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The conformal algebra provides powerful constraints, which guarantee that renormalized conformally cova-
riant operators exist in the hypothetical conformal limit of the theory, whergthenction vanishes. Thus, in
this limit also the conformally covariant operator product expansion on the light cone holds true. This operator
product expansion has predictive power for two-photon processes in the generalized Bjorken region. Only the
Wilson coefficients and the anomalous dimensions that are known from deep inelastic scattering are required
for the prediction of all other two-photon processes in terms of the process-dependent off-diagonal expectation
values of conformal operators. It is checked that the next-to-leading order calculations for the flavor non-
singlet meson transition form factors are consistent with the corrections to the corresponding Wilson coeffi-
cients in deep inelastic scatterif§0556-282098)04215-5

PACS numbdps): 12.38.Bx, 13.60-r

I. INTRODUCTION ber of papers, starting in the 1970’s with the work of Ferrara,

In a massless theory, conformal symmetry has the abilitGatto and Grillo[9-13]. Employing the conformal Ward
. Y, O yr y has Ydentities for the Green functions of composite operators, the
to provide powerful predictions for physical quantities. How-

ever, conformal symmetry is broken on the quantum IeVef:onformal symmetry breaking in the interacting scalar theory

due to the renormalization. This breaking is controlled by the:s:-tfit/bilgllzdss%nFt?;;a;%ointu?e E)r;(rjn Ef trr[1ge]4c]:'or|1\1{|c?r|?nnaﬁ V?/ar d
conformal Ward identitiegCWI) of dilatation and special P

conformal symmetry. It is often possible to redefine the Con_ldentltles, the authors found that for a non-trivial fixed-point

2 . . . f the B-function the conformally covariant OPE holds true
formal representation, implying that in the physical sector of., - ; . : . .
. if the original scale dimensions, given by the canonical di-

the theory the conformal symmetry is only broken by the

A ) : : mensions, are shifted by the anomalous dimensions.
renormalization of the running coupling constant, which pro- . .
i . . Brodsky, Frishman, Lepage and Sachradja employed the
vides a symmetry-breaking term proportional to the

. . o ; conformally covariant expansion for a non-local operator,
B-function. If there exists a non-trivialnon-perturbative y P b

fixed point such that the-function vanishes, conformal in- appearing in the definition of the pion distribution amplitude,

variance holds true. This is the so-called hypothetical conEO predict the evolution of this amplitude correctly at leading

formal limit of the theory, order (LO) [15] (see alsq13]). Note that this requires a

For instance, the Crewther relatiga] (also derived in generalization of the OPE and an assumption about the con-

. . . fi | ti f thi -local tor. With thi li-
[2]) is based on conformal invariance. The value of the ormat properties of fis hon-loca’ operator. Wi 1S appi

; _ , cation a puzzle of the conformal invariance in gauge field
Bjorken sum ruld<+an the |sovector+paiR Offh? CroSS- theories sets up beyond the leading order. The next-to-
section ratio o(e"e” —hadrons)b(e"e”—pu " u") are  |eading ordeNLO) prediction for the eigenfunctions of the
computed in QCD up to the order; [3,4]. Assuming con-  pion evolution kernel in the conformal limit contradicts the
formal invariance for the axial vector-vector-vect@&VV)  NLO calculation of the non-singlet evolution kernel in the
correlator, Crewther proved that the relatioB=3KR’ holds  maodified minimal subtractionM_S) schemd16-19. Brod-
true; S is the anomalous constant, which is, corresponding tgky, Damgaard, Frishman and Lepage have shown that this
the Adler—Bardeen theorem, given by its one-loop valuebreakdown of conformal symmetry is renormalization-
Since the vector current and the flavor non-singlet axialscheme-dependent and that, in the special case of the
vector current are conserved, the CWI for the AVV cor- go(36)-theory in six dimensions, conformal symmetry is pre-
relator tells us that conformal invariance can be broken onlserved in the Pauli-Villars regularization at the considered
by the g-function[5]. This is actually the case for the avail- order[20]. However, in QCD the conformal symmetry pre-
able o2 order[6] (see alsd7,8]). dictions could not be restored by a renormalization group

It has been known for a long time that the conformaltransformation. Later, the breaking of conformal covariance
symmetry provides powerful constraints for the Wilson co-for local conformal composite operators, appearing in the
efficients of the operator product expansi@PE for two  expansion of the considered non-local operator, was ana-
local currents. This provides an improved OPE, which wadyzed by the CWI and conformal constraints. It was found
called conformally covariant OPE and was studied in a numthat the symmetry breaking in tHdS scheme(i) destroys

the irreducible representation of the conformal algebra at
leading orderand(ii) that the conformal symmetry-breaking

*On leave from the Institut fuTheoretische Physik, Universita at this order provides the eigenfunctions of the computed
Leipzig, 04109 Leipzig, Germany. evolution kernels in NLJ 21,22, also for QCD.
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In this paper we do not reanalyze this issue in terms of a For space-time dimensiam the algebra of the conformal
modified conformal OPE, which may be done in a straight-group is isomorphic to the algebra S02) and consists,
forward manner by employing the CWI. Here we deal with besides of the algebra of the PoincageneratorsM ,z and
the conformally covariant OPE for two local currents thatP,,:
have a well-known behavior under conformal transforma- _
tions in the interacting theory. Neglecting the conformallMag.M,s]=i(=9ay,MpstdasMpy+0s,Mas—ds5May),
symmetry-breaking terms that are proportional to the (2.1
B-function allows us to give a first application to QCD pro- . B
cesses. [Maﬁvpy]_I(_gaypﬁ+gﬁypa)v [Paipﬁ]_oi

The paper is organized as follows. For the convenience 0f¢ the following commutation relations for the dilatation

the readgr, in S.ec. Il we shortly review the conformal algebr eneratoD and for the generatdk,, of special conformal
and the irreducible representations that are needed, as well Snsformations:

the derivation of the conformally covariant OPE. Using con-
formal constraints, coming from the conformal algebra and [D,K,]=iK,,

the CWI, it will be proved in Sec. Il that there exists a

renormalization scheme in which the conformal covariance [K,,Ps]=—2i(g,sD+M,p), [K,,Kg]=0,

of composite operators holds true in the conformal limit. (2.2
This allows the construction of the conformally covariant

OPE in the interacting theory. In Sec. IV we employ this [D,P.]=—iP,,

conformally covariant OPE to predict the scattering ampli- )

tude for two-photon processes in the Iight—cone—dominatetBMaﬁ’Kv]:'(gﬁvKa_gavKﬁ)' [D,Mp]=0.
region[23] covering the kinematics of deeply virtual Comp-

: . The field theoretical representations with finite components
ton scatterlngDVCS), which has recently been proposed to have been classified on the basis of the induced representa-
open a new window for the exploration of the nucleon con-

tents[24—26). Included are two well-known special cases,tlon theory[31]. In the following we deal with irreducible

which have been measured: deep inelastic scatt¢bng) representations of the conformal algebra, where the action of

and one-meson production at large momentum transfer iﬁhe special conformal generatét, on a basis fieldg(x)

two-photon collision[27—30. In Sec. V we show that the vanishes at the point®=0:

existing NLO corrections for the flavor non-singlet MeSON[ (x),M o gljxc0="20ph(0),  [H(X),D]peo=id 4¢(0),
transition form factors, computed in the Ms&heme, coin-

cide with the prediction of the conformally covariant OPE. [P(X),Ka]jx=0=0. 2.3
Finally, the knowledge of the higher-order corrections to the . L.
Bjorken sum rule allows us to point out phenomenological1€'€$=¢.¢.A* may be a scalar fielg, a fermionic fieldy

consequences for the pion transition form factor. or a gauge fieldA* with scale dimensiord,,. Conformal

invariance in the classical theory requires that the fields are
massless and that the scale dimensions are equal to the ca-
nonical dimensionsl" of the fields. The representation of

the Lorentz group is:

Il. CONFORMAL ALGEBRA AND THE CONFORMALLY
COVARIANT OPE

A. Field theoretical conformal representations

[

The conformal group is the maximal extension of the 3,90=0, Z,50=7[Va sl
Poincaregroup that leaves the light cone invariant; it is thus 4
of physical interest for light-cone-dominated as well as for . B
high-energy processes. Beside the well-known Poincare 2 apPu=1(9uaPp ™ Gupha)- 24

transformations, the conformal group consists of dilatationsihe theory of induced representation now provides the ac-

x“—px® and special conformal transformations’—(x“  tion of the generators at an arbitrary space-time point:
+¢*x?)/(1+2cx+c?x?). The latter is composed of an in-

versionx®—x%/x?, a translatiorx®—x+c®, and a further [d(X),Po]=1d,0(X),

inversion. The conformal factor 1/@12cx+ c?x?) is singu- _

lar on the cone and so the special conformal transformations [ #(X),Mg]= (i[Xdp—Xgda]+ 2 4p) (X),

are not well defined as global transformations in the (2.9
Minkowski space. Moreover, it is possible to transform non- .

causal connected regions into one another, which violates the [#(x),D]=i(dy+x9)H(x),

principle of causality. To apply the conformal group to the D) K 1=1(2% (d .+ x9) — 2i B—x29 X
guantum field theory in Minkowski space, it is sufficient in [00.Ka]=1(2Xa(dy +X0) =212 0 @) (X).
future studies to restrict ourselves to infinitesimal special

conformal transformations: this avoids both of the mentioned B. Conformally covariant operators

problems. In the following we consider field theoriésf Parton distribution functions and hadron distribution am-
polynomial form with space-time dimensions larger than 2, plitudes are defined as expectation values of composite light-
which are conformally invariant on the classical level. ray operators. Their moments are expressed in terms of local
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operators. In the following, the local conformal two-particle the corresponding field; . The action of the collinear con-
operators are considered. For these operators the conformfakmal generators are given by

symmetry at tree level yields that the operators do not mix

under renormalization at LO and so they are essential in

solving the evolution equations in the non-forward case. For [Ow(v1,v2),P]=0xi11(v1,v2)

the leading twist operators it is sufficient to consider the
collinear conformal algebra, which is isomorphic to _
SU(1,1=S0(2,1). The four generators are obtained by pro- [Oni(ve,ve) KJ=2(k=D)(k+T+ vy

jection onto the light cone: +5)Oy—1(v1,v5), (2.10

P.=n,P% K_=n!K% D, M_,=n 8
(26) [Ok|(V1,V2),D]:i(d1+d2+|)ok|(V1,V2),

wheren,n* are light-cone vectors with the normalization

nn*=1. They generate the projective transformation onto
the line and satisfy the commutation relatiggoming from
the algebrg2.2)]:

[Ow(vy,v2),M_L]=i(s1+5,+1)Oy(v1,7v2),

where d;+d,+1) and (5, +s,+1) are the dimension and
the spin, respectively, of the operai®,(v,,v,). The low-
est member in each tower @, (v4,v5).

In the following we often consider conformal operators in
the (,0(36) theory, where the field has the canonical dimension
) d,=2, and in QCD for the non-singlet channel, where the
[M_,,P.]=[D,Py]==iP,, [M_,,D]=0. quark fields havel,,=3/2 ands=1/2, so that in both cases
v,=v,=3/2. Sincev,=v,, the Jacobi polynomials can be

Acting with the step-up operatd?, on ¢(0) generates an expressed by the Gegenbauer polynom@(s
infinite-dimensional representation, the so-called conformal

tower {#(0),P, #(0),P% ¢(0), ...}. The operatoK _ acts

[M_. ,K_]=[D,K_]=iK_,

[K_,P.]=—2i(D+M_,), 2.7)

as a step-down one, and annihilates the lowest member (v— 120 112) (v+1/2) )
#(0), i.e. K_$(0)=0. As forD andM_ , they are diag- P =g G0, (219
onal operators, which give the scale dimension and the spin
of the members, respectively. The spectrum of the Casimir
operator where @),=I"(a+n)/I'(a) is the Pochhammer symbol.
1 1 i
C=5P,K_—7(D+M L)%= 5(D+M 4 (2.8 C. Conformally covariant OPE

Here we refer to the work of Ferrara, Gatto and Grillo

is j(j+1), wherej is the conformal spin. [9-11]. The construction of the conformally covariant OPE
Conformal composite operators can be constructed by difis based on the behavior of the conformal operators under
ferent method432-34, for instance by decomposition of infinitesimal conformal transformations, which is character-
the direct product of two towerss;(0),P. ¢;(0), ...} into  ized by their scaling dimension and their conformal spin. To
irreducible representations. The Clebsch-Gordan coefficientimplify the notation, only the scalar case will be considered.

are given by the coefficients of the Jacobi polynomialsm Sec. lll C the derivation reviewed here will be applied to
p(r1~12v;=1/2) the product of two electromagnetic currents. We restrict our-
k ’ selves to leading twist and assume that the following sym-
metrized and traceless conformal operators with scale dimen-

(T
Ow(vy,v2)=(ind.) ¢1(O)T sionl,+|—k=d;+d,+| form a complete basis:
vy— Vo— F]O", = i(1=k) _
pr( 1—112,0, 1’2)(~—> $,(0), Oal...al,k(x) {S}| R 'acnoal---ak(x) traces.
* (2.12
IZk, Vi:d¢i+s¢i_1/2' (29)
Here aS denotes symmetrization with respectd9, . . . ,q; .

whered” = 3"+ 3" andT contains the spin and, eventually, As in the case of the collinear conformal representation,

further global group theoretical structures. To ensure gaugﬁ’h'Ch is obtained by contra.ctlon with the light-cone vector
invariance in a given gauge field theory, the partial derival. the operatorO, ., (0) is the lowest member of the
tives have to be replaced by the covariant ones, which doesrresponding conformal tower. For dimensional reasons,
not spoil the conformal properties of the operator. The indexhe product of the currents andB are expanded on the light

v; is determined by both the scale dimension and the spin ofone as
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ACOB(O _i ( l>(|A+|B—|k+k)/2 [A(X)aK)\]b(:O:[B(X)!K)\]lx:oz0! (2.18
(X) ( )_k:O X2 S [Oal...ak(x)vK)\]‘xzozo.
o {a,\}

(2.19

The transformation laws under the infinitesimal conformal
transformation2.15, analogous to those in E.10, result
in a special arrangement of the operators. This causes the
predictive power of the conformally covariant OPE, namely
whereC,, are the Wilson coefficients. Furthermotg, and  that the corresponding Wilson coefficients are already fixed
lg denote the scale dimensions of the curreAtsand B,  and only the coefficient€, are unknown and have to be
respectively. computed explicitly, which can be done by forming forward
One way to construct the conformally covariant OPE is tomatrix elements. In this case thiedependence of the opera-
act with K, on both sides of the OPE2.13 (see[10]) and  tors can be dropped and the conformal OPE is reduced to the
compare the two results for the leading twist contributionscommon OPE for the forward case that is familiar from deep

XE 6k|(—i)(|+l)xal. el
I=k

Xoal...al,k(o)r (213)

Taking into account the action &, on the currents inelastic scatteringDIS).
[A(X)B(0),K\]1=1(2x%, (1 o+ X3) — x5, )A(X)B(0) ll. CONFORMALLY COVARIANT
(2.149 RENORMALIZATION SCHEME

Generally, the conformal invariance of classical field
theories is broken at the quantum level owing to the renor-
malization of the fields and the coupling consthhtowever,
the symmetry breaking by the renormalization of the fields
can be absorbed into the redefinition of the conformal repre-
sentation, i.e. the scale dimension given originally by the
canonical dimension is shifted by the anomalous dimension
of the corresponding field. The renormalization of the cou-
results, after comparison of the obtained expressions, into BINg constant cannot be implemented in the original irreduc-
recurrence relation for the Wilson coefficients: ible representat]o_n.. However, in a scalar theory, Zaikov ex-
plored the possibility to extend the conformal representation
of Green functions to a non-decomposable irreducible repre-
~ (Ia=lg+ 1 —k)/2+1_ . : : :

1= o sentation that includes the-function [35]. In the following,
(I=k+1)(l+1) it is simply assumed that there exists a non-trivial fixed point
_ (['A—|B+|k+k]/2)|—k; such that the@-fur)ction vanishes; formally, we speak from
W= Cw. (2.16 the conformal limit and seB to zero.

(1=K (e +K) -k The conformal properties of composite operators will also
be spoiled by the renormalization. To study this symmetry
Inserting this solution in the OPR.13 allows the summa- breaking we employ the CWI36], which was derived, for
tion with respect td and provides the conformally covariant gauge field theories, in the canonical quantizaf®f and in
OPE that is written here in the following representation:  the path integral formulatio[88]. Using the latter approach

the CWI needed for conformal composite operators was writ-
(Uatlg=ltk)i2 ten down in the dimensional regularizatif2i,22. To have

a convenient form for the Ward identities, we introduce a

few shorthand notations. The sym{y&®] means renormal-
X (—i)kFyar | yex ization of the operatoO in the MS scheme. For simplicity
we assume that the composite operators are closed under
renormalization. Because of Poincarmvariance the
Z-matrix is triangulara detailed discussion on this point can
be found, for instance, if20]):

and on the composite operatdgs12),

S [Ou, ..o 4(0),Ky]=2(k=1)(I+1-1)
{a.n}

X S Oal...alfl,k(o)g)mz' (215
{an}

A(x)B<0>=k§O Cy =

1
XJ duu'a—le+k+102-1
0

X(l_U)(IB_IA+k+Ik)/Z_1Oal N .ak(UX)’

(2.17)

lin gauge field theories, the conformal invariance is also broken
~ o~ by the renormalization of the gauge-fixing parameter as well as
whereCy= Cy. _ _ _ explicitly by the gauge-fixing and ghost terms in the action. In the
Let us recall the assumptions used to derive this conforapelian theory, this breaking can be formally written as a Becchi-
mally covariant OPE2.17). Besides the completeness of the Rouet-Stora-TyutifBRST) transformation, so that it does not ap-
operator basis, it was essential thgt annihilates the cur- pear in the physical sector of the theory. In the following we as-
rentsA,B and the conformal operators at the pot=0: sume that this breaking is also absent in the physical sector of QCD.
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k stant. Actually, they are given by the trace anomaly of the
[Oul= > ZuwOwri- (3.)  energy-momentum tens$89—42 and will be written here
k'=0 in terms of the renormalized Lagrangidlix) [37,38:

FurthermoreX= ¢(Xx4) . . . ¢(X,) is a monomial of elemen- 9 J
tary fields and A) denotes the vacuum expectation value of [Aﬁ]zif d”xga—ﬁ(x), [Af]zij d“x2xxga—£(x).
the time-ordered product Alexpi[S]. Then the conformal 9 9

Ward identities for the renormalized composite operators (3.4
[O](v1,7,) finally read The ellipses in the CWI denote Green functions with opera-
K tor insertions caused by the gauge-fixing and ghost terms.

Such contributions should be absent in physical matrix ele-
ments. The expressiop is the anomalous-dimension ma-
trix of the operators andyﬁk,(l) denotes the special-
X<[Ok'|]x>+é<[0k|AB]X>+ . conformal anomaly matrix, which breaks the covariance of

g the operators under infinitesimal special conformal transfor-
mations. Such transformations break the Poinaavariance
(K, does not commute witM ;. andP;) and therefore the
spin| dependence appears.

iD([O]X)= > [(1+d$"+d%) S + Vi ]
K'=0

k

IK_([O1X)=—i X, [2(k—=1)(k+|+ v+ 1) S
k=0
n ')’Ek'(l)]<[ok’lfl]x>+ é([OHA@]X) - A. Leading order analysis - - -
9 It is well known that the anomalous-dimension matrix of
I (3.2 conformal two-particle operators is diagonal to L@f:)k),
) ) ) :y(ko)akk,_ However, in a general renormalization scheme
HereD and K are differential operators, which act on each e jrreducible conformal representation is already broken by
field in the monomiaX as in Eq.(2.9, e.g., an off-diagonal special-conformal anomaly matrix. Using the

iD([O (X) bo(y) dimensional regularization and the M8escription the re-
([0 #1002y sults for the¢(36) theory read, in matrix notatiof21]:

= —(dy+da+ x5+ ydy ) ([ O] h1(X) da(Y)), 3.3

YO ==b(1)»?, b(l)={bg (1},

where the scale dimensions are shifted by the anomalous v My (1=1bie (D}

H H Y - g:an 5 B ~

dimensions of the field); =d;*"+ y; . The operatora” and 7(0)={7f<0)5kk1}, 3.5

AP =n*~AP arise from the conformal symmetry breaking in
the action due to the renormalization of the coupling con-where

2(1+Kk'+3) 80 —2(2k' +3) if k—k’=0 and even

0 otherwise. 3.6

b (=

Regularization of the “gluon” propagator via Pauli-Villars tion of the local operator by changing the index— v
provides a different breaking of the special conformal trans— (ag/4) y{*) and it coincides with the prediction of confor-
formation: mal symmetry20].
For the conformal flavor non-singlet quark operators in
QCD the symmetry breaking is even more complicd22]
YOy == 59p(1). (3.70  due to the covariant derivatives:

However, this breaking can easily be absorbed in a redefini- Y O(h)=-b(1) ¥ +w, (3.8

®Here a,, denotes of course an appropriate definition of the cou-
pling constant in the scalar theory. Note that only at one-loop order
2These CWI do not rely on any assumptions about the conformathe conformal symmetry prediction for the eigenfunctions of the
symmetry breaking and they differ from the ones used in a previougvolution kernel coincides with the shift of the indexfor the
study in Ref.[14] by the triangularity of the anomalous matrices. operator.
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where the non-vanishing elementsvaf,, (for k—k’>0 and So as conformal covariance at tree level is sufficient for a

k—k’ even are diagonal anomalous-dimension matrix at LO, the one-loop
) ) , renormalized conformal operators do not mix under renor-
Wik = —4Cg(2k" +3)(k—k')(k+k'+3) malization in NLO, of course, up to a term proportional to
Ao = (k+1)+§(0) Po.
(k"+1)(k"+2)

B. Restoration of conformal covariance
2Akk!

n (3.9 Before we use conformal constraints to extend the analy-
(k—=k")(k+k'"+3)]| '

sis to the full conformal theory, let us show that the property
y&O(k)=0 holds true generally. To make the discussion

A= k+k'+4| k—k’> transparent, let us first consider the scalar theory in which
2 2 (1) is defined in theMS scheme af21]
2k =gl 2= 4l0), 3=~ 29,b(1) + 2021, B(1) ]+ 21(1), (3.12

with ¢(z) =(d/dz)InT'(2). It turns out that the appearance of o R
the matrixw explains the difference between the conformalWhere the counterterrd*=2*1/e+2*1?l/e’+ ... has to
symmetry prediction for the eigenfunctions of the pion evo-be computed from the renormalization of the operator prod-
lution kernel and the explicit NLO calculation. uct
Normalization conditions, which are given implicitly in
the MS scheme, are a matter of convenience, and changing
them does not affect physical quantities. Thus we can look
for a scheme in which conformal covariance is restored.
Such a scheme can be obtained by a finite renormalization;
LO we define the renormalized conformally covariant opera

K
[0WI[AP]=[0AP]+i X Zyo(D[Oy]. (313
K'=0

_T'grom the properties ob(l) and Z it follows that £, (k)
=7:11(k). The latter is determined by the UV-divergent

tors as - _ _ )
part of [d"x(nN*x) @3(X)Oyx. SinceOyy is a polynomial of
2 Yo () orderk in the derivatives and the UV divergence is concen-
k=[0u]— > > 2K =K (K T KT o1F vy) trated inx®=0, it is clear than*x annihilates one derivative,
k'=0 1 2 . .
so that a polynomial of orddc—1 remains. Thus, no coun-
X[Oknl+ ..., (3.10  tertermO,y is needed and therefong, (k) = Z;l1 (k)=0. In
) k=2 gauge field theories the definition 4t is modified by a term
— O+ s YLO _ &2 containing the functional derivative with respect to the gauge
MU 2w 2e M 2w field [22]: [d"X(R*X)A,(8/5A,)[Oy. Obviously, we can
¢(0) use the same arguments as above, and this term also does not
Yiae () Ot induce a contribution tayy (k).
k'l ceey

X . .
2(k"'=K)(k' +k+ v+ vy) The proof that conformal covariance can be restored in
the conformal limit will be achieved in the following man-

where 1£ is the usuale-pole in dimensional regularization, ner. First we notice that the anomalous-dimension matrix

which satisfy the CWI: will be diagonalized by a finite renormalization group trans-
formation,
o
iD(OSX) = | + dS@"+ dSn — <°>} O%X )+ - - -,
< kl > 1 2 27TY|( < kl > ID(O&?X)=(|+d(]:_an+dgan+ ,yk)<oﬁ(l)x>+ (314)
(3.11
Then we show, with the help of conformal constraints, that
iIC(OE?X):—i[Z(k—I)(k+I+vl+y2) this implies
. iC_(OEX) = — 2i (k— 1) [ K+ + 1+ v+ i]
S
+EYEE<O)(|) (OR-2X)+ - X (0% X)+---. (3.19

For the scalar theory as well as for QCD we find from Eqs.Tq calculate the right-hand sidéRHS) of Eg. (3.15 we
(3.5-(3.8) that ¥§{(1)=2(k—1)%”. Thus, in both equa- solve the conformal constraints in the following subsection.
tions of the CWI(3.11) the conformal symmetrpreakingby  |n a second subsection we consider the flavor-singlet channel
the anomalous dimension &bsorbedinto the shift of the in QCD, where an additional mixing problem between quark
canonical dimension of the operatofistdi*™+d5*"~|  and gluon operators appears. Here, we only take into account
+d{®™d52™ ¥, . In this way the irreducible conformal rep- the algebraic properties of the constraints and the triangular-
resentation igestoredfor the renormalized operator at LO. ity of the matrices to show that E¢B.14) implies Eq.(3.15.

054005-6



RESTRICTED CONFORMAL INVARIANCE IN QCD AND ... PHYSICAL REVIEW D568 054005

1. Solution of the conformal constraints ;D: é_l;éﬁ[é.&D]Z ,‘yNDé' (3.22

A constraint for the anomalous-dimension matrix, which R
allows the off-diagonal part to be computed in terms of thewhere the diagonal matrix® consists of the eigenvalues of
special-conformal anomaly matrix, is implied by the commu-the triangular anomalous-dimension matrix. The solution of

tator relation this equation is
DK_]=ik_. 3.1 . 1 A . o
Applying this identity to the Green functions and using the &Y (3.23

CWI provides immediately a commutator relation for the

anomalous-dimension matrix and the special-conformajyhere the operatof is defined by
anomaly matrix. For completeness, we give the exact result,

which includes the full3-dependenc§21,22 in the dimen- A

sional regularization for the M@rescription’ LA: = Y™ Yk ifk=k'>0 (3.29

B 0 otherwise.
a(l)+7°(1)+2-b(1),y|=0, . D fo
g The off-diagonal matrixyN® is given in terms ofy®, imply-
ing that the transformation matr can also be expressed by
A (1) =2(k=1)(k+1+v1+v5) S - (3.17  the special-conformal anomaly matrix. From E(&20 and
R (3.23 one finds, after some algebra, that the diagonal
Since the matrixa is diagonal, a recurrence relation follows anomalous-dimension matrix cancels ¢sge Appendix A
for the off-diagonal partyN® of the anomalous-dimension .
matrix (8 is now consequently set to zgro 1

B=——=1-7+Jy*Jy)—---, (3.2
it 7 Ty + TV T¥°) (3.29

Yo = — {97 o = {97 - (3.18 | .
where the operataf is defined by

Here y°={y5} denotes the diagonal part of the

anomalous-dimension matrix and the operajois defined . - Akk', if k—k’>0,
by JA:=1{ 2(k—K')(k+K'+ v+ 1))
A A 0 otherwise.
[°() Al (3.26

N if k—k'>0

GA:=) 2(k=K')(k+k'+ v+ 1) Note that in the forward case all operat@®g, with 1>k
0 otherwise. vanish. Thus, the renormalization group transformation
(3.19 (3.21) does not affect the minimal subtraction prescription in

the forward caseOgy=[Oy]-

The solution of Eq(3.18 can be formally written as Now we are almost able to prove that the opera®f$
are conformally covariant. For this purpose we need the spin
N g . ~ dependence of the special-conformal anomaly matrix, which
D= EVD: —GYP+G*P = (820 is constrained by the commutator relation:

_, =—=2i(D+M_,). 3.2
The composite operators, which do not mix under renor- (K- Pyl D+ M-+) 3.29

malization, are obtained by a finite renormalization Applying this relation to the Green functions and using the
CWI (3.2) provides

k
i= EO By [ Okri]. (329 30 +1)— 55 (1) = — 25, (3.29

A The solution of this recurrence relation gives the spin depen-
The matrixB={By«} can be calculated from dence of the special-conformal anomaly matrix

Ve (D= Yo (K) +2(k=1) 7y
“The derivation is tricky and all details for the scalar theory in , c
dimensional regularization are given[i1]. The calculation for the ~— and for k=k’: vy, (1)=2(k—=1)y, (3.29

Abelian gauge field theory is analogous and as expected leads to no .
explicit gauge dependence in the commutator relation. Sjnisea where the last equation follows from the above shown prop-

C e )
physical quantity we can assume that, at leastder0, this con- €Y vk(k)=0.The SPeC"'i‘I Conff)rmaIAanomaIy of the opera-
straint holds also true in QCD. tors OF} are given byB~*[a(l)+ y°(1)]B and using the cor-
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responding definitons and the property3.29, a a(l) 0 qa’,e(1)995,5(1)\ [ 995995
PR Bl BPR - N B
(0 a(l)) (9q7°(|)997°(|)) (gqyggy)

straightforward calculation given in the Appendix A pro-

vides
A qn . L
{B™a(l)+y(N 1B}k =2(k=)(k+1+ v+ v, where ay (1) =2(k—1)(k+1+3) . Now we introduce
+ i) Ok (3.30  the matrix
which is equivalent to Eq3.15. . [ 9Bo9B
B=1 gonoea | (3.3
993993

2. Additional mixing problem in the QCD singlet channel

The leading twist operators appearing in the singlet chaniMPlying that the anomalous-dimension matrices of the op-
nel can be written in the following conformally covariant €rators

manner, where for even parity we have: k
- 10f= 2 (Byyo[ 10k ]+ 9B, [0k 1),
— nD _ k'=0
10y =4 Y,y CY = )w, I=k=0, (3.3)
no. k
5 90f= 2 (99B, o[ 10k1]+ 9B [9Oic))
-1 52 [ ND- ~ e (3.38
90 =0y "NF,5Cp%4| = F[”Vny, I=k=1, :
n . . .
(3.32 consist only of diagonal entries
. . qq;,D  qglD
. ~ A gan Y Y
while for odd parity: P=B158= ’ 7 (3.39
9ay0 g9

)lﬂy 1=k=0, (3.33  where'lyp,, ="y - Applying the transformatiori3.39
to the conformal constrain(8.36) tells us that

(3.4@

Here flavor and color indices are suppressed for simplicitypossesses only diagonal entries. Taking into account the

D”=D*—D" are the covariant derivative&,s andF,;  property a(l+1)—a(l)=—2(1+3)1 and the analogous
=€,3,5F 7’12 are the field strength and the dual-field equation to Eq(3.28) it follows that
strength tensor, respectively. Since the dimension of the field

— nD
| 32
IRy =d', YN, y*y°CY =

~ ~ nD_
IR =4 n*F ,C>?
ki -1\ =
+ afB>~k—1 n&+

)F%y, I=k=1. R()=B1
(3.39

strength tensor is 2 and its spin is 1 the index of the Gegen- _ . 10 gD qgyD

bauer polynomials for the gluon operators is=5/2. All R(I+1)—-R()=-2(l +3)( 0 A) —2( 9> gg"D) :

these operators have spin-1 and canonical dimension Y Y

[ +3, as well as thsamebehavior under special conformal (3.4

transformations at tree level. _ The solution of this recurrence relation together with the
The following discussion is valid for operators of even propertyRy,(k)=0 for i,j=1{q,g} gives the following term

and odd parity. The quark and gluon operators will mix, andj, the RHS of the special conformal Ward identity:
the anomalous-dimension matrix of the operators can there-

fore be written in the following compact notation: K+ 1+ 3+99y, a9y,
qqugA Rkk'(l)_z(k_l) gqyk k+|+3+gg')/k 5kk'!
~ Y (3.42
Y7\ gazges, | (3:39
Y which shows that the lowest member of each tower will be

o annihilated by the action df _ in the conformal limit of the
where the entried) y for i,j={q,g} are triangular matrices. theory.
At LO these entries are diagonal and the remaining mixing To restore the conformal covariance completely, the re-
problem has to be solved by explicit diagonalization of themaining mixing problem that is well known from the for-

2X 2 matrix. ward case has to be solved by introducing the eigenvectors:
With the previous assumption about the unphysical part in

the CWI, the generalization of the conformal constraint TOR=905+C 905, ~OR=90+ C, 90g.

(3.17 for B=0 is a purely algebraic task: (3.43
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These operators have completely diagonal anomalous dimeand the physical quantities, which are defined in terms of the

sion and special conformal anomaly matrices: product of two currents, are independent of these conditions.
o o oo Now we phoose such normali_zation conditions that ensure

~ 7 ~e Y the covariance of the renormalized conformal operators.
7_( 0 ,}D) o y=2(k )( - ;D) ' Because of the covariance, the operators in different tow-

(3.44  ersdo not mix under dilatations, and the dilatation invariance
requires the form of the OPE given in E@.13, where the
scaling dimension of the renormalized currents and of the

_ o renormalized conformal operators is ndy= 17"+ y; for i
In the previous subsection it has been proved that there {A,B} and I, =dS"+ d%®"+ k+ y,, respectively. Further-

Xi in the h hetical conformal limit of the theor .
exists, .t € ypothet cal conlorma t of the theo Y amore, the renormalized conformal operators transform under
renormalization scheme in which the conformal covariance

: . : .__Infinitesimal special conformal transformations formally as
of the renormalized operators is ensured. This scheme is re-

lated to any other one by a finite renormalization of the com" EqQ. (2.'13' SO tha_t the lowest member of each conformal
posite operators, where, however, in the forward case thiWer Will be annihilated byK, . Hence, we can apply the
normalization of these operators remains unchanged. In the?M€ algebraic steps as previously; the result will be the
OPE the renormalized operators are normalized at the factopAMe formal expression as H@.17) also for the interacting

ization scale. These normalization conditions are arbitrargheory, however, with shifted scale dimensions:

C. Conformally covariant OPE in the interacting theory

A(x)B<0>=k§0 Cil) (—i)(FDyer | e

) (Ia+1g—df*™d3"- y)/2

X2

can

1
(Ia—=1)21 _ 1 \(Ig—1a)/2 _ (d®™- dSB% 5, )72+ k—1~CO
Xfoduw BI(1—u)e A u(1-u)] % T T Oup .. (UX) - (3.49

In the conformal factorization scheme, the Wilson coefficients and the composite operators satisfy simple renormalization
group equations:

9 - -
Mﬁck(ﬂ):(n_ Ya— ve)Ci(u), (3.4

J
1308 (0= %O 4 (0), (3.47

The conformally covariant OPE for the product of two electromagnetic currents in QCD should be constructed at leading
twist-2 in an analogous way. However, to avoid technical complications due to the Lorentz structure and the gauge-invariant
decomposition, we consider here only two independent contributions, namely thel jagg*(0) and the antisymmetric
twist-2 part{J,(x)J,(0)}* proportional to thee-tensor. The neglected twist-3 contributions induce in certain cases non-
power-suppressed contributions as for the structure fungipin polarized DIS. In both cases considered, the Lorentz
structure does not affect the derivation of the conformal OPE, and we can proceed in principle as in the scalar theory. Of
course, the conformal OPE is separately valid for the flavor non-singlet and singlet channel. The appearing mixing problem in
the singlet channel can be resolved easily, as discussed above, by introducing appropriate linear combinations of quark and
gluon operators, which will be considered as independent. Hence, in the conformal limit, each Wilson coefficient that appears
can be written in the same form as given in E845:

J,.(x)3%(0) - X1 "Cu(w)
{ y} = Z l ]

{JM(X)JV(O)}aS ie,uv)\fx)\ IEK(M)

1 2-1/2
_) ,yk(_i)k+lxa2. . -XakJrl
X2

co

1 § i al...ak+l(ux)
XJOdu[u(l—u)]k“”/Zyk , (3.48

ipco
R, (Ux)
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where the index={NS,+,—} denotes the quark operators +q,)/2 the process is dominated by the contributions from
in the non-singlet channel as well as the eigenvectors introthe light cone and we can define the following generalized
duced in the singlet channel. Note that the anomalous dimerBjorken region[45,23:
sions'y, are different for even and odd parity operators.

To compute the Wilson coefficients one would choose, p=Pg—®~, where P=P;+P,, Q%=-—0g%—wx,
for practical purposes, the simplest normalization conditions. (4.9
Then the conformal covariance of the OPE is not manifest
and the operators will mix under renormalization. However,with the scaling variables
putting together the solution of the more complicated renor-

malization group equation and the Wilson coefficients pro- 1 —-q?
vides the same scheme-independent result as the conformally é=—=——, #»n=5-, WwhereA=P,—P;.
. . . . o Pq Pq
covariant OPE. This fact will be used below for a consis- (4.5

tency check of the available non-forward and forward QCD
calculations for the product of two electromagnetic current:

in NLO. In the forward casg is identical to the Bjorken variabbe; ,

and » vanishes. For non-forward Compton scattering in the
Breit frame #x is approximately given by
cos¢p=—(Aq/|A|q]) [45,23. Formally,  interpolates be-
tween different processes, for instance the two-photon pro-
duction of one hadron requireg=1

In the following we consider two-photon processes, where It is straightforward to derive the conformal predictions
at least one of the photons is far off-shell, so that the mofor the two-photon processes in the generalized Bjorken limit
mentum transfer is large, which means that the distance bdy inserting the conformally covariant OPE into the scatter-
tween the photons is light-like. Such processes are the deepljg amplitude(4.3):
virtual Compton scatteringDVCS), which is widely dis-

IV. CONFORMAL PREDICTION FOR TWO-PHOTON
PROCESSES IN THE LIGHT-CONE-DOMINATED
REGION

cussed at presefi24—26: . c @ly=lethkirz
T0,7.07)= [ dxelv 205 & )|
7" (42) +H(P1)— ¥* (d2) + H(Py), (4.9 <=0 X
1
and the production of some hadronic final states by photon- X (—i)kxe, .x“kf dufu(1—u)]tkrkiz-1
photon collision, e.g. the crossed process to the DVCS: 0
X{P,|O% ux)|P,). 4.6
V() + 7 (G)—HPY+H(PY). (42 R 46
We pay special attention to meson transition form factorsThe expectation vaIuéP2|O°° y (ux)|P1) is a symmetric

¥* +y*—M. Note that also the production of two jets in the and traceless tensor, which can be built from the vedrrs

light-cone-dominated region was already considered in th

beginning of the 1980's by Chagd3,44. Both processes eomdA With respect to the Four2|er transform, where we

(4.1) and (4.2) were previously studied in the framework of K€€P only the leading terms iQ", we already setAx
nPx as well asAaiz 7P

the non-local light-cone expansion by Geyer, Robaschik and”
collaborators at leading ordé¢45,23. Here we employ the

conformally covariant OPE to predict the leading twist-2 (P2lO% 4 (UX)|P), =P, .. P 8PN
contributions of these non-forward processes restricted to the
conformal limit in terms of the off-diagonal expectation val- X {P,|O(0)] P1) (7).
ues of composite operators. 47
A. General formalism These reduced expectation values are polynomials of érder

The scattering amplitude for two-photon processes idn 7 and depend on the factorization scale Such off-
given by the time-ordered product of two electromagneticdiagonal matrix elements are universal and appear not only
currents sandwiched between the corresponding hadronid two-photon processes, but also in exclusive electroproduc-
states. To be more general, we define the scattering ampliion of mesong46,47. They are(conforma) moments of the

tude in the momentum space generically as off-forward parton distributions introduced i%8,24—-26.
Jain and Ralston pointed out that in QCD the first moment
. i X\ [ =X (given by the matrix element of a curreis related to elastic
— n gx _ I
T(P1,P2,9) 'f d"xe <P2 T‘J(z J( 2 )‘P1>’ form factors[49]. A first non-perturbative calculation of the

(4.3)  off-forward parton distributions in the bag model has been
done recentlyf50].
whereJ denotes a current amis again thegintege) space- Inserting the reduced expectation valuds?) into Eq.
time dimension. At large momentum transfey=(q;  (4.6) provides:
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T(w,7 Qz):fldUJ dnxglax+ n(u=12)Px F “h X 1
o 0 Y B(a,y—a)
% 1) @amlcrbor 1
xS El= XJ duu* Y(1—u)r * Y(1—ux)#,
k=0 NG 0
X (—ixP)Ku(1—u)]lkrkr2-1 (4.10
o the desired result reads
X (P,|OA0)|P1)(7). (4.9

_ _ T(0,7,Q%)= 2 (Q) PCy(7w; Q% u?)
Employing the representation k=0
k

(P2l OL(1?)|Pa)(7),

(4.11

where the exponent ofQ? is given by p=(n+I2"—k
—2158Y/2. The up dependence of the coefficients
and after a Fourier transformation, using the definition of theC,(7w;Q?/ u?) is governed by the renormalization group
hypergeometric functions equation(3.46). They are known up to the normalization

2w
1+ pw

K X

ei{qx+ n(uflIZ)PX}( —j )k(XP)k: ( _ ﬂ)fkd_kei{qur n(u—1/2)Px}
du

4.9

(k+1 )2 (n+k+1,—=21,)/2] 2x
1) — 4 x) (N l—k=215)/2 )
Cr(X;1)=ci(1+X) 2F1 K1, Tix) (4.12
|
WherEItI(_ZZd:an+L(.+ Vi - I;r]om the propt)erties IOft'thr?: h(yp))er- [ F(w,ﬂ,Qz)} % E [ ICo( 70:Q% u?) 20 \K
geometric  functions, e symmetry relatiorCy(x NP PR 02,2 T57e
=(—1)*C,(—x) follows. The overall normalization can be 91(0,7,Q7)] =0T [ 'Bulne:Qp)] 11+ 7o
computed in the forward casg=C,(0). Thereduced ex- <p2|ioE0(M2)|pl>(,7)
pectation values P,|O(u?)|P,)(7) satisfy the diagonal (PR P () | (4.13
renormalization group equatiaB.47), which means that the 2l N IEY
7 dependence remains invariant under evolution and only o )
the normalization will change. where the coefficient functions read
'Ci(x;1) ey 1 -l
it ) =1{. +x) "1 W2
B. QCD predictions E(x:1) e, (1+x) 2F1
The conformally covarignt QPE for two electromagnetig K+ 1+ 3y, k+2+ 29| 2x
currents can now be applied in the same manner to predict : Tox|"
different two-photon processes and their scattering ampli- 2k+4+"y, X

tudes. In the conformal limit the same Wilson coefficients (4.14
appear for quite different processes at leading twist-2. The

process dependence comes from the non-perturbative expagithoyt restrictions the obtained predictions are valid at LO.
tation values of the conformal operators. For instance, thehs, also the evolution equations for the off-diagonal parton
coefficient €,) Cj appears in both polarized DIS and the distribution amplitudes are solved easily in terms of the con-
two-photon production ofpseud¢ scalar mesons at large formal moments[44]. In NLO the correction due to the
momentum transfer as well as in the kinematical decompog-function appears originally only in the off-diagonal matrix
sition of the hadronic tensor for DVCS or for hadron produc-elements of the anomalous-dimension matrices. From the
tion. Employing the conformal OPE3.48 and performing NLO calculation of the pion evolution kern¢l6—-19 and
steps analogous to those in the previous subsection leads atso from the conformal constraint3.17), this correction is
the prediction for the trace and the antisymmetric twist-2 parknown for the non-singlet channel. Beyond this order it is
(proportional to thee-tensoy of the different hadronic ten- expected that also the coefficient functions will be off-
sors in the conformal limit, which is, up to trivial kinematical diagonal, because of the conformal symmetry breaking pro-
factors, given by: portional to theB-function.

054005-11



D. MULLER PHYSICAL REVIEW D 58 054005
In the forward case, i.ep=0, the conformal expansion is o 1
related to the moments in DIS by a dispersion relation: VO(x,y)=Cro(y— X) y 1+ ﬁ)
[ F(w,QZ)] E s k[ ick<F>|iok(u2>|P>) +[Xﬁ1_xl, (5.5
= w . . s 11—
91(@,Q?)] 05 'e(P|'R(1?)|P) y=1-y
(4.19  where the+-prescription is defined g&v(x,y)].=V(x,y)

—do(x—y)Jdz\z,y).

The given formulas coincide at leading order with the
prediction of the conformally covariant OPE.13 for
g:1(w,7=1,Q%). To make this correspondence explicit, we
expand the distribution amplitude in terms of the eigenfunc-
tions of the evolution kernel, which is actually given by the
conformal spin expansion

where the additional factor“2has been absorbed into the
reduced expectation valugsompare with Eq(4 7). Thus
the overall normalizatiodC,(0;1)='c, and 'E,(0;1)="e,
can be taken from the calculations in unpolarizéd—53
and polarized54] DIS, respectively, and are known up to
order a2

A further special case ig=1, where the conformal ex- (1- ) 2, red
pansions give, up to a klnemat|cal prefactor, the amplitudesp(x,Q?) = E —g— Ck <P|Okk(#2)|o>m 2-q2;
for the production of pseudo-scalar and scalar mesons by -
virtual photons. Here complete NLO calculations were per- (k+1)(k+2)
formed in the non-singlet channel and can now serve as a Nk:m (5.6

consistency check.

V. RADIATIVE CORRECTIONS TO MESON TRANSITION
FORM FACTORS

A. Transition form factors and conformally covariant OPE

The photon-to-meson transition form factor, measured in
v*(qy) v*(g2)— M (P), is given at large momentum transfer

as a convolution of the hard-scattering amplitdde, X, c)
and the meson distribution amplitud®A) ¢(x,Q?) [55],

Faﬁ: Eaﬁ,uvqull_LqIZ)F(wan)a

2 N 2 2
F(w,Q )=§T(w,x,as(Q )® H(X,Q%).
(5.9
The kinematical variables are defined as before dy

=Pg/Q? andq=(q;—q,)/2. The factoN is determined by
the underlying flavor structure, e.g. for the’® mesonN

=e2—e3. The hard-scattering amplitude is given perturba-

tively by

A g~
T(w,X,ag) =T(O)(w,x) —I—ﬁT(l)(w,X)

+0(a?)+{x—1—x}, (5.2
?(O)(w’x):1+w[(1—x)—x]’ ®3
VOyia) =52 VO]

Qg 2 3
+(5) [VP(x)]: +0(a3), (5.4

Taking into account the definition of the Gegenbauer poly-
nomials

(1-x 22k+3) d

kr D1 g1
(5.7

CRA2x=1)=(- 1)

the transition form facto(5.1) reads

2(2k+3) .
Fo,Q%)= szom—l). a1
dk 1 1

R I e[(1=0—x] T It e[x=(1-%)]

X(P|Op 1?)|0)/°3

|u?=Q2"

Performing the differentiation and using the definition of hy-
pergeometric function$4.10, Eq. (5.8 coincides—up to
different normalization factors for the composite operators—
with the conformal OPE predictio(.13 to LO:

(5.9

2(2w)¥

N o0
2 = —
F(0,Q%) ngo B(k+1,k+2)(1+

w)k+1

K+1k+2
2(k+2)

2w

X2F1 1+w

X (P|Oyi 1) 0)[%5_ oo+ {w— — w}.

|u?=Q?
(5.9

B. Consistency check at next-to-leading order

Now we are able to perform the consistency check of the
existing NLO calculations. Theyg correction to the hard
scattering part was computed by del Aguila and CHa&e
in the OPE approach and by Braaf&7] (these papers con-
tain also the corrections to the scalar meson and the longitu-
dinal component of the vector meson transition form factor,
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respectively as well as by Radyushkiet al. [58] in the ©
hard-scattering picture. The results are derived inM@&  Fx(X)=(%c"+Bo)
scheme and the occurring ambiguity in dimensional regu-

%In(x(l—x))— P(2+K)+ p(4+ 2k)}

larization was resolved with different methods. The results ) 1-x
are in agreement. To show the structure most clearly, we In 1tk 1 1+6y;
rewrite their result in the following form: +Ck Y E (— -+ )
i=1 | 2+k
2 . .
i’(l)(w,x)zf(o)(w,z)@ [V<O)(Z,X)]+InQ_2 X(¢(1_X111I)+¢(X111I))
H (3+2K) (¥(2+K) — (1))
3 3 (1+Kk)(2+k)
—5[VA(z.%)]+ = 5 Ced(z—X)
2 2
A — 2
+FO(w,2)In{1+ w(z—2)}&[VO(z.X)], +¢,(2+k)_%) | 5.13

+T0(w,2)®[9(z,X)]; ,

where ¢/ (2) =dy(2)/dz and ¢(x,1j)==p_x/(i+k) are
the Lerch transcendent. This result coincides with the calcu-
) lated evolution kernel in NLQ16-19. The authors used the
y X—1-X naive MS scheme in which/® is anticommutative, implying
' that the evolution kernel for pseudo-scalar mesons is the
(5.10 same as for scalar ones. For convenience we rewriter{he
correction as a convolution:

ofs-

g(x,y)=—Cgb(y—x) y——x+

x 1 Xx—1-—x a
B(x,y)= —X) = —— ei(x, =(5x— +o—cM(x,y) + -
VA(x,y)=CrO(y X)yy—x+[yal—y}’ ¢n (X, as)=| 8(X—y)+ 5—CH(XY)
1_
WE W e ozay1), (5.4
where only the renormalization scale was identified with the N

factorization scaleu, so that latter remains explicit. The so-
lution of the evolution equation in the conformal limit is wherée
known and given by the conformal spin expansion

cB(x,y)=(l —P)(%S(x,y) -S(x,2)®V9(zy)

$(x,Q%)= 2 ¢(x a0 (PlOu(#)]0)[2_q2.

(5.11 —[a(x.y) 1+

Furthermore, the shift operat&®(x,y) is implicitly defined
where the eigenfunctions of the evolution kernel can be writyy

ten as
(1-y)y
. S(xy)& ———CiA2y—1)
of 3 _1)k2(3+2k) d n
Pk (X:as)_( (k+1)' &R d ((1_X)X)1+p ,

= ——————C?"?(2x~1),—¢, (5.19

. dp N,

X | xETK(L—x) Ltk 1+ 5—FiX)
| is the identity and the operat®? projects onto the diagonal
2 part of the expansion of a functiof(x,y) with respect to

+0(ag) | |- (512 32 e Pr(x,y) =37 o(1—X)XIN,C¥{2x—1)f; C¥(2y

—1), wheref;; with 0<i,j<« are the expansion coeffi-
cients.
The a¢ correction was obtained by the leading order calcu-
lation of the special conformal anomaly matrix for parity-
even operators and employing the formua23 for the 5The definition ofc(x,y) in [22,59 contains a misprint con-
transformation matrixB: cerning the sign of(x,y).
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The hard-scattering part and the evolution kernel were A Q2
computed in the same scheme. The convolution of the hard 7V (w,x)=T%(w,2)®| [V (z,X)].In—
scattering part(5.10 with the solution (5.14 for 8=0

yields:
3 3
—E[Vb(Z,X)L— 5 Crd(z=x)+PL9(z.X) ]+
N < as (1—-x)x
FZEIZO (T(O)+ ﬁjﬂ)) ® Ny +PTO(w,2)In{1+ w(z—2)} [V O(z,X)],
X C¥2(2x—1)(P| Oy 0)"e°. (5.16 +(1=P)[Tw,2) {1+ w(z-2)}

~TOw,y)@S(y.2]e[VO(zX)],. (517

. . i The first two lines contain only diagonal terms, which pro-
tude "?md the e|genfunct|ons cancel with egph other and onlyiye yhe ag corrections to the overall normalization of the
the diagonal part is left. After decomposition of the termyiison coefficients for the conformally covariant OPE. The
TO(w,2)In{1+w(z—2)} into a diagonal and an off-diagonal off-diagonal terms in the last line generate the shift of the
parf the a, correction to the hard-scattering amplitude readscanonical dimension by the anomalous one. This can be seen
symbolically by a straightforward calculation:

The off-diagonal part o§(x,y) in the hard-scattering ampli-

(1-x)

(1=P)[TOIN{1+w(z-2)}-TPS]e[V?],® N—Xcﬁ’z(zx— 1)
k

k+1+p,k+2+p
2(k+2+p)

2w
1+

—(1+w) Pk,

(1+w)kttdp

(0) k
Y (20) d
% (5.18

l[p=0

Therefore, this term coincides with the conformal prediction for the structure of the Wilson coeffiglebts

It remains to be shown that the normalization is consistent with the NLO calculation of the non-singlet sector for the
polarized structure functiog,; measured in DIS. It is known that the diagonal part of the pion evolution kernel coincides with
the non-singlet splitting kernel. This was analytically shown 48,23 by taking the limit of an extended pion evolution
kernel:

P(2)= | 1 (Z 1) () V(l+t 1+t
Z = Im_ _1_ 1 ) = _1_
poo2nl ) 7 2 ' 2

(5.19

) [(t—t7)— e(1—1)O[(1— /(1 —t")] O[(t—t" /(1 —t")]

The extension p‘ﬁ/(t,t’)_ into the Who-let,t’-plane is unique  Convoluting the remaining tern®T©(w,z)IN{1+ w(z—2)}
and it is done in practice by replacing the corresponding «[\((zx)], , first with the Gegenbauer polynomials and

functions. _ . then extracting the diagonal part gives:
As mentioned before, the off-diagonal part in E§.17)

does not contribute to the forward case. For the terms of the
diagonal part that are given as a convolution witf)) the
procedure(5.19 provides the following NLO corrections:

~Celgp(k+1)— (1) ]

3
2T kK Dkt 2)

—2P(k+2)+24(1)|. (5.2)
1 1+x?] Q% 3] 2x
Cr o dX| |7 InE_E T—x Putting Egs(5.20 and(5.21) together, the whole NLO con-
" " tribution to the overall normalization follows:
3 |n(1_X) ) @ QZ 3 1
—=8(1—x)— 2| ———| |x* (5.20 —14 s x5, -
2 1-x |, &=1+ 5, Cr '”Mz 2" (k+1)(k+2)
—2S,(k+1) |+2S; 4(k)—2S,(k)+ m—i— r2
®Diagonal refers to terms that contribute only to the normalization
of the partial waves in the expansit§9), while off-diagonal terms
. . . . 3 3 9
cannot be represented in such an expansion with the given hyper- + 1S (K)+—— =], (5.22
geometric functions. 2 k+1 2
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where S,(K)=3K_,(1/)™ and Sy, n(k) ==K ,(1i)™S,(i).  =130.7 MeV. The coefficienty(as) is normalized to 1 at
Taking into account the different definition of moments in LO. For the case that one photon is almost real@.e.1, we
DIS, i.e. k—k—1, the obtained normalizatio(6.22 coin- get

cides with the Wilson coefficients in longitudinal polarized

DIS computed in Ref.[54] in the 't Hooft-Veltman- Q?F(1.Q%) = 2f ,co( ) = 0.18%( ) GeV.
Breitenlohner-MaisorfHVBM ) schemé [60,61. (5.29

Finally, we show that also the NLO calculation for the The predictive power of the conformal OPE tells us that the

transverse helicity amplitud&. . in the c.m. frame of the coefficient co(ay) is the value of the Bjorken sum rule,

transition form factor for the non-singlet scalar mes{H6) S 3 :
coincides with the NLO corrections to unpolarized DIS. It is which is calculate_d up to order; [66,3]. For three active
pavors the numerical result redds

sufficient to consider the difference to the pseudo-scala

case, which can be written as a convolution of the hard scat- o )2 a3

tering part with a diagonal kerngb6]: Colag)=1— 75—3,583# f) —20.2152*6?s +0(ad).
(5.26

~(0) Fs |\ /(0 b Ce . . .

T (w,2)® 5| [VT(2X) ]+ = [VA2X) ]+ = 5-8(z=X) |, Now we can give a rough estimate of the higher-loop cor-

(5.23 rections, which reduce the LO prediction at a scaleQdf
=2 Ge\?, wherea, is assumed to be 0.35, by about 18%,
, i coinciding very well with the experimental results at this
which has the eigenvaluesaf2m)Ce/((k+1)(k+2)).  ocaje[29,30. Note that thea? correction to the coefficient
Thus, the only difference to the pseudo-scalar case appearsdii ction ofg, is given in Ref[54] and, therefore, the next-

; ) o 1alioRy,_next-to-leading ordefNNLO) prediction for the photon-
of the DIS hadronic tensor, the considered helicity amplltude{o_pion transition form factor can be also given in the con-

corresponds to the generalizationfof to non-forward pro- ¢, 1 limit for arbitrary DA's.
cesses. The difference of the corresponding DIS Wilson oy et us consider the effects coming from the confor-
coefficient [51-53 and e in Eq. (5.2 is precisely mal symmetry breaking, which is manifested in the off-

(agf2m)Ce/((k+1)(k+2)) in NLO. diagonal part of the Wilson coefficients and the anomalous
dimension matrix. In the conformally covariant subtraction
C. A first view beyond NLO scheme considered here these terms are induced by the

) _._renormalization of the coupling and have to be proportional
It has been shown to LO that the measured pion transitioR, o B-function. In NLO only the first coefficient oB/g

form factor at large momentum transfig9,3Q, where one  _ —as/(477),30+0(a§) with Bo=11—2n,/3 enters in the

photon is almost real, supports the asympotic diStribUtior}anomanus dimension matr{er in the evolution kerngland

ﬁ;nrggtr?glig?cr:a(\all\;eI\q/errnyoriﬁtgfergt)i\;\vgopow;tagﬂ tr?: Eléigrhgr derthe off-diagonal term related to it was correctly predicted by
corrections to this distribution amplitude. In LO the the conformal constraint3.17. On the other hand it is ob-

ssymole dsttion ampltuds (0 -Gx(1-%) does Yot %1 T, NS Sisgene r e be ooy
not evolve with_QZ, but it is well known that this property is n;-dependent part to the gluon vacuum polarizatiqoark
Spoiled in theMS scheme to NLQ65,5q by the mixing of bUbb'e [69,7(] In NNLO terms proportional to the

the operators. In _the conf_o_rmal limit of the theory the_ CON- 3 function appear in both the Wilson coefficients and the
formal normalization conditions restore the non-evolution ofg, g |ytion kernel. While the off-diagonal part to the Wilson
the asymptotic distribution amplitude. The pion transition cqetficients can be obtained in the same manner as described,
form factor for this amplitude is given by the first term of the the special conformal anomaly should be known in oml?r
conformal OPE4.11): to treat the evolution of the DA in the correctly.

\/Efw 2 (11 2w Although, the n;-dependent part of the Wilson coeffi-

Q%F(w,Q%)= oF1 —— | colas), cients in NNLO can be obtained from the result given in
3 ltw 414w [70,71, we only discuss here the conformal symmetry

(5.24 breaking in NLO. Because of this breaking the asymptotic
distribution amplitude will evolve also in the conformal sub-

where the expectation value of the first operator, given by théaction scheme. Thus, let us first study the fixedregime,

axial current, provided the pion decay constaft  Where a term proportional t8, arises in thexs corrections
to the eigenfunction$5.13 responsible for the evolution of

the asymptotic distribution amplitude. A renormalization
group transformation absorbs this term into the hard scatter-
ing part:

In the HVBM scheme the anticommutativity of in the non-
singlet sector is restored effectively by a finite renormalization. In
this case, it is equivalent to the naiy€ prescription, which was
used for the calculation of the NLO correction to the pion transition
form factor. 8The a‘s‘ correction has been estimated to be negative 63068.
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i as Bo ) filled by requiring appropriate normalization conditions. This
Co (ag)=1— E( 2+ 5 +0(ag). (5.2 OPE provides powerful scheme-independent predictions,
which were used for exclusive two-photon processes in the
generalized Bjorken region; also, restricted to the conformal
limit, for simplicity we did not consider the full kinematical

Note that thisB, term was predicted from th@-function by
g}ethcgrs],?rzzszll c?lr}thrra(lerG.l);) ig? tfgfsg\?etsvg}ﬁefgstt Eterm structure of the hadronic tensor. Since these predictions are
term provides g reductioﬁsoflabout 8%, so that the whole ne cheme-independent they hold true in any scheme; however,
Provic ; o .t is not a trivial task to see this in the explicit calculated
reduction in NLO is of about 19.5%. Because of a partial , b d the LO
cancellation between the different conformal symmetrye)(press.IonS eyon the LO. o .
. . o At this stage it is not clear how to obtain, in an economi-
breaking term$59] for the lowest moments, this reduction is

o ; ) cal way, the terms proportional to th@-function that are
similar to that in theMS scheme, where the correction t0 the isqing in the conformal limit. It seems to be worthwhile
hard scattering amplitude is-15a4/(37).

. . studying if the non-decomposable irreducible representations
NO\.N we cpn5|der the real case, where the couplmlg CONthat allow us to include thg-function in the conformal sym-
stant is running. Then, the evolution of the asymptotic disyyeqry interpretation also have predictive power. This would
tribution amplitude is only avoidable if the matr(as),  avoid having to formally rely on the hypothetical conformal
which diagonalizes the anomalous dimension matrix iSjmit. A second point of view is to use the common irreduc-
renormalization-group-invariant, i.eB(as(u),) depends ible representations and to consider the conformal symmetry-
explicitly on . Here we proceed in the manner proposed inbreaking terms as perturbation proportional to the
[20,65, which was explored in more detail jB9]. Note that ~ B-function. It is very interesting that in the case of the
already a renormalization group transformation was done t&€rewther relation thed-function can be absorbed by the

diagonalize the kernel for fixed, so that the evolution BLM scale-fixing prescription into the scale of the coupling

kernel is different from that in the MScheme. Generally, constan{7,72,8. .

the non-perturbative input can be taken from sum rules, lat- [N NLO conformal symmetry-breaking terms do not ap-

tice or model calculations at a lower scale. Assuming that th@€ar in the Wilson coefficients. Thg-dependence of the

“input” 6 x(1—x) is given at a scale oQ~1 GeV the anomalous-dimension matrix is predicted by the conformal

evolution provides an additional negative effect of almostconstraints for the dimensional regularized theory inN

2% for Q°=2 Ge\® and of almost 3.5% forQ? scheme; however, the renormalization group transformation

=8 Ge\?. The resulting prediction is 0.148 af? to the conformal scheme provides an additional

=2 Ge\2. A more detailed analysis including other distri- 8-dependence of the anomalous-dimension matrix in terms

bution amplitudes will be given elsewhere. of the special-conformal anomaly matrix computed in the

MS scheme. This can be applied in a straightforward manner

to predict the evolution in the singlet channel to NLO only

by a one-loop calculation of the special-conformal anomaly
In this article we reviewed an appropriate technique, dematrix.

veloped previously, based on the true conformal Ward iden-

tities and conformal constraints, to analyze conformal sym-

metry breaking in a massless quantum field theory due to the

renormalization of the UV-divergences. Since we are dealing | would like to thank S. Brodsky, R. Crewther and A.L.

with Ward identities for the basis fields to define the anomakataev for discussions, which inspired me to study the con-

lous terms of gauge-invariant operators the conformal symformal properties of the OPE in QCD. The author is grateful

metry is also spoiled by the gauge fixing. However, finallyto the CERN Theory Division for its hospitality during his

we are interested in predicting physical quantities fromyisit, where this work was done. He was financially sup-

which these terms should be absent. This point of view a|-ported by the Deutsche Forschungsgemeinsdifs).

lows us to understand conformal symmetry and its breaking

in quantum field theories without further conformal assump-

tions that led in the past to conflicts between conformal pre- APPENDIX

d_ic;tions and explicit calculgtions. This _approach is also suf-  Here we carry out the calculation providing EG.30.

f|C|erjt t_o reanalyze more directly the fa}llure of the conformal gy this reason, we first show the identity:

prediction from the light-cone expansion of a non-local op-

erator for the eigenfunctions of the pion evolution kernel in

VI. CONCLUSION

ACKNOWLEDGMENTS

gauge field theory. [a,Bluw=a(k,k")Byw=—{¥°(k") B}y ,
We employed this technique to prove that a factorization
scheme exists in which the conformal covariance of compos- a(k,k')=2(k—K')(k+K' + 1+ ). (A1)

ite operators holds true in the conformal limit of the theory.

The transformation from an arbitrary scheme to the confor- ] _ ) o

mal scheme is given by the special-conformal anomaly mal-et us mention that by iteration and taking into account
trix. Consequently, the essential assumption to construct thBi=1, Eq.(3.29 follows. In accordance with the definition
conformally covariant OPE of two local currents can be ful-(3.23 of the matrixB we introduce the notation
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oo

B =2 {T(K) her »

1=0

ro=1,
ND
Ymn

— (A2)
Ym™ Yk

and Tpn(k') =Ly yho=—

as well as the inverse operator £
L YN0 = — (ym— ) Yu> . From the conformal constraints
(3.18 we obtain formally:

[a,T(k)]==3()+ LK)+ Lo ¥ ()L, (A3)

whereK (1)=[¥"P,3°(1)]. Note that thd -independence of
the RHS is ensured by the constraif@828 and that the last

term on this side induces fc@é,f“(k’)]kk, the contribution
(L7 (N Lo Thae =Yoo (1) S » S0 that[a,T (k') ] =0
is identically satisfied fok=k’. Repeated application of

[a (k") ! (k")]=[a,(k) (k')
+T(K)' Al (k)]
then implies the following form:
[a.'(k")]== (DI (k) =Rk )
+ROK D +T(K) 1L Y1) £
(A4)

with RCD=0. For[a,I' (k") ] the last term in the RHS is

PHYSICAL REVIEW D68 054005

v°(k") =0, it can be avoided for=k’. Obviously, em-
ploying Eg.(A4) we get the identity(Al):

[é,é]kk:go [a,I'(K) e
=--2 Yo K)T (k) Yo + R V=R )
=—i§1 {5°(k)HT (k') ™ e

=—{¥°(K) Bl - (A5)

With the help of relation(A1) the desired calculation is

easy:

{B~'[a(l)+¥°(1) 1B} ={B~ 'B}wa(k’ ) +{B '[a,B]
+B 1) Bl
=a(k1) o +{B[¥()
— (k") 1B}
=a(k,) S +2(k'—1)

X{B"1¥Blw . (A6)

where we used(1) — y°(k')=—2(I—k’) . Since the ma-
trix B diagonalizes the anomalous-dimension matrix the last

proportional to y°(1)» and, because of the property line is identical with Eq(3.30.
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