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Can 0/N dependence for gluodynamics be compatible with & periodicity in 6?
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In a number of field theoretical models the vacuum aryknters physics in the combinati@iN, where
N stands generically for the number of colors or flavors, in an apparent contradiction with the expected 2
periodicity in . We argue that a resolution of this puzzle is related to the existence of a number of different
0 dependent sectors in a finite volume formulation, which cannot be seen in the naive thermodynamic limit
V—oo, Itis shown that, when the limi— o« is properly defined, physics is alwaysreriodic in for any
integer, and even rational, values of N, with vacuum doubling at certain valués \&fe demonstrate this
phenomenon in both the multiflavor Schwinger model with the bosonization technique, and four-dimensional
gluodynamics with the effective Lagrangian method. The proposed mechanism works for an arbitrary gauge
group.[S0556-282(98)01717-2

PACS numbgs): 12.38.Aw, 11.15.Tk, 11.36j

I. INTRODUCTION Heref,, is the »' residue and, . is the energy of the YM

Very soon after the discovery of instantorg in Yang- vacuum, which is proportional tNE in large N, I|rr21|t. '2A‘
Mills (YM) theory it became cleai2] that the latter pos- resolution of the 1) problem suggest$5] that f,m’,
sesses a hidden parametewhose effects may show up due ~N¢X 1/NC=O(N8). Therefore, the right hand side of Eq.
to a nontrivial topological structure of the theory. It is be- (1) should also b&d(N?). This is exactly the case provided
lieved thatd is an angular parameter, i.e., physics is periodiowe accept that the functiofi in formula (1) is actually a
in 6 with period 2. In particular, the value$=0 and6  function of the variableg/N, rather than off itself. This
=2 correspond to one and the same theory. This is a direompletes the standard argument showing thattidepen-
consequence of the topological classification of the gaudg§ence should come in the combinatiéfN, only. There ex-
theories, which is based on.the assumption thgt fields argy many other argumenfased on analyses of2CPN~1
smooth and regular, and defined on a compactifiable mank, ogel. supersymmetr§SUSY) theories, etd.which support

fold. : e
The existence of this new fundamental constant has img:)?ngi):gilésr‘:%%thv%;ggNaniglih:h,\r/]?rﬁbi?ti;s"Eglfrlsc'? (I)I: a
mediately posed two difficult questions related to the so-; ; . .
flavors,” depending on the model considered.

called U1) and strondgC P problems. It has been argued by ‘t ' :
Hooft [3] that instantons may lead to a resolution of thed)U The question we want to raisand attempt to answecan
problem[4]. Later, Witten and Veneziani®] found, within P& formulated as follows. How can one reproduce the 2
the largeN, approach, that physics should depend ®n periodicity in 0 (WhIC.h. is a strict constramt folloyv.mg_from
through the combinatiod/ N, in order for the Y1) problem the topological classificatigrior all physical quantities if the
to be solved. On the other hand, a nonzero valu@ iofiplies ~ Samequantities depend of through the specific combina-
[6,7] a violation of CP invariance in strong interactions, tion 6/N. ? The answer to this question is well known in
which is not observed experimentally. At present there is n&USY modelg8,9], where it was shown that then2period-
convincing theoretical argument as to widyis so small. icity is recovered when a discrete number of vacuum states
Most likely, the strongC P problem cannot be solved within [N for the SUN) group,N—2 for the SON) group, etc] is
the strong interaction sector of the standard model, and wiltaken into account. The existence of these states in SUSY
not be discussed here. models is a consequence of spontaneous breaking of the dis-
In the present work we address a different, but relatedgrete chiral symmetryZ,y —Z; [for the SUN) gauge
question. As we mentioned earlier, a resolgtion of tl(&)U group]’ which shows up via a formation of the g|uin0 con-
problem suggests that dependence comes in the combina-densate. In this case, the different vacua are labeled bg the
tion 6/N.. To show this, we recall the famous Witten- angle as well as a discrete paraméter0,1, . . .N—1 such

Veneziano relatiof5] that the chiral condensate depends on these parameters as
(AN)~exd (i6+27k)/N]. Therefore, wher¢ varies continu-
5 ously from O to 27, N, distinct and disconnected Bloch type
2 2 J Euac 2 . . .
f2,m?,=12—22 E, ..~N2f(6). (1)  Vvacua undergo a cyclic permutation: the first state becomes
K 362 the second one, and so on. All physical quantities are peri-

odic in @ with periodicity 27, as these vacua can be just

relabeled by the substitutiok—k—1 after the shiftd— 6
*Email address: higor@physics.ubc.ca + 2, keeping physics intact. We should note that such a
"Email address: arz@physics.ubc.ca picture is believed to be correct for an arbitrary gauge group,
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irrespective of the existence of the center of the grbup.  fixed §) among this set. When defined in this way, the physi-
In non-supersymmetric models such a scenario apparentlyal vacuum is periodic i with period 2, but for different
cannot be realized because no discrete symmetry whicimtervals of the values of we are talking about a different
could lead to such degenerate vacua exists in a pure gaugeate from the set as a true vacuum. At certain valuesaf
theory. The main goal of the present paper is to argue thagxact twofold degeneracy in this set results in vacuum dou-
the pattern of the # dependence in usual, non- bling in the limit V—« (Dashen phenomendns]).
supersymmetric YM theorggluodynamicgis to some extent As a warm-up example, we first discuss in Sec. Il the
reminiscent of what happens in SUSY models, althoughmultiflavor Schwinger model. Using the bosonization ap-
there are important differences between these two cases. proach, we show that thé dependence is realized in this
What will be shown is that a discrete number of statesmodel in the way just described. An important role of an
whose presence is crucial for the aforementioned mechanisinteger valued Lagrange multiplier field, ensuring the quan-
to work, does exist in non-supersymmetric gluodynamicgization of the topological charge, is clarified.
when we consider the theory in a large, albeit finite, volume The rest of the paper is devoted to the problemgafe-
V. These states represent in this case local extrema of gsendence in four dimensional YM theory. To this end, the
effective potential, and have different energies. Under th&nowledge of an infinite series of zero momentum correla-

shift 6— ¢+ 2, they transform to each other by a cyclic tion functions of the topological densi6y,,,G ,, is required.
permutation, Wg”e some two of them cross in energy at ceryye discuss in Sec. Il methods for getting information of this
tain values ofg.” _ _ _ _sort by matching short distance and large distance properties
Thus, the periodicity inf with period 2r is restored in  of the theory(a related discussion can be found in the Ap-
this finite volume theory. However, when the thermody-pendiy. We then construct in Sec. IV an effective Lagrang-
namic limit V—o is performed for a generic value @,  jan (more precisely, effective potentjiabs the (Legendre
only one state of lowest energy can be seen, as all othgfansform of generating functional for zero momentum cor-

states have higher energies and therefore drop out in ﬂ}eelation functions of the marginal operato@,wé,w and

standard definition G,.,G,,. We shown that an integer valued Lagrange multi-
plier field should be introduced in this effective potential to
@) ensure a single-valuedness and boundness from below. The
presence of this field imposes global quantization conditions
on the fields of the effective theory, which reflect the topo-
logical charge quantization in the original YM action. Sec-
tion V deals with the minimization of an “improved” effec-
e potential obtained by adding this Lagrangian multiplier
ield to the theory. We show that this procedure yields the

1

Epac(0)=— lim &

V—oo

logZ, 6 fixed.

(This is in drastic contrast with the SUSY case whereNall
vacua have the same vanishing energy, and thus all survi
theV— < limit.) On the other hand, due to the superselectio
rule dt;ffelretntl sta}[tes do (rj\c;thcor?mu?;]caﬁte tto efach (t:)(had f above picture of zZr periodicity in 6, in close analogy to
are absolutely stableand therefore the fact of existence o what we find in the multiflavor Schwinger model. Conclu-

additional higher energy states could be safely neglected, iDions and some discussion are presented in Sec. VI
agreement with Eq(2), for all physical problems except for o

one. Namely, retaining all these states is necessary for the
analy5|s of pe_rlodlcny |n0._The valuesd and 6+ 27 are Il 0 DEPENDENCE IN N-FLAVOR SCHWINGER MODEL
physically equivalent for this set of states as a whole. Thus,
the fact that thed dependence comes in the combination The main goal of this section is to illustrate most essential
6/N; in usualV=c formulas has nothing to do with the technical tools, needed to address the problen# ofpen-
problem of periodicity ind, as those formulas refer to one dence in YM theory, on a simple toy model. The multiflavor
particular state out of this set. As for any fixédhe infor-  Schwinger model nicely serves this purpose. It exhibits the
mation on all additional states is lost in E(®), in what above pattern of dependence and can be analyzed in quite
follows this phenomenon will be referred to as a “noncom-a straightforward manner. Though most of the results pre-
mutativity” of the thermodynamic limitv—o and the shift sented in this section are not new, we hope that this discus-
06— 6+ 2. Bearing in mind that the states of the set do notsion may help to understand the mechanism ensuring the 2
interact owing to the superselection rule, and to have a cormperiodicity in # in a more complicated case of four dimen-
respondence with the standard definiti@j in what follows  sional YM theory.
we call the true vacuum state a state of lowest ené¢igya As is known[19,20, in the N flavor Schwinger model
physics depends o# through the combinatio®/N. At the
same time, all physical quantities are periodic functiong of
1A related question on a role of the toroft0—14, which are with period 2. We here wish to discuss the way in whic;h
field configurations with a fractional topological charge, is not ad-these two apparently contradictory facts become compatible.
dressed in this paper; see R@f3] for a list of related problems and N what follows we reproduce some of the results of Refs.
discussions. [19,2Q using an approach which emphasizes a key role of an
2This picture of theg dependence is similar to the one advocatedinteger-valued Lagrange multiplier field and thermodynamic
by Crewther{15], Witten[16], and Di Vecchia and Veneziaji@7]  limit procedure in this problem.
for QCD with N light flavors. We start with the standard Euclidean action of the
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bosonized one flavor Schwinger model. It takes the form = +oo 2.72|2
z~f "~ Do >, exp‘— v +il (VA7 o+ 6)
l 1 | *\““77/2 |=—0o g
S =f d*| —F2+ 5 (d,¢)*+—=F
+VmyucogVameo) (- @
iFeé

— pmycos 4w p) + > 3

The 27 periodicity in 6 is explicitly seen in this representa-
tion. However, in order to discuss the thermodynamic limit,
ite is more convenient to use an alternatieia) representa-
%ion for the same expressidii):

whereF = %GMVF#V andmg is a quark mass. In obtaining this

formula we used the standard boson-fermion corresponden

_ 1 _
W#MHJ—;%ML Yp——pcos\Ame).  (4) S rm

— 72

+oo 2V
Do > exp{ - 92—77( ok +

i 2
Vair

The key observation is the following. We would like to im-
pose explicitly a global constraint ensuring that the topologi- n =
cal charge, which is determined by the integrdfx(F/2), Vimyu cos VA do) 1 ®
can take only integer values. This constraint can be imposed
by introducing an integer-valued Lagrange multiplier vari-
ablen such that the partition function of the theorydsfined
as the sum oven:

where we have used the property @&f( v,x) function:

+ oo + o
1 2 2 2 .
03(v,X)= — E e (rHRIx— E e~ ?mx+2ilva
VX k=—

— —Se+in2a7 | d?x(F/2m) 1
z=2 fDFque e f _ (5) o

n

It is clear that we have done nothing wrong by defining thea generalization of this formula for the case Nf flavors
partition function in this way, because we introduced only awith equal(and very smallm,<g) masses can be achieved
phase multiplier which always equals 1 for integer topologi-by replacing ¢o— N;¢, in Eq. (8) where, again, we keep
cal charges. This procedure brings a divergent normalizatiopnly the relevant for the vacuum structure part of the parti-

factor =1 which is irrelevant anyhow. tion function:
Two remarks are in order. First, the constraint
Jd?x(F/2m)=1,1=0,+1,+2, ... isautomatically satisfied ' = too g2V o \2
due to the identity: ZNJ b extl — | Nedn— K /mr+ ——
N ¢0k:200 2w bo—km NZYH

F
i 2
E exr<|27-rnJ d X277

n

F
=> 5( dzx——l). (6)
] j 2m +VmyuN¢cog \/Eqﬁo)]. (10)

As for the second, and most important, remark: the [2e-

riodicity in € is explicitly seen from the general expression Formula(10) was derived earlief21] in the limit 6=0,N;

(5). Indeed, a shift irg by 27 in Eq. (3) can be compensated _ 1

for by a shift inn: n—n+1 such that the partition function  Now we are ready to discuss the periodic properties of the

(5) is unchanged. The crucial point to make this mechanismytition function(10) in the thermodynamic limig2V—s o

work is the definition(5) of the partition functiorZ with the {5y the strong coupling regime,<g. Itis clear beforehand,

prescription of summing over afi. Such a definition was \yithout any calculations, tha is a periodic function ofg

suggested earligwith quite a different motivationfor the  ith period 2r for an arbitraryN;, due to summation over

Schwinger model by Smilgg21], and for SUSY models  he jntegers in Eq. (10). Now we wish to see explicitly how

(with purposes similar to ourdy Kovner and Shifmanf9]. this periodicity works in Eq(10) in the limit g2V— . For
To _study the vacuum-structure of the thepry, we e),(pandsufﬁciently small 6, only one termk=0 in the sum(10)

following Ref. [21], the fieldsF(x) and ¢(x) in the series ¢ ives the thermodynamic limit, such that

over spherical harmonic® compactification on a manifold

of volume V is implied F(X)=2ZF;,Y|m(Q), &(x)

=2 dimYim(Q) and keep only the zer&, mode in what /_477¢0=— i gV—w, k=0, 0<6<m,
follows. This harmonid=y=21/V is fixed by the constraint Ny
(6), with V being the total volume of the system. Integrating (1)

over DF, and discarding non-zero harmonics of #dield,
which are irrelevant for the present discussion, we obtain fofhe vacuum energy and topological density condensate for
the partition function solution (11) are
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0 convention(2) we define this vacuum as a state of lowest
Eyac( 6)~ —cos VAT o)~ —cos - energy among the above set. bt 7 there are exactly two
f degenerate states which both contribute the partition function
iE P in the limit V—o. In this sense, at the crossing poift
<—>~sin—, 0=6<m. (12 =1 the physics is nonanalytic iM. This nonanalyticity
2m Nt cannot be seen in usu&=c« formulas valid for smallg

<, where a contribution of a lowest energy state only is
retained. An order parameter which labels two degenerate
states a¥= 7 is the sign of the vacuum expectation value of

When 6> 7, the next term wittk=1 corresponds to a low-
est energy state, such that

om0 operator(iF /2a) ~ = mgsin(z/Ny).
\/E%:N—— N gV—ew, k=1, w<6<2m. (4) As we mentioned above, the choice of the physical
f f (13 vacuum as a lowest energy state is a matter of convention.
Owing to the superselection rule, any state in the discrete

The vacuum energy and topological density condensate foteries(€.g., a next-to-lowest stateould serve as a vacuum

solution (13) are as well. However, due to the permutational symmetry_ qf the
whole set of states under the shift> 8+ 2, any redefini-
2w 6 tion of this sort will result in 2r periodicity in 6 for such a
Eyac(#)~—codN4m o)~ _COS(N_f - N_f) vacuum in the physical limiy/— .

In the next sections we will see that the very same picture
iF (2w 0 of the physicald dependence seems to appear in four dimen-
<ﬁ> T sm( Ny N_f) y mgs<2m. 149 sional YM theory.

This pattern continues for arbitrary valueséfFor the spe-
cial casef= 7, a cusp singularity develops, and we stay with
two degenerate vacua which both survive the thermodynamic In this section we start to describe steps which have to be
limit (the phenomenon of vacuum doubling in the massivedone in YM theory to obtain an expression analogous to Eq.
Schwinger model was first found long ago by Colenha8]  (10) for the Schwinger modelthe vacuum contribution to
for the caseN¢=1, my>g). In this case the two vacua are the partition function or, in other words, the vacuum engrgy
distinguished by the sign of the topological density conden-This aim requires knowing the zero momentum part of the
sate(iF/(2)). YM partition function, which cannot be described within

To summarize, we explicitly see that physics depends oiperturbation theory. It turns out that this object can be stud-
o for sufficiently small@ through the combinatiod/N;. At  ied using some matching conditions ensuring consistency of
the same time, the period of the dependence is standard the large distance properties of the theory with its small dis-
2. This result is in agreement with a very different ap-tance behavior fixed by renormalizability and asymptotic
proach of Ref[20]. freedom. These matching conditions are provided by anoma-

We thus see that the following picture emerges. lously broken symmetries through a set of Ward identities

(1) The 27 periodicity in 8 holds for an arbitrary value of for zero momentum correlation functions of operators de-
N;, even if N; is a rational, and not an integer, number scribing corresponding anomalies. This constitutes what is
(thought it is not a physical situation for the Schwingerknown as low energy theorems in gluodynamics. Our aim in
model, a similar formula for four-dimensional gluodynamics this section is to discuss the low energy theorems in YM
exhibits such a possibilily The 27 periodicity in 6 is al-  theory in order to prepare a necessary input for the construc-
ways restored due to the summation over integer-valuetion of an effective Lagrangian, which will be carried out in
Lagrange multiplier variabla in the partition function(s). Sec. IV.

(2) If we take the thermodynamic limit for sufficiently ~ In what follows we need two Ward identities for zero
small 6 in Eq. (10) from the very beginning, we obtain momentum correlation functions of spin 0 gluon currents in
VA7 éo=— 6/N; once and forever for an arbitrary value of gluodynamics. For the scalar channel case, it was shown
6. Proceeding this way, we would not see other terms witHong ago by Novikowet al. [23] (NSVZ) that these correla-
k=1,2 ... in Eq.(10), which are responsible for the resto- ton functions are fixed by renormalizability and conformal

ration of 2 periodicity in 6, simply because they contribute @nomaly in YM theory. Indeed renormalizability and dimen-

zero to the partition function in the thermodynamic limit. Sional transmutation ensure that any renormalized Zero mo-

This is exactly what happens when one starts with the conféntum correlation function of thd:D2=4 operatorG

tinuum formulation of the theory from the very beginning. In ¢an only be of the fornC(s(as)/(4a5)G%), whereC is a

this case all terms wittk=1,2 ... are automatically dis- numerlcal_ constant which depend; on the correlation func-

carded. Therefore, the periodicity in 6, as a property of tion considered, and the renormalized vacuum expectation

the whole set of solutions, cannot be seen in this formulation.

The thermodynamic limit prescriptiof2) and the shifte

— 0+ 27 are thus “noncommutative.” 3In SUSY models, a similar use of anomalous Ward identities
(3) For each giverg# 7 (and my#0) there is one and leads to the well known Veneziano-Yankielowicz effective La-

only one physical vacuum in the thermodynamic limit. By grangian[22].

Ill. LOW ENERGY THEOREMS IN GLUODYNAMICS
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value(B(ag)/(4ag) G2~ A%, is the only mass scale in the o . Ay o~ Qg

theory, fixed by the conformal anomd\Eor any given zero lim 'J dx éqx<0|T[@GG(X)§GG(0) |0)

momentum correlation function of the field?, a value of a-0

the particular coefficien€ can be found using the dimen- Blag)

sional transmutation formula for renormalized vacuum ex- :§2<WG2>' (19
S

pectation value of operato® of canonical dimensiord,

written in terms of the bare coupling constaitnormalized where ¢ stands for a generally unknown numerical coeffi-
at the cut-off scalevlg: cient [note that itsN, dependence is expected to lge
872\ ¢ ~NC_1, in order to match Witten-Veneziar{®] resolution
MRexp< - _2) , (15) o_f the U1) problerﬂ. Wh_en 0=0, Eq.(19) is the only pos-
bgg sible form compatible with both the conformal anomaly and
) 5 ] Witten-Veneziano construction. We note that the correlation
where the one-loogB-function, B(as)=—bag/(2m) with  function (19) is defined via the path integral, i.e., with Wick
b=(11/3)N. and N. stands for the number of colors, has type of the T-product. This definition ensures that the non-
been used. The NSVZ theoref@3] (with the one-loop8  perturbative gluon condensate in E¢$6),(19) is the same
function) then follows by the differentiation of Eq(15),  quantity. Perturbative contributions are absent in Bd),
taken forO=—bag/(8m)G?, in respect to I5. When the  see the Appendix.

(O)=cons

full B function is retained, it read®3] In writing Eq. (19) we have assumed that it has the same
Blay) Blay) form, i.e., covariant, for any small value éf(in the Appen-
. ; As As dix it is proved only for6=0). Provided this is the case, the
ax 2 2 p Yy ,
(Llinolf dx e <0|T| dag G dag G*(0)(10) coefficient £ reiterates, analogously to E(L8), for all n-

point correlation functions of5G, as can be seen by the
_ _4<'6(“5) GZ> (16) formal differentiation of Eq(19) in respect tod. There are
dag ' three arguments in favor of correctness of this assumption.
o First, this requirement agrees with the langg line of rea-
Note that the presence of the full function in Eq.(16)  soning due to Veneziands] where one finds that a coeffi-
ensures the renormalization group invariance of both sides Qfient standing in the two-point function of the topological
this relation. An infinitesimally small momentum transégf  density operator does reiterate in multipoint correlation func-
is introduced in order to select a connected contribution tQjons. Second, this postulated covariance of @) in re-
the correlation functior(16). Equation(16) stands for the gpect tog goes through a self-consistency check by agree-
renormalized correlation function where ultraviolet divergentment petween two different calculations of thelependence
both sides of of Eq(16), see the Appendix for a discussion gyraightforward use of Eq(19) [see Eq.(20) below], and

on this point. _ another one is obtained directly from an effective potential
Arbitrary n-point functions of the trace of the energy- (see Sec. Y Third, such covariance of E¢L9) follows au-
momentum tensor tomatically with an approach used [ig4].

Blay) ba As for the numerical coefficier§ in Eq. (19), there exist
(o)= <_SG2> - <—SGZ> +0(a?) (17)  afew proposals to fix its value. One of th¢@8] is based on
4as 8w the hypothesis of the dominance of self-dual fields in the YM
vacuum, which suggestg=2/b. A different choice, &
=4/(3b), was advocated in our wofflR4] using a one-loop
connection between the conformal and axial anomalies in the

can be obtained by further differentiating relati@®):

i”f dX; ... dx (0| T{o(Xq) . ..0(Xn)(0)}|0) theory with an auxiliary heavy fermion. This line of reason-
ing was an extension of arguments used byhKwand Za-
=(—4) o), (18) kharov [25] to evaluate the proton matrix element

(p|GG|p). Some further discussion on these matters will be
where, as in Eq(16), a limiting procedure of the vanishing given in Sec. V. As different arguments disagree on what the
momentum transfeq, is implied. Note that a regularization exact value of is, in this paper we prefer to proceed with an
scheme in Eqs(16),(18) is assumed to be the same. ynspecified parametér Fortunately, it turns out that the fact

Let us now address zero momentum correlation functiongf 2 periodicity in 6 can be established without knowing a
of the topological density operator in gluodynamics. As dis-precise value of, with the only mild and reasonable as-
cussed in detail in the Appendix, the renormalized two-pointsymption that the parametéris a rational number. In addi-
function can be written as tion, keeping an unspecified value &fin Eq. (19) makes it

possible to study the dependence for gauge groups other

than SUN), at least in principlgsee Sec. Y.

“The fact that terms explicitly containing¥,, do not appear in As has been shown if24], a combined use of relations
correlation functions of the operat@? was checked in Ref23]  (16),(19) enables us to calculate th# dependence of the
using canonical methods with Pauli-Villars regularization. vacuum energy and topological density condensate for any
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number of colord\, and small values of the vacuum andle still contains an ambiguity which will play an important role
by formal resummations of Taylor expansionséitior these in what follows) The kinetic part is not fixed in this way.
objects. The resulting expressions read Thus, such an effective Lagrangian is not very useful for
calculating the S-matrix, but is perfectly suitable for address-
ing the vacuum propertiésSpecifically, space-time indepen-
dent fields are amenable to a study within this framework.

The task of constructing an effective Lagrangian can be
=E,c092£0) (200 considerably simplified by going over to linear combinations
of original operatorswhich enter relation$16), (19):

bag

327

b
262 6)=(0| -

Ev(e):<0|_ 32

G?|0)cog2£6)

for the vacuum energyhereE, stands for the vacuum en-
ergy for #=0) and

b 2
-G%+i— GG|,

o ~ = 2
(6] 5~ Gl 0)=2¢E,sin(2£6) (21) 64 bé
for the topological density condensdta [24] the particular H= b G2 EG"G 22)
value £=4/(3b) was usedl These formulas seem puzzling 6472 b¢ ’
as they suggest a “wrong” periodicity i (remember that
71 . . . . .
§~N¢ ) without any hint at possible singular poirs-m, | terms of these combinations, the low energy theorems for

which could prevent us from making the shift—>6+27.  renormalized zero momentum Green function, E4§) and

This might force one to conclude that Eq20),(21) cannot  (19) take particularly simple form€or an arbitrary value of
be correct on general grounds, even for small values,of he vacuum angl®):

and the whole derivation, leading to relatioi29),(21), was

in error. However, as we just saw in the analysis of the

Schwinger model, a fraction@ dependence, implied in Eqgs. lim if dx éqx<0|T{H(X)H(0)}|0>: —4(H),
(20),(21), can be in perfect agreement with the periodic- q—0

ity in 6, see Eq(12). What will be argued below is that Egs.

(20),(21) do not contradict the expected picture ofr2peri- _ . _
odicity of physics ing with a singular level crossing point at limi f dx €¥(0|T{H(x)H(0)}[0)=—4(H), (23
0~ r, for any rational numbeé [including, of course, both q-0

aforementioned choices=2/b [23] or £&=4/(3b) [24]]. As

we have found in the study of the Schwinger model, the key o _ _

to understanding thé periodicity problem is the analysis of limi J dx €P(0|T{H(x)H(0)}|0)=0.

a whole set of disconnected vacuum states. It will be shown a0

in Sec. V that an accurate transition to the liiits o while o
keeping all these states restores the correct periodicity anitlis easy to check that the decoupling of the fieltisndH

analyticity structure of thed dependence, irrespective of a holds for arbitrary n-point functions dfi, H. This circum-

particular value¢=any rational number. stance makes it particularly convenient to work with fields
(22.
IV. EFFECTIVE LAGRANGIAN FOR GLUODYNAMICS We now wish to construct an effective low energy La-

grangian reproducing at the tree level all Ward identities

Th? purpose qf this section is to construct a low ener_gy(low energy theoremdor the composite fieldsi,H, such as
effective Lagrangian for gluodynamics, which would contamEqs_(zs) and their n-point generalizatioRsto this end, we

all information provided by the low energy theorems in the . ; :

scalar (16) and pseudoscalafl9) channels including all gon5|d§r the generatlhg fu_nctlonal of connectEd Green func-
multi-point correlation functions of operatof3®> and GG, tions with the space-time independent sourgs

which can be obtained by differentiating the two-point func-

tions (16) and(19), see e.g. Eq(19).

Before proceeding with the presentation, we would like to °Effective Lagrangians of this kind have been used in supersym-
pause for a comment on the meaning of this effective Laimetric theories(see, e.g., review papef&6]). In particular, the
grangian. As there exist no Goldstone bosons in pure YMso-called Veneziano-Yankielowicz effective Lagrangi@2] has
theory, no Wilsonian effective Lagrangian, which would cor- the meaning just described; si.
respond to integrating out heavy modes, can be constructed!n thi_s section we change the normalization of the gluon_ field in
for gluodynamics. Instead, one speaks in this case of an efomparison to that used in Sec. Il by the rescalidg,

fective Lagrangian as a generating functional for vertex func=(1/9)A,., and use the one-loof function. ,
For the case of one real “dilaton” fields= —bag/(87)G*, a

tions of the composite fields” andGG. Moreover, only the similar problem of constructing an effective Lagrangian was solved

potential part of this Lagrangian (_:an be fgund as it~corre-|Ong ago by Schechté®7], and Migdal and Shifmaf28] (see also
sponds to zero momentum n-point functions ®f,GG,  [29]). Our derivation below is akin to the one suggested by Corn-
fixed by the low energy theoreméThis effective potential wall and Soni in[29].
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an+1

_ i
exdiW(J,3)]=>, J’ DAex;{ - Fj dx G? W|J=j=0:i”j dx dx . ..dx,
n g

aTH—l

o 6+277nf i Gf;+iJf iy H X(T{H(xy) . . .H(x,)H(0)})
3272 _
=(—4)"f dx(H)
+i3_f dx H|. (24)
ﬁk+|
WW|J=3=0=O; (29

Note the(somewhat unconventionaummation over all in-

teger numbers: in Eq. (24), which is analogous to the defi- [as before, the connected parts of the Green functions are

nition (5) for the Schwinger model. This prescription auto- implied in Eq.(29)]. These equations are solved by the func-
matically ensures the:2 periodicity in & and quantization of  tjgn

the topological charge, and is completely equivalent to the
way the vacuum anglé has initially appeared in YM theory — 1 4y 1 — 4
[2]. The above form of introducing the angle in the path W(J,Jd)=~— Zf dx (H)e _ZJ dx (H)e™™. (30)
integral will help us to understand how th#& parameter
should be installed in the effective Lagrangian formalism. Using Eq.(25), we can express the sourcéd in terms of
We next define the effective zero momentum figldsre the fieldsh h-
and in what follows[dx=V is a total 4-volumg v
J 1|o(h) J: 1Io(h) (31)
f dx he . fdxﬁ:ﬂ, (25) 229 (H) 29 )
0J EX

Inserting these expressions back to B3f)), we obtainW as

satisfying the equations a function of the fieldsh,h. Now the definition(27) turns
into the differential equation for the effective potential

U(h,h)=—(INM)T(h,h):

f dx h=<fdx H>, fdxﬁ=<fdxﬁ>. (26) o

1 _
U-h——h—==——(h+h). (32
The effective actiori“(h,ﬁ) is now introduced as the Leg-

endre transform of the generating functioh@(J,J): This equation is a complex extension of a real differential
equation for the “dilaton” effective potential of Refs.
. . L [27,28. Here comes the aforementioned ambiguity of the
I'(h,h)= —W(J,J)+f dx Jh+f dx Jh (27) effective potential. Let us compare E@2) with the equa-
tion for the real “dilaton” field of[27,2§

which implies du 1
U(o)—oc—=——0. (33
do 4

or =], or =J. (28) Equation (33) has the only solutiond(o)=(1/4)c(logo
&f dxh &f dxh +const). It is the appearance of the multibranched logarith-
mic function of a complex argument in E¢32) that gives
rise to the ambiguity which was absent in the real equation

From the definition(24) and the low energy theorenig3) ~ (33). Let us analyze the way it appears when E8p) is
[and their extensions for arbitrary n-point functions; see Eqsolved. One obvious solution of E(2) is
(18)] we obtain

_ 1 h 1 h —
an+1 Ul(h,h)zzhloga+ Zh Iog€+D(h—h), (34
—W|J:j:0=i”f dx dxg . ..dx,

n+1 _
dJ where C,C,D are arbitrary complex constants which may

X(T{H(Xy) .. .H(Xy)H(0)}) depend on(l—_|>,<ﬁ>,0._ However, Eq.(34) is not a single-
valued function, and is not bounded from below. After the
—(—a | dxH phase rotatiorh— h exp(2mir) with an arbitrary integerr,
=(=4) x(H) the potential(34) transforms as
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_ — imr _ 6+ 27n, while the summation over the integerss neces-
Ua(h,h)—Uy(h,h)+—-(h—h) (39  sary because of a multivaluedness of the YM action in re-
spect to large gauge transformations. Analogously, the last

which is physically unacceptable. term in Eq.(38) is the only one that can accommodate the

A way out in this situation is to sum over all integergn ~ Parameter in the same combinatié 277n. The summation
the partition function, as was suggested by Kovner and Shifover the integers is enforced this time by the multivalued-
man [9] in a similar problem arising with Veneziano- ness of the logarithm in E38). As the presence of the
Yankielowicz effective Lagrangiaf22] for SUSY gluody- angle is implicit in the constani§,C, we now make it ex-
namics. Yet, in our case this is not the end of the storyplicit in the above way and finally obtain tHdinkowsky
Indeed we find that there exists another pOSSible solution inace improved effective poten“a]:(h,ﬁ) by the summa-

Eq. (32: tion overn,k in the partition function:
U,(h)= —h| (h)a+ ey (h a+D(h ) S S v h — h
h)=—nhlog| = —hlogl = —h), —iVF(h,h) _ R
2 2299 c) taa"0d 3 e n;wgoex 2 hLognghLo =
(36)
. . . g 6+2mn\h—h
where« is an arbitrary real number. From now on we con- +imV|k+ = 5 [ (39
centrate on the case whenis a positive rational number, P m :

a=pl/q, where the integerp and q are relatively prime. _
Using the formula where the constants’,C’ are independent of and can be

taken real,C’ =C’'=2eE, whereE is some positive con-

n +kB) stant. The improved effective potential(h,h) is consistent
' with all constraints imposed by the low energy theorems and,
by construction, is a single valued function possessing the
n=0,+1,...; k=01,...g9-1 (37 2 periodicity in #, which was present in the initial YM
partition function. As is seen from E¢39), the structure of
(here log stands for the principal branch of the logarithm the effective potentiaF is such that it contains both the
we see that the second for(86) makes no difference in  “dynamical” and “topological” parts the first and the sec-
comparison with Eq(34) when only the principal value of ond terms in the exponent, respectivelye would like to
the Iogarithm is considered. However, the theories, deSCfibeﬂote that Eq(39) is a direct ana|og of a similar construction
by the effective potentialt34) and(36), are different quan-  for SUSY modelg22,9]. Namely, the “dynamical” part of
tum mechanically as they imply different rules of a globalthe effective potential is rather similar to Veneziano-
quantization for the fieldg,h. This quantization arises when Yankielowicz(VY) [22] potential~u?3ogu, while the “to-
the single-valuedness of the partition function is ensured by gological” part is analogous to an improvement of the VY
summations over the integers. As will be shown in the nexeffective potential, suggested by Kovner and Shifnifih
section, it is the second choi¢g6) for the effective potential We stress that the improved effective potent&d) contains
that can be made consistent with both #& dependence more information in comparison to that present in the Ward
and 27 periodicity in & when a proper treatment to global identities(23) just due to the appearance of this “topologi-
guantization constraints and the thermodynamic limit iscal” part in Eq. (39). Without this term Eq.(39) would
given. merely be a kinematical reformulation of the content of the
We therefore consider the function Ward identities(23). As will be shown in the next section,
this improvement of the effective potential turns out crucial
for unravelling the correct periodicity il in YM theory.

log zp/q=g Log z+ 2 i

k+n%(h—ﬁ)
(38) V. MINIMIZATION OF EFFECTIVE POTENTIAL

_ 1 h 1. h inw
Us(h,h)= Zh LogEJr Zh Log§+ >

which satsfies Eq3 [ie, the Wrd ienties2d and [0 1% Secion 8 Sound s of e e ow ey
their n-point generalizationidor any values of the integers y Y P

n,k from the range=0,=1 ...:k=0,1,... g—1. The last effect?ve pqtentia(IEP) F(h,h) given by Eq.(39). Our pur--
term in Eq.(39) is a particular form of the last termD in  POS€ is to find the) dependence of the vacuum energy which
Eg.(36). It can be seen that arbitrary values of the coefficients defined as a minimum of IEP(h,h). In this calculation
D would be uncompatible with the quantization rules im-the total space-time 4-volume will be kept finite, while a
posed by the summation over the integess in the partition ~ transition to the thermodynamic lim/—o will be per-
function. formed at the very end.

Finally, we have to figure out how the angle should be We start with introducing the “physical” real fields, »
installed in the effective potentigB38). An answer to this defined by the relations
guestion can be deduced by comparing with &4). In the ' . _
YM partition function, thed angle enters in the combination h=2Ee’"'”, h=2Ee’ ' (40
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[This definition impliesF(»+27)=F (7). As will be seen,
this condition of single-valuedness of thefield is satisfied
with the substitution(40).] In these variables, the “dynami-
cal” part of Eq.(39) can be written as follows:

\Y h
- Z( h LOg—+ h LOQFE)
—iVE€e’[(p—1)cosp— nsiny]. (42

The summation over the integemsin Eq. (39) enforces the
guantization rule due to the Poisson formula

p(ZmnSV 4) Eé( —VEe’siny— m)
n

e
(42

which reflects the quantization of the topological charge in

the original theory. Therefore, when the constraii®) is
imposed, Eq(41) can be written as

v h
- —( h Log—+h Logﬁ)

—iVEeP(p—l)coanrimgn. (43
Using EQs.(42),(43), we put Eq.(39) in the form
+o  g-1 q
e VF= > N 5(VE—ePsin7;—m)
m=—x k=0 p
. . p
Xexp —iVEe’(p—1)cosp+im| 6,+ an ,
(44)
where we denoted
o P
6,= 0+27Tak. (45

To resolve the constraint imposed by the presence ofsthe

function in Eqs.(42),(44), we introduce the new fiel by
the formula

1

VEgepsinn—m>
p
ocf DM ex;{iMVEe’Jsinn—ngm . (46)

Going over to Euclidean spatby the substitutioriV—V,
we obtain from Eqs(44),(46)

PHYSICAL REVIEW D 58 054016

1 +o  g-1
F(p,7,M =—_|ogrm_2w kE ex;{—VEeo
X{(p—1)cosn—Msiny}
P p P m?
+im 0+27qu+q7]_a|\/|) EH

(47)

Here we introduced the last term to regularize the infinite
sum over the integens. The limit e —0 will be carried out
at the end, but before taking the thermodynamic livit
—oo, Note that Eq.(47) satisfies the conditiofr(7+27)
=F(#n) which should hold as long ag is an angle variable.
We also note that the periodicity i with period 27 is
explicit in Eqg. (47).

Proceeding as was done for the Schwinger model, to dis-
cuss the thermodynamic limit— o we use the identity9)
and transform Eq(47) into its dual form

+ o0
n=-—ow k=
X{(p—1)cosp—M siny}
VE 2
(6’+27Tkp+p7]—EM 27Tn)
a q q

A

(48)
where we have omitted an irrelevant infinite factos ~*/in
front of the sum. Equatio8) is the final form of the im-
proved effective potentigF, which represents the YM ana-
log of Eqg. (10) for the Schwinger model. To discuss the
vacuum properties, the functidh should be minimized in
respect to the three variablgs» and M. In spite of the
frightening form of this function, its extrema can be readily
found using the following simple trick. As at the extremum
points all partial derivatives of the functidghvanish, we first
consider their linear combination in which the sum omegt
cancels out. We thus arrive at the equations

JF

ap =Ee’(pcosyp—M siny)=0,

JF OF :
—+—=—Ee’(psinp+Mcoszy)=0,

dn oM (49

which is equivalent tgp?+M2=0. Therefore, these equa-
tions have the only solution
(M)=0,

(p)=0, (50)

8This is not really necessary. All formulas below can be workedwhile the minimum value of the angular fielglis left arbi-

out in Minkowsky space as well.

trary by them. The latter can now be found from either of the
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constraintsdF/dn=0 or JF/dM =0, which become identi- 60— 6+ 2, can be just relabeled without altering anything.
cal for {p)=(M)=0. The resulting equation reads One of the minima always has a lowest energy. For example,
if 0<6#<w/q, itis thel =0 solution in Eq(52). At the same

g qil kp P q . time, we observe level crossing with a two-fold degeneracy
W= & o+2m q —2mn+ q 77+2855'm7 at certain values of. One series of the level crossing points
, is given byd= m(mod 27), irrespective of the values of the
VE p p integersp,q. For example, at the first poiMd= in this
Xexp{VEcosn— 4 0+27Tka+ a‘/]_Z’iTn) }=O, series, thd =0 and|=q solutions have the same energy

—Ecos@g/p). This is the same series of level crossing
(52) points as was found for the Schwinger model. The difference

in which we have to take the limit—0 at a fixed 4-volume ~from the Schwinger model is that now these values afo

V. not correspond to level crossing ¢ddwest energystates

among the se62). Instead, this happens for another series of

level crossing points i, which is different from the previ-

ous one as long ag# 1. As can be seen from E¢G3), it is

One can see that nontrivial solutions of E&1) at
—0 are given by

q 2 the points 6,=(2k+1)w/q, k=0,1,...p—1 where the
(mh=— 5 0+ ?| +2m7r, lowest energy state is changing from tk to the k+1)th
branch in the set52).
1=0,1,...p—1;, r=0*1,.... (52) Let us now see what happens when the thermodynamic

limit V—o is taken. The key observation is that a lowest
Equation(52) shows that there arg physically distinct so- energy state, which is the only one that should be retained in
lutions, while the series over the integerim Eq. (52) simply  the limit V—9 according to our conventiof2), corresponds
reflects the angular character of tlyevariable, and is thus to different minima from the sé62), depending on an inter-
irrelevant. By the substitution of Eq52) back to Eq.(48)  val of variation of the vacuun® angle. Thus, to perform the
we obtain the energy spectrum for the finite volume theorythermodynamic limit, we should first fix an interval of
(say, O<60</q), and only then select the state of lowest
Ei=F(p=M=0,7=(n))) energy among the s€62). This solution will be the one
corresponding to the single vacuum state in the liMit
q 27 S .
=—Ecogn)=—E cos( ——60+ —I ) (53 —oo, for all values of@ from this interval. This procedure
can be described by the formula

Thus, we have found that the improved effective potential q 20

(48) has not one, but rathgr physically different local ex- 2 ex;{VEco{ —— 0+ —I ”
trema, when we look at the theory in the finite volume. The = _ . llog ' p_ P

fact that the state§52) have different energies for generic mne LV 1+ 89— 2.0 '

values of@ is very important. This is where we find an es-
sential difference of nonsupersymmetric gluodynamics from 1=0,1,...p—1 (54
its supersymmetric extension. In the latter case, ther&are Y
degenerate states which aII_ survive the infinite volume "mit'[here Sy a0 is the Kronecker symbol, equal to 1
and correspond to the physu:th,\,c symmetry of SUSY YM =(2k+1)m/q or O otherwisé The multiplier 1/(1
theory [8,9,26. The absence of degeneracy between thet s, .. ,) accounts for the two-fold vacuum degeneracy at
states(52) is therefore very natural, as there are no discret@he points=(2k+1)=/q, k=0,1, ... p—1. We note that
symmetries for nonsupersymmetric gluodynamics in thegq. (54) is perfectly periodic ing with period 2.
thermodynamic limilv— o where we should stay along with Equation(54) shows that in the limitv—o cusp singu-
just one true vacuum. Yet, as we will see in a momentjarities occur at the valueg=(2k+ 1)a/q, where the low-
retaining the whole set of local extrent@?) is important to  est energy vacuum state switches from one analytic branch to
recover the correct periodicity ifi in the limit V—co. another one, much as it occurs in the Schwinger model. One
The remarkable fact about the extrerff®) is that they  should note that there is no physical jumpéat 7/q. It is
are related to each other by a cyclic permutation under theather relabeling of a lowest energy state. The first derivative
shift 69— 6+2m. The physics is perfectly periodic i with  of the vacuum energy, which is proportional to the topologi-
period 2, as the minimg ), , interchanging under the shift cal density condensate, is two-valued at these points. This
means that wheneveéd= (2k+ 1)/, we stay with two de-
generate vacua in the thermodynamic ligashen phenom-
*Note a remarkable similarity between E§1) and the equation ©€Non[18], see below This picture of the singularity struc-
u?sing=(a/N)(6—S¢;) (where »; and ¢; are the masses and ture in 6 resembles the one found for the lattig model in
phases of goldstone fields, respectiyetbtained by Witteri16] as 4D [30].
a minimization condition for the effective chiral Lagrangian for  If, on the other hand, the thermodynamic limit is per-
QCD. The limite—0 in Eq. (51) is analogous to the chiral limit formed for a fixed value o, any information on other states
w?—0 in this equation. is completely lost in Eq(54). Correspondingly, the 2 pe-
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riodicity in @ is also lost in infinite volume formulas. We (we only assume it be a rationalve know that there is only
have no chance to know about additional states when wene true vacuum in the thermodynamic lirkft- and that
work in the infinite volume limit from the very beginning. As the period of thet dependence is alwaysm2
a result, usuaV=o formulas become blind to the very ex-  After this digression we wish to discuss relations for the
istence of a whole set of different vacua, which is just re-topological density condensate. Namely, we would like to
sponsible for restoration of ther2periodicity in 6. Instead, ~Se€ Whether Eq21), obtained by a direct evaluation of cor-
formulas corresponding to the formal limit= look as re_latlon f_unctlons in YM theory, is 90_r13|_stent with results of_
suggesting a “wrong”(different from 2ir) periodicity in 6: this sgc’qon. It is easy to see that it is mdged the case. Dif-
see, e.g., Eq€20),(21). Now we know that this procedure of ferentiating Eq(53) in respect tod, we obtain
the shiftd— 6+ 2 in theV= o formulas is simply mislead-
ing as it is equivalent to going along a single analytic solu- o, q_ q 2m
tion of the minimization equatiof51), which does not cor- B a_e_BE sin| — S0+ —-1].
respond to a lowest energy state for a shifted value.of
Comparing Eqgs(20) and (53), we see that the former may
well describe thed dependence in the physical limit— o
for small values¥<<m/q. To this end, we should set the ratio
g/p, which so far was arbitrary, to the valugp=2¢ (and
take E=—E,). At the same time, analyticity i of each
separate branctb3) shows that the procedure of a formal
resummation of the infinite Taylor series for smé =/q,
which has led to Eq(20) [24], is legitimate. We therefore
conclude that Eq20), which should be understood as stand-Similarly to what occurs in the Schwinger model, for the
ing for 6<r/q, is not in conflict with general principles of special cased=/q we stay in the limitV—o with two
periodicity and analyticity ird for any rational value of the degenerate vacua which are distinguished by the sign of the
paramete, including both particular choices=2/b [23] or  topological density condensate:
£=4/(3b) [24].

Although the problem of fixing the correct value of the

. - T 1 ~ q N

parameteré is beyond the scope of this paper, we cannot [1)=|m—0=— —>, (GG),=——E sm(—),
refrain from pausing for a few comments on these matfers. p 3272
The parameteé is related to a number of different sectors of
the theory, which are disconnected due to the superselection

(59

As only thel=0 term survives the/—oo limit for 0< 4
</q, we obtain, in agreement with E¢R1)

32W2<Gé>=—%E sin(%ﬁ). (56

rule. One could think that this number of sectors is propor- |5y — 77|—1=z> 1 (GT), L9 sin(z>.
tional to b, as the formulag=4/(3b) [24] or £=2/b [23] T op/ 3272
suggest. However, the analysis of SUSY theories shows that (57)

it might not literally be the case. If in SQCD we change a

number of flavorsN; keeping a num_ber of colorll; un- . As aCP transformation reverses the sign @éfit exchanges
changed, the number of sector remains the same and strictly, vacud1) and|2): CP|1)=|2), CP|2)=|1). Therefore

equalsN, (and not just proportional ), though the  yhe cp symmetry is broken af=/q. A similar phenom-
function b.~3,NC_Nf change§. As a result,. the angleen- oo of vacuum doubling occurs for any point of the form
ters physics in the combinatio®/ N for arbitrary N¢. An- 0.=kmlq, k=1,2,3 ... . Forexample, thd =0 andl=gq

other argument comes from the anal_ysig of softly brokernyiaieg are analogously related byC® transformation aw
SUSY gluodynamics where the gluino is given a small mass_

. . A = 7. The reason we concentrate on the level crossing point
m.IAs (Illlscusseq by Srllllfmegzﬂ’ the Sguat'?g_']ff’ under con- 0= l/q is that at this value oP the true vacuum(lowest
trol as long asn is small, and the number of different Sectors oo/ state switches from thel=0 to the =1 branch,
remains the samil; (though the degeneracy between them

o while at 6= some excited states cross in energy. There-
is lifted). On the other hand, the case of pure YM theoryc, o i the sense of the lowest energy state among the set
corresponds to the limitn—oo (which means physicallyn

52), the valued= 7 corresponds to a regulat,P conserv-
>A). If the number of sector®\, for small m does not (52 ™ P gulat,

. ) ing point.
discontinuously change when becomes largem=A, we Finally, we would like to briefly describe the case of YM

end up withN, different sectors for usual YM theory. tneory with an arbitraryorthogonal, exceptional, elgauge
To summarize, different lines of reasoning lead to dlffer—groqu instead of the unitary SW) that was discussed so
ent values of (though they all imply¢~N ), and corre-  far. For such a gauge group the second Casimir constant
spondingly to different values for a number of sectors in purec (G) and theg function would be different. Therefore, the
YM theory. However, irrespective of this particular number oy gifference from the previous analysis in this case would
be different values of the integepsandq, while the pattern
of 6 dependence would remain the same. Thus, the mecha-
¥The arguments discussed below are due to Vainstigdh to  nism suggested in this paper seems to be valid for any gauge
whom we are indebted for sharing with us his insight. group.
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(1) We have demonstrated that physics is periodi@in the integer-valued Lagrange multiplier was not introduced,
with period 27 for an arbitrary gauge group. This behavior which resulted in the wrong conclusion on the disappearance
follows from our definition of the partition function for both ©Of physicalé dependence in gluodynamics. We are thankful
the original and effective Lagrangian formulations of the !0 them for comments which motivated this study. We would
theory, where the summation over all branches of a multivallike to thank David Gross for his interest and discussions.
ued action is imposed. In the effective Lagrangian frame-
work, this prescription is necessary for a single-valuedness APPENDIX

and boundness from below of an effective potential. The purpose of this appendix is to discuss in somewhat
(2) The periodicity ing with period 2 is perfectly com-  yore detail the derivation of the low energy theorefh6)

patible with the6/N dependence found in a number of mod- 5nq (19 and, in particular, a procedure of ultraviolet regu-

els at smalld. The correct periodicity i is recovered when |arization which was implied in Eq$16) and(19). We start

a whole set of different branches is taken into account. Thyith the Novikov-Shifman-Vainshtein-ZakharoyNSVZz)

standard definition of the thermodynamic limit selects only alow energy theorerfi23], Eq.(16), which is here repeated for

lowest energy state among this set. As a result, the therm@onvenience:

dynamic limit and the shifo— 6+ 27 do not commutgin

the sense explained in the Introduction . iax Blas) ,  Blag) ,

(3) For generic values of, there is one and only one (:'Lnolf dx € <O|T[ dag G0 dog G*(0)(10)
vacuum state in the thermodynamic limit. Fé+ /q there
are exactly two degenerate states, which are distinguished by _ _4< Blas) Gz> (A1)
the sign of the topological density condensate. 4oy k

We would like to end up with some speculations. We
emphasize again tha@t=7/q is a very special point because Wheres(as) = —bad/(2m)+0(ad) is the Gell-Mann—Low
of the vacuum degeneracy which does not follow from anyB function for YM theory withb=(11/3)N., andN is the
obvious symmetry of the original Lagrangian. This degen-humber of colors.
eracy may imply the existence of domain walls in the theory The low energy theorem was obtained[28] using the
at =/q, which are static field configurations depending ©ne-loopg function with a particular attention to a regular-
only on one spatial coordinate. An effective potential de-ization of ultraviolet(UV) divergences, arising in the two-

scribing domain walls could be obtained from Hd8) by poipt fL_mction(Al), within Pauli-Villars procedure. In thi;
freezing thep andM fields. Such a potential is a complicated derivation Dyson type of the T-product symbol was implied

(O)np=consix

function of the# field which, however, reduces to the stan- n Eq. (A.l)' It was ShOW.“ th"?‘t qua}dratlcally divergent UV
dard Sine-Gordon form near the poir2); see Eq.(53). contr]butlpns cancel out |d_ent|cally'|n bpth sides of B4l).
Provided a kinetic ternfwe recall that kinetic terms are not This |mplles_ that perturbative contributions should a""’";‘ys be
fixed by the Ward identitiesis added, the theory could sus- Subtracted in vacuum condensates suctite)/(4as)G*)
tain domain wall configurations. The existence of these soln Ea. (A1). Once_ this rule is accepted, the dependence of
lutions in gauge theories could have interesting conse&y (nonperturbativecondensatgO)yp of dimensiond on
quences for cosmology and particle physics. the bare_ coupling constagh _(normallzed at the cut-off scale
We would also like to speculate that the aboyghon- Mp) is fixed by the dimensional transmutation formula:
equivalent states, could be really observed in some nonequi- 5\ 1d
librium high energy processes with a finite geometry, where M oex _81 (A2)
; C S R ,
the superselection rule cannot be appliadgimilar comment bg?
was made by Shifmaf26]). Such a situation could be real-
ized, e.g., in nuclear-nuclear collisions, where the appearancgnd the derivation of the NSVZ theorem proceeds as de-
of droplets of a “false vacuum” would be similar to the scribed in Sec. lll, where the path integral definition of cor-
production of droplets of disoriented chiral condensate, segelation functions is used. The latter implies Wick type of the
e.g.[32] for a review. Instead of an arbitrary direction of the T-product symbol. This definition of zero momentum corre-
chiral condensate for the latter, in the former case we wouldation functions(18) automatically ensures the same type of
deal with “p” different values of the topological density renormalization for all such functions, which is fixed by a
condensatéGG). One expects that this phenomenon, if it rule of subtracting perturbative UV divergent contributions
exists, should be related to the physics of #iemeson and to the conformal anomalywith, e.g., Pauli-Villars regular-
CP violation. Yet, it is not known at the moment how to ization). The latter procedure thus defines a nonperturbative
formulate this problem in an appropriate way. gluon condensate in the vacuum{g2G?),, i.e. a nonper-
The inclusion of the light quarks into the effective La- turbative part of the conformal anomaly calculated for given
grangian framework and the resulting picture of thdepen- 6. Its dependence ondj is given by Eq.(A2). Zero mo-
dence in QCD will be discussed [B3]. mentum correlation functions of the operag#G? are ob-
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tained by the differentiation of the nonperturbative part ofThis is why Wick type of the T product was used in Eqg.
the partition function log{/Zp1) (Zpt stands for a perturba- (A4). With this definition the two-point functiofA4) does
tively defined partition function which does not depend onnot contain UV divergences which are presentZig; and

0), where drop out after the differentiating of I@gin respect tod. We
note that an attempt to calculate the correlation functfoh)
Z(6)=Zprexp[—iVE,(0)} using Dyson T productand adding corresponding contact

terms would face a problem due to the fact that, in contrast
to the trace of the energy-momentum tensor, the topological
density operator in pure YM theory is not sef8¥] to be
related to any quantity conserved at the classical level.
in respect to 1;;3. Note that the factod logZpt/d(g, 2 cor-  Therefore, the canonical methods with Pauli-Villars regular-
responds to the correlation functiogidl) in perturbation ization procedure used if23] would apparently be not ap-
theory. plicable in this case.

It is a subtraction of perturbative contributions in vacuum  We further require that thé dependence in EqA3) is
condensatefA2) that we here would like to comment upon. described by a single dimensionless functigd) such that
Technically, this prescription can be thought of as the re-
guirement of absence of regular powers of the coupling con-
stantag in vacuum condensaté®)ypto any finite order in 52
as. For two-dimensional models, it has been sh¢@4j that (9_02
the definition of vacuum condensates via the path integral
automatically nullifies perturbative contributions to the con-
densates. Moreover, this procedure gives results identical #8ny other form of introducing thed dependence can be re-
a point-splitting regularization with Dyson type of the T duced to Eq. (A5). For example, the ansatzo),
product. One can notice that in four dimensions the separe'a:(o)ofl(e)+A¢Mf2(0) could be transformed to the form
tion of genuinely perturbative and nonperturbative contribu{A5) by the redefinitionf,(6)+f,(8) A \/(o)o—F(6). A
tions to physical quantities is ambiguous as it depends on function f(6) should satisfy the constrainf§0)=1, f’(0)
definition of the sum of perturbative series. Still, there is=0, which means that its smal expansion reads
nothing wrong with the requirement that the “nonperturba-
tive” condensates contain the coupling constg%mas in Eq.

(A2), while the regular powers aj3 are absent. The differ- f(0)=1-2£6°+- -, (A6)
ence between different regularization schemes is reduced in

this case to possible finite renormalizatiofdifferent nu- where £2 is some dimensionless number. Using this in Eq.
merical valuesof the vacuum condensates. Such a choice OEA4), we obtain

the nonperturbative gluon condensate in &&B) is the only

ambiguity for all multipoint correlation function&l8).

Next we would like to discuss zero momentum correlation . s - as
functions of the topological density operator. With Wick Iimif dx e'qX<O|T(8—GG(x)8—GG(O) |0)g—0
definition of the T product we obtain from E¢A3) -0 i &

as

b
327

=ZpTexp[—iV<O|— G2|0)yi, (A3)

(92
<0'>9:(9_02(<0'>of(¢9)):<0'>of”(9)- (A5)

5 bag )
L ) Ay~ ag _ ~ =& - ) G . (A7)
I|m|f dx €9%(0|T{ =—=GG(x)z—GG(0) {|0) m =0
40 8m 8m
PE, (6) 1 g2 The assumption made in E¢L9) in the text was that Eq.
=— ;2: - — —2<a>9_ (A4) (A7) is covariant ing, i.e., remains of the same for(i7)
a0 490 not only for #=0, but also for small value§=+0. This re-

i t fixes the functioh letely:
[Equation (A4) is written for Minkowsky space, andr quirement fixes the functioh(6) completely

stands for the trace of the energy-momentum tehgofew
comments on Eq(A4) are in order. We note that the two £7(0) = — 482 (0)=F(0) =cog 2£6) (A8)
definitions(through Dyson or Wick T productsre equiva- '

lent for the correlation functiotAl). For correlation func- ] .
tions of the topological densit®, this is no longer the case. Which results in the) dependence of the vacuum energy and

Witten-Veneziano construction5] specifically implies topological density condensate identical to the one displayed
[35,36 Wick T product in the two-point functiond4). This I Eds.(20) and(21). This assumption is self-consistent be-
can be seen both from the definition of zero momentum corc@use the same Eq0),(21) can be obtained without fixing
relation functions of the operat@ used in[5], and from the ~ the functionf(6), but instead by postulating the covariant
fact the a gauge non-invariant axial ghdgeneziano ghost elation(19) and resumming Taylor expansions dnfor the
pole) cannot appear in Dyson T product which is related tocondensate$G?2),,(GG),, as was done ifi24]. One more
contributions of intermediate gauge-invariant states onlyrelation needed for this purpose reads
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).

(A9)

J s _, Qs o 4/ ag
| dX<0|T EG (X)gGG(O) |0>:6 g

which is a particular version of the original NSVZ theorem

PHYSICAL REVIEW D 58 054016

(92n—1

- A 2n—-1
002n—l<Q>|9=0~(_1)n lNC(N_C) ’

Ne—®, A=O0(N?). (A10)
At the same time, EqA8) relates the ghost pole residue in

Veneziano scheme with conformal anomaly in the theory

[23]. Equation(A9) is valid for any smallg. with 60, in terms of the parametets(a),. In our work
Any other choice for the functiof(¢), different from Eq. [24], a particular choiceg=4/(3b), was advocated using a
(A8), would presumably not be self-consistent, though Weyne-loop connection between the conformal and axial
did not find a general proof of this statement. One shoulthnomalies in the theory with an auxiliary heavy fermion.

stress that the fornfA8), implying the reiteration of the pa-
rameteré? in multipoint correlation functions of the operator
Q, is consistent with Veneziano constructi¢f] for the
ghost pole mechanism, where it was found that

Moreover, the covariance of E@gA7) in respect tod fol-
lowed automatically within a procedure used[#¥%], where
Eqg. (A7) with £=4/(3b) was obtained directly from the
NSVZ relation(Al) which is valid for any smalb.
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