible with those of earlier works
Nt54 @30#, Nt56 @31# andNt512 @32# .6 In particular, we
find a peak in the disconnected but not in the connec
susceptibility. It is important to note that if this situatio
were to persist in the chiral limit it would imply that only th
flavor singlet scalar becomes massless at the transition
not the flavor triplet scalar. This would imply that the U(1
axial symmetry remains broken atTc . We will return to this
discussion below. At a more technical level, we also fi
some slight differences with earlier works. For example,
the connected scalar susceptibility, we see a larger jum
the crossover than had been seen before. This is consi
with a rather abrupt change of the screening mass of thd
meson~see below!, although the later effect is not statist
cally as significant. In the pseudoscalar channel, the m

5It is also worth mentioning that some improvements over t
technique@27# as well as other techniques@28# have recently been
used successfully@25,29# to compute a larger number of eigenve
tors ~currently up to 128!.

6See Ref.@32# for a summary plot of earlier measurements.
4-4
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interesting behavior is related to the disconnected correla
This is because of its association with topology through
integrated anomalous Ward identity:

mE d4xc̄g5c5Qtop ~27!

on each gauge field configuration. Therefore, in the c
tinuum, we would have

m2x5
dis5x top[

^Qtop
2 &
V

. ~28!

FIG. 2. Connected susceptibilities as a function ofb (Nf

52,ma50.00625).

FIG. 3. Disconnected susceptibilities as a function ofb (Nf

52,ma50.00625).
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As we will see below, this relation does not translate exac
to the lattice. However a remnant can be identified. We a
note that the connected pseudoscalar susceptibility is alm
constant accross the transition. This is in part a lattice a
fact. In the continuum, we would expect that this susce
bility ~equivalent to the flavor triplet pseudoscalar susce
bility ! picks up a large contribution in the broken phase fro
the near masslessness of the pion in the chiral limit. T
does not occur here because the latticeG5 operator used
above is not associated with a Goldstone pion in the s
gered formulation.

We now discuss the measurements of the screen
masses. Because of large flavor symmmetry breaking,
useful to separate the mesonic correlators into two cate
ries: those corresponding to local operators and those co
sponding to four link operators. In the first category, we ha
the pion~Goldstone! and thes, to which we can add as wel
a representative of thedW ~connected part of thes). Similarly,
in the second category we would have theh8 anddW as well
as a non-Goldstone pion~connected part of theh8). In Fig. 4
we show an example of correlators belonging to the fi
category atb55.4875 ~i.e., right above the crossover in
duced by the chiral phase transition!. The screening masse
extracted from our fits to those correlators as well as th
measured at other values ofb are shown in Fig. 5. The key
feature of this plot is that thes becomes light close to the
transition while thedW remains heavy. This is what we woul
expect if the UA(1) symmetry were not restored at the chir
phase transition. It is also in agreement with the observa
made earlier that the peak in the scalar susceptibility or
nates in the disconnected part of the correlator~see above!. It
is worth mentioning here that some of the fits leading to F
5 may have large systematic errors~only the statistical errors
are included in the figure!. This is due in part to the smal
extent of the lattice~and the use of point sources rather th
‘‘smearing improved’’ sources! and, in the case of thes, to

FIG. 4. Screening correlators atb55.4875 (Nf52,ma
50.00625).
4-5
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the additional difficulties associated with the measureme
of disconnected quark loop correlators. Nevertheless,
qualitative picture emerging from Fig. 5 appears rather cle

the s becomes lighter close to the transition while thedW

remains heavy. In fact, the trends observed in the early
ports on this work@33# have been further confirmed by ou
recent addition of a ‘‘data point’’ atb55.4875. The main
question that remains is the problem of the extrapolation
the chiral limit. Certainly, there are still rather large explic
chiral symmetry breaking effects in our current data (ma
50.00625) as can be seen from the fact that above the c
phase transition (ms2mpW ) is almost as large as the UA(1)
symmetry breaking (mdW2mpW ). Measurements at lower va
ues of the quark mass would therefore be needed to cla
the situation but are beyond the scope of this work. In ad
tion, in Sec. VI, we show that the issue of the chiral limit
rather subtle and requires a detailed understanding of at
some lattice artifacts. This implies in particular that a qua
titative determination of the screening masses in the ch
limit will require the use of improved actions or very larg
lattices. In summary, the data shown in Fig. 5 are sugges
of a situation where UA(1) is only restored at someT
.Tc , but not sufficient by themselves to prove this fact. W
will only achieve that goal after identifying the topologic
origin of the difference between thedW ands propagators for
small quark masses in the high temperature symmetric p
~see sec. VI!. Finally, in Fig. 6, we also present for complet
ness the screening masses obtained from the correlator
volving four-link operators. These however are much le
informative at the current values ofb, since flavor symmetry
breaking makes all the states heavy in this case. Note
Fig. 6 is drawn to the same scale as Fig. 5 but with a m
shift of 0.5 along the vertical axis.

FIG. 5. Screening masses as a function ofb (Nf52,ma
50.00625).
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V. LOW LYING FERMIONIC MODES
AND DISCONNECTED CORRELATORS

As was shown in Sec. II, the presence of UA(1) symmetry
breaking effects atm50 in the SU(2)L3SU(2)R symmetric
phase is equivalent to the existence of a non-zero disc
nected contribution to flavor singlet correlators@compare for-
mulas~21! and ~22! for example#. In addition, these contri-
butions are accounted for entirely by exact fermionic ze
modes~13!. An interesting way of studying UA(1) breaking
in the chiral limit is therefore to compute the low lyin
eigenmodes of the Dirac operator. In this section, we co
pute the lowest 8~positive! eigenvalues (l) and the associ-
ated modes on each configuration of our sample atma
50.00625 and discuss how close they are to satisfying
Atiyah-Singer index theorem and how well they alrea
saturate the disconnected correlators. In the next section
will see how the knowledge of these low modes can be u
to extract information about the chiral limit. In both case
the existence of the zero-mode shift lattice artifact@13# re-
quires a detailed and careful analysis.

We start by studying the disconnected susceptibilities~in-
tegrated correlators!. For this purpose, we make use of th
spectral decomposition of the quark propagator~3! and the
resulting formulas:

Q[TrS5 (
l.0

2m

l21m21
nL1nR

m
~29!

Q5[Trg5S5
nL2nR

m
~30!

where nL(nR) are respectively the number of left~right!

FIG. 6. Screening masses in the channels associated with 4
mesonic operators as a function ofb (Nf52,ma50.00625).
4-6
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zero-modes of the Dirac operator. In terms of these, the
lar and pseudoscalar disconnected susceptibilities are de
as

xdis5@^Q2&2~^Q&!2#/V ~31!

x5
dis5^Q5

2&/V. ~32!

Following the same reasoning as in Sec. II, it is sho
that in the continuum,x (5)

dis is completely saturated in th
chiral limit by contributions from configurations with on
zero-mode per flavor. On the lattice however this situation
not reproduced exactly. First there are no exact zero mo
~except on a subspace of measure 0!. Then

Qlatt5 (
l.0

2m

l21m2 ~33!

Q5
latt5 (

l.0

2m^cluG5ucl&

l21m2
~34!

where we have used the symmetries of the staggered a
andG5 is the ~four-link! lattice g5 operator. It is then clea
that in the current lattice formulation, disconnected susce
bilities will vanishin the chiral limit and be proportional to
m2 for small m. This is a direct consequence of the ze
mode shift lattice artifact@13#. Incidently, we believe that it
is this artifact which makes an extrapolation from lattice d
extremely difficult @11,12#. In view of this situation, it is
important that we study how much of the continuum beh
ior is already visible in the lattice data. Clearly, a corn
stone is the Atiyah-Singer index theorem, namely the re
tion between topology and the existence of chiral fermio
zero modes. Formula~30! in particular comes about becau
in the continuum^clug5ucl& is either 61 if l50 or 0
otherwise. The lattice expression~34! will closely match the
continuum if we see on the lattice a clear correlation betw
small eigenvalues and larger l[^clug5ucl& ~i.e. if we can
identify chiral modes!. These correlations can be studied
drawing a plot ofr l versusl for all ~low lying! eigenvalues
associated with our configuration sample@as was done by
Hands and Teper in a zero temperature SU~2! Yang-Mills
theory @34# #. Here we present two examples of such plo
Figure 7 was obtained on our sample of quenched confi
rations atb56.2, while Fig. 8 presents the same results
the case of 2 flavor QCD atb55.55. In each case, we hav
tried to identify the topology of the gauge field configur
tions by cooling and have used different symbols to repres
eigenvalues obtained on configurations with differentQcool
~see inset in Figs. 7 and 8!. The correlation between larger l

and smalll is visible on Fig. 8 and very clear on Fig. 7. A
expected, our computations at other values ofb indicate that
both for quenched and full QCD the correlations deterior
as one moves towards stronger coupling. Note that the r
tively low value ofr l (;0.20 in Fig. 7 and,0.10 in Fig. 8!
compared with the continuum value of 1.0 follows fro
large renormalisation of the pseudoscalar operator.~This is
to be expected sinceG5, being a 4-link operator, picks up
large correction factor even in the mean-field approxim
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tion.! With the knowledge of the eigenvalues and ofr l , we
can compute the disconnected susceptibilities from the
mulas~31!–~32! and ~33!–~34! ~in our case truncated to th
lowest 8 modes!. The susceptibilities obtained in this wa
are compared in Figs. 9 and 10 with those computed wit
noisy estimator in Sec. IV. In the case of the pseudosc
disconnected susceptibility~Fig. 9!, excellent agreement is
obtained atb55.55 and reasonable agreement in the res
the symmetric phase. A similar situation is obtained for t
scalar susceptibilities~Fig. 10!. The agreement is not ex
pected to be as good there however since, even in the

FIG. 7. Eigenmode chirality versusl for the lowest 8 eigenval-
ues on each configuration of our quenched sample atb56.2.

FIG. 8. Eigenmode chirality versusl for the lowest 8 eigenval-
ues on each configuration of our full QCD sample atb55.55.
4-7
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tinuum, the explicit symmetry breaking (ma50.00625 in
our case! implies a sensitivity to higher eigenvalues@see Eq.
~29!# and dominance by the low lying modes is only e
pected to be recovered very close to the chiral limit.

Overall, we conclude that in spite of lattice artifacts, t
ingredients for a breaking of UA(1) symmetry according to
the scenario described in Sec. II are present in our sim
tions at finite quark mass. In particular, we have shown e
dence for the existence of topological fermionic zero mo
and have shown that these low lying modes are already
counting for a large part of the disconnected susceptibilit

FIG. 9. Disconnected pseudoscalar susceptibilities as a func
of b. Complete result~top curve! and truncation to the lowest 8
modes~bottom curve!.

FIG. 10. Disconnected scalar susceptibilities as a function ob.
Complete result~top curve! and truncation to the lowest 8 mode
~bottom curve!.
05450
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In the next section, we will complete the argument by sho
ing that the UA(1) symmetry breaking indeed survives in th
chiral limit once the zero-mode shift lattice artifact is co
rected for.

Finally, it is interesting to note that not only the susce
tibilities but the entire disconnected correlators themsel
are dominated by the low lying modes. In Fig. 11 ,we co
pare the pseudoscalar disconnected correlator atb55.55 ob-
tained in this way with the one computed with a noisy es
mator. Again excellent agreement is found. Certainly,
would be interesting to study the nature of those eigenmo
in greater detail and for example their properties of locali
tion ~around instantons?!.

VI. CHIRAL LIMIT

In Sec. V, we showed that the value ofx5
dis at ma

50.00625 andb55.55 could be entirely understood from
the knowledge of the lowest 8 eigenvalues and eigenvec
of the Dirac operator on each gauge configuration of
sample. Since the saturation of this quantity by low lyi
modes will be even better at lower values of the quark m
@as can be seen from Eq.~34!#, this result can be used t
investigate the chiral limit.

At first, we consider a ‘‘partially quenched approach
where the value of the quark mass in the fermionic deter
nant is kept fixed at a value which we shall callm0 ~in our
caseam050.00625) while a varying massm is introduced in
the quantity we measure. A similar approach was taken
Ref. @12#. Since low mode dominance was obtained atam0

50.00625,x5
dis can be computed from Eq.~34! for all m

<m0. The m dependence ofx5
dis obtained in this way is

presented in Fig. 12c~top curve!. The result depends sens
tively on m and vanishes atm50, as expected from the

on FIG. 11. Comparison of the disconnected pseudoscalar cor
tors obtained from a noisy estimator~top curve! and from the trun-
cated spectral decomposition of the quark propagator~bottom
curve! at b55.55 (Nf52,ma50.00625).
4-8
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FIG. 12. Pseudoscalar disconnected susceptibility as a function of quark mass:~a! At b56.2, in a partially unquenched approach wi
0 to 8 modes included in the fermionic determinant~from top to bottom!. ~b! Same as~a! but with the Atiyah-Singer index theorem enforce
‘‘by hand.’’ ~c! At b55.55, using a reweighting by partial determinants to compute the mass dependence, with 0 to 8 modes includ~from
top to bottom!. ~d! Same as~c! but with the Atiyah-Singer index theorem enforced ‘‘by hand.’’
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zero-mode shift phenomenon.~If there were exact zero
modes, the result would diverge like 1/m2.! It is also easy to
show thatx5

dis will remain zero atm50 in the unquenched
case. For this purpose, we introduce partial determinants

Dk~m!5F )
n51

k

~ln
21m2!GNf /4

. ~35!

Successive approximations to the full QCD result are
tained by introducing the reweighting facto
@Dk(m)/Dk(m0)# in our measurements.~The exact answer is
then obtained fork→kmax.) Figure 12c presents the resul
obtained in this way for k50 to 8 ~from top to bottom!. The
error bars are omitted for the clarity of the figure. In Fig. 13
we present the result of applying the same procedure in
case of the disconnected scalar susceptibility. Since the
no complete dominance ofxdis by the lowest 8 modes@see
Fig. 10# the curves in Fig. 13c are only qualitative in cha
acter~as opposed to those of Fig. 12 which are quantitativ!.
05450
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Quantitative details, however, will not be important in th
discussion given below. What is important here is thatxdis

~like x5
dis) vanishes in the chiral limit~although maybe with

a slightly different approach to zero!.
If taken at face value, the lattice measurements descr

in Fig. 12c and Fig. 13c would imply that the UA(1) sym-
metry is restored atb55.55. However, we will argue tha
this result is the consequence of a lattice artifact and th
fore misleading. In particular, we show below that the va
ishing of the disconnected susceptibilities in the chiral lim
is a result of the zero mode shift phenomenon. To do this,
turn to our quenched measurements atb56.2 where the
smoothness of the gauge field allows us to make the a
ment even clearer. In particular, the topology of a gauge fi
configuration can be almost unambiguously determined
this case. Since we are now starting from quenched confi
rations, the reweighting occurs through the partial deter
nantsDk and a ‘‘k modes’’ approximation to the average
an operatorA is given by
4-9
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FIG. 13. Scalar disconnected susceptibility as a function of quark mass:~a! At b56.2, in a partially unquenched approach with 0 to
modes included in the fermionic determinant~from top to bottom!. ~b! Same as~a! but with the Atiyah-Singer index theorem enforced ‘‘b
hand.’’ ~c! At b55.55, using a reweighting by partial determinants to compute the mass dependence, with 0 to 8 modes included~from top
to bottom!. ~d! Same as~c! but with the Atiyah-Singer index theorem enforced ‘‘by hand.’’
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^A&k5E DUe2SGDk~m!A/Zk ~36!

Zk5E DUe2SGDk~m!. ~37!

The results obtained for the pseudoscalar and scalar dis
nected susceptibilities as functions of quark mass are re
sented in Figs. 12a and 13a respectively. Again the disc
nected susceptibilities vanish in the chiral limit~for any k!.
However, since topology can be easily identified in this ca
it is possible to attempt to correct for the zero mode s
lattice artifact. We will in fact enforce the Atiyah-Singe
index theorem ‘‘by hand’’ by replacing the first 2Qtop eigen-
05450
n-
e-
n-

e,
t

values byl50.7 After this correction is applied, the discon
nected susceptibilities become very smooth functions of
quark mass, which extrapolate to non-zero values~Figs. 12b
and 13b!. Of course, the current approach is still partia
quenched~with only up to 8 fermionic modes included i
Figs. 12b and 13b! while the inclusion of the full fermionic
determinant might make the disconnected susceptibili
~vanishingly! small at b56.2. However, the point that we
want to make here is about the smoothness of the ch
limit, i.e., correcting for the zero-mode shift lattice artifa
has allowed us to get around the otherwise apparently
avoidable consequence of a vanishing chiral limit~see Figs.
12a and 13a!. A similar discussion can be given for the ca

7This procedure is somewhat analogous to the shifting of r
eigenvalues for Wilson fermions@35#.
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TOPOLOGY, FERMIONIC ZERO MODES, AND FLAVOR . . . PHYSICAL REVIEW D58 054504
of full QCD at b55.55, the only difference is that the dete
mination of the topological charge of gauge field configu
tions is now more difficult because of the lower value ofb.
Qualitatively however, the results~Figs. 12d and 13d! are the
same as shown above. Although the chiral limits obtain
after ‘‘correction’’ are only rough estimates~see Figs. 12d
and 13d!, it is clear that the disconnected susceptibilities
m50 are different from 0~once the Atiyah-Singer index
theorem is properly taken into account!. In other words, the
UA(1) axial symmetry is not restored even atb55.55
@which corresponds to a temperature well above the crit
temperature of the SU(2)L3SU(2)R symmetry restoration#.
The question of how large exactly the UA(1) symmetry
breaking is~as a function ofT at m50), however, is beyond
the scope of this paper. The quantitative determination of
size of the symmetry breaking can only be addressed
using much larger lattices and weaker coupling or throu
the use of improved actions which better satisfy the Atiya
Singer index theorem. Many recently introduced ideas n
to be tested in this respect. In this paper, we only tak
modest first step by analyzing the case of the ‘‘fat link
improved quark action@39# in Sec. VII. Other formulations
which are currently under test include the ‘‘perfect actio
approach@36# and the domain wall fermion formulatio
~DWF! @37#. Some encouraging results were obtained
cently for DWF in the context of QED in 2 dimensions@41#.
It is also worth mentioning that dynamical Wilson fermio
would not suffer from the ‘‘vanishing problem’’ in the chira
limit. There the zero modes are shifted along the real a
and multiplication by the fermionic determinant ensures
smooth behavior.8 The role of DWF in this context is then t
give a ‘‘global’’ ~i.e. valid on all configurations at the sam
time! definition of the quark mass~and in particular of the
point mq50). Let us also mention that improved gauge a
tions would also help in so far as they sample configurati
with smoother short distance behavior on which the Atiya
Singer index theorem is better satisfied.

Finally, it is important to remember that in this paper, t
issue of the UA(1) symmetry restoration is studied only at
single value of the spatial volume, namelyV5(2/T)3. The
actual volume dependence of our results remains to be in
tigated.

VII. IMPROVEMENT OF THE STAGGERED
FERMIONIC ACTION

All of the results presented above clearly indicate the
portance of finding improved quark actions which better s
isfy the Atiyah-Singer index theorem. As already mention
there are many different methods which need to be tes
These range from the traditional improvement of the st
gered@43# and Wilson@44# fermionic action to the study o
perfect actions@36# and the domain wall fermion formulatio

8In quenched QCD at zero temperature with Wilson fermio
clear evidence for a relation between topology, real eigenmodes
disconnected scalar and pseudoscalar correlators was presen
@42#.
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@37,38#. That is obviously a vast program and in this pap
we will limit our attention to a discussion of the simple
modification of the staggered action used above. The ide
to investigate whether the methods proposed recently to
prove the flavor symmetry properties of the staggered ac
@39,40# also help in reducing the shift of the topological ze
modes.A priori, one would expect that the two phenome
are related. Indeed, the continuum limit of the stagge
theory describes 4 quark flavors, which implies a 4-fold d
generacy of the eigenvalue spectrum in this limit. As o
moves towards stronger coupling, the degeneracy is lif
and flavor symmetry breaking follows. Similarly, if there a
zero modes in the continuum, these will be split too on
lattice.9 Therefore, in both cases improvement should be
tained by reducing the amount by which the eigenvalues
scattered. Recently, it was shown through measuremen
mp2

2 2mp
2 that ‘‘fat-link’’ actions reduce the flavor symmetr

breaking @39,40#. Certainly it would be interesting to se
how these actions modify the eigenvalue spectrum. In Fig
and 14, we compare the eigenvalue spectrum and pse
scalar residuer l[^cluG5ucl& for an ensemble of quenche
configurations atb56.2 on a (16)338 lattice. Figure 7 cor-
responds to the usual staggered action; Fig. 14 corresp
to a ‘‘link1staples’’ model where each staple carries a re
tive weight of 1/2 with respect to the link.~This action be-
longs to the category considered in@39#.! We chose a rela-
tively high value ofb ~in the symmetric high temperatur
phase! so that topology could be easily identified. The sym

s
nd
d in

9In the case of zero modes, the properties of the staggered op
tor imply that the splitting will be symmetrical. Two eigenvalue
will acquire a positive imaginary part and the other two will be th
opposites.

FIG. 14. Eigenmode chirality versusl using a ‘‘fat-link’’ im-
proved quark action on our quenchedb56.2 gauge field configu-
rations.
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bols used in the plot correspond to the topological charge
each configuration~as determined by cooling!. 8 modes have
been computed per configuration. The most noticeable
ture in these two plots is associated with the cluster o
eigenvalues which is seen close to the origin in Fig.
Those eigenvalues come from a single configuration
should be interpreted as representing a mode with low eig
value but zero chirality~as expected on a configuration wi
zero topological charge!. In the continuum, those 4 eigenva
ues would be degenerate andr l would be 0. With the stan-
dard staggered action~Fig. 7! these 4 eigenvalues are muc
more dispersed and some even pick up a relatively la
value of r l . So in this case, the improved action is clea
doing its job: it significantly reduces the flavor symmet
breaking. It is also interesting to note that the eigenval
just discussed are of the type that would lead to chiral sy
metry breaking once they condense.10 Typically they are of
order 1/V, and since they are small but not exactly zero, th
are also non-chiral~i.e. r l50). The other type of modes tha
we want to discuss are the chiral modes. In Figs. 7 and
these are the modes withr l of the order of 0.15 or larger
These are associated with configurations with non-trivial
pology and in the continuum would havel50. In order to
preserve the distinction between the two types of modes
to ensure better properties of the chiral limit what we wou
at least require is that on a lattice~of finite volume! the
eigenvalues of the chiral modes remain smaller than thos
the non-chiral modes~which can beO(1/V) when the chiral
symmetry is broken!. As can be seen on Fig. 14, this is n
yet realized at this stage. In other words, the ‘‘fat link’’ a
tion does not necessarily bring the chiral modes much clo
to l50 compared to what it does on other modes. The s
ation can be summarized by saying that this type of impro
ment only corrects the largest flavor symmetry violation
brings together eigenvalues which were widely separated
fore but does little on the others. In fact, the separation
remains between the four low modes on figure 14 is of
same order as the zero mode shift of chiral modes. Corr
ing those two effects could therefore only be achieved a
higher level of improvement. At the same time, other me
ods of improvements such as domain wall fermions and p
fect actions should also be considered. It is quite conceiva
that a combination of various methods may be necessar
the end.

VIII. SUMMARY AND CONCLUSIONS

We have shown that important insight can be gain
about the flavor singlet dynamics of finite temperature Q
by computing the low lying modes of the Dirac operato
This follows from the simple result, derived in Sec. II, that
the high temperature symmetric phase at finite volume,
scalar and pseudoscalar disconnected correlators are en
accounted for by the contributions of fermionic zero mod

10Here we only find one such eigenvalue since atb56.2, we are
still well aboveTc .
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Therefore, UA(1) symmetry breaking~i.e. the non-vanishing
of the disconnected correlator! is directly linked through the
Atiyah-Singer index theorem, to contributions from the se
tor of topological charge one in the functional integral.

This simple observation also warns us of possible di
culties with the lattice approach, since topological propert
are often not very well reproduced in this context. In the ca
of a staggered quark action, used in this paper, the zero-m
shift lattice artifact implies that great care has to be taken
examining the chiral limit. That there are difficulties in e
trapolating tomq50 was already known from the works o
Refs.@11,12# where it was shown that it is extremely difficu
to decide between linear and quadratic fits to the data. H
we have gone one step further and have shown that the
connected susceptibilities must vanish in the chiral lim
~possibly with a rather complicated approach! as a conse-
quence of the zero-mode shift phenomenon.

Our computations also forced us to recognize this app
ent restoration of UA(1) as a lattice artifact. In Sec. V, fo
example, we have seen that our simulations indeed con
configurations with non-trivial topological charge and th
associated with these are eigenstates with relatively la
chirality and small eigenvalues. The main source of diffic
ties is that these eigenvalues are just small and not exa
zero as would be required by the Atiyah-Singer theorem,
are they so small that they can be unambiguously separ
from the other eigenvalues which would not vanish in t
continuum limit. In fact, when we imposed the index the
rem ‘‘by hand’’ and forced those eigenvalues to vanish,
found a smooth chiral limit and disconnected susceptibilit
different from zero in the chiral limit~see Sec. VI!. This
leads us to the conclusion that the UA(1) symmetry is not
restored atTc but only at a somewhat higher~possibly infi-
nite! temperature. At this point however this is still a qua
tative conclusion. Quantitative questions such as the issu
exactly how large the symmetry breaking is as a function
temperature will only be addressable in the context of i
proved actions or very large lattices. There is therefore
urgent need for studies of lattice fermion formulations whi
better satisfy the Atiyah-Singer index theorem.

In this paper, we have taken a modest first step towa
investigating improved actions by looking at the case of
‘‘fat-link’’ formulation @39#. This technique has been show
to lessen the flavor symmetry breaking in the mesonic sp
trum. For our purposes however, we have seen in Sec.
that the improvement that it provides at the level of the
genvalue spectrum is too small to make a big difference
the identification of topological zero modes.

Beyond this, there is much more that can be done fr
the knowledge of the low lying eigenvalues and eigenvect
computed in this paper. The spectrum itself and the distri
tion of eigenvalues could be compared with random ma
models@45#. Since we also have the eigenvectors, their pr
erties of localization possibly around instantons or other
jects could be investigated as well. In the context of fin
temperature, many interesting questions related to the cha
of properties of the instanton medium, the possible existe
of instanton1 anti-instanton molecules@46#, and their rela-
tion to quark probes deserve to be studied.
4-12
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When some of the issues discussed above are settle
will also be quite important to study several physical v
umes rather than justV5(2/T)3 as was done here. The fa
that we have identified topological effects and a UA(1) sym-
metry breaking in a relatively small volume does not nec
sarily mean that this will survive in the infinite volume limi
The nature of topological fluctuations might depend sign
cantly on the volume.
co
.

d
iel

al
d

05450
, it

-

-

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of E
ergy under contract W-31-109-ENG-38, and the Natio
Science Foundation under grant NSF-PHY92-00148. T
computations were performed on the Cray C-90 at NERS
We would like to thank Carleton DeTar and Edwin Lae
mann for informative conversations and the HTMCGC C
laboration for the use of their configurations.
s.

B

B

ys.
@1# A. Ukawa, Nucl. Phys. B~Proc. Suppl.! 53, 106 ~1997!.
@2# C. DeTar, inQuark Gluon Plasma 2, edited by R. Hwa~World

Scientific, Singapore, 1995!.
@3# F. Karsch, inSelected Topics in Non-Perturbative QCD, Pro-

ceedings of the International School of Physics ‘‘Enri
Fermi,’’ Varenna, Italy, 1995, edited by A. Di Giacomo and D
Diakonov ~IOS Press, 1996!.

@4# J. B. Kogut and D. K. Sinclair, Nucl. Phys. B~Proc. Suppl.!
53, 272 ~1997!.

@5# R. Pisarski and F. Wilczek, Phys. Rev. D29, 338 ~1984!.
@6# E. Shuryak, Comments Nucl. Part. Phys.21, 235 ~1994!.
@7# T. D. Cohen, Phys. Rev. D54, 1867~1996!.
@8# S. H. Lee and T. Hatsuda, Phys. Rev. D54, 1871~1996!.
@9# N. Evans, S. D. H. Hsu, and M. Schwetz, Phys. Lett. B375,

262 ~1996!.
@10# G. Boyd, F. Karsch, E. Laermann, and M. Oevers, presente

10th International Conference on Problems of Quantum F
Theory, Alushta, Ukraine, 1996, hep-lat/9607046.

@11# C. Bernardet al., Phys. Rev. Lett.78, 598 ~1997!.
@12# S. Chandrasekharan and N. H. Christ, Nucl. Phys. B~Proc.

Suppl.! 47, 527 ~1996!; N. Christ, ibid. 53, 253 ~1997!; A.
Kaehler, inLattice ’97, Proceedings of the 15th Internation
Symposium on Lattice Field Theory, Edinburgh, Scotlan
1997, edited by C. Davieset al. @Nucl. Phys. B~Proc. Suppl.!
63, 823 ~1998!#, hep-lat/9709141.

@13# J. C. Vink, Phys. Lett. B210, 211 ~1988!.
@14# H. Joos and S. I. Azakov, Helv. Phys. Acta67, 723 ~1994!.
@15# J. Kapusta, D. Kharzeev, and L. McLerran, Phys. Rev. D53,

5028 ~1996!.
@16# Z. Huang and X.-N. Wang, Phys. Rev. D53, 5034~1996!.
@17# T. Schafer, Phys. Lett. B389, 445 ~1996!.
@18# T. Hatsuda and T. Kunihiro, Phys. Rep.247, 221 ~1994!.
@19# S. Coleman, Commun. Math. Phys.31, 259 ~1973!.
@20# A. Smilga and J. J. M. Verbaarschot, Phys. Rev. D54, 1087

~1996!.
@21# A. V. Smilga, Phys. Rev. D55, 443 ~1997!.
at
d

,

@22# S. Gottliebet al., Phys. Rev. D55, 6852~1997!.
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