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Higgs resonance in vector boson scattering
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A heavy Higgs resonance in the minimal standard model is described in such a way that the whole energy
range of 2→2 scattering processes is covered, including the asymptotic behavior at low and high energies. The
description does not rely on a particular representation~linear or nonlinear! chosen for the Higgs and Gold-
stone fields. The low-energy theorems which follow from the custodialSU2 symmetry of the Higgs sector
restrict the possible parametrizations of the line shape that are consistent in perturbation theory. Matching
conditions are specified which are necessary and sufficient to relate the parameters arising in different expan-
sions. The construction is performed explicitly up to next-to-leading order.@S0556-2821~98!06415-7#
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I. INTRODUCTION

Elastic scattering amplitudes of massive vector bos
grow indefinitely with energy, if they are calculated pertu
batively in a theory of fermions and gauge bosons only. A
result, theS-wave scattering amplitudes of longitudinally p
larizedW,Z bosons violate unitarity at the tree level beyo
a critical energy scaleAsc;1.2 TeV @1#.

In the minimal standard model~MSM! @2#, an isodoublet
of scalar fields is introduced, leading to a single observa
Higgs resonance which damps the rise of those scatte
amplitudes@3,4#. However, the running Higgs self-couplin
l increases with energy and becomes strong at some l
scaleL which is indicated by a Landau pole in the one-lo
running coupling constant@5#. This scale depends expone
tially on the Higgs massMH and approaches the TeV rang
from above forMH*400 GeV.

Low-energy electroweak observables in the fermion a
gauge boson sectors of the standard model are affecte
radiative corrections which depend logarithmically onMH .
From the high-precision data at LEP1, SLC, and the Te
tron, an upper limit ofMH,550 GeV has been derived at th
2s level @6#. This limit is not sharp: Excluding one or tw
observables from the analysis weakens the bound sig
cantly @7#. Furthermore, the limit is strictly valid only within
the context of the minimal model. If the Higgs mass is
large as several hundred GeV, effects from new physic
the strong-interaction scaleL could show up at low energie
in the form of anomalous couplings. Additional degrees
freedom which invalidate the MSM calculation could al
exist.

Thus, a Higgs resonance in the rangeMH50.5– 1 TeV is
still a realistic possibility. Future colliders such as the LH
ande1e2 linear colliders will explore the heavy-Higgs-ma
energy range. One expects that such a heavy Higgs r
nance will be found if it exists, and that from a precise ana
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sis of its profile further conclusions on the symmetr
breaking sector of the MSM can be drawn. In order
separate anomalous effects, the predictions from the M
should be known as accurately as possible. The results of
paper are a step in this direction.

A heavy Higgs boson is not a quasi-stable particle t
can safely be treated in a zero-width approximation. Rath
the width of the Higgs resonance will exceed 100 GeV
MH*500 GeV. In a gauge theory the resummation of Fe
man diagrams for an unstable particle is not uniquely defi
within the framework of perturbation theory. For the Higg
sector ambiguities arise when different representations of
fields, which nevertheless are simply related by field red
nitions, are compared. However, amplitudes for longitudi
W,Z boson scattering have to satisfy low-energy theore
@8# analogous to those satisfied by pion scattering amplitu
in low-energy QCD@9#, which in general are violated if the
Higgs width is introduced in a naive way.

For many practical purposes, it may be sufficient to ov
come these problems byad hocprescriptions. Nevertheless
for a deeper understanding, and if the theoretical predicti
are to be used for comparison with experiment, the unc
tainties have to be under control. Therefore, we show in
present paper how different descriptions and approximati
valid in the low-energy and high-energy ranges and in
resonance region can be combined to yield a unified res
mation prescription which is valid within the whole pertu
bative range. Applying matching and resummation pro
dures consistently, representation and renormalizat
scheme dependence disappears order by order in
perturbative expansion.

The paper is organized as follows: In the following tw
sections we introduce the Higgs resonance in the contex
Goldstone boson scattering and discuss different represe
tions of the Higgs and Goldstone fields in the Lagrangian
particular, we give a one-parameter formula which interp
lates between the linear and non-linear representations
Sec. IV we state the conditions that have to be imposed
the Goldstone boson scattering amplitude, and in Sec. V
show how they resolve the apparent ambiguities which a
© 1998 The American Physical Society04-1
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when the finite width of the Higgs boson is taken into a
count. The next three sections are devoted to the exp
calculation of the Higgs line shape at leading and next
leading order. Finally, we discuss representation depend
and its use for estimating higher-order effects and conclu

II. THEORETICAL FRAMEWORK

For a quantitative analysis, the Higgs line shape should
calculated within the full MSM. The physical picture, how
ever, is clearer if only the leading contributions for hig
energies and for a large Higgs mass are taken into acco
For this reason, we shall discuss the Higgs resonance w
the framework of the equivalence theorem~ET! @4,10–12#
which relates the unphysical Goldstone modes in aRj gauge
to the longitudinal degrees of freedom of theW,Z bosons in
the unitary gauge. In this approximation, one consisten
neglects terms of orderg2 compared to those of orde
g2MH

2 /MW
2 or g2s/MW

2 .
Corrections induced by the top quark Yukawa coupli

are smaller than Higgs coupling corrections ifMH*2mt
@13#. We thus neglect them in the present paper, defer
their inclusion to a future publication.

If the Yukawa couplings are set to zero, the theory ha
global SU23SU2 symmetry@14# that is spontaneously bro
ken to the diagonalSU2 . From this fact one can conclude@9#
the following: ~i! The three Goldstone modes can be ke
massless consistently to all orders.~ii ! For all 2→2 Gold-
stone scattering amplitudes, the dynamical dependenc
the Mandelstam variabless,t,u is determined by a single
function

A~s,t,u!5A~s,u,t ! ~2.1!

which is equal to the amplitude forww→zz scattering. The
scattering amplitudes for the other 2→2 processes are give
by linear combinations ofA(s,t,u), A(t,s,u), andA(u,s,t).
Here$w,z% denote the Goldstone modes associated with
longitudinally polarizedW,Z bosons.~iii ! As s goes to zero,
the real part of the amplitudeA vanishes likes, and the
imaginary part which arises at one-loop order vanishes
s2. In this limit both terms are determined completely
low-energy quantities, independent of the existence o
Higgs resonance.~iv! For very high energies, the Higgs ma
can be neglected, and the theory approaches a masslef4

theory. In this limit theSU23SU2 symmetry is manifest in
the scattering diagrams; it is only slightly broken by t
renormalization conditions necessary to match
asymptotic behavior with the low-energy theory, as will
described below.

III. REPRESENTATIONS OF THE HIGGS SECTOR

The Lagrangian describing the MSM Higgs sector in t
absence of Yukawa and gauge couplings reads

L5
1

2
tr@]mS†]mS#1

M2

4
tr@S†S#2

M2

8v2 ~ tr@S†S#!2.

~3.1!
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HereS is a 232 matrix that transforms underSU23SU2 as
S→V†SU and has a vacuum expectation value^S&
5v/&. It may be parametrized in terms of four real sca
fields H andwa ( i 51,2,3) as

S5
1

&

@~v1H !11 iwata# ~3.2!

whereta are the Pauli matrices. In this parametrization t
symmetry is represented linearly, and renormalizability
i.e., the logarithmic high-energy behavior—is manifest.

On the other hand, a non-linear representation

S5
1

&

~v1H !1 expS i

v
wa8t

aD ~3.3!

may be preferred for the description of low-energy scatter
amplitudes, since the Higgs field can be integrated ou
leading order by lettingH→0, resulting in a non-linears
model where the power-like low-energy behavior is ma
fest. Furthermore, in this representation individual terms
be identified more easily in the full unitary-gauge MSM am
plitudes, since the derivative couplings in the Goldstone
teractions correspond to the momentum factors in the lon
tudinal polarization vectors of massive vector bosons.

The physics derived from a Lagrangian, however, is in
pendent of the particular representation chosen for the fie
it depends only on the number of degrees of freedom, th
symmetry properties, and on numerical parameters. In f
S-matrix amplitudes—as opposed to off-shell Green
functions—are invariant under a wide class of non-line
field transformations, if the independent parameters of
theory are expressed in terms of measurable quantities@15–
18#. The expansion of the fields$wa8 ,H% in terms of
$wa ,H%, and vice versa, can easily be worked out order
order. Hence, the linear and the non-linear representat
yield the same results ifall Feynman diagrams to a give
order in the perturbative expansion are taken into accou

In order to make the representation dependence exp
one may introduce a one-parameter family of field repres
tations which includes both representations mention
above:

S5
1

&

F S v
h

1H DexpS i
h

v
wa9t

aD1S 12
1

h D vG . ~3.4!

Here h is an arbitrary parameter. Takingh→0, the linear
representation~3.2! is reproduced. The choiceh51 corre-
sponds to the non-linear representation~3.3!. If the Feynman
rules derived by inserting Eq.~3.4! into the Lagrangian~3.1!
are used to calculate a physical quantity, the parameteh
must drop out of the result if all diagrams up to a given ord
of the expansion parameter chosen are taken into accoun
this sense the parameterh achieves a similar meaning as th
gauge parameterj of the electroweak theory. We will com
back to this fact in Sec. IX.

IV. HIGGS RESONANCE IN ww˜zz

At lowest order, the amplitude forww→zz scattering is
easily calculated as
4-2
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HIGGS RESONANCE IN VECTOR BOSON SCATTERING PHYSICAL REVIEW D58 053004
A~0!~s,t,u![A~0!~s!522l
s

s2M2 ~4.1!

with l5M2/2v2. As anticipated, this expression does n
depend onh. It satisfies the requirements mentioned in S
II:

~a! At low energies, it approaches the expressions/v2.
Generally speaking, the sum of the diagrams in a
fixed ordern of the perturbative expansion vanish
like sn11/(4pv)2n logn s for s→0. Thus, the leading-
order low-energy behavior is not modified by highe
order corrections.

~b! At high energies, the amplitudeA(0)(s) approaches a
constant value. Higher-order corrections modify this
adding logarithmic terms of orderln lnk s, k<n.

However, this amplitude cannot be used in the resona
region since it diverges ats5M2. Resonant diagrams nee
to be resummed, leading to the introduction of the Hig
width which to leading order is given by

G~0!5
3l

16p
M . ~4.2!

Several approaches to deal with this problem are poss
@19–24#. Let us list some of them as they are applied to
leading-order expression~4.1!:

~1! S-matrix approach.The Higgs pole term is separate
with a constant residue, and the correct pole position
the complex plane is inserted. The remainder, the n
resonant part, is left untouched at this order:

A1
~0!~s,t,u![A1

~0!~s!5
M2

s2M21iMGu~s!
11. ~4.3!

The constant widthG is only introduced fors.0, as
indicated by theu function.

~2! Fixed width in common denominator.All terms, includ-
ing the non-resonant part, are collected into a single fr
tion before the pole position in the denominator
shifted:

A2
~0!~s!522l

s

s2M21iMGu~s!
. ~4.4!

~1! Resummation of self-energies.The separation is done b
grouping Feynman diagrams in two classes: resonant
non-resonant. In the resonant diagrams~Fig. 1! the
imaginary parts of the one-particle irreducible piece~the

FIG. 1. Dyson resummation of resonant terms in Goldsto
scattering. The cuts indicate where the imaginary part of the loo
taken.
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Higgs self-energy! are resummed.1 If the s-dependence
is kept, one finds

A3
~0!~s!522l

1

M2

@hs1~12h!M2#2

s2M21iMG~s!u~s!

12l
h2s2~12h!2M2

M2 ~4.5!

where thes-dependent width is also representation d
pendent:

G~s!5
3l

16pM3 @hs1~12h!M2#2. ~4.6!

~1! Kinematical scaling of a constant widthG. The phase
space available for the decay of a state with massM*
5As into massless particles scales proportional tos.
Applying this observation to the intermediate Higgs sta
in Goldstone scattering, one is led to

A4
~0!~s!5

s

s2M21isGu~s!/M
~4.7!

whereG itself is independent ofs.

A priori, no single approach is preferred. In principle, t
inclusion of higher-order corrections can be done so as
remove the discrepancies between different formulas. H
ever, the differences can be numerically large at the t
level. This has been explicitly verified for the analogo
problem of theZ and W resonances@21,25#. @Note that for
the Z resonance, the kinematical-scaling and self-energy
summation schemes, approaches~3! and ~4!, coincide in a
linear gauge.#

Considering the Higgs resonance, we observe that the
pressionsA1

(0)–A3
(0) are not in accordance with the low

energy theorem. The amplitudeA1
(0) approaches a constan

for s→0. The versionA2
(0) has the correct power behavio

but the normalization is changed to an unphysical comp
value. ~Recall that fors→0 an imaginary part is allowed
only at orders2.! Even worse, the expressionA3

(0) depends
on h, i.e., on the representation chosen for the Higgs sec
By contrast, the expressionA4

(0) , which is seemingly intro-
duced by anad hoc replacement, satisfies both low-energ
and representation-independence requirements.

Apparently, the ambiguity in finding a correct resonan
description can be removed by the condition that the lo
energy theorem should be maintained to all orders.2 This
additional requirement, which has no counterpart for theZ
resonance, restricts the possible parametrizations of
Higgs resonance. As will be demonstrated in the followi
sections, imposing the low-energy theorem on the amplit
in each order of the perturbative expansion unites
S-matrix approach with the concept of kinematical scalin
Furthermore, it provides matching conditions which fix t
renormalization of the independent parameters. On the o

1At this order, this is equivalent to resumming the full self-energ
2For the lowest-order expression, this has been shown in@26#.
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hand, a scheme based on the representation-dependen
pressionA3 can be set up to give identical results, as sho
in Sec. IX.

V. REPRESENTATION-INDEPENDENT TREATMENT
OF THE HIGGS RESONANCE

In perturbation theory the property of a Feynman diagr
to be one-particle reducible or irreducible is not well define
it depends on the particular representation chosen for
fields @cf. Eq. ~4.5!#. Therefore, a resummation of ‘‘reso
nant’’ diagrams is ambiguous in general. This observat
naturally leads to a parametrization of a resonance insp
by S-matrix theory@21#, which we will adopt as a starting
point for the treatment of the Higgs line shape. However,
we have seen in the previous section, for the Higgs re
nance this approach is not manifestly consistent with
low-energy theorem, if finite-order perturbation theory is a
plied. For this reason, we first review the various pertur
tive expansions and the conditions they have to satisfy
particular, four energy ranges with different expansion
rameters have to be distinguished:

~1! The low-energy region (s!M2): The amplitude is ex-
panded in powers ofs/(4pv)2. The leading term and
the imaginary part of the next-to-leading term are fix
by the low-energy theorem.

~2! The perturbative region~s;M2, but excluding the reso
nance region whereus2M2u&lM2/16p!: The ampli-
tude is expanded in powers ofl/16p5M2/32pv2.

~3! The resonance region (us2M2u&lM2/16p): The dis-
tance from the pole is of the order of the widthG;l.
Any Feynman diagram contributing toww→zz can be
characterized by non-negative integersn andk to be of
the order

16pS l

16p D nS lM2/16p

s2M2 D k

, n>1, k>0, ~5.1!

wherek counts the number of resonant propagators,
all s-dependence that is not determined by the pole te
has been absorbed in thek50 piece. All terms with a
fixed n are formally of the same order and need to
resummed.

~4! The high-energy region (s@M2): Neglecting everything
that is suppressed by powers ofM2/s, any term can be
assigned non-negative integersn andk to be of the order

16pS l

16p D nS l

16p
ln

s

M2Dk

, n>1, k>0. ~5.2!

All terms with a fixedn are formally of the same orde
and need to be resummed. This can be accomplishe
renormalization-group methods, introducing a runni
coupling and field anomalous dimensions.

In each of these expansions the individual terms are re
sentation independent: For the perturbative expansion il,
this follows from the general theorems mentioned above.
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garding the expansion in powers and logarithms ofs, the
corresponding pieces can in principle be identified in a m
surement of physical scattering processes.

Let us first look at the resonance region. The fullS-matrix
has no multiple poles, but only a simple pole at the comp
position sP5M22 iM G. This defines two real
representation-independent constantsM andG, which can be
interpreted as the physical mass and physical width of
Higgs resonance3 @27#. From re-expanding the complex po
arounds5M2 we recover the expansion~5.1!, and we ob-
serve that resonant terms, i.e. those with orderk>1, can be
summed up into

Ares~s,t,u!5~a1 ib!
M2

s2M2 (
k51

` S 2 i
G

M
u~s!

M2

s2M2D k21

5~a1 ib!
M2

s2M2~12 ig!
, ~5.3!

whereg[(G/M )u(s). This is the usual Dyson series. As
suming that any field-strength renormalization of the exter
Goldstone particles is included in the amplitudeA(s,t,u),
the relation~5.3! defines two more real observable quantiti
a and b. If the definition of the expansion parameterl is
given in terms of physical observables, the constantsa, b,
and g have perturbative expansions that are independen
the representation and of any intermediate renormaliza
scheme order by order.

The remaining part of the full amplitudeA(s,t,u) can be
collected in a functionAnr which we may call the non-
resonant piece. The result for the total amplitude is

A~s,t,u!5~a1 ib!
M2

s2M2~12 ig!
1Anr~s,t,u!. ~5.4!

With these definitions the functionAnr also has a perturba
tion expansion in which each term is representation a
scheme independent separately, and its higher-order te
scale likesn11 lnn s in the low-energy limit.

In a real calculation the quantitiesa, b, g, andAnr can be
computed only to finite order. It is this truncation whic
spoils the low-energy theorem, as we have observed in
lowest-order example of the preceding section. However,
are free to rewrite the exact expression~5.4! in such a way
that the correct low-energy behavior is preserved even
the truncated series. To this end, we evaluate Eq.~5.4! for
s50:

A~0!5052
a1 ib

12 ig
1Anr~0!. ~5.5!

Thus, the modified function

3The pole position can be determined from the Higgs self-ene
by solving an implicit equation. One has to be careful, howev
since the self-energy by itself is representation dependent, and
extraction ofM andG from the corresponding Feynman amplitud
can be technically quite involved at higher orders.
4-4
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Ânr~s,t,u![Anr~s,t,u!2
a1 ib

12 ig
~5.6!

vanishes likes for s→0.
It remains to introduce the piece~5.6! in the complete

expression~5.4!. Rewriting Eq.~5.4!, we obtain

A~s,t,u!5~a1 ib!
11 ig

12 ig

s

s2M2~11g2!1 igs

1Ânr~s,t,u! ~5.7!

to all orders.@Recall thatg5(G/M )u(s) with a constant
width G.#

By extracting the factor 11 ig in the numerator, we have
effectively introduced a kinematical scaling proportionally
s of the constant Higgs width in the denominator. When
result is re-expanded in the low-energy region, the imagin
part of the denominator enters only at orders2, allowing the
imaginary parts of the first and second terms to cancel u
orders at each order in the loop expansion. This is necess
to satisfy the low-energy theorem order by order. As we sh
see later, thereal part of the order-s term is divergent; here
the low-energy theorem serves as a matching condition

A~s,t,u! ——→
s→0 s

v2 1O~s2!, ~5.8!

which can be employed to define the renormalized coup
l in terms of M and the low-energy quantityv
[(&GF)21/2.

It is easily verified that the result~5.7! is correct in the
other energy ranges: Ats5M2, terms have been shifted be
tween the resonant and non-resonant pieces. However, i
width is calculated to ordern, one has to calculateÂnr only
up to ordern21 to ensure that the normalization of the pe
amplitude is unchanged. Fors.M2 the resonant part in Eq
~5.4! vanishes like 1/s, and onlyAnr is of importance. In Eq.
~5.7! both parts contribute fors→`. However, since there is
no cancellation required, this fact is irrelevant.

We have not yet considered the resummation of lo
rithms in the high-energy limit. Fors@M2, the theory even-
tually approaches a masslessf4 model. This fact can be
employed to include those terms of orderln lnk s in the am-
plitude that are not already part of the finite-order expr
sion. With our prescription for the treatment of the res
nance, such logarithmic terms cannot be picked up by
pole resummation implicit in Eq.~5.7!. Thus, they can be
added separately while avoiding any double counting, le
ing to the final result

Afull~s,t,u!5~a1 ib!
11 ig

12 ig

s

s2M2~11g2!1 igs

1Ânr~s,t,u!

1@ARG~s,t,u;m0
2!2AHE~s,t,u;m0

2!#

3u~s,t,u;m0
2!, ~5.9!

where the first two terms are taken from Eq.~5.7!. If the
amplitudeA(s,t,u) were known to all orders, the additiona
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term introduced here would vanish identically, and the
would be no dependence on the matching pointm0 . How-
ever, in a finite-order calculation the correctionARG2AHE
provides just those logarithmic terms that are not includ
already in Eq.~5.7! and which dominate in the high-energ
limit. To achieve this, we define the functionsu, ARG, and
AHE as follows:

The step functionu(s,t,u;m0
2) controls the region where

resummation of logarithms applies. A natural choice is

u~s,t,u;m0
2!5u~s2m0

2! ~5.10!

with a matching pointm0;M .
However, in the forward and backward regions whe

utu!s or uuu!s, a straightforward resummation of loga
rithms lns does not pick up the dominant terms. To exclu
these regions from the renormalization-group improveme
one should insert additional cutoff functions int andu, such
that in these regions only the finite-order expression~5.7! is
taken:

u~s,t,u;m0
2!5u~s2m0

2!u~2t2m0
2/2!u~2u2m0

2/2!.
~5.11!

This definition has been used in our numerical results for
eigenamplitudea00 ~cf. Sec. X!. For the presentation of dif-
ferential distributions, some smooth cutoff int andu would
be more appropriate.

If massless particles can be exchanged, scattering am
tudes usually develop singularities in the forward regi
which invalidate a straightforward application o
renormalization-group methods to on-shell scattering p
cesses. However, the model considered here effectively
proaches a free-field theory at long distances~cf. Sec. II!. For
this reason, the forward scattering amplitudeA(s,0,2s) is
finite, as can be verified from the explicit tree-level and on
loop expressions~6.3! and~7.8! below, and this complication
does not arise. As a consequence, the contribution of
forward and backward regions to the total cross section
the effect of the ambiguity in definingu(s,t,u) are sup-
pressed by 1/s for s→`.

To define the amplitudeAHE in Eq. ~5.9!, we observe that
the finite-order expressionA(s,t,u) in Eq. ~5.4!, or, equiva-
lently, the resummed expression~5.7!, has an asymptotic
form:

Ahe~s,t,u;M2!5 lim
s@M2

A~s,t,u!. ~5.12!

The limit is to be taken such that constant terms and lo
rithms lnk s, lnk u, etc., are kept, but all terms suppressed
at least one power of 1/s are omitted. The result depends o
the Mandelstam variabless,t,u and on a mass scale whic
can be chosen as the pole massM .

On the other hand, the amplitude can be calculated in
high-energy effective theory, i.e., in the masslessf4 model.
The result,AHE(s,t,u;m2), depends on an arbitrary mas
scale m. If it is to represent the high-energy limit of th
amplitudeA(s,t,u), it must satisfy
4-5
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Ahe~s,t,u;M2!5AHE~s,t,u;m0
2!, ~5.13!

wherem is identified with the matching scalem0 . If some
intermediate renormalization scheme@e.g., modified minimal
subtraction (MS)# is used to define the high-energy effecti
theory, matching corrections must be added order by o
such that Eq.~5.13! is fulfilled.

Finally, the amplitudeARG(s,t,u) is derived from the ex-
pression AHE(s,t,u) by standard renormalization-grou
methods: A running couplingl(s) and field anomalous di
mensions are introduced to absorb the logarithms lnk(s/m0

2)
order by order. The initial condition is

ARG~s,t,u;m0
2!5AHE~s,t,u;m0

2!us5m
0
2 ~5.14!

at the matching points5m0
2. This fixes all parameters of th

high-energy effective theory and their renormalization
terms ofM andl. Including the matching of the low-energ
effective theory~5.8!, the only two independent paramete
areM andGF .

Our prescription for the treatment of the Higgs resona
is not unique. If all requirements are maintained that have
be imposed on the scattering amplitude, additional terms
be shifted from the non-resonant into the resonant part@24#.
The difference is then subleading in the respective expan
parameter for all energy ranges, and eventually disappea
all orders are taken into account. However, if logarithm
terms are shifted into the resonant piece which is resum
in Eq. ~5.3!, they become relevant in the high-energy lim
and one has to be careful to correctly include them in
matching conditions for the renormalization-group improv
result.

VI. LOWEST-ORDER RESULT

Considering the expansion of Eq.~5.7! in powers ofl, we
note that

~a1 ib!
11 ig

12 ig
5a~0!1a~1!1 i ~b~1!12a~0!g~0!!1¯ ,

~6.1!

wherea (0),g (0)}l. Keeping only the leading term,

a~0!5Anr
~0!522l. ~6.2!

To leading order, the general expression~5.7! reduces to@26#

A~0!~s!522l
s

s2M21 i
s

M
G~0!u~s!

. ~6.3!

Here the non-resonant pieceÂnr vanishes identically. Re
expanding fors!M2, the imaginary part of orders2 is re-
produced correctly, satisfying the low-energy theorem.

In the high-energy region renormalization group improv
ment is necessary. The leading logarithmic approximatio
obtained by resumming the energy dependence of
bubbles in Fig. 2 in the massless limit, using a running c
pling,
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ARG
~0!~s!522l~0!~s!, ~6.4!

where the running coupling is

l~0!~m2!5
l

12b0l ln
m2

m0
2

~6.5!

with a matching pointm0;M , and

b0512/16p2. ~6.6!

If we want to implement Eq.~6.4! in our previous result
for A(0)(s), we have to subtract the high-energy limit of E
~6.3!:

A~0!~s! ——→
s@M2

Ahe
~0!~s!5AHE

~0!~s!522l. ~6.7!

Thus we obtain the final result~5.9! at leading order:

Afull
~0!~s!5A~0!~s!1@ARG

~0!~s!2AHE
~0!~s!#u~s,t,u;m0

2!

522l
s

s2M21 i
s

M
Gu~s!

22l

b0l ln
s

m0
2

12b0l ln
s

m0
2

3u~s,t,u;m0
2!. ~6.8!

The step functionu(s,t,u;m0
2) which controls the region of

renormalization-group improvement is defined in Eq.~5.10!.

VII. ONE-LOOP RESULT

If loop diagrams are taken into account, one usually ha
specify a renormalization scheme. In our approach this
unnecessary in principle: We could work with the dime
sionally regularized, but unrenormalized expressions. Ma
ing the amplitudes between the different energy regions
equivalent to a complete set of renormalization conditio
However, any intermediate renormalization scheme eve
ally leads to the same physical amplitudes to the order c
sidered: For illustration, we present our results both in
on-shell (dOS51) and in theMS (dOS50) schemes. In the
latter scheme, the scalem is set equal to theMS Higgs mass
m, unless stated differently. All relevant diagrams have be

FIG. 2. The set of one-loop diagrams relevant in the high-ene
limit.
4-6
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calculated in Refs.@28–30, 32#; we will use the notation of
Ref. @30# with slight modifications. The functions and con
stants introduced below are defined in the Appendix.

As before, we defineM2 to be the real part of the pol
position. For the one-loop matching we need its value
terms of theMS renormalized massm to one-loop order:

M25m2~11dm2/m2! ~7.1!

with

dm2

m2 52
l

16p2 ~2429K1!~12dOS!. ~7.2!

In the on-shell scheme,m25M2 by definition.
If expressed in terms ofM2, the leading-order~LO! reso-

nant diagrams have the structure depicted in Fig. 1, whe
singly resonant amplitude is repeated an infinite numbe
times between two-particle cuts. In the first set of next-
leading order~NLO! diagrams, one of those singly resona
parts has one additional power ofl. We therefore need the
residue of the pole ats5M2 of the diagrams in Fig. 3. The
remainder of the expansion arounds5M2 is considered non-
resonant and will be taken into account later.

For the diagrams in Fig. 3~b! we observe that the self
energy insertion on the external lines can occur both to
right and to the left of a two-particle cut, so that it should
counted with a factor of 1/2. In the diagram of Fig. 3~c!,
which is double resonant, the singly resonant part is obtai
from the s2M2 term in the Taylor expansion of the Higg
self-energy. The real part of the sum of the diagrams in F

FIG. 4. Diagrams leading to a branch singularity ats5M2. The
solid line denotes a massive Higgs boson: the dashed lines stan
massless Goldstone bosons. The cut indicates where the imag
part is taken.

FIG. 3. Resonant one-loop Feynman diagrams for Goldst
scattering. By repeating these diagrams as in Fig. 1 the one-
corrected width is generated in the Higgs propagator.
05300
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3 determines the imaginary part of the pole position,MG (1)

@29#, expressed in a particular renormalization scheme:

MG~1!5M2
3l

16p
~11g1! ~7.3!

with

g15
l

16p2 @21523K114G1112H129K18

1dOS~2529K1!#. ~7.4!

In the diagrams in Fig. 4, the Higgs boson ‘‘decays’’ b
emitting two massless Goldstone bosons. Since the ingo
Higgs line can become off shell withAs5M* .M , these
diagrams give a contribution with a branch point ats5M2

that merges with the one-particle pole. This contributi
seems to be of the same order asMG (1), potentially invali-
dating our resummation scheme. However, at threshold
phase space for the emission of two massless particles s
like (s2M2)3, canceling the adjacent Higgs propagator4

Thus, these diagrams are part of the non-resonant b
ground at two-loop order and are consistently neglected
NLO calculation.

Another set of~apparently! NLO diagrams consists o
those chains with exactly one non-resonant part~Fig. 5!.
Their effect is in fact a two-loop pole shift, which is irre
evant to the order we are interested in. The same applie
the imaginary parts of the diagrams in Fig. 3 if they a
accompanied by resonant parts on both sides. Only in n
to-next-to-leading order~NNLO! does one have to be carefu
that the appropriate definition of the pole mass
maintained.5

The second relevant set of NLO contributions results fr
the imaginary parts of the diagrams in Fig. 3 if they are
one of the ends of the chain. Including those, the sin
resonant term is given by

Ares
~1!~s!522lF11g11 iu~s!

l

16p
~21014g1!G M2

s2M2 .

~7.5!

The non-resonant part consists of the diagrams in Fig

4Incidentally, in the sum of the diagrams of Fig. 4 the leadi
term for s→M2 vanishes in any representation, contributing a
other suppression factor (s2M2)2 to the H*→Hww ‘‘partial
width.’’

5This apparent contradiction is resolved by observing that on
resonance the LO amplitude is purely imaginary and of orderl0. A
pole shift of orderl adds a real part. In the cross section th
amounts to a correction of orderl2.

for
ary

FIG. 5. Dyson series with one non-resonant insertion

e
op
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A4pt
~1!~s,t,u!522lH 11

l

16p2 [ 27 lnusu22 lnutu22 lnuvu1K(s)2241(2529K1)dOS14G(s)14G(t)

14G(v)14H(s)12F(s,t)12F(s,v)]

1 i
l

16p
$@2714g~s!#u~s!1@2214g~t!12 f 1~s,t!#u~ t !1@2214g~v !12 f 1~s,v !#u~u!

1@2b14h~s!12 f 2~s,t!12 f 2~s,v !#u~s24M2!J . ~7.6!

and the non-resonant remainder of the diagrams in Fig. 3:

Arem
~1! ~s!522lH l

16p2 F221
M4

~s2M2!2 $23 lnusu19@K~s!2K1#%2
M2

s2M2 ~329K18!

1
M2

s2M2 $210 lnusu16@K~s!2K1#14@G~s!2G1#112@H~s!2H1#%G
1 i

l

16p F29
M4

~s2M2!2 bu~s24M2!1
M2

s2M2 $4@g~s!2g1#u~s!12@26b112h~s!#u~s24M2!%G J . ~7.7!

The expressions forA4pt
(1) and Arem

(1) have been presented in the linear representation, i.e. forh50. However, their sum is
independent ofh.

We rewrite the resummed amplitude according to Eq.~5.7!, obtaining the final result~still without renormalization-group
improvement!

A~1!~s,t,u!522lF11g11 iu~s!
l

16p
~2414g1!G s

s2M21 iM G~1!
s

M2 u~s!

1A4pt
~1!~s,t,u!1Arem

~1! ~s!

12lF11g11 iu~s!
l

16p
~2714g1!G . ~7.8!
ed
d
e

w
a

on-

Since all tree-level and one-loop contributions are includ
their sum has the correct low-energy behavior. Any ad
tional n-loop contributions arising from re-expanding the d
nominator of Eq.~7.8! are suppressed byn11 powers ofs.

We have not yet checked the normalization in the lo
energy limit. If expressed in terms of the renormalized p
rametersl andm, it reads

A~1!~s,t,u! ——→
s→0

2l
s

m2 F12
l

16p2 ~12dOS!G
1O~s2 ln s,...!. ~7.9!

Trading m for M according to Eq.~7.1! in this expression,
from the matching condition~5.8! we find

l5
M2

2v2 F11
M2

32p2v2 ~2529K1!~12dOS!G . ~7.10!
05300
,
i-
-

-
-

Thus the two parametersl and m have been fixed. In the
on-shell scheme the matching correction vanishes by c
struction. Expressed in terms of the physical parametersGF
51/(&v2) andM , the amplitudeA(1)(s,t,u) is scheme in-
dependent up to the order it has been calculated.

VIII. NLO RENORMALIZATION-GROUP IMPROVEMENT

The high-energy limit of the amplitudeA(1) is not
changed by the resummation in Eq.~7.8!:

Ahe
~1!~s,t,u!522lH 11

l

16p2 F8 ln
usu
M2 12 ln

utu
M2

12 ln
uuu
M2 2261~2529K1!dOSG

1 i
l

16p
@28u~s!22u~ t !22u~u!#J .

~8.1!
4-8
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It should be compared with the one-loopMS result in the
massless theory:

AHE
~1!~s,t,u!522lH 11

l

16p2 F8 ln
usu
m2 12 ln

utu
m2

12 ln
uuu
m2 2241dMG

1 i
l

16p
@28u~s!22u~ t !22u~u!#J .

~8.2!

In the massless theory we have included a matching cor
tion dM . Equating the two expressions at a matching po
m5m0 we obtain its value

dM522112 ln
m0

2

M2 1~2529K1!dOS. ~8.3!

The matching pointm0 should be taken of the orderM . The
usual choice ism05M , but there are indications@31# that

m0
25exp~2!M2 ~8.4!

might be a better choice.
The renormalization-group improved result is now o

tained from the high-energy limit as

ARG
~1!~s,t,u!5Kg~s!AHE

~1!~s,t,u!ul→l~2!~s! , ~8.5!

where the two-loop running coupling is given by

l~2!~m2!5
l

12b0l ln
m2

m0
2 1

b1

b0
l lnF12b0l ln

m2

m0
2G
~8.6!

with

b05
12

16p2 , b152
13

16p2 b0 , ~8.7!

and the field anomalous dimension gives rise to the fact

FIG. 6. Non-resonant one-loop Feynman diagrams for Go
stone scattering.
05300
c-
t

-

Kg~m2!511
l~2!~m!2l

16p2 51112
l2

~16p2!2 ln
m2

m0
2 1¯ .

~8.8!

Thus, the full result~5.9! at next-to-leading order has th
form

Afull
~1!~s,t,u!5A~1!~s,t,u!1@ARG

~1!~s,t,u;m0
2!

2AHE
~1!~s,t,u;m0

2!#u~s,t,u;m0
2!, ~8.9!

whereA(1)(s,t,u) should be taken from Eq.~7.8!, ARG and
AHE are given by Eqs.~8.2! and ~8.5!, respectively, and
u(s,t,u;m0

2) is defined in Eq.~5.10!.

IX. USE OF REPRESENTATION DEPENDENCE

In the previous sections we have been careful to w
only with representation-independent quantities. In a pra
cal calculation it may be useful to take the Feynman ru
derived from Eqs.~3.1!, ~3.4!, and use the fact that the pa
rameterh drops out of all physical results as a check of t
calculation. However, it is also instructive to look at repr
sentation dependence from a different viewpoint:

As mentioned in the Introduction, in the non-linear repr
sentation (h51) the power-like low-energy behavior i
manifest in each individual Feynman diagram. By contra
at high energies the complete amplitude rises logarith
cally; for individual diagrams this applies only in the line
representation (h50). In both representations the respecti
opposite limit is also reproduced correctly, but it requir
large cancellations between different Feynman diagra
These cancellations would be spoiled by a naive introduc
of the Higgs boson width.

Therefore, instead of rearranging the perturbation serie
the way described in the preceding sections, one is tem
to interpolate the two representations by introducing
s-dependenth parameter. Of course, this makes no sense
the Lagrangian, but in a scattering amplitudes is an external
parameter, and since the full amplitude is independent oh,
this manipulation can only affect higher-order terms whi
are not yet included in the perturbative result. A natu
choice is

h~s!5~11As/M !21 ~9.1!

which has the appropriate limits

h~0!51, h~`!50. ~9.2!

Not surprisingly, this exactly reproduces Eq.~6.3! when in-
serted into Eq.~4.5! with Eq. ~4.6!.

It is straightforward to extend this trick to higher order
If working to ordern, all diagrams withk resonant Higgs
propagators andn1k loops should be evaluated in the ge
eral representation~3.4! and resummed. This requires com
putation of the same set of one-particle irreducible diagra
that are needed in the scheme described before. If the re
is re-expanded in powers ofl, theh-dependence disappea
up to ordern. However, the full expression is representati

-

4-9



he
tis

al

b
di
-

e
c

ri

he
o
it

e-
eat-
ap-

the

tri-
oper

s
less
ived

is
hich

all
LO

re

it.
rds
rate
rgy

ith
he

ar

g-

as

tity
ri-

idth

WOLFGANG KILIAN AND KURT RIESSELMANN PHYSICAL REVIEW D 58 053004
dependent. It seems reasonable that by makingh a function
of s, the complete expression fulfills all requirements in t
various energy ranges if the following conditions are sa
fied:

12h}As for s→0, ~9.3!

h}1/As for s→`. ~9.4!

In addition, the condition

h~M2!51/2 ~9.5!

enforces to leading order the kinematical phase space sc
G}s on the resonance peak.

In this way, a valid formula for the resonance peak can
obtained from a direct resummation of self-energies. The
advantage is that the parameterh must be kept in the calcu
lation. However, by comparing the result for different~rea-
sonable! functionsh(s) that satisfy the above conditions, th
residual representation dependence from higher orders
be quantified, and the theoretical uncertainty in the desc
tion of the Higgs line shape be estimated.

X. DISCUSSION

The increase of the running Higgs self-coupling limits t
use of perturbation theory to energies below the Landau p
which arises at one-loop order in the high-energy lim

FIG. 7. Leading-order~LO! and next-to-leading-order~NLO!
results for the Higgs line shape. The plot shows theS-wave ampli-
tudea05(1/16p)*dt/sA(s,t,u), using the formulas~6.8! and~8.9!
for A(s,t,u), respectively. The low-energy limit~5.8! and the high-
energy behavior without renormalization-group improvement
indicated by dotted lines.
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However, within the perturbative region the procedure d
scribed in the present paper is sufficient for a consistent tr
ment of the Higgs resonance in the Goldstone-boson
proximation: The physical Higgs massM is defined as the
real part of the pole position. The other free parameter,
coupling constantl, is fixed by imposing the low-energy
theorem which is a consequence of the custodialSU2 sym-
metry. This matching condition restricts possible parame
zations of the Higgs resonance and determines the pr
inclusion of the Higgs width. The resummation of logarithm
in the high-energy region can be performed in a mass
theory, and the result can be added to the amplitude der
in the massive theory in such a way that double counting
avoided. The massless theory has one free parameter w
is determined by a matching condition at a scalem0;M .
The final formula~5.9! describes the Higgs resonance for
energies, and has been evaluated explicitly to LO and N
in Eqs.~6.8! and ~8.9!, respectively.

The result is shown in Fig. 7 for a Higgs massM
50.8 TeV. At low energies, the LO and NLO curves a
virtually indistinguishable: The LO formula~6.8! already re-
produces the one-loop imaginary part exactly in this lim
Beyond the resonance, the LO result rises rapidly towa
the Landau pole, whereas the NLO curve stays at mode
values of the amplitude. The transition to the high-ene
region at the matching pointm05exp(1)M @cf. Eq. ~8.4!# is
sharp in LO, but smooth in NLO.

To verify that our parametrization is in accordance w
unitarity requirements, in Fig. 8 we plot the deviation of t
partial-wave eigenamplitudea00 @1# from the unitarity circle,
the latter given byua002 i /2u51/2. Here elastic unitarity is

e

FIG. 8. Deviation from elastic unitarity, shown for the leadin
order ~LO! and next-to-leading-order~NLO! results for the Higgs
line shape, using the formulas~6.8! and ~8.9!, respectively.
The partial wave with spin and weak isospin zero is defined
a005(1/16p)@ 3

2 *(dt/s)A(s,t,u)1*(dt/s)A(t,s,u)#. Neglecting
multiparticle thresholds, elastic unitarity requires the quan
ua002 i /2u to be equal to 1/2 if all orders are included. For compa
son, we show the NLO result evaluated according to the fixed-w
formula ~5.4! ~dash-dotted line!.
4-10



s
i-
-
, a

-
ur

o
an
ee

th
a

su
n

is
u

ec
th
e

a
h

t
lin
hy

c
e
bl
ed

e
g
as

er
ed
th

he

HIGGS RESONANCE IN VECTOR BOSON SCATTERING PHYSICAL REVIEW D58 053004
respected for the formulas~6.8! and~8.9! almost perfectly up
to As5M , and approximately up to energies as high a
TeV. By contrast, in NLO a fixed-width formula as it d
rectly follows fromS-matrix theory~5.4! misses this require
ment both at low energies and in the resonance region
though it is formally equivalent to our result~5.9! if all
orders are included.~Note that higher-order terms will re
store unitarity in any scheme which is consistent in pert
bation theory.!

The extension to higher orders is straightforward. Tw
loop corrections to the Goldstone scattering amplitude
higher-order renormalization group coefficients have b
calculated in@33,34#.

At low energies the transversal degrees of freedom of
gauge bosons are important, and the gauge couplings
vector boson masses cannot be neglected. Although re
for physical processes can be obtained from the Goldsto
boson approximation by means of the effectiveW approxi-
mation, for numerically reliable predictions the results of th
paper have to be embedded in a full standard-model calc
tion. In particular, QED bremsstrahlung corrections aff
the line shape and should be included in conjunction with
process-dependent one-loop corrections in the electrow
standard model@35#. This problem will be approached in
future publication. If a heavy Higgs resonance has been c
sen by nature for breaking the electroweak symmetry, i
mandatory to have complete theoretical control over the
shape in order to separate effects which could indicate p
ics beyond the minimal model.
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APPENDIX: INTEGRALS

Here, we define the functions and symbols used in S
VII. In the following abbreviations,m is the mass appearin
in the renormalized propagator; it is equal to the pole m
M in the on-shell scheme, or denotes theMS-renormalized
mass in theMS scheme. In the one-loop integrals, howev
this distinction is relevant only if the amplitude is evaluat
to two-loop order and can be ignored for the purposes of
present paper:

s5m2/s, t5m2/t, v5m2/u. ~A1!

Spence function:

Li ~z!52E
0

z dt

t
ln~12t !. ~A2!

Two-point integral@K1[K(s51)#:
05300
4

l-

-

-
d
n

e
nd
lts
e-

la-
t
e
ak

o-
is
e
s-

h-

e
.

c.

s

,

e

K~s!5Re E
0

1

dx lnS 12
x~12x!

s D12

55
2A124s arcsinh~1/A24s!, s,0,

2A124s arccosh~1/A4s!, 0<s<
1

4
,

2A4s21arcsin~1/A4s!,
1

4
,s.

~A3!

Three-point integrals@G1[G(s51), H1[H(s51)#:

G~s!5s ReFLi S 11s

s D2
p2

6 G , ~A4!

H~s!5s ReFLi S 12s

x12s D1Li S 12s

x22s D
2Li S s21

s D2Li S 2s

x12s D
2Li S 2s

x22s D1
p2

6 G . ~A5!

Four-point integral:

F~s,t!5st ReH 1

D F2Li S 12z1

z2
D1Li S 2

z1

z2
D

2Li S 12z1

x12z1
D1Li S 2z1

x12z1
D

2Li S 12z1

x22z1
D1Li S 2z1

x22z1
D

1Li S 12z1

2z1
D2~z1↔z2!G J , ~A6!

where

x65
1

2
~16b! and z65

1

2~11t!
~16D! ~A7!

and

b5A124s and D5A124s~11t!. ~A8!

The imaginary parts of the loop integrals are built up by t
functions

g~s!5s ln
11s

s
, ~A9!

h~s!52s ln
11b

12b
, ~A10!

f 1~s,t!5
2st

D
ln

D11

D21
, ~A11!
4-11



WOLFGANG KILIAN AND KURT RIESSELMANN PHYSICAL REVIEW D 58 053004
f 2~s,t!5
2st

D
ln

D1b

D2b
. ~A12!

Limiting behavior:
1. s,t→0:

K→22
1

6

s

m2 2
1

60

s2

m4 1¯ , ~A13!

G→S 2 ln
s

m2 11D1S 1

2
ln

s

m2 2
1

4D s

m2

1S 2
1

3
ln

s

m2 1
1

9D s2

m4 1¯ , ~A14!

H→11
1

12

s

m2 1
1

90

s2

m4 1¯ , ~A15!

F→ ln
t

m2 1S 2
1

6

s

m2 2
t

m2 ln
t

m2D1¯ ,

~A16!

g→12
1

2

s

m2 1¯ , ~A17!

f 1→211t1¯ . ~A18!
s.
.

o

PB

05300
Note thatF(s,t) behaves like lnt1finite for t→0, inde-
pendent of the value ofs.

2. s→M2:

K→
p

)

1S 12
2p

3)
D s2M2

M2 1¯

[K12K18
s2M2

M2 1O~@s2M2#2!, ~A19!

G→
p2

12
1¯[G11O~s2M2!, ~A20!

H→
p2

9
1¯[H11O~s2M2!, ~A21!

g→ ln 21¯[g11O~s2M2!. ~A22!

3. usu,utu→`:

K→ ln
usu
m2 1O~s21 ln s!. ~A23!

G,H,F,g,h, f 1 , f 2 all vanish like s21 ln s ~or faster! in
this limit.
l
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