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Restricted conformal invariance in QCD and its predictive power for virtual
two-photon processes

D. Müller*
TH Division, CERN, 1211 Geneva 23, Switzerland
~Received 9 March 1998; published 22 July 1998!

The conformal algebra provides powerful constraints, which guarantee that renormalized conformally cova-
riant operators exist in the hypothetical conformal limit of the theory, where theb-function vanishes. Thus, in
this limit also the conformally covariant operator product expansion on the light cone holds true. This operator
product expansion has predictive power for two-photon processes in the generalized Bjorken region. Only the
Wilson coefficients and the anomalous dimensions that are known from deep inelastic scattering are required
for the prediction of all other two-photon processes in terms of the process-dependent off-diagonal expectation
values of conformal operators. It is checked that the next-to-leading order calculations for the flavor non-
singlet meson transition form factors are consistent with the corrections to the corresponding Wilson coeffi-
cients in deep inelastic scattering.@S0556-2821~98!04215-5#

PACS number~s!: 12.38.Bx, 13.60.2r
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I. INTRODUCTION

In a massless theory, conformal symmetry has the ab
to provide powerful predictions for physical quantities. Ho
ever, conformal symmetry is broken on the quantum le
due to the renormalization. This breaking is controlled by
conformal Ward identities~CWI! of dilatation and specia
conformal symmetry. It is often possible to redefine the c
formal representation, implying that in the physical sector
the theory the conformal symmetry is only broken by t
renormalization of the running coupling constant, which p
vides a symmetry-breaking term proportional to t
b-function. If there exists a non-trivial~non-perturbative!
fixed point such that theb-function vanishes, conformal in
variance holds true. This is the so-called hypothetical c
formal limit of the theory.

For instance, the Crewther relation@1# ~also derived in
@2#! is based on conformal invariance. The value of t
Bjorken sum ruleK and the isovector partR8 of the cross-
section ratio s(e1e2→hadrons)/s(e1e2→m1m2) are
computed in QCD up to the orderas

3 @3,4#. Assuming con-
formal invariance for the axial vector-vector-vector~AVV !
correlator, Crewther proved that the relation 3S5KR8 holds
true;S is the anomalous constant, which is, corresponding
the Adler–Bardeen theorem, given by its one-loop val
Since the vector current and the flavor non-singlet ax
vector current are conserved, the CWI for the AVV co
relator tells us that conformal invariance can be broken o
by theb-function @5#. This is actually the case for the avai
ableas

3 order @6# ~see also@7,8#!.
It has been known for a long time that the conform

symmetry provides powerful constraints for the Wilson c
efficients of the operator product expansion~OPE! for two
local currents. This provides an improved OPE, which w
called conformally covariant OPE and was studied in a nu
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ber of papers, starting in the 1970’s with the work of Ferra
Gatto and Grillo @9–13#. Employing the conformal Ward
identities for the Green functions of composite operators,
conformal symmetry breaking in the interacting scalar the
was studied by Ferrara, Grillo and Parisi@14#. Making a
non-trivial assumption about the form of the conformal Wa
identities, the authors found that for a non-trivial fixed-po
of the b-function the conformally covariant OPE holds tru
if the original scale dimensions, given by the canonical
mensions, are shifted by the anomalous dimensions.

Brodsky, Frishman, Lepage and Sachradja employed
conformally covariant expansion for a non-local operat
appearing in the definition of the pion distribution amplitud
to predict the evolution of this amplitude correctly at leadi
order ~LO! @15# ~see also@13#!. Note that this requires a
generalization of the OPE and an assumption about the
formal properties of this non-local operator. With this app
cation a puzzle of the conformal invariance in gauge fi
theories sets up beyond the leading order. The next
leading order~NLO! prediction for the eigenfunctions of th
pion evolution kernel in the conformal limit contradicts th
NLO calculation of the non-singlet evolution kernel in th
modified minimal subtraction (MS) scheme@16–19#. Brod-
sky, Damgaard, Frishman and Lepage have shown that
breakdown of conformal symmetry is renormalizatio
scheme-dependent and that, in the special case of
w (6)

3 -theory in six dimensions, conformal symmetry is pr
served in the Pauli-Villars regularization at the conside
order @20#. However, in QCD the conformal symmetry pre
dictions could not be restored by a renormalization gro
transformation. Later, the breaking of conformal covarian
for local conformal composite operators, appearing in
expansion of the considered non-local operator, was a
lyzed by the CWI and conformal constraints. It was fou
that the symmetry breaking in theMS scheme~i! destroys
the irreducible representation of the conformal algebra
leading orderand~ii ! that the conformal symmetry-breakin
at this order provides the eigenfunctions of the compu
evolution kernels in NLO@21,22#, also for QCD.
© 1998 The American Physical Society05-1
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D. MÜLLER PHYSICAL REVIEW D 58 054005
In this paper we do not reanalyze this issue in terms o
modified conformal OPE, which may be done in a straig
forward manner by employing the CWI. Here we deal w
the conformally covariant OPE for two local currents th
have a well-known behavior under conformal transform
tions in the interacting theory. Neglecting the conform
symmetry-breaking terms that are proportional to
b-function allows us to give a first application to QCD pr
cesses.

The paper is organized as follows. For the convenienc
the reader, in Sec. II we shortly review the conformal alge
and the irreducible representations that are needed, as w
the derivation of the conformally covariant OPE. Using co
formal constraints, coming from the conformal algebra a
the CWI, it will be proved in Sec. III that there exists
renormalization scheme in which the conformal covarian
of composite operators holds true in the conformal lim
This allows the construction of the conformally covaria
OPE in the interacting theory. In Sec. IV we employ th
conformally covariant OPE to predict the scattering amp
tude for two-photon processes in the light-cone-domina
region@23# covering the kinematics of deeply virtual Com
ton scattering~DVCS!, which has recently been proposed
open a new window for the exploration of the nucleon co
tents @24–26#. Included are two well-known special case
which have been measured: deep inelastic scattering~DIS!
and one-meson production at large momentum transfe
two-photon collision@27–30#. In Sec. V we show that the
existing NLO corrections for the flavor non-singlet mes
transition form factors, computed in the MS̄scheme, coin-
cide with the prediction of the conformally covariant OP
Finally, the knowledge of the higher-order corrections to
Bjorken sum rule allows us to point out phenomenologi
consequences for the pion transition form factor.

II. CONFORMAL ALGEBRA AND THE CONFORMALLY
COVARIANT OPE

A. Field theoretical conformal representations

The conformal group is the maximal extension of t
Poincare´ group that leaves the light cone invariant; it is th
of physical interest for light-cone-dominated as well as
high-energy processes. Beside the well-known Poinc´
transformations, the conformal group consists of dilatatio
xa→rxa and special conformal transformations:xa→(xa

1cax2)/(112cx1c2x2). The latter is composed of an in
versionxa→xa/x2, a translationxa→xa1ca, and a further
inversion. The conformal factor 1/(112cx1c2x2) is singu-
lar on the cone and so the special conformal transformat
are not well defined as global transformations in t
Minkowski space. Moreover, it is possible to transform no
causal connected regions into one another, which violates
principle of causality. To apply the conformal group to t
quantum field theory in Minkowski space, it is sufficient
future studies to restrict ourselves to infinitesimal spec
conformal transformations: this avoids both of the mention
problems. In the following we consider field theories~of
polynomial form! with space-time dimensions larger than
which are conformally invariant on the classical level.
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For space-time dimensionn, the algebra of the conforma
group is isomorphic to the algebra SO(n,2) and consists,
besides of the algebra of the Poincare´ generatorsMab and
Pa :

@Mab ,Mgd#5 i ~2gagMbd1gadMbg1gbgMad2gbdMag!,
~2.1!

@Mab ,Pg#5 i ~2gagPb1gbgPa!, @Pa ,Pb#50,

of the following commutation relations for the dilatatio
generatorD and for the generatorKa of special conformal
transformations:

@D,Ka#5 iK a ,

@Ka ,Pb#522i ~gabD1Mab!, @Ka ,Kb#50,
~2.2!

@D,Pa#52 iPa ,

@Mab ,Kg#5 i ~gbgKa2gagKb!, @D,Mab#50.

The field theoretical representations with finite compone
have been classified on the basis of the induced represe
tion theory @31#. In the following we deal with irreducible
representations of the conformal algebra, where the actio
the special conformal generatorKl on a basis fieldf(x)
vanishes at the pointxa50:

@f~x!,Mab# ux505Sabf~0!, @f~x!,D# ux505 idff~0!,

@f~x!,Ka# ux5050. ~2.3!

Heref5w,c,Am may be a scalar fieldw, a fermionic fieldc
or a gauge fieldAm with scale dimensiondf . Conformal
invariance in the classical theory requires that the fields
massless and that the scale dimensions are equal to th
nonical dimensionsdf

can of the fields. The representation o
the Lorentz group is:

Sabw50, Sabc5
i

4
@ga ,gb#c,

SabAm5 i ~gmaAb2gmbAa!. ~2.4!

The theory of induced representation now provides the
tion of the generators at an arbitrary space-time point:

@f~x!,Pa#5 i ]af~x!,

@f~x!,Mab#5~ i @xa]b2xb]a#1Sab!f~x!,
~2.5!

@f~x!,D#5 i ~df1x]!f~x!,

@f~x!,Ka#5 i „2xa~df1x]!22iSabxb2x2]a…f~x!.

B. Conformally covariant operators

Parton distribution functions and hadron distribution a
plitudes are defined as expectation values of composite li
ray operators. Their moments are expressed in terms of l
5-2
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RESTRICTED CONFORMAL INVARIANCE IN QCD AND . . . PHYSICAL REVIEW D58 054005
operators. In the following, the local conformal two-partic
operators are considered. For these operators the confo
symmetry at tree level yields that the operators do not m
under renormalization at LO and so they are essentia
solving the evolution equations in the non-forward case.
the leading twist operators it is sufficient to consider t
collinear conformal algebra, which is isomorphic
SU(1,1)[SO(2,1). The four generators are obtained by p
jection onto the light cone:

P15ñaPa, K25ña
!Ka, D, M 215ña

!Mabñb ,
~2.6!

where ñ,ñ! are light-cone vectors with the normalizatio
ññ!51. They generate the projective transformation o
the line and satisfy the commutation relation@coming from
the algebra~2.2!#:

@M 21 ,K2#5@D,K2#5 iK 2 ,

@K2 ,P1#522i ~D1M 21!, ~2.7!

@M 21 ,P1#5@D,P1#52 iP1 , @M 21 ,D#50.

Acting with the step-up operatorP1 on f(0) generates an
infinite-dimensional representation, the so-called conform
tower $f(0),P1f(0),P1

2 f(0), . . .%. The operatorK2 acts
as a step-down one, and annihilates the lowest mem
f(0), i.e. K2f(0)50. As for D andM 21 , they are diag-
onal operators, which give the scale dimension and the
of the members, respectively. The spectrum of the Cas
operator

C5
1

2
P1K22

1

4
~D1M 21!22

i

2
~D1M 21! ~2.8!

is j ( j 11), wherej is the conformal spin.
Conformal composite operators can be constructed by

ferent methods@32–34#, for instance by decomposition o
the direct product of two towers$f i(0),P1f i(0), . . .% into
irreducible representations. The Clebsch-Gordan coeffici
are given by the coefficients of the Jacobi polynomi
Pk

(n121/2,n221/2) ,

Okl~n1 ,n2!5~ i ñ]1! lf1~0!G

3Pk
~n121/2,n221/2!S ñ]2

ñ]1
D f2~0!,

l>k, n i5df i
1sf i

21/2, ~2.9!

where]6
n 5]W n6]Q n andG contains the spin and, eventuall

further global group theoretical structures. To ensure ga
invariance in a given gauge field theory, the partial deri
tives have to be replaced by the covariant ones, which d
not spoil the conformal properties of the operator. The ind
n i is determined by both the scale dimension and the spi
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the corresponding fieldf i . The action of the collinear con
formal generators are given by

@Okl~n1 ,n2!,P1#5Okl11~n1 ,n2!

@Okl~n1 ,n2!,K2#52~k2 l !~k1 l 1n1

1n2!Okl21~n1 ,n2!, ~2.10!

@Okl~n1 ,n2!,D#5 i ~d11d21 l !Okl~n1 ,n2!,

@Okl~n1 ,n2!,M 21#5 i ~s11s21 l !Okl~n1 ,n2!,

where (d11d21 l ) and (s11s21 l ) are the dimension and
the spin, respectively, of the operatorOkl(n1 ,n2). The low-
est member in each tower isOkk(n1 ,n2).

In the following we often consider conformal operators
the w (6)

3 theory, where the field has the canonical dimens
dw52, and in QCD for the non-singlet channel, where t
quark fields havedc53/2 ands51/2, so that in both case
n15n253/2. Sincen15n2, the Jacobi polynomials can b
expressed by the Gegenbauer polynomialsCk

n :

Pk
~n21/2,n21/2!~x!5

~n11/2!k

~2n!k
Ck

n~x!, ~2.11!

where (a)n5G(a1n)/G(a) is the Pochhammer symbol.

C. Conformally covariant OPE

Here we refer to the work of Ferrara, Gatto and Gri
@9–11#. The construction of the conformally covariant OP
is based on the behavior of the conformal operators un
infinitesimal conformal transformations, which is charact
ized by their scaling dimension and their conformal spin.
simplify the notation, only the scalar case will be consider
In Sec. III C the derivation reviewed here will be applied
the product of two electromagnetic currents. We restrict o
selves to leading twist and assume that the following sy
metrized and traceless conformal operators with scale dim
sion l k1 l 2k5d11d21 l form a complete basis:

Oa1 . . . a l ,k~x!5 S
$a%

i ~ l 2k!]ak11
. . . ]a l

Oa1 . . . ak
~x!2traces.

~2.12!

HereaS denotes symmetrization with respect toa1 , . . . ,a l .
As in the case of the collinear conformal representati
which is obtained by contraction with the light-cone vect
ñ, the operatorOa1 . . . ak

(0) is the lowest member of the
corresponding conformal tower. For dimensional reaso
the product of the currentsA andB are expanded on the ligh
cone as
5-3
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D. MÜLLER PHYSICAL REVIEW D 58 054005
A~x!B~0!5 (
k50

` S 1

x2D ~ l A1 l B2 l k1k!/2

3(
l 5k

`

C̃kl~2 i !~ l 11!xa1 . . . xa l

3Oa1 . . . a l ,k~0!, ~2.13!

whereC̃kl are the Wilson coefficients. Furthermore,l A and
l B denote the scale dimensions of the currentsA and B,
respectively.

One way to construct the conformally covariant OPE is
act with Kl on both sides of the OPE~2.13! ~see@10#! and
compare the two results for the leading twist contributio
Taking into account the action ofKl on the currents

@A~x!B~0!,Kl#5 i „2xl~ l A1x]!2x2]l…A~x!B~0!
~2.14!

and on the composite operators~2.12!,

S
$a,l%

@Oa1 . . . a l ,k~0!,Kl#52~k2 l !~ l k1 l 21!

3 S
$a,l%

Oa1 . . . a l 21 ,k~0!gla l
~2.15!

results, after comparison of the obtained expressions, in
recurrence relation for the Wilson coefficients:

C̃kl115
~ l A2 l B1 l k2k!/21 l

~ l 2k11!~ l k1 l !
C̃kl

⇒C̃kl5
~@ l A2 l B1 l k1k#/2! l 2k

~ l 2k!! ~ l k1k! l 2k
C̃kk . ~2.16!

Inserting this solution in the OPE~2.13! allows the summa-
tion with respect tol and provides the conformally covarian
OPE that is written here in the following representation:

A~x!B~0!5 (
k50

`

C̃kS 1

x2D ~ l A1 l B2 l k1k!/2

3~2 i !~k11!xa1 . . . xak

3E
0

1

duu~ l A2 l B1k1 l k!/221

3~12u!~ l B2 l A1k1 l k!/221Oa1 . . . ak
~ux!,

~2.17!

whereC̃k5C̃kk .
Let us recall the assumptions used to derive this con

mally covariant OPE~2.17!. Besides the completeness of th
operator basis, it was essential thatKl annihilates the cur-
rentsA,B and the conformal operators at the pointxa50:
05400
.

a

r-

@A~x!,Kl# ux505@B~x!,Kl# ux5050, ~2.18!

S
$a,l%

@Oa1 . . . ak
~x!,Kl# ux5050.

~2.19!

The transformation laws under the infinitesimal conform
transformation~2.15!, analogous to those in Eq.~2.10!, result
in a special arrangement of the operators. This causes
predictive power of the conformally covariant OPE, name
that the corresponding Wilson coefficients are already fix
and only the coefficientsC̃k are unknown and have to b
computed explicitly, which can be done by forming forwa
matrix elements. In this case theu-dependence of the opera
tors can be dropped and the conformal OPE is reduced to
common OPE for the forward case that is familiar from de
inelastic scattering~DIS!.

III. CONFORMALLY COVARIANT
RENORMALIZATION SCHEME

Generally, the conformal invariance of classical fie
theories is broken at the quantum level owing to the ren
malization of the fields and the coupling constant.1 However,
the symmetry breaking by the renormalization of the fie
can be absorbed into the redefinition of the conformal rep
sentation, i.e. the scale dimension given originally by t
canonical dimension is shifted by the anomalous dimens
of the corresponding field. The renormalization of the co
pling constant cannot be implemented in the original irred
ible representation. However, in a scalar theory, Zaikov
plored the possibility to extend the conformal representat
of Green functions to a non-decomposable irreducible rep
sentation that includes theb-function @35#. In the following,
it is simply assumed that there exists a non-trivial fixed po
such that theb-function vanishes; formally, we speak from
the conformal limit and setb to zero.

The conformal properties of composite operators will a
be spoiled by the renormalization. To study this symme
breaking we employ the CWI@36#, which was derived, for
gauge field theories, in the canonical quantization@37# and in
the path integral formulation@38#. Using the latter approach
the CWI needed for conformal composite operators was w
ten down in the dimensional regularization@21,22#. To have
a convenient form for the Ward identities, we introduce
few shorthand notations. The symbol@O# means renormal-
ization of the operatorO in the MS scheme. For simplicity
we assume that the composite operators are closed u
renormalization. Because of Poincare´ invariance the
Z-matrix is triangular~a detailed discussion on this point ca
be found, for instance, in@20#!:

1In gauge field theories, the conformal invariance is also bro
by the renormalization of the gauge-fixing parameter as well
explicitly by the gauge-fixing and ghost terms in the action. In t
Abelian theory, this breaking can be formally written as a Becc
Rouet-Stora-Tyutin~BRST! transformation, so that it does not ap
pear in the physical sector of the theory. In the following we a
sume that this breaking is also absent in the physical sector of Q
5-4
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@Okl#5 (
k850

k

Zkk8Ok8 l . ~3.1!

Furthermore,X5f(x1) . . . f(xn) is a monomial of elemen
tary fields and̂ A& denotes the vacuum expectation value
the time-ordered product TA expi@S#. Then the conformal
Ward identities for the renormalized composite operat
@Okl#(n1 ,n2) finally read2

iD^@Okl#X&5 (
k850

k

@~ l 1d1
can1d2

can!dkk81gkk8#

3^@Ok8 l #X&1
b

g
^@OklD

b#X&1•••,

iK2^@Okl#X&52 i (
k850

k

@2~k2 l !~k1 l 1n11n2!dkk8

1gkk8
c

~ l !#^@Ok8 l 21#X&1
b

g
^@OklD2

b #X&

1•••. ~3.2!

HereD andK are differential operators, which act on ea
field in the monomialX as in Eq.~2.5!, e.g.,

iD^@Okl#f1~x!f2~y!&

52~d11d21x]x1y]y!^@Okl#f1~x!f2~y!&, ~3.3!

where the scale dimensions are shifted by the anoma
dimensions of the field,di5di

can1g i . The operatorsDb and

D2
b 5ñ!mDm

b arise from the conformal symmetry breaking
the action due to the renormalization of the coupling co
s
ns

fin

m
iou
.

05400
f

s

us

-

stant. Actually, they are given by the trace anomaly of
energy-momentum tensor@39–42# and will be written here
in terms of the renormalized LagrangianL(x) @37,38#:

@Db#5 i E dnxg
]

]g
L~x!, @Dl

b#5 i E dnx2xlg
]

]g
L~x!.

~3.4!

The ellipses in the CWI denote Green functions with ope
tor insertions caused by the gauge-fixing and ghost ter
Such contributions should be absent in physical matrix e
ments. The expressiongkk8 is the anomalous-dimension ma
trix of the operators andgkk8

c ( l ) denotes the special
conformal anomaly matrix, which breaks the covariance
the operators under infinitesimal special conformal trans
mations. Such transformations break the Poincare´ invariance
(Ka does not commute withMbg andPb) and therefore the
spin l dependence appears.

A. Leading order analysis

It is well known that the anomalous-dimension matrix
conformal two-particle operators is diagonal to LO:gkk8

(0)

5gk
(0)dkk8 . However, in a general renormalization schem

the irreducible conformal representation is already broken
an off-diagonal special-conformal anomaly matrix. Using t
dimensional regularization and the MS̄prescription the re-
sults for thef (6)

3 theory read, in matrix notation@21#:

ĝc~0!~ l !52b̂~ l !ĝ~0!, b̂~ l !5$bkk8~ l !%,

ĝ~0!5$gk
~0!dkk8%, ~3.5!

where
bkk8~ l !5H 2~ l 1k813!dkk822~2k813! if k2k8>0 and even

0 otherwise.
~3.6!
-

in

ou-
der
he
Regularization of the ‘‘gluon’’ propagator via Pauli-Villar
provides a different breaking of the special conformal tra
formation:

ĝc~0!~ l !52ĝ~0!b̂~ l !. ~3.7!

However, this breaking can easily be absorbed in a rede

2These CWI do not rely on any assumptions about the confor
symmetry breaking and they differ from the ones used in a prev
study in Ref.@14# by the triangularity of the anomalous matrices
-

i-

tion of the local operator by changing the index3 n→n
2(as/4p)gk

(0) and it coincides with the prediction of confor
mal symmetry@20#.

For the conformal flavor non-singlet quark operators
QCD the symmetry breaking is even more complicated@22#
due to the covariant derivatives:

ĝc~0!~ l !52b̂~ l !ĝ~0!1ŵ, ~3.8!

al
s

3Here as denotes of course an appropriate definition of the c
pling constant in the scalar theory. Note that only at one-loop or
the conformal symmetry prediction for the eigenfunctions of t
evolution kernel coincides with the shift of the indexn for the
operator.
5-5
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D. MÜLLER PHYSICAL REVIEW D 58 054005
where the non-vanishing elements ofwkk8 ~for k2k8.0 and
k2k8 even! are

wkk8524CF~2k813!~k2k8!~k1k813!

3FAkk82c~k11!1c~0!

~k811!~k812!

1
2Akk8

~k2k8!~k1k813!G , ~3.9!

Akk85cS k1k814

2 D2cS k2k8

2 D
12c~k2k8!2c~k12!2c~1!,

with c(z)5(d/dz)ln G(z). It turns out that the appearance
the matrixŵ explains the difference between the conform
symmetry prediction for the eigenfunctions of the pion ev
lution kernel and the explicit NLO calculation.

Normalization conditions, which are given implicitly i
the MS scheme, are a matter of convenience, and chan
them does not affect physical quantities. Thus we can l
for a scheme in which conformal covariance is restor
Such a scheme can be obtained by a finite renormalizatio
LO we define the renormalized conformally covariant ope
tors as

Okl
co5@Okl#2

as

2p (
k850

k22 gkk8
c~0!

~ l !

2~k82k!~k81k1n11n2!

3@Ok8 l #1 . . . , ~3.10!

5Okl1
as

2p

gk
~0!

2e
Okl2

as

2p (
k850

k22

3
gkk8

c~0!
~ l !

2~k82k!~k81k1n11n2!
Ok8 l1 . . . ,

where 1/e is the usuale-pole in dimensional regularization
which satisfy the CWI:

iD^Okl
coX&5F l 1d1

can1d2
can1

as

2p
gk

~0!G^Okl
coX&1•••,

~3.11!

iK2^Okl
coX&52 i F2~k2 l !~k1 l 1n11n2!

1
as

2p
gkk

c~0!~ l !G^Okl21
co X&1•••.

For the scalar theory as well as for QCD we find from E
~3.5!–~3.8! that gkk

c(0)( l )52(k2 l )gk
(0) . Thus, in both equa-

tions of the CWI~3.11! the conformal symmetrybreakingby
the anomalous dimension isabsorbedinto the shift of the
canonical dimension of the operatorsl 1d1

can1d2
can→ l

1d1
can1d2

can1gk . In this way the irreducible conformal rep
resentation isrestoredfor the renormalized operator at LO
05400
l
-

ng
k
.
at
-

.

So as conformal covariance at tree level is sufficient fo
diagonal anomalous-dimension matrix at LO, the one-lo
renormalized conformal operators do not mix under ren
malization in NLO, of course, up to a term proportional
b0.

B. Restoration of conformal covariance

Before we use conformal constraints to extend the an
sis to the full conformal theory, let us show that the prope
gkk

c(0)(k)50 holds true generally. To make the discussi
transparent, let us first consider the scalar theory in wh
ĝc( l ) is defined in theMS scheme as@21#

ĝc~ l !522gwb̂~ l !12@ Ẑ[1] ,b̂~ l !#1Ẑ![1]~ l !, ~3.12!

where the countertermẐ!5Ẑ![1] /e1Ẑ![2] /e21••• has to
be computed from the renormalization of the operator pr
uct

@Okl#@D2
b #5@OklD2

b #1 i (
k850

k

Zkk8
!

~ l !@Ok8 l #. ~3.13!

From the properties ofb̂( l ) and Ẑ it follows that gkk
c (k)

5Zkk
![1] (k). The latter is determined by the UV-diverge

part of *dnx(ñ!x)w3(x)Okk . SinceOkk is a polynomial of
orderk in the derivatives and the UV divergence is conce
trated inxa50, it is clear thatñ!x annihilates one derivative
so that a polynomial of orderk21 remains. Thus, no coun
tertermOkk is needed and thereforegkk

c (k)5Ẑkk
![1] (k)50. In

gauge field theories the definition ofẐ! is modified by a term
containing the functional derivative with respect to the gau
field @22#: *dnx(ñ* x)Am(d/dAm)@Okk#. Obviously, we can
use the same arguments as above, and this term also doe
induce a contribution togkk

c (k).
The proof that conformal covariance can be restored

the conformal limit will be achieved in the following man
ner. First we notice that the anomalous-dimension ma
will be diagonalized by a finite renormalization group tran
formation,

iD^Okl
coX&5~ l 1d1

can1d2
can1gk!^Okl

coX&1•••. ~3.14!

Then we show, with the help of conformal constraints, th
this implies

iK2^Okl
coX&522i ~k2 l !@k1 l 1n11n21gk#

3^Okl21
co X&1•••. ~3.15!

To calculate the right-hand side~RHS! of Eq. ~3.15! we
solve the conformal constraints in the following subsectio
In a second subsection we consider the flavor-singlet cha
in QCD, where an additional mixing problem between qua
and gluon operators appears. Here, we only take into acc
the algebraic properties of the constraints and the triangu
ity of the matrices to show that Eq.~3.14! implies Eq.~3.15!.
5-6
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1. Solution of the conformal constraints

A constraint for the anomalous-dimension matrix, whi
allows the off-diagonal part to be computed in terms of
special-conformal anomaly matrix, is implied by the comm
tator relation

@D,K2#5 iK2 . ~3.16!

Applying this identity to the Green functions and using t
CWI provides immediately a commutator relation for t
anomalous-dimension matrix and the special-conform
anomaly matrix. For completeness, we give the exact res
which includes the fullb-dependence@21,22# in the dimen-
sional regularization for the MS̄prescription:4

F â~ l !1ĝc~ l !12
b

g
b̂~ l !,ĝ G50,

akk8~ l !52~k2 l !~k1 l 1n11n2!dkk8 .
~3.17!

Since the matrixâ is diagonal, a recurrence relation follow
for the off-diagonal partĝND of the anomalous-dimensio
matrix (b is now consequently set to zero!:

gkk8
ND

52$GĝD%kk82$GĝND%kk8 . ~3.18!

Here ĝD5$gkdkk8% denotes the diagonal part of th
anomalous-dimension matrix and the operatorG is defined
by

GÂ:5H @ ĝc~ l !,Â#kk8
2~k2k8!~k1k81n11n2!

if k2k8.0

0 otherwise.
~3.19!

The solution of Eq.~3.18! can be formally written as

ĝND52
G

1̂1G
ĝD52GĝD1G 2ĝD2•••. ~3.20!

The composite operators, which do not mix under ren
malization, are obtained by a finite renormalization

Okl
co5 (

k850

k

Bkk8
21

@Ok8 l #. ~3.21!

The matrixB̂5$Bkk8% can be calculated from

4The derivation is tricky and all details for the scalar theory
dimensional regularization are given in@21#. The calculation for the
Abelian gauge field theory is analogous and as expected leads

explicit gauge dependence in the commutator relation. Sinceĝ is a
physical quantity we can assume that, at least forb50, this con-
straint holds also true in QCD.
05400
e
-

l
lt,

r-

ĝD5B̂21ĝB̂⇒@B̂,ĝD#5ĝNDB̂, ~3.22!

where the diagonal matrixĝD consists of the eigenvalues o
the triangular anomalous-dimension matrix. The solution
this equation is

B̂5
1̂

1̂2LĝND
51̂1LĝND1L~ ĝNDLĝND!1•••,

~3.23!

where the operatorL is defined by

LÂ:5H 2
Akk8

gk2gk8
if k2k8.0

0 otherwise.

~3.24!

The off-diagonal matrixĝND is given in terms ofĝc, imply-
ing that the transformation matrixB̂ can also be expressed b
the special-conformal anomaly matrix. From Eqs.~3.20! and
~3.23! one finds, after some algebra, that the diago
anomalous-dimension matrix cancels out~see Appendix A!:

B̂5
1̂

1̂1Jĝc
51̂2Jĝc1J~ ĝcJĝc!2•••, ~3.25!

where the operatorJ is defined by

JÂ:5H Akk8
2~k2k8!~k1k81n11n2!

if k2k8.0,

0 otherwise.
~3.26!

Note that in the forward case all operatorsOkl with l .k
vanish. Thus, the renormalization group transformat
~3.21! does not affect the minimal subtraction prescription
the forward case:Okk

co5@Okk#.
Now we are almost able to prove that the operatorsOkl

co

are conformally covariant. For this purpose we need the s
dependence of the special-conformal anomaly matrix, wh
is constrained by the commutator relation:

@K2 ,P1#522i ~D1M21!. ~3.27!

Applying this relation to the Green functions and using t
CWI ~3.2! provides

ĝc~ l 11!2ĝc~ l !522ĝ. ~3.28!

The solution of this recurrence relation gives the spin dep
dence of the special-conformal anomaly matrix

gkk8
c

~ l !5gkk8
c

~k!12~k2 l !gkk8 ,

and for k5k8: gkk
c ~ l !52~k2 l !gk , ~3.29!

where the last equation follows from the above shown pr
erty gkk

c (k)50. The special conformal anomaly of the oper

torsOkl
co are given byB̂21@ â( l )1ĝc( l )#B̂ and using the cor-

no
5-7
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D. MÜLLER PHYSICAL REVIEW D 58 054005
responding definitions and the property~3.29!, a
straightforward calculation given in the Appendix A pr
vides

$B̂21@ â~ l !1ĝc~ l !#B̂%kk852~k2 l !~k1 l 1n11n2

1gk!dkk8 , ~3.30!

which is equivalent to Eq.~3.15!.

2. Additional mixing problem in the QCD singlet channel

The leading twist operators appearing in the singlet ch
nel can be written in the following conformally covaria
manner, where for even parity we have:

qOkl5]1
l c̄ñagaCk

3/2S ñD2

ñ]1
D c, l>k>0, ~3.31!

gOkl5]1
l 21ñaFabCk21

5/2 S ñD2

ñ]1
D Fbgñg , l>k>1,

~3.32!

while for odd parity:

qRkl5]1
l c̄ñagag5Ck

3/2S ñD2

ñ]1
D c, l>k>0, ~3.33!

gRkl5]1
l 21ñaF̃abCk21

5/2 S ñD2

ñ]1
D Fbgñg , l>k>1.

~3.34!

Here flavor and color indices are suppressed for simplic
D2

n 5DW n2DQ n are the covariant derivatives,Fab and F̃ab

5eabgdFgd/2 are the field strength and the dual-fie
strength tensor, respectively. Since the dimension of the fi
strength tensor is 2 and its spin is 1 the index of the Geg
bauer polynomials for the gluon operators isn55/2. All
these operators have spinl 11 and canonical dimensio
l 13, as well as thesamebehavior under special conforma
transformations at tree level.

The following discussion is valid for operators of eve
and odd parity. The quark and gluon operators will mix, a
the anomalous-dimension matrix of the operators can th
fore be written in the following compact notation:

ĝ5S qqĝqgĝ

gqĝggĝ
D , ~3.35!

where the entriesi j ĝ for i , j 5$q,g% are triangular matrices
At LO these entries are diagonal and the remaining mix
problem has to be solved by explicit diagonalization of t
232 matrix.

With the previous assumption about the unphysical par
the CWI, the generalization of the conformal constra
~3.17! for b50 is a purely algebraic task:
05400
-

,

ld
n-

d
e-

g

n
t

F S â~ l ! 0

0 â~ l !
D 1S qqĝc~ l !qgĝc~ l !

gqĝc~ l !ggĝc~ l !
D ,S qqĝqgĝ

gqĝggĝ
D G50,

~3.36!

where akk8( l )52(k2 l )(k1 l 13)dkk8 . Now we introduce
the matrix

B̂5S qqB̂qgB̂

gqB̂ggB̂
D , ~3.37!

implying that the anomalous-dimension matrices of the
erators

qOkl
co5 (

k850

k

~qqBkk8
21

@qOk8 l #1qgBkk8
21

@gOk8 l # !,

gOkl
co5 (

k850

k

~gqBkk8
21

@qOk8 l #1ggBkk8
21

@gOk8 l # !

~3.38!

consist only of diagonal entries

ĝD5B̂21ĝB̂5S qqĝD qgĝD

gqĝD ggĝDD , ~3.39!

where i j gkk8
D

5 i j gkdkk8 . Applying the transformation~3.39!
to the conformal constraint~3.36! tells us that

R̂~ l !5B̂21F S â~ l ! 0

0 â~ l !
D 1S qqĝc~ l ! qgĝc~ l !

gqĝc~ l ! ggĝc~ l !
D G B̂

~3.40!

possesses only diagonal entries. Taking into account
property â( l 11)2â( l )522(l 13)1̂ and the analogous
equation to Eq.~3.28! it follows that

R̂~ l 11!2R̂~ l !522~ l 13!S 1̂ 0

0 1̂
D 22S qqĝD qgĝD

gqĝD ggĝDD .

~3.41!

The solution of this recurrence relation together with t
propertyRkk(k)50 for i , j 5$q,g% gives the following term
in the RHS of the special conformal Ward identity:

Rkk8~ l !52~k2 l !S k1 l 131qqgk
qggk

gqgk k1 l 131gggk
D dkk8 ,

~3.42!

which shows that the lowest member of each tower will
annihilated by the action ofK2 in the conformal limit of the
theory.

To restore the conformal covariance completely, the
maining mixing problem that is well known from the for
ward case has to be solved by introducing the eigenvect

1Okl
co5qOkl

co1Ck
1gOkl

co, 2Okl
co5gOkl

co1Ck
2qOkl

co.
~3.43!
5-8
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These operators have completely diagonal anomalous dim
sion and special conformal anomaly matrices:

ĝ5S 1ĝD 0

0 2ĝDD , ĝc52~k2 l !S 1ĝD 0

0 2ĝDD .

~3.44!

C. Conformally covariant OPE in the interacting theory

In the previous subsection it has been proved that th
exists, in the hypothetical conformal limit of the theory,
renormalization scheme in which the conformal covarian
of the renormalized operators is ensured. This scheme is
lated to any other one by a finite renormalization of the co
posite operators, where, however, in the forward case
normalization of these operators remains unchanged. In
OPE the renormalized operators are normalized at the fac
ization scale. These normalization conditions are arbitr
05400
n-

re

e
re-
-
e

he
r-
y

and the physical quantities, which are defined in terms of
product of two currents, are independent of these conditio
Now we choose such normalization conditions that ens
the covariance of the renormalized conformal operators.

Because of the covariance, the operators in different to
ers do not mix under dilatations, and the dilatation invarian
requires the form of the OPE given in Eq.~2.13!, where the
scaling dimension of the renormalized currents and of
renormalized conformal operators is nowl i5 l i

can1g i for i
5$A,B% and l k5d1

can1d2
can1k1gk , respectively. Further-

more, the renormalized conformal operators transform un
infinitesimal special conformal transformations formally
in Eq. ~2.15!, so that the lowest member of each conform
tower will be annihilated byKl . Hence, we can apply the
same algebraic steps as previously; the result will be
same formal expression as Eq.~2.17! also for the interacting
theory, however, with shifted scale dimensions:
alization

leading
invariant

non-
ntz
eory. Of
blem in
uark and
appears
A~x!B~0!5 (
k50

`

C̃k~m!S 1

x2D ~ l A1 l B2d1
can

2d2
can

2gk!/2

~2 i !~k11!xa1 . . . xak

3E
0

1

duu~ l A2 l B!/2~12u!~ l B2 l A!/2@u~12u!#~d1
can

1d2
can

1gk!/21k21Oa1 . . . ak

co ~ux!m . ~3.45!

In the conformal factorization scheme, the Wilson coefficients and the composite operators satisfy simple renorm
group equations:

m
]

]m
C̃k~m!5~gk2gA2gB!C̃k~m!, ~3.46!

m
]

]m
Oa1 . . . ak

co ~0!m52gkOa1 . . . ak

co ~0!m . ~3.47!

The conformally covariant OPE for the product of two electromagnetic currents in QCD should be constructed at
twist-2 in an analogous way. However, to avoid technical complications due to the Lorentz structure and the gauge-
decomposition, we consider here only two independent contributions, namely the traceJm(x)Jm(0) and the antisymmetric
twist-2 part $Jm(x)Jn(0)%asy proportional to thee-tensor. The neglected twist-3 contributions induce in certain cases
power-suppressed contributions as for the structure functiong2 in polarized DIS. In both cases considered, the Lore
structure does not affect the derivation of the conformal OPE, and we can proceed in principle as in the scalar th
course, the conformal OPE is separately valid for the flavor non-singlet and singlet channel. The appearing mixing pro
the singlet channel can be resolved easily, as discussed above, by introducing appropriate linear combinations of q
gluon operators, which will be considered as independent. Hence, in the conformal limit, each Wilson coefficient that
can be written in the same form as given in Eq.~3.45!:

H Jm~x!Jm~0!

$Jm~x!Jn~0!%asyJ 5 (
k50

`

(
i

H xa1 i C̃k~m!

i emnl1
axl i Ẽk~m!

J S 1

x2D 221/2i

gk~2 i !k11xa2 . . . xak11

3E
0

1

du@u~12u!#k1111/2igkH iOa1 . . . ak11

co ~ux!

iRa1 . . . ak11

co ~ux! J , ~3.48!
5-9
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where the indexi 5$NS,1,2% denotes the quark operato
in the non-singlet channel as well as the eigenvectors in
duced in the singlet channel. Note that the anomalous dim
sions igk are different for even and odd parity operators.

To compute the Wilson coefficients one would choo
for practical purposes, the simplest normalization conditio
Then the conformal covariance of the OPE is not manif
and the operators will mix under renormalization. Howev
putting together the solution of the more complicated ren
malization group equation and the Wilson coefficients p
vides the same scheme-independent result as the conform
covariant OPE. This fact will be used below for a cons
tency check of the available non-forward and forward QC
calculations for the product of two electromagnetic curre
in NLO.

IV. CONFORMAL PREDICTION FOR TWO-PHOTON
PROCESSES IN THE LIGHT-CONE-DOMINATED

REGION

In the following we consider two-photon processes, wh
at least one of the photons is far off-shell, so that the m
mentum transfer is large, which means that the distance
tween the photons is light-like. Such processes are the de
virtual Compton scattering~DVCS!, which is widely dis-
cussed at present@24–26#:

g* ~q1!1H~P1!→g* ~q2!1H~P2!, ~4.1!

and the production of some hadronic final states by pho
photon collision, e.g. the crossed process to the DVCS:

g* ~q1!1g* ~q2!→H~P1!1H~P2!. ~4.2!

We pay special attention to meson transition form fact
g* 1g*→M. Note that also the production of two jets in th
light-cone-dominated region was already considered in
beginning of the 1980’s by Chase@43,44#. Both processes
~4.1! and ~4.2! were previously studied in the framework o
the non-local light-cone expansion by Geyer, Robaschik
collaborators at leading order@45,23#. Here we employ the
conformally covariant OPE to predict the leading twist
contributions of these non-forward processes restricted to
conformal limit in terms of the off-diagonal expectation va
ues of composite operators.

A. General formalism

The scattering amplitude for two-photon processes
given by the time-ordered product of two electromagne
currents sandwiched between the corresponding hadr
states. To be more general, we define the scattering am
tude in the momentum space generically as

T~P1 ,P2 ,q!5 i E dnxeiqxK P2UTJS x

2D JS 2x

2 D UP1L ,

~4.3!

whereJ denotes a current andn is again the~integer! space-
time dimension. At large momentum transferq5(q1
05400
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1q2)/2 the process is dominated by the contributions fro
the light cone and we can define the following generaliz
Bjorken region@45,23#:

n5Pq→`, where P5P11P2 , Q252q2→`,
~4.4!

with the scaling variables

j5
1

v
5

2q2

Pq
, h5

Dq

Pq
, where D5P22P1 .

~4.5!

In the forward casej is identical to the Bjorken variablexB j ,
andh vanishes. For non-forward Compton scattering in t
Breit frame h is approximately given by
cosf52(DW qW/uDW uuqWu) @45,23#. Formally, h interpolates be-
tween different processes, for instance the two-photon p
duction of one hadron requiresh51.

It is straightforward to derive the conformal prediction
for the two-photon processes in the generalized Bjorken li
by inserting the conformally covariant OPE into the scatt
ing amplitude~4.3!:

T~v,h,Q2!5E dnxei $qx21/2Dx%(
k50

`

C̃k~m!S 1

x2D ~2l J2 l k1k!/2

3~2 i !kxa1 . . . xakE
0

1

du@u~12u!#~ l k1k!/221

3^P2uOa1 . . . ak

co ~ux!uP1&. ~4.6!

The expectation valuêP2uOa1 . . . ak

co (ux)uP1& is a symmetric

and traceless tensor, which can be built from the vectorsPa i

and Da i
. With respect to the Fourier transform, where w

keep only the leading terms inQ2, we already setDx
5hPx as well asDa i

5hPa i
:

^P2uOa1 . . . ak

co ~ux!uP1&m5Pa1
. . . Pak

eiuh~Px!

3^P2uOk
co~0!uP1&m~h!.

~4.7!

These reduced expectation values are polynomials of ordk
in h and depend on the factorization scalem. Such off-
diagonal matrix elements are universal and appear not o
in two-photon processes, but also in exclusive electroprod
tion of mesons@46,47#. They are~conformal! moments of the
off-forward parton distributions introduced in@48,24–26#.
Jain and Ralston pointed out that in QCD the first mom
~given by the matrix element of a current! is related to elastic
form factors@49#. A first non-perturbative calculation of th
off-forward parton distributions in the bag model has be
done recently@50#.

Inserting the reduced expectation values~4.7! into Eq.
~4.6! provides:
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T~v,h,Q2!5E
0

1

duE dnxei $qx1h~u21/2!Px%

3 (
k50

`

C̃kS 1

x2D ~2l J2 l k1k!/2

3~2 ixP!k@u~12u!#~ l k1k!/221

3^P2uOk
co~0!uP1&~h!. ~4.8!

Employing the representation

ei $qx1h~u21/2!Px%~2 i !k~xP!k5~2h!2k
dk

duk
ei $qx1h~u21/2!Px%

~4.9!

and after a Fourier transformation, using the definition of
hypergeometric functions
r-

e

l

n

tic
d
p
ts
h
p
th
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e
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ds
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-
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05400
e

2F1S a,b

g
UxD 5

1

B~a,g2a!

3E
0

1

duua21~12u!g2a21~12ux!2b,

~4.10!

the desired result reads

T~v,h,Q2!5 (
k50

`

~Q2!2pCk~hv;Q2/m2!

3S 2v

11hv D k

^P2uOk
co~m2!uP1&~h!,

~4.11!

where the exponent ofQ2 is given by p5(n1 l k
can2k

22l J
can)/2. The m dependence of the coefficien

Ck(hv;Q2/m2) is governed by the renormalization grou
equation~3.46!. They are known up to the normalization
Ck~x;1!5ck~11x!2~n1 l k2k22l J!/2
2F1S ~k1 l k!/2,~n1k1 l k22l J!/2

k1 l k
U 2x

11xD , ~4.12!
O.
ton
on-

ix
the

is
ff-
ro-
where l k52dcan1k1gk . From the properties of the hype
geometric functions, the symmetry relationCk(x)
5(21)kCk(2x) follows. The overall normalization can b
computed in the forward caseck5Ck(0). The reduced ex-
pectation valueŝ P2uOk

co(m2)uP1&(h) satisfy the diagona
renormalization group equation~3.47!, which means that the
h dependence remains invariant under evolution and o
the normalization will change.

B. QCD predictions

The conformally covariant OPE for two electromagne
currents can now be applied in the same manner to pre
different two-photon processes and their scattering am
tudes. In the conformal limit the same Wilson coefficien
appear for quite different processes at leading twist-2. T
process dependence comes from the non-perturbative ex
tation values of the conformal operators. For instance,
coefficient (Ek

i ) Ck
i appears in both polarized DIS and th

two-photon production of~pseudo! scalar mesons at larg
momentum transfer as well as in the kinematical decom
sition of the hadronic tensor for DVCS or for hadron produ
tion. Employing the conformal OPE~3.48! and performing
steps analogous to those in the previous subsection lea
the prediction for the trace and the antisymmetric twist-2 p
~proportional to thee-tensor! of the different hadronic ten
sors in the conformal limit, which is, up to trivial kinematic
factors, given by:
ly

ict
li-

e
ec-
e

-
-

to
rt

H F~v,h,Q2!

g1~v,h,Q2!
J 5 (

k50

`

(
i

H iCk~hv;Q2/m2!
iEk~hv;Q2/m2!

J S 2v

11hv D k

3H ^P2u iOk
co~m2!uP1&~h!

^P2u iRk
co~m2!uP1&~h!

J , ~4.13!

where the coefficient functions read

H iCk~x;1!
iEk~x;1!

J 5H ick

iek
J ~11x!212 igk/2

2F1

3S k111 1
2

igk ,k121 1
2

igk

2k141 igk
U 2x

11xD .

~4.14!

Without restrictions the obtained predictions are valid at L
Thus, also the evolution equations for the off-diagonal par
distribution amplitudes are solved easily in terms of the c
formal moments@44#. In NLO the correction due to the
b-function appears originally only in the off-diagonal matr
elements of the anomalous-dimension matrices. From
NLO calculation of the pion evolution kernel@16–19# and
also from the conformal constraints~3.17!, this correction is
known for the non-singlet channel. Beyond this order it
expected that also the coefficient functions will be o
diagonal, because of the conformal symmetry breaking p
portional to theb-function.
5-11
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In the forward case, i.e.h50, the conformal expansion i
related to the moments in DIS by a dispersion relation:

H F~v,Q2!

g1~v,Q2!
J 5 (

k50

`

(
i

vkH ick^Pu iOk~m2!uP&
iek^Pu iRk~m2!uP& J ,

~4.15!

where the additional factor 2k has been absorbed into th
reduced expectation values@compare with Eq.~4.7!#. Thus,
the overall normalizationiCk(0;1)5 ick and iEk(0;1)5 iek
can be taken from the calculations in unpolarized@51–53#
and polarized@54# DIS, respectively, and are known up
orderas

2 .
A further special case ish51, where the conformal ex

pansions give, up to a kinematical prefactor, the amplitu
for the production of pseudo-scalar and scalar mesons
virtual photons. Here complete NLO calculations were p
formed in the non-singlet channel and can now serve a
consistency check.

V. RADIATIVE CORRECTIONS TO MESON TRANSITION
FORM FACTORS

A. Transition form factors and conformally covariant OPE

The photon-to-meson transition form factor, measured
g!(q1)g!(q2)→M (P), is given at large momentum transfe
as a convolution of the hard-scattering amplitudeT(v,x,as)
and the meson distribution amplitude~DA! f(x,Q2) @55#,

Gab5eabmnq1
mq2

nF~v,Q2!,

F~v,Q2!5
N

Q2
T„v,x,as~Q2!…^ f~x,Q2!.

~5.1!

The kinematical variables are defined as before byv
5Pq/Q2 andq5(q12q2)/2. The factorN is determined by
the underlying flavor structure, e.g. for thep0 mesonN
5eu

22ed
2 . The hard-scattering amplitude is given perturb

tively by

T~v,x,as!5T̂~0!~v,x!1
as

2p
T̂~1!~v,x!

1O~as
2!1$x→12x%, ~5.2!

T̂~0!~v,x!5
1

11v@~12x!2x#
, ~5.3!

V~x,y;as!5
as

2p
@V~0!~x,y!#1

1S as

2p D 2

@V~1!~x,y!#11O~as
3!, ~5.4!
05400
s
by
-
a

n

-

V~0!~x,y!5CFu~y2x!
x

yS 11
1

y2xD
1H x→12x

y→12yJ , ~5.5!

where the1-prescription is defined as@V(x,y)#15V(x,y)
2d(x2y)*dzV(z,y).

The given formulas coincide at leading order with t
prediction of the conformally covariant OPE~4.13! for
g1(v,h51,Q2). To make this correspondence explicit, w
expand the distribution amplitude in terms of the eigenfu
tions of the evolution kernel, which is actually given by th
conformal spin expansion

f~x,Q2!5 (
k50

`
~12x!x

Nk
Ck

3/2~2x21!^PuOkk~m2!u0& um25Q2
red ,

Nk5
~k11!~k12!

4~2k13!
. ~5.6!

Taking into account the definition of the Gegenbauer po
nomials

~12x!x

Nk
Ck

3/2~2x21!5~21!k
2~2k13!

~k11!!

dk

dxk
@x~12x!#k11,

~5.7!

the transition form factor~5.1! reads

F~v,Q2!5
N

Q2(k50

`
2~2k13!

~k11!! E
0

1

dx@x~12x!#k11

3
dk

dxkS 1

11v@~12x!2x#
1

1

11v@x2~12x!# D
3^PuOkk~m2!u0& um25Q2

red . ~5.8!

Performing the differentiation and using the definition of h
pergeometric functions~4.10!, Eq. ~5.8! coincides—up to
different normalization factors for the composite operators
with the conformal OPE prediction~4.13! to LO:

F~v,Q2!5
N

Q2(k50

`

B~k11,k12!
2~2v!k

~11v!k11

32F1S k11,k12

2~k12!
U 2v

11v D
3^PuOkk~m2!u0& um25Q2

red
1$v→2v%.

~5.9!

B. Consistency check at next-to-leading order

Now we are able to perform the consistency check of
existing NLO calculations. Theas correction to the hard
scattering part was computed by del Aguila and Chase@56#
in the OPE approach and by Braaten@57# ~these papers con
tain also the corrections to the scalar meson and the long
dinal component of the vector meson transition form fact
5-12
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respectively! as well as by Radyushkinet al. @58# in the
hard-scattering picture. The results are derived in theMS
scheme and the occurringg5 ambiguity in dimensional regu
larization was resolved with different methods. The resu
are in agreement. To show the structure most clearly,
rewrite their result in the following form:

T̂~1!~v,x!5T̂~0!~v,z! ^ F @V~0!~z,x!#1ln
Q2

m2

2
3

2
@Vb~z,x!#12

3

2
CFd~z2x!G

1T̂~0!~v,z!ln$11v~ z̄2z!% ^ @V~0!~z,x!#1

1T̂~0!~v,z! ^ @g~z,x!#1 ,

g~x,y!52CFu~y2x!

lnS 12
x

yD
y2x

1H x→12x

y→12yJ ,

~5.10!

Vb~x,y!5CFu~y2x!
x

y

1

y2x
1H x→12x

y→12yJ ,

where only the renormalization scale was identified with
factorization scalem, so that latter remains explicit. The so
lution of the evolution equation in the conformal limit
known and given by the conformal spin expansion

f~x,Q2!5 (
k50

`

wk
ef~x,as!^PuOkk~m2!u0& um25Q2

red ,

~5.11!

where the eigenfunctions of the evolution kernel can be w
ten as

wk
e f~x,as!5~21!k

2~312k!

~k11!!

dk

dxk

3Fx11k~12x!11kS 11
as

2p
Fk~x!

1O~as
2! D G . ~5.12!

The as correction was obtained by the leading order cal
lation of the special conformal anomaly matrix for parit
even operators and employing the formula~3.25! for the
transformation matrixB̂:
05400
s
e

e

t-

-

Fk~x!5~gk
~0!1b0!F1

2
ln„x~12x!…2c~21k!1c~412k!G

1CF
F ln2S 12x

x D
2

2 (
i 51

11k S 2
1

i
1

11d1i

21k D
3„f~12x,1,i !1f~x,1,i !…

12S ~312k!„c~21k!2c~1!…

~11k!~21k!

1c8~21k!2
p2

4 D G , ~5.13!

where c8(z)5dc(z)/dz and f(x,1,i )5(k50
` xk/( i 1k) are

the Lerch transcendent. This result coincides with the ca
lated evolution kernel in NLO@16–19#. The authors used the
naiveMS scheme in whichg5 is anticommutative, implying
that the evolution kernel for pseudo-scalar mesons is
same as for scalar ones. For convenience we rewrite thas
correction as a convolution:

wn
e f~x,as!5S d~x2y!1

as

2p
c~1!~x,y!1••• D

^
~12y!y

Nn
Cn

3/2~2y21!, ~5.14!

where5

c~1!~x,y!5~ I 2P!S b0

2
S~x,y!2S~x,z! ^ V~0!~z,y!

2@g~x,y!#1D .

Furthermore, the shift operatorS(x,y) is implicitly defined
by

S~x,y! ^
~12y!y

Nn
Cn

3/2~2y21!

5
d

dr

~~12x!x!11r

Nn
Cn

3/21r~2x21! ur50 , ~5.15!

I is the identity and the operatorP projects onto the diagona
part of the expansion of a functionf (x,y) with respect to
Ci

3/2; i.e. Pf (x,y)5( i 50
` (12x)x/NiCi

3/2(2x21) f i i Ci
3/2(2y

21), where f i j with 0< i , j <` are the expansion coeffi
cients.

5The definition ofc(1)(x,y) in @22,59# contains a misprint con-
cerning the sign ofg(x,y).
5-13
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The hard-scattering part and the evolution kernel w
computed in the same scheme. The convolution of the h
scattering part~5.10! with the solution ~5.14! for b50
yields:

F5
N

Q2(k50

` S T~0!1
as

2p
T ~1!D ^

~12x!x

Nk

3Ck
3/2~2x21!^PuOkku0& red. ~5.16!

The off-diagonal part ofg(x,y) in the hard-scattering ampli
tude and the eigenfunctions cancel with each other and
the diagonal part is left. After decomposition of the ter
T̂(0)(v,z)ln$11v(z̄2z)% into a diagonal and an off-diagona
part6 theas correction to the hard-scattering amplitude rea
symbolically
g

th

io

p

05400
e
d-

ly

s

T̂~1!~v,x!5T̂~0!~v,z! ^ F @V~0!~z,x!#1ln
Q2

m2

2
3

2
@Vb~z,x!#12

3

2
CFd~z2x!1P@g~z,x!#1G

1PT̂~0!~v,z!ln$11v~ z̄2z!% ^ @V~0!~z,x!#1

1~ I 2P!@ T̂~0!~v,z!ln$11v~ z̄2z!%

2T̂~0!~v,y! ^ S~y,z!# ^ @V~0!~z,x!#1 . ~5.17!

The first two lines contain only diagonal terms, which pr
vide the as corrections to the overall normalization of th
Wilson coefficients for the conformally covariant OPE. Th
off-diagonal terms in the last line generate the shift of t
canonical dimension by the anomalous one. This can be s
by a straightforward calculation:
for the
with

n

~ I 2P!@ T̂~0!ln$11v~ z̄2z!%2T̂~0!
^ S# ^ @V~0!#1 ^

~12x!x

Nk
Ck

3/2~2x21!

5
gk

~0!

2

~2v!k

~11v!k11

d

dr
~11v!2r

2F1S k111r,k121r

2~k121r!
U 2v

11v D
ur50

. ~5.18!

Therefore, this term coincides with the conformal prediction for the structure of the Wilson coefficients~4.14!.
It remains to be shown that the normalization is consistent with the NLO calculation of the non-singlet sector

polarized structure functiong1 measured in DIS. It is known that the diagonal part of the pion evolution kernel coincides
the non-singlet splitting kernel. This was analytically shown in@48,23# by taking the limit of an extended pion evolutio
kernel:

P~z!5 lim
h→0

1

u2hu
gS z

h
,
1

h D , g~ t,t8!5VS 11t

2
,
11t8

2 D
uu~ t2t8!→e~12t !u[ ~12t !/~12t8!]u[ ~ t2t8!/~12t8!]

. ~5.19!
d

-

The extension ofV(t,t8) into the wholet,t8-plane is unique
and it is done in practice by replacing the correspondinu
functions.

As mentioned before, the off-diagonal part in Eq.~5.17!
does not contribute to the forward case. For the terms of
diagonal part that are given as a convolution withT(0) the
procedure~5.19! provides the following NLO corrections:

CFE
0

1

dxS F11x2

12x G
1

ln
Q2

m2
2

3

2F 2x

12xG
1

2
3

2
d~12x!22F ln~12x!

12x G
1
D xk. ~5.20!

6Diagonal refers to terms that contribute only to the normalizat
of the partial waves in the expansion~5.9!, while off-diagonal terms
cannot be represented in such an expansion with the given hy
geometric functions.
e

Convoluting the remaining term,PT̂(0)(v,z)ln$11v(z̄2z)%
^@V(0)(z,x)#1 , first with the Gegenbauer polynomials an
then extracting the diagonal part gives:

2CF@c~k11!2c~1!#F3

2
1

1

~k11!~k12!

22c~k12!12c~1!G . ~5.21!

Putting Eqs.~5.20! and~5.21! together, the whole NLO con
tribution to the overall normalization follows:

ek511
as

2p
CFS ln

Q2

m2F3

2
1

1

~k11!~k12!

22S1~k11!G12S1,1~k!22S2~k!1F 1

k11
1

1

k12

1
3

2GS1~k!1
3

k11
2

9

2D , ~5.22!

n

er-
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where Sm(k)5( i 51
k (1/i )m and Sm,n(k)5( i 51

k (1/i )mSn( i ).
Taking into account the different definition of moments
DIS, i.e. k→k21, the obtained normalization~5.22! coin-
cides with the Wilson coefficients in longitudinal polarize
DIS computed in Ref.@54# in the ’t Hooft-Veltman-
Breitenlohner-Maison~HVBM ! scheme7 @60,61#.

Finally, we show that also the NLO calculation for th
transverse helicity amplitudeT11 in the c.m. frame of the
transition form factor for the non-singlet scalar mesons@56#
coincides with the NLO corrections to unpolarized DIS. It
sufficient to consider the difference to the pseudo-sc
case, which can be written as a convolution of the hard s
tering part with a diagonal kernel@56#:

T̂~0!~v,z! ^
as

2pS @V~0!~z,x!#12@Vb~z,x!#12
CF

2
d~z2x! D ,

~5.23!

which has the eigenvalues (as/2p)CF /„(k11)(k12)….
Thus, the only difference to the pseudo-scalar case appea
the normalization given by these eigenvalues. In the nota
of the DIS hadronic tensor, the considered helicity amplitu
corresponds to the generalization ofF1 to non-forward pro-
cesses. The difference of the corresponding DIS Wils
coefficient @51–53# and ek in Eq. ~5.22! is precisely
(as/2p)CF /„(k11)(k12)… in NLO.

C. A first view beyond NLO

It has been shown to LO that the measured pion transi
form factor at large momentum transfer@29,30#, where one
photon is almost real, supports the asymptotic distribut
amplitude or even more narrow ones@62–64#. So it is phe-
nomenologically very interesting to study the higher-ord
corrections to this distribution amplitude. In LO th
asymptotic distribution amplitudewas(x)56x(12x) does
not evolve withQ2, but it is well known that this property is
spoiled in theMS scheme to NLO@65,59# by the mixing of
the operators. In the conformal limit of the theory the co
formal normalization conditions restore the non-evolution
the asymptotic distribution amplitude. The pion transiti
form factor for this amplitude is given by the first term of th
conformal OPE~4.11!:

Q2F~v,Q2!5
A2 f p

3

2

11v2F1S 1,2

4
U 2v

11v D c0~as!,

~5.24!

where the expectation value of the first operator, given by
axial current, provided the pion decay constantf p

7In the HVBM scheme the anticommutativity ofg5 in the non-
singlet sector is restored effectively by a finite renormalization.
this case, it is equivalent to the naiveg5 prescription, which was
used for the calculation of the NLO correction to the pion transit
form factor.
05400
r
t-

in
n
e

n

n

n

r

-
f

e

5130.7 MeV. The coefficientc0(as) is normalized to 1 at
LO. For the case that one photon is almost real, i.e.v51, we
get

Q2F~1,Q2!5A2 f pc0~as!50.185c0~as! GeV.
~5.25!

The predictive power of the conformal OPE tells us that
coefficient c0(as) is the value of the Bjorken sum rule
which is calculated up to orderas

3 @66,3#. For three active
flavors the numerical result reads8

c0~as!512
as

p
23.58333S as

p D 2

220.21527S as

p D 3

1O~as
4!.

~5.26!

Now we can give a rough estimate of the higher-loop c
rections, which reduce the LO prediction at a scale ofQ2

52 GeV2, whereas is assumed to be 0.35, by about 18%
coinciding very well with the experimental results at th
scale@29,30#. Note that theas

2 correction to the coefficien
function of g1 is given in Ref.@54# and, therefore, the next
to-next-to-leading order~NNLO! prediction for the photon-
to-pion transition form factor can be also given in the co
formal limit for arbitrary DA’s.

Now let us consider the effects coming from the confo
mal symmetry breaking, which is manifested in the o
diagonal part of the Wilson coefficients and the anomalo
dimension matrix. In the conformally covariant subtracti
scheme considered here these terms are induced by
renormalization of the coupling and have to be proportio
to the b-function. In NLO only the first coefficient ofb/g
52as /(4p)b01O(as

2) with b051122nf /3 enters in the
anomalous dimension matrix~or in the evolution kernel! and
the off-diagonal term related to it was correctly predicted
the conformal constraints~3.17!. On the other hand it is ob
vious that in this order, this off-diagonal term can be simp
calculated from the two-loop diagram contributing th
nf-dependent part to the gluon vacuum polarization~quark
bubble! @69,70#. In NNLO terms proportional to the
b-function appear in both the Wilson coefficients and t
evolution kernel. While the off-diagonal part to the Wilso
coefficients can be obtained in the same manner as descr
the special conformal anomaly should be known in orderas

2

to treat the evolution of the DA in the correctly.
Although, the nf-dependent part of the Wilson coeffi

cients in NNLO can be obtained from the result given
@70,71#, we only discuss here the conformal symme
breaking in NLO. Because of this breaking the asympto
distribution amplitude will evolve also in the conformal su
traction scheme. Thus, let us first study the fixedas regime,
where a term proportional tob0 arises in theas corrections
to the eigenfunctions~5.13! responsible for the evolution o
the asymptotic distribution amplitude. A renormalizatio
group transformation absorbs this term into the hard sca
ing part:

8Theas
4 correction has been estimated to be negative too@67,68#.
5-15
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c0
fix~as!512

as

2pS 21
b0

6 D1O~as
2!. ~5.27!

Note that thisb0 term was predicted from theb-function by
the conformal constraint~3.17! and represents the first term
of the seriesb/g„1/31O(as)…. For the above values theb0
term provides a reduction of about 8%, so that the whole
reduction in NLO is of about 19.5%. Because of a par
cancellation between the different conformal symme
breaking terms@59# for the lowest moments, this reduction
similar to that in theMS scheme, where the correction to th
hard scattering amplitude is 125as /(3p).

Now we consider the real case, where the coupling c
stant is running. Then, the evolution of the asymptotic d
tribution amplitude is only avoidable if the matrixB̂(as),
which diagonalizes the anomalous dimension matrix
renormalization-group-invariant, i.e.B̂„as(m),m… depends
explicitly on m. Here we proceed in the manner proposed
@20,65#, which was explored in more detail in@59#. Note that
already a renormalization group transformation was don
diagonalize the kernel for fixedas , so that the evolution
kernel is different from that in the MS̄scheme. Generally
the non-perturbative input can be taken from sum rules,
tice or model calculations at a lower scale. Assuming that
‘‘input’’ 6 x(12x) is given at a scale ofQ;1 GeV the
evolution provides an additional negative effect of alm
2% for Q252 GeV2 and of almost 3.5% for Q2

58 GeV2. The resulting prediction is 0.148 atQ2

52 GeV2. A more detailed analysis including other distr
bution amplitudes will be given elsewhere.

VI. CONCLUSION

In this article we reviewed an appropriate technique,
veloped previously, based on the true conformal Ward id
tities and conformal constraints, to analyze conformal sy
metry breaking in a massless quantum field theory due to
renormalization of the UV-divergences. Since we are dea
with Ward identities for the basis fields to define the anom
lous terms of gauge-invariant operators the conformal s
metry is also spoiled by the gauge fixing. However, fina
we are interested in predicting physical quantities fro
which these terms should be absent. This point of view
lows us to understand conformal symmetry and its break
in quantum field theories without further conformal assum
tions that led in the past to conflicts between conformal p
dictions and explicit calculations. This approach is also s
ficient to reanalyze more directly the failure of the conform
prediction from the light-cone expansion of a non-local o
erator for the eigenfunctions of the pion evolution kernel
gauge field theory.

We employed this technique to prove that a factorizat
scheme exists in which the conformal covariance of comp
ite operators holds true in the conformal limit of the theo
The transformation from an arbitrary scheme to the con
mal scheme is given by the special-conformal anomaly m
trix. Consequently, the essential assumption to construct
conformally covariant OPE of two local currents can be f
05400
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filled by requiring appropriate normalization conditions. Th
OPE provides powerful scheme-independent predictio
which were used for exclusive two-photon processes in
generalized Bjorken region; also, restricted to the conform
limit, for simplicity we did not consider the full kinematica
structure of the hadronic tensor. Since these predictions
scheme-independent they hold true in any scheme; howe
it is not a trivial task to see this in the explicit calculate
expressions beyond the LO.

At this stage it is not clear how to obtain, in an econom
cal way, the terms proportional to theb-function that are
missing in the conformal limit. It seems to be worthwhi
studying if the non-decomposable irreducible representat
that allow us to include theb-function in the conformal sym-
metry interpretation also have predictive power. This wou
avoid having to formally rely on the hypothetical conform
limit. A second point of view is to use the common irredu
ible representations and to consider the conformal symme
breaking terms as perturbation proportional to t
b-function. It is very interesting that in the case of th
Crewther relation theb-function can be absorbed by th
BLM scale-fixing prescription into the scale of the couplin
constant@7,72,8#.

In NLO conformal symmetry-breaking terms do not a
pear in the Wilson coefficients. Theb-dependence of the
anomalous-dimension matrix is predicted by the conform
constraints for the dimensional regularized theory in theMS
scheme; however, the renormalization group transforma
to the conformal scheme provides an addition
b-dependence of the anomalous-dimension matrix in te
of the special-conformal anomaly matrix computed in t
MS scheme. This can be applied in a straightforward man
to predict the evolution in the singlet channel to NLO on
by a one-loop calculation of the special-conformal anom
matrix.
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APPENDIX

Here we carry out the calculation providing Eq.~3.30!.
For this reason, we first show the identity:

@ â,B̂#kk85a~k,k8!Bkk852$ĝc~k8!B̂%kk8 ,

a~k,k8!52~k2k8!~k1k81n11n2!. ~A1!

Let us mention that by iteration and taking into accou
Bkk51, Eq.~3.25! follows. In accordance with the definition
~3.23! of the matrixB̂ we introduce the notation
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Bkk85(
i 50

`

$Ĝ~k8! i%kk8 , Ĝ051̂,

and Gmn~k8!5Lk8gmn
ND52

gmn
ND

gm2gk8
~A2!

as well as the inverse operator Lk8
21:

Lk8
21gmn

ND52(gm2gk8)gmn
ND . From the conformal constraint

~3.18! we obtain formally:

@ â,Ĝ~k8!#52ĝc~ l !1Lk8K̂~ l !1Lk8ĝ
c~ l !Lk8

21, ~A3!

where K̂( l )5@ ĝND,ĝc( l )#. Note that thel -independence o
the RHS is ensured by the constraints~3.28! and that the last

term on this side induces for@ â,Ĝ(k8)#kk8 the contribution

$Lk8ĝ
c( l )Lk8

211̂%kk85ĝkk8
c ( l )dkk8 , so that@ â,Ĝ(k8)#k8k850

is identically satisfied fork5k8. Repeated application of

@ â,Ĝ~k8! i 21Ĝ~k8!#5@ â,Ĝ~k8! i 21#Ĝ~k8!

1Ĝ~k8! i 21@ â,Ĝ~k8!#

then implies the following form:

@ â,Ĝ~k8! i #52ĝc~ l !Ĝ~k8! i 212R̂~ i 21!~k8,l !

1R̂~ i !~k8,l !1Ĝ~k8! i 21Lk8ĝ
c~ l !Lk8

21,

~A4!

with R̂(21)50. For@ â,Ĝ(k8) i #kk8 the last term in the RHS is
proportional to gc( l )k8k8 and, because of the proper
05400
gc(k8)k8k850, it can be avoided forl 5k8. Obviously, em-
ploying Eq.~A4! we get the identity~A1!:

@ â,B̂#kk85(
i 50

`

@ â,G~k8! i #kk8

52(
i 51

`

~$ĝc~k8!Ĝ~k8! i 21%kk81R̂kk8
~ i 21!

2R̂kk8
~ i !

!

52(
i 51

`

$ĝc~k8!Ĝ~k8! i 21%kk8

52$ĝc~k8!B̂%kk8 . ~A5!

With the help of relation~A1! the desired calculation is
easy:

$B̂21@ â~ l !1ĝc~ l !#B̂%kk85$B̂21B̂%kk8a~k8,l !1$B̂21@ â,B̂#

1B̂21ĝc~ l !B̂%kk8

5a~k,l !dkk81$B̂21@ ĝc~ l !

2ĝc~k8!#B̂%kk8

5a~k,l !dkk812~k82 l !

3$B̂21ĝB̂%kk8 , ~A6!

where we usedĝc( l )2ĝc(k8)522(l 2k8)ĝ. Since the ma-
trix B̂ diagonalizes the anomalous-dimension matrix the
line is identical with Eq.~3.30!.
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