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Chiral odd structure functions from a chiral soliton
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We calculate the chiral odd quark distributions and the corresponding structure functionshT(x,Q2) and
hL(x,Q2) within the Nambu–Jona-Lasinio chiral soliton model for the nucleon. TheQ2 evolution of the

twist-2 contributions is performed according to the standard GLAP formalism while the twist-3 pieceh̄L(x) is
evolved according to the largeNC scheme. We carry out a comparison between the chiral odd structure
functions of the proton and the neutron. At the low model scale (Q0

2) we find that the leading twist effective
quark distributionsf 1

(q)(x,Q0
2), g1

(q)(x,Q0
2) and hT

(q)(x,Q0
2) satisfy Soffer’s inequality for both quark flavors

q5u,d. @S0556-2821~98!02517-X#

PACS number~s!: 12.39.Fe, 12.39.Ki
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I. INTRODUCTION

There have been a number of recent investigations
the chiral odd structure functions of the nucleon. As in th
case of the polarized structure functions there are two qu
tities of interest at leading twist: The transverse spin ch
odd structure functionhT(x,Q2) and the longitudinal spin
chiral odd structure functionhL(x,Q2). Within the context
of the operator product expansion~OPE! the analysis in
terms of twist reveals that the transverse chiral odd struc
function hT(x,Q2) is purely twist-2, while the longitudina
structure function hL(x,Q2) contains both twist-2 and
twist-3 contributions. Accordingly, the decomposition
hL(x,Q2) into twist-2 and twist-3@ h̄L(x,Q2)# pieces is given
by

hL~x,Q2!52xE
x

1

dy
hT~y,Q2!

y2 1h̄L~x,Q2!. ~1!

As a reminder we note that the kinematics are defined s
that q denotes the momentum transferred to a nucleon
momentump. In the Bjorken limit, i.e.Q252q2→` with
x5Q2/2p•q fixed, the leading twist contributions to th
nucleon structure functions dominate the 1/Q2 expansion.
The additional and important logarithmic dependence onQ2,
which is associated with soft gluon emission, is included
the evolution program of perturbative quantum
chromodynamics~QCD!.

While the chiral odd structure functions are not direc
accessible in deep inelastic lepton nucleon scattering~DIS!
there is the well-known proposal at the BNL Relativis
Heavy Ion Collider~RHIC! to extract the quark transversa
ity distributionshT

(a)(x,Q2) (a being the flavor index! from
Drell-Yan dilepton production resulting from transverse
polarized proton beams@1#. Unfortunately dilepton produc
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tion processes are difficult to extract from proton-proton c
lisions as the purely hadronic processes dominate. Furt
more this experiment will provide only the product of th
chiral odd distributions for quarks and antiquarks. As t
latter are presumably small these flavor distributions are
easily measurable in the Drell-Yan process. In light of the
disadvantages it has recently been pointed out that the tr
versality distributions may also be measured in the fragm
tation region of DIS@2#. The key observation is that thes
distribution functions can be extracted from an asymmetry
the two meson production in the special case that this
meson state~like p1p2! is a superposition of differen
C-parity states, such as e.g.s andr. Then the phases in th
final state interactions do not vanish on the average and
differential cross section is proportional to the product
chiral odd distributions and the interference fragmentat
functions. The latter describe the emission and subseq
absorption of a two pion intermediate state from quarks
different helicity. In case these fragmentation functions
not anomalously small the chiral odd distribution functio
can then be obtained from DIS processes1 such aseN
→e8p1p2X with the nucleonN being transversely polarized
Assuming isospin covariance for the fragmentation functio
these DIS processes will provide access to the cha
squared weighted chiral odd distribution functions@2#. Such
processes should be measurable in the transversely pola
target experiments at HERMES. Knowledge of the chi
odd structure functions will serve to complete our picture
the spin structure of the nucleon as they correspond to
distribution of the quark transverse spin in a nucleon wh
is transversely polarized@3#. With these data being expecte
in the near future it is, of course, interesting to understa
the structure of the nucleon from the theoretical point
view. As we are still lacking a bound state wave function f

cs,
s-

1The relevant fragmentation and distribution functions depend
different kinematical variables: The two meson state momen
fraction and the Bjorken variable, respectively.
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the nucleon in terms of quarks and gluons, i.e. compu
from first principles in QCD, it is both mandatory and frui
ful to investigate these chiral odd flavor distributions a
their charge weighted average nucleon structure funct
within hadronic models of the nucleon@4–10#.

In the context of the spin structure of the nucleon chi
soliton models are particularly interesting as they provide
explanation for the small magnitude of the quark spin c
tribution to the proton spin, i.e. the vanishingly small mat
element of the singlet axial current@11#. In these models the
nucleon is described as a non-perturbative field configura
in some non-linear effective meson theory@12–14#. Unfor-
tunately in many of these soliton models the evaluation
structure functions is infeasible due to the highly non-line
structure of the current operators and the inclusion of hig
derivative operators which complicates the current comm
tation relations. However, it has recently been recogni
that the soliton solution@14# which emerges after bosoniza
tion @15# of the Nambu–Jona-Lasinio~NJL! @16# chiral
quark model can be employed to compute nucleon struc
functions@17,18#. In order to project this soliton configura
tion onto nucleon states with good spin and flavor a crank
procedure must be employed@13,19# which implements sig-
nificant 1/NC contributions (NC is the number of color de
grees of freedom!. When extracting the structure function
from the NJL chiral soliton model the full calculation whic
also includes effects of the vacuum polarized by the ba
ground soliton is quite laborious. In addition we are s
lacking a regularization prescription of the vacuum contrib
tion to the structure functions which is derived from the a
tion functional and which yields algebraic expressions
their moments which areconsistentwith those for the static
nucleon properties. Fortunately it is known that the domin
contribution to static nucleon properties stems from
single quark level which has the lowest energy eigenva
~in magnitude! and is strongly bound by the soliton@14#.
This is particularly the case for spin related quantities. He
it is a reasonable approximation to consider only the con
bution of this level to the structure functions. In the follow
ing section the NJL chiral soliton model together with t
above mentioned approximation, which we will callvalence
quark approximation,2 will be described in more detail.

The NJL model for the quark flavor dynamics incorp
rates spontaneous breaking of chiral symmetry in a dyna
fashion. Hence the quark fields which build up the solit
self-consistently@20# areconstituent quarkswith a constitu-
ent quark mass of several hundred MeV. Keeping this
mind we calculate both theeffectiveconstituent quark distri-
butions and in turn the corresponding leading twist contri
tions to nucleon structure functions@cf. Eq. ~2!# at a low
scale Q0

2. In the language of Feynman diagrams the D
processes are described by a constituent quark of the nuc
absorbing a quantum of the external source. In the Bjor

2This notation refers to the valence quark in the NJL chiral soli
model and should not be confused with the valence quark in
parton model.
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limit the quark then propagates highly off-shell before em
ting a quantum of the external source. The intermedi
quark may propagate forward and backward. Hence the c
plete structure functions acquire contributions from both d
tributions where the intermediate constituent quark mo
forward and backward. We will focus on nucleon structu
functions which are defined as the sum over the char
weighted flavor distributions@4#

hT/L
~6 !~x,Q0

2!5
1

2 (
a

ea
2hT/L

~a,6 !~x,Q0
2!, ~2!

in analogy to those of the chiral even spin polarized a
unpolarized nucleon structure functions@2,3#. Herea repre-
sents a quark label, while~6! refers to the forward~1! and
backward~2! propagating intermediate constituent quark
Furthermoreea denotes the charge fraction of the consider
quark flavora. The complete chiral odd structure function
are finally obtained as the sum

hT/L~x,Q0
2!5hT/L

~1 !~x,Q0
2!1hT/L

~2 !~x,Q0
2!. ~3!

The calculation of the flavor distributionshT/L
(a) in the valence

quark approximation to the NJL chiral soliton model@17,18#
is summarized in Sec. III.

Further it is important to note that when consideri
model structure functions the OPE implies that the init
conditions,m25Q0

2, for the evolution isa priori a free pa-
rameter in any baryon model@21#. For the model under con
sideration it has previously been determined toQ0

2

'0.4 GeV2 by studying the evolution dependence of t
model prediction for the unpolarized structure functions@17#.
In a subsequent step to compute the chiral odd struc
functions we employ a leading order evolution program@6,9#
to obtain the chiral odd structure functions at a larger sc
e.g. Q2'4 GeV2, relevant to the experimental condition
This evolution program incorporates the leading logarithm
corrections to the leading twist pieces. The evolution pro
dure as applied to our model structure functions will be e
plained in Sec. IV.

The numerical results for the chiral odd structure fun
tions are presented in Sec. V while concluding remarks
contained in Sec. VI. Technical details on the model cal
lations and the QCD evolution procedure are relegated
appendixes. Let us also mention that there has been a p
ous calculation ofhT(x,Q0

2) @10# which, however, ignored
both the projection onto good nucleon states and the Q
evolution. Furthermore in that calculation an~arbitrary! me-
son profile was employed rather than the self-consistent s
ton solution to the static equations of motion.

II. NJL-MODEL CHIRAL SOLITON

Before continuing with the discussion of the chiral od
structure functions, we will review the issue of the chir
soliton in the NJL model.

The Lagrangian of the NJL model in terms of quark d
grees of freedom reads@16,15#

n
e

4-2
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CHIRAL ODD STRUCTURE FUNCTIONS FROMA . . . PHYSICAL REVIEW D 58 054014
L5q̄~ i ]”2m0!q12GNJL(
i 50

3 F S q̄
t i

2
qD 2

1S q̄
t i

2
ig5qD 2G .

~4!

Here q, m̂0 and GNJL denote the quark field, the curren
quark mass and a dimensionful coupling constant, resp
tively. This model is motivated as follows: Integrating o
the gluon fields from QCD yields a current-current intera
tion mediated by one gluon exchange to leading order
powers of the quark current. Replacing the gluon mediat
propagator with a local contact interaction and perform
the appropriate Fierz-transformations yields the Lagrang
~4! in leading order of 1/NC @22,23#, whereNC refers to the
number of color degrees of freedom. Although only a sub
of possible non-perturbative gluonic modes is contained
the contact interaction term in Eq.~4!, it is important to
stress that gluonic effects are contained in the model~4!.
Furthermore the NJL model embodies the approximate ch
symmetry of QCD and has to be understood as an effec
~non-renormalizable! theory of the low-energy quark flavo
dynamics.

Application of functional bosonization techniques@15# to
the Lagrangian~4! yields the mesonic action

A5TrLlog~D !

1
1

4GNJL
E d4x tr@m0~M1M†!2MM†#, ~5!

D5 i ]”2~M1M†!2g5~M2M†!, ~6!

whereM5S1 iP comprises composite scalar (S) and pseu-
doscalar (P) meson fields which appear as quark-antiqu
bound states. For regularization, which is indicated by
cutoff L, we will adopt the proper-time scheme@24#. The
free parameters of the model are the current quark massm0,
the coupling constantGNJL and the cutoffL. The equation of
motion for the scalar fieldS may be considered as the ga
equation for the order parameter^q̄q& of chiral symmetry
breaking. This equation relates the vacuum expectation v
^M &5m1 to the model parametersm0, GNJL and L. For
apparent reasonsm is called theconstituentquark mass. The
occurrence of this vacuum expectation value reflects
spontaneous breaking of chiral symmetry and causes
pseudoscalar fields to emerge as~would-be! Goldstone
bosons. ExpandingA to quadratic order inP ~around^M &!
these parameters are related to physical quantities, that is
pion mass,mp5135 MeV and the pion decay constant,f p

593 MeV. This leaves one undetermined parameter wh
we choose to be the constituent quark mass@15#.

The NJL model chiral soliton@14,20# is given by a non-
perturbative meson configuration which is assumed of
hedgehog type

MH~x!5m exp@ i t• x̂Q~r !#. ~7!

In order to compute the functional trace in Eq.~5! for this
static configuration we express the Dirac operator~6! in
terms of a Hamiltonian operatorh, i.e. D5 ib(] t2h), with
05401
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h5a•p1mb exp@ ig5t• x̂Q~r !#. ~8!

We denote the eigenvalues and eigenfunctions ofh by em
and Cm , respectively. Explicit expressions for these wav
functions are displayed in Appendix B of Ref.@14#. In the
proper-time regularization scheme the energy functiona
the NJL model is found to be@19,14#

E@Q#5
NC

2
ev@11sgn~ev!#

1
NC

2 E
1/L2

` ds

A4ps3 (
n

exp~2sen
2!

1mp
2 f p

2 E d3r @12cosQ~r !#. ~9!

The subscript ‘‘v’’ denotes the valence quark level. Th
state is the distinct level bound in the soliton background,
2m,ev,m. The chiral angle,Q(r ), is obtained by self-
consistently extremizingE@Q# @20#.

States possessing nucleon quantum numbers of spin
isospin are generated by elevating the rotational zero mo
to time dependent large amplitude rotational fluctuatio
about the hedgehog field@13#

M ~x,t !5A~ t !MH~x!A†~ t !, ~10!

which introduces the collective coordinatesA(t)PSU(2).
Substituting the ansatz~10! into the action functional~5! and
expanding@19# in the angular velocities

2A†~ t !Ȧ~ t !5 i t•V ~11!

to quadratic order yields the Lagrange function for the c
lective coordinates. Upon canonical quantization the ang
velocity V is substituted by the nucleon spin operat
J5a2V, with a2 being the moment of inertia@19,14#. The
eigenfunctions of the resulting Hamiltonian are the Wign
D-functions

^AuN&5
1

2p
DI 3 ,2J3

1/2 ~A!, ~12!

with I 3 and J3 being respectively the isospin and spin pr
jection quantum numbers of the nucleon. The nucleon ma
elements of the collective rotations are obtained
^Nutr(t iAt jA

†)uN&52(8/3)^NuI iJj uN& @13#. This approach
to generate nucleon states from the hedgehog correspon
the cranking technique in nuclear physics@25#.

Expectation values of bilocal quark-bilinears appearing
the evaluation of nucleon structure functions are expresse
~regularized! sums over bilocal and bilinear combinations
all eigenfunctionsCm including the Dirac sea states. In pra
tice this is quite a painful task, in particular when cranki
corrections~10! are included. Also the problem of regula
ization is not consistently solved. Fortunately it turns out th
the dominant contributions (>80%) to static nucleon prop
erties ~which are moments of the structure functions! stem
4-3
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L. GAMBERG, H. REINHARDT, AND H. WEIGEL PHYSICAL REVIEW D58 054014
from the distinct valence levelCv @14#. It is therefore rea-
sonable to approximate the relevant bilinears by their
lence quark contribution. In order to obtain quark distrib
tions of thenucleonand the corresponding nucleon structu
functions@cf. Eq. ~2!#, rather thansolitonstructure functions,
the cranking contribution to the wave-function, which is i
duced by the collective rotationA(t), must be included. Tha
is, the valence quark wave-function employed to appro
mate the bilinears in the structure functions reads

Cv~x,t !5e2 i evtA~ t !H Cv~x!1
1

2 (
mÞv

Cm~x!
^mut•Vuv&

ev2em
J

5:e2 i evtA~ t !cv~x!. ~13!

Here cv(x) refers to the spatial part of the body-fixed v
lence quark wave-function with the rotational corrections
cluded andCm5^mux& are eigenfunctions of the Dira
Hamiltonian~8!. This replacement of the bilocal and biline
quark fields when computing nucleon structure functions
fines the valence quark approximation.
05401
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III. CHIRAL ODD STRUCTURE FUNCTIONS hT„x… AND
hL„x… IN THE NJL MODEL

Here we present the major topic of this paper, namely
calculation of the twist-2 and twist-3 chiral odd structu
functions in the NJL chiral soliton model. Like their dee
inelastic chiral even~un!polarized counterparts, the chira
odd structure functions are computed as Fourier transfor
tions of nucleon matrix elements of bilocal quark operat
on the light-cone@4#. The key features of the relevant ligh
cone kinematics are given in Appendix A.

We begin by listing the forward propagating intermedia
quark ~1! contribution to the chiral odd nucleon structu
functions. Before, however, transcribing the expressio
from Appendix A we must recall that the soliton represent
localized field configuration. Therefore a collective coord
natex0 is introduced which parametrizes the position of t
soliton. This collective coordinate is employed to gener
states with good linear momentum@26#. When computing
matrix elements between states of identical momenta on
essentially left with an integration overx0 . In the nucleon
rest-frame~RF! the contribution of the forward moving in
termediate quark to the chiral odd structure functions m
therefore be expressed as3
l

the
hT
~1 !~x!5NC

2M&

8p E dj2expS 2 i j2
Mx

&

D E d3x0^S'uC1
† ~j2x0!g'g5Q 2C1~2x0!uS'&j15j'50 . ~14!

For convenience we have omitted the subscript ‘‘v’’ for the valence quark wave function. Note thatj refers to a four-vector
which in light-cone coordinates reads (j1,j2,j'). This coordinate enters the light-cone variables viaj65(t6z)/&. Also,
the notationS' is synonymous for the spin being perpendicular to the coordinatez. On the other hand for the longitudina
counterpart

hL
~1 !~x!5NC

2M&

16p E dj2expS 2 i j2
Mx

&

D E d3x0^SzuC1
† ~j2x0!g0g5Q 2C2~2x0!

2C2
† ~j2x0!g0g5Q 2C1~2x0!uSz&j15j'50 ~15!

the spin is aligned with thez-axis. The ‘‘good’’ and ‘‘bad’’ light-cone components of the quark wave functions are
projectionsC65P6C, with P65 1

2 g7g6 being the corresponding projections operators. Above,Q5diag(2/3,21/3) refers
to the matrix containing the quark charge fractions and the zero momentum nucleon states are given by,up50,S&
5@(2p)32M #1/2uS&. Introducing Fourier transforms for the spatial part of the valence quark wave functions@cf. Eq. ~13!#,

cS j' ,j352
j2

&

D 5E d2p'dp3

2p2
expF i S p3j2

&

2p'•j'D G c̃~p' ,p3!, ~16!

yields,

hT
~1 !~x!5NC

M

&p2 E dj2p2dpd~cosu!df expS 2 i j2~Mx2ev1p cosu!

&

D ^S'uc̃1
† ~p!g'g5Q 2c̃1~p!uS'& ~17!

and

3The following expressions constitute a generalization of Jaffe’s original definition@27# for nucleon structure functions.
4-4
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hL
~1 !~x!5NC

M

&p2 E dj2p2dpd~cosu!df expS 2 i j2~Mx2ev1p cosu!

&

D
3^Szuc̃1

† ~p!g0g5Q 2c̃2~p!2c̃2
† ~p!g0g5Q 2c̃1~p!uSz&. ~18!

In anticipation of the decomposition~13! the square of the charge operator is redefined as

Q 25
5

18
11

1

6
D3it i . ~19!

Here Di j 5
1
2 tr@t iA(t)t jA

†# denotes the adjoint representation of the collective rotation which is defined in Eq.~10!. The
integrals overj2 andu enforce both the constraint cosu5(ev2Mx)/p and the lower boundpmin5uMx2evu on thep integra-
tion. This results in the forward moving quark contributions to the transverse and longitudinal chiral odd nucleon s
functions:

hT
~1 !~x!5NC

2M

p E
pmin

`

pdpdf^S'uc̃1
† ~p!g'g5Q 2c̃1~p!uS'&ucosu5 ~e2Mx!/p ~20!

and

hL
~1 !~x!5NC

2M

p E
pmin

`

pdpdf^Szuc̃1
† ~p!g0g5Q 2c̃2~p!2c̃2

† ~p!g0g5Q 2c̃1~p!uSz&ucosu5 ~e2Mx!/p . ~21!

In order to obtain the full structure functions the contribution of backward moving quarkshT,L
(2) must be considered as wel

These contributions are easily obtained fromhT,L
(1)(2x) by reversing the appropriate signs in Eqs.~17! and ~18!. The two

contributions may be comprised as4

hT
~6 !~x!56NC

M

p E
pmin

7

`

pdpdf^S'uc̃†~p7!~17a3!g'g5Q 2c̃~p7!uS'&ucosu
p
7 ~22!

and

hL
~6 !~x!56NC

M

p E
pmin

7

`

pdpdf^Szuc̃†~p7!a3g0g5Q 2c̃~p7!uSz&ucosu
p
7 ~23!
-

x

B
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where pmin
6 5uMx6evu, cosu65(Mx6ev)/p and c̃(p6)

5c̃(p,cosup
6 ,f). Finally we summarize our results by de

composing the proton structure functions into their~iso!sca-
lar and vector components,

hT~x!5hT,1
I 50~x!1hT,1

I 51~x!1@hT,2
I 50~x!1hT,2

I 51~x!#,

hL~x!5hL,1
I 50~x!1hL,1

I 51~x!1@hL,2
I 50~x!1hL,2

I 51~x!#. ~24!

The isoscalar piece (I 50) originates from the unit matrix in
the decomposition~19! while the isovector part (I 51) stems
from the terms involving the collective coordinates. The e
plicit expressions for the structure functions~24! in terms of
the static quark wave functions are computed in Appendix

4We have used that the valence quark level has positive pa

i.e., underp→2p we find c̃(2p)5g0c̃(p).
05401
-
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IV. PROJECTION AND EVOLUTION

We consider that our model approximates QCD at a l
scaleQ0

2. In order to compare the predicted structure fun
tions with data they must be evolved to a~larger! Q2 com-
mensurate with experimental conditions. A direct compa
son with data gathered at a low scale cannot be made a
latter structure functions contain sizable contributions fro
higher twist. Thus we evolve the chiral odd model structu
functions of the preceding section utilizing the results of p
turbative QCD.

In the soliton approach the baryon states are built fr
localized field configurations. In fact, these states do
carry good four-momentum. Therefore the calculated str
ture functions~cf. Figs. 1, 3 and 4, below! do not vanish
exactly forx.1 although the contributions forx.1 are very
small.

The calculation of nucleon structure functions in t
Bjorken limit, however, singles out the null plane,j150.
This condition can be satisfied upon transformation to
infinite momentum frame~IMF! even for models where the

y:
4-5
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nucleon emerges as a~static! localized object@28#. For the
quark soliton model under consideration this transformat
corresponds to performing a boost in the space of the co
tive coordinatex0 ; cf. Eq. ~14!. Upon this boost to the IMF
we have observed@29# that the common problem of im
proper support for the structure functions, i.e., non-vanish
structure functions forx.1, is cured along the line suggeste
by Jaffe@30# some time ago. The reason simply is that t
Lorentz contraction associated with the boost to the IM
on

n
s
o
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nd
a

e
pl

u-
2

ic
by
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n
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g
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maps the infinite line exactly onto the intervalxP@0,1@ . In
addition we have observed that this Lorentz contraction
fects the structure functions also at small and moderatex.
Incorporating these results for the general set of leading tw
structure functions within the NJL chiral soliton mod
yields the following form for the forward and backwar
moving intermediate quark state contributions to the ch
odd transverse spin structure function,hT

(6)(x,Q2):
hT
~6 !~x!56NC

M

p~12x!
E

pmin

`

pdpdw^Nuc̃†~p7!~17a3!g'g5Q 2c̃~p7!uN&ucosu52„M ln~12x!6ev…/p
. ~25!
at
e
e
uc-
nc-

en-
e
le
ed
del.

ntal
e

-

uc-
In general the resulting relation between structure functi
in the IMF and the RF reads

f IMF~x!5
Q~12x!

12x
f RF„2 ln~12x!…. ~26!

Of course, in the context of the chiral odd structure functio
f RF is to be identified with the expressions in Eq
~22!, ~23!, ~24!. As will be recognized shortly the solution t
the proper support problem is essential in order to apply
evolution program of perturbative QCD. The chiral odd a
polarized structure functions resulting from this transform
tion are shown in Fig. 2, below.

In order to include the logarithmic corrections to th
twist-2 pieces of the chiral odd structure functions we ap
the well-established Gribov-Lipatov-Altarelli-Parisi~GLAP!
procedure @31#. For the transverse componenthT(x,Q2)
this is straightforward as it is pure twist-2. For the longit
dinal piecehL(x,Q2) one first has to extract the twist-
component through hT(x,Q2), namely, hL

(2)(x,Q2)
52x*x

1dyhT(y,Q2)/y2.
We simultaneously denote byh(2) the twist-2 parts ofhT

and hL . To leading order@in aQCD(Q2)# the variations of
the structure functions from a changedt of the momentum
scale are given by

h~2!~x,t1dt !5h~2!~x,t !1
dh~2!~x,t !

dt
dt, ~27!

wheret5 log(Q2/LQCD
2 ). The variation~27! is essentially due

to the emission and absorption of soft gluons. The expl
expression for the evolution differential equation is given
the convolution integral,

dh~2!~x,t !

dt
5

aQCD~ t !

2p
CR~F !E

x

1 dy

y
Pqq

h ~y!h~2!S x

y
,t D ,

~28!

where the leading order splitting function@32,6# is given by
s

s
.

e

-

y

it

Pqq
h ~z!5

4

3 F 2

~12z!1
221

3

2
d~z21!G ~29!

and CR( f )5(nf
221)/2nf for nf active flavors,aQCD(t)

54p/@b0 log(Q2/L2)# and b05(11NC22nf)/3. Employing
the ‘‘1’’ prescription yields, for three light flavors andNC
53,

dh~2!~x,t !

dt
5

aQCD~ t !

2p
XS 21

8

3
log~12x! Dh~2!~x,t !

1
8

3 E
x

1 dy

y H 1

12y Fh~2!S x

y
,t D2yh~2!~x,t !G

2h~2!S x

y
,t D J C. ~30!

As indicated above, the structure functions must vanish
the boundaryx51 in order to cancel the divergence of th
logarithm in Eq.~30! and thus for the GLAP procedure to b
applicable. This makes the projection of the rest frame str
ture functions mandatory. The variation of the structure fu
tions for finite intervals int is straightforwardly obtained by
iteration of these equations, i.e. as a solution to the differ
tial equation~30!. As discussed previously the initial valu
for integrating the differential equation is given by the sca
Q0

2 at which the model is defined. It should be emphasiz
that this scale essentially is a new parameter of the mo
For a given constituent quark massm we adjustQ0

2 to maxi-
mize the agreement of the predictions with the experime
data on previously@17# calculated unpolarized structur
functions for electron-nucleon DIS:F2

ep2F2
en . For the con-

stituent quark massm5400 MeV we have obtainedQ0
2

'0.4 GeV2. Note that this value ofQ0
2 is indeed ~as it

should be! smaller than the ultraviolet cutoff of the underly
ing NJL soliton model asL2'0.56 GeV2. The latter quan-
tity indicates the range of validity of the model. In Fig. 5~a!,
below, we compare the un-evolved, projected, proton str
ture function hT

p(x,Q0
2) with the one evolved fromQ0

2

4-6
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CHIRAL ODD STRUCTURE FUNCTIONS FROMA . . . PHYSICAL REVIEW D 58 054014
50.4 GeV2 to Q254.0 GeV2. As expected the evolution
pronounces the structure function at lowx.

This change towards smallx is a generic feature of the
projection and evolution process and presumably not v
sensitive to the prescription applied here. In particu
choosing a projection technique@33# alternative to Eq.~26!
may easily be compensated by an appropriate variation o
scale Q0

2. In Fig. 5~b!, below, the same calculation fo
hL

(2)(x,Q2) is presented.
In the evolution of the twist-2 pieces we have restrict

ourselves to the leading order inas because for the twist-3
piece ofhL , the necessary ingredients are not known in ne
to-leading order. Even the leading order evolution is o
known in the largeNC limit. It should be noted that such a
approach seems particularly suited for soliton models wh
equally utilize largeNC arguments. As pointed out by Ba
itsky et al. @34# the admixture of independent quark an
quark-gluon operators contributing to the twist-3 porti
h̄L(x,Q2) grows with n wheren refers to thenth moment,
Mn@ h̄L(Q2)# of hL(x,Q2). However, much like in the cas
with the spin-polarized structure function,g2(x,Q2) @35# in
the NC→` limit, the quark operators of twist-3 decoup
from the quark-gluon operators of the same twist. Then
anomalous dimensionsgn which govern the logarithmicQ2

dependence ofMn can be computed. Once thegn’s are
known an evolution kernel can be constructed that ‘‘pro
gates’’ the the twist-3 parth̄(x,Q2) in momentum:

h̄L~x,Q2!5E
x

1 dy

y
b~x,y;Q2,Q0

2!h̄L~y,Q0
2!. ~31!

We relegate the detailed discussion of the ker
b(x,y;Q2,Q0

2), which is obtained by inverting theQ2 depen-
dence ofMn , to Appendix C. In Fig. 6~a!, below, we dis-
play the evolution ofh̄L(x). Again we usedQ0

250.4 GeV2

andQ254.0 GeV2.
As discussed in Ref.@34# the merit of this approach is tha

to leading order inNC knowledge ofhL(x,Q2) at one scale is
sufficient to predict it at any arbitrary scale, which is not t
case at finiteNC .5 Thus hL(x,Q2) obeys a generalized
GLAP evolution equation. This finally enables us@in much
the same manner as was the case forg2(x,Q2) in @18## to
compute the longitudinal chiral odd structure functi
hL(x,Q2) by combining the separately evolved twist-2 a
twist-3 components together. The result forQ0

250.4 GeV2

and Q254.0 GeV2 is shown in Fig. 6~b!, below. We recall
that the only ingredients have been the leading twist pie
of the chiral odd structure functions at the model scaleQ0 .6

5As noted in@34#, next to leading order corrections are estimat
to go like O„1/Nc

23 ln(n)/n… at largen.
6A feature ofhL(x) compared withg2(x) is that ashL(x) does not

mix with gluon distributions owing to its chiral-odd nature and
Q2 evolution is given by Eqs.~C2!, ~C3! even for the flavor singlet
piece.
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V. DISCUSSION OF THE NUMERICAL RESULTS

In this section we discuss the results of the chiral-o
structure functions calculated from Eqs.~B17!–~B20! for
constituent quark massesm5400 MeV andm5450 MeV.
In Fig. 1 we show the up and down quark contributions
the transverse chiral odd structure function of the prot
Figure 2 displays them boosted to the IMF. We observe t
these structure functions are always smaller~in magnitude!
than the twist-2 polarized structure functiong1 with the same
flavor content. This relation is also known from the b
model @4#. Similar to the confinement model calculation
Baroneet al. @6# we find thathT

(d)(x) is negative at smallx.
In contrast tog1

(d)(x), however, it might change sign a
though the positive contribution appears to be small and
minishing with increasing constituent quark mass.

As already indicated in the Introduction the DIS proces
which are sensitive to these distributions will provide acc
to the charge weighted combinations thereof. We will hen
concentrate on this flavor content. In any event, as we will
discussing both the proton and the neutron chiral odd dis
butions, other flavor combinations can straightforwardly
extracted by disentangling the isoscalar and isovector pie

FIG. 1. The valence quark approximation of the transve
chiral-odd nucleon distribution function as a function of Bjorkenx
for the up and down quark flavor content in the rest frame. F
comparison also the model calculation@18# for the twist-2 polarized
structure functiong1(x,Q0

2) is shown for the respective flavor chan
nels. Two values of the constituent quark mass are considered~a!
m5400 MeV and~b! m5450 MeV.
4-7
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L. GAMBERG, H. REINHARDT, AND H. WEIGEL PHYSICAL REVIEW D58 054014
in Eq. ~19!. In connection with the chiral-odd transvers
nucleon structure function we also calculate its zeroth m
ment which is referred to as the isoscalar and isove
nucleon tensor charges@4#,

GT
S~Q2!5

18

5 E
0

1

dx@hT
p~x,Q2!1hT

n~x,Q2!# ~32!

GT
V~Q2!56E

0

1

dx@hT
p~x,Q2!2hT

n~x,Q2!# ~33!

FIG. 2. Same as Fig. 1 in the IMF, Eq.~26!.
05401
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at both the low scale,Q0
250.4 GeV2 and a scale commensu

rate with experiment,Q254 GeV2. Of course, for the neu-
tron we have to reverse the signs of the isovector piece
Eq. ~24!. In Eqs.~32! and~33! the normalization factors are
due to the separation into isosinglet and isovector contri
tions; cf. Eq.~19!. Note that due to*0

1dzPqq
h (z)Þ0 the ten-

sor charge is not protected against logarithmic correctio
Our results for the valence quark approximation are sum
rized in Table I. For completeness we also add the vacu
contribution to the tensor charges at the model scaleQ0

2.
Their analytic expressions are given in Appendix D. Ob
ously this vacuum contribution is negligibly small. This is
strong justification of the valence quark approximation to
chiral odd structure functions. A further justification com
from a recent study of the Gottfried sum rule within the sa
model@41#. Also in that case the contribution of the distorte
quark vacuum to the relevant structure function turned ou
be negligibly small.

Besides justifying the valence quark approximation
the chiral odd distributions Table I contains the comparis
to other model calculations of the nucleon tensor charg
We note that in obtaining the isovector tensor chargeGT

V we
have omitted contributions which are suppressed by 1NC
~cf. Appendix D!. These contributions arise when one ado
a non-symmetric ordering of the operators in the space of
collective operators@39#. The main reason for taking th
symmetric ordering is that in the case of the isovector ax
charge,gA , any non-symmetric ordering of the collectiv
operators leads to a sizable violation of PCAC~partial con-
servation of axial vector current! unless the meson profile i
not modified@40#. These multiplicative 1/NC corrections@42#
may be the reason why our predictions forGT

V are somewhat
lower than those of other models. In the case of the fla
singlet component, which does not have such correctio
our results compare nicely with other model calculations
cept for the constituent quark model of Ref.@38#.

In Fig. 3 we display the transverse chiral odd prot
hT

p(x,Q0
2) and neutronhT

n(x,Q0
2) structure functions at the

low momentum scaleQ0
2 , while in Fig. 4 we do the same fo

the corresponding chiral odd longitudinal structure functio
hL

p(x,Q0
2) andhL

n(x,Q0
2). We observe that the structure fun

tionshT
N(x,Q0

2) andhL
N(x,Q0

2) are reasonably localized in th
t

bution

tor

2

2

TABLE I. Nucleon tensor charges calculated from Eqs.~32! and ~33! as a function of the constituen
quark massm in the NJL chiral-soliton model. The momentum scales areQ0

250.4 GeV2 and Q2

54.0 GeV2. The numbers in parentheses in the respective upper rows include the negligible contri
from the polarized quark vacuum. We compare with results from the lattice@36#, QCD sum rules~SR! @37#,
the constituent quark~CQ! model with Goldstone boson effects@38# and a quark soliton~QS! model calcu-
lation @39# including multiplicative 1/NC corrections violating PCAC in the similar case of the axial vec
current @40#. Finally the predictions from the confinement model~CM! of Ref. @6# with the associated
momentum scales~in GeV2! are shown.

m ~MeV! 350 400 450 Lattice SR CQ QS Q2 CM

GT
S(Q0

2) 0.80 ~0.82! 0.72 ~0.76! 0.67 ~0.72! 0.61 0.61 1.31 0.69 0.16 0.90
GT

S(Q2) 0.73 0.65 0.61 no scale attributed 25.0 0.7
GT

V(Q0
2) 0.88 ~0.89! 0.86 ~0.87! 0.86 ~0.85! 1.07 1.37 1.07 1.45 0.16 1.53

GT
V(Q2) 0.80 0.78 0.77 no scale attributed 25.0 1.2
4-8
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CHIRAL ODD STRUCTURE FUNCTIONS FROMA . . . PHYSICAL REVIEW D 58 054014
interval 0<x<1. In particular, this is the case for the chir
odd structure functions of the neutron. Nevertheless a p
jection as in Eq.~26! is required to implement Lorentz co
variance. In addition the computed structure functions
hibit a pronounced maximum atx'0.3 which is smeared ou
when the constituent quark massm increases. This can b
understood as follows: In our chiral soliton model the co
stituent mass serves as a coupling constant of the quark
the chiral field@see Eqs.~5! and~8!#. The valence quark leve
becomes more strongly bound as the constituent quark m
increases. Hence the lower components of the valence q
wave-function increase withm and relativistic effects be
come more important. This effect results in the above m
tioned broadening of the maximum.

As discussed above a sensible comparison with~eventu-
ally available! data requires one either to evolve the mod
results upward according to the QCD renormalization gro
equations or to compare the model results with a low m
mentum scale parametrization of the leading twist piece
the structure functions. The latter requires knowledge of
structure functions at some scale in the whole intervax
P@0,1@ . At present no such data are available for the ch

FIG. 3. The valence quark approximation of the transverse
ral odd nucleon structure functions as a function of Bjorken-x. ~a!
hT

p(x,Q0
2) for constituent quark massesm5400 MeV ~solid line!

andm5450 MeV ~long-dashed line!. ~b! hT
n(x,Q0

2).
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odd structure functionshT(x) and hL(x). Therefore and in
anticipation of results from RHIC and or HERMES we app
leading order evolution procedures to evolve the struct
function from the model scale,Q0

250.4 GeV2 to
Q254 GeV2. In Figs. 5~a! and 5~b! we display the results o
the two step process of projection and evolution for t
twist-2 transverse structure function,hT

p(x,Q2) and
hL

p(2)(x,Q2), respectively, for a constituent quark mass
m5400 MeV. In Fig. 6 we present the evolution ofhL

p(x)
along with its decomposition into terms of the leadin
twist-2 contribution, 2x*x

1dyhT
p(y,Q2)/y2, and the remain-

ing twist-3 piece,h̄L
p(x,Q2). As in the case of the polarize

structure function,g2(x,Q2), the non-trivial twist-3 piece
arises as a result of the binding of the constituent qua
through the pion fields acting as effective non-perturbat
gluonic modes. The twist-3 contribution is evolved acco
ing to the largeNC scheme@34,35,43# outlined in the pre-
ceding section~and in Appendix C!. Similarly in Figs. 7 and
8 we display the projection and evolution procedure appl
to the twist-2 and -3 contributions to the neutron structu
functions,hL

n(2)(x,Q2) and h̄L
n(x,Q2), respectively.

i-
FIG. 4. The valence quark approximation of the longitudin

chiral odd nucleon structure functions as a function of Bjorkenx.
~a! hL

p(x,Q0
2) for constituent quark massesm5400 MeV ~solid

line! andm5450 MeV ~long-dashed line!. ~b! hL
n(x,Q0

2).
4-9
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L. GAMBERG, H. REINHARDT, AND H. WEIGEL PHYSICAL REVIEW D58 054014
Besides the absolute magnitudes, the major difference
tween the chiral odd structure functions of the proton and
neutron is that the latter drop to zero at a lower value ofx.
As can be observed from Fig. 3 this is inherited from t
model chiral odd structure function at the low momentu
scale and can be linked to the smallness of the down qu
component ofhT ; cf. Fig. 1. Apparently the projection an
evolution program does not alter this picture.

We would also like to compare our results from the N
chiral soliton model to those obtained in other approaches
MIT bag model calculation of the isovector contributio
6(hT

p2hT
n) has been presented in Ref.@4#. In shape~e.g.

position of the maximum! that result is quite similar to ours
However, the absolute value is a bit larger in the MIT b
model. This reflects the fact that in the MIT bag model t
isovector combinations of the axial and tensor charges
out to be bigger than in the present model. Additionally,
QCD evolution of the MIT bag model prediction forhT has
been studied in Ref.@5# utilizing the Peierls-Yoccoz projec
tion as in Ref.@21#. In that case the maximum atx'0.5 gets

FIG. 5. ~a! The evolution ofhT
p(x,Q2) from Q0

250.4 GeV2

~solid line! to Q254 GeV2 ~long-dashed line! for the constituent
quark massm5400 MeV. ~b! The evolution of the twist-2 contri-
bution to the longitudinal chiral odd structure functio
hL

p(2)(x,Q2) from Q0
250.4 GeV2 ~solid line! to Q254 GeV2 ~long-

dashed line! for m5400 MeV.
05401
e-
e

rk

A

rn
e

shifted to a value as low asx50.2. Also the structure func
tion becomes rather broad at the large scale. The fact th
that calculation the evolution effects are more pronoun
than in the present approach is caused by the significa
lower scale (mbag50.08 GeV2) used in Ref.@5#. On the other
hand our results are quite different to those obtained in
QCD sum rule approach of Ref.@43#. The sum rule approach
essentially predictshT to be constant in the interval 0.3,x
,0.8. For small values ofx the authors of Ref.@43# assume
a Regge behavior. In the~covariant! constituent quark mode
of Suzuki and Shijetamin@38# a result similar to ours is
obtained when effects attributed to Goldstone bosons are
cluded. Otherwise the maximum of their distribution is abo
50% larger than in our calculation. These authors also
serve that in magnitude the down quark component is
nificantly smaller than the up quark piece. The chiral ch
modielectric model of Baroneet al. @6# predicts a similar
shape forhT but their distributionhT

(u) is larger than the one
in the NJL chiral soliton model. This is also reflected by t
sizable value for the isovector tensor chargeGT

V(Q2

525 GeV2)51.22 andGT
V(Q250.16 GeV2)51.53 in that

approach. In the Isgur-Karl model~which hash15g1! the

FIG. 6. ~a! The evolution of the twist-3 contribution to the lon

gitudinal chiral odd structure functionh̄L
p(x,Q2) along with the cor-

responding twist-2 piecehL
p(2)(x,Q2). ~b! The evolution of

hL
p(x,Q2)5hL

p(2)(x,Q2)1h̄L
p(x,Q2) from Q0

250.4 GeV2 ~solid
line! to Q254 GeV2 ~long-dashed line! for the constituent quark
massm5400 MeV.
4-10
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CHIRAL ODD STRUCTURE FUNCTIONS FROMA . . . PHYSICAL REVIEW D 58 054014
maximal value ofh1 is only about half as big as in ou
calculation; cf. Fig. 1 in Ref.@8#.

For completeness we also demonstrate in Figs. 9 and
that at the low model scaleQ0

250.4 GeV2 Soffer’s inequality
@44# is satisfied. This inequality relates the nucleon chi
odd distribution functions to both the unpolarize
f 1

(q)(x,Q0
2) and polarizedg1

(q)(x,Q0
2) structure functions

f 1
~q!~x,Q2!1g1

~q!~x,Q2!>2uhT
~q!~x,Q2!u. ~34!

Here the superscript refers to the flavor combination wh
projects onto up and down quark quantum numbersq
5u,d). Note, again, that this projection refers to the co
stituent quarks which contain some non-perturbative gluo
distributions. In Fig. 10 we display the down quark comp
nent of the inequality~34!. As this component ofhT is al-
most negligible the inequality is satisfied by the unpolariz
structure functionf 1

(d) being larger in magnitude than th
polarized oneg1

(d) . For the constituent quark massm
5450 MeV we also find that Soffer’s inequality is satisfie
at the model scaleQ0 . The only remarkable difference t

FIG. 7. ~a! The evolution ofhT
n(x,Q2) from Q0

250.4 GeV2

~solid line! to Q254 GeV2 ~long-dashed line! for the constituent
quark massm5400 MeV. ~b! The evolution of the twist-2 contri-
bution to the longitudinal chiral odd structure functio
hL

n(2)(x,Q2) from Q0
250.4 GeV2 ~solid line! to Q254 GeV2 ~long-

dashed line! for m5400 MeV.
05401
10

l

h

-
ic
-

d

m5400 MeV is that the down quark component ofhT
(d) does

not possess nodes. This can already be inferred from Fig
and 2.

A more thorough model study of Soffer’s inequality fo
scales other thanQ0

2 which also contains the next-to-leadin
order contributions in the evolution program is subject
further investigations@45#. The next-to-leading order calcu
lation for hT @8# in the Isgur-Karl model indicates that it
scale dependence is slightly mitigated by the inclusion
next-to-leading order contributions.

VI. CONCLUSIONS

In this paper we have presented the NJL chiral soli
model calculation of the leading twist contributions of th
transverse and longitudinal chiral odd structure~distribution!
functions of the nucleon. Data on these distribution functio
should eventually be available from DIS experiments in
fragmentation regions~in conjunction with fragmentation
functions! or be extracted from Drell-Yan experiment
These structure functions serve to complete our picture of
spin distributions of the nucleon. The most important feat

FIG. 8. ~a! The evolution of the twist-3 contribution to the lon

gitudinal chiral odd structure functionh̄L
n(x,Q2) along with the cor-

responding twist-2 piecehL
n(2)(x,Q2). ~b! The evolution of

hL
n(x,Q2)5hL

n(2)(x,Q2)1h̄L
n(x,Q2) from Q0

250.4 GeV2 ~solid
line! to Q254 GeV2 ~long-dashed line! for the constituent quark
massm5400 MeV.
4-11
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L. GAMBERG, H. REINHARDT, AND H. WEIGEL PHYSICAL REVIEW D58 054014
of the present quark based model is that it is chirally inva
ant and that this symmetry is dynamically broken. Aft
bosonization the NJL model becomes an effective me
theory in which baryons emerge as self-consistent sol
solutions exactly the way as expected from largeNC consid-
erations in QCD. Chiral soliton models are particularly inte
esting in the context of the nucleon spin structure as th
models nicely explain the small contribution of the quar
the total nucleon spin.

In the NJL chiral soliton model there are two contrib
tions to nucleon properties. First, there is the contribution
the distinct valence quark level. This is the lowest level
the quark spectrum and bound in the background of the
ral soliton. Second, there is the part which is associated w
the polarization~by the soliton! of the vacuum. For many
static nucleon properties the latter contribution is quite sm
in particular for those which are related to the axial~spin!
properties of the nucleon. This is a strong indication that
vacuum contribution to the chiral odd structure functions
negligible as well. Hence it seems more important to inclu
substantial 1/NC corrections to the valence quark contrib
tion. These corrections come about when projecting the s

FIG. 9. ~a! The Soffer inequality for the chiral even combinatio
f 1

(u)(x,Q0
2)1g1

(u)(x,Q0
2) ~solid line! of the effective up-quark distri-

butions and the chiral odd structure function 2hT
(u)(x,Q0

2) ~long-
dashed line! for a constituent quark mass ofm5400 MeV, calcu-
lated in the nucleon rest frame~RF!. ~b! Same as~a! calculated in
the infinite momentum frame~IMF!. The transformation prescrip
tion is given in Eq.~26!.
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ton onto states with good spin and isospin, i.e. proton a
neutron. Inclusion of these 1/NC corrections together with a
consistently regularized treatment of the vacuum polariza
is technically rather involved and beyond the scope of
present paper. The numerical results for the tensor cha
indicate that the vacuum contributions are in fact negligib
small.

When the model structure functions are computed o
immediately recognizes that they have improper support
to the breaking of translational invariance by the backgrou
soliton; i.e., the structure functions do not exactly vanish
x.1. This can be cured by Lorentz boosting to the infin
momentum frame which is particularly suited for DIS pr
cesses. Although the un-boosted structure functions are
ligibly small at x.1, the transformation to this frame is e
sential and has sizable effects on the structure function
moderatex. However, the most important issue when co
paring the model predictions to~not yet available! experi-
mental data is the observation that the model represents Q
at a low momentum scaleQ0

2. A priori this scale represent
an additional parameter to the model calculation which,
consistency, has to be smaller than the ultraviolet cutoff
the model,L250.56 GeV2. For the model under consider
ation we previously fixedQ0

2 when studying the unpolarize
structure functions and foundQ0

250.4 GeV2. The important
logarithmic corrections to the model structure functions
then obtained within a generalized GLAP evolution progra

FIG. 10. Same as Fig. 9 for the down quark combination.
4-12
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In this context we have restricted ourselves to a leading o
~in aQCD! calculation because the anomalous dimensio
which govern the QCD evolution, for the twist-3 piece of t
longitudinal part of the chiral odd structure are only know
to that order. As the full evolution to the longitudinal stru
ture function involves both twist-2 and twist-3 pieces th
restriction is consistent. We have seen that the QCD ev
tion of the chiral odd structure function leads to sizable
hancements at lowx, i.e. in the region 0.01<x<0.10. In this
respect the present situation is similar to that for the po
ized structure functions. A difference to the polarized str
ture function is that the lowest moment is not protec
against logarithmic corrections, even at leading order
aQCD. For the nucleon tensor charge we thus find a red
tion of about 10% upon evolution toQ254.0 GeV2. We
have also compared the neutron and proton chiral odd st
ture functions. This has been achieved by the inclusion of
1/NC cranking corrections. In absolute value the prot
structure functions are about twice as large as those of
neutron. Furthermore the neutron structure functions dro
zero at a lower value ofx. These two effects can be linked t
the down quark component of the transverse nucleon ch
odd distribution functions being significantly smaller th
the component with up-quark quantum numbers. We h
also observed that neither of these features is affected by
evolution program.
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APPENDIX A: BILOCAL LIGHT CONE DISTRIBUTIONS

In this appendix we outline the steps giving rise to t
starting point of our calculation, Eqs.~14! and ~15! in Sec.
III.

It is well known that the chiral odd spin-dependent stru
ture functionshT(x) andhL(x) do not contribute to the had
ronic tensor in DIS.hT(x) was first studied by Ralston an
Soper @1# in the context of polarized Drell-Yan process
while hL(x) was more recently detailed by Jaffe and Ji@4#.
In the latter study a general Lorentz decomposition of inva
ant matrix elements of the characteristic bilocal operator
hard processes,C̄(0)GmC(ln), was performed.7 Adopting
light-cone variables reveals that up to twist-3 there are
invariant structure functions that characterize the nucle
The leading twist~2 and 3! spin-dependent contribution

7See Ref.@43# for the definition of chiral odd structure function
in the language of a hadronic tensor. Actually such a definition
sufficient to carry over the QCD definition of the chiral odd stru
ture functions to the NJL model because formally the NJL mo
currents are identical to those in QCD.
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emerging from the Lorentz decomposition of these hard p
cesses are given by@3#

E dl

2p
eilx^P,SuC̄~0!ismng5C~ln!uP,S&

52$hT~x!~S'mpn2S'npm!/M

1hL~x!M ~pmpn2pnpm!S•n%, ~A1!

E dl

2p
eilx^p,SuC̄~0!igmg5C~ln!up,S&

52$gL~x!pmS•n1gT~x!S'm% ~A2!

wherepm and nm define a light-like coordinate system, i.e
p•n51, p25n250, anduPS& denotes the nucleon state wit
four-momentumP and spin S. In the system where the
nucleon is moving along theẑ direction one conveniently
defines the four vectors

pm5
P
&

~1,0,0,1!

nm5
1

&P
~1,0,0,21!. ~A3!

In this system the nucleon momentum is given byPm5pm

1M2nm/2 and spin Sm is decomposed asSm5(S•n)pm

1(S•p)nm1S'
m . Finally,P→` corresponds to the IMF and

P5M /& corresponds to the nucleon RF. Utilizing the co
venient projection properties of the light-like vectors the d
fining equation~A1! may be inverted. One obtains, for th
chiral odd structure functions,

hT~x!5
1

M E dl

2p
eilx^PS'uC1

† ~0!g'g5C1~ln!uP,S'&

~A4!

and

hL~x!5
1

2M E dl

2p
eilx^PSzuC2

† ~0!g0g5C1~ln!

2C1
† ~0!g0g5C2~ln!uP,Sz&. ~A5!

The quark bilocals describe the propagation of the interm
diate constituent quark which is struck by the extern
source. The forward propagation is described byx>0 while
negativex parametrizes an intermediate quark which mov
backward. In what follows we will only consider positivex
in conjunction with the contribution associated with the fo
ward propagating quarkh(1)(x). The backward contribution
can easily be obtained fromh(1)(2x). Finally, noting the
change of variables from light-like coordinates (h,l,j') to
light-cone coordinates (j1,j2,j') where, in particular,

j15hP and j25
l

P ~A6!

yields the chiral odd quark transverse distributions

s

l

4-13
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hT
~1 !~x!5

&

4p E dj2 expS 2 i j2
Mx

&

D
3^S'uC1

† ~j!g'g5C1~0!uS'&j15j'50 ~A7!

and the longitudinal contribution

hL
~1 !~x!5

&

8p E dj2 expS 2 i j2
Mx

&

D
3^SzuC1

† ~j!g0g5C2~0!

2C2
† ~j!g0g5Q 2C1~0!uSz&j15j'50 .

~A8!

These equations represent the starting point of Sec. III.

APPENDIX B: CHIRAL ODD STRUCTURE FUNCTIONS
IN THE NJL SOLITON MODEL

In this appendix we derive and summarize the expl
expressions for the chiral odd structure functions, Eqs.~24!.
The first step is to construct the eigenfunctions of the sin
particle Dirac Hamiltonian~8! in coordinate space. Th
hedgehog ansatz~7! connects coordinate space with isospa
and these eigenfunctions are also eigenstates of the g
spin operator

G5J1
t

2
5 l1

s

2
1

t

2
, ~B1!

which is the sum of the total spinJ and the isospint/2. The
spin itself is decomposed into orbital angular momentuml
and intrinsic spins/2. Denoting byM the grand spin pro-
jection quantum number the tensor spherical harmon
which are associated with the grand spin may be written
Y l , j

G,M( r̂). Note that these tensor spherical harmonics are t
component spinors in both spin and isospin spaces. Giv
profile function Q(r ) the numerical diagonalization of th
Dirac Hamiltonian ~8! yields the radial functions
gm

(G,1,1)(r ), f m
(G,1,1)(r ), etc., in the decomposition~cf. Ref.

@46#!:

Cm
~G,1 !~r!5S igm

~G,1;1!~r !YG,G1 1/2
G,M ~ r̂ !

f m
~G,1;1!~r !YG11,G1 1/2

G,M ~ r̂ !
D

1S igm
~G,1;2!~r !YG,G2 1/2

G,M ~ r̂ !

2 f m
~G,1;2!~r !YG21,G2 1/2

G,M ~ r̂ !
D ~B2!

Cm
~G,2 !~r!5S igm

~G,2;1!~r !YG11,G1 1/2
G,M ~ r̂ !

2 f m
~G,2;1!~r !YG,G1 1/2

G,M ~ r̂ !
D

1S igm
~G,2;2!~r !YG21,G2 1/2

G,M ~ r̂ !

f m
~G,2;2!~r !YG,G2 1/2

G,M ~ r̂ !
D . ~B3!

The second superscript~6! denotes the intrinsic parity
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which also is a conserved quantum number.8 Note that for
the G50 channel, which contains the mean-field contrib
tion to the valence quark wave-function in Eq.~13!,

Cv~r!5S igv~r !Y 0,1/2
0,0 ~ r̂ !

f v~r !Y 1,1/2
0,0 ~ r̂ !

D , ~B4!

only the components withj 511/2 are allowed. In addition
to this mean-field piece~B4! the complete valence quar
wave-function ~13! also contains the cranking correctio
which dwells in the channel withG51 and negative intrinsic
parity.

The discretization~m! is accomplished by choosing sui
able boundary conditions at a radial distance which is la
compared to the soliton extension@46,47#. This calculation
yields the energy eigenvaluesem , which enter the energy
functional~9!. The soliton configuration is finally determine
by self-consistently minimizing this energy functional.
Ref. @48# the numerical procedure is described in detail.

We continue by making explicit the Fourier transform
Eq. ~13!,

c̃v~p!5E d3x

4p
cv~x!exp~ ip•x!5C̃v~p!1QmC̃m~p!.

~B5!

The leading order in theNC valence quark contribution is
just the Fourier transform of Eq.~B4!,

C̃v~p!5 i S g̃v~p!Y 0,1/2
0,0 ~ p̂!

f̃ v~p!Y 1,1/2
0,0 ~ p̂!

D , ~B6!

and the cranking correction involves the Fourier transform
spinor withG51 and negative intrinsic parity:

C̃m~p!52 i S g̃m
~1!~p!Y2,3/2

1,M ~ p̂!2g̃m
~2!~p!Y0,1/2

1,M ~ p̂!

f̃ m
~1!~p!Y1,3/2

1,M ~ p̂!2 f̃ m
~2!~p!Y1,1/2

1,M ~ p̂!
D .

~B7!

Here Y l , j
G,M(p̂) are the Fourier transforms of the tens

spherical harmonics associated with the grand spin oper
~B1!. The Fourier transform for the radial functions in Eq
~B6! and ~B7! is defined by

f̃m~p!5E
0

R

drr 2 j l~pr !fm~r !. ~B8!

Here the indexl of the spherical Bessel function denotes t
orbital angular momentum of the associated tensor sphe
harmonic. We have suppressed the grand spin index on
transforms of the radial wave functions for convenience. F
purposes of notation we have also introduced the quan
Qm in Eq. ~B5! which parametrizes the cranking correctio
in Eq. ~13!:

8The total parity is given by the product of the intrinsic parity a
(2)G.
4-14
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^mut•Vuv&
ev2em

5a2QmH dM ,1

&

~V11 iV2!

2
dM ,21

&

~V12 iV2!2dM ,0V0J dGm,1

~B9!

5QmH dM ,1

&

~J11 iJ2!

2
dM ,21

&

~J12 iJ2!2dM ,0J0J dGm,1 ~B10!

where

Qm[
1

a2~ev2em!
E drr 2$gv~r !gm

~2!~r !1 f v~r ! f m
~2!~r !%.

~B11!

In this definition we have included the total moment of ine
tia a2. In the proper-time regularization of the NJL chir
soliton modela2 is given by@19#

av
25

NC

2 (
mÞv

u^vut3um&u2

~em2ev!
, ~B12!

as
25

NC

4a2 (
mn

f mn~L!^mut3un&^nut3um&, ~B13!

a25
1

2
@11sgn~eval!#av

21as
2. ~B14!

The regulator function in the vacuum contribution reads
05401
-

f mn~L!5
L

Ap

e2~em /L!2
2e2~en /L!2

en
22em

2

2
sgn~en!erfc~ uen /Lu!2sgn~em!erfc~ uem /Lu!

2~em2en!
.

~B15!

The moment of inertia enters via the quantization descript
for the collective coordinatesV→a2J with J being the
nucleon spin operator. In this quantization prescription
had previously restricted the moment of inertia to its valen
quark contribution,av

2 , to ensure that the Adler sum rule fo
the unpolarized structure functions is maintained in the
lence quark approximation@17#. For small or moderate con
stituent quark masses the valence contribution to the mom
of inertia is about 80% or more@47#. This is one of the
reasons to believe that the valence quark approximation
structure functions is sensible. In the case of the chiral o
structure functions~as for the polarized ones! the valence
quark approximation appears to be even better. As we
from Table I the lowest moments of these structure functio
are saturated to about 95% by the valence quark contr
tion. Hence it is reasonable to assume that the vacuum
tribution to these structure functions is negligibly small. As
consequence the valence quark approximation with the t
moment of inertia substituted into the quantization rule w
provide a very reliable estimate of the chiral odd structu
functions.

Together with^NuDi j uN&52(4/3)I iJj @13# the nucleon
matrix elements may now easily be computed. HereI de-
notes the nucleon isospin. Whenever products of collec
coordinates and operators appear which do not commute
ter canonical quantization we adopt the symmetric orderi
This is consistent with fundamental requirements such
PCAC. Defining finally the combinations

f̃ ~ i !~p!5Qm f̃ m
~ i !~p! and g̃~ i !~p!5Qmg̃m

~ i !~p!,
~B16!

for i 51,2, the isoscalar~vector! contributions to the chiral
odd structure functions~24! read
hT,6
I 50~x,m2!5NC

5MN

36p E
MNux7u

`

pdpH g̃v~p!g̃~1!~p!
3 cos2~up

6!21

4&
2

1

2
g̃v~p!g̃~2!~p!

6@ g̃v~p! f̃ ~1!~p!1 f̃ v~p!g̃~1!~p!#
cos~up

6!

A8
7@ f̃ v~p!g̃~2!~p!1g̃v~p! f̃ ~2!~p!#

cos~up
6!

2

2 f̃ v~p! f̃ ~1!~p!
cos2~up

6!23

4&
2 f̃ v~p! f̃ ~2!~p!

cos2~up
6!

2 J ~B17!

hT,6
I 51~x,m2!5NC

MN

36p E
MNux7u

`

pdp$g̃v~p!262g̃v~p! f̃ v~p!cos~up
6!1 f̃ v~p!2@cos2~up

6!#%, ~B18!
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hL,6
I 50~x,m2!5NC

5MN

36p E
MNux7u

`

pdpH 6g̃v~p!g̃~1!~p!
3 cos2~up

6!21

4&
6

1

2
g̃v~p!g̃~2!~p!

7 f̃ v~p! f̃ ~1!~p!
11cos2~up

6!

2&
7 f̃ v~p! f̃ ~2!~p!

2 cos2~up
6!21

2 J , ~B19!

hL,6
I 51~x,m2!52NC

MN

36p E
MNux7u

`

pdp$7g̃v~p!26 f̃ v~p!2@2 cos2~up
6!21#%, ~B20!
he

in

e
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-
ns

e
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which we evaluate numerically. Note that the angleup
6 is

related to the integration variablep via

cosup
65

1

p
uMNx6evu. ~B21!

In Ref. @10# the contribution to structure functionhT from
effective quark distributions9 was calculated omitting the
cranking corrections and adopting an external~non-self-
consistent! meson profile.

APPENDIX C: EVOLUTION OF h̄L„x,Q2
…

In this appendix we outline our technique to evolve t
low scale model prediction for the twist-3 pieceh̄L(x,Q0

2) to
the larger scaleQ2. This utilizes the method described
Refs. @9,49# based on the results of Ref.@50#. The Q2 evo-
lution of the moments

Mn@ h̄L~Q2!#5E
0

1

dxxnh̄L~x,Q2! ~C1!

is given by

Mn@ h̄L~Q2!#5S a~Q2!

a~Q0
2! D

gn
h/b0

Mn@ h̄L~Q0
2!#. ~C2!

Here b05(11NC22nf)/3 is coefficient of the leading term
in the QCD beta function. Also,NC andnf are the number of
colors and flavors respectively. Within theNC→` approxi-
mation the anomalous dimensions are@34#

gn
h52NCS Sn1gE2

1

4
1

3

2~n11! D , ~C3!

with Sn5( j 51
n (1/j )2gE where gE50.577... is the Euler

constant which has been introduced for later convenienc
In order to find the QCD-evolution of the structure fun

tions one needs to invert the Mellin-transform~C1!. This can
be achieved by noting that the Bernstein polynomial

9In this work it is important to note that the quark distributio
refer toconstituent quarks, mq'400 MeV; it is thus misleading to
compare them with the data ofparton distributions from either
Drell-Yan or DIS processes.
05401
.

b~N,k!~x!5~N11!S n
kD xk~12x!N2k

5
~N11!!

k! (
l 50

N2k
~21! lxk1 l

l ! ~N2k2 l !!
~C4!

has the property

lim
N,k→`
k/N→x

b~N,k!~y!5d~x2y! ~C5!

for 0,x,y,1. This enables one to express the struct
function via its moments

h̄L~x,Q2!5 lim
N,k→`
k/N→x

~N11!!

k!

3 (
l 50

N2k
~21! l

l ! ~N2k2 l !! E0

1

dyyk1 l h̄L~y,Q2!

~C6!

which depend onQ2 as indicated in Eq.~C2!:

h̄L~x,Q2!5 lim
N,k→`
k/N→x

~N11!!

k! (
l 50

N2k
~21! l

l ! ~N2k2 l !!
Lgk1 l

h /b0

3E
0

1

dyyk1 l h̄L~y,Q0
2!. ~C7!

HereL5a(Q2)/a(Q0
2) denotes the ratio of the running cou

pling constants in QCD. Unfortunately, the rapid oscillatio
in the summation overl in Eq. ~C7! due to the factor
(21)l preclude numerical summation of Eq.~C7!. Yet ob-

serving that the expressionLgn
h/b0 may be expanded as

Lgn
h/b05a~L !(

i 50

Ci~L !

~n1p! i 2r ~L ! , ~C8!

where a(L), and r (L) are constants determined from th
asymptotic form (n→`) of Eq. ~C8!,

r ~L !52NC ln~L !/b0 and a~L !5expF r ~L !S gE2
1

4D G ,
~C9!
4-16



u
to

a

ie

we
by

es

the

the
the
us-
e
-
ac-
the

e
the

dly
lly

c-
s.
e

CHIRAL ODD STRUCTURE FUNCTIONS FROMA . . . PHYSICAL REVIEW D 58 054014
one can perform the sum to any desired accuracy. It sho
be noted thatp remains undetermined. It may be varied
control the convergence of the series~C8!. To determine the
expansion coefficientsCi(L) we rearrange Eq.~C8! to a Fou-
rier expansion,

~12zp!r expF 1

2n
1

3

2n12
2 (

k51

` S B 2k

2kn2kD G5(
i 50

`

Ci~r !zi .

~C10!

Here z51/(p1n)⇔n51/z2p and Ci(L)5Ci(r ). Further-
more we have utilized the asymptotic expansion of

Sn5 ln~n!1
1

2n
2 (

k51

` S B 2k

2kn2kD , ~C11!

where theB2k’s are the Bernoulli numbers. Performing
Taylor series to eighth order inz yields the following values
for the expansion coefficientsCi(L)5Ci„r (L)… ~for p52!:

C0~r !51, C1~r !50, C2~r !5
5

12
r ,

C3~r !5
1

2
r , C4~r !5

61

120
r 1

25

288
r 2,

C5~r !5
1

2
r 1

5

24
r 2,

C6~r !5
125

252
r 1

97

288
r 21

125

10368
r 3,

C7~r !5
1

2
r 1

37

80
r 21

25

576
r 3,

C8~r !5
121

240
r 1

354341

604800
r 2

665

6912
r 31

625

497664
r 4,

~C12!

which gives more than adequate convergence of the ser
Finally we may write

h̄L~x,Q2!5E
x

1 dy

y
b~x,y;Q2,Q0

2!h̄L~y,Q0
2!, ~C13!

where

b~x,y;Q2,Q0
2!5a~L !S x

yD p21

(
i 50

S ln
y

xD i 1r21 Ci~L !

G@ i 2r ~L !#
~C14!

is the evolution kernel used in Eq.~31!. It has been gained by
using the additional relation
05401
ld

s.

lim
N,k→`
k/N→x

~N11!!

k! (
l 50

N2k
~21! l

l ! ~N2k2 l !!

yk1 l

~k1 l 1p! i 1r

5
u~y2x!

G~ i 1r!y S x

yD p21S ln
y

xD i 1r21

.

For the numerical results presented in Secs. IV and V
have verified the stability of this evolution procedure
varying the undetermined parameterp in Eq. ~C8!.

APPENDIX D: TENSOR CHARGES IN THE NJL CHIRAL
SOLITON MODEL

The conventional definition of the nucleon tensor charg
reads

^NuC̄smnCuN&5GT
Sūsmnu,

^NuC̄smnt3CuN&5GT
Vūsmnt3u. ~D1!

Here N again denotes the nucleon state. Note that both
quark wave-functionC and the nucleon spinoru are vectors
in flavor space. Momentum labels have been omitted as
charges are defined at zero momentum transfer. Within
NJL chiral soliton model these charges can be extracted
ing standard techniques@14#: First, sources conjugated to th
quark bilinearsC̄smnC andC̄smnt3C are added to the La
grangian~4!. Subsequently the bosonized and regularized
tion is expanded to linear order in both the sources and
angular velocitiesV Eq. ~11!. The coefficients of the sourc
terms then provide the charge operators in the space of
collective coordinatesA, which are defined in Eq.~10!. The
corresponding matrix elements can be straightforwar
evaluated with the means provided in Appendix B. Fina
one obtains within the proper-time regularization

GT
S5

NC

4a2 @11sgn~eval!# (
nÞval

^valut3un&^nubS3t3uval&
eval2en

1
NC

4a2 (
mn

f mn~L!^mut3un&^nbS3t3um& ~D2!

GT
V52

NC

6
@11sgn~eval!#^valubS3t3uval&

1
NC

6 (
m

^mubS3t3um&sgn~em!erfcS U em

L U D .

~D3!

Here um& denote the eigenstates of the static Dira
Hamiltonian ~8! and em are the corresponding eigenvalue
Again uval& refers to the distinct valence quark level. Th
regulator function in the isoscalar piece~D2! is identical to
the one entering the moment of inertia; cf. Eq.~B15!. Those
pieces containing the factor@11sgn(eval)# are the valence
contributions shown separately in Table I.

As noted in Sec. V we have omitted 1/NC suppressed
contributions to the isovector partGT

V which in the related
case of the axial current violate PCAC.
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