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Chiral odd structure functions from a chiral soliton
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We calculate the chiral odd quark distributions and the corresponding structure furiefipn®?) and
h,(x,Q?) within the Nambu—Jona-Lasinio chiral soliton model for the nucleon. QReevolution of the
twist-2 contributions is performed according to the standard GLAP formalism while the twist-3ﬁiec)eis
evolved according to the largd: scheme. We carry out a comparison between the chiral odd structure
functions of the proton and the neutron. At the low model sc@é) (we find that the leading twist effective
quark distributionsf{?(x,Q32), g{®(x,Q3) andh{¥(x,Q2) satisfy Soffer's inequality for both quark flavors
g=u,d. [S0556-282(98)02517-X

PACS numbds): 12.39.Fe, 12.39.Ki

I. INTRODUCTION tion processes are difficult to extract from proton-proton col-
lisions as the purely hadronic processes dominate. Further-
There have been a number of recent investigations intenore this experiment will provide only the product of the
the chiral odd structure functions of the nucleon. As in the chiral odd distributions for quarks and antiquarks. As the
case of the polarized structure functions there are two quanatter are presumably small these flavor distributions are not
tities of interest at leading twist: The transverse spin chirakasily measurable in the Drell-Yan process. In light of these
odd structure functiorh+(x,Q? and the longitudinal spin gisadvantages it has recently been pointed out that the trans-
chiral odd structure functiohy (x,Q?). Within the context yersality distributions may also be measured in the fragmen-
of the operator product expansid®PE) the analysis in  tation region of DIS[2]. The key observation is that these
terms of twist reveals that the transverse chiral odd structurgistribution functions can be extracted from an asymmetry in
function hr(x,Q®) is purely twist-2, while the longitudinal e 1o meson production in the special case that this two
structure function h, (x,Q?) contains both twist-2 and meson state(like 7*7) is a superposition of different
twist-3 _contributions. Accordingly, the decomposition of ¢ ot states, such as eg.andp. Then the phases in the
hy(x,Q?) into twist-2 and twist-3h, (x,Q?)] pieces is given  fing state interactions do not vanish on the average and the

by differential cross section is proportional to the product of
) 1 he(y,Q% — ) chiral odd distributions and the interference fragmentation
h (x,Q ):ZXL dy y2 +h(x,Q%). (1) functions. The latter describe the emission and subsequent

absorption of a two pion intermediate state from quarks of

As a reminder we note that the kinematics are defined suctifferent helicity. In case these fragmentation functions are
that q denotes the momentum transferred to a nucleon ofot anomalously small the chiral odd distribution functions
momentump. In the Bjorken limit, i.e.Q?= —g?—c with  can then be obtained from DIS processesich aseN
x=Q?2p-q fixed, the leading twist contributions to the —€ 7" 7 Xwith the nucleorN being transversely polarized.
nucleon structure functions dominate the&Qi/expansion. Assuming isospin covariance for the fragmentation functions
The additional and important logarithmic dependenc&dn  these DIS processes will provide access to the charge
which is associated with soft gluon emission, is included viassquared weighted chiral odd distribution functid@3$. Such
the evolution program of perturbative quantum- processes should be measurable in the transversely polarized
chromodynamicgQCD). target experiments at HERMES. Knowledge of the chiral

While the chiral odd structure functions are not directly odd structure functions will serve to complete our picture of
accessible in deep inelastic lepton nucleon scatte(§)  the spin structure of the nucleon as they correspond to the
there is the well-known proposal at the BNL Relativistic distribution of the quark transverse spin in a nucleon which
Heavy lon Collider(RHIC) to extract the quark transversal- is transversely polarizef®]. With these data being expected
ity distributionsh{®(x,Q?) (a being the flavor indexfrom  in the near future it is, of course, interesting to understand
Drell-Yan dilepton production resulting from transversely the structure of the nucleon from the theoretical point of
polarized proton beami]. Unfortunately dilepton produc- View. As we are still lacking a bound state wave function for

*Present address after Sept. 1st: Center for Theoretical Physics!The relevant fragmentation and distribution functions depend on
Laboratory for Nuclear Science, and Department of Physics, Masdifferent kinematical variables: The two meson state momentum
sachusetts Institute of Technology, Cambridge, MA 02139. fraction and the Bjorken variable, respectively.
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the nucleon in terms of quarks and gluons, i.e. computedimit the quark then propagates highly off-shell before emit-
from first principles in QCD, it is both mandatory and fruit- ting a quantum of the external source. The intermediate
ful to investigate these chiral odd flavor distributions andquark may propagate forward and backward. Hence the com-
their charge weighted average nucleon structure functionglete structure functions acquire contributions from both dis-
within hadronic models of the nuclegd—10. tributions where the intermediate constituent quark moves
In the context of the spin structure of the nucleon chiralforward and backward. We will focus on nucleon structure

soliton models are particularly interesting as they provide arfunctions which are defined as the sum over the charge-
explanation for the small magnitude of the quark spin con\eighted flavor distribution§4]
tribution to the proton spin, i.e. the vanishingly small matrix 1
element of the singlet axial currefit1]. In these models the: h{)(x,Q3)= 5 > e2h@)(x,Q2), )
nucleon is described as a non-perturbative field configuration a
in some non-linear effective meson thedt2—14. Unfor-
tunately in many of these soliton models the evaluation oin analogy to those of the chiral even spin polarized and
structure functions is infeasible due to the highly non-linearunpolarized nucleon structure functiof%3]. Herea repre-
structure of the current operators and the inclusion of highesents a quark label, whilet) refers to the forward+) and
derivative operators which complicates the current commubackward(—) propagating intermediate constituent quarks.
tation relations. However, it has recently been recognizedrurthermoree, denotes the charge fraction of the considered
that the soliton solutiofil4] which emerges after bosoniza- quark flavora. The complete chiral odd structure functions
tion [15] of the Nambu—Jona-LasiniéNJL) [16] chiral  are finally obtained as the sum
guark model can be employed to compute nucleon structure 2 () 2 =) 2
functions[17,18. In order to project this soliton configura- hri (X, Qo) = h (X, Qo) + hy (X, Qo) 3
tion onto nucleon states with good spin and flavor a cranking
procedure must be employéti3,19 which implements sig- The calculation of the flavor distributioﬂns‘r"’,‘)L in the valence
nificant 1N¢ contributions (¢ is the number of color de- quark approximation to the NJL chiral soliton mod&Vv,18
grees of freedom When extracting the structure functions is summarized in Sec. Ill.
from the NJL chiral soliton model the full calculation which ~ Further it is important to note that when considering
also includes effects of the vacuum polarized by the backmodel structure functions the OPE implies that the initial
ground soliton is quite laborious. In addition we are still conditions,?=Q3, for the evolution isa priori a free pa-
lacking a regularization prescription of the vacuum contribu-rameter in any baryon modg21]. For the model under con-
tion to the structure functions which is derived from the ac-sideration it has previously been determined %
tion functional and which yields algebraic expressions for~0.4 Ge\? by studying the evolution dependence of the
their moments which areonsistentith those for the static model prediction for the unpolarized structure functiphig.
nucleon properties. Fortunately it is known that the dominanin a Subsequent step to compute the chiral odd structure
contribution to static nucleon properties stems from thefunctions we employ a leading order evolution progf@h9]
single quark level which has the lowest energy eigenvalugo obtain the chiral odd structure functions at a larger scale,
(in magnitud¢ and is strongly bound by the solitdd4]. e g. Q%~4 Ge\? relevant to the experimental conditions.
This is particularly the case for spin related quantities. Hencerhjs evolution program incorporates the leading logarithmic
it is a reasonable approximation to consider only the contricorrections to the leading twist pieces. The evolution proce-
bution of this level to the structure functions. In the follow- dure as applied to our model structure functions will be ex-
ing section the NJL chiral soliton model together with the pjained in Sec. IV.
above mentioned approximation, which we will cadllence The numerical results for the chiral odd structure func-
quark approximatiorf will be described in more detail. tions are presented in Sec. V while concluding remarks are
The NJL model for the quark flavor dynamics incorpo- contained in Sec. VI. Technical details on the model calcu-
rates spontaneous breaking of chiral symmetry in a dynamigations and the QCD evolution procedure are relegated to
fashion. Hence the quark fields which build up the solitonappendixes. Let us also mention that there has been a previ-
self-consistentlyf 20] are constituent quarksvith a constitu-  gys calculation oh(x,Q2) [10] which, however, ignored
ent quark mass of several hundred MeV. Keeping this imyoth the projection onto good nucleon states and the QCD
mind we calculate both theffectiveconstituent quark distri- - eyglution. Furthermore in that calculation éarbitrary) me-
butions and in turn the corresponding leading twist contribuson profile was employed rather than the self-consistent soli-
tions to nucleon structure functionsf. Eq. (2)] at a low g solution to the static equations of motion.
scaIng. In the language of Feynman diagrams the DIS
processes are described by a constituent quark of the nucleon
absorbing a quantum of the external source. In the Bjorken II. NJL-MODEL CHIRAL SOLITON

Before continuing with the discussion of the chiral odd
structure functions, we will review the issue of the chiral
2This notation refers to the valence quark in the NJL chiral solitonsoliton in the NJL model.
model and should not be confused with the valence quark in the The Lagrangian of the NJL model in terms of quark de-
parton model. grees of freedom read46,15
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2
+

3 i 2 = o i . %@
£=a(iﬁ—m°)q+ZGNJLi20 [(a%q _7 ) } h=a-p+mgB exdiysmxO(r)]. (8)

q§i75q

(4 We denote the eigenvalues and eigenfunction$ dfy e,
and ¥, , respectively. Explicit expressions for these wave-

Here g, m® and Gy, denote the quark field, the current functions are displayed in Appendix B of R¢fL4]. In the
quark mass and a dimensionful coupling constant, respe(p_roper-nme reg_ularlzatlon scheme the energy functional of
tively. This model is motivated as follows: Integrating out e NJL model is found to bg19,14
the gluon fields from QCD yields a current-current interac- Ng
tion mediated by one gluon exchange to leading order in E[]=7ev[1+sgr(ev)]
powers of the quark current. Replacing the gluon mediating
propagator with a local contact interaction and performing

the appropriate Fierz-transformations yields the Lagrangian + & ds 2 exp(_séz)

(4) in leading order of M [22,23, whereN¢ refers to the 2 Jun? \4gs? S ’
number of color degrees of freedom. Although only a subset

of possible non-perturbative gluonic modes is contained in +mifif d3[1—cosO(r)]. 9)
the contact interaction term in Ed4), it is important to

stress that gluonic effects are contained in the madgl o )
Furthermore the NJL model embodies the approximate chiral "€ Subscript v denotes the valence quark level. This
symmetry of QCD and has to be understood as an effectivetate is the distinct level bound in the soliton background, i.e.
(non-renormalizabletheory of the low-energy quark flavor —M<é&,<m. The chiral angle®(r), is obtained by self-

dynamics. consistently extremizing[ 0] [20].
Application of functional bosonization techniquigs] to ~ States possessing nucleon quantum numbers of spin and
the Lagrangiar(4) yields the mesonic action isospin are generated by elevating the rotational zero modes
to time dependent large amplitude rotational fluctuations
A=Tr,log(D) about the hedgehog fie[d 3]
1 — T
Te Jd4xtr[m°(M+MT)—MM*], (5) MO =AMHIATD), (10
NJL

which introduces the collective coordinatégt) e SU(2).
D=i4—(M+M")—ys(M-M"), (6)  Substituting the ansata0) into the action functiona(5) and
expanding 19] in the angular velocities

whereM = S+iP comprises composite scala®)(and pseu- .
doscalar P) meson fields which appear as quark-antiquark 2AT (DA =iTQ (12
bound states. For regularization, which is indicated by the
cutoff A, we will adopt the proper-time schenj24]. The  to quadratic order yields the Lagrange function for the col-
free parameters of the model are the current quark miss  lective coordinates. Upon canonical quantization the angular
the coupling constary;_ and the cutofA. The equation of velocity Q is substituted by the nucleon spin operator
motion for the scalar fiel® may be considered as the gap- J=a2Q, with «? being the moment of inertifl9,14]. The
equation for the order paramet@q) of chiral symmetry eigenfunctions of the resulting Hamiltonian are the Wigner
breaking. This equation relates the vacuum expectation valule-functions
(M)=ml to the model parametensi®, Gy and A. For 1
apparent reasons is called theconstituentjuark mass. The (AINy= =—DM_
occurrence of this vacuum expectation value reflects the 27 s
spontaneous breaking of chiral symmetry and causes the
pseudoscalar fields to emerge &sould-be Goldstone Wwith I3 andJ; being respectively the isospin and spin pro-
bosons. Expandingl to quadratic order iP (around(M)) jection quantum numbers of the nucleon. The nucleon matrix
these parameters are related to physical quantities, that is, teéements of the collective rotations are obtained via
pion massm_= 135 MeV and the pion decay constafit,  (N|tr(r;A7;AT)|N)=—(8/3)(N|I;J;|N) [13]. This approach
=93 MeV. This leaves one undetermined parameter whictio generate nucleon states from the hedgehog corresponds to

(A), (12

3

we choose to be the constituent quark midss. the cranking technique in nuclear physjés].

The NJL model chiral solitof14,2( is given by a non- Expectation values of bilocal quark-bilinears appearing in
perturbative meson configuration which is assumed of théhe evaluation of nucleon structure functions are expressed as
hedgehog type (regularizedl sums over bilocal and bilinear combinations of

R all eigenfunctions¥ , including the Dirac sea states. In prac-
Muy(x)=m exdiz xO(r)]. (7)  tice this is quite a painful task, in particular when cranking

corrections(10) are included. Also the problem of regular-
In order to compute the functional trace in E§) for this ization is not consistently solved. Fortunately it turns out that
static configuration we express the Dirac opera@@r in  the dominant contributions%80%) to static nucleon prop-
terms of a Hamiltonian operatdr, i.e. D=iB(d;—h), with  erties(which are moments of the structure functiprssem
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from the distinct valence level, [14]. It is therefore rea- !ll. CHIRAL ODD STRUCTURE FUNCTIONS  h+(x) AND
sonable to approximate the relevant bilinears by their va- hi(x) IN THE NJL MODEL

lence quark contribution. In order to obtain quark distribu-  Here we present the major topic of this paper, namely the
tions of thenucleonand the corresponding nucleon structurecaicylation of the twist-2 and twist-3 chiral odd structure
functions[cf. Eq.(2)], rather tharsolitonstructure functions,  functions in the NJL chiral soliton model. Like their deep
the cranking contribution to the wave-function, which is in- inelastic chiral evenun)polarized counterparts, the chiral
duced by the collective rotatioi(t), must be included. That odd structure functions are computed as Fourier transforma-
is, the valence quark wave-function employed to approxitions of nucleon matrix elements of bilocal quark operators
mate the bilinears in the structure functions reads on the light-cond4]. The key features of the relevant light-
cone kinematics are given in Appendix A.

We begin by listing the forward propagating intermediate

\If\,(x,t)ze“fvtA(t) P (X)+ E E v, (%) M quark (+) contribution to the chiral odd nucleon structure
2 iFv v €y functions. Before, however, transcribing the expressions
from Appendix A we must recall that the soliton represents a

=:e A1) (X). (13)  localized field configuration. Therefore a collective coordi-

natexg is introduced which parametrizes the position of the

soliton. This collective coordinate is employed to generate
Here #,(x) refers to the spatial part of the body-fixed va- states with good linear momentuf26]. When computing
lence quark wave-function with the rotational corrections in-matrix elements between states of identical momenta one is
cluded andW¥ ,=(u|x) are eigenfunctions of the Dirac essentially left with an integration oveg. In the nucleon
Hamiltonian(8). This replacement of the bilocal and bilinear rest-frame(RF) the contribution of the forward moving in-
quark fields when computing nucleon structure functions determediate quark to the chiral odd structure functions may
fines the valence quark approximation. therefore be expressed®as

2Mv2

M
h{"(x)=Ng¢ fdf_ex%_ig_é)fd3X0<SL|‘I'1(§_Xo)7¢7’5Q2‘I'+(_X0)|SL>§+gio- (14

For convenience we have omitted the subscript “v” for the valence quark wave function. Noté réfets to a four-vector
which in light-cone coordinates read§’(,£~,£,). This coordinate enters the light-cone variables §fa= (t+ z)/v2. Also,
the notationS, is synonymous for the spin being perpendicular to the coordinat@n the other hand for the longitudinal
counterpart

2Mv2 MX
h{"(x)=Ne—— f dgexp<—i55> f d*xo( S ¥ (6=%0) 7075Q2¥ (= %o0)

—‘I’i(f—xo)707592‘1’+(_Xo)|3z>g+:§f0 (15

the spin is aligned with the-axis. The “good” and “bad” light-cone components of the quark wave functions are the
projections¥ . =P, W, with P.=3y" 9~ being the corresponding projections operators. Ab@e diag(2/3;- 1/3) refers

to the matrix containing the quark charge fractions and the zero momentum nucleon states are giyen OiS)
=[(2m)%2M]¥?S). Introducing Fourier transforms for the spatial part of the valence quark wave funftibrigg. (13)],

£ d’p.dps | [psé” ~
¢< §¢7§3:_E):J 2;_2 eXF{'( v _pJ_'gJ_) (P, ,P3), (16)
yields,
B —i& (Mx—¢€,+p cos ) ~ ~
Wt 00 =Ne—— f d¢~p?dpd(cos 6)d¢b exp( - (S#L Py ysQZhi(PIS) (A7)
and

3The following expressions constitute a generalization of Jaffe’s original defifi#ighfor nucleon structure functions.
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M _ —i¢& (Mx—e€,+p cosh)
h{*)(x)=N fd 2dpd(cos §)d¢ ex
L (%) ¢ 2 & podpd( )d¢ 7
XSSP (P) YorsQZY—(P) = UL (P) Yovs Q7Y+ (P)IS,). (18)
In anticipation of the decompositiaid3) the square of the charge operator is redefined as
, 5 1
Q :1_81_‘— €D3iTi' (19)

Here Dijzétr[riA(t) TjAT] denotes the adjoint representation of the collective rotation which is defined iG18q.The
integrals overg~ and @ enforce both the constraint cés-(e,— Mx)/p and the lower boung,,,=|Mx—¢,| on thep integra-

tion. This results in the forward moving quark contributions to the transverse and longitudinal chiral odd nucleon structure
functions:

oo

hCH (%)= Ng ! dpde(S, |4 2y S 20
T (x) C pdap ¢< J_|¢+(p)')’1_75Q ‘/’+(p)| L>|cosz9=(efo)/p (20)

Pmin

and

(o 2M [ ~t 2 St 2
hi(x)=N¢ = ) .pdpd¢<SZ|¢//+(p)yoy5Q Y (P) = L(P) Yovs QY+ (P)S) cos o= (e~ Mx)/p - (21

In order to obtain the full structure functions the contribution of backward moving qthéﬂ_%smust be considered as well.

These contributions are easily obtained froﬁj‘,_)(—x) by reversing the appropriate signs in E¢&7) and (18). The two
contributions may be comprised®as

“ M (= ~ ~
hgrf)(x):iNC? J'p+_ pdpd¢<SL|‘//T(p:)(liaa)')’i')’sgzl/f(p:)|si>|coseg (22
and
() M [~ o5t 27
hi (X)ziNc? o PAdpde(S,| 4" (p=) asyoysQ ¢(P:)|Sz>|cos0; (23
[
where p= —|Mxte/|, cos*=(Mxte)/p and J(p.) IV. PROJECTION AND EVOLUTION

=(p,cosd, ,4). Finally we summarize our results by de-  We consider that our model approximates QCD at a low
composing the proton structure functions into théo)sca-  scaleQ3. In order to compare the predicted structure func-

lar and vector components, tions with data they must be evolved tolarge) Q? com-
mensurate with experimental conditions. A direct compari-

_pl=0 =1 1=0 =1 son with data gathered at a low scale cannot be made as the
hr()=hr 200+ () + [hy 200 +hy 2], latter structure functions contain sizable contributions from
higher twist. Thus we evolve the chiral odd model structure
hy () =h=2() + h=1(x) + [hL=%(x) + h=Y(x)]. (24)  functions of the preceding section utilizing the results of per-
' ' ' ' turbative QCD.

] ) o . o In the soliton approach the baryon states are built from
The isoscalar piecd 0) originates from the unit matrix in  |ocalized field configurations. In fact, these states do not

the decompositiofil9) while the isovector parti=1) stems  carry good four-momentum. Therefore the calculated struc-
from the terms involving the collective coordinates. The ex- o functions(cf. Figs. 1, 3 and 4, belowdo not vanish

plicit expressions for the structure functio(®) in terms of

! : . . _exactly forx>1 although the contributions for>1 are ver
the static quark wave functions are computed in Appendix B y g y

small.
The calculation of nucleon structure functions in the
Bjorken limit, however, singles out the null plang!=0.
“We have used that the valence quark level has positive parityThis condition can be satisfied upon transformation to the
i.e., undemp— —p we find %(—p) = Y°%(p). infinite momentum framéIMF) even for models where the
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nucleon emerges as(atatig localized objec{28]. For the  maps the infinite line exactly onto the interwak[0,1. In
quark soliton model under consideration this transformatioraddition we have observed that this Lorentz contraction af-
corresponds to performing a boost in the space of the collegects the structure functions also at small and modexate
tive coordinatex,; cf. Eqg.(14). Upon this boost to the IMF  |ncorporating these results for the general set of leading twist
we have observed29] that the common problem of im- strycture functions within the NJL chiral soliton model
proper support for the structure functions, i.e., non-vanishingjie|ds the following form for the forward and backward
structure functions fox> 1, is cured along the line suggested moying intermediate quark state contributions to the chiral

by Jaffe[30] some time ago. The reason simply is that the 44 transverse spin structure functidris)(x. O2):
Lorentz contraction associated with the boost to the IMF- P (hsr (x,Q%:

+ M * ~ ~
h(T*)(X):iNcm fp _ pdpde(N[¥"(p)(1F as) v, ¥5Q 2P(P=)|N)|cos o= — m I(1—x)+ €,)/p - (25

In general the resulting relation between structure functions

4 3
in the IMF and the RF reads qu(z): 5[(1_—2)+—2+ 56(2—1) (29

_0(1-x) and Cy(f )=(n?—1)/2n; for n; active flavors, aocp(t)
Fimr() = —7 5= fre(=In(1=x)). @0 4 ib, log(@/A2)] and by (11Nw—2n)/3. Employing
the “+" prescription yields, for three light flavors and.
Of course, in the context of the chiral odd structure functions= 3,
fre is to be identified with the expressions in Egs.
(22), (23), (24). As will be recognized shortly the solution to
the proper support problem is essential in order to apply the

dh?(x,t) aQCDm(

8
2+3 Iog(l—x)) h®)(x,t)

evolution program of perturbative QCD. The chiral odd and dt 2m
polarized structure functions resulting from this transforma- 8 rid 1 X
tion are shown in Fig. 2, below. +— f _y[_[h(Z) —,t) —yh@(x,t)
In order to include the logarithmic corrections to the 3Jx y 1~y y
twist-2 pieces of the chiral odd structure functions we apply
the well-established Gribov-Lipatov-Altarelli-Pari€66LAP) _ h(z)(f't) ] ) (30)
procedure[31]. For the transverse componeht(x,Q?)

this is straightforward as it is pure twist-2. For the longitu-

dinal pieceh, (x,Q?) one first has to extract the twist-2 As indicated above, the structure functions must vanish at
component through h(x,Q?), namely, h(,_z)(x,QZ) the boundaryx=1 in order to cancel the divergence of the
=2x[rdyhr(y,Q?)/y?. logarithm in Eq.(30) and thus for the GLAP procedure to be

We simultaneously denote By the twist-2 parts oh;  a@pplicable. This makes the projection of the rest frame struc-
and h, . To leading ordefin ano(Qz)] the variations of ture functions mandatory. The variation of the structure func-

the structure functions from a Chan@g of the momentum tions for finite intervals irt is Straightforwardly obtained by
scale are given by iteration of these equations, i.e. as a solution to the differen-
tial equation(30). As discussed previously the initial value
dh@(x.t) for integrating the differential equation is given by the scale
h@(x,t+ 8t) =h@(x,t) + ———— 5t, (27) QS at which the model is defined. It should be emphasized
dt that this scale essentially is a new parameter of the model.
1k 2 o i ) For a given constituent quark masswe adjustQS to maxi-
wheret=10g(Q7Aqcp)- The variation(27) is essentially due  ize the agreement of the predictions with the experimental
to the emission and absorption of soft gluons. The explicityata on previously[17] calculated unpolarized structure
expression fpr the evolution differential equation is given by ntions for electron-nucleon DIS:EP—FS". For the con-
the convolution integral, stituent quark massn=400 MeV we have obtained®3
~0.4 Ge\%. Note that this value ong is indeed (as it
dh®(x,t)  agco(t) CL(F J’l dyph h@| X should be smaller than the ultraviolet cutoff of the underly-
at ~ 2m R <y agYN 50t ing NJL soliton model as\?~0.56 Ge\f. The latter quan-
(28) tity indicates the range of validity of the model. In Figah
below, we compare the un-evolved, projected, proton struc-
where the leading order splitting functi¢82,6] is given by  ture function hf}(x,Qg) with the one evolved frochz,
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=0.4 GeV to Q?=4.0 Ge\. As expected the evolution

pronounces the structure function at low 125} — Q)

This change towards small is a generic feature of the P ——TNp
projection and evolution process and presumably not very )
sensitive to the prescription applied here. In particular, e QD)

0.75 |

choosing a projection techniqy83] alternative to Eq(26)
may easily be compensated by an appropriate variation of the
scale QS. In Fig. 5b), below, the same calculation for
h(®)(x,Q?) is presented.

In the evolution of the twist-2 pieces we have restricted

025 |

ourselves to the leading order i, because for the twist-3 T T e e
piece ofh,_, the necessary ingredients are not known in next- 025 e - v = s
to-leading order. Even the leading order evolution is only @) X

known in the largeN¢ limit. It should be noted that such an
approach seems particularly suited for soliton models which
equally utilize largeNc arguments. As pointed out by Bal-

) b ] 25t — hxQ9)
itsky et al. [34] the admixture of independent quark and " e 0D
quark-gluon operators contributing to the twist-3 portion b0
h.(x,Q% grows withn wheren refers to then™ moment, | / 7 7 TP

0.75 |

M, [h (Q?] of h (x,Q?). However, much like in the case
with the spin-polarized structure functiogy(x,Q2) [35] in

the Nc—o limit, the quark operators of twist-3 decouple
from the quark-gluon operators of the same twist. Then the
anomalous dimensiong, which govern the logarithmi€?

0.25

dependence ofM, can be computed. Once thg,’s are T e
known an evolution kernﬂ can be constructed that “propa- 025 e - v = s
gates” the the twist-3 par(x,Q?) in momentum: (b) X
1 dy FIG. 1. The valence quark approximation of the transverse
T x,Q3 :f —Zb(x,y:Q3, 2yh ’ 2y 31 chiral-odd nucleon distribution function as a function of Bjorken-
L(x,Q%) x Y (xy: Q% Qo) (¥.Q0) S for the up and down quark flavor content in the rest frame. For

comparison also the model calculatidr8] for the twist-2 polarized
structure functiorgl(x,Qg) is shown for the respective flavor chan-
We relegate the detailed discussion of the kernehels. Two values of the constituent quark mass are considéed:
b(x,y;Q2,Q3), which is obtained by inverting th@? depen-  m=400 MeV and(b) m=450 MeV.
dence ofM,,, to Appendix C. In Fig. €), below, we dis-
play the evolution oh, (x). Again we usedQ2=0.4 Ge\? V. DISCUSSION OF THE NUMERICAL RESULTS

andQ?=4.0 Ge\~. In this section we discuss the results of the chiral-odd
As discussed in Ref34] the merit of this approach is that gtrycture functions calculated from Eq@17)—(B20) for
to leading order ifN¢ knowledge oh, (x,Q?) at one scale is constituent quark masses=400 MeV andm=450 MeV.
sufficient to predict it at any arbitrary scale, which is not the|p Fig. 1 we show the up and down quark contributions to
case at finiteNc.> Thus h (x,Q% obeys a generalized the transverse chiral odd structure function of the proton.
GLAP evolution equation. This finally enables is much  Figure 2 displays them boosted to the IMF. We observe that
the same manner as was the caseds(x,Q?) in [18]] to  these structure functions are always smallarmagnitudg
compute the longitudinal chiral odd structure functionnan the twist-2 polarized structure functignpwith the same
hL(x,Q?) by combining the separately evolved twist-2 andflavor content. This relation is also known from the bag
twist-3 components together. The result 19§=0.4 GeV¥  model[4]. Similar to the confinement model calculation of
and Q*=4.0 GeV is shown in Fig. ), below. We recall  Baroneet al. [6] we find thath{?)(x) is negative at smal.
that the only ingredients have been the leading twist pieceg, contrast tog(ld)(x), however, it might change sign al-
of the chiral odd structure functions at the model s€aje® though the positive contribution appears to be small and di-
minishing with increasing constituent quark mass.
As already indicated in the Introduction the DIS processes
SAs noted in[34], next to leading order corrections are estimatedwhich are sensitive to these distributions will provide access
to go like O(1/N2XIn(n)/n) at largen. to the charge weighted combinations thereof. We will hence
8A feature ofh, (x) compared withg,(x) is that ash, (x) does not  concentrate on this flavor content. In any event, as we will be
mix with gluon distributions owing to its chiral-odd nature and its discussing both the proton and the neutron chiral odd distri-
Q? evolution is given by EqS(C2), (C3) even for the flavor singlet  butions, other flavor combinations can straightforwardly be
piece. extracted by disentangling the isoscalar and isovector pieces
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FIG. 2. Same as Fig. 1 in the IMF, E(R6).

in EQ. (19). In connection with the chiral-odd transverse may be the reason why our predictions Tof

PHYSICAL REVIEW D58 054014

at both the low scaleéQ3=0.4 Ge\f and a scale commensu-
rate with experimentQ?=4 Ge\2. Of course, for the neu-
tron we have to reverse the signs of the isovector pieces in
Eqg. (24). In Egs.(32) and(33) the normalization factors are
due to the separation into isosinglet and isovector contribu-
tions; cf. Eq.(19). Note that due tq'gdzPj(z) #0 the ten-

sor charge is not protected against logarithmic corrections.
Our results for the valence quark approximation are summa-
rized in Table |. For completeness we also add the vacuum
contribution to the tensor charges at the model s€de
Their analytic expressions are given in Appendix D. Obvi-
ously this vacuum contribution is negligibly small. This is a
strong justification of the valence quark approximation to the
chiral odd structure functions. A further justification comes
from a recent study of the Gottfried sum rule within the same
model[41]. Also in that case the contribution of the distorted
quark vacuum to the relevant structure function turned out to
be negligibly small.

Besides justifying the valence quark approximation for
the chiral odd distributions Table | contains the comparison
to other model calculations of the nucleon tensor charges.
We note that in obtaining the isovector tensor char§eve
have omitted contributions which are suppressed By:1/
(cf. Appendix D. These contributions arise when one adopts
a non-symmetric ordering of the operators in the space of the
collective operatorg39]. The main reason for taking the
symmetric ordering is that in the case of the isovector axial
charge,gs, any non-symmetric ordering of the collective
operators leads to a sizable violation of PCAgartial con-
servation of axial vector currentinless the meson profile is
not modified 40]. These multiplicative M correctiong42]
are somewhat

nucleon structure function we also calculate its zeroth motower than those of other models. In the case of the flavor
ment which is referred to as the isoscalar and isovectoginglet component, which does not have such corrections,

nucleon tensor chargé¢d],

S 2 18 ! p 2 n 2
FQY= | ddMGQY +hI QY] (32

1
1“\T/(QZ)=6J0 dx{hf(x,Q%) —h7(x,Q%)] (33

our results compare nicely with other model calculations ex-
cept for the constituent quark model of RE28].

In Fig. 3 we display the transverse chiral odd proton
h2(x,Q3) and neutronh}(x,Q3) structure functions at the
low momentum scal®3, while in Fig. 4 we do the same for
the corresponding chiral odd longitudinal structure functions
hP(x,Q3) andh{(x,Q2). We observe that the structure func-
tionshf(x,Q3) andh'(x,Q3) are reasonably localized in the

TABLE I. Nucleon tensor charges calculated from E(&2) and (33) as a function of the constituent
quark massm in the NJL chiral-soliton model. The momentum scales &%=0.4 GeV¥ and Q2
=4.0 GeV. The numbers in parentheses in the respective upper rows include the negligible contribution
from the polarized quark vacuum. We compare with results from the ld8igle QCD sum rulegSR) [37],
the constituent quarkCQ) model with Goldstone boson effedi38] and a quark solitoiQS) model calcu-
lation [39] including multiplicative 1IN corrections violating PCAC in the similar case of the axial vector
current[40]. Finally the predictions from the confinement mod€M) of Ref. [6] with the associated

momentum scalegn GeV?) are shown.

m (MeV) 350 400 450 Latice SR CQ QS Q? CM
F%(Q%) 0.80 (0.82 0.72(0.76 0.67 (0.72 0.61 0.61 131 0.69 0.16 0.90
Ir'3(Q? 0.73 0.65 0.61 no scale attributed 25.0 0.72
F\T’(Qg) 0.88 (0.89 0.86(0.87 0.86 (0.8 1.07 137 1.07 145 0.16 1.53
rY(Q? 0.80 0.78 0.77 no scale attributed 250 1.22
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X
o ) (b)
FIG. 3. The valence quark approximation of the transverse chi-
ral odd nucleon structure functions as a function of Bjorkerta) FIG. 4. The valence quark approximation of the longitudinal
h$(x,Q(2)) for constituent quark masses=400 MeV (solid line) chiral odd nucleon structure functions as a function of Bjorken-
. 2 : _ H
andm=450 MeV (long-dashed line (b) h(x,Q3). (@ hP(x,Qp) for constituent quark masses=400 MeV (solid

line) andm=450 MeV (long-dashed ling (b) hE(x,Qg).

interval 0<x<1. In _particular, this is the case for the chiral 4qq structure function&r(x) andh,(x). Therefore and in
odd structure functions of the neutron. Nevertheless a progpticipation of results from RHIC and or HERMES we apply
jection as in Eq(26) is required to implement Lorentz co- |eading order evolution procedures to evolve the structure
variance. In addition the computed structure functions exfunction from the model scale,Q2=0.4 GeV? to
h|b|t a pronouncled maXimum A= 03 Wh|Ch iS Sm.eal’ed out Q2:4 Ge\ﬂ In F|gS Sa) and ab) we d|sp|ay the results Of
when the constituent quark massincreases. This can be the two step process of projection and evolution for the
understood as follows: In our chiral soliton model the con-yyist-2 transverse structure functionh?(x,Q?) and
stituent mass serves as a coupling constant of the quarks FFE(Z)(X'QZ)’ respectively, for a constituent quark mass of
Lhe chiral field see Eqs(5) and(8)]. The valen_ce quark level m=400 MeV. In Fig. 6 we present the evolution bP(x)
ecomes more strongly bound as the constituent quark Masy Lo with its decomposition into terms of the leadin
increases. Hence the lower components of the valence quafk. 9 N pl 0 ™2 ding
wave-function increase witlm and relativistic effects be- wist-2 contrlbutlo_n, 2[,dyhr(y,Q9)7y?, and the remain-
come more important. This effect results in the above mening twist-3 piecehf(x,Q?). As in the case of the polarized
tioned broadening of the maximum. structure functiong,(x,Q2), the non-trivial twist-3 piece
As discussed above a sensible comparison vétrentu- ~ arises as a result of the binding of the constituent quarks
ally availablé data requires one either to evolve the modelthrough the pion fields acting as effective non-perturbative
results upward according to the QCD renormalization groug@luonic modes. The twist-3 contribution is evolved accord-
equations or to compare the model results with a low moing to the largeNc scheme[34,35,43 outlined in the pre-
mentum scale parametrization of the leading twist pieces oteding sectiortand in Appendix ¢ Similarly in Figs. 7 and
the structure functions. The latter requires knowledge of thé& we display the projection and evolution procedure applied
structure functions at some scale in the whole intemwal to the twist-2 and -3 contributions to the neutron structure

e[0,]. At present no such data are available for the chiraWunctions,hE(z)(x,Q2) andWQ(x,Qz), respectively.

054014-9



L. GAMBERG, H. REINHARDT, AND H. WEIGEL PHYSICAL REVIEW D58 054014

2
bi(xQ") e
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FIG. 6. (a) The evolution of the twist-3 contribution to the lon-
gitudinal chiral odd structure functid?f(x,Qz) along with the cor-

FIG. 5. (@ The evolution ofh®(x,Q?) from Q2=0.4 GeV?  responding twist-2 pieceh?®(x,Q?). (b) The evolution of
(solid line) to Q®=4 Ge\ (long-dashed lingfor the constituent h[’(x,QZ)=hf(2)(x,Q2)+FE(x,Q2) from Q§=0.4 GeV (solid
quark massn=400 MeV. (b) The evolution of the twist-2 contri- Jine) to Q?=4 Ge\? (long-dashed lingfor the constituent quark
bution to the longitudinal chiral odd structure function massm=400 MeV.

hP((x,Q?) from Q3=0.4 Ge\? (solid line) to Q?=4 Ge\? (long-
dashed lingfor m=400 MeV. shifted to a value as low as=0.2. Also the structure func-
tion becomes rather broad at the large scale. The fact that in
Besides the absolute magnitudes, the major difference béhat calculation the evolution effects are more pronounced
tween the chiral odd structure functions of the proton and théhan in the present approach is caused by the significantly
neutron is that the latter drop to zero at a lower value.of lower scale f,,=0.08 GeV?) used in Ref[5]. On the other
As can be observed from Fig. 3 this is inherited from thehand our results are quite different to those obtained in the
model chiral odd structure function at the low momentumQCD sum rule approach of R¢#3]. The sum rule approach
scale and can be linked to the smallness of the down quar&ssentially predictéi; to be constant in the interval G<X
component 0'|hT; cf. F|g 1. Apparenﬂy the projection and <0.8. For small values of the authors of Re1[43] assume
evolution program does not alter this picture. a Regge behavior. In thEgovarian} constituent quark model
We would also like to compare our results from the NJLOf Suzuki and Shijetamiri38] a result similar to ours is
chiral soliton model to those obtained in other approaches. ®btained when effects attributed to Goldstone bosons are in-
MIT bag model calculation of the isovector contribution cluded. Otherwise the maximum of their distribution is about
6(h?—h") has been presented in Ré#]. In shape(e.g. 50% Iarger_ than in.our calculation. These authors algo qb—
position of the maximunnthat result is quite similar to ours. Serve that in magnitude the down quark component is sig-
However, the absolute value is a bit larger in the MIT bagnificantly smaller than the up quark piece. The chiral chro-
model. This reflects the fact that in the MIT bag model themodielectric model of Baronet al. [6] predicts a similar
isovector combinations of the axial and tensor charges turfhape foty but their distributionh{*’ is larger than the one
out to be bigger than in the present model. Additionally, thein the NJL chiral soliton model. This is also reflected by the
QCD evolution of the MIT bag model prediction for has ~ sizable value for the isovector tensor chardg(Q?
been studied in Ref5] utilizing the Peierls-Yoccoz projec- =25 GeV¥)=1.22 andI'Y(Q?=0.16 Ge\?)=1.53 in that
tion as in Ref[21]. In that case the maximum &t=0.5 gets  approach. In the Isgur-Karl modéwhich hash,;=g;,) the

0.00
0.01 0.10 1.00

(b) X
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FIG. 7. (@ The evolution ofh}(x,Q?) from Q3=0.4 Ge\?
(solid line) to Q?=4 GeV? (long-dashed lingfor the constituent
quark massn=400 MeV. (b) The evolution of the twist-2 contri-
bution to the longitudinal chiral odd structure function
h)(x,Q?) from Q2=0.4 GeV’ (solid line) to Q?=4 Ge\? (long-
dashed ling for m=400 MeV.

FIG. 8. (a) The evolution of the twist-3 contribution to the lon-
gitudinal chiral odd structure functid?f(x,Qz) along with the cor-
responding twist-2 pieceh!®(x,Q?). (b) The evolution of
h1(x,Q%)=h"?(x,Q9)+hl(x,Q?) from Q2=0.4 GeV? (solid
line) to Q?=4 Ge\? (long-dashed lingfor the constituent quark
massm=400 MeV.

m=400 MeV is that the down quark componentd® does
maximal value ofh; is only about half as big as in our not possess nodes. This can already be inferred from Figs. 1
calculation; cf. Fig. 1 in Ref[8]. and 2.

For completeness we also demonstrate in Figs. 9 and 10 A more thorough model study of Soffer's inequality for
that at the low model scal@3=0.4 Ge\? Soffer's inequality ~ scales other tha®3 which also contains the next-to-leading
[44] is satisfied. This inequality relates the nucleon chiralorder contributions in the evolution program is subject to
odd distribution functions to both the unpolarized further investigationg45]. The next-to-leading order calcu-

f{9(x,Q3) and polarizedyi¥(x,Q3) structure functions lation for hy [8] in the Isgur-Karl model indicates that its
scale dependence is slightly mitigated by the inclusion of
119(x,Q%) +9?(x,Q%)=2|h{¥(x,Q?)|. (34  next-to-leading order contributions.

Here the superscript refers to the flavor combination which
projects onto up and down quark quantum numbegs ( VI. CONCLUSIONS

=u,d). Note, again, that this projection refers to the con- | this paper we have presented the NJL chiral soliton
stituent quarks which contain some non-perturbative gluoni¢nodel calculation of the leading twist contributions of the
distributions. In Fig. 10 we display the down quark compo-transverse and longitudinal chiral odd struct(astribution
nent of the inequality34). As this component ohr is al-  functions of the nucleon. Data on these distribution functions
most negligible the inequality is satisfied by the unpolarizedshould eventually be available from DIS experiments in the
structure functionf(® being larger in magnitude than the fragmentation regiongin conjunction with fragmentation
polarized oneg(ld). For the constituent quark mass  functiong or be extracted from Drell-Yan experiments.
=450 MeV we also find that Soffer’'s inequality is satisfied These structure functions serve to complete our picture of the
at the model scal®,. The only remarkable difference to spin distributions of the nucleon. The most important feature
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FIG. 9. (a) The Soffer inequality for the chiral even combination
{9(x,Q2) +g{" (x,Q2) (solid line) of the effective up-quark distri-
butions and the chiral odd structure functioh{(x,Q3) (long-
dashed ling for a constituent quark mass of=400 MeV, calcu-

FIG. 10. Same as Fig. 9 for the down quark combination.

ton onto states with good spin and isospin, i.e. proton and

lated in the nucleon rest fram®F). (b) Same aga) calculated in neu"_on' Inclusion Qf these Nt corrections together W't,h a
the infinite momentum framdMF). The transformation prescrip- g:onS|ste_ntIy regulan;ed treatment of the vacuum polarization
tion is given in Eq.(26). is technically rather involved and beyond the scope of the
present paper. The numerical results for the tensor charge
of the present quark based model is that it is chirally invari-ndicate that the vacuum contributions are in fact negligibly
ant and that this symmetry is dynamically broken. AfterSmall. .
bosonization the NJL model becomes an effective meson When the model structure functions are computed one
theory in which baryons emerge as self-consistent solitoffmediately recognizes that they have improper support due
solutions exactly the way as expected from lakgeconsid- 10 t_he br_eakmg of translatlonal_|nvar|ance by the background
erations in QCD. Chiral soliton models are particularly inter-SOliton; i.e., the structure functions do not exactly vanish for
esting in the context of the nucleon spin structure as thesé> 1. This can be cured by Lorentz boosting to the infinite
models nicely explain the small contribution of the quarksmomentum frame which is particularly suited for DIS pro-
the total nucleon spin. cesses. Although the un-boosted structure functions are neg-
In the NJL chiral soliton model there are two contribu- li9ibly small atx>1, the transformation to this frame is es-
tions to nucleon properties. First, there is the contribution of€ntial and has sizable effects on the structure functions at
the distinct valence quark level. This is the lowest level inmoderatex. However, the most important issue when com-
the quark spectrum and bound in the background of the chiparing the model predictions toot yet availablg experi-
ral soliton. Second, there is the part which is associated witinental data is the observation that the model represents QCD
the polarization(by the soliton of the vacuum. For many at a low momentum scal@j. A priori this scale represents
static nucleon properties the latter contribution is quite smallan additional parameter to the model calculation which, for
in particular for those which are related to the axispin consistency, has to be smaller than the ultraviolet cutoff of
properties of the nucleon. This is a strong indication that théhe model,A?=0.56 Ge\f. For the model under consider-
vacuum contribution to the chiral odd structure functions isation we previously fixecQS when studying the unpolarized
negligible as well. Hence it seems more important to includestructure functions and four©(2,=0.4 Ge\f. The important
substantial M corrections to the valence quark contribu- logarithmic corrections to the model structure functions are
tion. These corrections come about when projecting the solithen obtained within a generalized GLAP evolution program.
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In this context we have restricted ourselves to a leading ordegmerging from the Lorentz decomposition of these hard pro-
(in agcp) calculation because the anomalous dimensionscesses are given 3]
which govern the QCD evolution, for the twist-3 piece of the

longitudinal part of the chiral odd structure are only known f d_)‘eiM<p,5|\3(0)ioﬁﬂsxp()\n)|p,s>
to that order. As the full evolution to the longitudinal struc- 2m
ture function involves both twist-2 and twist-3 pieces this
S ) =2{h{(x)(S -S M
restriction is consistent. We have seen that the QCD evolu- {hr((S,P=S14P,)
tion of the chiral odd structure function leads to sizable en- +h ()M (p,p,—pP,p.)S N}, (A1)
hancements at low, i.e. in the region 0.0£x=<0.10. In this O
respect the present situation is similar to that for the polar- f A x AN
ized structure functions. A difference to the polarized struc- Zwe {p.S¥(0)i 7“75\P()\n)|p's>

ture function is that the lowest moment is not protected

against logarithmic corrections, even at leading order in =2{9.()P,S n+gr(x)S, .} (A2)
aocp- For the nucleon tensor charge we thus find a reduc- . . . . .
ti(;?n of about 10% upon evolution t@?=4.0 Ge\". We Wheiep” ;‘fde deflngz a “gdht'“ke cor?rdmalte system, |:e;].
have also compared the neutron and proton chiral odd struc¢-’ n=1,p°=n"=0, an |PS_> enotes the nucleon state wit
ture functions. This has been achieved by the inclusion of th our-mon?entum-P and sp|n§. I_n th_e system wherg the
1/N¢ cranking corrections. In absolute value the protonnucleon is moving along the direction one conveniently
structure functions are about twice as large as those of th@efines the four vectors

neutron. Furthermore the neutron structure functions drop to D

zero at a lower value of. These two effects can be linked to p#=—(1,0,0,1

the down quark component of the transverse nucleon chiral V2

odd distribution functions being significantly smaller than

the component with up-quark quantum numbers. We have L 10.0—1 A3
also observed that neither of these features is affected by the n"= ‘/27)( 0.0~1). (A3)
evolution program.

In this system the nucleon momentum is given By= p#
ACKNOWLEDGMENTS +M?2n#/2 and spinS* is decomposed a§*=(S-n)p*
+(S-p)n*+S}. Finally, P— corresponds to the IMF and
P=M/v2 corresponds to the nucleon RF. Utilizing the con-
venient projection properties of the light-like vectors the de-
fining equation(Al) may be inverted. One obtains, for the
chiral odd structure functions,
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APPENDIX A: BILOCAL LIGHT CONE DISTRIBUTIONS (A4)

In this appendix we outline the steps giving rise to theand
starting point of our calculation, Eq§l4) and (15) in Sec. 1 dx
. o ;
h(X)=5—= | =—e™(PS|T.(0 v (A
It is well known that the chiral odd spin-dependent struc- ATV f 27 S¥2(0)voys¥ ()
ture functionsht(x) andh,(x) do not contribute to the had- +
ronic tensor in DISh(x) was first studied by Ralston and ~ VL (0)%0ys¥-(AN)[P.S,). (AS)

Soper[1] in the context of polarized Drell-Yan processes . . . .
. : The quark bilocals describe the propagation of the interme-
while h, (x) was more recently detailed by Jaffe and 4 diate constituent quark which is struck by the external

In the latter study a general Lorentz decomposition of invari- o . .
ant matrix elements of the characteristic bilocal operators jrpource. The forward propagation is describedkey0 while

— d . negativex parametrizes an intermediate quark which moves
hard processest (0)I', W (An), was performed.Adopting  paciward. In what follows we will only consider positive

light-cone variables reveals that up to twist-3 there are sit, .,ninction with the contribution associated with the for-

invariant structure functions that characterize the nucleon, . 4 propagating quark(*)(x). The backward contribution
The leading twist(2 and 3 spin-dependent contributions can easily be obtained from*)(—x). Finally, noting the

change of variables from light-like coordinates,§,&,) to
light-cone coordinates&(",&7,&,) where, in particular,
"See Ref[43] for the definition of chiral odd structure functions
in the language of a hadronic tensor. Actually such a definition is + __A
- . E'=n9P and ¢ == (AB)

sufficient to carry over the QCD definition of the chiral odd struc- P

ture functions to the NJL model because formally the NJL model

currents are identical to those in QCD. yields the chiral odd quark transverse distributions
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ol M x which also is a conserved quantum numbétote that for
h{)(x)= yps f dé exp —ié — the G=0 channel, which contains the mean-field contribu-
™ V2 tion to the valence quark wave-function in EG3),
X(S, WL (&)Y, ysP 1 (0)|S, )+ - £ =0 (A7) (igv r)yS’E,Z(F))
W=

(r)ylllz(r

(B4)
and the longitudinal contribution

N M x only the components with= +1/2 are allowed. In addition
h(F(x)= o f dé exp( —ig— to this mean-field piec€B4) the complete valence quark
8m V2 wave-function (13) also contains the cranking correction,

which dwells in the channel wit =1 and negative intrinsic

X(SW (&) 70ys¥-(0) Darty. J
—ypt 02¥ (0 o The discretizatior{u) is accomplished by choosing suit-
(&)707s +{ )|SZ>§+ &0 able boundary conditions at a radial distance which is large
(A8) compared to the soliton extensip#6,47). This calculation
yields the energy eigenvalues,, which enter the energy

These equations represent the starting point of Sec. lll.  functional(9). The soliton configuration is finally determined
by self-consistently minimizing this energy functional. In
APPENDIX B: CHIRAL ODD STRUCTURE FUNCTIONS Ref.[48] th(_e numerical procedu.re. is descrlped in detail.
IN THE NJL SOLITON MODEL - V\(/les;:ontlnue by making explicit the Fourier transform of
q. ,
In this appendix we derive and summarize the explicit e
expressions for the chiral odd structure functions, E24). ~ :f ax D) = 10
The first step is to construct the eigenfunctions of the single v(p) 4 ()X ) =W (p) + QW u(P)-
particle Dirac Hamiltonian(8) in coordinate space. The (B5)

hedgehog ansatZ) connects coordinate space with isospace _ _ o
and these eigenfunctions are also eigenstates of the graddie leading order in thélc valence quark contribution is

spin operator just the Fourier transform of E¢B4),
G=Jt o=+ 24 Z’ (B1) T (p) = (gv(p)yo 1/2(p)) (B6)
2 2 2 f.(P)YV2LAP)

which is the sum of the total spihand the isospin/2. The  and the cranking correction involves the Fourier transform of
spin itself is decomposed into orbital angular momenium spinor withG=1 and negative intrinsic parity:

and intrinsic spine/2. Denoting byM the grand spin pro-

jection quantum number the tensor spherical harmonics -~ 9 (P) VAP — 92 () Ve YAP)

which are associated with the grand spin may be written as w(P)=— f(l)(p)yi 2(p)_f<2>(p)yi 2(p)

YEM(r). Note that these tensor spherical harmonics are two- (B7)
component spinors in both spin and isospin spaces. Given a

profile function®(r) the numerical diagonalization of the Here y (E,) are the Fourier transforms of the tensor
Dirac Hamiltonian (8) yields the radial functions spherlcal harmonics associated with the grand spin operator
gl D(r), £&7D(r), etc., in the decompositiotcf. Ref.  (B1). The Fourier transform for the radial functions in Egs.

[46]) (B6) and(B7) is defined by
(G,+;1) G.M - _ R
‘P(G +)( ) ( g (r)y(’?/l,GJr l/2(rA) ) ¢,u.(p):J' d”zjl(pr)d’,u(r)- (88)
f# (r)yG'+m+ 12AT) 0
|g£LG Anygd. 1,Z(F) Here the indest of the spherical Bessel function denotes the
G +; 2)(”37@ . 1/2( ) (B2) orbital angular momentum of the associated tensor spherical

harmonic. We have suppressed the grand spin index on the
transforms of the radial wave functions for convenience. For
) purposes of notation we have also introduced the quantity
Q, in Eq. (B5) which parametrizes the cranking corrections
in Eq. (13):

N ot
g I VEEL 1alT)
(iQM R (ONS 16— uAT)

. B3
f(Giz)(r)yGG 1,2(r) ) B3

8The total parity is given by the product of the intrinsic parity and
The second superscrigt=) denotes the intrinsic parity, (—)€.
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(u|7Q|v) Su, .
6|\/|,*l .
- (Ql_lﬂz)_‘sM,OQO] 5(3#,1
(B9)
)
=Qﬂ[ %‘(Jmaz)
5M,—1 .
" h (Jl_lJZ)_éM,O‘]O]aGwl (B10)
where
Q,= ! fdrrz{ (Mg (r)+f(nf2(r)}
Mmoo aZ(ev_ #) gy g;/, Y M .

(B11)
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A e (eu/N?_ g (e,/A)?

fw(/\)—\/—; P
v S
sgn(e,)erfo| e, /A|) —sgrie,)erfc(|e, /A])

2(e,—€,)
(B15)

The moment of inertia enters via the quantization description
for the collective coordinate€2— o) with J being the
nucleon spin operator. In this quantization prescription we
had previously restricted the moment of inertia to its valence
quark contribution?, to ensure that the Adler sum rule for
the unpolarized structure functions is maintained in the va-
lence quark approximatiofi7]. For small or moderate con-
stituent quark masses the valence contribution to the moment
of inertia is about 80% or morg47]. This is one of the
reasons to believe that the valence quark approximation to
structure functions is sensible. In the case of the chiral odd
structure functiongas for the polarized ongghe valence
quark approximation appears to be even better. As we see
from Table | the lowest moments of these structure functions
are saturated to about 95% by the valence quark contribu-
tion. Hence it is reasonable to assume that the vacuum con-

In this definition we have included the total moment of iner-tribution to these structure functions is negligibly small. As a
tia a2. In the proper-time regularization of the NJL chiral consequence the valence quark approximation with the total

soliton modela? is given by[19]

o Ne s [vlralul? o
Vo2 3 (€, €y) '
N
03~ 70z 2 Tusl Mkl ) (4] 7w, (B13)
1
al= §[1+ sgn( eva|)]oz3+ ozg. (B14)

The regulator function in the vacuum contribution reads

©

_ 5My
hr2(x,u?) =N 36 f

||ool p[ﬁv(p)am(p)

moment of inertia substituted into the quantization rule will
provide a very reliable estimate of the chiral odd structure
functions.

Together with(N|Dj;|N)=—(4/3)I;J; [13] the nucleon
matrix elements may now easily be computed. Herme-
notes the nucleon isospin. Whenever products of collective
coordinates and operators appear which do not commute af-
ter canonical quantization we adopt the symmetric ordering.
This is consistent with fundamental requirements such as
PCAC. Defining finally the combinations

T(p)=Q,f"p) and gV(p)=Q,a(p),
(B16)

for i=1,2, the isoscalé@wectop contributions to the chiral
odd structure function&24) read

3cog(62)-1 1. -
— -5 0(P3%p)

Mylxz 42
- o~ - o~ cogby) . - - cog 67)
LGP TH0) + )™ (P — 25 S IPIG /() + 0y PIT# (P —5
-~ co$(6:)—-3 . . cos(62)
—F fOgy —P7 = F f2(p)— P~
WP (p) o, WP (p) — (B17)
=1 2 My (= ~ 2,57 7 £\ F 2 *
hr 2 (6 u9) =Nege— fM |X_||Dd|0{glv(|0) +2gy(p) T (p)cog 6,) +TF,(p)*[coS(6,)1}, (B19)
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5My (= -~ 3cos(6,)-1 L1
=00y 42— N 2N J dol + W @
L2 u?)=NeZ— wx POP| TP 5 0(P1g?(p)
- - 1+cof(62) . .~ 2cod(6:)—1
- (g~ "P7— @(py 7P’ —
+t(p) - (p) v +f(p) < (p) 5 : (B19
M o ~ ~ .
20D = —Neggt [ pap(FGup) = Tu(p) 12 cod(0;) 11}, (820
M |x=|
|
which we evaluate numerically. Note that the ang@ is B
related to the integration variabfevia b™(x)=(N+1) k XK(L=x)N7K
1 N—k
cos 07 == |MyXx= €. (B21) _(N+D)! (—1)'x<! 4
P ki “h II(N—k—1)!
In Ref. [10] the contribution to structure functiom; from has the propert
effective quark distribution$ was calculated omitting the property
cranking corrections and adopting an exterifiabn-self- lim bMNK(y)=s(x—y) (C5)
consistent meson profile. tl/,ll\(l—wc
—X
APPENDIX C: EVOLUTION OF h, (x,Q?) for 0<x,y<1. This enables one to express the structure

: . . . function via its moments
In this appendix we outline our technique to evolve the

low scale model prediction for the twist-3 piebg(x,Q3) to T (x,0%)= lim (N+1)!
the larger scaleQ?. This utilizes the method described in L . K
Refs.[9,49] based on the results of Ré60]. The Q? evo- k/N—x

lution of the moments

1)' 1 _
><E TN=K=TT = Jodyw'hL(y,QZ)

Mf (@)= [(worhxed (e = -
° (C6)
is given by which depend orQ? as indicated in Eq(C2):
h
a(Q?)|\ M _ N+ (—1)
2 2 , ! h
n[hL(Q )] ( (QO)) Mn[hL(QO)] (CZ) hL(X’QZ):N!LTw m IZO |I(N—k—|)l |_7k+|/b0
kIN—Xx

Here by=(11Nc—2n;)/3 is coefficient of the leading term
in the QCD beta function. Alsd\; andn; are the number of f dyyk+l (y, Qo) (C7)
colors and flavors respectively. Within tiN-— c approxi-
mation the anomalous dimensions §34]
1 3 HereL= a(QZ)/a(QS) denotes the ratio of the running cou-
h_ = pling constants in QCD. Unfortunately, the rapid oscillations
y”_ZNC( Sitvem gt 2(n+ 1))' €3 in the summation ovet in Eq. (C7) due to the factor
(—1)" preclude numerical summation of E@C7). Yet ob-
with S,=37_,(1/j) — ye where ye=0577... is the Euler ggrying that the expressidr?'P may be expanded as
constant which has been introduced for later convenience.
In order to find the QCD-evolution of the structure func- by Ci(L)
tions one needs to invert the Mellin-transfot@1). This can L7 o= a(L)E m
be achieved by noting that the Bernstein polynomial

(C8

wherea(L), andr(L) are constants determined from the
asymptotic form g— ) of Eq. (C8),
%n this work it is important to note that the quark distributions 1
refer toconstituent quarksmy~400 MeV; it is thus misleading to r(LY=2N~ In(LY/b~. and a(L)=exdr(L _ -
compare them with the data gfarton distributions from either (L) ¢ In(L)7bo (L) (L)] 7e 4]’
Drell-Yan or DIS processes. (C9
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one can perform the sum to any desired accuracy. It should

be noted thap remains undetermined. It may be varied to
control the convergence of the serig8). To determine the
expansion coefficients (L) we rearrange EqC8) to a Fou-
rier expansion,

r 1 3 S Ba | < i
(1=zp) exan 2n+2_;1(m)}_20 Ginz.
(C10

Here z=1/(p+n)en=1/z—p and C;(L)=C,(r). Further-
more we have utilized the asymptotic expansion of

5155

where theB,'s are the Bernoulli numbers. Performing a
Taylor series to eighth order inyields the following values
for the expansion coefficientg(L)=C;(r(L)) (for p=2):

In(n)+ (C1y

5
Co(n=1, CyN)=0, Cylr)= 5,

1 25
C3(r)=§r, Cy(r)= 120 +2_88r

1 5
Cs(r)= —r+ﬂr
. 125 , 125
o= 252"+ 288" " 10368

1 37, 25
C7(r)—§r %r +%r ,
. 121 354341, 665 . 625
o(N=540' * 60as0d 6912 ' 297664 °

(C12
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(N1 (-1)' YK
NIILToc k! <o I'(N—k—=D)! (k+1+p)'*r
k/N—x

O(y—x) [x\P7 y\ite-t
iy (-

For the numerical results presented in Secs. IV and V we
have verified the stability of this evolution procedure by
varying the undetermined parametein Eq. (C8).

APPENDIX D: TENSOR CHARGES IN THE NJL CHIRAL
SOLITON MODEL

The conventional definition of the nucleon tensor charges
reads

(N|¥a,, ¥INy=T3ua,,u,

(N|\Ifa'MV73\I’|N>=I‘¥UO'WT3u. (D1)
Here N again denotes the nucleon state. Note that both the
quark wave-function? and the nucleon spinar are vectors

in flavor space. Momentum labels have been omitted as the
charges are defined at zero momentum transfer. Within the
NJL chiral soliton model these charges can be extracted us-
ing standard techniqué44]: First, sources conjugated to the

quark bilinears¥ o, , ¥ and\lfawrs\lf are added to the La-
grangian(4). Subsequently the bosonized and regularized ac-
tion is expanded to linear order in both the sources and the
angular velocitie€) Eq. (11). The coefficients of the source
terms then provide the charge operators in the space of the
collective coordinateé\, which are defined in Eq10). The
corresponding matrix elements can be straightforwardly
evaluated with the means provided in Appendix B. Finally
one obtains within the proper-time regularization

|v)(v| B2 37| val)

€val™ €y

Nc (val
3=l +sortea)] 2

which gives more than adequate convergence of the series.

Finally we may write

(X Q )—J —b(x,y; Q2 QO)hL(y Qo) (C13
where
2 A2 X)ME( y)‘“"l (L)
S T B S L s ()
(C19

is the evolution kernel used in E1). It has been gained by
using the additional relation

N
g 2 M)l Plo)(vBEsrn)  (D2)
nv
N
¥: - Fc[l'*'Sgr(eval)]<val|:82373|val>
tg 2 <ulﬂ2373m>sgr(eﬂ>erfo( X)
M
(D3)

Here |u) denote the eigenstates of the static Dirac-
Hamiltonian(8) and €,, are the corresponding eigenvalues.
Again |val) refers to the distinct valence quark level. The
regulator function in the isoscalar pie@@2) is identical to
the one entering the moment of inertia; cf. ER15). Those
pieces containing the factdrl +sgn(,,)] are the valence
contributions shown separately in Table .

As noted in Sec. V we have omittedNl{ suppressed
contributions to the isovector pafty which in the related
case of the axial current violate PCAC.
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