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Mass signature of supernovanµ and nt neutrinos in SuperKamiokande

J. F. Beacom* and P. Vogel†

Department of Physics, California Institute of Technology, Pasadena, California 91125
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The nm andnt neutrinos~and their antiparticles! from a Galactic core-collapse supernova can be observed
in a water-Čerenkov detector by the neutral-current excitation of16O. The number of events expected is
several times greater than from neutral-current scattering on electrons. The observation of this signal would be
a strong test that these neutrinos are produced in core-collapse supernovae, and with the right characteristics.
In this paper, this signal is used as the basis for a technique of neutrino mass determination from a future
Galactic supernova. The masses of thenm andnt neutrinos can either be measured or limited by their delay

relative to then̄e neutrinos. By comparing to the high-statisticsn̄e data instead of the theoretical expectation,
much of the model dependence is canceled. Numerical results are presented for a future supernova at 10 kpc
as seen in the SuperKamiokande detector. Under reasonable assumptions, and in the presence of the expected
counting statistics,nm andnt masses down to about 50 eV can be simply and robustly determined. The signal
used here is more sensitive to small neutrino masses than the signal based on neutrino-electron scattering.
@S0556-2821~98!00619-5#

PACS number~s!: 14.60.Pq, 25.30.Pt, 95.55.Vj, 97.60.Bw
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I. INTRODUCTION

When the core of a large star (M>8M () runs out of
nuclear fuel, it collapses and forms a proto-neutron star w
a central density well above the normal nuclear density~for a
review of type-II supernova theory, see Ref.@1#!. The total
energy released in the collapse, i.e., the gravitational bind
energy of the core (EB;GNM (

2 /R with R;10 km), is about
331053 ergs; about 99% of that is carried away by neutrin
and antineutrinos, the particles with the longest mean
path. The proto-neutron star is dense enough that neutr
diffuse outward over a time scale of several seconds, m
taining thermal equilibrium with the matter. When they a
within about one mean free path of the edge, they esc
freely, with a thermal spectrum characteristic of the surfa
of last scattering. The luminosities of the different neutri
flavors are approximately equal.

Those flavors which interact the most with the matter w
decouple at the largest radius and thus the lowest temp
ture. Thenm andnt neutrinos and their antiparticles, whic
we collectively callnx neutrinos, have only neutral-curren
interactions with the matter, and therefore leave with
highest temperature, about 8 MeV~or ^E&.25 MeV). The
n̄e and ne neutrinos have also charged-current interactio
and so leave with lower temperatures, about 5 MeV (^E&
.16 MeV) and 3.5 MeV (̂E&.11 MeV), respectively. The
ne temperature is lower because the material is neutron-
and thus thene interact more than then̄e . The observation of
supernovanx neutrinos would allow the details of the pictu
above to be tested. For a detailed description of the su
nova neutrino emission, including the justification of o
choice of temperatures, see Refs.@2,3#.

Even after many decades of experiments, it is still n
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known whether neutrinos have mass. Results from sev
experiments strongly suggest that neutrino flavor mixing
curs in solar, atmospheric, and accelerator neutrinos,
proof of mixing would be a proof of mass. The requireme
that neutrinos do not overclose the universe gives a bo
for the sum of masses of stable neutrinos~see@4# and refer-
ences therein!:

(
i 51

3

mn i
&100 eV. ~1!

However, direct kinematic tests of neutrino mass curren
give limits for the masses compatible with the above cosm
logical bound only for the electron neutrino,mn̄e

&5 eV @5#.

For thenm andnt neutrinos, the kinematic limits far excee
the cosmological bound:mnm

,170 keV @6#, and mnt

,24 MeV @6#. It is very unlikely that direct kinematic test
can improve these mass limits by the necessary order
magnitude any time soon.

As we will show in detail below, the most promisin
method for determining these masses is with supernova
trinos. Even a tiny mass will make the velocity slightly le
than for a massless neutrino, and over the large distance
supernova will cause a measurable delay in the arrival ti
A neutrino with a massm ~in eV! and energyE ~in MeV!
will experience an energy-dependent delay~in s! relative to a
massless neutrino in traveling over a distance D~in 10 kpc!
of

Dt~E!50.515S m

E D 2

D, ~2!

where only the lowest order in the small mass has been k
Since one expects one type-II supernova about every
years in our Galaxy@7#, and since supernova neutrino dete
tors are currently operating, it is worthwhile to consid
© 1998 The American Physical Society10-1
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whether mass limits~or values! for nx compatible with the
cosmological bound, Eq.~1!, can be obtained.

The problem ofnx mass determination with supernov
neutrinos in existing~e.g., Refs.@8–12#! and proposed detec
tors ~e.g., Refs.@13–15#! has been considered before. T
present work differs from the previous ones by the meth
with which thenx are detected: inelastic scattering on16O
nuclei followed by proton or neutron emission, and sub
quent gamma decay of excited15N or 15O nuclei, as sug-
gested in Ref.@16#. We describe this signal and its tim
structure in Sec. II. In Sec. III we discuss the most relev
case of small masses. We find the smallestnx mass that is
recognizably different from zero in the presence of the
pected finite counting statistics. In Sec. IV we show that
mass range is also limited from above. If thenx mass is too
large, the signal is broadened to such a degree that it di
pears into the unavoidable background. We find the larg
detectablenx mass. Finally, in Sec. V we summarize o
findings.

II. CHARACTERISTICS OF THE MODEL

A. Neutrino scattering rate

We assume that the double differential number distri
tion of neutrinos of a given flavor ~one of
ne ,n̄e ,nm ,n̄m ,nt ,n̄t) at the source can be written in th
product form:

d2Nn

dEdti
5F~E!G~ t i !, ~3!

where E is the neutrino energy andt i is the time at the
source. The double integral of this quantity is the total nu
ber of emitted neutrinos of that flavorNn . This form as-
sumes that the energy spectrumF(E) is time-independent
the time dependence of the source is parametrized solel
G(t i). The reasons for assuming that the energy and t
dependences are separable will be given below. The m
general form would allow F5F(E,t i), e.g., a time-
dependent temperature. The luminosity is

L~ t i !5E dEE
d2Nn

dEdti
5^E&G~ t i !E dEF~E!, ~4!

where ^E& is the ~time-independent! average energy. If the
energy spectrum is normalized as

f ~E!5
F~E!

*dEF~E!
, ~5!

then we can write

d2Nn

dEdti
5 f ~E!

L~ t i !

^E&
. ~6!

This form is convenient since we assume, as stated ea
that the luminosities of the different flavors are appro
mately equal at every timet i . The energy spectrumf (E)
will be taken to be thermal, and the luminosityL(t i) will be
05301
d

-

t

-
e

p-
st

-

-

by
e
st

er,
-

taken to have a very sharp rise and an exponential dec
The arrival time of a neutrino of massm at the detector is
t5t i1D1Dt(E), whereD is the distance to the source, an
the energy-dependent time delay is given by Eq.~2!. For
convenience, we drop the constantD. Then the double dif-
ferential number distribution of neutrinos at the detector
given by

d2Nn

dEdt
5E dti

d2Nn

dEdti
d„t2t i2Dt~E!…5 f ~E!

L„t2Dt~E!…

^E&
.

~7!

Note that because of the mass effects, this is no longer
product of a function of energy alone and a function of tim
alone. The number flux of neutrinos at the detector is
tained by dividing this by 4pD2. The scattering rate for a
given neutrino reaction is then

dNsc

dt
5NH2OnE dEs~E!

1

4pD2

d2Nn

dEdt
, ~8!

whereNH2O is the number of water molecules in the dete

tor, s(E) the cross section for a neutrino of energyE on the
target particle, andn the number of targets per water mo
ecule for the given reaction. Using the results above,

dNsc

dt
5NH2O

1

4pD2

1

^E&
n

3E dEs~E! f ~E!L„t2Dt~E!…. ~9!

In more convenient units, the scattering rate~per s! is

dNsc

dt
5CE dE f~E!S s~E!

10242 cm2D S L@ t2Dt~E!#

EB/6 D ,

~10!

where

C59.21S EB

1053 ergsD S 1 MeV

T D
3S 10 kpc

D D 2S det. mass

1 kton Dn, ~11!

T is the spectrum temperature~where we assumêE&
53.15T, as appropriate for a Fermi-Dirac spectrum!, and
f (E) is in MeV21. Since the luminosities are equal for ea
flavor, the total binding energy released in a given flavor
EB/6 ~we ignore the small effect associated with the ne
tronization burst!. When an integral over all arrival times i
made, the luminosity term in parentheses integrates to
giving for the total number of scattering events:

Nsc5CE dE f~E!S s~E!

10242 cm2D . ~12!

The formulas in this section were derived for a nonzero n
trino mass; for massless neutrinos, simply takeDt(E)50
0-2
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MASS SIGNATURE OF SUPERNOVAnm AND nt . . . PHYSICAL REVIEW D 58 053010
throughout. In particular, note that in Eq.~10!, the luminosity
term then can be taken outside of the integral, making
time dependence of the scattering rate simply a cons
times the time dependence of the luminosity.

B. Details of the model

As noted above, we assume that the energy distribu
for a given flavor of neutrinos is time-independent, e.g., t
the temperature does not vary with time. While the tempe
ture really will vary with time, the variation is probably no
large~see, e.g., Fig. 3 of Ref.@2#, but note that those ‘‘aver
age’’ energies are defined as^E2&/^E&). Also, recent numeri-
cal models of supernovae disagree on the form of the va
tion, and even whether it is rising or falling. A wel
motivated form for temperature variation may eventually
obtained from the supernovan̄e data or from more-
developed numerical models. The analysis of this pa
could be easily modified to allow a varying temperatu
until there is a compelling reason to use a particular form,
simply use a constant temperature.

The energy distribution is taken to be a Fermi-Dirac d
tribution, characterized only by a temperature. We takeT

58 MeV for nx , T55 MeV for n̄e , and T53.5 MeV for
ne . These temperatures are consistent with numerical m
els, e.g., in Ref.@3#. More elaborate models also introduce
chemical potential parameter to reduce the high-energy
of the Fermi-Dirac distribution. That reduces the number
scattering events, but makes the dominant contribution to
cross section occur at a lower neutrino energy, thus givin
larger delay.

Numerical supernova models suggest that the neutrino
minosity rises quickly over a time of order 0.1 s, and th
falls over a time of order several seconds. Therefore,
luminosity used in our numerical simulation is composed
two pieces. The first gives a very short rise from zero to
full height over a time 0.09 s, using one side of a Gauss
with s50.03 s. The rise is so fast that the details of its sh
are irrelevant. The second piece is an exponential decay
time constantt53 s. The luminosity then has a width of 1
s or so, consistent with the SN 1987A observations. T
detailed form of the neutrino luminosity is less importa
than the general shape features and their characteristic d
tions. In Ref.@2#, the neutrino luminosity actually decreas
as a power law, and does so somewhat faster than our e
nential. The slower the decay, the harder it is to see m
effects, so our choice is actually somewhat conservative

Throughout the paper, we assume that the distance to
supernova isD510 kpc, approximately the distance to th
Galactic center.

C. Characteristics of SuperKamiokande

In this paper, all of the results are for the SuperKam
kande~SK! detector. The analysis here could be easily
plied to any water-Cˇ erenkov detector. Its large size, lo
threshold, and low background rate make it very well-sui
to detect a Galactic supernova. We assume an energy th
old of 5 MeV; presently, it is a little bit higher, but has bee
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lowered a few times. The full volume of the main tank is 3
kton. From SK conference talks@17#, we estimate the time-
independent background rate for the inner fiducial 22.5 k
volume to be about 0.1 s21 for a threshold of 5 MeV. For the
full 32 kton volume, we estimate that the background r
can be no more than several times worse than 0.1 s21, again
for a threshold of 5 MeV. For the low-mass search in S
III, we assume that the full 32 kton volume is used. T
exact value of the time-independent background rate is c
pletely irrelevant in that search. For the high-mass searc
Sec. IV, we assume that only the inner 22.5 kton will
used, since in that case the time-independent background
would be an important factor. Using only the inner volum
will decrease the number of signal events by a factor 1
while decreasing the background by a factor of at least a f

D. Description of the signal

The cross section for the neutral-current excitation of16O
by neutrinos was computed numerically in Ref.@16#. It was
assumed to be a two-step process, of excitation of16O to the
continuum, followed by decays into various final states. T
principal branches in this decay are to states of15N1p and
15O1n. For nx neutrinos with a thermal spectrum withT
58 MeV, the combined branching ratio for these final sta
is about 95%. If the decay is to a bound excited state of
daughter nucleus, then the daughter will decay by gam
emission. At the relevant excitation energies in16O, the
branching ratio to these states in the daughters is about 3
The crucial point is that in both15N and 15O, all gamma rays
lie between 5 and 10 MeV and can thus be detected in
The other 70% of the branching ratio involves decays to
ground state of the daughters without gamma emission
order to get to a final state with a gamma, the neutrino
ergy must be greater than about 20 MeV. Because of
high threshold, and because of the lowerne and n̄e tempera-
tures, these reactions contribute only at the 2% level co
pared to thenx reactions, and hence are ignored@16#.

In Refs. @16,18#, the neutral-current cross sections we
calculated numerically and folded with thermal neutri
spectra of different temperatures. For the present purpose
need the cross section for a given neutrino energy. It tu
out that the simple parameterized forms(E)5s0(E
215)4, with the neutrino energyE in MeV and s050.75
310247 cm2 describes quite well the cross section for a ne
trino to excite16O. In the fit we assumed that the branchin
ratio for states that end with gamma emission is independ
of neutrino energy. All such branches are included in t
cross section above, and we have summed the cross sec
for neutrinos and antineutrinos~for just one flavor!, as well
as both final channels. The fit values agree with the num
cal calculations at the 10% level over four orders of mag
tude in the thermally-averaged excitation cross section. T
fit will certainly not hold at higher energies which are how
ever irrelevant in the present context.

In order to estimate the delay, Eq.~2! can be evaluated
with a typical neutrino energy. However, one should not u
the average energy,^E&525 MeV. Rather, one should us
the energy for whichf (E)s(E) peaks. For this reaction, thi
0-3
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J. F. BEACOM AND P. VOGEL PHYSICAL REVIEW D58 053010
‘‘Gamow peak’’ energy isE'60 MeV, i.e., considerably
larger than̂ E&. The fact that the neutrinos have a spectru
of energies means that different values ofE contribute to the
time delay, causing dispersion of the neutrino pulse a
travels from the supernova. It turns out that for the sm
masses we are primarily interested in these dispersive ef
are minimal.

The signal associated with the gamma emission descr
above will not be the dominant signal of a Galactic sup
nova in SuperKamiokande. Rather, the dominant events

be the positrons fromn̄e1p→e11n, which give a smooth
continuum in positron energy, peaking at about 20 MeV. T
expected numbers of events for various reactions were

culated with Eq.~12! and are given in Table I. For then̄e

absorption on proton reaction, recoil and weak magnet
effects were taken into account, which slightly reduces
cross section. There are also charged-current reaction
16O @19#; these increase the dominant positron signal
about 1%. Since events from the electron-scattering chan
are forward-peaked, we assume that they are removed b
angular cut. Therefore, in our analysis we use only the ev

from n̄e absorption on protons and thenx excitation of 16O.
The gammas from the neutral-current reactions above

at several discrete energies ranging from 5.2 MeV to
MeV. These are subject to some smearing, due to the fi
resolution, giving few narrow peaks on top of the smoo
distribution of positrons as shown in Fig. 2 of Ref.@16#. For
simplicity, we treat the energy range from threshold to
MeV as one bin, and assume that losses due to the thres
or efficiency are minimal.

TABLE I. Calculated numbers of events expected in SK with
5 MeV threshold and a supernova at 10 kpc. The other param
~e.g., neutrino spectrum temperatures! are given in the text. In rows
with two reactions listed, the number of events is the total for bo
The second row is a subset of the first row that is an irreduc
background to the reactions in the third and fourth rows.

Reaction No. of events

n̄e1p→e11n 8300

n̄e1p→e11n (Ee1<10 MeV) 530

nm116O→nm1g1X 355

n̄m116O→ n̄m1g1X

nt116O→nt1g1X 355

n̄t116O→ n̄t1g1X

ne1e2→ne1e2 200

n̄e1e2→ n̄e1e2

nm1e2→nm1e2 60

n̄m1e2→ n̄m1e2

nt1e2→nt1e2 60

n̄t1e2→ n̄t1e2
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In Ref. @16# numbers of events from different reaction
were calculated relative to each other, with the overall sc

set by the total number ofn̄e events from Ref.@20#. How-

ever, the number ofn̄e events corresponding toT53 MeV
from Ref. @20# was used. This was not really consistent, a

would not be consistent here either, since for then̄e neutri-
nos, T55 MeV is assumed here and in Ref.@16#. Conse-
quently, we use instead Eq.~12! to calculate the number o
events forT55 MeV. We verified that the rates based on E
~12! agree with the numbers given in Ref.@20# when consis-
tent temperatures are used. Note that the results of Ref.@16#
are changed only by increasing the number of events in e
reaction by a factor of about 2.

III. LOW-MASS CASE

In this section, we detail the strategy used in the analy

First, then̄e mass is low enough that it can be neglected. O
final result is that one can reach sensitivity down to anx

mass of about 50 eV. Since then̄e mass is at least 10 time
smaller, and since the delay depends quadratically on
mass, this neglect is justified. This establishes the key p

of our technique: that we can use then̄e events as a clock by
which to measure the possible delay of thenx neutrinos.
Under our assumption that the temperatures are appr

mately constant, the only time dependence of then̄e scatter-

ing rate is from then̄e luminosity itself @see Eq.~10! with
m50#. In contrast, the time dependence of thenx scattering
rate is determined both by thenx luminosity and the delaying
effects of a possible mass. Thus the effects of a mass ca

tested for by comparing the scattering rates of then̄e andnx

events as a function of time. In other words, we are look
for time dependence in thenx rate beyond that expected from
the luminosity variation alone. In order to implement this, w
define two rates, as follows.

The scattering rate ofn̄e events withEe1.10 MeV will
be called the ReferenceR(t). This contains'83002530
'7800 events. The time dependence ofR(t) is completely
determined by the time dependence of the luminosity.
shape is generic for massless neutrinos. The SignalS(t) has
three components. The first is the scattering rate for the
events from the combinednm and n̄m on 16O reactions. The
second is the same for the 355 combinednt and n̄t events.
The third is the scattering rate for the 530n̄e events with
Ee1,10 MeV. We will assume that some portion of th
SignalS(t) events are massive~either allnt events or allnm
andnt events!. All of the other events inS(t) are then mass-
less background events. Because some of theS(t) events
will be massive, the shape ofS(t) will be distorted. In par-
ticular, it will be delayed and broadened.

In a given experiment~i.e., one supernova!, the Signal
S(t) and the ReferenceR(t) will be measured. In order to
facilitate comparison of their shapes, the curveR(t) can be
scaled down to the number of events inS(t). The curveS(t)

rs

.
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MASS SIGNATURE OF SUPERNOVAnm AND nt . . . PHYSICAL REVIEW D 58 053010
shows how the data look, with a possible unknownnt mass,
and the curveR(t) shows how they would look if all of the
events were massless. The rates are shown in Fig. 1, w
depictsS(t) under different assumptions about thent mass.
The shape ofR(t) is the same as that ofS(t) when mnt

50. The curveR(t) will be measured, and so will be there
compare the measuredS(t) to. As thent mass is increased
the delayednt events separate from the massless eve
more and more. Form5125 eV, the scattering rate over th
first 1 s or so isjust that from the remaining massless even
The effect of a mass is to diminish the rate at early times
enhance it at late times~since the normalization is preserve
these are roughly equivalent statements!.

In a real experiment, statistical fluctuations will mask t
effect of a mass. The ReferenceR(t) contains approximately
7800 events, and thus has small relative fluctuations.
Signal S(t) contains approximately 1240 events, and the
fore has larger relative fluctuations. Each of those curve
subject to fluctuations in the total number of events as w
as fluctuations in any time interval. Consider for a mom
the events in the first 1 s of Fig. 1. There are 336 event
expected in themnt

50 eV case, and 302 events expected

the mnt
550 eV case. As noted, the Reference has sma

fluctuations, so for now take the total 336 as exact. T
counting error on the Signal in that interval will be of ord
A302'17. If the number of events in this bin fluctuates
by about two sigma, then the number of events in the Sig

FIG. 1. The expected event rate in the absence of fluctuat
for the signalS(t) is shown for differentnt masses, as follows
solid line, 0 eV; dotted line, 50 eV; dashed line, 75 eV; dot-das

line, 125 eV. Of 1240 total events, 530 are masslessn̄e , 355 are

masslessnm and n̄m , and 355 are massivent and n̄t . These totals
count events at all times; in the figure, only those witht<9 s are
shown.
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over this interval would match the number expected for
massless case, and we would have to conclude that m
probably, the mass of thent is zero. In the analysis below
we use much more of the data, but the idea is the same:
possible for one mass case to fake another through fluc
tions. The degree to which this can occur depends prima
on the number of events expected in the Signal. We w
restrict the range of fluctuations that we consider to be lik
by choosing confidence levels.

To treat the expected fluctuations properly, we use
Monte Carlo technique to generate representative statis
instances of the theoretical forms forR(t) and S(t). Each
run represents one supernova as seen in SK. The total n
ber of events expected inR(t) is known. In each particular
run, this total is subject to Poisson fluctuations. We mo
this by picking a Poisson random number from a distribut
with mean given by the expected number of events. T
gives the number of events for this particular run. We th
use an acceptance-rejection method to sample the formR(t)
until the right number of events for that run is obtained. Th
gives a statistical instance ofR(t), typical of what might be
seen in a single experiment. Then an exactly analogous t
nique is used to generate the total number of events inS(t)
and a statistical instance of the curveS(t) itself. The mass-
less and massive components ofS(t) are sampled separately
and are then added together.

One comment on the method of sampling is necessary
matter how the generated rates are binned in time,
method ensures that for each bin, there are the correct P
son fluctuations around the expected number in that
Therefore, this technique is equivalent to the sometimes-s
technique of first establishing bins and the expected num
in each bin, and then picking a representative number
events for that bin according to the appropriate Poisson
tribution. However, our method of generating representa
Signal and Reference data sets does not require binnin
analysis of these data sets uses bins, the bin size ca
changed without regenerating the data.

Both of the tests developed below depend upon the sh
of S(t), and not directly on the number of counts. Dire
tests for an excess or deficit of counts are much more de
dent on theory; this dependence is largely canceled in
approaches.

A. x2 analysis

As discussed above, the presence of a mass in the S
S(t) will cause its relative decrease at early times and re
tive increase at late times in comparison with the Refere
R(t). Whether or not it can be seen is a question of
statistics of the event rates. As a first test, we look fo
shape distortion inS(t) relative toR(t) by making ax2 test.
If the x2 per degree of freedom~d.o.f.! is of order unity, then
the two curves are compatible at the level of the errors,
there is no reason to invoke a mass. If thex2/d.o.f. is large,
then the two functions are incompatible, which we take
evidence for a mass. That is, we assume that there ar
other systematic effects which would give a largex2/d.o.f.;
one always has to make some such assumption.
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We first scale the Reference down to the number of eve
observed in the Signal over the range 0<t<tmax. As re-
quired for ax2 test, both sets are then binned so the conti
ous functionsR(t) and S(t) are replaced by discrete repr
sentations. Bins of constant widthdt are used. The scaling i
given by

R̃j5Rj

( j 51
NbinSjdt

( j 51
NbinRjdt

, ~13!

where tmax5Nbindt. When m50, R̃j5Sj , up to statistical
fluctuations. Thex2 is formed as follows:

x2/d.o.f.5
1

Nbin21
(
j 51

Nbin ~R̃jdt2Sjdt !2

sR̃jdt1Sjdt
, ~14!

where j runs over the bins used. The number of degrees
freedom is reduced by one because we have normalized
Reference to the Signal. The factors is the ratio of the total
numbers of events~in 0<t<tmax) in the Signal and the Ref
erence, and is computed for each run in the Monte Ca
Even thoughR̃jdt'Sjdt, the fluctuations inR̃jdt are much
smaller, sinceR̃jdt is scaled down fromRjdt, which has
high statistics.

It is important to stress that it is not enough to evalu
thex2 using the predicted curves forR(t) andS(t) based on
the analytic forms constructed with Eq.~10!. Doing so ne-
glects fluctuations, and always underestimates thex2, par-
ticularly near the small-mass limit that we are interested
@since in the massless caseR̃(t)5S(t)#. Roughly speaking,
using the exact functions themselves in thex2 underesti-
mates thex2/d.o.f. by about unity, and of course does n
give the error. As explained above, we use the Monte C
technique which properly treats statistical fluctuations, a
leads to a more correct mass limit.

Only a finite range of times was used in forming thex2.
The beginning of the first bin is taken to be where the eve
start. With some 9000 total events expected, and a rise
of order 0.1 s, the starting time can be reasonably w
defined. In the Monte Carlo, the starting time was held fix
~and not adjusted from the data on each run!. The definition
used amounts to calling the starting time that point at wh
the n̄e rate is about 1% of its peak rate. The size of a
ambiguity in the starting time is much smaller than the b
size ~discussed below!, and so is regarded as irrelevant.

The ending time and the bin size must be chosen m
carefully. The primary consideration is to maximize the e
traction of the mass effect in the presence of the statist
fluctuations. Further, this must be optimized for the case
small mass~other cases are discussed below!. In Fig. 1, one
can see that for a givenmnt

, the SignalS(t) rejoins the

ReferenceR(t) at very late times~even beyond the edge o
the figure for the larger masses!. Once this has happene
there is no benefit to going to larger times; in fact, one o
includes more statistical noise by doing so. In the Mo
Carlo studies, it was found thattmax59 s and a bin size o
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dt51 s were good choices~the final results are only weakly
dependent on these!. These are also very reasonable from
physical point of view. These have to be held fixed for all
the Monte Carlo runs, since one cannot adjust these
particular data set without introducing bias. These choi
also ensure that we can completely neglect the tim
independent background rate of at most a few times 0.1 s21.

With these choices, one has a reasonable number~namely
8! of degrees of freedom in thex2, and a large number o
events expected in each bin. The latter ensures that the P
son errors on the counts in each bin really are approxima
Gaussian, as required in thex2 definition. Up to fluctuations,
the late-time bins all have an excess. Combining them wo
enhance the significance of this excess, whereas for ran
fluctuations combining bins does not change the significan
The same is true for the early-time deficits. However, o
does not in general know where the transition point is
tween these two regions; that is determined by the unkno
mass. The transition point cannot be determined from
data without introducing bias. Also, with too few bins, on
does not satisfy the requirements for defining ax2 test.

Using the above procedure for analyzing each run@and in
particular, normalizingR(t) to S(t) over 0<t<tmax#, we
used the Monte Carlo program to simulate the results fr
104 supernovae. For each run, thex2 analysis was per-
formed. For each fixed mass, a variety ofx2 values are ob-
tained, due to the finite statistics in the Reference and
Signal. These results were histogrammed asx2/d.o.f. The
relative frequencies of differentx2/d.o.f. values are shown in
the upper panel of Fig. 2 for a few representative mas
~Note that the number of Monte Carlo runs determines o
how smoothly these distributions are filled out; their sha
and placement is determined by the physics.! For m50, the
resultingx2/d.o.f. values of course fill out the usualx2/d.o.f.
distribution with 8 degrees of freedom.

These distributions are characterized by their central p
and their~asymmetric! width, using the 10%, 50%, and 90%
confidence levels. That is, for each mass we determined
value ofx2/d.o.f. such that a given percentage of the Mon
Carlo runs yielded a value ofx2/d.o.f. less than that value
With those three numbers, we can characterize the resul
complete runs with many masses much more compactly
shown in the lower panel. For convenience, the axes
inverted from how the plot was actually constructed. That
given the x2/d.o.f., which will be experimentally deter
mined, one can read off the range of masses that could h
likely given such ax2/d.o.f. at these confidence levels.

B. Št‹ analysis

The x2 test above has the nice feature that it is a sh
test, and depends on the number of events only through
fluctuations. One disadvantage is its dependence on binn
which obscures changes over time scales smaller than o
der the bin width, i.e., the effects of sufficiently sma
masses. Another is that the mass effect is not always in
same sense. At early times there is a deficit of eve
whereas at late times there is an excess; thex2 is insensitive
to the difference between this distinctive feature and rand
0-6
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MASS SIGNATURE OF SUPERNOVAnm AND nt . . . PHYSICAL REVIEW D 58 053010
fluctuations of similar magnitude. To get around these pr
lems, we introduce here tests of integral moments. Thes
not involve any binning. The most basic effect of a mass
delay; the average arrival time always increases. The te
simple, intuitively obvious, and the effect is always in t
same sense~up to statistical fluctuations!. A mathematically
analogous moments analysis was made for electron re
energies in the context of solar neutrino oscillations in R
@21#.

Given the ReferenceR(t), the average arrival time is de
fined as

^t&R5
(ktk

(k1
5

*0
tmaxdttR~ t !

*0
tmaxdtR~ t !

. ~15!

The summation form is used for the Monte Carlo genera
data sets, where the sum is over events~not time bins! in the
Reference with 0<t<tmax. The integral form would be use
if the theoretical forms for the rates were given. It is
longer necessary to normalize the Reference to the Sig
As with thex2 test, the starting time is assumed to be we
defined. The choice oftmax follows from similar consider-
ations as before. The effect of the finite number of counts
R(t) is to give^t&R a statistical error. This error is the intrin
sic width of theR(t) distribution divided by the square roo
of the number of events in the Reference. Both the intrin

FIG. 2. The results of thex2 analysis for a massivent . In the
upper panel, the relative frequencies of variousx2/d.o.f. values are
shown for a few example masses. In the lower panel, the rang
masses corresponding to a givenx2/d.o.f. is shown. The solid line
is the 50% confidence level, and the upper and lower dashed
are the 10% and 90% confidence levels, respectively. In this fig
tmax59 s, the bin size used in thex2 is dt51 s, and the time
constant of the exponential luminosity ist53 s.
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width and number of events depend on the choice oftmax.
By choosing a moderatetmax, the intrinsic width ofR(t) can
be restricted even while most events are included.

Given the SignalS(t), the average arrival time is define
similarly as

^t&S5
(ktk

(k1
5

*0
tmaxdttS~ t !

*0
tmaxdtS~ t !

, ~16!

where naturally the sums are now over events in the Sig
While the intrinsic widths ofR(t) andS(t) are similar, the
statistical error on̂t&S is larger by factor of a few since ther
are several times fewer events. The effect of the mass i
make^t&S larger, i.e., to cause a delay.@The mass increase
the intrinsic width ofS(t) only slightly.#

In order to cancel some systematic effects, we cons
not ^t&S as compared to theory, but the difference^t&S
2^t&R determined from the data. The signal of a mass is t
this is greater than zero with statistical significance. From
Monte Carlo studies,tmax59 s was found to be a very rea
sonable choice; most of the data are then included, while
range is kept small. For thistmax, the time-independen
background events are negligible. Again, while these cho
are somewhat optimal, the final results are not strongly
pendent on the particular values used as long as they
reasonable. Although the values of^t& depend ontmax, the
dependence is not strong. Fortmax59 s, a change of 0.1 s in
tmax gives a change of about 0.01 s in^t&. Note that any shift
in the starting time will cancel in the difference^t&S2^t&R
~as long as it does not change the numbers of events
cluded!.

Using the above procedure for analyzing a particular r
we again used the Monte Carlo to simulate the results fr
104 supernovae. Basically, things were done as above forx2.
For each run,̂ t&S2^t&R was calculated and its value histo
grammed. These distributions are again characterized
their central point and their width, using the 10%, 50%~now
also the average!, and 90% confidence levels. That is, fo
each mass we determined the values of^t&S2^t&R such that
a given percentage of the Monte Carlo runs yielded a va
of ^t&S2^t&R less than that value. Since these distributio
are Gaussians, other confidence levels can easily be
structed. The results of this analysis are shown in Fig.
which is analogous to Fig. 2.

For tmax59 s, ^t&R52.57 s. For largertmax,^t&R tends to
about 3 s, the value of the exponential time constant in
luminosity. The value of̂ t&S is of course larger by the mas
effect. As noted, the error on each moment is the intrin
width divided by the square root of the number of even
The intrinsic widths of theR(t) and S(t) distributions are
each of order a few seconds. The numbers of events ar
order 8000 and 1200, respectively. Note that the errors
^t&R and ^t&S are uncorrelated.

We also investigated the dispersion of the event rate
time as a measure of the mass. As noted above, a mass
causes a delay, but a mass and an energy spectrum also
dispersion. We defined the dispersion asA^t2&2^t&2, where
all integrals are as above defined up totmax. We found that
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J. F. BEACOM AND P. VOGEL PHYSICAL REVIEW D58 053010
the effects were not statistically significant until the ma
was of order 150 eV or so; at such a large mass the statis
significance of the change in̂t& cannot be missed.

C. Comparison of techniques

The analysis techniques presented above are approp
for the case in which the mass is either small or zero. In
case, the SignalS(t) and the ReferenceR(t) are not easily
distinguished for finite statistics. Both thex2 and ^t& analy-
ses were optimized for this case by choosing a mode
tmax59 s, which also allowed us to neglect the tim
independent background. In each case, sensitivity to ant
mass of about 50 eV was found. This is essentially the m
which cannot be missed even if there are unfavorable st
tical fluctuations. Since the mass effects grow quadratica
for larger masses the statistical significance of the mass
fects would be huge.

At a given mass, the ranges ofx2 or ^t&S2^t&R values
shown in the figures are the ranges of probable values
would be seen in one experiment~i.e., one supernova!. Those
ranges are the result of properly taking into account the
pected statistical fluctuations of the Reference and Sig
~while the Signal error dominates, the Reference error w
included in the calculations!. For a given experiment, th
values ofx2 and^t&S2^t&R can be computed from the dat
The statistical errors on those quantities can also be

FIG. 3. The results of thêt& analysis for a massivent . In the
upper panel, the relative frequencies of various^t&S2^t&R values
are shown for a few example masses. In the lower panel, the r
of masses corresponding to a given^t&S2^t&R is shown. The solid
line is the 50% confidence level, and the upper and lower das
lines are the 10% and 90% confidence levels, respectively. In
figure,tmax59 s and the time constant of the exponential luminos
is t53 s.
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mated from the data, and should be similar to what is sho
in the figures.

The results from both analysis techniques are essent
similar. That is, the final results are not strongly depend
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FIG. 4. The results of thex2 analysis for a massivenm andnt ,
taken to have the same mass. The figure is otherwise the sam
Fig. 2.

FIG. 5. The results of thêt& analysis for a massivenm andnt ,
taken to have the same mass. The figure is otherwise the sam
Fig. 3.
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TABLE II. The results of thex2 analysis for different cases. The decay constant of the expone
luminosity is denoted byt. If the masses are zero, the most probablex2/d.o.f.51. For thisx2/d.o.f., the
allowed mass ranges are given in the second column; the lower limit of zero is the most probable ma
the upper limit is excluded at the 90% confidence level. The smallest value ofx2/d.o.f. not compatible with
m50 is x2/d.o.f.51.7. The corresponding allowed mass ranges are given in the third column; both the
and lower limits are excluded at the 90% confidence level. The most probable mass is given in paren

Case Result forx2/d.o.f.51 Result forx2/d.o.f.51.7

t53 s; mnm
50, mnt

5m 0<m,60 eV 0,m,75 eV (m.55 eV)
t53 s; mnm

5mnt
5m 0<m,40 eV 0,m,50 eV (m.40 eV)

t51 s; mnm
50, mnt

5m 0<m,35 eV 0,m,45 eV (m.30 eV)
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on the statistical technique used, which is crucial. Of cou
the results from thê t& analysis are slightly better, for th
reasons explained above. The final figures for the^t& analy-
sis also allow other confidence levels to be constructed
ily. Our x2 test was designed to ask if there were eviden
for a nonzero mass, the evidence being a largex2. Strictly
speaking, if there were such evidence, the mass would no
determined with that test; one would reformulate the Re
ence to include a mass and would define a newx2, which
would be minimized with respect to the mass. Neverthele
our formulation works reasonably well for small masses.
nally, because of its greater convenience in use and inter
tation, as well as its greater sensitivity, we advocate the^t&
technique.

We also considered the case in which both thenm and the
nt are massive. For convenience, we tookmnm

5mnt
. ~Since

the time delay is quadratic in the mass, there is little diff
ence from the one-mass case unless the masses are sim!
The results of thex2 analysis are shown in Fig. 4, and th
results of thê t& analysis are shown in Fig. 5. As expecte
with a better proportion of massive events in the Sign
lower masses can be probed. All of the results are sum
rized in Tables II and III.

D. Comparison to previous work

Various techniques for determining or limiting thenm and
nt masses from observations of supernova neutrinos h
been proposed. Any such technique must be based o
neutral-current signal and by necessity will contain eve
from other reactions with similar signatures, but caused
ne or n̄e . Also, in neutral current events, one cannot det
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mine the initial neutrino energy on the event by event ba
~In the neutrino-electron scattering that is possible in pr
ciple, but not in practice.! Hence, one cannot directly dete
mine the energy spectra of the incomingnx neutrinos.

The most developed technique uses the signal fr
neutrino-electron scattering in SK. All flavors participate
this reaction, which has no threshold. Even though thenm

and nt energies are higher, their thermally-averaged cr

sections are smaller than forne and n̄e ~which also have a
charged-current channel!. Thus massless events are necess
ily part of the irreducible background. There are also isot

pic background events from the copiousn̄e1p→e11n re-
action; by considering only events in the forward cone
half-angle about 25 degrees~determined by the angular reso
lution of the Čerenkov detector!, one can eliminate abou
95% of the isotropic background@10,12#. From Table I it
follows that if just thent is massive, in the forward con
there are about 700m50 events and about 60m.0 events.
The test for a mass is to check whether the events in
forward cone fall off more slowly in time than those outsid
the cone. Since the number of massive events is small,
has to look for a large delay. At such late times in the tails
the scattering rates, the time-independent background ra
not at all negligible.

The most detailed analysis of the neutrino-electron sc
tering case was given in Ref.@10#. The statistical test for a
mass was done by a complicated likelihood match
scheme, and sensitivity to a mass of about 50 eV was fou
Another detailed analysis was given in Ref.@12#. The statis-
tical test for a mass was simple, and was based on look
for an excess of events at late times, where an excess
ntial

ss, and

th the
iven in
f 0.09 s.
TABLE III. The results of the^t& analysis for different cases. The decay constant of the expone
luminosity is denoted byt. If the masses are zero, the most probable^t&S2^t&R50. For this^t&S2^t&R , the
allowed mass ranges are given in the second column; the lower limit of zero is the most probable ma
the upper limit is excluded at the 90% confidence level. The smallest value of^t&S2^t&R not compatible with
m50 is ^t&S2^t&R50.09 s. The corresponding allowed mass ranges are given in the third column; bo
upper and lower limits are excluded at the 90% confidence level. The most probable mass is g
parentheses. For the third case, because of the reduced width of the pulse, 0.03 s is used instead o

Case Result for̂t&S2^t&R50 Result for^t&S2^t&R50.09 s

t53 s; mnm
50, mnt

5m 0<m,45 eV 0,m,70 eV (m.45 eV)
t53 s; mnm

5mnt
5m 0<m,35 eV 0,m,45 eV (m.35 eV)

t51 s; mnm
50, mnt

5m 0<m,25 eV 0,m,40 eV (m.25 eV)
0-9
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J. F. BEACOM AND P. VOGEL PHYSICAL REVIEW D58 053010
defined as three times the Poisson error. In this case, s
tivity to a mass of only about 150 eV was found. The qu
tion arises if this poorer limit was caused by the less sop
ticated statistical technique. Interestingly, it is not. It
pointed out in Ref.@12# that the authors of Ref.@10# use a
luminosity which decays roughly exponentially, with a tim
constant oft51 s ~in contrast to the time constant oft
53 s used in this work!. Such a sharp time distributio
makes distinguishing the effects of a mass much easie
Ref. @12#, it is shown that using such a quickly-decayin
luminosity and the same simple statistical technique that s
sitivity to 50 eV can also be obtained.

For comparison, we set the exponential time constan
the luminosity tot51 s and repeated our analysis. Fortmax

53 s and a bin size of 0.5 s, we found sensitivity to about
eV in the one-mass case. The results are also present
Tables II and III. The advantages of the method discus
here, as demonstrated by this comparison, are the la
number of events with mass and the lower proportion
massless events with a similar signature.

IV. INTERMEDIATE-MASS AND HIGH-MASS CASES

For a low or zero mass (mnt
&150 eV), the effects on the

signal S(t) are minimal, and the time-independent bac
ground is negligible. For an intermediate mass (150
&mnt

&1 keV), the effects onS(t) are substantial, and th

massive component ofS(t) will be well-separated from the
the massless component. The time-independent backgr
does not have a large effect, but would have to be taken
account. For a large mass (mnt

*1 keV), the massive com

ponent ofS(t) is so delayed and dispersed that its rate
comparable to or below the time-independent backgro
rate. Given the actual data, one can immediately determ
which of these cases applies. There are analysis techni
that are optimal for each case. It is ‘‘fair’’ to determine th
choice of technique from the crude characteristics of
data.

The intermediate-mass case would be rather easy
handle. The value oftmax would have to be increased and th
time-independent background rate included. Thex2 analysis
above was designed to test whether or not a mass was
essary to explain the data. For a small mass, it can be us
determine that mass. As noted earlier, for a large and obv
mass, it would be better to revise thex2 analysis so that the
ReferenceR(t) was that appropriate for a given mass. Th
thex2 could be minimized to find the unknown mass and
error. Thê t& technique requires only the changes noted.
such a large mass, the dispersion~broadening! also becomes
a useful measure of the mass. Almost any technique wo
work in this case since the signal would be so obvious.

The large-mass case, like the low-mass case, is aga
marginal analysis, since we are by definition looking at
limit of detectability. For a large mass, the delays are la
compared to the width of the pulse at the source, and
integral in Eq.~10! can be evaluated by assuming that t
time distribution of the initial pulse is a delta function. Th
scattering rate~per s! is
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C

2t
Ẽf ~Ẽ!S s~Ẽ!

10242 cm2D , ~17!

whereC is defined in Eq.~11!, andẼ in MeV is defined as
Ẽ5mA0.515D/t @see Eq.~2!#, with m in eV, D in 10 kpc,
and t in s. Note also thatf is in MeV21. The time t is
measured from the arrival of then̄e events. Form51 keV,
the signal is still several times the time-independent ba
ground for hundreds of seconds. As the mass increases
height of the signal rate falls very quickly.

Even if S(t),B at all times, whereB is the time-
independent background rate, it is still possible to determ
a mass by looking for an excess of counts in some long t
interval. We assume that the expected number of sig
events is present~the Poisson fluctuation of the signal num
ber will turn out to be a small effect!. This analysis is there-
fore more model-dependent than the low-mass case, s
the number of events enters directly, rather than only thro
the fluctuations. Whilet is defined by the arrival of then̄e
events, they are obviously not included in the counts for t
analysis. Only a finite range of neutrino energies contrib
significantly, and the largest energy is of order 5 times
smallest. The largest delay will thus be of order 25 times
smallest. In this case, the simplest and most mod
independent thing to do is to begin the counting att50.

We assume that the background rateB is well-known.
The end of the counting intervaltmax is to be determined.
The requirement of a statistically significant excess of cou
is NB1NS.NB1nANB, wheren is the number of sigmas
~the number of counts is large enough to treat the Pois
distribution as a Gaussian!. Any large excess in the numbe
of events will be wholly attributed to the signal events,
which there areNS expected. UsingNB5Btmax, this can be
rewritten astmax,NS

2/n2B. Note that this is independent o
mass. The requirements fortmax are:

signal width,tmax,
NS

2

n2B
. ~18!

If the interval is not as wide as the signal, signal events w
be lost. If it is wider than the signal, too many backgrou
events will be included. The largest possible mass that ca
seen with this technique is the one for which the signal wi
is as wide as the right-hand side of the equation above. T
is

mmax5Emin

NS

nA0.515DB
, ~19!

wherem is in eV, Emin is in MeV, D is in 10 kpc, andB is
in s21. For the nx excitation of 16O, we take Emin
525 MeV; below that energy, the productf (E)s(E) is es-
sentially zero. In order to reduce the time-independent ba
ground rate, we use only the inner 22.5 kton volume for t
large-mass test, which reduces the number ofnt signal
events toNS5250. For this volume, the background rate h
been measured@17# to be of order 0.1 s21. At the three-
0-10
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MASS SIGNATURE OF SUPERNOVAnm AND nt . . . PHYSICAL REVIEW D 58 053010
sigma level (n53), the maximum detectable mass is th
about mmax59 keV. For this mass, even the peak of t
signal rate is a factor several below the time-independ
background rate. Also for this mass,tmax is of order 105 s,
so the Poisson error on the number of background even
at the 1% level. We have assumed that the error on the b
ground rateB is not larger than that. The above analysis
optimized for a flat signal. However, the signal is actua
peaked at a time smaller thantmax, and by increasingEmin to
42 MeV, one still includes about 90% of the signal even
While more model-dependent, this increases the maxim
detectable mass to aboutmmax514 keV.

For comparison, we estimate how largemmax would be if
the signal from neutrino-electron scattering were used. S
the signal is forward-peaked, the background can be subs
tially reduced with an angular cut. In this case, it mak
sense to use the entire 32 kton volume. If 95% of the ba
ground can be removed, and the time-independent b
ground rate of 0.1 s21 used above for the inner 22.5 kton ca
be used for the full volume, thenB'0.005 s21. Assuming
that no signal events are lost with this cut, the number
events forEmin55 MeV is aboutNS560. At the three-sigma
level, the maximum detectable mass is aboutmmax52 keV,
comparable to the estimate in Ref.@10#.

If the nt events appear to be missing, a large-mass se
as above can be made. If nothing is found, there are th
possibilities. The first possibility is that the mass is grea
than 10 keV or so, and that it is stable over the time it ta
to travel from the supernova, about 33104 years. Then its
signal is so dispersed that it cannot be distinguished aga
the background. However, as pointed out in Ref.@8#, any
neutrino with a mass greater than 10 keV or so would lik
decay in such a time~this avoids violation of the cosmologi
cal bound on the neutrino masses, see Ref.@4# and references
therein!. The second possibility is that the mass was la
enough that the neutrinos decayed, and that their decay p
ucts were not detected. The third possibility is that thent
neutrino was not produced in the supernova, or at least
nificantly differently than expected. For example, if thent
temperature were much lower than 8 MeV, there would
essentially nont events detected. These three possibilit
cannot be distinguished without additional evidence.

V. CONCLUSIONS AND DISCUSSION

One of the key points of our technique is that the ab
dantn̄e events can be used to calibrate the neutrino lumin
ity of the supernova and to define a clock by which to m
sure the delay of thenx neutrinos. The internal calibratio
very substantially reduces the model dependence of ou
sults. The measurement of time relative to then̄e signal al-
lows us to be sensitive to rather low masses. Without suc
clock, one cannot determine a mass limit with the^t& tech-
nique advocated here, since the absolute delay is unkno
Instead, one would have to constrain the mass from the
served dispersion of the events. Our calculations indicate
while a significant delay can be seen form550 eV, the dis-
persion does not become significant untilm5150 eV or
greater.
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We first assumed that one ofnm andnt masses was non
zero, and the other negligibly small. For convenience,
referred to the heavier one asnt , though it is impossible to
tell the difference. The results are given in Figs. 2 and 3. I
were known that the masses were almost degenerate, th
stricter limit can be placed. Those results are given in Fig
and 5. If nothing more is known, the most conservative th
to do is to take the one-mass limit for each ofnt andnm . As
shown in Table III, if no statistically significant difference o
the Reference and Signal is seen, one can put an upper
of 45 eV if one assumes that only one mass is nonvanish
and 35 eV if one assumes that bothnm and nt are massive
~and that the masses are the same!.

Given the large statistics of thenx signal used here, one
might wonder why the time delay is not larger and the m
sensitivity is not lower than we report here. Thenx average
energy is about 25 MeV. ForE'25 MeV, m550 eV and
D510 kpc, the delay is about 2 s. However, from Eq.~10!,
what matters for the event rate is the peak of the prod
f (E)s(E). Since the cross section for the16O excitation is
very steep in energy, the peak energy is large, about 60 M
For E'60 MeV, m550 eV andD510 kpc, the delay is
about 0.4 s. In both cases, these delays are for about 1
the events in the Signal, so for a large integration timetmax
the differencê t&S2^t&R would be about 1/3 of these delay
For moderatetmax, as used in the main analysis, the shift
slightly smaller ~though more significant than for a large
tmax).

These considerations show that the delay is reduced,
the statistical significance decreased, by the seemingly
ducible background of then̄e events at low energies as we
as by the background caused by the masslessnm . Besides,
since the energy of the outgoing neutrino cannot be m
sured~or even the excitation energy in16O), it is not pos-
sible to measure the energy spectrum of thent neutrinos.
Thus thenx temperature can only be constrained from t
total number of events.

The situation can be contrasted with then̄e mass limit of
about 20 eV from SN 1987A established with only a hand
of events and no independent clock. There, however, it w
possible to determine the incoming neutrino energy on
event by event basis, and to compare the neutrino ener
versus time to the theoretical expectation. Moreover,
SN 1987A was at about 50 kpc, compared to the 10 k
assumed for the next Galactic supernova, and a lower typ
energy should be used in the delay formula of the detecten̄e
events than for thenx neutral current scattering on16O.

Some of the important parameters used here are not
known, though were treated as such. However, once the
actually a supernova, the model uncertainties will be grea
reduced by then̄e data. For example, the binding energyEB

and then̄e temperature will be determined. Other questio
that can be resolved include the time dependence of the
perature, and whether a one-parameter thermal spectru
sufficient to describe the energy spectra. Once a superno
observed, the technique presented here can easily be run
the new parameters or necessary modifications. Second
small changes in some parameters, the mass sensitivity
0-11
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not change much. Note that this is especially true if mas
unrecognizably small, and we are making a limit.

The results of this paper are valid for either Dirac or M
jorana neutrinos. We only considered stable neutrinos.
effects of decaying neutrinos on mass limits from super
vae are discussed in Ref.@8#. We also considered unmixe
neutrinos. Vacuum oscillations amongnt ,nm , and their an-
tiparticles are irrelevant since the numbers of neutrinos
each flavor are assumed to be equal. Vacuum oscillat
betweennt andne or nm andne and their antiparticles shoul
have an observable effect on then̄e spectrum. Oscillations to
sterile neutrinos would also have an effect. The effects
either vacuum or matter-enhanced neutrino mixing on
neutrino signals are considered in, e.g., Ref.@22#.
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In conclusion: We have presented a rather gene
method, including a thorough statistical analysis, of extra
ing information about the possiblent and nm masses from
the future detection of a Galactic supernova neutrino burs
the SuperKamiokande detector. When such an event in
occurs, the existing mass limits will be vastly improved a
will approach, or cross over, the cosmological bound.
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