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We compute the screening correlators inshand z’ flavor singlet channels in finite temperature QCD with
2 light quark flavors. Together with the correlators in thend 5 channels, these are used to discuss several
issues related to symmetry restoration and the nature of the QCD phase transition. Our calculations span a
range of temperature extending from approximately 125 MeV to 170 MeV and are carried out in the context
of a staggered fermion formulation on a3¥68 lattice. In addition to the computation at a fixed quark mass
(amy=0.00625), we discuss the issue of the chiral limit. After careful consideration of the zero-mode shift
lattice artifact, we present rather stroftgpologica) arguments in favor of the non-restorationldf(1) atT...
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PACS numbsgps): 12.38.Gc, 11.10.Wx, 11.15.Ha, 11.30.Rd

I. INTRODUCTION lation to the chiral limit[11,12)). In this paper, we identify
the zero-mode shift phenomendb3] as a clear source of
The lattice approach has been quite successful in descrildifficulties in the chiral limit(see Sec. V)l We therefore take
ing the general aspects of the finite temperature QCD phadbe position that a rigorous quantitative extrapolation to the
transition(for recent reviews sdd —3]). However the advent chiral limit will only be possible once this problem has been
of relativistic heavy ion experiments as well as purely theosolved. For the time being, we do two things: first, we work
retical motivations calls for even more precise and quantitaat a fixed but small value of the quark magsg=0.00625 in
tive simulations. Questions such as the determination of thiattice units and vary the temperatuféhereby exploring the
critical exponents and the universality class of the phaséirection orthogonal to Ref$11,12). Then we use general
transition (assuming a second order transition, which is fa-topological argumentgi.e., the Atiyah-Singer index theo-
vored but not yet provefil]) still have to be answered in rem) to decide on the question of restoration or non-
detail. Among other things, this will require simulations at restoration of the W(1) symmetry. We also realize that at
[4] or close to the chiral limit and may necessitate new simupresent, the investigation of topics related to topology is only
lation algorithms. In this paper, we would like to delineate apossible in finite volumes and leave the questions related to
small subset of the issues that one is likely to encounter athe extrapolation to the infinite volume limit for future stud-
part of such a program: namely, those questions which aries.
associated with the anomalouq1ly axial symmetry. This The measurement of flavor singlet meson correlators and
includes a measurement of flavor singlet mesonic correlatorscreening lengths at finite temperat@®ec. 1\V) had not been
together with the extraction of flavor singlet susceptibilitiesattempted previousl§,but is quite important both theoreti-
and screening lengti$ec. V) and lays the groundwork for cally and phenomenologically. First, the (flavor singlet
a study of the interplay between topology and the chiralscalar mesonis the degree of freedom which becomes light
phase transitioiiSec. V). These topics are closely related to at the transitionfagain assuming a second order phase tran-
a question which has recently attracted much attention in thgition) and therefore drives the long distance dynamics to-
literature[5,6], namely “which chiral symmetry is restored gether with the pion. Second, a determination of the tempera-
at the finite temperature phase transition?” Attempts at genture at which the U(1) axial symmetry is effectively restored
eral proofs in the continuum that,(1) should be restored at is very interesting because it will affect the production rate of
T, [7] have been shown to be flawg8,9].* In fact, lattice 7’ mesons(relative to pions for examplein relativistic
simulations seem to indicate that this symmetry is only reheavy ion collisiong15,16. Some of the questions consid-
stored at higher temperaturgk0,11] (although there remain ered here have also been investigated through different meth-

real uncertainties concerning the proper method of extrapd?ds: instanton simulations were used[itV] and Nambu—
Jona-Lasinio models ifl8].

Y this respect, it is also worth mentioning that QED with two
flavors in 1+1 dimensions provides a counterexample to the kind of “Earlier measurements of thermeson screening length” which
general arguments proposed[if]. There is no spontaneous sym- appeared in the literature were in fact representing Ethseé;)
metry breaking in B-2, but the effects of the axial anomaly are still flavor triplet scalar rather than the(=f,) flavor singlet scalar,
manifest for 2 flavors as is seen in exact analytical solutions of theince they only took into account the diagram with connected fer-
massless theorjy14]. mionic lines(and not the one with an intermediate pure glue $tate
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In view of the existence of the lattice artifacts mentioned I () P (y)

. . A
above, we adopt in this paper a two step strategy to study the S(X,y)= E ham
restoration of symmetries in finite temperature QCD. First, A

we discuss the general properties of mesonic correlators in . ) . ) )
the continuum chiral limitSec. 1). Then we use this as a e Will assume a situation where chiral symmetry is re-

basis for analyzing the implications of our lattice measureStored and there is a gap in the eigenvalue spectrum.

ments at a non-zero value of the quark mass. The continuuidn€r words, there will be gauge field configurations with
computation allows us in particular to identify the role €xactzero modeg.g., the configurations which carry a non-

played by topology and fermionic zero modes. Siace0 trivial topological _charg)a or configurations which do not
and m,—0 define the “target’ of symmetry restoration have any infinitesimally small mode. Taking the chiral limit

studies, the general results obtained in this case play an inffd—0 on a finite volume is then relatively straightforward
portant role in “benchmarking” the actual lattice simula- (compared to the situation in the broken phase where one has

tions, which are discussed in Secs. Ill to VI. In Sec. IlI, we 0 takeV—c first). When analyzing the flavor singlet corr-

introduce the parameters of our simulation and discuss sonfd@tors ¢ and ') we will have to consider both the con-
of the techniques used in the computation. Then in Sec. Ivected and dlsi:onne(zted quark loop contributions. For the
we present our results for the susceptibilities and screenintigvor triplets (@ and 5), only the connected propagators
masses as functions of temperature at a fixed quark magppear. In each case, we will have to distinguish between
(ma=0.00625). In Sec. V, we compute the low lying eigen-those configurations which have one zero mode per flavor
values and eigenvectors of the Dirac operator on our con@nd therefore a fermionic determinant which vanishes like
figuration sample and use them to “interpret” the resultsm? for Ny=2) and those which have no zero mdde.
obtained for the disconnected correlators in Sec. IV. The We start by analyzing the connected correlators defined
issues associated with taking the chiral limit are then studie®y

in Sec. VI. In particular, we show here the importance of

()

“correcting” for the zero-mode shift lattice artifact. Section C(x,y)=TrS(x,y)S(y,X) (4)
VII describes a first attempt at finding fermionic lattice ac-
tions which would have the Atiyah-Singer index theorem Ces(X,Y)=TrysS(X,y) vsS(Y,X). (5

built-in and would therefore allow for a simplified and quan-
titative extrapolation to the chiral limit. Finally, in Sec. VIl ysing Eq.(3), we can write
we summarize our results and present our conclusions.

v WI(Y) | 5 hIUA(Y)
Il. SCREENING CORRELATORS AND SYMMETRY (X,y)= m o iN+m
RESTORATION

(6

As is well known, when the SU(2)X SU(2) chiral sym- Po(X) YY) I ()P (y)

metry of QCD with 2 massless flavors is realized explicitly Y5S(X,Y) ¥5= m +>\¢0 —iN+tm @

(rather than being spontaneously brokehimplies degen-

eracies between mesonic correlators. In the high temperatu{gare the first term is present or absent depending on

phase, we will have, for exampléhe signs will be worked \yhether there is or is not an exact zero mode on the configu-

out latey, ration considered and we have used the basic properties of

the Dirac operator that the zero modes are eigenstateg of

|G,=IG,| and |Gj=|G,| (1)  (i.e. either left or right and that for\ #0: _, = y5¢, . On

configurations without zero modes, we will respectively

have, for the scalar and pseudoscalar connected correlators,

where s, m, & and n' stand respectively for the operators

i, fpy5r¢/\/§, zﬂrtﬂ/ﬁ, fyg,zp and 7 are the Pauli matri- OB < D))
ces in flavor space witly=(u,d). Similarly, if the Uy(1) C(x,y)zTrE _ E _ (8)
axial symmetry were to be effectively restored at high tem- Fo  IAMEmM iZo  ptm
peratures, we would have the additional degeneracies:
|G;|=|G3 and |G,|= |G77’|' 2) 3This second condition is certainly fulfilled on the relatively small
“boxes” currently considered in lattice simulations. The require-
. ment of a finite volume however may not be necessary to its real-
In other words, all the correlators in the, 7, 6 and 7’ ization (in the high temperature phase
channels become identical if the symmetries of both type are“Configurations with more than one exact zero mode per flavor
restored. cannot contribute in the chiral limit to the average of mesonic 2-

In this section, we will explore in some detail how these point functions, simply because they come with a fermionic deter-
degeneracies come about. This will help us to set the framaninant which vanishes like a higher powerrof and which cannot
work for the discussions that follow. The basic tool that webe compensated by the maximum of two factors ah oming
use is the spectral decomposition of the quark propagator: from the two quark propagators.

054504-2



TOPOLOGY, FERMIONIC ZERO MODES, AND FLAVOR ... PHYSICAL REVIEW B8 054504

%(X){/,;[(y) lﬁﬂ(Y)lﬂT(X) flavor singlet$ come with a relative factor of- N; with re-
2 . spect to the connected contributi¢the — sign comes from

C55(x,y)=TrE - -
—iN+m im+m . L
A0 A n#0 K Fermi statistics and the factor of; from the 2-loop versus

©) 1-loop). We then get
and in the chiral limit, we see that on such configurations, the 1
two correlators simply differ by a sign: G (X.V)=— jK X +f L(x _zf L(x
| _ +(XY) Z_0(.y) l(,y) 1(,y)
lim C(x,y)= — lim Css(x,y) =K(X,y) (10) (20)
m—0 m—0
1
where Gxy) =3~ | Ko+ [ Loy @y
0 1
YLOO IO (Y) YY) '
K(x,y)= > = o (AD) T
N0 T # Gixy)=5 fK(x,y)+f L(x,y) (22)
On configurations with zero modes on the other hand, the L0 !
first terms in Egs(6) and(7) will become dominant at small 10
m and we will get G, (Xy)= 7|~ fOK(x,y)Jr LL(x,y)—ZLL(x,y)
lim C(x,y)= lim Csg(X,y)=L(X,y) (12 ' (23

m—0 m—0
where [, represents the functional integral restricted to

where gauge field configurations which admit exactly n fermionic

: N zero modes per flavor and=X>,f,. As a reminderf; in-
 Yo(X) o (X) oY) tho(Y) volves a fermionic determinant proportional t? which
B m2 ’ cancels the ™? in L(x,y) and produces a smooth chiral
limit. From the Atiyah-Singer index theorem:
Note that in this case, there is no change of sign between the
scalar and pseudoscalar correlators, so that the two receive NL—Nr=Qtop (24
identical contributions on such configurations. ) o )

Then, we consider the disconnected contributions whicthe sector with one zero mode per flavor is identical to the

L(X,y) (13

are defined by sector of topological charge-1, while the sector with no
zero mode is a subset of the sector with topological charge 0.
D(X,y)=TrS(x,x) TrS(y,y) (149 From Eqgs.(20)—(23), we find that
Dss(X,Y)=TrysS(x,X)TrysS(y,y) (15 G;=-G, and G;=-G, (25
and constructed from which is simply the consequence of our assumption that chi-
ral symmetry is restored.e. that we could take then—0
wg(x)%(x) w{(x) P (X) limit naively). We also see that the restoration of thg(ll)
TrS(x,x) = m +x>o A2+ m?2 2m (16 symmetry
T + G,=—-G; and G,=-G,, (26)
Po(X) Ysiho(X) I\ (X) ys5i,(X)
TrysS(x,x)= m T T 2eme 2™ would be equivalent to the absense of contribution from the
(17) sector with one fermionic zero mode per flavor and hence of
any disconnected contributions. This observation will play
On configurations without zero modes, we get an important role later when we study the role of topology
) _ and the link with the Atiyah-Singer index theorem. At this
IlmOD(x,y)= I|mOD55(x,y)=0 (18 stage, it is worth mentioning that finite temperature QED in
m— m—

one space dimension with 2 flavors provides an example of a

model where the integrals appearing in EG&)—(23) can

be computed exactly14]. As is well known, there is no
lim D(x,y)= lim Dsg(x,y) =L(X,y) (190  chiral symmetry breaking in B2 [19], although in the case
m—0 m—0 of (1+1)-dimensional QED (QEBR,;), T=0 can be inter-

preted as a critical poinf20,21] which can only be ap-

i.e. again identical contributions for the scalar and pseudoproached from above. In this sense, the entire phase diagram

scalar correlators in the chiral limit. Now, we put all of the of QED1+1 is mappec(qua|itative|w onto the h|gh tempera-

contributions together and construct the 2 point functions foture phase of QCR, ;. What is seen from the QER; com-

the o, 7, 5 and 5’ in the chiral limit. For this purpose, we putation is that in this theory, the configurations with topo-

have to remember that disconnected contributifos the  logical charge 1 give rise to a non-trivial contribution and the

whereas on configurations with zero modes, we get
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16%x8 LATTICE tor following the techniques used by Kilcugt al. [24,25 in
0.25 0.08 zero temperature QCD.

In order to help in the interpretation of our results, we also
computed the low lying spectrum of the Dirac operatior
practice the lowest 8 eigenvalues and associated eigenvec-
0.06 tors) on each of our configurations. This was done using a
conjugate gradient algorithm in the form investigated by
Kalkreuter and Simma in Ref26].°

We have analyzed 160, 240, 140, 160, 160 and 80 con-
figurations atB=>5.45, 5.475, 5.4875, 5.5, 5.525 and 5.55
respectively. These configurations are spaced by 5 units of
molecular dynamics timéxcept for those g8=5.55 which
0.02 are spaced by 10 unjt$22]. The disconnected correlators

were computed using a U(1) noisy source spread over the

entire volume. From 8 to 32 random sources were used per
T T configuration. Eight were found to be sufficient in general
000125 5.45 5475 55 5625 555 5 5o 00 for our purposes and were used in the bulk of our computa-

;8 ' ' ’ tions. The correlators were then measured in the directions x,

y and z and averaged over direction. The connected correla-

FIG. 1. () and Wilson line as a function g8 (N;=2ma  tOrs were computed using a U(1) source defined on a given
=0.00625). z slice, or 2 adjacent z slices for the 4-link operators. In the
later case, a second inversion was carried out after “trans-
porting” the source across the hypercube as prescribed by
the form of the non-local staggered operator. The whole pro-
cedure was repeated on 2 slices separated by distance 8, or 4
slices separated by distance 4. Alternatively, we used 1 slice
in each of the 3 x, y and z directions which gives equivalent
or even better results.

0.20

IR B I
o
(=)
S

WILSON LINE

0.05

L I B B

IO R B

Ua(1) symmetry is not restoredalthough the SU(2)

X SU(2)g chiral symmetry is obviously not brokénin the
following sections, we will attempt the computation of the
correlators(20)—(23) in QCD;,; in the context of lattice
gauge theory with staggered quarks.

Ill. PARAMETERS AND TECHNICAL ASPECTS IV. SUSCEPTIBILITIES AND SCREENING LENGTHS

OF THE SIMULATION ) .
To start with, we consider our results for the scalar and

Our N¢=2 simulations were carried out on a lattice of pseudoscalar susceptibilities. We separate the conngiated
size 16x8 and with staggered quarks of massa volume integral of Eqs(4) or (5)] and disconnectedi.e.
=0.00625. TheB values which were studied a@=5.45, volume integral of Eqs(14) or (15)] contributions which are
5.475, 5.4875, 5.5, 5.525, and 5.55. All of our configurationsrepresented respectively as functionsBoin Fig. 2 and Fig.
were “borrowed” from the HTMCGC Collaboratioh22] 3. We will first discuss the scalar susceptibility. Our results
except for those aB=5.4875 which we generated in order at N;=8 are compatible with those of earlier works at
to improve the resolution in the crossover region. Using theN,=4 [30], N,=6 [31] andN,=12[32] .5 In particular, we
formulas given in[23], we identify the above values @  find a peak in the disconnected but not in the connected
with the temperaturesi~ 125, 135, 140, 145, 157, and 170 susceptibility. It is important to note that if this situation
MeV. The diagram for the chiral condensate and the Wilsorwere to persist in the chiral limit it would imply that only the
line (containing the data froni22] together with the new flavor singlet scalar becomes massless at the transition and
point at 3=5.4875) is presented in Fig. 1. The crossover atot the flavor triplet scalar. This would imply that the U(1)
this value of the quark mass is now placed betwgen axial symmetry remains broken &t. We will return to this
=5.475 andB=5.4875. discussion below. At a more technical level, we also find

In addition to these full QCD simulations, we have alsosome slight differences with earlier works. For example, in
carried out a few quenched computations in order to clarifythe connected scalar susceptibility, we see a larger jump at
some technical aspects. We used the same lattice siZe (1fhe crossover than had been seen before. This is consistent
X 8) and considered thg values$=5.8, 5.9, 6.0, 6.1 and with a rather abrupt change of the screening mass ofsthe
6.2 . The phase transition which is expected to be first ordemeson(see beloy, although the later effect is not statisti-
in this case occurs aroungi=6.0 . cally as significant. In the pseudoscalar channel, the most

In all of the computations of the mesonic correlators de-
scribed below, the operators representingther, 5 and 5’
mesons are respectively taken to g &5, 191, 1® &5 and St is also worth mentioning that some improvements over this
¥s®1 (in standard “spin® flavor” staggered fermion nota-  technique[27] as well as other techniquég8] have recently been
tion). The first two of these operators are local and the lastised successfullj25,29 to compute a larger number of eigenvec-
two 4-link operators. The connected and disconnected piecesrs (currently up to 128
of the correlators were computed using a U(1) noisy estima- 6See Ref[32] for a summary plot of earlier measurements.
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FIG. 4. Screening correlators a{3=5.4875 ;=2,ma
=0.00625).

interesting behavior is related to the disconnected correlatoAS We will see below, this relation does not translate exactly
This is because of its association with topology through the© the lattice. However a remnant can be identified. We also
integrated anomalous Ward identity:

m J d*xyys¥=Quop 27

note that the connected pseudoscalar susceptibility is almost
constant accross the transition. This is in part a lattice arti-
fact. In the continuum, we would expect that this suscepti-
bility (equivalent to the flavor triplet pseudoscalar suscepti-
bility) picks up a large contribution in the broken phase from
the near masslessness of the pion in the chiral limit. This

on each gauge field configuration. Therefore, in the condoes not occur here because the latlite operator used
tinuum, we would have

200

150

100

50

200*X5disc /T2 ) Xdisc / T2

- (Qbop)
mz)(glsz)(topE IRV (28)
5 B B LR RN B
N T RS B B
5.45 5.475 5.5 5.525 5.55
B

FIG. 3. Disconnected susceptibilities as a functionBof(N;
=2,ma=0.00625).

above is not associated with a Goldstone pion in the stag-
gered formulation.

We now discuss the measurements of the screening
masses. Because of large flavor symmmetry breaking, it is
useful to separate the mesonic correlators into two catego-
ries: those corresponding to local operators and those corre-
sponding to four link operators. In the first category, we have
the pion(Goldstone and theo, to which we can add as well

a representative of th& (connected part of the). Similarly,

in the second category we would have theand 5 as well

as a non-Goldstone pideonnected part of the'). In Fig. 4

we show an example of correlators belonging to the first
category atB3=5.4875 (i.e., right above the crossover in-
duced by the chiral phase transitjoifhe screening masses
extracted from our fits to those correlators as well as those
measured at other values gfare shown in Fig. 5. The key
feature of this plot is that the becomes light close to the

transition while thes remains heavy. This is what we would
expect if the U (1) symmetry were not restored at the chiral
phase transition. It is also in agreement with the observation
made earlier that the peak in the scalar susceptibility origi-
nates in the disconnected part of the correlésee above It

is worth mentioning here that some of the fits leading to Fig.
5 may have large systematic errgomly the statistical errors
are included in the figuje This is due in part to the small
extent of the latticdand the use of point sources rather than
“smearing improved” sourcesand, in the case of the, to
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FIG. 5. Screening masses as a function ®f(N;=2ma FIG. 6. Screening masses in the channels associated with 4-link
=0.00625). mesonic operators as a function @f (N;=2ma=0.00625).

V. LOW LYING FERMIONIC MODES
AND DISCONNECTED CORRELATORS

the additional difficulties associated with the measurements
of disconnected quark loop correlators. Nevertheless, the
qualitative picture emerging from Fig. 5 appears rather clear: As was shown in Sec. Il, the presence gf(ll) symmetry

the o becomes lighter close to the transition while the breaking effects an=0 in the SU(2) X SU(2)z symmetric
remains heavy. In fact, the trends observed in the early rePhase is equivalent to the existence of a non-zero discon-
ports on this work33] have been further confirmed by our nected contribution to flavor singlet corrg]at@mmpare for—.
recent addition of a “data point” ag=>5.4875. The main mu!as(21) and (22) for exampl§. In addition, these_ contri-
question that remains is the problem of the extrapolation t®utions are accounted for entirely by exact fermionic zero
the chiral limit. Certainly, there are still rather large explicit M0des(13). An interesting way of studying A(1) breaking
chiral symmetry breaking effects in our current dataa( In the chiral limit is _therefore to compute th‘? low lying
=0.00625) as can be seen from the fact that above the chirgl|geandes of the D_|r_ac operator. In this section, we com-
phase transitionr, —m.) is almost as large as the,(1) pute the lowest §positive eigenvaluesX) and the associ-

symmetry breaking ;- m=). Measurements at lower val- ated modes on each configuration of our samplemat
y y 915~= My). =0.00625 and discuss how close they are to satisfying the

ues of the quark mass would therefore be needed to CIari%iyah-Singer index theorem and how well they already

the situation but are beyond the scope of this work. In addig,¢rate the disconnected correlators. In the next section, we

tion, in Sec. VI, we show that the issue of the chiral limit is || see how the knowledge of these low modes can be used
rather subtle and requires a detailed understanding of at leagf extract information about the chiral limit. In both cases,
some lattice artifacts. This implies in particular that a quanthe existence of the zero-mode shift lattice artifeic3] re-
titative determination of the screening masses in the chirayyires a detailed and careful analysis.

limit will require the use of improved actions or very large ~ \ve start by studying the disconnected susceptibilities

of a situation where W(1) is only restored at som&  spectral decomposition of the quark propagd®rand the
>T,, but not sufficient by themselves to prove this fact. Weresulting formulas:

will only achieve that goal after identifying the topological

origin of the difference between theand o propagators for

small quark masses in the high temperature symmetric phase Q=TrS= 2
(see sec. VI Finally, in Fig. 6, we also present for complete- A>0
ness the screening masses obtained from the correlators in-

volving four-link operators. These however are much less n —
informative at the current values @f since flavor symmetry Qs=TrysS=
breaking makes all the states heavy in this case. Note that

Fig. 6 is drawn to the same scale as Fig. 5 but with a mass

shift of 0.5 along the vertical axis. where n (ng) are respectively the number of leftight)

2m L utng
AN+m?T m

ng

(30
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zero-modes of the Dirac operator. In terms of these, the sce Quenched f=6.2 — Staggered
lar and pseudoscalar disconnected susceptibilities are define

as 0.6 T T T T

x5 =[(Q%) — ((Q) 2V (31 r {ia:e x © Qa0 ]

e 020 Py X Quast

XsS=(QE)/V. (32 > % Q=2 i

| )é( % 000l ]

Following the same reasoning as in Sec. I, it is shown™ < - X ]

H : dis : : $~ 0.15 X ]

that in the continuumy sy is completely saturated in the = L " N -

chiral limit by contributions from configurations with one ?'f [ o o o X ]

zero-mode per flavor. On the lattice however this situation is™ < - % .

not reproduced exactly. First there are no exact zero modd=® 0.10 _— ° R -]

(except on a subspace of measuyeThen ~ L ° o, .

om I o 1

latt 0.05 = %’ o ]

Q=2 (33 : 0 A ]

[ o Oo"Q3 a2 ]

om r 0.00 PR RS B -
latt_ 2m(i|T'sl ) (34) 0 002 004 006 008 01

x>0  A%2+m?

where we have used the symmetries of the staggered action FIG. 7. Eigenmode chirality versusfor the lowest 8 eigenval-

andl's is the (four-link) lattice ys operator. It is then clear g on each configuration of our quenched sampj@=a6.2.
that in the current lattice formulation, disconnected suscepti-

bilities will vanishin the chiral limit and be proportional to .. ; ;
m? for small m. This is a direct consequence of the zerotlon') With the knOV\_/Iedge of the elgenva}lg(_as, andref we

) : i ) _ ~'Ycan compute the disconnected susceptibilities from the for-
mode shift lattice artifacf13]. Incidently, we believe that it mulas(31)—(32) and (33)—(34) (in our case truncated to the
is this artifact which makes an extrapolation from lattice datg,est 8 modes The susceptibilities obtained in this way
extremely difficult[11,12. In view of this situation, it IS 3re compared in Figs. 9 and 10 with those computed with a
important that we study how much of the continuum behavyisy estimator in Sec. IV. In the case of the pseudoscalar
ior is already visible in the lattice data. Clearly, a corneryis-onnected susceptibilitgFig. 9), excellent agreement is

stone is the Atiyah-Singer index theorem, namely the relag,qineq ag3="5.55 and reasonable agreement in the rest of

tion between topology and the existence of chiral fermionicy, s gymmetric phase. A similar situation is obtained for the
zero modes. Formuled0) in particular comes about because ¢.g|or susceptibilitie$Fig. 10. The agreement is not ex-

in the continuum(ys | ys|4,) is either =1 if X=0 or 0 pected to be as good there however since, even in the con-
otherwise. The lattice expressi¢d4) will closely match the

continuum if we see on the lattice a clear correlation betweer
small eigenvalues and large=(,|ys| ) (i.e. if we can
identify chiral modes These correlations can be studied by

N,=2 £=5.55 m,a=0.00625

T

0.150

drawing a plot ofr, versus\ for all (low lying) eigenvalues
associated with our configuration samples was done by
Hands and Teper in a zero temperature(3Urang-Mills

0.125

G Q=0

X Qoool=1

theory[34] ]. Here we present two examples of such plots.
Figure 7 was obtained on our sample of quenched configu/;
rations atB=6.2, while Fig. 8 presents the same results in =
the case of 2 flavor QCD g8=5.55. In each case, we have °
tried to identify the topology of the gauge field configura- —
tions by cooling and have used different symbols to represer -
eigenvalues obtained on configurations with differént, ~
(see inset in Figs. 7 and.8The correlation between largg

and small\ is visible on Fig. 8 and very clear on Fig. 7. As
expected, our computations at other valueg@ dfidicate that

both for quenched and full QCD the correlations deteriorate

as one moves towards stronger coupling. Note that the rele
tively low value ofr, (~0.20 in Fig. 7 and<0.10 in Fig. 8
compared with the continuum value of 1.0 follows from
large renormalisation of the pseudoscalar operdfhmis is

to be expected sincEs, being a 4-link operator, picks up a  FIG. 8. Eigenmode chirality versusfor the lowest 8 eigenval-
large correction factor even in the mean-field approxima-ues on each configuration of our full QCD sampleBat5.55.

0.100

X3 Q°°°|=2

0.075

0.050

0.025

e b b b by

0.000
0 0.04
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FIG. 9. Disconnected pseudoscalar susceptibilities as a function FIG. 11. Comparison of the disconnected pseudoscalar correla-
of B. Complete resulftop curve and truncation to the lowest 8 tors obtained from a noisy estimattiop curvé and from the trun-
modes(bottom curve. cated spectral decomposition of the quark propagdbmttom

curve at 8=5.55 (N;=2,ma=0.00625).
tinuum, the explicit symmetry breakingni@a=0.00625 in
our casgimplies a sensitivity to higher eigenvalugsee Eq. In the next section, we will complete the argument by show-
(29)] and dominance by the low lying modes is only ex-ing that the L{(1) symmetry breaking indeed survives in the
pected to be recovered very close to the chiral limit. chiral limit once the zero-mode shift lattice artifact is cor-

Overall, we conclude that in spite of lattice artifacts, therected for.
ingredients for a breaking of AJ1) symmetry according to Finally, it is interesting to note that not only the suscep-
the scenario described in Sec. Il are present in our simulatibilities but the entire disconnected correlators themselves
tions at finite quark mass. In particular, we have shown eviare dominated by the low lying modes. In Fig. 11 ,we com-
dence for the existence of topological fermionic zero modegpare the pseudoscalar disconnected correlatBr=ab.55 ob-
and have shown that these low lying modes are already atained in this way with the one computed with a noisy esti-
counting for a large part of the disconnected susceptibilitiesmator. Again excellent agreement is found. Certainly, it

would be interesting to study the nature of those eigenmodes
in greater detail and for example their properties of localiza-

WO ] tion (around instantons?
" 1 VI. CHIRAL LIMIT
08 - . A
i : In Sec. V, we showed that the value qf' at ma
[ i =0.00625 andB=5.55 could be entirely understood from
0.6 — — the knowledge of the lowest 8 eigenvalues and eigenvectors
i i of the Dirac operator on each gauge configuration of our
g - . sample. Since the saturation of this quantity by low lying
%>< 0.4 [ . modes will be even better at lower values of the quark mass
- ] [as can be seen from E@34)], this result can be used to
[ ] investigate the chiral limit.
- h At first, we consider a “partially quenched approach”
02 I~ - where the value of the quark mass in the fermionic determi-
r ] nant is kept fixed at a value which we shall cad} (in our
oo :. R T T caseamy=0.00625) while a varying mass is introduced in

the quantity we measure. A similar approach was taken in
Ref.[12]. Since low mode dominance was obtainedhet,
g =0.00625,x8" can be computed from Eq34) for all m
FIG. 10. Disconnected scalar susceptibilities as a functig.of <Mp. The m dependence Of(gls obtained in this way is
Complete resulttop curvé and truncation to the lowest 8 modes presented in Fig. 12¢@op curve. The result depends sensi-
(bottom curve. tively on m and vanishes am=0, as expected from the

5.45 5.475 5.5 5.525 5.55
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FIG. 12. Pseudoscalar disconnected susceptibility as a function of quark (@ass:8=6.2, in a partially unquenched approach with
0 to 8 modes included in the fermionic determinémdm top to botton. (b) Same aga) but with the Atiyah-Singer index theorem enforced
“by hand.” (c) At 8=5.55, using a reweighting by partial determinants to compute the mass dependence, with 0 to 8 modes(frmtuded
top to botton). (d) Same agc) but with the Atiyah-Singer index theorem enforced “by hand.”

zero-mode shift phenomenorilf there were exact zero Quantitative details, however, will not be important in the
modes, the result would diverge likend?.) It is also easy to  discussion given below. What is important here is tp4f
show thatyg'® will remain zero atn=0 in the unquenched (like x&'%) vanishes in the chiral limitalthough maybe with
case. For this purpose, we introduce partial determinants: a slightly different approach to zero
N,/ If taken at face value, the lattice measurements described
(35 in Fig. 12c and Fig. 13c would imply that the,(1) sym-
metry is restored a3=>5.55. However, we will argue that
this result is the consequence of a lattice artifact and there-
Successive approximations to the full QCD result are obfore misleading. In particular, we show below that the van-
tained by introducing the reweighting factor ishing of the disconnected susceptibilities in the chiral limit
[A(m)/A(mg)] in our measurement§The exact answer is is a result of the zero mode shift phenomenon. To do this, we
then obtained fok—Kk,,x.) Figure 12c presents the results turn to our quenched measurementsBat6.2 where the
obtained in this way for k0 to 8 (from top to bottomi. The  smoothness of the gauge field allows us to make the argu-
error bars are omitted for the clarity of the figure. In Fig. 13c,ment even clearer. In particular, the topology of a gauge field
we present the result of applying the same procedure in theonfiguration can be almost unambiguously determined in
case of the disconnected scalar susceptibility. Since there this case. Since we are now starting from quenched configu-
no complete dominance of*'s by the lowest 8 modefsee  rations, the reweighting occurs through the partial determi-
Fig. 10] the curves in Fig. 13c are only qualitative in char- nantsA, and a “k modes” approximation to the average of
acter(as opposed to those of Fig. 12 which are quantitative an operatoA is given by

Ay(m)=

k
nll (A\2+m?)
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FIG. 13. Scalar disconnected susceptibility as a function of quark rfasat 8=6.2, in a partially unquenched approach with 0 to 8
modes included in the fermionic determindfrom top to bottony. (b) Same aga) but with the Atiyah-Singer index theorem enforced “by
hand.” (c) At 8=5.55, using a reweighting by partial determinants to compute the mass dependence, with 0 to 8 modes(frmudep
to bottom. (d) Same agc) but with the Atiyah-Singer index theorem enforced “by hand.”

(A) = f DUe S6A, (m)A/Z, (36)

zk=J DUe SeA,(m). (37

values byh =0.” After this correction is applied, the discon-
nected susceptibilities become very smooth functions of the
guark mass, which extrapolate to non-zero val{iégs. 12b
and 13h. Of course, the current approach is still partially
guenched(with only up to 8 fermionic modes included in
Figs. 12b and 13bwhile the inclusion of the full fermionic
determinant might make the disconnected susceptibilities
(vanishingly small at3=6.2. However, the point that we
want to make here is about the smoothness of the chiral

The results obtained for the pseudoscalar and scalar discofMit, 1-€., correcting for the zero-mode shift lattice artifact
nected susceptibilities as functions of quark mass are repré@s allowed us to get around the otherwise apparently un-
sented in Figs. 12a and 13a respectively. Again the discorVoidable consequence of a vanishing chiral lifeite Figs.

nected susceptibilities vanish in the chiral linfior any k).

12a and 13p A similar discussion can be given for the case

However, since topology can be easily identified in this case,
it is possible to attempt to correct for the zero mode shift

lattice artifact. We will in fact enforce the Atiyah-Singer
index theorem “by hand” by replacing the firstg,, eigen-

"This procedure is somewhat analogous to the shifting of real
eigenvalues for Wilson fermior{$5].
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of full QCD at 8=5.55, the only difference is that the deter- Quenched =6.2 - "Fat links"
mination of the topological charge of gauge field configura-
tions is now more difficult because of the lower value@f
Qualitatively however, the resul(Eigs. 12d and 13dare the

same as shown above. Although the chiral limits obtained
after “correction” are only rough estimatgsee Figs. 12d

and 13d, it is clear that the disconnected susceptibilities at
m=0 are different from O(once the Atiyah-Singer index
theorem is properly taken into accounin other words, the
Ua(1l) axial symmetry is not restored even Bt=5.55 0]
[which corresponds to a temperature well above the critical
temperature of the SU(2X SU(2)gr symmetry restoratiop

The question of how large exactly the,(1) symmetry
breaking is(as a function off atm=0), however, is beyond

the scope of this paper. The quantitative determination of the
size of the symmetry breaking can only be addressed by
using much larger lattices and weaker coupling or through | |
the use of improved actions which better satisfy the Atiyah- 0.00 == 0% 005 0075 01 0125 0.15
Singer index theorem. Many recently introduced ideas need ' ’ ’ ’ ’ )
to be tested in this respect. In this paper, we only take a A
modest first step by analyzing the case of the “fat link”  pig. 14, Eigenmode chirality versus using a “fat-link” im-

improved quark actiofi39] in Sec. VII. Other formulations proved quark action on our quenchgd=6.2 gauge field configu-
which are currently under test include the “perfect action” rations.

approach[36] and the domain wall fermion formulation
(DWF) [37]. Some encouraging results were obtained re- . . . .
cently for DWF in the contex?ongED in 2 dimensiop&l)]. [37’38]‘ Th?t IS obV|ous_Iy a vast program and in th'.s paper
It is also worth mentioning that dynamical Wilson fermions we V.V!” I|m|t our attention to a dllscussmn of the S|mplest_
would not suffer from the “vanishing problem” in the chiral qumcapon of the staggered action used above. The 'de? IS
limit. There the zero modes are shifted along the real axié.0 investigate whether the method's proposed recently to Im-
and multiplication by the fermionic determinant ensures rove the flavor symmetry properties of the stagge_red action
smooth behaviot.The role of DWF in this context is then to 39,40 also_he_lp in reducing the shift of the topological zero
give a “global” (i.e. valid on all configurations at the same modes.A priori, one would expect that the two phenomena

; A . : lated. Indeed, the continuum limit of the staggered
time) definition of the quark masg&nd in particular of the are re . o
point my=0). Let us also mention that improved gauge aC_theory describes 4 quark flavors, which implies a 4-fold de-

tions would also help in so far as they sample configuration%eor:/eer:%vs;rghse S?:gﬁn\é?hégusﬁiicm{[;\ne w(; ethlesnél:gg. AI\SS |ﬁ‘tneed
with smoother short distance behavior on which the Atiyah- ger couping, deg acy
Singer index theorem is better satisfied. and flavor symmetry breaking follows. Similarly, if there are

Finally, it is important to remember that in this paper, theiaet:i% engqrdheesré?oﬁzeircmobngltrk]]ug;;,é;hi(r?r?erc\)ﬂ\l/lg n?gﬂ?g'g;ﬁ% %r; t:;_
issue of the (1) symmetry restoration is studied only ata ,_. " L pre ;
single value of the spatial volume, namaks=(2/T)3. The tained by reducing the amount by which the eigenvalues are

actual volume dependence of our results remains to be invegpzatterezd : ReSentIy, ':[, was shown through measurements of
tigated. mz,—mz that “fat-link” actions reduce the flavor symmetry

breaking[39,4(. Certainly it would be interesting to see
how these actions modify the eigenvalue spectrum. In Figs. 7
and 14, we compare the eigenvalue spectrum and pseudo-
scalar residue,=(#,|T's| ¢, ) for an ensemble of quenched

All of the results presented above clearly indicate the im-configurations a=6.2 on a (16¥x 8 lattice. Figure 7 cor-
portance of finding improved quark actions which better satresponds to the usual staggered action; Fig. 14 corresponds
isfy the Atiyah-Singer index theorem. As already mentioned}o a “link +staples” model where each staple carries a rela-
there are many different methods which need to be testedive weight of 1/2 with respect to the linkThis action be-
These range from the traditional improvement of the staglongs to the category considered[i89].) We chose a rela-
gered[43] and Wilson[44] fermionic action to the study of tively high value of 8 (in the symmetric high temperature
perfect action$36] and the domain wall fermion formulation phase so that topology could be easily identified. The sym-
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VIl. IMPROVEMENT OF THE STAGGERED
FERMIONIC ACTION

8In quenched QCD at zero temperature with Wilson fermions °In the case of zero modes, the properties of the staggered opera-
clear evidence for a relation between topology, real eigenmodes artdr imply that the splitting will be symmetrical. Two eigenvalues
disconnected scalar and pseudoscalar correlators was presentedwiitl acquire a positive imaginary part and the other two will be their
[42]. opposites.
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bols used in the plot correspond to the topological charge ofherefore, |J(1) symmetry breakingi.e. the non-vanishing
each configuratiogas determined by cooling8 modes have  of the disconnected correlajds directly linked through the
been computed per configuration. The most noticeable feaatiyah-Singer index theorem, to contributions from the sec-
ture in these two plots is associated with the cluster of 4o of topological charge one in the functional integral.
eigenvalues which is seen close to the origin in Fig. 14. Thjs simple observation also warns us of possible diffi-
Those eigenvalues come from a single configuration andyties with the lattice approach, since topological properties
should be interpreted as representing a mode with low eigenyye often not very well reproduced in this context. In the case
value but zero chiralitfas expecteq on a conflgurat_lon with o 4 staggered quark action, used in this paper, the zero-mode
zero topological chargeln the continuum, those 4 eigenval- ghitt |attice artifact implies that great care has to be taken in
ues would be degenerate andwould be 0. With the stan-  examining the chiral limit. That there are difficulties in ex-
dard staggered actidffrig. 7) these 4 eigenvalues are much yapolating tom,=0 was already known from the works of
more dispersed and some even pick up a relatively largefs 11,17 where it was shown that it is extremely difficult
value ofr, . So in this case, the improved action is clearly yg gecide between linear and quadratic fits to the data. Here
doing its job: it significantly reduces the flavor symmetry e have gone one step further and have shown that the dis-
breaking. It is also interesting to note that the eigenvaluegonnected susceptibilities must vanish in the chiral limit
just discussed are of the type that would lead to chiral SYMtpossibly with a rather complicated approp@s a conse-
metry breaking once they conderi8elypically they are of guence of the zero-mode shift phenomenon.
order 1¥, and since they are small but not exactly zero, they oy computations also forced us to recognize this appar-
are also non-chirali.e.r,=0). The other type of modes that ent restoration of W(1) as a lattice artifact. In Sec. V, for
we want to discuss are the chiral modes. In Figs. 7 and 14yxample, we have seen that our simulations indeed contain
these are the modes with of the order of 0.15 or larger. configurations with non-trivial topological charge and that
pology and in the continuum would hawe=0. In order to  chirality and small eigenvalues. The main source of difficul-
preserve the distinction between the two types of modes anges is that these eigenvalues are just small and not exactly
to ensure better properties Of the Chiral I|m|t What we Wouldzero as would be required by the Atiyah_singer theorem’ nor
at least require is that on a lattidef finite volume the  gre they so small that they can be unambiguously separated
eigenvalues of the chiral modes remain smaller than those gfom the other eigenvalues which would not vanish in the
the non-chiral modeéwhich can beO(1/V) when the chiral  continuum limit. In fact, when we imposed the index theo-
symmetry is broken As can be seen on Fig. 14, this is not rem “by hand” and forced those eigenvalues to vanish, we
yet realized at this stage. In other words, the “fat link” ac- found a smooth chiral limit and disconnected susceptibilities
tion does not necessarily bring the chiral modes much close&different from zero in the chiral limitsee Sec. I This
toA=0 Compared to what it does on other modes. The Situteads us to the conclusion that tha‘(l:u) Symmetry is not
ation can be summarized by saying that this type of improverestored aff, but only at a somewhat highépossibly infi-
ment only corrects the largest flavor symmetry violation. Itnite) temperature. At this point however this is still a quali-
brings together eigenvalues which were widely separated bgative conclusion. Quantitative questions such as the issue of
fore but doeS ||tt|e on the OtherS. In faCt, the Separation thaéxacuy hOW |arge the Symmetry breaking iS as a function Of
remains between the four low modes on figure 14 is of theemperature will only be addressable in the context of im-
same order as the zero mode shift of chiral modes. Correchroved actions or very large lattices. There is therefore an
ing those two effects could therefore only be achieved at grgent need for studies of lattice fermion formulations which
higher level of improvement. At the same time, other methetter satisfy the Atiyah-Singer index theorem.
ods of improvements such as domain wall fermions and per- | this paper, we have taken a modest first step towards
feCt aCtionS Should alSO be ConSidered. It iS quite Conceivablﬁlvestigaﬂng improved actions by |00king at the case of the
that a combination of various methods may be necessary iffat-link” formulation [39]. This technique has been shown
the end. to lessen the flavor symmetry breaking in the mesonic spec-
trum. For our purposes however, we have seen in Sec. VIl
that the improvement that it provides at the level of the ei-
VIll. SUMMARY AND CONCLUSIONS genvalue spectrum is too small to make a big difference in
) . . the identification of topological zero modes.

We have shown that important insight can be gained  gayanq this, there is much more that can be done from
about the flavor singlet dynamics of finite temperature QCDy,q knowledge of the low lying eigenvalues and eigenvectors
by computing the low lying modes of the Dirac operator. ;ompnyted in this paper. The spectrum itself and the distribu-
This follows from the simple re;ult, derived in _Sec. I, that in 0 of eigenvalues could be compared with random matrix
the high temperature symmetric phase at finite volume, the,,ye|g45]. Since we also have the eigenvectors, their prop-
scalar and pseudoscalar disconnected correlators are entirelias of |ocalization possibly around instantons or other ob-
accounted for by the contributions of fermionic zero mOdeSjects could be investigated as well. In the context of finite

temperature, many interesting questions related to the change
of properties of the instanton medium, the possible existence
Here we only find one such eigenvalue sincg8at6.2, we are  of instanton+ anti-instanton moleculgl6], and their rela-
still well aboveT,. tion to quark probes deserve to be studied.
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