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A heavy Higgs resonance in the minimal standard model is described in such a way that the whole energy
range of 2-2 scattering processes is covered, including the asymptotic behavior at low and high energies. The
description does not rely on a particular representatiimear or nonlinear chosen for the Higgs and Gold-
stone fields. The low-energy theorems which follow from the custdslld) symmetry of the Higgs sector
restrict the possible parametrizations of the line shape that are consistent in perturbation theory. Matching
conditions are specified which are necessary and sufficient to relate the parameters arising in different expan-
sions. The construction is performed explicitly up to next-to-leading of@&£556-282(198)06415-7

PACS numbgs): 14.80.Bn, 11.10.Hi, 11.10.St, 12.15.Lk

[. INTRODUCTION sis of its profile further conclusions on the symmetry-
breaking sector of the MSM can be drawn. In order to

Elastic scattering amplitudes of massive vector bosonseparate anomalous effects, the predictions from the MSM
grow indefinitely with energy, if they are calculated pertur- should be known as accurately as possible. The results of this
batively in a theory of fermions and gauge bosons only. As @aper are a step in this direction.
result, theS-wave scattering amplitudes of longitudinally po- A heavy Higgs boson is not a quasi-stable particle that
larizedW, Z bosons violate unitarity at the tree level beyond can safely be treated in a zero-width approximation. Rather,
a critical energy scalg/s;~1.2 TeV[1]. the width of the Higgs resonance will exceed 100 GeV if

In the minimal standard modéMSM) [2], an isodoublet  M,;=500 GeV. In a gauge theory the resummation of Feyn-
of scalar fields is introduced, leading to a single observablenan diagrams for an unstable particle is not uniquely defined
Higgs resonance which damps the rise of those scatteringithin the framework of perturbation theory. For the Higgs
amplitudes[3,4]. However, the running Higgs self-coupling sector ambiguities arise when different representations of the
\ increases with energy and becomes strong at some lardields, which nevertheless are simply related by field redefi-
scaleA which is indicated by a Landau pole in the one-loop nitions, are compared. However, amplitudes for longitudinal
running coupling constarj6]. This scale depends exponen- W,Z boson scattering have to satisfy low-energy theorems
tially on the Higgs mas#1; and approaches the TeV range [8] analogous to those satisfied by pion scattering amplitudes
from above forM 4 =400 GeV. in low-energy QCO 9], which in general are violated if the

Low-energy electroweak observables in the fermion antHiggs width is introduced in a naive way.
gauge boson sectors of the standard model are affected by For many practical purposes, it may be sufficient to over-
radiative corrections which depend logarithmically By, .  come these problems ad hocprescriptions. Nevertheless,
From the high-precision data at LEP1, SLC, and the Tevafor a deeper understanding, and if the theoretical predictions
tron, an upper limit oM ;<550 GeV has been derived at the are to be used for comparison with experiment, the uncer-
20 level [6]. This limit is not sharp: Excluding one or two tainties have to be under control. Therefore, we show in the
observables from the analysis weakens the bound signifipresent paper how different descriptions and approximations
cantly[7]. Furthermore, the limit is strictly valid only within valid in the low-energy and high-energy ranges and in the
the context of the minimal model. If the Higgs mass is asresonance region can be combined to yield a unified resum-
large as several hundred GeV, effects from new physics ahation prescription which is valid within the whole pertur-
the strong-interaction scalke could show up at low energies bative range. Applying matching and resummation proce-
in the form of anomalous couplings. Additional degrees ofdures consistently, representation and renormalization-
freedom which invalidate the MSM calculation could alsoscheme dependence disappears order by order in the
exist. perturbative expansion.

Thus, a Higgs resonance in the rarldg=0.5—-1TeV is The paper is organized as follows: In the following two
still a realistic possibility. Future colliders such as the LHC sections we introduce the Higgs resonance in the context of
ande” e linear colliders will explore the heavy-Higgs-mass Goldstone boson scattering and discuss different representa-
energy range. One expects that such a heavy Higgs restiens of the Higgs and Goldstone fields in the Lagrangian. In
nance will be found if it exists, and that from a precise analy-particular, we give a one-parameter formula which interpo-

lates between the linear and non-linear representations. In
Sec. IV we state the conditions that have to be imposed on
*Email address: W.Kilian@thphys.uni-heidelberg.de the Goldstone boson scattering amplitude, and in Sec. V we
"Email address: kurtr@ifh.de show how they resolve the apparent ambiguities which arise
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when the finite width of the Higgs boson is taken into ac-Heres, is a 2X2 matrix that transforms und&U, X SU, as
count. The next three sections are devoted to the explicE —V'SU and has a vacuum expectation vald&)
calculation of the Higgs line shape at leading and next-to=uv/v2. It may be parametrized in terms of four real scalar
leading order. Finally, we discuss representation dependendields H andw, (i=1,2,3) as

and its use for estimating higher-order effects and conclude.

22%[(0+H)1+iwa7'a] (3.2

II. THEORETICAL FRAMEWORK

o ] ) ] where 72 are the Pauli matrices. In this parametrization the
For a quantitative analysis, the Higgs line shape should bgymmetry is represented linearly, and renormalizability—

calculated within the full MSM. The physical picture, how- i.e., the logarithmic high-energy behavior—is manifest.

ever, is clearer if only the leading contributions for high o the other hand. a non-linear representation
energies and for a large Higgs mass are taken into account.

For this reason, we shall discuss the Higgs resonance within s 1 THIL P 33
the framework of the equivalence theordfT) [4,10—19 - ‘72(” )1 ex o \WaT 3.3
which relates the unphysical Goldstone modes Ry @auge o )
to the longitudinal degrees of freedom of #&Z bosons in ~ M&Y _be prefer.red for the .descr|.pt|on of Iow-c_anergy scattering
the unitary gauge. In this approximation, one consistentiy2MPlitudes, since the Higgs field can be integrated out to
neglects terms of ordeg? compared to those of order |€ading order by lettingd—0, resulting in a non-linear

INEYIVE 2 2 model where the power-like low-energy behavior is mani-
g°“ME/My, or g°s/My, . s S 9) VL

Corrections induced by the top quark Yukawa couplingfeSt.' Fur}hermore, in th|s representation individual terms can

are smaller than Higgs coupling corrections Nf,=2m, be identified more easily in the full unitary-gauge MSM am-

[13]. We thus neglect them in the present paper, deferrin@“tUdt?S' since the dgrltvatt;]ve COUplmth ”; thte qudtsrfor}e n-
their inclusion to a future publication. e(rjz_ic ||ons|co_rret_spon ? € ][“O”‘er.‘ um a;: orbs In the fongl-
If the Yukawa couplings are set to zero, the theory has éu Inal polarization vectors ol massive vector bosons.

: - The physics derived from a Lagrangian, however, is inde-
Eéonbfg tsh%;fg%zngg m'e:trr(y)/r[nl?%itshg CltSO?]F;OS;inf OOnUCSIE/@g]rO pendent of the particular representation chosen for the fields;
2 .

the following: (i) The three Goldstone modes can be keptit depends only on the number of degrees of freedom, their

massless consistently to all orde(s) For all 2—2 Gold- symmgtry propgrtles, and on numerical parameters. In fa,ct,
%matrlx amplitudes—as opposed to off-shell Green's

stone scattering amplitudes, the dynamical dependence YUnctions—are invariant under a wide class of non-linear
the Mandelstam variables,t,u is determined by a single : . .
function field transformations, _|f the independent parameters of the
theory are expressed in terms of measurable quanfities
A(s,t,u)=A(s,u,t) (2.2 18]. The expansion of the field§w,,H} in terms of
{w,,H}, and vice versa, can easily be worked out order by
which is equal to the amplitude favw— zz scattering. The order. Hence, the linear and the non-linear representations
scattering amplitudes for the other<2 processes are given yield the same results éll Feynman diagrams to a given
by linear combinations oA(s,t,u), A(t,s,u), andA(u,s,t). order in the perturbative expansion are taken into account.
Here{w,z} denote the Goldstone modes associated with the In order to make the representation dependence explicit,
longitudinally polarizedV,Z bosons(iii) As s goes to zero, one may introduce a one-parameter family of field represen-
the real part of the amplitud@d vanishes likes, and the tations which includes both representations mentioned

imaginary part which arises at one-loop order vanishes likabove:
2

s. In this limit both terms are determined completely by 1

i : v 7 1
low-energy quantities, independent of the existence of a S=—||=+H exp(|—wgra)+(1——)v . (3.4
Higgs resonancdiv) For very high energies, the Higgs mass V2 1\ 7 v n

can be neglected, and the theory approaches a magstess qq 7 is an arbitrary parameter. Taking—0, the linear

theory. In this limit theSU, X SU, symmetry is manifest in representatior(3.2) is reproduced. The choice=1 corre-

the scattering diagrams; it is only slightly broken by the g,,nqs tg the non-linear representati8rg). If the Feynman

renormah_zatlon _cond_ltlons necessary to match. the Jles derived by inserting E3.4) into the Lagrangiai3.1)

asymptotic behavior with the low-energy theory, as will be 5o \;sed to calculate a physical quantity, the paramegter

described below. must drop out of the result if all diagrams up to a given order

of the expansion parameter chosen are taken into account. In

Ill. REPRESENTATIONS OF THE HIGGS SECTOR this sense the parametgrachieves a similar meaning as the

gauge parametef of the electroweak theory. We will come
The Lagrangian describing the MSM Higgs sector in thepack to this fact in Sec. IX.

absence of Yukawa and gauge couplings reads
2 2 IV. HIGGS RESONANCE IN ww—zz

1 M M
- t el TS 5 7y2
£ 2 o, 10" 2]+ 4 3] 802(”[2 =D~ At lowest order, the amplitude fovw— zz scattering is
(3.1 easily calculated as
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\ 5 5 Higgs self-energyare resummed.If the s-dependence

NN e is kept, one finds
Vi dih MO pp b LA DM

S M? s—M?+iMTI(s)é(s)

FIG. 1. Dyson resummation of resonant terms in Goldstone P (1— n)PM?
scattering. The cuts indicate where the imaginary part of the loop is +2)\ s—(1-» (4.5)
taken. M?

where thes-dependent width is also representation de-
s endent:
AO(s t,u)=AQ(s)=—2x v 4.1 P \
_ _ 272

with A\=M?2/2v2. As anticipated, this expression does not

depend ony. It satisfies the requirements mentioned in Sec(l) Kinematical scaling of a constant width. The phase

II: space available for the decay of a state with miss

(@ At low energies, it approaches the expressan?. = /s into massless particles scales proportionalsto
Generally speaking, the sum of the diagrams in any  Applying this observation to the intermediate Higgs state
fixed ordern of the perturbative expansion vanishes  in Goldstone scattering, one is led to
like s"*%/(4mv)?" log"s for s—0. Thus, the leading- 0 s
order low-energy behavior is not modified by higher- As (S):s—M2+isF0(s)/M @7
order corrections.

(b) At high energies, the amplituda(®)(s) approaches a
constant value. Higher-order corrections modify this by

adding logarithmic terms of ordex” Ins, k<n. A priori, no srngle approach is preferred. In principle, the
inclusion of higher-order corrections can be done so as to

However, this amplitude cannot be used in the resonanceemove the discrepancies between different formulas. How-
region since it diverges a=M?. Resonant diagrams need ever, the differences can be numerically large at the tree
to be resummed, leading to the introduction of the Higgdevel. This has been explicitly verified for the analogous

wherel itself is independent of.

width which to leading order is given by problem of theZ and W resonance$21,25. [Note that for
the Z resonance, the kinematical-scaling and self-energy re-
3\ summation schemes, approach8s and (4), coincide in a
F(O)ZEM' (4.2) linear gauge.

Considering the Higgs resonance, we observe that the ex-
pressionsA{Y—-AL) are not in accordance with the low-
Several approaches to deal with this problem are possiblgnergy theorem. The amplituc® approaches a constant
[19-24. Let us list some of them as they are applied to theggr 5.0, The versionA® has the correct power behavior,
leading-order expressio@.1): but the normalization is changed to an unphysical complex
(1) S-matrix approach.The Higgs pole term is separated value. (Recall that fors—0 an imaginary part is allowed

with a constant residue, and the correct pole position irPnly at orders®.) Even worse, the expressidky”) depends

the complex plane is inserted. The remainder, the nonon 7, i.e., on the representation chosen for the Higgs sector.

resonant part, is left untouched at this order: By contrast, the expressiohgo), which is seemingly intro-
duced by amad hocreplacement, satisfies both low-energy
and representation-independence requirements.

Apparently, the ambiguity in finding a correct resonance
] ] ] description can be removed by the condition that the low-

The constant width is only introduced fors>0, as  energy theorem should be maintained to all ordefis
indicated by thes function. additional requirement, which has no counterpart for Zhe
(2) Fixed width in common denominatokll terms, includ-  resonance, restricts the possible parametrizations of the
ing the non-resonant part, are collected into a single fracHiggs resonance. As will be demonstrated in the following
tion before the pole position in the denominator issections, imposing the low-energy theorem on the amplitude
shifted: in each order of the perturbative expansion unites the
s S-matrix approach with the concept of kinematical scaling.
S—MZFIMTHS)’ (4.4 Furthermore, it provides matching conditions which fix the
renormalization of the independent parameters. On the other

(1) Resummation of self-energi@he separation is done by
grouping Feynman diagrams in two classes: resonant and

non-resonant. In the resonant diagraiftsg. 1) the 1At this order, this is equivalent to resumming the full self-energy.
imaginary parts of the one-particle irreducible piéttee 2For the lowest-order expression, this has been showaéh

MZ

(0) =Ag=—
Al (S:t!u)_Al (S) S—M2+|MF0(S)+

1. 4.3

AP(9)=—2)\
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hand, a scheme based on the representation-dependent garding the expansion in powers and logarithmsspthe
pressionAs; can be set up to give identical results, as showrcorresponding pieces can in principle be identified in a mea-

in Sec. IX. surement of physical scattering processes.
Let us first look at the resonance region. The Sifinatrix
V. REPRESENTATION-INDEPENDENT TREATMENT has no multiple poles, but only a simple pole at the complex
OF THE HIGGS RESONANCE position sp=M2—iMI'. This defines two real

) ) representation-independent constavitandI’, which can be
In perturbation theory the property of a Feynman diagramnterpreted as the physical mass and physical width of the
to be One—partlcle reducible or irreducible is not well deﬂned;Higgs resonanédZ?]_ From re_expanding the Comp|ex p0|e
it depends on the particular representation chosen for thgrounds=M?2 we recover the expansiofs.1), and we ob-

fields [cf. Eq. (4.9]. Therefore, a resummation of “reso- serve that resonant terms, i.e. those with oider, can be
nant” diagrams is ambiguous in general. This observationsymmed up into

naturally leads to a parametrization of a resonance inspired
by S-matrix theory[21], which we will adopt as a starting . M2 = T M2 \k-1
point for the treatment of the Higgs line shape. However, asAred S,t,U)=(a+ip) M2 > | -i MG(S)W
we have seen in the previous section, for the Higgs reso- k=1
nance this approach is not manifestly consistent with the M 2
low-energy theorem, if finite-order perturbation theory is ap- =(a+ip) m
plied. For this reason, we first review the various perturba- Y
tive_expansions and the conditiqns they have to sa'tisfy. Mvhere y=(T'/M)6(s). This is the usual Dyson series. As-
particular, four energy ranges with different expansion pagming that any field-strength renormalization of the external
rameters have to be distinguished: Goldstone particles is included in the amplitudés,t,u),
(1) The low-energy regiong<M?): The amplitude is ex- the relation(5.3) defines two more real observable quantities
panded in powers of/(4mv)2 The leading term and « and B. If the definition of the expansion parameteris
the imaginary part of the next-to-leading term are fixed9iven in terms of physical observables, the constants,

(5.3

by the low-energy theorem. and y have perturbative expansions that are independent of
(2) The perturbative regiots~M?2, but excluding the reso- the representation and of any intermediate renormalization
nance region wherés—M?2|<\M?/16x): The ampli- scheme order by order.

tude is expanded in powers af16m=M2/327v2. The remaining part of the full amplitudg&(s,t,u) can be
(3) The resonance regior|s— M2 <\M2/16m): The dis- collected in a functionA,, which we may call the non-
tance from the pole is of the grder of the. widhe A resonant piece. The result for the total amplitude is

Any Feynman diagram contributing tew—zz can be M 2
characterized by non-negative integarandk to be of A(s,t,u)=(a+iB) ——5——+tAn(s,t,u). (5.9
the order S=MA(1=iy)

n 2 K With these definitions the functioA,, also has a perturba-
A AM“/16m - - tion expansion in which each term is representation and
16 —|, n=1, k=0, (5.0 , > rep
167 s—M scheme independent separately, and its higher-order terms

scale likes""! In" s in the low-energy limit.
wherek counts the number of resonant propagators, and | g real calculation the quantities 3, y, andA,, can be

all s-dependence that is not determined by the pole termgomputed only to finite order. It is this truncation which
has been absorbed in the=0 piece. All terms with a  spoils the low-energy theorem, as we have observed in the
fixed n are formally of the same order and need to belowest-order example of the preceding section. However, we
resummed. are free to rewrite the exact expressi@) in such a way

(4) The high-energy regiors&M?): Neglecting everything that the correct low-energy behavior is preserved even for
that is suppressed by powers Mf/s, any term can be the truncated series. To this end, we evaluate (Bd) for
assigned non-negative integerandk to be of the order s=0:

)\ n
1677(@)
All terms with a fixedn are formally of the same order Thus, the modified function

and need to be resummed. This can be accomplished by
renormalization-group methods, introducing a running

coupling and field anomalous dimensions. 3The pole position can be determined from the Higgs self-energy
by solving an implicit equation. One has to be careful, however,
In each of these expansions the individual terms are reprasince the self-energy by itself is representation dependent, and the
sentation independent: For the perturbative expansian in extraction ofM andI" from the corresponding Feynman amplitudes
this follows from the general theorems mentioned above. Reecan be technically quite involved at higher orders.

s |* A(0)=0=— |
16 In iz n=1, k=0. (5.2 (0) 1

+An(0). (5.5
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. a+ip term introduced here would vanish identically, and there
And(StU)=An(s,tu)— 37— (5.60  would be no dependence on the matching pgigt How-

Y ever, in a finite-order calculation the correctidgg— Ane
vanishes likes for s—0. provides just those logarithmic terms that are not included
It remains to introduce the pied®.6) in the complete already in Eq.5.7) and which dominate in the high-energy

expression(5.4). Rewriting Eq.(5.4), we obtain limit. To achieve this, we define the functioms Agg, and

A as follows:
The step function?(s,t,u;,ué) controls the region where
resummation of logarithms applies. A natural choice is

+iy S
—iy s—M?(1+ %) +iys

A(s,t,u)=(a+iﬁ)i

+An(s,t,u) (5.7) 0(s,t,u; ud) = 0(s— ) (5.10

to all orders.[Recall thaty=(I"/M)#(s) with a constant
width I".] with a matching poinfug~M.

By extracting the factor iy in the numerator, we have However, in the forward and backward regions where
effectively introduced a kinematical scaling proportionally to |t|<s or |u|<s, a straightforward resummation of loga-
s of the constant Higgs width in the denominator. When therithms Ins does not pick up the dominant terms. To exclude
result is re-expanded in the low-energy region, the imaginaryhese regions from the renormalization-group improvement,
part of the denominator enters only at ordér allowing the  gne should insert additional cutoff functionstiandu, such

imaginary parts of thg first and second terms to pancel up tehat in these regions only the finite-order express@) is
orders at each order in the loop expansion. This is necessan,yan:

to satisfy the low-energy theorem order by order. As we shal
see later, theeal part of the ordess term is divergent; here

2N pla 2V At 2 2
the low-energy theorem serves as a matching condition 0(S,t,u; 16) = (5= o) O~ 1= pof2) O(—u= gl2).

(5.11
s—0

s . - : .
A(s,t,u) —— —+0(s?), (5.8  This definition has been used in our numerical results for the
v eigenamplitudeay, (cf. Sec. X. For the presentation of dif-

which can be employed to define the renormalized Coup”n%erential distributions, some smooth cutofftirandu would

A in terms of M and the low-energy quantityv € more appropria’;e. _ .
=(V2Gg) 12 If massless particles can be exchanged, scattering ampli-

It is easily verified that the resu(6.7) is correct in the tudes usually develop singularities in the forward region
other energy ranges: At=M?, terms have been shifted be- which invalidate a straightforward application  of
tween the resonant and non-resonant pieces. However, if tHenormalization-group methods to on-shell scattering pro-
width is calculated to ordem, one has to calculatd, only ~ cesses. However, the model considered here effectively ap-
up to ordem— 1 to ensure that the normalization of the peakProaches a free-field theory at long distan@sSec. 1). For
amplitude is unchanged. Fer-M? the resonant part in Eq. this reason, the forward scattering amplitubles,0,—s) is
(5.4) vanishes like M, and onlyA,, is of importance. In Eq. finite, as can be verified from the explicit tree-level and one-
(5.7) both parts contribute fos— . However, since there is 100p expressionés.3) and(7.8) below, and this complication
no cancellation required, this fact is irrelevant. does not arise. As a consequence, the contribution of the

We have not yet considered the resummation of logaforward and backward regions to the total cross section and
rithms in the high-energy limit. Fas>M?, the theory even- the effect of the ambiguity in defining(s,t,u) are sup-
tually approaches a masslegé model. This fact can be pressed by ¥for s—o.
employed to include those terms of ordét In¥ s in the am- To define the amplitudé in Eq. (5.9), we observe that
plitude that are not already part of the finite-order expresthe finite-order expressioA(s,t,u) in Eq. (5.4, or, equiva-
sion. With our prescription for the treatment of the reso-lently, the resummed expressidb.7), has an asymptotic
nance, such logarithmic terms cannot be picked up by thé&rm:
pole resummation implicit in Eq(5.7). Thus, they can be

added separately while avoiding any double counting, lead- Ands,t,u;M?) = lim A(s,t,u). (5.12
ing to the final result s>M2
A f W)= (i 1+iy S The limit is to be taken such that constant terms and loga-
un(S U =(atip) 1—-iys—M?(1+y?) +iys rithms Irfs, In*u, etc., are kept, but all terms suppressed by
R at least one power of 4/are omitted. The result depends on
+An(S,t,u) the Mandelstam variablest,u and on a mass scale which
2 ) can be chosen as the pole méss
+[ARra(S:t,U; ng) — Ape(s,t,u; wo) ] On the other hand, the amplitude can be calculated in the
x e(s,t,u;,ug), (5.9 high-energy effective theory, i.e., in the massléésmodel.

The result,Ag(s,t,u; #2), depends on an arbitrary mass
where the first two terms are taken from E§.7). If the  scaleu. If it is to represent the high-energy limit of the
amplitudeA(s,t,u) were known to all orders, the additional amplitudeA(s,t,u), it must satisfy
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Ands,t,u;M2) = Ape(s,t,u; ud), (5.13

where w is identified with the matching scale,. If some
intermediate renormalization schefigeg., modified minimal
subtraction MS)] is used to define the high-energy effective
theory, matching corrections must be added order by order FIG. 2. The set of one-loop diagrams relevant in the high-energy

such that Eq(5.13 is fulfilled. limit.
Finally, the amplitudeArg(s,t,u) is derived from the ex-
pression A.e(s,t,u) by standard renormalization-group Ag’g(s): —270(s), (6.4

methods: A running coupling(s) and field anomalous di-
mensions are introduced to absorb the Iogarithrﬁes/kzﬁ)
order by order. The initial condition is

ARa(S,t,U; d) = Aue(S,1,U; 1d) | o= 42 5.1 A
ral o) HE( Mo)|s “g (5.19 )\(0)(#2): Mz (6.5)
at the matching poirﬂ;=,u,§. This fixes all parameters of the 1=Bo\ In ;g

high-energy effective theory and their renormalization in
terms ofM andA\. Including the matching of the low-energy
effective theory(5.8), the only two independent parameters
areM andGg. Bo=12/167. (6.6)
Our prescription for the treatment of the Higgs resonance
is not unique. If all requirements are maintained that have to
be imposed on the scattering amplitude, additional terms ¢ (0) Fh T
be shifted from the non-resonant into the resonant [2afit a%ré)o\ (5), we have to subtract the high-energy limit of Eq.
The difference is then subleading in the respective expansion
parameter for all energy ranges, and eventually disappears if
all orders are taken into account. However, if logarithmic
terms are shifted into the resonant piece which is resummed
in Eq. (5.3, they become relevant in the high-energy limit,
and one has to be careful to correctly include them in thélThus we obtain the final resul6.9) at leading order:
matching conditions for the renormalization-group improved

where the running coupling is

with a matching poinfug~M, and

If we want to implement Eq(6.4) in our previous result

s>M2

AQ(s) — AD(s)=A(s)=—2\. (6.7

result.
Al (5)=AO)(s) +[ALY(S)— A(S)10(s,t,U; 1d)
VI. LOWEST-ORDER RESULT
Considering the expansion of E&.7) in powers ofx, we s Bo\ In ;g
note that =—2\ -2\

S S
_ s—M2+i—T6(s) 1—Bo\ In
Aty o - M Bo 2
(a-Hﬁ)m:a( )+ ol ) +i(B )+ 24! ),y( D EE
(6.1 X O(s,t,U; ). (6.9

©) ,/(0) i i
where ™, y™ech.. Keeping only the leading term, The step functiorﬂ(s,t,u;,ug) which controls the region of

a@=A0 = _2y\ 6.2 renormalization-group improvement is defined in Eg10.
o . .
To leading order, the general express(br¥) reduces t§26] VIl. ONE-LOOP RESULT
A (s)=—2)\ S 6.3 If loop diagrams are taken into account, one usually has to

specify a renormalization scheme. In our approach this is
unnecessary in principle: We could work with the dimen-
sionally regularized, but unrenormalized expressions. Match-
Here the non-resonant pied, vanishes identically. Re- Ing the amplitudes between the different energy regions is
expanding fors<M?, the imaginary part of ordes? is re-  €duivalent to a complete set of renormalization conditions.
produced correctly, satisfying the low-energy theorem. However, any intermediate _renormalllzatlon scheme eventu-
In the high-energy region renormalization group improve-ally leads to the same physical amplitudes to the order con-
ment is necessary. The leading logarithmic approximation igidered: For illustration, we present our results both in the
obtained by resumming the energy dependence of then-shell (6os=1) and in theMS (5os=0) schemes. In the
bubbles in Fig. 2 in the massless limit, using a running coulatter scheme, the scajeis set equal to th1S Higgs mass
pling, m, unless stated differently. All relevant diagrams have been

s
S—M2+i MF(O)G(S)
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(a) : : : : : : : : ‘ . : :

© \ / \ p/ FIG. 5. Dyson series with one non-resonant insertion
; < B < /o /N

(c)

3 determines the imaginary part of the pole positibH; (*)
[29], expressed in a particular renormalization scheme:

: i MF<1)=M23—)\(1+ ) (7.3
167 " '

FIG. 3. Resonant one-loop Feynman diagrams for Goldstong, i,
scattering. By repeating these diagrams as in Fig. 1 the one-loop \
corrected width is generated in the Higgs propagator. yi= — [—15-3K,+4G,+ 12H1—9K1
calculated in Refg[28—-30, 32; we will use the notation of
Ref. [30] with slight maodifications. The functions and con- + 80(25-9Ky)]. 7.4
stants introduced below are defined in the Appendix. In the diagrams in Fig. 4, the Higgs boson “decays” by

As before, we definé? to be the real part of the pole emitting two massless Goldstone bosons. Since the ingoing
position. For the one-loop matching we need its value inHiggs line can become off shell witfs=M*>M, these

terms of theMS renormalized mass to one-loop order: diagrams give a contribution with a branch pointsat M?
that merges with the one-particle pole. This contribution
M?2=m?(1+ sm?/m?) (7.1)  seems to be of the same orderM§ ), potentially invali-

dating our resummation scheme. However, at threshold the

with phase space for the emission of two massless particles scales
Sm? A like (s—M?)3, canceling the adjacent Higgs propagatbrs.
m7=—W(24—9K1)(1—505). (7.2 Thus, these diagrams are part of the non-resonant back-

ground at two-loop order and are consistently neglected in a
2 a2 _ NLO calculation.

In the on-shell schemen®=M* by definition. Another set of(apparently NLO diagrams consists of

If expressed in terms d¥1?, the leading-ordefLO) reso-  hose chains with exactly one non-resonant p&ig. 5.
nant diagrams have the structure depicted in Fig. 1, where fqir effect is in fact a two-loop pole shift, which is irrel-
singly resonant amplitude is repeated an infinite number Ofyant to the order we are interested in. The same applies to
times between two-particle cuts. In the first set of next-tohe imaginary parts of the diagrams in Fig. 3 if they are
leading orderNLO) diagrams, one of those singly resonantaccompanied by resonant parts on both sides. Only in next-
parts has one additional power bf We therefore need the 4 nexi-to-leading ordefNNLO) does one have to be careful
residue of the pole =M< of the diagrams in Fig. 3. The hat the appropriate definition of the pole mass is
remainder of the expansion arousid M? is considered non- maintained®
resonant and will be taken into account later. The second relevant set of NLO contributions results from

For the diagrams in Fig.(B) we observe that the self- he imaginary parts of the diagrams in Fig. 3 if they are at

energy insertion on the external lines can occur both to thgne of the ends of the chain. Including those, the singly
right and to the left of a two-particle cut, so that it should beyeggnant term is given by

counted with a factor of 1/2. In the diagram of FigcB

which is double resonant, the singly resonant part is obtained L _ A M2
from the s—M?2 term in the Taylor expansion of the Higgs Alaa(S)=—2\| 1+ y;+1i 6’@)@(—10+ 491) M2
self-energy. The real part of the sum of the diagrams in Fig. (7.5
\\ L-be // The non-resonant part consists of the diagrams in Fig. 6,
— 00—
’ Nl \
// H \\
;. ; ;. , “Incidentally, in the sum of the diagrams of Fig. 4 the leading
@' _ :/ n ANAN term for sHlevanishes in ar;yzrepresentation, contributipg an-
\ “ . other suppression factors{ M<)< to the H* —Hww “partial
t : width.”
FIG. 4. Diagrams leading to a branch singularitysatM 2 The 5This apparent contradiction is resolved by observing that on the

solid line denotes a massive Higgs boson: the dashed lines stand ftesonance the LO amplitude is purely imaginary and of oxderA
massless Goldstone bosons. The cut indicates where the imagingpple shift of order\ adds a real part. In the cross section this
part is taken. amounts to a correction of ordaf.
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A
Ap(stu)=—2\{ 1+ 62l =7 Injo|— 2 In|7| = 2 Injv| + K (o) — 24+ (25— 9K ;) Sost+ 4G (o) +4G(7)

+4G(v)+4H(o)+2F (o, 7)+2F(o,v)]

+i 1)6\—77{[—7+4g(0')]0(s)+[—2+4g(7')+2f1(cr,T)]&(t)+[—2+4g(v)+2f1(0',v)]t9(u)

+[—B+4h(0)+2f2((7,7')+2f2(0',v)]0(s—4M2)}. (7.6

and the non-resonant remainder of the diagrams in Fig. 3:

4 M?2

M
—2+ Tz)z{—:% In|o-|+9[K(0)_K1]}_ s

B (37 9KD

A
1672

Alan(S) =~ 2x{

2

+
s—M?

{-10 |n|a'|+G[K(O')—K1]+4[G(0')_Gl]+12[H(0')_Hl]}}

A M4 M?2
+i E[ —9mﬁ0(s—4M2)+ — M2{4[g(0)—gl] 6(s)+2[— 68+ 121(0)]0(5—4M2)}H. (7.7

The expressions foA{l) and AlZ) have been presented in the linear representation, i.enfod. However, their sum is

independent ofy.
We rewrite the resummed amplitude according to €&q7), obtaining the final resulstill without renormalization-group
improvement

S

(1) —_ fars) (1) (1)
AB(st,u)=—2\ 1+71+'6(S)16w( 4+49,) +Aga(s,t,u) +Argi(s)

: s—M2+iMF(1)W6(s)

_ N .
+ 2\ 1+’)/1+i0(5)ﬁ(—7+491) . (7.8

Since all tree-level and one-loop contributions are includedThus the two parameteis and m have been fixed. In the

their sum has the correct low-energy behavior. Any addi-on-shell scheme the matching correction vanishes by con-

tional n-loop contributions arising from re-expanding the de-struction. Expressed in terms of the physical paramesers

nominator of Eq(7.8) are suppressed by+1 powers ofs.  =1/(v2v?) andM, the amplitudeA®)(s,t,u) is scheme in-
We have not yet checked the normalization in the low-dependent up to the order it has been calculated.

energy limit. If expressed in terms of the renormalized pa-
rameters\ andm, it reads VIIl. NLO RENORMALIZATION-GROUP IMPROVEMENT

The high-energy limit of the amplitudeA®™ is not
s—0 s A\ changed by the resummation in E@.8):
AM(s,t,u) —— 2 1_W(1_5°3)

a El It]
Af]t)(s,t,u)=—2)\ 1+W[8|nw+2|nw
+0(s?Ins,...). (7.9 ul
u
+21In—— 26+ (25—
Tradingm for M according to Eq(7.1) in this expression, 21n ypz2 — 26+ (25-9Ky) dos

from the matching conditioi(5.8) we find

D
+i E[—sa(s)—20(t)—2¢9(u)]}.

. (7.10 ©.0

2

202

MZ

= + —
A M 322

(25-9K()(1— 609
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AP (u) =\ A p?
—————=1+12——>5In—5+---
1672 2 e

Ky(Mz):l+ (16772)
(8.9

Thus, the full resul{5.9) at next-to-leading order has the
form

Al (s,t,u)=AD(s,t,u) +[AZY(s,t,u; u2)
—AG(s,tu; pd)16(s,tu; nd), (8.9

whereA®)(s,t,u) should be taken from Ed7.8), Agg and
Aye are given by Egs(8.2 and (8.5, respectively, and

FIG. 6. Non-resonant one-loop Feynman diagrams for Gold-g(s,t,u;ﬂg) is defined in Eq(5.10.

stone scattering.

It should be compared with the one-lodgS result in the
massless theory:

S| It

Al(s t,u)=—2x = +2In—
HE( ) Iu2 MZ

1 —)\ 8l
+16772 :

u
+2In|;l—24+5,\,|

+i %[—80(5)—20(0—20(@]}.

8.2

IX. USE OF REPRESENTATION DEPENDENCE

In the previous sections we have been careful to work
only with representation-independent quantities. In a practi-
cal calculation it may be useful to take the Feynman rules
derived from Eqgs(3.1), (3.4), and use the fact that the pa-
rameteryn drops out of all physical results as a check of the
calculation. However, it is also instructive to look at repre-
sentation dependence from a different viewpoint:

As mentioned in the Introduction, in the non-linear repre-
sentation ¢p=1) the power-like low-energy behavior is
manifest in each individual Feynman diagram. By contrast,
at high energies the complete amplitude rises logarithmi-
cally; for individual diagrams this applies only in the linear

In the massless theory we have included a matching corre¢epresentationg=0). In both representations the respective
tion 8y,. Equating the two expressions at a matching pointopposite limit is also reproduced correctly, but it requires

Mm= o We obtain its value

2

Sy=—2+12 In%+(25—9K1)6OS. 83

The matching poinjy should be taken of the ordét. The
usual choice isup=M, but there are indication81] that
wi=exp(2)M? (8.4

might be a better choice.

large cancellations between different Feynman diagrams.
These cancellations would be spoiled by a naive introduction
of the Higgs boson width.

Therefore, instead of rearranging the perturbation series in
the way described in the preceding sections, one is tempted
to interpolate the two representations by introducing an
s-dependent; parameter. Of course, this makes no sense in
the Lagrangian, but in a scattering amplitiglis an external
parameter, and since the full amplitude is independen, of
this manipulation can only affect higher-order terms which
are not yet included in the perturbative result. A natural

The renormalization-group improved result is now ob-choice is

tained from the high-energy limit as

ARY(s,t,u) =K (S)AGL(S,tU)|, 2, (8.5
where the two-loop running coupling is given by
A
N2 )=
(,LL ) ILL2 B]_ qu
1-Boh In—+ =N In|1—Bo\ In —
o Bo Mo
(8.9
with
12 13
Bo=71g72" P1=~ 15.2P0 (8.7

7(s)=(1+s/M)~* 9.9
which has the appropriate limits
n(0)=1, n(=)=0. 9.2

Not surprisingly, this exactly reproduces H§.3 when in-
serted into Eq(4.5) with Eq. (4.6).

It is straightforward to extend this trick to higher orders.
If working to ordern, all diagrams withk resonant Higgs
propagators and+k loops should be evaluated in the gen-
eral representatiofB.4) and resummed. This requires com-
putation of the same set of one-particle irreducible diagrams
that are needed in the scheme described before. If the result
is re-expanded in powers af the »-dependence disappears

and the field anomalous dimension gives rise to the factor up to ordem. However, the full expression is representation
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08 T T | T T L l ' L} L}
lao(ww — z2)| M =08TeV
0.6
0.4 s J
i o J
02 [ M =08 TeV 1 1
1 1 | PR I I | | ! f
0.2 1
i V3 [TeV]
. Ly | , , FIG. 8. Deviation from elastic unitarity, shown for the leading-
0.2

Tl\/ order (LO) and next-to-leading-ordgiNLO) results for the Higgs
Vs [TeV] line shape, using the formulags.8) and (8.9), respectively.

FIG. 7. Leading-ordeLO) and next-to-leading-ordeiNLO) The partial wave with spin and weak isospin zero is defined as
results for the Higgs line shape. The plot shows $hgave ampli- ago= (1/16m)[ 3 [ (dU/s)A(s.t,u) + [ (dU/S)A(t,s,u)].  Neglecting
tudeay=(1/167) fdt/sA(s,t,u), using the formulag6.8) and(8.9) multiparticle thresholds, elastic unitarity requires the quantity
for A(s,t,u), respectively. The low-energy limi6.8 and the high- |age—i/2| to be equal to 1/2 if all orders are included. For compari-
energy behavior without renormalization-group improvement are>°": We show the NLO resu_lt evaluated according to the fixed-width
indicated by dotted lines. formula (5.4) (dash-dotted ling

. , However, within the perturbative region the procedure de-
dependent. It seems reasonable that by makirgfunction X : . . .
scribed in the present paper is sufficient for a consistent treat-

of S, the complete expression fqu|II§ all requ'lr'ements n thement of the Higgs resonance in the Goldstone-boson ap-
various energy ranges if the following conditions are satis- oo : . : :
fied: proximation: The physical Higgs mad8 is defined as the

' real part of the pole position. The other free parameter, the

coupling constant, is fixed by imposing the low-energy

1—-nxys for s—0, (939  theorem which is a consequence of the custo8id sym-
metry. This matching condition restricts possible parametri-
nocll\/§ for s—. (9.4) zations of the Higgs resonance and determines the proper

inclusion of the Higgs width. The resummation of logarithms
in the high-energy region can be performed in a massless
theory, and the result can be added to the amplitude derived
in the massive theory in such a way that double counting is
n(M?)=1/2 (9.5 avoided. The massless theory has one free parameter which
is determined by a matching condition at a scalg~M.
enforces to leading order the kinematical phase space scalidde final formula(5.9) describes the Higgs resonance for all
I'=s on the resonance peak. energies, and has been evaluated explicitly to LO and NLO
In this way, a valid formula for the resonance peak can bdn Eqs.(6.8) and(8.9), respectively. _
obtained from a direct resummation of self-energies. The dis- The result is shown in Fig. 7 for a Higgs mass
advantage is that the parametgmust be kept in the calcu- =0.8 TeV. At low energies, the LO and NLO curves are
lation. However, by comparing the result for differgnea-  Virtually indistinguishable: The LO formulé6.8) already re-
sonabl¢ functionsz(s) that satisfy the above conditions, the Produces the one-loop imaginary part exactly in this limit.
residual representation dependence from higher orders cd#fyond the resonance, the LO result rises rapidly towards
be quantified, and the theoretical uncertainty in the descripthe Landau pole, whereas the NLO curve stays at moderate

In addition, the condition

tion of the Higgs line shape be estimated. values of the amplitude. The transition to the high-energy
region at the matching poiniy=exp(IM [cf. Eq. (8.4)] is
X. DISCUSSION sharp in LO, but smooth in NLO.

To verify that our parametrization is in accordance with

The increase of the running Higgs self-coupling limits theunitarity requirements, in Fig. 8 we plot the deviation of the
use of perturbation theory to energies below the Landau polpartial-wave eigenamplitude,, [1] from the unitarity circle,
which arises at one-loop order in the high-energy limit.the latter given bylag,—i/2|=1/2. Here elastic unitarity is
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respected for the formuld$.8) and(8.9) almost perfectly up 1 x(1—x)
to Vs=M, and approximately up to energies as high as 4 K(U)ZRGJ dx In(l— >+2
TeV. By contrast, in NLO a fixed-width formula as it di- 0
rectly follows fromS-matrix theory(5.4) misses this require- 2\1-4¢ arcsinil/\—40), o<0,
ment both at low energies and in the resonance region, al-
though it is formally equivalent to our resu(6.9) if all 21— 4¢ arccoshl/\4o), 0$U$E,
orders are included/Note that higher-order terms will re- = 4
store unitarity in any scheme which is consistent in pertur-
bation theory) 2\4o—1arcsi1\4o), <o
The extension to higher orders is straightforward. Two-
loop corrections to the Goldstone scattering amplitude and (A3)
higher-order renormalization group coefficients have been o
calculated inf33,34. Three-point integral§G,;=G(o=1), H;=H(o=1)]:
At low energies the transversal degrees of freedom of the 14 2
. . . o T
gauge bosons are important, and the gauge couplings and G(o)=0c Re{ Li| —— __}, (A4)
vector boson masses cannot be neglected. Although results 6
for physical processes can be obtained from the Goldstone-
boson approximation by means of the effectiMeapproxi- H(o)=0 Re{ Li( 170 +Li 170 )
mation, for numerically reliable predictions the results of this Xy—0o X_.—0o
paper have to be embedded in a full standard-model calcula-
tion. In particular, QED bremsstrahlung corrections affect _Li(‘f_l)_u i )
the line shape and should be included in conjunction with the o Xy—0o
process-dependent one-loop corrections in the electroweak B 2
standard mod€I35]. This problem will be approached in a —Li( i + T (A5)
future publication. If a heavy Higgs resonance has been cho- X-—o 6
sen by nature for breaking the electroweak symmetry, it i o )
mandatory to have complete theoretical control over the lin our-point integral:
shape in order to separate effects which could indicate phys- 1 1-z, z,
ics beyond the minimal model. F(o,)=0T1 Re{ K{ - Li( +Li| — Z—)
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APPENDIX: INTEGRALS where

Here, we define the functions and symbols used in Sec. 1 1
VII. In the following abbreviationsm is the mass appearing x.=%(1£p) and Zi=m(1iA) (A7)
in the renormalized propagator; it is equal to the pole mass
M in the on-shell scheme, or denotes #&-renormalized and
mass in theMS scheme. In the one-loop integrals, however,
this distinction is relevant only if the amplitude is evaluated B=V1l-4c and A=yl-40(l+7). (A8)

to two-loop order and can be ignored for the purposes of the ) i )
present paper: The imaginary parts of the loop integrals are built up by the

functions
o=m?s, 7=mét, v=m?u. (A1) 1+o
g(o)=oIn e (A9)
Spence function:
1+8
. z dt h(O’)ZZO' In m, (AlO)
L|(z)=—f Tln(l—t). (A2)
0
] _20'7" A+1 ALL
Two-point integrall K;=K(o=1)1: Won) =337 (ALD)
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¢ _20’7‘| A+pB ALD
2(017)—Tnm- (A12)
Limiting behavior:
1.s,t—0:
K—2 s ! SZ+ Al13
T em? 60m? ' (A13)
G | S 1 1I s 1) s
BT R LUy e
+ 1| S +1 Sz-i- Al4d
3" me e/t A
H1+1S+182+ Al5
U mtaom T (A19)
1l s t t
F—In >+ —EW—W"'IW + ,
(A16)
1 s
gﬁl—EW"— , (Al?)
fio—1+t+ (A18)

PHYSICAL REVIEW D 58 053004

Note thatF (o, 7) behaves like In+finite for t—0, inde-
pendent of the value of.

2.5—>M?
T 27\ s—M?
V3 3v3| M?
a2
EKl—KiW+O([s—M2]2), (A19)
7T2
G— 5+ =G+ 0(s—M?), (A20)
71_2
Ho g+ =Hy+ O(s=M?), (A21)
g—In2+---=g;+O(s— M?). (A22)
3. 8], [t]—ee:
El 1
K—>InW+(9(s In's). (A23)

G,H,F,g,h,f,,f, all vanish likes ! Ins (or fastey in
this limit.
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