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Helicity-flip off-forward parton distributions of the nucleon

Pervez Hoodbhoy* and Xiangdong Ji
Department of Physics, University of Maryland, College Park, Maryland 20742

~Received 24 February 1998; published 29 July 1998!

We identify quark and gluon helicity-flip distributions defined between nucleon states of unequal momenta.
The evolution of these distributions with a change of renormalization scale is calculated in the leading-
logarithmic approximation. The helicity-flip gluon distributions do not mix with any quark distribution and are
thus a unique signature of gluons in the nucleon. Their contribution to the generalized virtual Compton process
is obtained both in the form of a factorization theorem and an operator product expansion. In deeply virtual
Compton scattering, they can be probed through the distinct angular dependence of the cross section.
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I. INTRODUCTION

From the point of view of quantum field theory a nucle
is fully described only if one knows the matrix elements
all possible quark and gluon operators involving the nucle
state. Nevertheless, progress is possible provided one
obtain the matrix element of operators with a clear phys
interpretation. Twist-two operators give the leading contrib
tion in appropriate hard processes, are relatively simple,
are more accessible to experimental measurement. The s
between which these operators are sandwiched may b
equal or unequal momenta; the former situation is fami
from well-investigated processes like deeply inelastic scat
ing. The latter has also been investigated over the years@1#.
However their importance has been understood only
cently. For instance, knowing certain off-forward twist-tw
matrix elements allows for extraction of the quark and glu
orbital and spin contributions to the nucleon spin@2#. The
class of parton distributions, known as off-forward~off-
diagonal, non-forward! parton distributions defined from
these off-forward matrix elements has generated consi
able contemporary interest@2–12,15,13#. In simple physical
terms, a parton distribution, whether forward or off-forwar
arises from removal of the parton from the nucleon by a h
probe and its subsequent return to form the nucleon gro
state further along the light-cone, or a similar process.

The class of twist-two operators which depends on par
helicity change shall be the subject of this paper. It is n
well known @14,16,17# that there is one forward chirally od
twist-two proton structure function, known ash1(x,Q2),
measurable in, for example, the Drell-Yan process. It is
fined as the light-cone correlation of quark fields weigh
by smn,

E dl

2p
eilx^PS8uc̄S 2

1

2
lnDsmncS 1

2
lnD uPS&

5h1~x!Ū~PS8!smnU~PS!1•••. ~1!

*On leave from Department of Physics, Quaid-e-Azam Univ
sity, Islamabad 45320, Pakistan.
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In a helicity basis, wherein spins are measured along
particle’s momentum andS uu is diagonal,S andS8 differ by
one unit of angular momentum. Since chirality and helic
coincide for massless quarks,h1 is achiral-oddquantity. To
give it a probability interpretation requires using atransver-
sity basis whereinS'g0 is diagonal. This givesh1 the nec-
essary probabilistic interpretation~for states of equal mo-
menta!: it is the probability to find a quark polarized alon
the transverse polarization of the nucleon minus the pr
ability to find the quark polarized in the opposite directio
There is no gluonic helicity-flip distribution for obviou
reason—a transverse gluon flipping its helicity leads to
change of two units of angular momentum and angular m
mentum conservation forbids this for a spin-1

2 hadron. For
hadrons with spin>1 there is no such restriction and som
years ago Jaffe and Manohar@18# identified a leading twist
gluonic structure functionD(x,Q2) which can be measure
from a transversely polarized target like the deuteron.

New Lorentz structures emerge if one allows for o
forward matrix elements, leading to generalizations of
above mentioned helicity changing structure functions. R
cently, Collinset al. have suggested measuring the helici
flip quark distributions in vector meson production@19,20#.
The evolution equation for these distributions has been
rived by Belitsky and Mu¨ller @11#. Diehl et al. @21# have
noticed that the distribution in angle between the lepton a
hadron planes in deeply virtual Compton scattering~DVCS!
contains valuable information about the helicity structure
the nucleon-photon amplitudes. They point out that pho
helicity flip is possible even with a spin-1

2 target because
gluons in the off-forward scattering can transfer two units
angular momentum. This, of course, requires the existenc
the gluon helicity-flip distributions in the nucleon. Indee
for off-forward matrix elements one does not need a state
spin >1 to accomodate gluon helicity flip.

This paper is intended to present a comprehensive s
of leading-twist helicity-flip off-forward distributions in the
nucleon. A systematic counting suggests that there are
such distributions: two related to gluon helicity flip and th
other two to quark helicity flip. In each case, a distributi
can be defined depending on whether the nucleon’s heli
is flipped or not. We derive the leading-logarithmic evolutio
of these distributions, although in the quark case, the re

-
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PERVEZ HOODBHOY AND XIANGDONG JI PHYSICAL REVIEW D58 054006
was already obtained by Belitsky and Mu¨ller @12#. In the
forward limit, the evolution of the quark distributions re
duces to that ofh1(x) as calculated by Artru and Mekh
@16#. The evolution for the gluon distributions reduces to th
of D(x), which has not appeared in the literature befo
Note that the quark helicity-flip distributions do not mix wit
any gluon ones, and vice versa. This is quite significant
cause, for the first time, we have a parton distribution t
can serve as a unique signature of the gluons inside
nucleon: gluonic effects cannot be mocked up by any kind
constituent quarks, and they cannot be evolved away
recklessly evolving down the momentum scale.

We study measurement of the helicity-flip gluon distrib
tions in general two-photon process. The photon helicity-
Compton amplitude is calculated in terms of the glu
helicity-flip distributions. In the forward limit, we recove
the result obtained in@18#. However, our result is more gen
eral. In the language of operator product expansion, we
tain the leading-order coefficient functions of a class
gluon operators with total derivatives. According to@21#, the
helicity-flip gluon distributions generate distinct angular d
tributions in the DVCS cross section.

The presentation of the paper is as follows. In Sec. II,
enumerate the independent helicity amplitudes for the qu
nucleon and gluon-nucleon sub-processes. Subsequently
helicity changing distribution functions are motivated a
defined. In Sec. III the leading logarithmic evolution of the
functions is studied. Section IV contains a calculation of
Compton amplitude for photon helicity flip scattering. Th
amplitude vanishes at the tree level and requires at least
quark box~plus permutations! to be non-zero. Section V pre
sents the DVCS cross section that depends on the g
helicity-flip distributions. We conclude the paper in Sec. V

II. HELICITY-FLIP PARTON DISTRIBUTIONS:
COUNTING AND DEFINITIONS

We shall, in this section, enumerate the complete se
off-forward quark and gluon distributions at the twist-tw
level. Helicity-flip ones will emerge through the countin
and will be the focus of this paper. As usual,pm andnm are
two light-like vectors withp25n250 andp•n51. The mo-
menta and spins of the initial and final nucleons are, resp
tively, P,S and P8,S8. The momentum transferDm5P8m

2Pm has both transverse and longitudinal components.
convenient to define a special system of coordinates whe
P̄m5(P81P)m/2 is collinear and in thez direction:

P̄m5pm1~M̄2/2!nm,

Dm522j„pm2~M̄2/2!nm
…1D'

m ,

M̄25M22D2/4. ~2!

The initial nucleon and parton have longitudinal moment
fractions 11j andx1j, respectively.

From dimensional reasoning, the leading order contri
tion to a given hard process must involve the minimum nu
ber of independent parton fields which, for QCD quantiz
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on the light cone, is two (c1 for fermions andA' for glu-
ons!. Therefore, one need consider only the matrix eleme
of bilinear operators at two different points on the light-con
In the kinematic regionx.j, one has the simple interpreta
tion that the first operator extracts a certain type of par
from the nucleon and the second replaces it further along
light-cone. LetH,H8 denote the respective helicities of th
initial and final nucleon andh,h8 the helicities of the parton
extracted and replaced. The helicity amplitudeAHh,H8h8
must obeyAH8h8,Hh5AHh,H8h8 ~time-reversal invariance!,
and A2H2h,2H82h85AHh,H8h8 ~parity invariance!. For a
purely collinear process there is no preferred transverse
rection; rotational invariance around the collinear axis
quires helicity to be conserved,H1h85H81h. However,
non-zero transverse momentum of the scattered nucleo
parton means that, while the total angular momentum will
course be conserved, helicity conservation will not neces
ily hold. The difference is, of course, absorbed by the orb
motion of the scattered pair.

For quarks it is readily seen that a set of independ
amplitudes is provided by the following:A 1

2
1
2 , 1

2
1
2

,
A 1

2 2 1
2 , 1

2 2 1
2

, A 1
2

1
2 ,2 1

2 2 1
2
A 1

2
1
2 , 1

2 2 1
2

, A 1
2

1
2 ,2 1

2
1
2

, and
A 1

2 2 1
2 ,2 1

2
1
2

. The familiar distributions f 1(x,Q2),
g1(x,Q2), andh1(x,Q2) are linear combinations of the firs
three in the forward limit@17#. One unit of orbital angular
momentum, made available by one power ofD' , allows for
three additional amplitudes. A complete set of off-forwa
leading-twist quark distributions is given below:

E dl

2p
eilx^P8S8uc̄qS 2

1

2
lnDgmcqS 1

2
lnD uPS&

5Hq~x,j!Ū~P8S8!gmU~PS!

1Eq~x,j!Ū~P8S8!
ismnDn

2M
U~PS!1•••,

E dl

2p
eilx^P8S8uc̄qS 2

1

2
lnDgmg5cqS 1

2
lnD uPS&

5H̃q~x,j!Ū~P8S8!gmg5U~PS!

1Ẽq~x,j!Ū~P8S8!
g5Dm

2M
U~PS!1•••,

E dl

2p
eilx^P8S8uc̄qS 2

1

2
lnDsmncqS 1

2
lnD uPS&

5HTq~x,j!Ū~P8S8!smnU~PS!

1ETq~x,j!Ū~P8S8!
g [miDn]

M
U~PS!1•••, ~3!

where @mn# means antisymmetrization of the two indice
and the ellipses denote higher twist structures which are
side the scope of the present discussion. The dependen
each distribution upont5D2 and Q2 is implicit. In each
equation, the first term represents an amplitude that surv
6-2
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HELICITY-FLIP OFF-FORWARD PARTON . . . PHYSICAL REVIEW D58 054006
the forward limit and the second term an amplitude that
couples~but does not vanish! in the forward limit. The defi-
nitions ofHq , Eq , H̃q , andẼq are from Ref.@2#. The quark
helicity-flip distributionsHTq andETq are new; and they can
be selected from the third equation by takingm51 and n
5'. The above definitions complete the identification of
twist-two quark distributions.

A few additional comments about the definition in Eq.~3!
are in order. First, for brevity we have not explicitly show
the gauge link between the quark fields. This link is alwa
present, except in the light-like gaugeA150. Second, by
using time-reversal symmetry, all the distributions are s
to be real. Third, from taking the complex conjugate of t
above equations, it follows that all the distributions are ev
functions ofj. Finally, we can add a time-ordering betwe
the two fields without changing the content. This follow
from

Tc1
† ~0!c1~ln!5c1

† ~0!c1~ln!

2u~ln0!$c1
† ~0!,c1~ln!%. ~4!

The second term is just a constant because it is an antic
mutator of the independent~or good! components of the
Dirac field separated along the light cone. Obviously,
constant does not contribute to the matrix elements. M
elaborate but essentially equivalent proofs can be foun
the literature@22,23#.

We now turn to the gluon distributions. Only transver
gluons need be considered here because longitudinal
are either dependent or gauge degrees of freedom, w
lead to either higher twist distributions or gauge links. A
independent set of nucleon gluon amplitudes is:A1

2 1,1
2 1,

A 1
2 21,1

2 21, A 1
2 1,2 1

2 21 A 1
2 1,1

2 21, A 1
2 1,2 1

2 1, and
A 1

2 21,2 1
2 1. The familiar distributions G(x,Q2) and

DG(x,Q2) come from the forward limit of the first two am
plitudes. There is no equivalent ofh1 for gluons since it is
impossible for a nucleon to spin-flip by two units. All off
forward twist-two gluon distributions are defined below:

1

xE dl

2p
eilx^P8S8uF ~maS 2

l

2
nDFa

n)S l

2
nD uPS&

5Hg~x,j!Ū~P8S8!P̄~mgn)U~PS!

1Eg~x,j!Ū~P8S8!
P̄~misn)aDa

2M
U~PS!1•••,

1

xE dl

2p
eilx^P8S8uF ~maS 2

l

2
nD i F̃ a

n)S l

2
nD uPS&

5H̃g~x,j!Ū~P8S8!P̄~mgn)g5U~PS!

1Ẽg~x,j!Ū~P8S8!
g5P̄~mDn)

2M
U~PS!1•••,
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xE dl

2p
eilx^P8S8uF ~maS 2

l

2
nDFnb)S l

2
nD uPS&

5HTg~x,j!Ū~P8S8!
P̄~ [miDa]snb)

M
U~PS!

1ETg~x,j!Ū~P8S8!
P̄~ [mDa]

M

g [nDb])

M
U~PS!1•••.

~5!

Here in the first two equations, (mn) means symmetrization
of the two indices and removal of the trace, and in the th
equation@ma# and @nb# are antisymmetric pairs and (•••)
signifies symmetrization of the two and removal of the tra
These operations are essential since the product of oper
must transform as irreducible representations of the Lore
group.

The distributionsHg , Eg , H̃g , and Ẽg have been intro-
duced before@3,4#. Their evolutions and mixing with quark
distributions have also been worked out. They play an
portant role in electro-meson production in the smallx re-
gion @9,24#. The helicity-flip distributionsETg and HTg are
new. They can be selected from Eq.~5! by taking m5n
51 anda,b5'. The angular momentum conservation r
quires presence of one unit of angular momentum (DT) when
the nucleon helicity is flipped (HTg) and two units (DTDT)
when it is not (ETg). Hence both decouple from the matr
elements in the forward limit although the distribution
themselves do not vanish.

In a sense, the gluon helicity-flip distributions are t
‘‘cleanest’’ among the class of gluon distributions since th
are forbidden to mix with quark distributions by angular m
mentum conservation. This, in fact, was why Jaffe a
Manohar@18# had proposed using theD(x,Q2) distribution
as a probe of ‘‘exotic gluons’’ in a spinJ>1 nucleus.
Nuclear binding or pions would not contribute. Howev
there, unlike here, is a strong suppression on the magni
of the distribution due to the small size of the nuclear int
action relative to a typical hadronic mass scale because ‘
otic gluons’’ can only be generated by the nuclear interact
@for an estimate ofD(x,Q2) see Ref.@25##. In the nucleon,
the off-forward helicity-flip gluon distributions can be a
large as other gluon distributions for a reasonable size ox.

III. EVOLUTION OF HELICITY-FLIP DISTRIBUTIONS

A parton distribution is necessarily defined at a given d
tance or momentum scale because of ultraviolet divergen
Physically, the scale can be related to the kinematic varia
of the particular hard process under consideration. In
section we study, using momentum space Feynman
grams, the leading-logarithmic evolution of the helicity-fl
parton distributions defined in the previous section. Wh
the method is straightforward in principle, there are imp
tant subtleties related to the gauge dependence of the c
lation and end-point singularities. In principle any gau
choice is permissible but the light-cone gauge is natura
preferred for several reasons: the fewest number of diagr
6-3
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FIG. 1. Feynman diagrams for evolution of quark helicity-flip parton distributions.
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need be calculated, path-ordered exponentials are absen
light-cone dynamics of partons is transparent, and ghosts
absent. However, there is a price to be paid because
light-cone gluon propagator, when imbedded in a loop, le
to singularities in the end-points of integrals whose interp
tation is ambiguous. This is sufficient reason to do
~longer! calculation in a covariant gauge. Therefore, in t
following, we shall use the Feynman gauge and treat se
rately the quark and gluon helicity-flip distributions. A
leading-logarithmic order, any ultraviolet regulator is
good as any other; so we impose an ultraviolet cut-off on
momentum integrations.

A. Evolution of the quark distributions ET and H T

The result in this section has been obtained before in R
@11#. Here for completeness we present our calculation i
different form.

From the definitions of the quark distributionsHTq and
ETq in Eq. ~3!, it is clear that the two will evolve identically
with the leading component of the operatorc̄smnc. Select-
ing only the leading twist part, it is therefore convenient
define

F~x,j,Q2!5nmenE dl

2p
eilx^P8S8uc̄S 2

1

2
lnDsmn

3e2 ig*l/2
2l/2dan•A~an!cS 1

2
lnD uPS&, ~6!

whereem is a unit vector in a transverse direction. The pa
ordered integral has been reinstated in the above. The re
malization scaleQ2 is the cut-off for the momentum compo
nents of the fields.F(x,j,Q2) can be diagrammatically
represented as in Fig. 1a. Now imagine a slight increas
Q2 to Q21dQ2, revealing a deeper level of hadronic su
structure. Additional diagrams contributing toF(x,j,Q21
dQ2) are shown in Figs. 1b–1e.

Feynman-like rules for these diagrams can be derived
rather straightforward way: the product of bare Heisenb
fields in Eq.~6! can be brought under the time-ordering sy
bol and a perturbation expansion follows from expanding
05400
the
re
he
s
-

e

a-

e

f.
a

-
or-

of

a
g
-
t

the exponential containing the QCD interaction term
exp(i*Lint) as well as expanding the path-ordered expon
tial. Subsequently a collinear expansion is made: the li
entering or leaving the hadron blob are always collinear,
flecting the fact that the internal relative momenta of parto
in the hadron are much less than the momentum of the h
probe. The transverse momenta of the other lines is boun
by Q2.

The Feynman expressions for Figs. 1c and 1d are

dFc~x,j,Q2!5
1

2
n[men]E dyE d4k

~2p!4d~x2k•n!

3
i

~q2k!•n1 i e
iD ab~q2k!

3TrF1

8
smn~2 igtana!

3srl~2 igtagb!iSFS k1
1

2
D D G

3p[rel]F~y,j,Q2!, ~7!

dFd~x,j,Q2!5
1

2
n[men]E dyE d4k

~2p!4d~x2y!

3
i

~k2q!•n1 i e
iD ab~q2k!

3TrF1

8
smn~2 igtana!srl~2 igtagb!

3 iSFS k1
1

2
D D Gp[rel]F~y,j,Q2!. ~8!

In the first of the above two equations,qm5ypm and in the
second,qm5xpm. Two other diagrams are obtained by r
flection and yield identical expressions underj→2j. Fi-
nally, the quark self-energy diagram in Fig. 1e~and its re-
flection!, together with the wave function renormalizatio
yield the combined expression below after calculation:
6-4
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FIG. 2. Representative Feynman diagrams for evolution of gluon helicity-flip parton distributions.
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DQF~x,j,Q !

D lnQ2
5

as~Q !

2p
CFFu~x2j!E

x

1dy

y

x2j

y2j

1u~x1j!E
x

1dy

y

x1j

y1j

2u~j2x!E
21

x dy

y

x2j

y2j
2u~2j2x!

3E
21

x dy

y

x1j

y1jGF~y,j,Q2!

y2x1 i e
, ~9!

where

DQ

D lnQ2 5
d

dlnQ22
as~Q2!

2p
CFF3

2
1E

j

x dy

y2x2 i e

1E
2j

x dy

y2x2 i eG . ~10!

The above result agrees with that obtained by Belitsky
Müller.

It is useful to take moments ofF(x,j,Q2). Define

Fn~j,Q2!5E
21

1

dxxn21F~x,j,Q2! ~n>2!, ~11!

wheren5even~odd! moments are charge conjugation ev
~odd!. Then, a calculation leads to the following evolutio
equation for the moments:

dF n

dlnQ2 5
as~Q2!

2p
CFF S 3

2
22S~n! DFn

12 (
i 51,2,..

[ ~n21!/2] S 1

2i
2

1

nD ~2j!2iFn22i G , ~12!

where

S~n!5(
i 51

n
1

i
. ~13!

We shall now interpret the evolution equation in terms
operator mixing. To this end, define
05400
d

f

O n,2i
1 n ~x!5 i ]m1

••• i ]m2ic̄ iDJ m2i 11
••• iDJ mn21smnnc,

~14!

where allm indices are symmetrized andiDJ5@ iDW2 iDQ #/2.
Using translational invariance, it is easy to see that

nm1
•••nmn

en^P8S8uO n,2i
m1•••mnnuPS&5~2j!2iFn22i .

~15!

As one can see from Eq.~12!, the operatorsO n,2i
m1•••mnn be-

longing to samen but differenti mix. Taking an appropriate
linear combination of these, or equivalently, diagonalizi
the mixing matrix, is not difficult. One may establish recu
sion relations using Eq.~12! to finally arrive at

dÕn

dlnQ2
5

as~Q2!

2p
CF~ 3

2 22S~n!!Õn , ~16!

Õn5 (
i 50

[ ~n21!/2] ~21! i2n22i 21G~n2 i 1 1
2 !

~n22i 21!! i !G~ 3
2 !

On,2i
m1•••mnn .

~17!

The coefficients in Eq.~17! are those of the Gegenbau
polynomials,Cn21

3/2 (x). This can be traced to the fact tha
these polynomials are essentially the Clebsch-Gordan co
cients which occur in the light-cone expansion of opera
products that transform irreducibly under the conform
group @26#.

B. Evolution of the gluon distributions ET and H T

The evolution of the gluon helicity-flip distributions ca
be studied in the same way as for the quark. For con
nience, we define

F~x,j,Q2!5nmnne~aeb)8 E dl

2p
eilx^P8S8uFma

3S 2
1

2
lnDe2 ig*l/2

2l/2dan•A~an!

3FnbS 1

2
lnD uPS&. ~18!
6-5
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whereea andeb8 are two unit vectors in the transverse dire
tions. We are interested in the change of F under the cha
of the momentum cut-offQ2. Some representative Feynma
diagrams are shown in Fig. 2.

As we have mentioned before, the gluon helicity-flip d
tributions do not mix with any quark distributions. Forx
.j, the evolution equation reads

DQF~x,j,Q2!

D lnQ2
5

as~Q2!

2p E
x

1dy

y
PS x

y
,
j

y
,
e

yDF~y,j,Q2!,

~19!

where

DQ

D lnQ2 5
d

dlnQ22
as~Q2!

2p
CAF11

6
2

nf

3CA

1E
j

x dy

y2x2 i e
1E

2j

x dy

y2x2 i eG , ~20!

and

P~x,y,e!52CA

~x22j2!

x~12j2!2S 2~12x!j2

x22j2 1
12j2

12x1 i e D .

~21!

For 2j,x,j, the equation is

DQF~x,j,Q2!

D lnQ2
5

as~Q2!

2p
XE

x

1dy

y
P8S x

y
,
j

y
,
e

yD
2E

21

x dy

y
P8S x

y
,2

j

y
,
e

yD C
3F~y,j,Q2!, ~22!

where

P8~x,j,e!5
~x22j2!

x~12j2!F 2j

~x2j!~11j!
1

4

12x1 i e G .
~23!

And finally for x,2j, the equation is the same as that f
x.j, except*x

1→2*21
x .

In the forward limit, the evolution equation reduces to th
for D(x),

dD~x!

dlnQ2 5
as~Q2!

2p E
x

1dy

y
PS x

yDD~y!, ~24!

where the evolution kernel is

P~x!52CA

x

~12x!1
1S 11CA

6
2

nf

3 D d~x21!. ~25!

Here the1 prescription is standard@27#. The above result, a
far as we know, is new.
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t

It is instructive to look at the evolution in operator form
Define then5 even moments@the odd moments vanish be
cause F(x) is antisymmetric inx as one can easily chec
from the definition#:

Fn~x,j,Q2!5E
21

1

dxxn21F~x,j,Q2!~n>2!. ~26!

The evolution equation becomes

dFn

dlnQ2
5

as~Q2!

2p
CAF S 11

6
2

nf

2CA
22S~n! DFn

1 (
i 51

[ ~n21!/2] S 4i 22

n21
2

4i 12

n
1

1

i D
3~2j!2iFn22i G . ~27!

Define a tower of twist-two gluon operators:

O n,2i
m1•••mnab

5 i ]m1
••• i ]m2iFm2i 11aiDJ m2i 12

••• iDJ mn21Fmnb.
~28!

Then it is easy to see

nm1
•••nmn

eaeb8 ^P8S8uO n,2i
m1•••mnabuPS&5~2j!2iFn22i .

~29!

Hence the mixing of the different moments of the glu
disributions reflects the mixing of the twist-two operators
same spin and dimension. Define a new basis of operato
term of the Gegenbauer polynomialsCn22

5/2 (x) combinations:

On5 (
i 50

[ ~n22!/2] ~21! i2n22i 22G~n2 i 1 1
2 !

~n22i 22!! i !G~ 5
2 !

On,2i
m1•••mnab .

~30!

Then the evolution ofOn becomes diagonal:

dO n

dlnQ25
as~Q2!

2p
CAS 11

6
2

nf

3
CF22S~n! DOn . ~31!

Again, the above simplification is due to conformal symm
try. However, beyond the leading-logarithmic order, the co
formal symmetry is anomalously broken by quantum corr
tions @28#.

IV. PHOTON HELICITY-FLIP COMPTON AMPLITUDE

The gluon helicity-flip distributions, HTg(x,j) and
ETg(x,j), are basic properties of the nucleon, at par with
other distributions, namely,Hg(x,j), Eg(x,j), H̃g(x,j), and
Ẽg(x,j). Because of angular momentum conservation,
gluon double-helicity flip distributions do not mix with quar
distributions, making their isolation and possible measu
ment relatively cleaner. One would like to know which ha
processes probeHTg andETg . The general Compton scatte
6-6
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FIG. 3. Diagrams for photon
helicity-flip Compton scattering.
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ing involving two photons offers one possibility, perhaps t
simplest. Diffractive vector meson production from a deep
virtual photon is another@19,24#.

Figure 3a illustrates the general two photon process
highly virtual photon with momentumq1D/2 and transverse
polarization is incident upon the nucleon. A second pho
of momentumq2D/2 is detected, and the recoiling nucleo
emerges intact. The scattering amplitude is

Tmn5 i E d4ze2 iq•z^P8S8uTFJnS 2
1

2
zD JmS 1

2
zD G uPS&.

~32!

A convenient set of kinematic variables is obtained
choosingqm and P̄m5 1

2 (P1P8)m to be collinear and in the
3 direction. In terms ofpm, nm, we expand the ‘‘average’
photon momentum:

qm52xBpm1~Q2/2xB!nm. ~33!

The transverse components ofDm are assumed to be of th
order of the nucleon mass, i.e. much smaller than the h
momentumQ. In the collinear approximation, the momen
of the incoming and outgoing photons are, respectivelyq
2jp and q1jp. The initial and final state nucleon’s mo
menta are (11j)pm and (12j)pm, respectively. Symmetriz
ing the diagrams in this manner makes it possible to
simpler expressions by exploiting crossing symmetry.

There is no tree-level coupling between the scatter
photon and the gluons in the target. However, there i
contribution atO(as) from the box-diagram and its permu
tations, shown in Figs. 3b–d. The momenta of the gluo
going outward and returning to the nucleon blob are, resp
tively, (x1j)pm and (x2j)pm with 21,x,1. The loop
momentum is expanded as

km5~k•n!pm1~k•p!nm1k'
m . ~34!

Rather than use Feynman parameters to solve the inte
with four products in the denominator, we systematically e
05400
-

A

n

rd

t

g
a

s
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ral
-

ploit crossing symmetry (j→2j) to reduce the integral to a
much more manageable form with three product terms.
mensional regularization is used for the divergent grap
The infrared singularity cancels in the sum of the three d
grams, as it must. Many details of the calculation are sim
to those in Ref.@29#.

Our final result for the photon double helicity-flip ampl
tude is

Tmn5
as

2pS (
q

eq
2D E

21

1

dx
x

x22j2F11
xB

22j2

x22j2

3 lnS xB
22x2

xB
22j2D GnanbT mnab, ~35!

where

T mnab5
1

xE dl

2p
eilx^P8S8uF ~maS 2

l

2
nDFnb)S l

2
nD uPS&.

~36!

In the above,q sums over the quarks circulating in the loo
andeq are their electric charges. Equation~35! is the convo-
lution of a perturbatively calculable part and a soft part
flecting the nucleon’s composition, and is in the form of
factorization theorem at the lowest order of QCD perturb
tion theory. To completely justify the use of the soft part, o
needs to consider all contributing Feynman diagrams w
the hard quark loop connecting with arbitrary number of g
ons to the nucleon blob. Any choice of gauge may be m
of course, but the final result will be gauge independent. I
easiest to work in the light-cone gauge and with simply t
physical gluon fields. In covariant gauge it would be nec
sary to show that these additional gluons are summed u
the path-ordered integral.

As a check on our calculation, we may consider forwa
scatteringj50 on a target with spinJ>1. In the limit of
xB→`, the perturbative part in Eq.~35! can be expanded:
6-7
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Tmn52
as

2pS (
q

eq
2D (

n even52

`
1

xB
n

2

n12

3E
21

1

dxxn21T mnabnanb

52
as

2pS (
q

eq
2D (

n52

`
2

n12

2nq1
m
•••qn

m

~Q2!n

3^PSuFmm1iDJ m2
••• iDJ mn21FnmnuPS&. ~37!

The above coincides with the result in Ref.@18# except for an
overall sign. In the general case, we can convert the Eq.~35!
result into a generalized operator production expansion w
derivative operators:

i E d4ze2 iqzJnS 2
z

2D JmS z

2D
52

as

2pS (
q

eq
2D (

n even52

`
2

n~n12!

2nq1
m
•••qn

m

~Q2!n

3 (
i 50

[ ~n21!/2]

~n22i !Om1•••mnmn
n,2i 1••• ~38!

whereOm1•••mnmn
n,2i is defined in Eq.~28!. We would like to

emphasize again that only themn symmetric and traceles
terms are included in the above equation.

V. DVCS CROSS SECTION WITH GLUON
HELICITY-FLIP DISTRIBUTIONS

The Compton amplitude in the last section can be use
obtain the cross section for deeply virtual Compton scat
ing. In DVCS, the final photon is real and hence one has
constaintxB5j. In this section, we calculate the cross se
tion in this special kinematic limit.

We choose the kinematic variables as those used in
@4#: k5(v,kW ) andk85(v8,k8W ) for the four-momenta of the
05400
th

to
r-
e
-

ef.

intial and final electrons,P5(M ,0) andP85(E8,P8W ) for the
initial and final momenta of the nucleon, andq85(n8,q8W )
the momentum of the final photon. The differential cro
section is

ds5uTu2dG, ~39!

whereT is the invariantT matrix of the scattering anddG is
the invariant phase space factor. Depending on choice
independent kinematic variables to characterize the differ
tial cross section,dG takes different form. If one uses th
scattered electron’s energy and solid angle, and the scatt
nucleon’s solid angle,

dG5
1

32~2p!5vM
v8dv8dVe8dVP8

3
P82

uP8~n1M !2qE8cosfu
, ~40!

wheref is the angle betweenqW and P8W , and the sum over
two possible solutions ofuP8W u is implicit. On the other hand
one can also use the standardQ2 andxB ~or s), t5D2, the
t-channel momentum transfer, andf the angle between lep
ton and hadron planes@21,30#.

The invariantT matrix consists of two parts. The first pa
comes from the Compton scattering,

T152e3ū~k8!gmu~k!
1

q2 Tmnen* , ~41!

where ū,u are the spinors of the lepton ande is the polar-
ization of the emitting photon. The Compton amplitudeTmn

contains both photon helicity-flip and non-flip contribution

Tmn5Tmn
Dl501Tmn

Dl52 , ~42!

where the first term is given by Eq.~4! in Ref. @4# and the
second term is from Eq.~35!,
TDl52
mn 5

as

4pS (
i

ei
2D E

21

1

dxS 1

x2j1 i e
1

1

x1j2 i e DnanbFHTg~x,j!Ū~P8S8!
P̄([miD'

a]snb)

M
U~PS!

1ETg~x,j!Ū~P8S8!
P̄~ [mD'

a]

M

g [nD'
b])

M
U~PS!G

5
as

4pS (
q

eq
2D E

21

1

dxS 1

x2j1 i e
1

1

x1j2 i e D 1

4M FHTg~x,j!Ū~P8!~D'
mg'

n 1D'
n g'

m2g'
mnD”'!n”U~P!

1
1

M
ETg~x,j!Ū~P8!S j~D'

mg'
n 1D'

n g'
m2g'

mnD”'!1n” S D'
mD'

n 2
1

2
gmnD'

2 D DU~P!G . ~43!
6-8
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The second part of theT matrix comes from the Bethe
Heitler process,

T252e3ū~k8!Fe”* 1

k”2D”2me1 i e
gm

1gm
1

k” 81D”2me1 i e
e”* Gu~k!

1

D2 ^P8uJm~0!uP&,

~44!

whereme is the mass of electron and will be ignored for t
following discussion. The elastic nucleon matrix element

^P8uJm~0!uP&5Ū~P8!FgmF1~D2!1F2~D2!
ismnDn

2M GU~P!,

~45!

whereŪ,U are the nucleon spinors andF1 and F2 are the
usual Dirac and Pauli form factors of the nucleon.

We are interested in only the leading contribution to t
cross section from the helicity-flip gluon distributions. Th
comes from the interferences between the helicity-flip a
non-flip Compton amplitudes and between the former a
the Bethe-Heitler amplitude. The first interference yields

~T 1
Dl50!* T 1

Dl521T 1
Dl50~T 1

Dl52!* 52
e6

Q4 l VC
mnWVCm n ,

~46!
ro

to
e
fs

ad

ec

05400
d
d

where the lepton tensorl VC
mn can be found in Ref.@4#. The

hadron tensor is

WVC
mn5

1

M2S D'
mD'

n 2
1

2
g'

mnD'
2 D as

4pS (
q

eq
2D

3(
q

eq
2 ReE

21

1

dxa~x!E
21

1

dx8a* ~x8!

3@Hq~x,j!ETg~x8,j!2HTg~x8,j!Eq~x,j!#. ~47!

The tensor structure (D'
mD'

n 2 1
2 gmnD'

2 ) signals a cos2f
term in the cross section, as was noted in@21#. There is, of
course, also a gluon helicity non-flip term but it enters at o
higher power ofas .

The interference between the double-helicity-flip Com
ton and Bethe-Heitler amplitudes is

T 1
Dl52* T21T 1

Dl52T2* 52
e6

D2Q2 l ~mn!a ReH ~mn!a ,

~48!

where l (mn)a depends on electron kinematic variables a
can be found in@4#. The nucleon structure dependent part
H ~mn!a5S D'
mD'

n 2
1

2
g'

mnD'
2 D as

4pS (
q

eq
2D E

21

1

dxa~x!F ~F11F2!S HTg~x,j!1
D2

4M2 ETg~x,j! Dna1„F1ETg~x,j!

2F2HTg~x,j!…
P̄a

M2G1~D'
mg'

an1D'
n g'

am2g'
mnD'

a !
as

4pS (
q

eq
2D E

21

1

dxa~x!

3j~F11F2!S HTg~x,j!1
D2

4M2 ETg~x,j! D . ~49!
es.
ns
pli-

ults
.
ff-
rk
bu-
lve
g-
i-
Here the presence ofD in l mna andDmDn in H (mn)a can give
rise to a distinct cos3f terms in the cross section@21#. To
obtain the latter, one just multiplies the lepton and had
tensors together to get the square of theT matrix. Because of
its length, we omit the final expression. A more direct way
see the angular dependence of the cross section is to us
formulas derived in the center-of-mass frame in Re
@21,30#. According to these works, all one needs is the h

ron helicity amplitudeMH,H8
l,l8 , wherel, l8 and H, H8 are

the initial and final photon and nucleon helicities, resp
tively. The helicity-flip nucleon amplitudeMH,H8

21,1 clearly is
just the helicity-flip Compton amplitude,

Mh,h8
21,1

5ea~21!eb* ~11!TDl52
ab . ~50!
n

the
.
-

-

This can readily be evaluated using Eq.~43! by substituting
in the appropriate Dirac spinor for the nucleon helicity stat
According to @21#, certain angular weighted cross sectio
can be used to make a direct extraction of the above am
tude.

VI. SUMMARY AND COMMENTS

In this paper, we have presented a number of new res
related to the helicity-flip off-forward parton distributions
First, we enumerated systematically all leading-twist o
forward parton distributions for a nucleon: six for the qua
parton and another six for the gluon. Four of these distri
tions, two each for the quark and gluon partons, invo
parton helicity-flip. Second, we derived the leadin
logarithmic evolution equations for these helicity-flip distr
6-9
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butions. In the forward limit, our result agrees with th
known kernel forh1(x) while the kernel forD(x) is new.
Third, we obtained the photon helicity-flip Compton amp
tude in terms of a tower of gluon operators with total deriv
tives. Our result may be obtained from the known forwa
case by using the conformal symmetry of QCD. Finally,
compute the leading DVCS cross section which depends
the gluon helicity-flip distributions.

We have emphasized the unique role played by helic
flip distributions in characterizing the properties of t
nucleon. If one askes for a clear experimental signal of
istence of gluons in the nucleon, the helicity-flip Compt
amplitude would serve the purpose. Without the vector g
ons, it would be at least power suppressed in the high-en
s.

.

05400
-

n

-

-

-
gy

limit. Of course, the helicity-flip gluon distributions can als
be measured in vector meson production@19#. The size of the
helicity-flip distributions should be similar to the usu
helicity-dependent parton distributions—there is no ex
suppression in the soft physics to curb helicity flip.

ACKNOWLEDGMENTS

We would like to thank J. Osborne for discussions and
drawing the Feynman diagrams. P.H. thanks the Fulbri
Foundation for sponsoring his visit to the University
Maryland. This work was supported in part by funds pr
vided by the U.S. Department of Energy~D.O.E.! under co-
operative agreement DOE-FG02-93ER-40762.
. B

r-

s.
@1# K. Watanabe, Prog. Theor. Phys.67, 1834~1982!; F. M. Dittes
et al., Phys. Lett. B 209, 325 ~1988!; D. Müller et al.,
Fortschr. Phys.42, 101 ~1994!.

@2# X. Ji, Phys. Rev. Lett.78, 610 ~1997!.
@3# A. V. Radyushkin, Phys. Lett. B380, 417 ~1996!; 385, 333

~1996!; Phys. Rev. D56, 5524~1997!.
@4# X. Ji, Phys. Rev. D55, 7114~1997!.
@5# P. Hoodbhoy, Phys. Rev. D56, 388 ~1997!.
@6# I. I. Balitsky and A. V. Radyushkin, Phys. Lett. B413, 114

~1997!.
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