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Can u/N dependence for gluodynamics be compatible with 2p periodicity in u?

Igor Halperin* and Ariel Zhitnitsky†
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In a number of field theoretical models the vacuum angleu enters physics in the combinationu/N, where
N stands generically for the number of colors or flavors, in an apparent contradiction with the expected 2p
periodicity in u. We argue that a resolution of this puzzle is related to the existence of a number of different
u dependent sectors in a finite volume formulation, which cannot be seen in the naive thermodynamic limit
V→`. It is shown that, when the limitV→` is properly defined, physics is always 2p periodic inu for any
integer, and even rational, values of N, with vacuum doubling at certain values ofu. We demonstrate this
phenomenon in both the multiflavor Schwinger model with the bosonization technique, and four-dimensional
gluodynamics with the effective Lagrangian method. The proposed mechanism works for an arbitrary gauge
group.@S0556-2821~98!01717-2#

PACS number~s!: 12.38.Aw, 11.15.Tk, 11.30.2j
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I. INTRODUCTION

Very soon after the discovery of instantons@1# in Yang-
Mills ~YM ! theory it became clear@2# that the latter pos-
sesses a hidden parameteru whose effects may show up du
to a nontrivial topological structure of the theory. It is b
lieved thatu is an angular parameter, i.e., physics is perio
in u with period 2p. In particular, the valuesu50 andu
52p correspond to one and the same theory. This is a di
consequence of the topological classification of the ga
theories, which is based on the assumption that fields
smooth and regular, and defined on a compactifiable m
fold.

The existence of this new fundamental constant has
mediately posed two difficult questions related to the
called U~1! and strongCP problems. It has been argued by
Hooft @3# that instantons may lead to a resolution of the U~1!
problem@4#. Later, Witten and Veneziano@5# found, within
the largeNc approach, that physics should depend onu
through the combinationu/Nc in order for the U~1! problem
to be solved. On the other hand, a nonzero value ofu implies
@6,7# a violation of CP invariance in strong interactions
which is not observed experimentally. At present there is
convincing theoretical argument as to whyu is so small.
Most likely, the strongCP problem cannot be solved withi
the strong interaction sector of the standard model, and
not be discussed here.

In the present work we address a different, but relat
question. As we mentioned earlier, a resolution of the U~1!
problem suggests thatu dependence comes in the combin
tion u/Nc . To show this, we recall the famous Witten
Veneziano relation@5#

f h8
2 mh8

2
512

]2Evac

]u2
, Evac;Nc

2f ~u!. ~1!
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Here f h8 is theh8 residue andEvac is the energy of the YM
vacuum, which is proportional toNc

2 in large Nc limit. A
resolution of the U~1! problem suggests@5# that f h8

2 mh8
2

;Nc31/Nc5O(Nc
0). Therefore, the right hand side of Eq

~1! should also beO(Nc
0). This is exactly the case provide

we accept that the functionf in formula ~1! is actually a
function of the variableu/Nc , rather than ofu itself. This
completes the standard argument showing that theu depen-
dence should come in the combinationu/Nc only. There ex-
ist many other arguments@based on analyses of 2D CPN21

model, supersymmetry~SUSY! theories, etc.# which support
the conclusion that theu angle always enters physics in
combinationu/N where N is the number of ‘‘colors’’ or
‘‘flavors,’’ depending on the model considered.

The question we want to raise~and attempt to answer! can
be formulated as follows. How can one reproduce thep
periodicity in u ~which is a strict constraint following from
the topological classification! for all physical quantities if the
samequantities depend onu through the specific combina
tion u/Nc ? The answer to this question is well known
SUSY models@8,9#, where it was shown that the 2p period-
icity is recovered when a discrete number of vacuum sta
@N for the SU(N) group,N22 for the SO(N) group, etc.# is
taken into account. The existence of these states in SU
models is a consequence of spontaneous breaking of the
crete chiral symmetryZ2Nc

→Z2 @for the SU~N! gauge
group#, which shows up via a formation of the gluino con
densate. In this case, the different vacua are labeled by tu
angle as well as a discrete parameterk50,1, . . .N21 such
that the chiral condensate depends on these paramete

^l̄l&;exp@(iu12pk)/N#. Therefore, whenu varies continu-
ously from 0 to 2p, Nc distinct and disconnected Bloch typ
vacua undergo a cyclic permutation: the first state beco
the second one, and so on. All physical quantities are p
odic in u with periodicity 2p, as these vacua can be ju
relabeled by the substitutionk→k21 after the shiftu→u
12p, keeping physics intact. We should note that such
picture is believed to be correct for an arbitrary gauge gro
© 1998 The American Physical Society16-1
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irrespective of the existence of the center of the group.1

In non-supersymmetric models such a scenario appare
cannot be realized because no discrete symmetry w
could lead to such degenerate vacua exists in a pure g
theory. The main goal of the present paper is to argue
the pattern of the u dependence in usual, non
supersymmetric YM theory~gluodynamics! is to some extent
reminiscent of what happens in SUSY models, althou
there are important differences between these two cases

What will be shown is that a discrete number of stat
whose presence is crucial for the aforementioned mechan
to work, does exist in non-supersymmetric gluodynam
when we consider the theory in a large, albeit finite, volu
V. These states represent in this case local extrema o
effective potential, and have different energies. Under
shift u→u12p, they transform to each other by a cycl
permutation, while some two of them cross in energy at c
tain values ofu.2

Thus, the periodicity inu with period 2p is restored in
this finite volume theory. However, when the thermod
namic limit V→` is performed for a generic value ofu,
only one state of lowest energy can be seen, as all o
states have higher energies and therefore drop out in
standard definition

Evac~u!52 lim
V→`

1

V
logZ, u fixed . ~2!

~This is in drastic contrast with the SUSY case where allNc
vacua have the same vanishing energy, and thus all sur
theV→` limit.! On the other hand, due to the superselect
rule different states do not communicate to each other~and
are absolutely stable!, and therefore the fact of existence
additional higher energy states could be safely neglected
agreement with Eq.~2!, for all physical problems except fo
one. Namely, retaining all these states is necessary for
analysis of periodicity inu. The valuesu and u12p are
physically equivalent for this set of states as a whole. Th
the fact that theu dependence comes in the combinati
u/Nc in usual V5` formulas has nothing to do with th
problem of periodicity inu, as those formulas refer to on
particular state out of this set. As for any fixedu the infor-
mation on all additional states is lost in Eq.~2!, in what
follows this phenomenon will be referred to as a ‘‘nonco
mutativity’’ of the thermodynamic limitV→` and the shift
u→u12p. Bearing in mind that the states of the set do n
interact owing to the superselection rule, and to have a
respondence with the standard definition~2!, in what follows
we call the true vacuum state a state of lowest energy~for a

1A related question on a role of the torons@10–14#, which are
field configurations with a fractional topological charge, is not a
dressed in this paper; see Ref.@13# for a list of related problems and
discussions.

2This picture of theu dependence is similar to the one advoca
by Crewther@15#, Witten @16#, and Di Vecchia and Veneziano@17#
for QCD with Nf light flavors.
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fixed u) among this set. When defined in this way, the phy
cal vacuum is periodic inu with period 2p, but for different
intervals of the values ofu we are talking about a differen
state from the set as a true vacuum. At certain values ofu an
exact twofold degeneracy in this set results in vacuum d
bling in the limit V→` ~Dashen phenomenon@18#!.

As a warm-up example, we first discuss in Sec. II t
multiflavor Schwinger model. Using the bosonization a
proach, we show that theu dependence is realized in th
model in the way just described. An important role of
integer valued Lagrange multiplier field, ensuring the qua
tization of the topological charge, is clarified.

The rest of the paper is devoted to the problem ofu de-
pendence in four dimensional YM theory. To this end, t
knowledge of an infinite series of zero momentum corre
tion functions of the topological densityGmnG̃mn is required.
We discuss in Sec. III methods for getting information of th
sort by matching short distance and large distance prope
of the theory~a related discussion can be found in the A
pendix!. We then construct in Sec. IV an effective Lagran
ian ~more precisely, effective potential! as the ~Legendre
transform of! generating functional for zero momentum co
relation functions of the marginal operatorsGmnG̃mn and
GmnGmn . We shown that an integer valued Lagrange mu
plier field should be introduced in this effective potential
ensure a single-valuedness and boundness from below.
presence of this field imposes global quantization conditi
on the fields of the effective theory, which reflect the top
logical charge quantization in the original YM action. Se
tion V deals with the minimization of an ‘‘improved’’ effec
tive potential obtained by adding this Lagrangian multipl
field to the theory. We show that this procedure yields
above picture of 2p periodicity in u, in close analogy to
what we find in the multiflavor Schwinger model. Concl
sions and some discussion are presented in Sec. VI.

II. u DEPENDENCE IN N-FLAVOR SCHWINGER MODEL

The main goal of this section is to illustrate most essen
technical tools, needed to address the problem ofu depen-
dence in YM theory, on a simple toy model. The multiflav
Schwinger model nicely serves this purpose. It exhibits
above pattern ofu dependence and can be analyzed in qu
a straightforward manner. Though most of the results p
sented in this section are not new, we hope that this disc
sion may help to understand the mechanism ensuring thep
periodicity in u in a more complicated case of four dime
sional YM theory.

As is known @19,20#, in the N flavor Schwinger model
physics depends onu through the combinationu/N. At the
same time, all physical quantities are periodic functions ou
with period 2p. We here wish to discuss the way in whic
these two apparently contradictory facts become compati
In what follows we reproduce some of the results of Re
@19,20# using an approach which emphasizes a key role o
integer-valued Lagrange multiplier field and thermodynam
limit procedure in this problem.

We start with the standard Euclidean action of t

-
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bosonized one flavor Schwinger model. It takes the form

SE5E d2xF 1

2g2
F21

1

2
~]mf!21

i

Ap
Ff

2mmqcos~A4pf!1
iFu

2p G , ~3!

whereF5 1
2 emnFmn andmq is a quark mass. In obtaining thi

formula we used the standard boson-fermion correspond

c̄gmc→
1

Ap
emn]nf, c̄c→2m cos~A4pf!. ~4!

The key observation is the following. We would like to im
pose explicitly a global constraint ensuring that the topolo
cal charge, which is determined by the integral*d2x(F/2p),
can take only integer values. This constraint can be impo
by introducing an integer-valued Lagrange multiplier va
ablen such that the partition function of the theory isdefined
as the sum overn:

Z5(
n
E DFDfe2SE1 in2pE d2x~F/2p!. ~5!

It is clear that we have done nothing wrong by defining
partition function in this way, because we introduced only
phase multiplier which always equals 1 for integer topolo
cal charges. This procedure brings a divergent normaliza
factor (1 which is irrelevant anyhow.

Two remarks are in order. First, the constra
*d2x(F/2p)5 l , l 50,61,62, . . . isautomatically satisfied
due to the identity:

(
n

expS i2pnE d2x
F

2p D5(
l

dS E d2x
F

2p
2 l D . ~6!

As for the second, and most important, remark: the 2p pe-
riodicity in u is explicitly seen from the general expressi
~5!. Indeed, a shift inu by 2p in Eq. ~3! can be compensate
for by a shift inn: n→n11 such that the partition function
~5! is unchanged. The crucial point to make this mechan
work is the definition~5! of the partition functionZ with the
prescription of summing over alln. Such a definition was
suggested earlier~with quite a different motivation! for the
Schwinger model by Smilga@21#, and for SUSY models
~with purposes similar to ours! by Kovner and Shifman@9#.

To study the vacuum structure of the theory, we expa
following Ref. @21#, the fieldsF(x) and f(x) in the series
over spherical harmonics~a compactification on a manifold
of volume V is implied! F(x)5(FlmYlm(V), f(x)
5(f lmYlm(V) and keep only the zeroF0 mode in what
follows. This harmonicF052p l /V is fixed by the constrain
~6!, with V being the total volume of the system. Integrati
overDF0 and discarding non-zero harmonics of thef field,
which are irrelevant for the present discussion, we obtain
the partition function
05401
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Z;E
2Ap/2

1Ap/2
Df0 (

l 52`

1`

expH 2
2p2l 2

Vg2
1 i l ~A4pf01u!

1Vmqmcos~A4pf0!J . ~7!

The 2p periodicity in u is explicitly seen in this representa
tion. However, in order to discuss the thermodynamic lim
it is more convenient to use an alternative~dual! representa-
tion for the same expression~7!:

Z;E
2Ap/2

1Ap/2
Df0 (

k52`

1`

expH 2
g2V

2p S f02kAp1
u

A4p
D 2

1Vmqm cos~A4pf0!J , ~8!

where we have used the property ofu3(n,x) function:

u3~n,x!5
1

Apx
(

k52`

1`

e2~n1k!2/x5 (
l 52`

1`

e2 l 2p2x12i l np.

~9!

A generalization of this formula for the case ofNf flavors
with equal~and very small,mq!g) masses can be achieve
by replacingf0→Nff0 in Eq. ~8! where, again, we keep
only the relevant for the vacuum structure part of the pa
tion function:

Z;E
2Ap/2

1Ap/2
Df0 (

k52`

1`

expH 2
g2V

2p S Nff02kAp1
u

A4p
D 2

1VmqmNfcos~A4pf0!J . ~10!

Formula ~10! was derived earlier@21# in the limit u50,Nf
51.

Now we are ready to discuss the periodic properties of
partition function~10! in the thermodynamic limitg2V→`
for the strong coupling regimemq!g. It is clear beforehand
without any calculations, thatZ is a periodic function ofu
with period 2p for an arbitraryNf , due to summation ove
the integersk in Eq. ~10!. Now we wish to see explicitly how
this periodicity works in Eq.~10! in the limit g2V→`. For
sufficiently smallu, only one termk50 in the sum~10!
survives the thermodynamic limit, such that

A4pf052
u

Nf
, g2V→`, k50, 0<u,p.

~11!

The vacuum energy and topological density condensate
solution ~11! are
6-3
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Evac~u!;2cos~A4pf0!;2cos
u

Nf

K iF

2p L ;sin
u

Nf
, 0<u,p. ~12!

Whenu.p, the next term withk51 corresponds to a low
est energy state, such that

A4pf05
2p

Nf
2

u

Nf
, g2V→`, k51, p,u<2p.

~13!

The vacuum energy and topological density condensate
solution ~13! are

Evac~u!;2cos~A4pf0!;2cosS 2p

Nf
2

u

Nf
D

K iF

2p L ;2sinS 2p

Nf
2

u

Nf
D , p,u<2p. ~14!

This pattern continues for arbitrary values ofu. For the spe-
cial caseu5p, a cusp singularity develops, and we stay w
two degenerate vacua which both survive the thermodyna
limit ~the phenomenon of vacuum doubling in the mass
Schwinger model was first found long ago by Coleman@19#
for the caseNf51, mq@g). In this case the two vacua ar
distinguished by the sign of the topological density cond
sate^ iF /(2p)&.

To summarize, we explicitly see that physics depends
u for sufficiently smallu through the combinationu/Nf . At
the same time, the period of theu dependence is standar
2p. This result is in agreement with a very different a
proach of Ref.@20#.

We thus see that the following picture emerges.
~1! The 2p periodicity inu holds for an arbitrary value o

Nf , even if Nf is a rational, and not an integer, numb
~thought it is not a physical situation for the Schwing
model, a similar formula for four-dimensional gluodynami
exhibits such a possibility!. The 2p periodicity in u is al-
ways restored due to the summation over integer-val
Lagrange multiplier variablen in the partition function~5!.

~2! If we take the thermodynamic limit for sufficientl
small u in Eq. ~10! from the very beginning, we obtain
A4pf052u/Nf once and forever for an arbitrary value
u. Proceeding this way, we would not see other terms w
k51,2 . . . in Eq.~10!, which are responsible for the resto
ration of 2p periodicity inu, simply because they contribut
zero to the partition function in the thermodynamic lim
This is exactly what happens when one starts with the c
tinuum formulation of the theory from the very beginning.
this case all terms withk51,2 . . . are automatically dis
carded. Therefore, the 2p periodicity in u, as a property of
the whole set of solutions, cannot be seen in this formulat
The thermodynamic limit prescription~2! and the shiftu
→u12p are thus ‘‘noncommutative.’’

~3! For each givenuÞp ~and mqÞ0) there is one and
only one physical vacuum in the thermodynamic limit. B
05401
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convention~2! we define this vacuum as a state of lowe
energy among the above set. Foru5p there are exactly two
degenerate states which both contribute the partition func
in the limit V→`. In this sense, at the crossing pointu
5p the physics is nonanalytic inu. This nonanalyticity
cannot be seen in usualV5` formulas valid for smallu
,p, where a contribution of a lowest energy state only
retained. An order parameter which labels two degene
states atu5p is the sign of the vacuum expectation value
operator̂ iF /2p&;6mqsin(p/Nf).

~4! As we mentioned above, the choice of the physi
vacuum as a lowest energy state is a matter of convent
Owing to the superselection rule, any state in the discr
series~e.g., a next-to-lowest state! could serve as a vacuum
as well. However, due to the permutational symmetry of
whole set of states under the shiftu→u12p, any redefini-
tion of this sort will result in 2p periodicity in u for such a
vacuum in the physical limitV→`.

In the next sections we will see that the very same pict
of the physicalu dependence seems to appear in four dim
sional YM theory.

III. LOW ENERGY THEOREMS IN GLUODYNAMICS

In this section we start to describe steps which have to
done in YM theory to obtain an expression analogous to
~10! for the Schwinger model~the vacuum contribution to
the partition function or, in other words, the vacuum energ!.
This aim requires knowing the zero momentum part of
YM partition function, which cannot be described with
perturbation theory. It turns out that this object can be st
ied using some matching conditions ensuring consistenc
the large distance properties of the theory with its small d
tance behavior fixed by renormalizability and asympto
freedom. These matching conditions are provided by ano
lously broken symmetries through a set of Ward identitie3

for zero momentum correlation functions of operators d
scribing corresponding anomalies. This constitutes wha
known as low energy theorems in gluodynamics. Our aim
this section is to discuss the low energy theorems in Y
theory in order to prepare a necessary input for the const
tion of an effective Lagrangian, which will be carried out
Sec. IV.

In what follows we need two Ward identities for zer
momentum correlation functions of spin 0 gluon currents
gluodynamics. For the scalar channel case, it was sh
long ago by Novikovet al. @23# ~NSVZ! that these correla-
tion functions are fixed by renormalizability and conform
anomaly in YM theory. Indeed renormalizability and dime
sional transmutation ensure that any renormalized zero
mentum correlation function of thed5D54 operatorG2

can only be of the formC^b(as)/(4as)G
2&, whereC is a

numerical constant which depends on the correlation fu
tion considered, and the renormalized vacuum expecta

3In SUSY models, a similar use of anomalous Ward identit
leads to the well known Veneziano-Yankielowicz effective L
grangian@22#.
6-4
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value^b(as)/(4as)G
2&;LY M

4 is the only mass scale in th
theory, fixed by the conformal anomaly.4 For any given zero
momentum correlation function of the fieldG2, a value of
the particular coefficientC can be found using the dimen
sional transmutation formula for renormalized vacuum
pectation value of operatorO of canonical dimensiond,
written in terms of the bare coupling constantg0 normalized
at the cut-off scaleMR :

^O&5constFMRexpS 2
8p2

bg0
2 D G d

, ~15!

where the one-loopb-function, b(as)52bas
2/(2p) with

b5(11/3)Nc and Nc stands for the number of colors, ha
been used. The NSVZ theorem@23# ~with the one-loopb
function! then follows by the differentiation of Eq.~15!,
taken forO52bas /(8p)G2, in respect to 1/g0

2 . When the
full b function is retained, it reads@23#

lim
q→0

i E dx eiqx^0uTH b~as!

4as
G2~x!

b~as!

4as
G2~0!J u0&

524K b~as!

4as
G2L . ~16!

Note that the presence of the fullb function in Eq. ~16!
ensures the renormalization group invariance of both side
this relation. An infinitesimally small momentum transferqm
is introduced in order to select a connected contribution
the correlation function~16!. Equation~16! stands for the
renormalized correlation function where ultraviolet diverge
contributions are implied to be regularized and subtracte
both sides of of Eq.~16!, see the Appendix for a discussio
on this point.

Arbitrary n-point functions of the trace of the energ
momentum tensor

^s&5 K b~as!

4as
G2L 5 K 2bas

8p
G2L 1O~as

2! ~17!

can be obtained by further differentiating relation~15!:

i nE dx1 . . . dxn^0uT$s~x1! . . . s~xn!s~0!%u0&

5~24!n^s&, ~18!

where, as in Eq.~16!, a limiting procedure of the vanishin
momentum transferqm is implied. Note that a regularizatio
scheme in Eqs.~16!,~18! is assumed to be the same.

Let us now address zero momentum correlation functi
of the topological density operator in gluodynamics. As d
cussed in detail in the Appendix, the renormalized two-po
function can be written as

4The fact that terms explicitly containingLY M
4 do not appear in

correlation functions of the operatorG2 was checked in Ref.@23#
using canonical methods with Pauli-Villars regularization.
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lim
q→0

i E dx eiqx^0uTH as

8p
GG̃~x!

as

8p
GG̃~0!J u0&

5j2K b~as!

4as
G2L , ~19!

where j stands for a generally unknown numerical coef
cient @note that itsNc dependence is expected to bej
;Nc

21 , in order to match Witten-Veneziano@5# resolution
of the U~1! problem#. Whenu50, Eq.~19! is the only pos-
sible form compatible with both the conformal anomaly a
Witten-Veneziano construction. We note that the correlat
function ~19! is defined via the path integral, i.e., with Wic
type of the T-product. This definition ensures that the no
perturbative gluon condensate in Eqs.~16!,~19! is the same
quantity. Perturbative contributions are absent in Eq.~19!,
see the Appendix.

In writing Eq. ~19! we have assumed that it has the sa
form, i.e., covariant, for any small value ofu ~in the Appen-
dix it is proved only foru50). Provided this is the case, th
coefficientj2 reiterates, analogously to Eq.~18!, for all n-
point correlation functions ofGG̃, as can be seen by th
formal differentiation of Eq.~19! in respect tou. There are
three arguments in favor of correctness of this assumpt
First, this requirement agrees with the largeNc line of rea-
soning due to Veneziano@5# where one finds that a coeffi
cient standing in the two-point function of the topologic
density operator does reiterate in multipoint correlation fu
tions. Second, this postulated covariance of Eq.~19! in re-
spect tou goes through a self-consistency check by agr
ment between two different calculations of theu dependence
of the vacuum energy, when one of them is obtained b
straightforward use of Eq.~19! @see Eq.~20! below#, and
another one is obtained directly from an effective poten
~see Sec. V!. Third, such covariance of Eq.~19! follows au-
tomatically with an approach used in@24#.

As for the numerical coefficientj in Eq. ~19!, there exist
a few proposals to fix its value. One of them@23# is based on
the hypothesis of the dominance of self-dual fields in the Y
vacuum, which suggestsj52/b. A different choice, j
54/(3b), was advocated in our work@24# using a one-loop
connection between the conformal and axial anomalies in
theory with an auxiliary heavy fermion. This line of reaso
ing was an extension of arguments used by Ku¨hn and Za-
kharov @25# to evaluate the proton matrix eleme

^puGG̃up&. Some further discussion on these matters will
given in Sec. V. As different arguments disagree on what
exact value ofj is, in this paper we prefer to proceed with a
unspecified parameterj. Fortunately, it turns out that the fac
of 2p periodicity inu can be established without knowing
precise value ofj, with the only mild and reasonable as
sumption that the parameterj is a rational number. In addi
tion, keeping an unspecified value ofj in Eq. ~19! makes it
possible to study theu dependence for gauge groups oth
than SU~N!, at least in principle~see Sec. V!.

As has been shown in@24#, a combined use of relation
~16!,~19! enables us to calculate theu dependence of the
vacuum energy and topological density condensate for
6-5



-

g

f

th
.

.

t

e
f
w

a
a

rg
in

he

c

to
La
YM
r-
ct
e

nc

re

le
.
for
ss-
-

k.
be
ns

for

ds

a-
ies

nc-

ym-

in

ed

rn-

IGOR HALPERIN AND ARIEL ZHITNITSKY PHYSICAL REVIEW D 58 054016
number of colorsNc and small values of the vacuum angleu
by formal resummations of Taylor expansions inu for these
objects. The resulting expressions read

Ev~u!5^uu2
bas

32p
G2uu&5^0u2

bas

32p
G2u0&cos~2ju!

[Evcos~2ju! ~20!

for the vacuum energy~hereEv stands for the vacuum en
ergy for u50) and

^uu
as

8p
GG̃uu&52jEvsin~2ju! ~21!

for the topological density condensate@in @24# the particular
value j54/(3b) was used#. These formulas seem puzzlin
as they suggest a ‘‘wrong’’ periodicity inu ~remember that
j;Nc

21) without any hint at possible singular pointsu;p,
which could prevent us from making the shiftu→u12p.
This might force one to conclude that Eqs.~20!,~21! cannot
be correct on general grounds, even for small values ou,
and the whole derivation, leading to relations~20!,~21!, was
in error. However, as we just saw in the analysis of
Schwinger model, a fractionalu dependence, implied in Eqs
~20!,~21!, can be in perfect agreement with the 2p periodic-
ity in u, see Eq.~12!. What will be argued below is that Eqs
~20!,~21! do not contradict the expected picture of 2p peri-
odicity of physics inu with a singular level crossing point a
u;p, for any rational numberj †including, of course, both
aforementioned choicesj52/b @23# or j54/(3b) @24#‡. As
we have found in the study of the Schwinger model, the k
to understanding theu periodicity problem is the analysis o
a whole set of disconnected vacuum states. It will be sho
in Sec. V that an accurate transition to the limitV→` while
keeping all these states restores the correct periodicity
analyticity structure of theu dependence, irrespective of
particular valuej5any rational number.

IV. EFFECTIVE LAGRANGIAN FOR GLUODYNAMICS

The purpose of this section is to construct a low ene
effective Lagrangian for gluodynamics, which would conta
all information provided by the low energy theorems in t
scalar ~16! and pseudoscalar~19! channels including all
multi-point correlation functions of operatorsG2 and GG̃,
which can be obtained by differentiating the two-point fun
tions ~16! and ~19!, see e.g. Eq.~18!.

Before proceeding with the presentation, we would like
pause for a comment on the meaning of this effective
grangian. As there exist no Goldstone bosons in pure
theory, no Wilsonian effective Lagrangian, which would co
respond to integrating out heavy modes, can be constru
for gluodynamics. Instead, one speaks in this case of an
fective Lagrangian as a generating functional for vertex fu
tions of the composite fieldsG2 andGG̃. Moreover, only the
potential part of this Lagrangian can be found as it cor
sponds to zero momentum n-point functions ofG2,GG̃,
fixed by the low energy theorems.~This effective potential
05401
e

y

n

nd

y

-

-

ed
f-
-

-

still contains an ambiguity which will play an important ro
in what follows.! The kinetic part is not fixed in this way
Thus, such an effective Lagrangian is not very useful
calculating the S-matrix, but is perfectly suitable for addre
ing the vacuum properties.5 Specifically, space-time indepen
dent fields are amenable to a study within this framewor

The task of constructing an effective Lagrangian can
considerably simplified by going over to linear combinatio
of original operators6 which enter relations~16!, ~19!:

H5
b

64p2S 2G21 i
2

bj
GG̃D ,

H̄5
b

64p2S 2G22 i
2

bj
GG̃D . ~22!

In terms of these combinations, the low energy theorems
renormalized zero momentum Green function, Eqs.~16! and
~19!, take particularly simple forms~for an arbitrary value of
the vacuum angleu):

lim
q→0

i E dx eiqx^0uT$H~x!H~0!%u0&524^H&,

lim
q→0

i E dx eiqx^0uT$H̄~x!H̄~0!%u0&524^H̄&, ~23!

lim
q→0

i E dx eiqx^0uT$H̄~x!H~0!%u0&50.

It is easy to check that the decoupling of the fieldsH andH̄

holds for arbitrary n-point functions ofH, H̄. This circum-
stance makes it particularly convenient to work with fiel
~22!.

We now wish to construct an effective low energy L
grangian reproducing at the tree level all Ward identit
~low energy theorems! for the composite fieldsH,H̄, such as
Eqs.~23! and their n-point generalizations.7 To this end, we
consider the generating functional of connected Green fu
tions with the space-time independent sourcesJ,J̄

5Effective Lagrangians of this kind have been used in supers
metric theories~see, e.g., review papers@26#!. In particular, the
so-called Veneziano-Yankielowicz effective Lagrangian@22# has
the meaning just described; see@9#.

6In this section we change the normalization of the gluon field
comparison to that used in Sec. III by the rescalingAm

→(1/g)Am , and use the one-loopb function.
7For the case of one real ‘‘dilaton’’ fieldss52bas /(8p)G2, a

similar problem of constructing an effective Lagrangian was solv
long ago by Schechter@27#, and Migdal and Shifman@28# ~see also
@29#!. Our derivation below is akin to the one suggested by Co
wall and Soni in@29#.
6-6
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exp@ iW~J,J̄!#5(
n
E DA expF2

i

4g2E dx G2

1 i
u12pn

32p2 E dx GG̃1 iJE dx H

1 i J̄E dx H̄G . ~24!

Note the~somewhat unconventional! summation over all in-
teger numbersn in Eq. ~24!, which is analogous to the defi
nition ~5! for the Schwinger model. This prescription aut
matically ensures the 2p periodicity inu and quantization of
the topological charge, and is completely equivalent to
way the vacuum angleu has initially appeared in YM theory
@2#. The above form of introducing theu angle in the path
integral will help us to understand how theu parameter
should be installed in the effective Lagrangian formalism

We next define the effective zero momentum fields~here
and in what follows*dx5V is a total 4-volume!

E dx h5
]W

]J
, E dx h̄5

]W

] J̄
, ~25!

satisfying the equations

E dx h5 K E dx HL , E dx h̄5 K E dx H̄L . ~26!

The effective actionG(h,h̄) is now introduced as the Leg
endre transform of the generating functionalW(J,J̄):

G~h,h̄!52W~J,J̄!1E dx Jh1E dx J̄h̄ ~27!

which implies

]G

]E dx h

5J,
]G

]E dx h̄

5 J̄. ~28!

From the definition~24! and the low energy theorems~23!
@and their extensions for arbitrary n-point functions; see
~18!# we obtain

]n11

]Jn11
WuJ5 J̄505 i nE dx dx1 . . . dxn

3^T$H~x1! . . . H~xn!H~0!%&

5~24!nE dx^H&
05401
e

.

]n11

] J̄n11
WuJ5 J̄505 i nE dx dx1 . . . dxn

3^T$H̄~x1! . . . H̄~xn!H̄~0!%&

5~24!nE dx^H̄&

]k1 l

]Jk] J̄l
WuJ5 J̄5050; ~29!

@as before, the connected parts of the Green functions
implied in Eq.~29!#. These equations are solved by the fun
tion

W~J,J̄!52
1

4E dx ^H&e24J2
1

4E dx ^H̄&e24J̄. ~30!

Using Eq.~25!, we can express the sourcesJ,J̄ in terms of
the fieldsh,h̄:

J52
1

4
logS h

^H& D , J̄52
1

4
logS h̄

^H̄&
D . ~31!

Inserting these expressions back to Eq.~30!, we obtainW as
a function of the fieldsh,h̄. Now the definition~27! turns
into the differential equation for the effective potenti
U(h,h̄)52(1/V)G(h,h̄):

U2h
]U

]h
2h̄

]U

]h̄
52

1

4
~h1h̄!. ~32!

This equation is a complex extension of a real differen
equation for the ‘‘dilaton’’ effective potential of Refs
@27,28#. Here comes the aforementioned ambiguity of t
effective potential. Let us compare Eq.~32! with the equa-
tion for the real ‘‘dilaton’’ field of @27,28#

U~s!2s
dU

ds
52

1

4
s. ~33!

Equation ~33! has the only solutionU(s)5(1/4)s(logs
1const). It is the appearance of the multibranched logar
mic function of a complex argument in Eq.~32! that gives
rise to the ambiguity which was absent in the real equat
~33!. Let us analyze the way it appears when Eq.~32! is
solved. One obvious solution of Eq.~32! is

U1~h,h̄!5
1

4
h log

h

C
1

1

4
h̄ log

h̄

C̄
1D~h2h̄!, ~34!

where C,C̄,D are arbitrary complex constants which ma
depend on̂ H&,^H̄&,u. However, Eq.~34! is not a single-
valued function, and is not bounded from below. After t
phase rotationh→h exp(2pir ) with an arbitrary integerr ,
the potential~34! transforms as
6-7
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U1~h,h̄!→U1~h,h̄!1
ipr

2
~h2h̄! ~35!

which is physically unacceptable.
A way out in this situation is to sum over all integersr in

the partition function, as was suggested by Kovner and S
man @9# in a similar problem arising with Veneziano
Yankielowicz effective Lagrangian@22# for SUSY gluody-
namics. Yet, in our case this is not the end of the sto
Indeed we find that there exists another possible solutio
Eq. ~32!:

U2~h,h̄!5
1

4a
h logS h

CD a

1
1

4a
h̄ logS h̄

C̄
D a

1D~h2h̄!,

~36!

wherea is an arbitrary real number. From now on we co
centrate on the case whena is a positive rational number
a5p/q, where the integersp and q are relatively prime.
Using the formula

log zp/q5
p

q
Log z12p i S n1k

p

qD ,

n50,61, . . . ; k50,1, . . . ,q21 ~37!

~here log stands for the principal branch of the logarithm!,
we see that the second form~36! makes no difference in
comparison with Eq.~34! when only the principal value o
the logarithm is considered. However, the theories, descr
by the effective potentials~34! and ~36!, are different quan-
tum mechanically as they imply different rules of a glob
quantization for the fieldsh,h̄. This quantization arises whe
the single-valuedness of the partition function is ensured b
summations over the integers. As will be shown in the n
section, it is the second choice~36! for the effective potential
that can be made consistent with both theu/N dependence
and 2p periodicity in u when a proper treatment to glob
quantization constraints and the thermodynamic limit
given.

We therefore consider the function

U3~h,h̄!5
1

4
h Log

h

C
1

1

4
h̄ Log

h̄

C̄
1

ip

2 S k1n
q

pD ~h2h̄!,

~38!

which satisfies Eq.~32! @i.e., the Ward identities~23! and
their n-point generalizations# for any values of the integer
n,k from the rangen50,61 . . . ;k50,1, . . . ,q21. The last
term in Eq.~38! is a particular form of the last term;D in
Eq. ~36!. It can be seen that arbitrary values of the coeffici
D would be uncompatible with the quantization rules im
posed by the summation over the integersn,k in the partition
function.

Finally, we have to figure out how theu angle should be
installed in the effective potential~38!. An answer to this
question can be deduced by comparing with Eq.~24!. In the
YM partition function, theu angle enters in the combinatio
05401
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u12pn, while the summation over the integersn is neces-
sary because of a multivaluedness of the YM action in
spect to large gauge transformations. Analogously, the
term in Eq.~38! is the only one that can accommodate theu
parameter in the same combinationu12pn. The summation
over the integersn is enforced this time by the multivalued
ness of the logarithm in Eq.~38!. As the presence of theu
angle is implicit in the constantsC,C̄, we now make it ex-
plicit in the above way and finally obtain the~Minkowsky
space! improved effective potentialF(h,h̄) by the summa-
tion overn,k in the partition function:

e2 iVF~h,h̄!5 (
n52`

1`

(
k50

q21

expH 2
iV

4 S h Log
h

C8
1h̄ Log

h̄

C8̄
D

1 ipVS k1
q

p

u12pn

2p Dh2h̄

2i J , ~39!

where the constantsC8,C̄8 are independent ofu and can be
taken real,C85C̄8[2eE, whereE is some positive con-
stant. The improved effective potentialF(h,h̄) is consistent
with all constraints imposed by the low energy theorems a
by construction, is a single valued function possessing
2p periodicity in u, which was present in the initial YM
partition function. As is seen from Eq.~39!, the structure of
the effective potentialF is such that it contains both th
‘‘dynamical’’ and ‘‘topological’’ parts~the first and the sec
ond terms in the exponent, respectively!. We would like to
note that Eq.~39! is a direct analog of a similar constructio
for SUSY models@22,9#. Namely, the ‘‘dynamical’’ part of
the effective potential is rather similar to Venezian
Yankielowicz~VY ! @22# potential;u2/3logu, while the ‘‘to-
pological’’ part is analogous to an improvement of the V
effective potential, suggested by Kovner and Shifman@9#.
We stress that the improved effective potential~39! contains
more information in comparison to that present in the Wa
identities~23! just due to the appearance of this ‘‘topolog
cal’’ part in Eq. ~39!. Without this term Eq.~39! would
merely be a kinematical reformulation of the content of t
Ward identities~23!. As will be shown in the next section
this improvement of the effective potential turns out cruc
for unravelling the correct periodicity inu in YM theory.

V. MINIMIZATION OF EFFECTIVE POTENTIAL

In this section a ground state of the dual low ener
theory will be determined by a minimization of the improve
effective potential~IEP! F(h,h̄) given by Eq.~39!. Our pur-
pose is to find theu dependence of the vacuum energy whi
is defined as a minimum of IEPF(h,h̄). In this calculation
the total space-time 4-volume will be kept finite, while
transition to the thermodynamic limitV→` will be per-
formed at the very end.

We start with introducing the ‘‘physical’’ real fieldsr,h
defined by the relations

h52Eer1 ih, h̄52Eer2 ih. ~40!
6-8
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@This definition impliesF(h12p)5F(h). As will be seen,
this condition of single-valuedness of theh field is satisfied
with the substitution~40!.# In these variables, the ‘‘dynami
cal’’ part of Eq. ~39! can be written as follows:

2
iV

4
S h Log

h

2eE
1h̄ Log

h̄

2eE
D

52 iVEer@~r21!cosh2h sinh#. ~41!

The summation over the integersn in Eq. ~39! enforces the
quantization rule due to the Poisson formula

(
n

expS 2p in
q

p
V

h2h̄

4i
D 5(

m
dS q

p
VEersinh2mD ,

~42!

which reflects the quantization of the topological charge
the original theory. Therefore, when the constraint~42! is
imposed, Eq.~41! can be written as

2
iV

4
S h Log

h

2eE
1h̄ Log

h̄

2eE
D

52 iVEer~r21!cosh1 im
p

q
h. ~43!

Using Eqs.~42!,~43!, we put Eq.~39! in the form

e2 iVF5 (
m52`

1`

(
k50

q21

dS VE
q

p
ersinh2mD

3expF2 iVEer~r21!cosh1 imS uk1
p

q
h D G ,

~44!

where we denoted

uk[u12p
p

q
k. ~45!

To resolve the constraint imposed by the presence of thd
function in Eqs.~42!,~44!, we introduce the new fieldM by
the formula

dS VE
q

p
ersinh2mD

}E DM expS iMVEersinh2 iM
p

q
mD . ~46!

Going over to Euclidean space8 by the substitutioniV→V,
we obtain from Eqs.~44!,~46!

8This is not really necessary. All formulas below can be work
out in Minkowsky space as well.
05401
n

F~r,h,M !52
1

V
logH (

m52`

1`

(
k50

q21

expF2VEer

3$~r21!cosh2Msinh%

1 imS u12pk
p

q
1

p

q
h2

p

q
M D2«

m2

VEG J .

~47!

Here we introduced the last term to regularize the infin
sum over the integersm. The limit «→0 will be carried out
at the end, but before taking the thermodynamic limitV
→`. Note that Eq.~47! satisfies the conditionF(h12p)
5F(h) which should hold as long ash is an angle variable.
We also note that the periodicity inu with period 2p is
explicit in Eq. ~47!.

Proceeding as was done for the Schwinger model, to
cuss the thermodynamic limitV→` we use the identity~9!
and transform Eq.~47! into its dual form

F~r,h,M !52
1

V
logH (

n52`

1`

(
k50

q21

expF2VEer

3$~r21!cosh2M sinh%

2
VE

4« S u12pk
p

q
1

p

q
h2

p

q
M22pnD 2G J ,

~48!

where we have omitted an irrelevant infinite factor;«21/2 in
front of the sum. Equation~48! is the final form of the im-
proved effective potentialF, which represents the YM ana
log of Eq. ~10! for the Schwinger model. To discuss th
vacuum properties, the functionF should be minimized in
respect to the three variablesr,h and M . In spite of the
frightening form of this function, its extrema can be read
found using the following simple trick. As at the extremu
points all partial derivatives of the functionF vanish, we first
consider their linear combination in which the sum overn,k
cancels out. We thus arrive at the equations

]F

]r
5Eer~r cosh2M sinh!50,

]F

]h
1

]F

]M
52Eer~r sinh1M cosh!50, ~49!

which is equivalent tor21M250. Therefore, these equa
tions have the only solution

^r&50, ^M &50, ~50!

while the minimum value of the angular fieldh is left arbi-
trary by them. The latter can now be found from either of t
6-9
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constraints]F/]h50 or ]F/]M50, which become identi-
cal for ^r&5^M &50. The resulting equation reads9

(
n52`

1`

(
k50

q21 S u12pk
p

q
22pn1

p

q
h12«

q

p
sinh D

3expH VEcosh2
VE

4« S u12pk
p

q
1

p

q
h22pnD 2J 50,

~51!

in which we have to take the limit«→0 at a fixed 4-volume
V.

One can see that nontrivial solutions of Eq.~51! at «
→0 are given by

^h& l52
q

p
u1

2p

p
l 12pr ,

l 50,1, . . . ,p21; r 50,61, . . . . ~52!

Equation~52! shows that there arep physically distinct so-
lutions, while the series over the integersr in Eq. ~52! simply
reflects the angular character of theh variable, and is thus
irrelevant. By the substitution of Eq.~52! back to Eq.~48!
we obtain the energy spectrum for the finite volume theo

El[F~r5M50,h5^h& l !

52E coŝ h& l52E cosS 2
q

p
u1

2p

p
l D . ~53!

Thus, we have found that the improved effective poten
~48! has not one, but ratherp physically different local ex-
trema, when we look at the theory in the finite volume. T
fact that the states~52! have different energies for gener
values ofu is very important. This is where we find an e
sential difference of nonsupersymmetric gluodynamics fr
its supersymmetric extension. In the latter case, there areNc
degenerate states which all survive the infinite volume lim
and correspond to the physicalZ2Nc

symmetry of SUSY YM
theory @8,9,26#. The absence of degeneracy between
states~52! is therefore very natural, as there are no discr
symmetries for nonsupersymmetric gluodynamics in
thermodynamic limitV→` where we should stay along wit
just one true vacuum. Yet, as we will see in a mome
retaining the whole set of local extrema~52! is important to
recover the correct periodicity inu in the limit V→`.

The remarkable fact about the extrema~52! is that they
are related to each other by a cyclic permutation under
shift u→u12p. The physics is perfectly periodic inu with
period 2p, as the minimâh& l , interchanging under the shif

9Note a remarkable similarity between Eq.~51! and the equation
m i

2sinfi5(a/N)(u2(fj) ~where m i and f i are the masses an
phases of goldstone fields, respectively!, obtained by Witten@16# as
a minimization condition for the effective chiral Lagrangian f
QCD. The limit «→0 in Eq. ~51! is analogous to the chiral limi
m i

2→0 in this equation.
05401
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u→u12p, can be just relabeled without altering anythin
One of the minima always has a lowest energy. For exam
if 0<u,p/q, it is the l 50 solution in Eq.~52!. At the same
time, we observe level crossing with a two-fold degenera
at certain values ofu. One series of the level crossing poin
is given byu5p(mod 2p), irrespective of the values of th
integersp,q. For example, at the first pointu5p in this
series, thel 50 and l 5q solutions have the same energ
2E cos(pq/p). This is the same series of level crossin
points as was found for the Schwinger model. The differen
from the Schwinger model is that now these values ofu do
not correspond to level crossing oflowest energystates
among the set~52!. Instead, this happens for another series
level crossing points inu, which is different from the previ-
ous one as long asqÞ1. As can be seen from Eq.~53!, it is
the points uk5(2k11)p/q, k50,1, . . . ,p21 where the
lowest energy state is changing from thekth to the (k11)th
branch in the set~52!.

Let us now see what happens when the thermodyna
limit V→` is taken. The key observation is that a lowe
energy state, which is the only one that should be retaine
the limit V→` according to our convention~2!, corresponds
to different minima from the set~52!, depending on an inter
val of variation of the vacuumu angle. Thus, to perform the
thermodynamic limit, we should first fix an interval ofu
~say, 0<u,p/q), and only then select the state of lowe
energy among the set~52!. This solution will be the one
corresponding to the single vacuum state in the limitV
→`, for all values ofu from this interval. This procedure
can be described by the formula

Fmin52 lim
V→`

1

V
logH (

l
expFVEcosS 2

q

p
u1

2p

p
l D G

11du2p/q,0

J ,

l 50,1, . . . ,p21 ~54!

@here du2p/q,0 is the Kronecker symbol, equal to 1 ifu
5(2k11)p/q or 0 otherwise#. The multiplier 1/(1
1du2p/q,0) accounts for the two-fold vacuum degeneracy
the pointsu5(2k11)p/q, k50,1, . . . ,p21. We note that
Eq. ~54! is perfectly periodic inu with period 2p.

Equation~54! shows that in the limitV→` cusp singu-
larities occur at the valuesu5(2k11)p/q, where the low-
est energy vacuum state switches from one analytic branc
another one, much as it occurs in the Schwinger model. O
should note that there is no physical jump atu5p/q. It is
rather relabeling of a lowest energy state. The first deriva
of the vacuum energy, which is proportional to the topolo
cal density condensate, is two-valued at these points. T
means that wheneveru5(2k11)p/q, we stay with two de-
generate vacua in the thermodynamic limit~Dashen phenom-
enon@18#, see below!. This picture of the singularity struc
ture inu resembles the one found for the latticeZp model in
4D @30#.

If, on the other hand, the thermodynamic limit is pe
formed for a fixed value ofu, any information on other state
is completely lost in Eq.~54!. Correspondingly, the 2p pe-
6-10
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riodicity in u is also lost in infinite volume formulas. W
have no chance to know about additional states when
work in the infinite volume limit from the very beginning. A
a result, usualV5` formulas become blind to the very ex
istence of a whole set of different vacua, which is just
sponsible for restoration of the 2p periodicity in u. Instead,
formulas corresponding to the formal limitV5` look as
suggesting a ‘‘wrong’’~different from 2p) periodicity in u;
see, e.g., Eqs.~20!,~21!. Now we know that this procedure o
the shiftu→u12p in theV5` formulas is simply mislead-
ing as it is equivalent to going along a single analytic so
tion of the minimization equation~51!, which does not cor-
respond to a lowest energy state for a shifted value ofu.
Comparing Eqs.~20! and ~53!, we see that the former ma
well describe theu dependence in the physical limitV→`
for small valuesu,p/q. To this end, we should set the rat
q/p, which so far was arbitrary, to the valueq/p52j ~and
take E52Ev). At the same time, analyticity inu of each
separate branch~53! shows that the procedure of a form
resummation of the infinite Taylor series for smallu,p/q,
which has led to Eq.~20! @24#, is legitimate. We therefore
conclude that Eq.~20!, which should be understood as stan
ing for u,p/q, is not in conflict with general principles o
periodicity and analyticity inu for any rational value of the
parameterj, including both particular choicesj52/b @23# or
j54/(3b) @24#.

Although the problem of fixing the correct value of th
parameterj is beyond the scope of this paper, we cann
refrain from pausing for a few comments on these matter10

The parameterj is related to a number of different sectors
the theory, which are disconnected due to the superselec
rule. One could think that this number of sectors is prop
tional to b, as the formulasj54/(3b) @24# or j52/b @23#
suggest. However, the analysis of SUSY theories shows
it might not literally be the case. If in SQCD we change
number of flavorsNf keeping a number of colorsNc un-
changed, the number of sector remains the same and st
equalsNc ~and not just proportional toNc), though theb
function b;3Nc2Nf changes. As a result, the angleu en-
ters physics in the combinationu/Nc for arbitrary Nf . An-
other argument comes from the analysis of softly brok
SUSY gluodynamics where the gluino is given a small m
m. As discussed by Shifman@26#, the situation is under con
trol as long asm is small, and the number of different secto
remains the sameNc ~though the degeneracy between the
is lifted!. On the other hand, the case of pure YM theo
corresponds to the limitm→` ~which means physicallym
@L). If the number of sectorsNc for small m does not
discontinuously change whenm becomes large,m.L, we
end up withNc different sectors for usual YM theory.

To summarize, different lines of reasoning lead to diffe
ent values ofj ~though they all implyj;Nc

21), and corre-
spondingly to different values for a number of sectors in p
YM theory. However, irrespective of this particular numb

10The arguments discussed below are due to Vainshtein@31#, to
whom we are indebted for sharing with us his insight.
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~we only assume it be a rational!, we know that there is only
one true vacuum in the thermodynamic limitV→` and that
the period of theu dependence is always 2p.

After this digression we wish to discuss relations for t
topological density condensate. Namely, we would like
see whether Eq.~21!, obtained by a direct evaluation of co
relation functions in YM theory, is consistent with results
this section. It is easy to see that it is indeed the case.
ferentiating Eq.~53! in respect tou, we obtain

2
]El

]u
5

q

p
E sinS 2

q

p
u1

2p

p
l D . ~55!

As only the l 50 term survives theV→` limit for 0<u
,p/q, we obtain, in agreement with Eq.~21!

1

32p2
^GG̃&52

q

p
E sinS q

p
u D . ~56!

Similarly to what occurs in the Schwinger model, for th
special caseu5p/q we stay in the limitV→` with two
degenerate vacua which are distinguished by the sign of
topological density condensate:

u1&[Uh l 5052
p

p L ,
1

32p2
^GG̃&152

q

p
E sinS p

p D ,

u2&[Uh l 515
p

p L ,
1

32p2
^GG̃&251

q

p
E sinS p

p D .

~57!

As aCP transformation reverses the sign ofu, it exchanges
the vacuau1& andu2&: CPu1&5u2&, CPu2&5u1&. Therefore,
the CP symmetry is broken atu5p/q. A similar phenom-
enon of vacuum doubling occurs for any point of the for
uk5kp/q, k51,2,3, . . . . Forexample, thel 50 and l 5q
states are analogously related by aCP transformation atu
5p. The reason we concentrate on the level crossing p
u5p/q is that at this value ofu the true vacuum~lowest
energy state! switches from thel 50 to the l 51 branch,
while at u5p some excited states cross in energy. The
fore, in the sense of the lowest energy state among the
~52!, the valueu5p corresponds to a regular,CP conserv-
ing point.

Finally, we would like to briefly describe the case of YM
theory with an arbitrary~orthogonal, exceptional, etc.! gauge
groupG instead of the unitary SU~N! that was discussed s
far. For such a gauge group the second Casimir cons
C2(G) and theb function would be different. Therefore, th
only difference from the previous analysis in this case wo
be different values of the integersp andq, while the pattern
of u dependence would remain the same. Thus, the me
nism suggested in this paper seems to be valid for any ga
group.
6-11
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VI. CONCLUSIONS

The most important results of the present analysis are
following.

~1! We have demonstrated that physics is periodic inu
with period 2p for an arbitrary gauge group. This behavi
follows from our definition of the partition function for bot
the original and effective Lagrangian formulations of t
theory, where the summation over all branches of a multiv
ued action is imposed. In the effective Lagrangian fram
work, this prescription is necessary for a single-valuedn
and boundness from below of an effective potential.

~2! The periodicity inu with period 2p is perfectly com-
patible with theu/N dependence found in a number of mo
els at smallu. The correct periodicity inu is recovered when
a whole set of different branches is taken into account. T
standard definition of the thermodynamic limit selects onl
lowest energy state among this set. As a result, the ther
dynamic limit and the shiftu→u12p do not commute~in
the sense explained in the Introduction!.

~3! For generic values ofu, there is one and only on
vacuum state in the thermodynamic limit. Foru5p/q there
are exactly two degenerate states, which are distinguishe
the sign of the topological density condensate.

We would like to end up with some speculations. W
emphasize again thatu5p/q is a very special point becaus
of the vacuum degeneracy which does not follow from a
obvious symmetry of the original Lagrangian. This dege
eracy may imply the existence of domain walls in the the
at u5p/q, which are static field configurations dependi
only on one spatial coordinate. An effective potential d
scribing domain walls could be obtained from Eq.~48! by
freezing ther andM fields. Such a potential is a complicate
function of theh field which, however, reduces to the sta
dard Sine-Gordon form near the points~52!; see Eq.~53!.
Provided a kinetic term~we recall that kinetic terms are no
fixed by the Ward identities! is added, the theory could sus
tain domain wall configurations. The existence of these
lutions in gauge theories could have interesting con
quences for cosmology and particle physics.

We would also like to speculate that the above ‘‘p’’ non-
equivalent states, could be really observed in some none
librium high energy processes with a finite geometry, wh
the superselection rule cannot be applied~a similar comment
was made by Shifman@26#!. Such a situation could be rea
ized, e.g., in nuclear-nuclear collisions, where the appeara
of droplets of a ‘‘false vacuum’’ would be similar to th
production of droplets of disoriented chiral condensate,
e.g.@32# for a review. Instead of an arbitrary direction of th
chiral condensate for the latter, in the former case we wo
deal with ‘‘p’’ different values of the topological densit
condensatêGG̃&. One expects that this phenomenon, if
exists, should be related to the physics of theh8 meson and
CP violation. Yet, it is not known at the moment how t
formulate this problem in an appropriate way.

The inclusion of the light quarks into the effective L
grangian framework and the resulting picture of theu depen-
dence in QCD will be discussed in@33#.
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APPENDIX

The purpose of this appendix is to discuss in somew
more detail the derivation of the low energy theorems~16!
and ~19! and, in particular, a procedure of ultraviolet reg
larization which was implied in Eqs.~16! and~19!. We start
with the Novikov-Shifman-Vainshtein-Zakharov~NSVZ!
low energy theorem@23#, Eq.~16!, which is here repeated fo
convenience:

lim
q→0

i E dx eiqx^0uTH b~as!

4as
G2~x!

b~as!

4as
G2~0!J u0&

524K b~as!

4as
G2L , ~A1!

whereb(as)52bas
2/(2p)1O(as

3) is the Gell-Mann–Low
b function for YM theory withb5(11/3)Nc , andNc is the
number of colors.

The low energy theorem was obtained in@23# using the
one-loopb function with a particular attention to a regula
ization of ultraviolet~UV! divergences, arising in the two
point function ~A1!, within Pauli-Villars procedure. In this
derivation Dyson type of the T-product symbol was impli
in Eq. ~A1!. It was shown that quadratically divergent U
contributions cancel out identically in both sides of Eq.~A1!.
This implies that perturbative contributions should always
subtracted in vacuum condensates such as^b(as)/(4as)G

2&
in Eq. ~A1!. Once this rule is accepted, the dependence
any ~nonperturbative! condensatêO&NP of dimensiond on
the bare coupling constantg0 ~normalized at the cut-off scale
MR) is fixed by the dimensional transmutation formula:

^O&NP5const3FMRexpS 2
8p2

bg0
2 D G d

, ~A2!

and the derivation of the NSVZ theorem proceeds as
scribed in Sec. III, where the path integral definition of co
relation functions is used. The latter implies Wick type of t
T-product symbol. This definition of zero momentum corr
lation functions~18! automatically ensures the same type
renormalization for all such functions, which is fixed by
rule of subtracting perturbative UV divergent contributio
to the conformal anomaly~with, e.g., Pauli-Villars regular-
ization!. The latter procedure thus defines a nonperturba
gluon condensate in theu vacuum^g2G2&u , i.e. a nonper-
turbative part of the conformal anomaly calculated for giv
u. Its dependence on 1/g0

2 is given by Eq.~A2!. Zero mo-
mentum correlation functions of the operatorg2G2 are ob-
6-12
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tained by the differentiation of the nonperturbative part
the partition function log(Z/ZPT) (ZPT stands for a perturba
tively defined partition function which does not depend
u), where

Z~u!5ZPTexp$2 iVEv~u!%

5ZPTexpH 2 iV^0u2
bas

32p
G2u0&uJ , ~A3!

in respect to 1/g0
2 . Note that the factor] logZPT/](g0

22) cor-
responds to the correlation function~A1! in perturbation
theory.

It is a subtraction of perturbative contributions in vacuu
condensates~A2! that we here would like to comment upo
Technically, this prescription can be thought of as the
quirement of absence of regular powers of the coupling c
stantas in vacuum condensates^O&NPto any finite order in
as . For two-dimensional models, it has been shown@34# that
the definition of vacuum condensates via the path inte
automatically nullifies perturbative contributions to the co
densates. Moreover, this procedure gives results identic
a point-splitting regularization with Dyson type of the
product. One can notice that in four dimensions the sep
tion of genuinely perturbative and nonperturbative contrib
tions to physical quantities is ambiguous as it depends o
definition of the sum of perturbative series. Still, there
nothing wrong with the requirement that the ‘‘nonperturb
tive’’ condensates contain the coupling constantg0

2 as in Eq.
~A2!, while the regular powers ofg0

2 are absent. The differ
ence between different regularization schemes is reduce
this case to possible finite renormalizations~different nu-
merical values! of the vacuum condensates. Such a choice
the nonperturbative gluon condensate in Eq.~A3! is the only
ambiguity for all multipoint correlation functions~18!.

Next we would like to discuss zero momentum correlat
functions of the topological density operator. With Wic
definition of the T product we obtain from Eq.~A3!

lim
q→0

i E dx eiqx^0uTH as

8p
GG̃~x!

as

8p
GG̃~0!J u0&

52
]2Ev~u!

]u2
52

1

4

]2

]u2
^s&u . ~A4!

@Equation ~A4! is written for Minkowsky space, ands
stands for the trace of the energy-momentum tensor.# A few
comments on Eq.~A4! are in order. We note that the tw
definitions~through Dyson or Wick T products! are equiva-
lent for the correlation function~A1!. For correlation func-
tions of the topological densityQ, this is no longer the case
Witten-Veneziano construction@5# specifically implies
@35,36# Wick T product in the two-point function~A4!. This
can be seen both from the definition of zero momentum c
relation functions of the operatorQ used in@5#, and from the
fact the a gauge non-invariant axial ghost~Veneziano ghost
pole! cannot appear in Dyson T product which is related
contributions of intermediate gauge-invariant states on
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This is why Wick type of the T product was used in E
~A4!. With this definition the two-point function~A4! does
not contain UV divergences which are present inZPT and
drop out after the differentiating of logZ in respect tou. We
note that an attempt to calculate the correlation function~A4!
using Dyson T product~and adding corresponding conta
terms! would face a problem due to the fact that, in contra
to the trace of the energy-momentum tensor, the topolog
density operator in pure YM theory is not seen@37# to be
related to any quantity conserved at the classical le
Therefore, the canonical methods with Pauli-Villars regul
ization procedure used in@23# would apparently be not ap
plicable in this case.

We further require that theu dependence in Eq.~A3! is
described by a single dimensionless functionf (u) such that

]2

]u2
^s&u5

]2

]u2
„^s&0f ~u!…5^s&0f 9~u!. ~A5!

Any other form of introducing theu dependence can be re
duced to Eq. ~A5!. For example, the ansatẑ s&u

5^s&0f 1(u)1LY M
4 f 2(u) could be transformed to the form

~A5! by the redefinitionf 1(u)1 f 2(u)LY M
4 /^s&0→ f (u). A

function f (u) should satisfy the constraintsf (0)51, f 8(0)
50, which means that its smallu expansion reads

f ~u!5122j2u21•••, ~A6!

wherej2 is some dimensionless number. Using this in E
~A4!, we obtain

lim
q→0

i E dx eiqx^0uTH as

8p
GG̃~x!

as

8p
GG̃~0!J u0&u50

5j2K 2
bas

8p
G2L

u50

. ~A7!

The assumption made in Eq.~19! in the text was that Eq.
~A7! is covariant inu, i.e., remains of the same form~A7!
not only for u50, but also for small valuesuÞ0. This re-
quirement fixes the functionf (u) completely:

f 9~u!524j2f ~u!⇒ f ~u!5cos~2ju!, ~A8!

which results in theu dependence of the vacuum energy a
topological density condensate identical to the one displa
in Eqs.~20! and ~21!. This assumption is self-consistent b
cause the same Eqs.~20!,~21! can be obtained without fixing
the function f (u), but instead by postulating the covaria
relation ~19! and resumming Taylor expansions inu for the
condensateŝG2&u ,^GG̃&u , as was done in@24#. One more
relation needed for this purpose reads
6-13
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i E dx^0uTH as

8p
G2~x!

as

8p
GG̃~0!J u0&5

4

bK as

8p
GG̃L ,

~A9!

which is a particular version of the original NSVZ theore
@23#. Equation~A9! is valid for any smallu.

Any other choice for the functionf (u), different from Eq.
~A8!, would presumably not be self-consistent, though
did not find a general proof of this statement. One sho
stress that the form~A8!, implying the reiteration of the pa
rameterj2 in multipoint correlation functions of the operato
Q, is consistent with Veneziano construction@5# for the
ghost pole mechanism, where it was found that
-

l.

n

05401
e
d

]2n21

]u2n21
^Q&uu50;~21!n21NcS l

Nc
D 2n21

,

Nc→`, l5O~Nc
0!. ~A10!

At the same time, Eq.~A8! relates the ghost pole residue
Veneziano scheme with conformal anomaly in the the
with uÞ0, in terms of the parametersj,^s&0 . In our work
@24#, a particular choice,j54/(3b), was advocated using
one-loop connection between the conformal and ax
anomalies in the theory with an auxiliary heavy fermio
Moreover, the covariance of Eq.~A7! in respect tou fol-
lowed automatically within a procedure used in@24#, where
Eq. ~A7! with j54/(3b) was obtained directly from the
NSVZ relation~A1! which is valid for any smallu.
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