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Gauge- and renormalization-group-invariant formulation of the Higgs-boson resonance
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A gauge- and renormalization-group-invariant approach implemented by the pinch technique is formulated
for resonant transitions involving the Higgs boson. The line shape of the Higgs boson is shown to consist of
two distinct and physically meaningful contributions: a process-independent resonant part and a process-
dependent non-resonant background, which are separately gauge independent, invariant under the renormal-
ization group, satisfy naive, tree-level Ward identities, and respect the optical and equivalence theorem indi-
vidually. The former process-independent quantity serves as the natural extension of the concept of the
effective charge to the case of the Higgs scalar, and constitutes a common ingredient of every Born-improved
amplitude. The difference in the phenomenological predictions obtained within our approach and those found
with other methods is briefly discussed.@S0556-2821~98!07215-4#

PACS number~s!: 14.80.Bn, 11.10.Gh, 11.15.Ex, 12.15.Lk
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I. INTRODUCTION

The production of the Higgs boson, the only as yet un
served building block of the standard model~SM!, and the
detailed study of its properties will be of central interest
several years to come. The Higgs boson is intimately c
nected to the prevailing field-theoretic mechanism for
dowing gauge bosons, leptons, and quarks with masses@1#.
Since understanding the origin of mass constitutes a m
challenge for all models aspiring to describe physics bey
the SM, accurate experimental information about the Hig
sector is indispensable for determining both their theoret
relevance and their phenomenological viability.

Within the SM, the massMH of the Higgs boson is a free
parameter. The experimental lower bound on the SM Hi
boson through direct searches at the CERN Large Elec
Positron collider~LEP! is MH.65.2 GeV@2#, whereas the
theoretical upper bound is about 700 GeV@3,4#. Since the
SM observables depend logarithmically onMH @5#, the high
precision electroweak data, even though they favor slight
‘‘light’’ Higgs boson of about 150 GeV, they can only im
pose rather loose bounds onMH . In particular, from the LEP
data on sin2 u eff

lept, the electroweak observable most sensit
to MH , the upper boundMH,550 GeV is obtained at the
1.64s level @6#, whereas a tighter upper bound ofMH
,443 GeV at the 1.64s has been advocated@7# after the
inclusion of two-loop top quark effects in the calculations
sin2 u eff

lept @8#.
A Higgs boson with mass of about 100 GeV can be d

covered at LEP2@9#, through the Bjorken process, or Higg
strahlung,e1e2→ZH @10#. If the Higgs boson turns out to
be heavier, its discovery will become again possible at
CERN Large Hadron Collider~LHC!. In that case, the
Higgs-boson production will proceed through a variety
sub-processes. In all of the above scenarios, dependin
the value ofMH and the specific kinematic conditions, th
Higgs-boson production may be resonant. At that point,
actly as has happened in the case of the resonantZ-boson
production@11#, the well-known theoretical problems ass
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ciated with the self-consistent treatment of resonant tra
tion amplitudes are bound to resurface, but with the ad
tional phenomenological complication that, in contrast to
Z-boson case, bosonic and fermionic channels give num
cally comparable contributions to the Higgs-boson dec
rate.

From the theoretical point of view, the self-consiste
treatment of the Higgs boson resonance in the context of
SM has attracted significant attention, due to a variety
open questions@12#. In the vicinity of resonances transitio
amplitude become singular and must be regulated by a B
Wigner type of propagator. The most obvious signal tha
method more sophisticated than a standard resummatio
conventional self-energy graphs is needed in the case of
Abelian gauge theories, comes from the simple calculatio
fact that the bosonic radiative corrections to the self-energ
of vector (g,W,Z) or scalar~Higgs! bosons induce a non
trivial dependence on the gauge-fixing parameter~GFP!,
used to define the tree-level bosonic propagators appea
in the quantum loops. This is to be contrasted to the fer
onic radiative corrections, which, even in the context of no
Abelian gauge theories behave as in quantum electrodyn
ics ~QED!, i.e., they are GFP independent. In additio
formal field-theoretic considerations as well as direct cal
lations show that, contrary to the QED case, the non-Abe
Green’s functions do not satisfy their naive, tree-level Wa
identities ~WI’s!, after bosonic one-loop corrections are i
cluded. A careful analysis shows that this fundamental d
ference between Abelian and non-Abelian theories has
reaching consequences; the naive generalization of the B
Wigner method to the latter case gives rise to Born-improv
amplitudes, which do not faithfully capture the underlyin
dynamics. Most noticeably, due to violation of the optic
theorem ~OT!, unphysical thresholds and artificial res
nances appear, which distort the Higgs boson lineshape
addition, the high energy properties of such amplitudes
altered, and are in direct contradiction with the equivalen
theorem~ET! @13,14#.

Recently however, a formalism based on the pinch te
nique~PT! @15–17# has been developed in a series of pap
© 1998 The American Physical Society02-1



s
ith
th

a
w

s
it
is
i

r-
na
he
in
in
aly
u

th
e
if
o
-

.
ity
th
de

s.

b
o
e
m
lf-

.g
oe
p
of
i

en
a
h
at
ai
in

ich

in
h

be
I’s
Se

b-

ly,

T
on,
rgy
ss

ams
e
,
-
able

licit

ice
e
ee
er

n-

de

JOANNIS PAPAVASSILIOU AND APOSTOLOS PILAFTSIS PHYSICAL REVIEW D58 053002
@18,19# which bypasses all the aforementioned difficultie
and provides a self-consistent framework for dealing w
unstable particles and resonant transition amplitudes in
context of non-Abelian gauge theories. In@18# the general
methodology has been presented, whereas in@19# the crucial
physical requirements for a physically meaningful resumm
tion have been discussed in detail. In addition, it was sho
that the resummation algorithm based on the PT satisfie
those requirements; in fact, to the best of our knowledge,
the only algorithm known to date which can accomplish th
Several applications of the above formalism may be found
the literature@20#. In this paper we employ the above fo
malism in order to develop a systematic approach to reso
transition amplitudes involving the SM Higgs boson. T
theoretical highlights of our study have been presented
short communication@21#. In this longer paper we address
detail the most important calculational aspects of this an
sis, and discuss extensively the multitude of physical iss
involved.

The paper is organized as follows: In Sec. II, we use
PT to compute the GFP-independent Higgs-boson s
energy at the one-loop level, within the context of three d
ferent characteristic gauges, namely the Feynman-t’Ho
gauge, the general renormalizableRj gauges, and the cova
riant background field gauges~BFG’s!. Explicit expressions
are reported, and the pathologies associated with gauge
pendences in the conventional formulation are discussed
Sec. III, we employ arguments of unitarity and analytic
and show how the effective Higgs-boson self-energy of
previous section may be obtained from tree-level amplitu
involving the Higgs boson; in fact, it satisfiesindividually
the OT,both for fermionic as well as bosonic contribution
In addition, we apply our formalism to the processt t̄→H*
→t t̄ , and discuss how our predictions differ from those o
tained by other methods. In Sec. IV, we review the notion
the effective charge in QED and discuss how this conc
may be extended to the case of gluon in quantum chro
dynamics~QCD!, based on properties of the PT gluon se
energy under the renormalization group@15#. Furthermore,
we demonstrate explicitly that in pure scalar theories, e
(f3)6 in six space-time dimensions, the scalar particle d
not admit the construction of a renormalization-grou
invariant ~RGI! quantity which could serve as the analog
the QED effective charge. However, if the scalar theory
endowed with a global symmetry, which, in turn, is brok
spontaneously, we find that a scalar effective ‘‘charge’’ m
still be formed. This latter example provides useful insig
and sets up the stage for addressing the more complic
case of the full SM. The next two sections contain the m
theoretical thrust of our paper: In Sec. V, after discuss
how theprocess-independentPT self-energies for theW and
Z bosons of the SM can give rise to RGI quantities wh
may be identified as effective charges@22#, we show that the
construction of a process-independent and RGI quantity
volving the Higgs-boson propagator is indeed possible. T
above construction of a Higgs-boson effective charge
comes only possible by virtue of the naive, tree-level W
satisfied by the GFP-independent PT sub-amplitudes. In
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VI, we show with an explicit example that the PT su
amplitudes satisfy the ETindividually, and that with the help
of the same PT WI’s, this fact remains true evenafter resum-
mation. In Sec. VII, we present our conclusions. Final
lengthy analytic expressions pertaining to theHWW and
HZZ vertices are relegated to the Appendices.

II. ONE LOOP CALCULATIONS
IN THE PINCH TECHNIQUE

In this section we show how the application of the P
gives rise to an effective self-energy for the Higgs bos
which is independent of the GFP, and displays a high-ene
behavior which is consistent with the ET. For definitene
we focus on the gauge invariant subset of Feynman diagr
containing twoW bosons~and their corresponding would-b
Goldstone bosons and ghosts! in a typical S-matrix element
e.g.,t t̄→H*→t t̄ , shown in Fig. 1. We carry out this calcu
lation in three representative gauges, i.e., the renormaliz
Feynman–’t Hooft gauge, the generalRj gauges, and the
background field method~BFM! in the covariantRjQ

gauges.
We discuss the relevant technical points and present exp
intermediate and final results.

A. The Feynman–’t Hooft gauge

First we present the calculation for the special GFP cho
j51 in the renormalizableRj gauges. This particular choic
is known to simplify computations; of course, as we will s
explicitly in the next subsection, the same final answ
emerges for any other choice ofj, after the PT algorithm has
been carried out.

We first calculate the diagrams contributing to the co
ventional Higgs boson self-energy@Figs. 1~a!–1~d!#. A

FIG. 1. The Higgs-mediated part of the one-loop amplitu

t t̄→t t̄ .
2-2
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straightforward calculation yields~we omit contributions
from tadpole and seagull graphs!:

PHH~q2!5
aw

4p S 2q213MW
2 1

MH
4

4MW
2 DB0~q2,MW

2 ,MW
2 !,

~2.1!

whereaw5gw
2 /(4p) and

B0~p2,m1
2 ,m2

2!

5~2pm!42dE ddk

ip2

1

~k22m1
2!@~k1p!22m2

2#
~2.2!

is the Veltman–’t Hooft function@23# defined ind5422e
dimensions, using the conventions of Ref.@24#. From the
integrand of Eq.~2.2!, it is clear thatB0(p2,m1

2 ,m2
2) devel-

ops absorptive~imaginary! parts, whenAp2>m11m2 . The
mass parametersm1 ,m2 may represent either physica
masses, such as that of theW and/orZ bosons, or masses o
the respective unphysical would-be Goldstone bosons
ghosts.

According to the PT@15#, we must now extract the
propagator-like pieces concealed inside vertex and box
grams. Such pieces emerge every time longitudinal mom
coming from propagators or vertices trigger elementary W
of the form

k”PL5~k”1p”2mb!PL2PR~p”2mt!1mbPL2mtPR , ~2.3!

where PR(L)5@11(2)g5#/2 is the chirality projection op-
erator. The first term in Eq.~2.3! pinches out the interna
propagator of theb quark, whereas the second one dies wh
contracted with the spinor of the external on-shellt quark.

In the Feynman–’t Hooft gauge, the only graphs that c
give rise to propagator-like contributions are the ver
graphs of Figs. 1~f! and 1~g!, denoted byVGW andVWG , and
their mirror images, Figs. 1~j! and 1~k!. Settingp85p2q,
we defineSR

n andSL
n as follows:

SR
n 5

gw
2

2
v̄~p8!~mtPL2mbPR!

1

k”1p”2mb
gnPLu~p!,

~2.4!

SL
m5

gw
2

2
v̄~p8!gmPL

1

k”1p”2mb
~mtPR2mbPL!u~p!.

~2.5!

The action of the longitudinal momenta from the vertices
these expressions gives

knSR
n 5

gw
2

2
v̄~p8!mtPLu~p!1¯ ,

~k1q!mSL
m5

gw
2

2
v̄~p8!mtPRu~p!1¯ , ~2.6!

where the ellipses mean omission of vertex like pieces, e
pieces still containing theb quark tree-level propagator, (k”
1p”2mb)21. With the help of Eq.~2.6!, we find
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VWG1VGW52@~2k1q!nSR
n 1~2k1q!mSL

m#

3B0~q2,MW
2 ,MW

2 !

52
aw

8p
mtB0~q2,MW

2 ,MW
2 !v̄~p8!u~p!1¯ .

~2.7!

We notice that the only propagator-like piece couples to
external t t̄ pair exactly as a Higgs boson. In addition, n
term proportional tog5 has survived; had such a term be
present, it ought to be alloted to the effectiveHG0 one-loop
mixing self-energy, thus breaking the CP invariance of
underlying theory@25#. This exercise demonstrates explicit
how the PT preserves the discrete symmetries of the clas
action after quantization.

Finally, the pinch contributionVGW to the Higgs-boson
self-energy stemming from the vertex~mirror image graphs
give an extra factor of 2! is

VGW52
aw

4p
~q22MH

2 !B0~q2,MW
2 ,MW

2 !. ~2.8!

Adding the contribution from Eq.~2.8! to the conventional
result of Eq.~2.1!, we finally arrive at the following expres

sion for the PT one-loop Higgs boson self-energyP̂HH(q2),

P̂~WW!
HH ~q2!

5
aw

16p

MH
4

MW
2 F 114

MW
2

MH
2 24

MW
2

MH
4 ~2q223MW

2 !G
3B0~q2,MW

2 ,MW
2 !. ~2.9!

B. Rj renormalizable gauges

After this introductory calculation, we turn to the gener
case, where the GFPj is kept arbitrary. In these gauges, th
free W-boson propagator is given by

Dmn
~jw!

~q!5F2gmn1~12jw!
qmqn

q22jwMW
2 G 1

q22MW
2

5Umn~q!2
qmqn

MW
2 D ~jw!~q2!, ~2.10!

where

D ~jw!~q2!5
1

q22jwMW
2 ~2.11!

is the propagator of the would-be Goldstone boson and g
fields. A straightforward calculation for the convention
one-loop Higgs self-energy yields

PHH~q2!5
aw

4p F S ~q2!2

4MW
2 2q213MW

2 DB0~q2,MW
2 ,MW

2 !

1
MH

4 2~q2!2

4MW
2 B0~q2,jwMW

2 ,jwMW
2 !G , ~2.12!
2-3
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where tadpole and seagull terms have again been omi
Some comments are now in order regarding Eq.~2.12!:

~a! The term proportional to (q2)2 is absent only for the
special choicejw51, in which caseB0 factorizes out.

~b! The term proportional to (q2)2 is ultraviolet ~UV! fi-
nite, i.e., it does not depend on the UV regulator 1/e for
any value ofjw . Of course, this is expected, since w
are working within a renormalizable gauge.

~c! Even though terms proportional toB0(q2,MW
2 ,jwMW

2 )
appear in intermediate calculations of individual d
grams, they finally cancel in the sum. So, there are
terms with mixed poles; we only have thresholds
q254MW

2 andq254jwMW
2 . This result can be trace

back to the fact that the tree-levelHWm
1Wn

2 coupling is
proportional togmn and hence, any contraction betwe
the longitudinal and transverse parts of the twoW-
boson propagators in the loop will vanish. The tran
verse part of theW-boson propagator is associated w
the physical pole atq25MW

2 , whereas the longitudina
one possesses an unphysical singularity atq25jMW

2 .
Since only terms arising from the contraction betwe
transverse-transverse and longitudinal-longitudi
parts of theW-boson propagators can survive, the a
sence of mixed poles is expected. However, this
feature may change in higher orders, since n
momentum-dependent form-factors for the vert
HWm

1Wn
2 are radiatively induced, which could giv

rise to mixed poles.
~d! Settingjw51 in the expression of Eq.~2.12!, we re-

cover the result of Eq.~2.1!.

Next we collect the pinch contributions which are kin
matically akin to a Higgs boson self-energy. Due to the
ditional longitudinal momenta proportional to 12jw , we re-
ceive extra pinch contributions, from the vertex- as well
the box-diagrams. The only technically subtle point in th
context is that the propagator-like parts related to the Hi
boson arise fromtwo successive contractions of the longit
dinal momenta on the elementary vertex: the first momen
pinches, giving rise to propagator-like terms whose coupl
to the external quarks is proportional togmPL ; clearly this
coupling is not Higgs-boson-like. In addition, a vertex-lik
term proportional tomt survives. After the second longitud
nal momentum is contracted with that latter vertex-like ter
it removes the internal fermion propagator and gives rise
propagator-like contribution, which couples to the exter
fermions proportionally tomt . To see that mechanism i
detail, consider the typical quantityT t

mn , appearing in the
graphs in question, defined as

T t
mn5

gw
2

2
v̄~p8!gmPL

1

k”1p”2mb
gnPLu~p!. ~2.13!

The action of the first longitudinal momentumkn gives

knVmn5
gw

2

2
v̄~p8!gmPLu~p!1SL

m . ~2.14!
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When the second momentumkm acts on the first term on the
right-hand side~RHS! of Eq. ~2.14!, by virtue of Eq.~2.6!
gives rise to a propagator-like term proportional tomt , as is
also shown in Fig. 2, according to Eq.~2.6!. As for the sec-
ond term on the RHS of Eq.~2.14!, after it gets contracted
with the second momentumkm , it will be judiciously alloted
to the various remaining effective self-energies, such
gg,ZZ,gZ,Zg, etc., according to the rules established
@26#. These latter terms are not displayed in Fig. 2.

We now gather all relevant pinch contributions from t
box diagrams:

BWW~q2!5
aw

16pMW
2 @B0~q2,MW

2 ,MW
2 !

22B0~q2,MW
2 ,jwMW

2 !

1B0~q2,jwMW
2 ,jwMW

2 !#~q22MH
2 !2, ~2.15!

BGW~q2!5
aw

8pMW
2 @B0~q2,MW

2 ,jwMW
2 !

2B0~q2,jwMW
2 ,jwMW

2 !#~q22MH
2 !2. ~2.16!

The net pinch contribution to the effective Higgs boson se
energy originating from the box graphs may be summari
by

B~q2!5
aw

16pMW
2 @B0~q2,MW

2 ,MW
2 !

2B0~q2,jwMW
2 ,jwMW

2 !#~q22MH
2 !2. ~2.17!

Again, the terms proportional toB0(q2,MW
2 ,jwMW

2 ) cancel.
In addition, for jw51, the above expression vanishes as
should, since in the Feynman gauge there are no pinch
tributions coming from boxes.

Similarly, the individual pinch contributions from verte
graphs are listed below:

VWW~q2!52
aw

4p F S 11
q2

2MW
2 DB0~q2,MW

2 ,MW
2 !

2S 12jw1
q2

MW
2 DB0~q2,MW

2 ,jwMW
2 !

1S q2

2MW
2 2jwDB0~q2,jwMW

2 ,jwMW
2 !G

3~q22MH
2 !, ~2.18!

FIG. 2. Higgs-like contribution from thet-channel graph.
2-4
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VGW~q2!52
aw

4p F S 12jw1
q2

MW
2 DB0~q2,MW

2 ,jwMW
2 !

1S jw2
q2

MW
2 DB0~q2,jwMW

2 ,jwMW
2 !G

3~q22MH
2 !, ~2.19!

which gives in the sum

V~q2!52
aw

4p F S 11
q2

2MW
2 DB0~q2,MW

2 ,MW
2 !

2
q2

2MW
2 B0~q2,jwMW

2 ,jwMW
2 !G~q22MH

2 !. ~2.20!

Again, the terms proportional toB0(q2,MW
2 ,jwMW

2 ) cancel
in the final result, and the analytic expression of Eq.~2.8!
emerges forjw51.

Adding Eq. ~2.17! and Eq. ~2.20!, we find that in the
linear renormalizable gauges the total pinch contribution
effective Higgs boson self-energy is given by

PHH,P~q2!52
aw

4p F S 11
q21MH

2

4MW
2 DB0~q2,MW

2 ,MW
2 !

2
q21MH

2

4MW
2 B0~q2,jwMW

2 ,jwMW
2 !G

3~q22MH
2 !. ~2.21!

Adding Eq. ~2.21! to the conventional result given in Eq
~2.12!, we see that all terms proportional t
B0(q2,jwMW

2 ,jwMW
2 ), which are the only terms dependin

on jw , cancel, and we find again the PT result given in E
~2.9!.

C. The covariant background field gauge

We shall consider the BFM applied to the covaria
gauges@27–29#; a detailed discussion of the BFM in th
non-covariant gauges may be found in@30#. The calculation
here is particularly illuminating, because it shows that
results are plagued with pathologies away fromjQ51 @19#.

Using the Feynman rules of the covariant backgrou
field gauge@28#, we obtain for the Higgs-boson self-energ
in an arbitraryjQ gauge

P ĤĤ~q2!5
aw

4p H S ~q2!2

4MW
2 2q213MW

2 DB0~q2,MW
2 ,MW

2 !

1FMH
4 2~q2!2

4MW
2 2jQ~q22MH

2 !G
3B0~q2,jQMW

2 ,jQMW
2 !J . ~2.22!

Some important comments must be made:

~a! SettingjQ51 in the expression of Eq.~2.22!, we re-
cover the full PT answer of Eq.~2.9!, in accordance
with earlier observations@28,29#.
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~b! We see that forjQÞ1 the (q2)2 term survives and is
proportional to the difference B0(q2,MW

2 ,MW
2 )

2B0(q2,jQMW
2 ,jQMW

2 ). For any finite value ofjQ
this term vanishes for sufficiently largeq2, i.e., q2

@MW
2 andq2@jQMW

2 .1 Therefore, the quantity in Eq
~2.22! displays good high energy behavior in comp
ance with unitarity. Notice however that the onset
this good behavior depends crucially on the choice
jQ . SincejQ is a free parameter and may be chosen
be arbitrarily large, but finite, the restoration of unita
ity may be arbitrarily delayed as well. This fact pos
no problem as long as one is restricted to the com
tation of physical amplitudes at a finite order in pertu
bation theory. However, if the above self-energy was
be resummed in order to regulate resonant transi
amplitudes, it would lead to an artificial delay of un
tarity restoration. Specific quantitative examples
such artifacts will be presented in Sec. VII.

~c! In addition to the problem described above, which b
comes significant for large values ofjQ , a serious pa-
thology occurs for any value ofjQÞ1, namely the ap-
pearance of unphysical thresholds@18,19#. Such
thresholds may be particularly misleading ifjQ is cho-
sen in the vicinity of unity, giving rise to distortions in
the lineshape of the unstable particle.

We then proceed to isolate the propagator-like pinch p
from the BFG boxes and vertices, for generaljQ . Clearly,
the box contributions are the same as in the linear renorm
izable gauges; they can be recovered from Eq.~2.17! by the
simple replacementjw→jQ . The same is true for the pinc
contributions involving theWW virtual states, i.e.,VWW in
Eq. ~2.18!. In this way, the total pinch box contribution,B,
andVWW may be separately written down

B~q2!5
aw

16pMW
2 @B0~q2,MW

2 ,MW
2 !

2B0~q2,jQMW
2 ,jQMW

2 !#

3~q22MH
2 !2, ~2.23!

VWW~q2!52
aw

4p F S 11
q2

2MW
2 DB0~q2,MW

2 ,MW
2 !

2S 12jQ1
q2

MW
2 DB0~q2,MW

2 ,jQMW
2 !

1S q2

2MW
2 2jQDB0~q2,jQMW

2 ,jQMW
2 !G

3~q22MH
2 !. ~2.24!

However, the vertex graphVGW is different, since the cou-
pling betweenĤG6W7 in the BFG differs from the respec

1A noticeable exception is the unitary gauge (jQ→`), in which
such a term survives and, in fact, gives rise to a divergent, n
renormalizable contribution.
2-5
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tive HG6W7 coupling in theRj gauges@2qm as opposed to
(2k1q)m , respectively#. Specifically, we have

VGW~q2!52
aw

4p F S 12jQ1
q2

MW
2 DB0~q2,MW

2 ,jQMW
2 !

2
q2

MW
2 B0~q2,jQMW

2 ,jQMW
2 !G~q22MH

2 !.

~2.25!

Adding both pinch terms in Eqs.~2.24! and~2.25!, we easily
obtain

V~q2!52
aw

4p F S 11
q2

2MW
2 DB0~q2,MW

2 ,MW
2 !

2S q2

2MW
2 1jQDB0~q2,jQMW

2 ,jQMW
2 !G~q22MH

2 !.

~2.26!

Finally, the total pinch contribution to the Higgs boson se
energy, which is obtained by forming the sum of Eqs.~2.23!
and ~2.26!, is given by

P ĤĤ,P~q2!52
aw

4p F S 11
q2

4MW
2 1

MH
2

4MW
2 DB0~q2,MW

2 ,MW
2 !

2S q2

4MW
2 1

MH
2

4MW
2 1jQD

3B0~q2,jQMW
2 ,jQMW

2 !G ~q22MH
2 !. ~2.27!

Adding Eq. ~2.27! to Eq. ~2.22!, we arrive again at the ex
pression of Eq.~2.9!.

In a similar way, we may compute the contributions of t
other virtual channels (t t̄ , ZZ, and HH) to the effective
Higgs boson self-energy. They are given by

P̂~ tt !
HH~q2!5

3aw

8p

mt
2

MW
2 ~q224mt

2!B0~q2,mt
2 ,mt

2!,

~2.28!

P̂~ZZ!
HH ~q2!5

aw

32p

MH
4

MW
2 F114

MZ
2

MH
2 24

MZ
2

MH
4 ~2q223MZ

2!G
3B0~q2,MZ

2 ,MZ
2!, ~2.29!

P̂~HH !
HH ~q2!5

9aw

32p

MH
4

MW
2 B0~q2,MH

2 ,MH
2 !. ~2.30!

Note thatP̂ (tt)(q
2) andP̂ (HH)(q

2) are identical to their con-
ventionally defined counterparts, i.e., they receive no pi
contributions.
05300
-

h

III. THE RESONANT HIGGS BOSON AND UNITARITY

In this section we show how one can obtain the results
the previous section by resorting to the fundamental prop
ties of unitarity and analyticity ofS-matrix elements.

As explained in detail in@19#, a close connection exist
between gauge invariance and unitarity, which is best es
lished by looking at the two sides of the equation for the O
The OT for a given procesŝbuTua& is

^bu~T2T†!ua&5 i(
m

~2p!4d4~Pm2Pa!^muTub&* ^muTua&,

~3.1!

where the sum(m should be understood to be over the ent
phase space and spins of all possible on-shell intermed
particlesm. The RHS of Eq.~3.1! consists of the product o
GFP-independent on shell amplitudes, thus enforcing
gauge-invariance of the imaginary part of the amplitude
the LHS. In particular, even though the LHS contains u
physical particles, such as ghosts and would-be Goldst
bosons, which could give rise to unphysical thresholds,
~3.1! guarantees that all such contributions will vanish.
general, the aforementioned cancellation takes place a
contributions from the propagator-, vertex-, and bo
diagrams have been combined. There are field theories h
ever, such as scalar theories, or QED, which allow fo
stronger version of the equality given in Eq.~3.1!: The opti-
cal relationship holdsindividually for the propagator-,
vertex-, and box-diagrams.

In non-Abelian gauge theories however, the afo
mentioned stronger version of the OT doesnot hold in gen-
eral. The reason is that unlike their scalar or Abelian co
terparts, the conventional self-energies, vertex and boxes
gauge dependent. Noticeable exceptions of gauges in no
Abelian theories where the OT holds graph by graph are
axial gauges in the case of QCD, and the ‘‘unitary’’ gauge
theories with massive gauge bosons. Nevertheless, i
known that in both cases the Green’s functions obtained h
bad renormalization properties. In the case of QCD,
gluon self-energy computed within the axial gauges is
multiplicatively renormalizable@16#. Furthermore, spurious
infrared divergences appear in the Feynman parameter
grations, which are artifacts and cancel out only when phy
cal quantities are computed@31#. As for the unitary gauges, i
is well-known that the two-, three-, and four-point functio
computed in this scheme are non-renormalizable. As
been demonstrated in a series of papers@18,19,22# however,
a strong version of the OT very analogous to Eq.~3.1! can be
realized in the context of non-Abelian gauge theories at
loop, if the amplitudes are rearranged according to the
algorithm.

Specifically, let us apply the PT on both sides of Eq.~3.1!:
The PT rearrangement of the tree-level cross sections app
ing in the RHS gives rise to new process-independent~self-
energy-like! parts, which are equal to the imaginary part
the effective self-energies obtained by the application of
PT on the one-loop expression for the amplitude^auTub& on
the LHS. The same result is true for the vertex- and box-l
parts, defined by the PT on either side of Eq.~3.1!. In other
2-6
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words, effective sub-amplitudes obtained after the appl
tion of the PT satisfy the OTindividually, e.g.,

Im~^auTua&PT
j !5

1

2 (
f
E ~^ f uTua&^ f uTua&* !PT

j , ~3.2!

where the subscript ‘‘PT’’ indicates that the PT rearrang
ment has been carried out, and the indexj 5S,V,B, distin-
guishes between effective self-energy, vertex, and boxes
spectively.

Turning to a specific example involving the Higgs boso
let us apply the previous arguments to the case of the pro
t t̄→t t̄ . At the tree-level this process can be mediated b
photon, aZ boson, and a possibly resonantH scalar. We
focus on the sub-amplitude which contains two intermed
W bosons. In that case the OT yields

Im^t t̄ uTut t̄ &5
1

2 E dXLIPŜ t t̄ uTuW1W2&^W1W2uTut t̄ &* ,

~3.3!

where the Lorentz-invariant phase-space~LIPS! measure is
defined as

E dXLIPS5
1

~2p!2 E d4k1E d4k2d1~k1
22MW

2 !

3d1~k2
22MW

2 !d~4!~q2k12k2!, ~3.4!

and d1(k22m2)[u(k0)d(k22m2). We now introduce the
abbreviations M5^t(p1) t̄ (p2)uTut(p1) t̄ (p2)& and T
5^t(p1) t̄ (p2)uTuW1(k1)W2(k2)&, and focus on the RHS
of Eq. ~3.3!. Diagrammatically, the amplitudeT consists of
two distinct parts: ans-channel amplitude,Tsmn , which is
given in Figs. 3~a! and 3~b!, and at-channel amplitude,Ttmn ,
which depends on theb quark propagator, as shown in Fi
3~c!. The subscript ‘‘s’’ and ‘‘ t’’ refers to the corresponding
Mandelstam variables, i.e.,s5q25(p11p2)25(k11k2)2,
and t5(p12k1)25(p22k2)2. Tsmn can be further decom
posed into two differents-exchange amplitudes: one med
ated by a Higgs boson, denoted byT smn

H , and one mediated
by the two neutral gauge bosonsg andZ, denoted byT smn

V ,
with V5g,Z. The explicit form of the above amplitude
reads:

T smn
V 52

gw
2

2 (
V5g,Z

v̄~p2!gr~gv
V1ga

Vg5!u~p1!

3UV
rl~q!Glmn~q,k1 ,k2!, ~3.5!

FIG. 3. Feynman diagrams pertaining to the processt t̄
→W1W2.
05300
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T smn
H 5

gw
2

2
mtv̄~p2!u~p1!DH~q!gmn , ~3.6!

T t
mn52

gw
2

2
v̄~p2!gnPL

1

p” 12k”12mb
g mPL u~p1!,

~3.7!

with DH(q)5(q22MH
2 )21, gv

g54 sin2uw /3, ga
g50, gv

Z

51/22gv
g , ga

Z521/2, and

Glmn~q,k1 ,k2!5~k22k1!lgmn2~q1k2!mgln

1~q1k1!ngml . ~3.8!

In Eq. ~3.5!, UZ
rl(q) denotes the propagator of theZ boson in

the unitary gauge, andUg
rl(q) is the photon propagator in a

arbitrary gauge. The gauge dependence of the photon is t
ally canceled, as soon asT smn

V is contracted with the polar
ization vectors of theW bosons. With the definitions given
above, the RHS of Eq.~3.3! becomes

Im M5T mnQmr~k1!Qns~k2!T rs*

5@T smn
V 1T smn

H 1Ttmn#Qmr~k1!Qns~k2!

3@T srs
V 1T srs

H 1Ttrs#* , ~3.9!

where

Qmn~k!52gmn1
kmkn

MW
2 ~3.10!

is theW polarization tensor. Obviously,kmQmn(k)50, when
k25MW

2 . Furthermore, in Eq.~3.9!, we omit the integration
measure 1/2*dXLIPS.

Since our main interest lies in the Higgs-boson-media
interaction contained in the transitiont t̄→t t̄ , we wish to
isolate the part which depends on the Higgs boson. In do
so particular care is needed, because, despite appeara
thet-channel amplitudeT t

mn contains contributions which ar
related to the Higgs-boson interaction. These contributi
emerge by virtue of the following WI:

k1
m k2

n

MW
2 Ttmn5T P

H1¯ ,

T P
H52

gw
2

4

mt

MW
2 v̄~p2!u~p1!,

~3.11!

shown schematically in Fig. 2. The above WI is triggered
the longitudinal momentak1

m and k2
n , originating from the

polarization tensorsQmr(k1) and Qns(k2), respectively.
The ellipses in Eq.~3.11! denote additional contribution
which are not related to the Higgs boson, i.e., their coupl
to the external fermions isnot proportional tomt . Notice
that the combined action ofboth k1

m andk2
n is necessary, in

order for the piece related to the Higgs boson to appear.
2-7
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We then proceed to carry out the multiplication on t
RHS of Eq. ~3.9! ~we suppress Lorentz indices!. To begin
with, the termT s

VQ(k1)Q(k2)T s
V* has no dependence o

the Higgs boson, and we can discard it. In addition, the te
T s

HQ(k1)Q(k2)T s
V* and T s

VQ(k1)Q(k2)Tt give Higgs-
boson related pieces, which are however antisymmetric
der the exchangek1↔k2 , and therefore vanish upon th
symmetric phase-space integration. This may be readily v
fied, if one employs the following two identities:

Glmn~q,k1 ,k2!Qmr~k1!Qr
n~k2!5F ~q2!2

4MW
4 23G~k12k2!l ,

~3.12!

k1
m k2

n Glmn~q,k1 ,k2!5
q2

2
~k12k2!l .

~3.13!

This last result is in agreement with earlier observations@25#,
that any non-vanishingZH transition would lead toCP vio-
lation, and therefore, it should be absent in aCP-invariant
theory, such as the bosonic part of the bare Lagrangian o
SM. Finally, the part of Eq.~3.9! related to the Higgs boso
reads:

Im MHiggs5Q~k1!Q~k2!T s
HT s

H* 1@Q~k1!Q~k2!

3~T s
HT t* 1TtT s

H* 1TtT t* !#Higgs. ~3.14!

This last expression will be now separated into two disti
pieces as follows:

Im MHiggs5Im M̂self
H 1ImM̂vert

H , ~3.15!

i.e., a universal, self-energy-like piece, ImM̂self
H , which does

not depend on the propagator of theb quark, and a vertex-

like piece ImM̂vert
H , which explicitly contains theb quark

propagator. The propagator-like contribution may be writ
as

Im M̂self
H 5T smn

H Qml~k1!Qnr~k2!T slr
H* 1S 1

2
gmn1

k1
m k2

n

MW
2 D

3~T smn
H T P

H* 1T P
HT smn

H* !1T P
HT P

H* . ~3.16!

The closed expressions for the terms on the RHS of
~3.16! are as follows:

T smn
H Qml~k1!Qnr~k2!T slr

H*

5S gmt

2MW
D 2

v̄~p2!u~p1!DH~q!S g2

4 D
3@~q2!224q2MW

2 112MW
4 #DH~q!ū~p1!v~p2!,

~3.17!
05300
s

n-
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he

t

n

q.

S 1

2
gmn1

k1
m k2

n

MW
2 D T smn

H T P
H* 1c.c.

52S gmt

2MW
D 2

v̄~p2!u~p1!DH~q!S g2

4 D ~q22MH
2 !

3~q212MW
2 !DH~q!ū~p1!v~p2!, ~3.18!

T P
HT P

H* 5S gmt

2MW
D 2

v̄~p2!u~p1!DH~q!S g2

4 D
3~q22MH

2 !2ū~p1!v~p2!, ~3.19!

where the abbreviation c.c. stands for complex conjugat
After adding the above propagator-like contributions a
carrying out the twoW-boson phase-space integration, w
define the imaginary part of the effective PT self-energy
the Higgs boson in the conventional way, i.e., as the par
the above amplitude which is sandwiched between the
bare Higgs boson propagatorsDH(q). In this way we obtain

Im P̂~WW!
HH ~q2!5

aw

16

MH
4

MW
2 S 12

4MW
2

q2 D 1/2

3F114
MW

2

MH
2 24

MW
2

MH
4 ~2q223MW

2 ! G .
~3.20!

Notice the crucial cancellation of the (q2)2 terms; had such
terms survived, they would have given rise to a runni
width which would grossly contradict the ET~see also dis-
cussion in Sec. VI!. Equation~3.20! is in agreement with the
result reported in@25#.

We can now easily establish contact with the results of
previous section. Starting from Eq.~2.9!, we can arrive at
Eq. ~3.20! by using the following relation:

1

16p2 Im B0~q2,m1
2 ,m2

2!

52
1

16p2 ImH E
0

1

dx ln@m1
2x1m2

2~12x!

2q2x~12x!#J
5u@q22~m11m2!2#

1

16pq2 l1/2~q2,m1
2 ,m2

2!

5
1

2 E dXLIPS, ~3.21!

with l(x,y,z)5(x2y2z)224yz. Of course, for the case a
hand, we havem15m25MW . Conversely, we can recove
from Eq. ~3.20! the on-shell renormalized result of Eq.~2.9!
by means of a twice-subtracted~on shell! dispersion relation
@19,22#.
2-8
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The contribution to the PT Higgs self-energy, whic
comes from two intermediateZ bosons, may be obtained i
an analogous way. For definiteness, in Fig. 4 we plot se
rately the dependence of all the kinematic channels invol

in Im P̂HH(s) as a function of the center-of-mass~c.m.! en-
ergy As. The solid line corresponds to the total effect of
intermediate states. In Fig. 4~a!, we have displayed the re
sults of a light Higgs scenario with a massMH5300 GeV,
whereas predictions obtained for a heavy Higgs withMH

5700 GeV are presented in Fig. 4~b!. Notice that the absorp

tive part of the bosonic channels ImP̂(VV)
HH (s)5Im P̂(WW)

HH (s)

1Im P̂(ZZ)
HH (s), represented by a dash-dotted line in both plo

turns negative far above the resonant points5MH
2 , as can be

readily deduced from the closed expressions given in E

~2.9! and ~2.29!. Specifically, ImP̂(VV)
HH (s) turns negative

whenAs.430 GeV forMH5300 GeV, andAs.2 TeV for

MH5700 GeV. The dependence of2Im P̂(VV)
HH (s) on As is

indicated by a long-dash-dotted line. However, we must
mark that the total absorptive part of the Higgs boson s
energy stays always positive due to the large positive con
bution of the heavy top quark (mt5170 GeV). Thus, at c.m

FIG. 4. Dependence of ImP̂HH(s)/MHGH on As for individual
intermediate states.
05300
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,
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-
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energiesAs@MH , Im P̂HH(s) has the following asymptotic
behavior:

Im P̂HH~s!;
aws

8MW
2 ~3mt

224MW
2 22MZ

2!. ~3.22!

The fact that the bosonic contributions to the absorptive p
of the Higgs-boson self-energy is negative at larges is remi-
niscent of the PT gauge-boson self-energies in theories
asymptotic freedom, whose absorptive parts are also n
tive. For instance, the absorptive part of the PT~or BFM!
gluon self-energy in quark-less QCD has the exact same
ture, and, as a result, it does not admit the usual Ka¨llen-
Lehmann spectral representation. By analogy, far above
resonant point, the resummed Higgs-boson propagator l
its meaning as a description of the BW dynamics of t
unstable Higgs particle, but it rather serves as the ‘‘effect
charge’’ of the universal Higgs-mediated part of the ele
troweak interaction. In Sec. V C, we will take a closer loo
at this issue.

In the following, we study the resonant behavior of t
resummed Higgs-boson propagator

D̂H~s!5@s2MH
2 1P̂HH~s!#21, ~3.23!

within different approaches. For example,D̂H(s) may occur
in the processt t̄→H*→t t̄ . In Fig. 5, we display the depen
dence of the modulus of the resummed Higgs-boson pro
gator as a function of the c.m. energyAs. The solid line
refers to the result obtained in the PT resummation appro
whereas the dashed, dotted and dash-dotted lines corres
to resumming Higgs self-energies in the BFG withjQ
5100, 1000, and in the unitary gauge, respectively. Not
the characteristic presence of unphysical thresholds in
BFG, which manifest themselves as artificial resonances
can also be seen from Figs. 5~a! and 5~b! ~for MH5300 and
700 GeV, respectively!, in the unitary gauge the width in
creases ass2 and distorts the Higgs-boson lineshape. As
final remark, we point out that the usual description of u
stable particles by means of a constant width approa

where MH
2 2P̂HH(s) is replaced by the complex poleMH

2

2 iM HGH in D̂H(s) for any value ofs, leads in the limits

→0 to a non-vanishing ImD̂H(s), and therefore violates the
OT @18#.

IV. RENORMALIZATION GROUP ANALYSIS

The ultimate goal of this program is to provide a syste
atic framework for constructing physically meaningful Bor
improved approximations for resonant transition amplitud
In doing so, we have mainly focused on gauge-invarian
and unitarity, and shown how one can manifestly maint
such crucial properties even when resonant bosonic co
butions are considered. In the next two sections we turn
another important property, namely the invariance of
Born amplitudes under the renormalization group. In parti
lar, we will show explicitly that the amplitudes obtained b
2-9
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our resummation method are built out of renormalizatio
group-invariant structures. Furthermore, we will demonstr
how one can generalize the effective charge, a familiar c
cept in the context of gauge bosons such as theW and Z
bosons, to the case of the scalar Higgs boson. This sc
‘‘effective charge’’ constitutes a common component in e
ery Higgs-boson mediated process, regardless of the na
of incoming and outgoing states, and can thus be viewed
universal, process-independent entity, intrinsic to the Hi
boson.

This section is organized as follows: We first review t
concept of the effective charge in the context of QED; th
we discuss its generalization to the case of a non-Abe
gauge theory, such as QCD. The crux of this analysis is
by virtue of the WI’s present in gauge theories the effect
charge is both invariant under the renormalization group
process-independent. At the end of this section we discu
counter-example, i.e., the case of an asymptotically free
lar model in six space-time dimensions, and analyze the
sons which make the construction of an effective charge
possible. In particular, we explain why in this theory o
cannot reconcile invariance under renormalization group
process independence. Interestingly enough, the constru
of an effective charge in a scalar context becomes again

FIG. 5. MHGHuD̂H(s)u versus As in different resummation
schemes.
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sible after adding, and subsequently breaking spontaneo
a global symmetry, as we will show at the end of this se
tion.

A. Effective charge in QED

We start our discussion with the case of QED. The Ab
lian gauge symmetry of the theory gives rise to the fun
mental WI: qmGm,0(p,p1q)5S021(p1q)2S021(p),
whereGm,0 is the bare photon-electron vertex andS0(k) the
dressed electron propagator. The above identity is valid b
perturbatively to all orders, as well as non-perturbative
The requirement that the renormalized vertexGm5Z1Gm,0

and the renormalized self-energyS5Zf
21S0 satisfy the same

identity imposes the equality between the vertex renorm
ization constantZ1 and the electron wave-function renorma
ization constantZf , namelyZ15Zf . As a result, the photon
wave-function renormalization constantZA and the charge
renormalization constantZe5Z1Z2

21Z3
21/2 are related by the

following fundamental equation:

Ze5ZA
21/2. ~4.1!

The unrenormalized photon self-energy isPmn
0 (q)

5(2q2gmn1qmqn)P0(q2), where P0(q2) is a GFP-
independent function to all orders in perturbation theory. A
ter performing the standard Dyson summation, we obtain
dressed propagator between conserved external currents

Dmn
0 ~q!5

2gmn

q2@11P0~q2!#
. ~4.2!

The above quantity is universal, in the sense that is proc
independent. We can now form the following RGI combin
tion:

Rmn
e ~q2![aeff~q2!

2gmn

q2 , ~4.3!

where

aeff~q2!5
~e0!2

4p

1

11P0~q2!
5

e2

4p

1

11P~q2!
. ~4.4!

The last equality in Eq.~4.4! can be readily obtained if one
uses the relations between renormalized and unrenor
ized parameters:e25(Zf

2ZA /Z1
2)(e0)2, 11P(q2)5ZA@1

1P0(q2)#, and Z15Zf . For q2@me
2 , aeff(q

2) coincides
with the one-loop running coupling of the theory. We mu
remark that the effective charge has a non-trivial depende
on the masses of the particles appearing in the quan
loops, which allows its reconstruction from physical amp
tudes @22#. In general, the transition amplitude of a QE
process, such ase1e2→e1e2, consists of two RGI combi-
nations: a process-independent one, namely the effec
QED charge defined above, and a process-dependent
namely the sum of vertex and box diagrams.
2-10
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B. Effective charge in QCD

In non-Abelian gauge theories the crucial equalityZ1
5Zf does not hold in general. Furthermore, in contrast to
photon case, the gluon vacuum polarization depends on
GFP, already at one loop order. These facts make the
Abelian generalization of the QED concept of the effect
charge non-trivial. The possibility of defining an effectiv
charge for QCD in the framework of the PT was discuss
first by Cornwall@15#, and was further investigated in a s
ries of recent papers@18,32,33#.

The PT rearrangement of physical amplitudes gives ris
a GFP-independent effective gluon self-energy, and rest
at the same time the equalities

Ẑ15Ẑf , Ẑg5ẐA
21/2, ~4.5!

where the carets denote the corresponding renormaliza
constants in the PT, andg is the QCD coupling. Having
restored QED-like WI’s and GFP independence, and us
the additional fact that the one-loop PT self-energy
process-independent@34# and can be Dyson-resummed to a
orders@18,33#, the construction of the universal RGI comb
nation and the corresponding QCD effective charge is imm
diate. We have

R̂mn
g ~q2![as,eff~q2!

2gmn

q2 , ~4.6!

where

as,eff~q2!5
~g0!2

4p

1

11P̂0~q2!
5

g2

4p

1

11P̂~q2!
. ~4.7!

It is interesting to note that in the BFM formulation of QC
the Green’s functions satisfy by construction QED WI’s,
all orders in perturbation theory. On the other hand, the B
Green’s functions still depend on the GFPjQ . In the case of
the gluon vacuum polarization this dependence onjQ is
trivial, since it does not affect the prefactor of the leadi
logarithm, and is just an additive constant. This constant m
be considered as an arbitrariness in the renormaliza
scheme, and will hence disappear when forming the sche
independent RGI quantity given in Eq.~4.6!. This is however
not true in the case of massive gauge bosons; there, the
pendence on the GFP cannot be removed by means o
appropriate choice of renormalization scheme.

C. The scalar case

The ability to define aprocess-independentRGI quantity
is not a common characteristic of all field theories; for e
ample this is not what happens in the case of pure sc
theories. However, if the scalar theory is spontaneously b
ken, then a RGI effective charge may be defined for
Higgs boson, which is inversely proportional to its vacuu
expectation value~VEV!. In the following, we shall examine
both situations.

Let us first study (f3)6 , i.e., scalarf3 in six space-time
dimensions. The theory is asymptotically free, gauge inv
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ance is of course not an issue, and just as in QED, the
holds for individual Feynman diagrams, and the self-ene
can be formally Dyson-resummed. However, unlike QED
one was to use this formally resummed self-energy insid
tree-level amplitude, the resulting expression would not
renormalization group invariant. The reason is that there
no QED-like WI enforcing the equality between vertex a
wave-function renormalization. As a result of that, it is on
after the vertex correction have been included that the res
ing combination becomes a RGI combination. The drawb
of this is that the inclusion of the vertices introduces proce
dependence. In other words, in the (f3)6 case it is not pos-
sible to construct a RGI quantity which is, at the same tim
process independent, i.e., one cannot reconcile process
pendence and renormalization group invariance@35#.

To see this in detail, let us study the Veltman model@36#
at d56 instead ofd54. This theory contains a light scala
f, and a heavy scalar,F, with a massMF.2Mf . The
heavy scalar decays into twof’s, via the interaction term in
the Lagrangian

Lint5
l

2
f2F, ~4.8!

wherel is a non-zero coupling constant. The wave-functi
renormalization constantsZf andZF , corresponding to the
fields f andF, respectively, and the vertex renormalizatio
Zf2F have been calculated in the minimal subtracti
scheme@37#. They are

Zf5ZF511S 1

6D g2

64p3e
, Zl511

g2

64p3e
. ~4.9!

Clearly, one hasZFÞZl . Of course, since the pole terms o
ZF andZl are different, the above inequality will be true i
any other renormalization scheme. Consequently, for
charge renormalizationZl , defined by the equationl0

5Zll, we have that Zl5Zf2FZf
21ZF

21/25Zf2FZF
23/2

ÞZF
21. As a result, for the combination (l0)2D0(s), which

is the direct analog of the QED effective charge, we ha
that (l0)2D0(s)Þl2D(s). Therefore, in order to arrive at
RGI expression, the vertex correction must be supplemen
So, the combination

f0f0G0D0G0f0f05ffGDGff ~4.10!

is a RGI quantity, but unlike the QED case, itcannot be
written as the product of a process-independent an
process-dependent part, which are individually RGI.

To explore further how the process-dependence enter
is instructive to add yet another set of scalar fieldsx, such
that MF.2Mx.2Mf , and an extra interaction term

Lint8 5
g

2
x2F, ~4.11!

whereg is another non-zero coupling constant, withgÞl in
general. We will ignore for simplicity additional interactio
terms such asf3, x3, f2x, x2f. Several of them may be
eliminated by imposing an extra mirror symmetry of the ty
2-11
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f→2f andx→2x; in any case the presence of such ter
does not alter our conclusions qualitatively@38#.

In order to mimic gauge theories, we next setg5l. Let
us consider two different processes,ff→ff and xx
→xx, both mediated by ans-channel resonantF.
The RGI quantities for the two process
are ffGf2F(s,MF ,Mf)D(s)Gf2F(s,MF ,Mf)ff and
xxGx2F(s,MF ,Mx)D(s)Gx2F(s,MF ,Mx)xx, where we
have explicitly displayed the dependence of the verti
Gf2F andGx2F on the masses. It is now easy to see that
process dependence enters through the simple fact thatGf2F

depends onMf but not onMx , whereas the reverse is tru
for Gx2F.2 Evidently, there is no RGI quantity common i
these two amplitudes.

Let us now consider a four-dimensionalF4 scalar theory
which has a U~1! global invariance and includes a fermionf.
The fermion f is introduced in order to prevent the scal
theory from being super-renormalizable, so that one is a
to study non-trivial renormalization effects. The part of t
Lagrangian related to the Higgs potential of the model
the form

LV5m2F* F1l~F* F!2. ~4.12!

The interaction of the scalarF to the fermionf is given by

Lint5gF f̄ L f R1H.c. ~4.13!

The global U~1! symmetry ofLV in Eq. ~4.12! breaks down
spontaneously and the resulting theory resembles the
gauged SM, where the fermionf may represent for exampl
the top quark. Specifically, the fieldF must be expanded
around its VEV, i.e.,F5(v1H1 iJ)/&, where the fieldH
is aCP-even Higgs boson with massMH5&m andJ is the
masslessCP-odd Goldstone boson associated with t
breaking of the continuous U~1! symmetry. After the SSB of
the U~1! symmetry, the fermionf acquires a massmf

5gv/&. If MH.2mf , then the decay processH→ f f̄ is
kinematically allowed and the Higgs boson becomes an
stable particle.

Beyond the Born approximation, the wave-function ren
malization of the Higgs fieldZF

1/2 renders the VEV^F0&
[v0 UV finite, viz., v05ZF

1/2(v1dv), with vanishing diver-
gent part (dv)div50. As a consequence, the express
D0(s)/(v0)2, involving the resummed Higgs-boson propag
tor is RGI, i.e.,

1

~v0!2 D0~s!5
1

v2 D~s!. ~4.14!

It is then obvious that the VEV of the fieldF in a SSB scalar
theory plays an instrumental role in defining a RGI effect
charge for the Higgs interactions, very much in analogy
the QED and QCD cases discussed earlier. The Higgs

2It is elementary to verify that the functional dependence of
vertex functions on the respective masses is non-trivial.
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couples universally to matter with a ‘‘charge’’ inversely pr
portional to its VEV in the symmetric U~1! limit. If one now
wishes to embed this scalar SSB model into a gauge the
the situation becomes more involved. In fact, within conve
tional gauge-fixing schemes such asRj gauges,dv is not UV
finite and hence, Eq.~4.14! does no longer hold. In the nex
section, we shall discuss the possibility of identifying RG
effective charges for the gauge and Higgs bosons in the e
troweak sector of the SM.

V. EFFECTIVE CHARGES IN THE ELECTROWEAK
SECTOR OF THE SM

In the previous section we established in detail the con
tions which enable the construction ofprocess-independen
RGI combinations for the gauge bosons of both Abelian a
non-Abelian theories~QED and QCD, respectively!. In this
section we extend this analysis to the electroweak secto
the SM. First, we review how the construction of effecti
charges associated to the gauge bosons of the theory is
sible by virtue of the WI’s relating the PT effectiven-point
functions @22#. Furthermore, we discuss for the first tim
various subtleties related to the definition of theW and Z
effective charges, which originate from the fact that the c
responding gauge bosons are unstable. We then turn to
case of the Higgs boson and examine the possibility of c
structing aprocess-independentRGI quantity for the case o
the Higgs boson. The answer to this question is by no me
obvious, since the Higgs boson results from the SSB of
gauge group SU(2)L ^ U(1)Y , and gauge-fixing and ghos
terms spoil in general the equality~4.14!. However, it turns
out that because of the PT WI’s, it is possible to construc
Higgs-boson ‘‘effective charge,’’ in direct analogy to th
gauge boson case.

A. The PT Ward identities of the SM

It is well-known that in the PT effectiven-point functions
satisfy ~at least at one loop! naive, tree-level like WI’s, as
happens in QED. This is to be contrasted to the conventio
n-point functions, which in general satisfy Slavnov-Tayl
identities, which involve the Green’s functions of the u
physical ghosts of the theory. The PT WI’s are a direct co
sequence of the requirement that the S-matrix be GFP in
pendent. The PT WI’s for the electroweak sector of the S
have been derived in@26,18#. In fact, based on these WI’s, i
is possible to prove a stronger version of this GFP indep
dence of the S-matrix: The S-matrix satisfies the ‘‘du
gauge-fixing property,’’ which states that one is free
choose different GFP’s for the gauge bosons inside and
side the quantum loops@39#. The above property is intrinsic
to the S-matrix, and is not linked to any special gauge-fix
procedure. Its derivation is based on the observation that
PT rearrangement gives rise to one-loopn-point functions
for which all dependence on the GFP stemming from
gauge bosons inside the quantum loops has disappearedre-
gardlessof the choice of the GFP for the gauge bosons o
side the loops. For the final cancellation of this latter gau
dependence to go through, then-point functions constructed
via the PT must satisfy tree-level WI’s. Explicit calculation

e

2-12
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have demonstrated that this is indeed the case. The a
‘‘dual gauge-fixing property’’ holds for the unrenormalize
S-matrix. If one imposes the requirement that the renorm
ized PTn-point functions satisfy exactly the same set of W
as their unrenormalized counterparts, one then concludes
the ‘‘dual gauge-fixing property’’ holds also after renorma
ization. After enforcing this last requirement one finally a
rives at a set of conditions relating the various wav
function- and coupling- renormalization constants of t
theory.

To see this in detail, we start by listing the relations b
tween the bare and renormalized parameters for the e
troweak sector of the SM. We indicate all~bare! unrenormal-
ized quantities with the superscript ‘‘0’’. For the masses
have

~MW
0 !25MW

2 1dMW
2 , ~MZ

0!25MZ
21dMZ

2 ,

~MH
0 !25MH

2 1dMH
2 , mf

05mf1dmf . ~5.1!

In addition, the wave-function renormalizations are given

Wm
6,05ẐW

1/2Wm
6 , Zm

0 5ẐZ
1/2Zm ,

G6,05ẐG6
1/2 G6, G0,05ẐG0

1/2G0,

H05ẐH
1/2H, f L~R!

0 5Ẑf
L~R!1/2f L~R! ,

gw
0 5Ẑgw

gw , cw
0 5Ẑcw

cw , ~5.2!

with

Ẑcw
5S 11

dMW
2

MW
2 D 1/2S 11

dMZ
2

MZ
2 D 21/2

. ~5.3!

If we expandẐcw
perturbatively, we have

Ẑcw
511

1

2

dcw
2

cw
2 1 ¯ , ~5.4!

with

dcw
2

cw
2 5

dMW
2

MW
2 2

dMZ
2

MZ
2 , ~5.5!

which is the usual one-loop result. The carets in the ab
formulas indicate as usual that both the calculations as
as the renormalization procedure are carried out in the
framework.

Imposing the requirement that the PT Green’s functio
should respect the same WI’s before and after renorma
tion we arrive at the following relations:

ẐW5Ẑgw

22 , ~5.6!

ẐZ5ẐWẐcw

2 , ~5.7!
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ẐG05ẐG65ẐWS 11
dMW

2

MW
2 D , ~5.8!

Ẑu
L5Ẑd

L . ~5.9!

In deriving the above expressions, the followingexactalge-
braic identity may be used

S 11
dMW

2

MW
2 D S 12

dMW
2

~MW
0 !2D 51. ~5.10!

It is important to notice that the relations listed above a
exact to all orders in perturbation theory. Instead, in th
usual perturbative treatment, one setsẐi

1/2511 1
2 dẐi , for i

5W,Z,H, f , and neglects higher order terms. For examp
at one loop order, i.e., if we neglect terms of orderg4 and
higher, the relation Eq.~5.8! becomes

dẐG05dẐG65dẐW1
dMW

2

MW
2 . ~5.11!

It is instructive to show with an explicit example how th
relations in Eq.~5.8! may be derived. To this end, we firs
define the proper unrenormalized one-loop vertices:

Ḡm
W1ūd,0~q,pū ,pd![G0m

W1ūd,01Ĝm
W1ūd,0~q,pū ,pd!,

ḠG1ūd,0~q,pū ,pd![G0
G1ūd,01ĜG1ūd,0~q,pū ,pd!,

~5.12!

whereG0m
W1ūd,0 and Ĝm

W1ūd,0 are the tree-level and one-loo

PT W1ūd vertices, respectively. Correspondingly,G0
G1ūd,0

and ĜG1ūd,0 are the Born-level and one-loop PTG1ūd ver-
tices. Furthermore, if one neglects quark mixing, the b
dressedu- andd-type quark propagators are given by

Ŝu
0~pu!5@p” u2mu

01Ŝ ūu,0~pu!#21,

Ŝd
0~pd!5@p” d2md

01Ŝ d̄d,0~pd!#21. ~5.13!

Because of the fact that the bare effective PT vertices
self-energies satisfy tree-level WI’s, one then has

qmḠm
W1ūd,0~q,pū ,pd!1MW

0 ḠG1ūd,0~q,pū ,pd!

52
igw

0

A2
@Ŝu

021~pū!PL2PRŜd
021~pd!#. ~5.14!

The renormalized quantities are defined as follows:

1

gw
Ḡm

W1ūd5ẐW1ūd

1

gw
0 Ḡm

W1ūd,0 ,

1

gw
ḠG1ūd5ẐG1ūd

1

gw
0 ḠG1ūd,0, ~5.15!
2-13
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Ŝd
0~pd!5Ẑd

1/2Ŝd~pd!Ẑd
1/2†,

Ŝu
0~pū!5Ẑu

1/2Ŝu~pū!Ẑu
1/2†, ~5.16!

where Ẑf
1/25Ẑf

L1/2PL1Ẑf
R1/2PR and ẐG1ūd5ẐG1ūd

L
PL

1ẐG1ūd
R

PR . Then, the vertex renormalization constan

ẐW1ūd and ẐG1ūd
L,R are related to the renormalization co

stants introduced in Eq.~5.2! as follows:

ẐW1ūd5Ẑgw
ẐW

1/2Ẑd
L1/2Ẑu

L1/2, ~5.17!

ẐG1ūd
L

5Ẑgw
ẐG1

1/2 Ẑd
L1/2Ẑu

R1/2,

ẐG1ūd
R

5Ẑgw
ẐG1

1/2 Ẑu
L1/2Ẑd

R1/2. ~5.18!

After replacing the bare by the renormalized quantities in
~5.14! by means of Eqs.~5.16!, ~5.17!, ~5.18!, and ~5.1! for
the mass renormalization, we require that the renormali
WI retains its original form, i.e.,

qmḠm
W1ūd~q,pū ,pd!1MWḠG1ūd~q,pū ,pd!

52
igw

&

@Ŝu
21~pū!PL2PRŜd

21~pd!#. ~5.19!

The above requirement leads to relations among the re
malization constants within the framework of perturbati
theory. From the WI involving the chirality structur

PRḠm
W1ūd,0PL in Eq. ~5.14!, we thus obtain thatẐgw

5ẐW
21/2

and Ẑu
L5Ẑd

L , which are Eqs.~5.6! and ~5.9!, respectively.

Furthermore, imposing that the form of WI forPLḠm
W1ūd,0PL

or PRḠm
W1ūd,0PR remains the same after renormalizati

yields ẐG1
1/2

5ẐW
1/2(11dMW

2 /MW
2 )1/2, which is the last equal-

ity of Eq. ~5.8!.
Following an exactly similar procedure we can derive t

rest of the relations listed in Eqs.~5.7! and ~5.8!.

B. Effective charges for the gauge bosons

In this sub-section we show how the relations among
renormalization constants derived above enable one to
struct a process-independentRGI quantity for the gauge
bosons of the theory. For definiteness, we concentrate on
W boson, but similar arguments apply for the photon and
Z boson.

First, we shall show that the bare and renormalized

resummed W-boson propagators,Dmn
W,0(q) and D̂mn

W (q), re-
spectively, satisfy the following relation

Dmn
W,0~q!5ẐW D̂mn

W ~q!. ~5.20!

We start with the most general form ofD̂mn
W,0(q) given by

D̂mn
W,0~q!5D̂T

W,0~q2!tmn1D̂L
W,0~q2!l mn , ~5.21!
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where

tmn~q!52gmn1
qmqn

q2 , l mn~q!5
qmqn

q2 .

As was shown in detail in@18#, if we decompose the bar

one-loop PTW-boson self-energyP̂mn
W,0(q) in the form

P̂mn
W,0~q!5P̂T

W,0~q2!tmn1P̂L
W,0~q2!l mn , ~5.22!

then in the PT resummation formalism the quantit

D̂T
W,0(q2) and D̂L

W,0(q2) are given by

D̂T
W,0~q2!5@q22~MW

0 !21P̂T
W,0~q2!#21, ~5.23!

D̂L
W,0~q2!5@~MW

0 !22P̂L
W,0~q2!#21. ~5.24!

The standard renormalization procedure is to define the w
function renormalization,ẐW , by means of the transvers
part of the resummedW-boson propagator:

ẐW @q22~MW
0 !21P̂T

W,0~q2!#5q22MW
2 1P̂T

W~q2!,
~5.25!

where the explicit form ofẐW depends on the renormaliza
tion scheme. Similarly, the propagator of the associa
would-be Goldstone bosonG1 is renormalized as usual, i.e

D̂G1,0~q2!5@q22V̂0~q2!#215ẐG1@q22V̂~q2!#21,
~5.26!

with

G6,05ẐG1G6. ~5.27!

Note that we only need to carry out a wave-function ren

malization for the Goldstone boson self-energyV̂0(q2) ~with

tadpole and seagull graphs included!, since V̂0(0)50, in
agreement with the Goldstone theorem, which states
Goldstone bosons are massless to all orders in perturba
theory. The latter is a result of the gauge invariance of
diagrammatic PT method.

From the PT WI’s involving the self-energies, we have

P̂L
W,0~q2!5

~MW
0 !2

q2 V̂0~q2!, ~5.28!

which implies that

D̂L
W,0~q2!5

q2

~MW
0 !2 D̂G1,0~q2!. ~5.29!

This last identity allows us to write the resummedW-boson
propagator in the form
2-14
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D̂mn
W,0~q!5ẐW@D̂T

W~q2!tmn1ẐW
21D̂L

W,0~q2!l mn#

5ẐWF D̂T
W~q2!tmn1ẐW

21ẐG1S 11
dMW

2

MW
2 D 21

3
q2

MW
2 D̂G1

~q2!l mnG . ~5.30!

Imposing that Eq.~5.28!, or equivalently Eq.~5.29!, holds
for the renormalized quantities as well, we find

D̂mn
W,0~q!5ẐWF D̂T

W~q2!tmn1ẐW
21ẐG1

3S 11
dMW

2

MW
2 D 21

D̂L
W~q2!l mnG . ~5.31!

Finally, using the last equality of Eq.~5.8! we arrive at Eq.
~5.20!.

It is now straightforward to see that theprocess-
independentRGI quantity for theW boson is given by

R̂mn
W,0~q!5

~gw
0 !2

4p
D̂mn

W,0~q!5
~gw!2

4p
D̂mn

W ~q!5R̂mn
W ~q!.

~5.32!

At this point one might be tempted to separate the ab
quantity into the product of a dimension-full kinematic fact
and a dimensionless quantity, which could be identified w
an effective charge, in direct analogy to the QED and Q
cases. This kind of factorization may however introduce
tifacts into both components, which are absent from
original RGI expression. For example, take the simple c
where R̂mn

W is sandwiched between conserved external c

rents~massless external fermions!, and let us decomposeR̂mn
W

in the form

R̂mn
W ~q!5aw,eff~q2!

2gmn

q22 s̄~q2!
, ~5.33!

where s̄(q2) denotes the position of the physical compl
pole of theW boson which appears on the second Riema
sheet. Two possible parametrizations of the pole ars̄

5MW
2 2 iM WGW ~constant imaginary part! or s̄(q2)5MW

2

2 iq2GW /MW (q2-dependent imaginary part!, whereGW is
the constant width of theW boson on the pole. In the firs
case, we see that atq250 for example, the kinematic facto
is complex, whereas the RGI quantity is real, i.
Im R̂mn

W (0)50, since, by construction, it only develops a
imaginary part at the lowest physical thresholdq2.me

2 .
Consequently,aw,eff(0) is also imaginary, i.e., it contain
thresholds which are artifacts of the decomposition. The s
ond parametrization ofs̄(q2) does not have the above pro
lems, but still, the effective charge so defined contains e
neous information about the position of the various de
05300
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channels. Similar considerations apply to the case of thZ
boson, or other possible gauge bosons appearing in ex
sions of the SM.

Apart from identifying the process-independent R
quantity for theW bosonR̂mn

W (q) in Eq. ~5.32!, one can also
introduce process-dependent RGI quantities. For instanc
one-loop, thegW2W1 vertex may be written in the form

R̂mnl
gW2W1

~q,k2 ,k1!5S 4p

gw
2 D 1

e
Ḡmnl

gW2W1

~q,k2 ,k1!,

~5.34!

with

Ḡmnl
gW2W1

~q,k2 ,k1!5G0mnl
gW2W1

1Ĝmnl
gW2W1

~q,k2 ,k1!.
~5.35!

Here, G0mnl
gW2W1

and Ĝmnl
gW2W1

(q,k2 ,k1) are the tree-level
and one-loop PTgW2W1 couplings, respectively. The

quantityR̂mnl
gW2W1

(q,k2 ,k1) is UV finite and invariant under
the renormalization group. This can easily be shown
means of the one-loop PT WI, which can also be written i
RGI form, viz.,

qmR̂mnl
gW2W1

~q,k2 ,k1!5R̂nl
W21~k2!2R̂nl

W21~k1!.
~5.36!

This last equation shows how the action ofqm on R̂mnl
gW2W1

projects out the process-independent part of thegW2W1

vertex, which is related to theW-boson effective charge
Similarly, one can construct RGI combinations for all the P
vertices related to couplings, e.g.,gW2G1, ZW2W1,
ZG2G1, etc. In particular, at LEP2, it is very advantageou

to use the RGI expressionsR̂mnl
gW2W1

and R̂mnl
ZW2W1

, which
lead to UV finite form-factors for thegW2W1 andZW2W1

vertices.

C. The effective charge of the Higgs boson

We now proceed to extend the notion of the effecti
charge to the case of the Higgs boson. For this purpose
first express the unrenormalized Higgs-boson propagato
terms of the renormalized one as follows:

D̂H,0~q2!5@q22~MH
0 !21P̂HH,0~q2!#21

5ẐH@q22MH
2 1P̂HH~q2!#215ẐHD̂H~q2!,

~5.37!

whereMH may be defined to be the real part of the comp

pole position ofD̂H(q2). Following a procedure rather simi
lar to that given in Sec. V A, we should exploit the gau
symmetry of the SM, in order to deduce relations betwe
ẐH and the other renormalization constants.

We start again with the PT WI relating the one-loop ve
ticesHZG0 andHG0G0, i.e.,
2-15
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k1
mḠm

HZG0,0~q,k1 ,k2!1 iM Z
0ḠHG0G0,0~q,k1 ,k2!

52
gw

0

2cw
0 @„D̂H,0~q2!…212„D̂G0,0~k2

2!…21#, ~5.38!

where

D̂G0,0~k2!5@k22P̂G0G0,0~k2!#21

5ẐG0@k22P̂G0G0
~k2!#21

and

Ḡm
HZG0,0[G0m

HZG0,01Ĝm
HZG0,0 ,

ḠHG0G0,0[G0
HG0G0,01ĜHG0G0,0. ~5.39!

As before, in Eq.~5.39!, the subscript ‘‘0’’ denotes tree leve
couplings, while the caret indicates one-loop vertices
tained in the PT.

As usual, we write the unrenormalizedHZG0 and
HG0G0 vertices as a product of the renormalized ones an
vertex renormalization constant,

2cw

gw
Ḡm

HZG0
5ẐHZG0

2cw
0

gw
0 Ḡm

HZG0,0 ,

2cw

gw
ḠHG0G0

5ẐHG0G0

2cw
0

gw
0 ḠHG0G0,0. ~5.40!

Making use of the fact that the effectiveHZG0 andHG0G0

vertices are completely renormalized by a redefinition of
fields and the couplings given in Eq.~5.2!, we find

ẐHZG05Ẑgw
Ẑcw

21ẐZ
1/2ẐH

1/2ẐG0
1/2

5ẐH
1/2ẐG0

1/2, ~5.41!

ẐHG0G05Ẑgw
Ẑcw

21ẐH
1/2ẐG05ẐH

1/2ẐG0
1/2S 11

dMZ
2

MZ
2 D 1/2

. ~5.42!

In the last step of Eqs.~5.41! and ~5.42!, we have used the
relations given in Eqs.~5.6!–~5.8!.

In order that the PT WI in Eq.~5.38! maintains the same
form after renormalization, it is necessary to have

ẐH5ẐG0. ~5.43!

Employing Eqs.~5.6!, ~5.8!, and ~5.43!, it is easy to show
that
05300
-

a

e

R̂H,0~q2!5
~gw

0 !2

~MW
0 !2 D̂H,0~q2!

5F gw
2

MW
2 D̂H~q2!G Ẑg

2ẐHS 11
dMW

2

MW
2 D 21

5R̂H~q2!

~5.44!

is a process-independentRGI quantity, in close analogy to
the RGI quantity of theW bosonR̂mn

W (q). As a byproduct of

this, we also find thatR̂G1
(k2)5(gw

2 /MW
2 )D̂G1

(k2) and

R̂G0
(k2)5(gw

2 /MW
2 )D̂G0

(k2) are invariant under the renor
malization group. Hence, we conclude that the quan
R̂H(q2) provides a natural generalization of the concept
the effective charge in the case of the Higgs boson. I
interesting to notice the exact analogy between the form
the Higgs boson effective charge of Eq.~5.44! obtained
within a theory with a non-Abelian gauge symmetry such
the SM, and that of Eq.~4.14! derived in the context of a
much simpler model with Abelian global~un-gauged! sym-
metry.

Finally, a direct derivation of the above general res
may be obtained if one adopts the symmetric formulation
the classical action in the BFM@40#. Within this formulation
one is led to the minimal on-shell scheme, with the relev
renormalization constants satisfying

F̂05ZF̂
1/2

F̂, v̂05ZF̂
1/2

~ v̂1d v̂ !. ~5.45!

Using the above relations, and the additional fact that, du
the background symmetry, in this formulationd v̂50, one
can immediately show that

~ v̂0!22 ^0uT:F̂0~x!F̂0~y!:u0&5 v̂22^0uT:F̂~x!F̂~y!:u0&,
~5.46!

which is Eq.~5.44!. Even though the analysis of this subse
tion which led to Eq.~5.44! is more general since it does no
rely on any particular gauge-fixing procedure or renormali
tion scheme, this latter derivation within the symmetric BF
framework has the advantage of directly generalizing
construction of the scalar effective charge given for the
model of Sec. IV C to the realistic case of the SM.

VI. DIAGRAMMATIC ANALYSIS
OF THE EQUIVALENCE THEOREM

Cornwall, Levin and Tiktopoulos, and shortly afterwar
Vayonakis, showed that at very high energies the amplit
for emission or absorption of a longitudinally polarize
gauge boson becomes equal to the amplitude in which
gauge boson is replaced by the corresponding would
Goldstone boson@13#. The above statement is a consequen
of the underlying local gauge invariance of the SM, and
known as the equivalence theorem~ET!; it has been proven
to hold to all orders in perturbation theory for multiple a
sorptions and emissions of massive vector bosons@14#. Com-
pliance with this theorem is a necessary requirement for
resummation algorithm, since any Born-improved amplitu
2-16
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which fails to satisfy it is bound to be missing importa
physical information. The reason why most resummat
methods are at odds with the ET is that in the usual diagr
matic analysis the underlying symmetry of the amplitudes
not manifest; just as happens in the case of the OT,
conventional sub-amplitudes defined in terms of Feynm
diagrams donot satisfy the ET individually. The resumma
tion of such a sub-amplitude will in turn distort sever
subtle cancellations, thus giving rise to artifacts and unph
cal effects. Instead, as we will show in detail in this sectio
the PT sub-amplitudes satisfy the ETindividually. As is
common in the PT framework, the only non-trivial step f
accomplishing this is the proper exploitation of element
WI’s. In addition, the part of the Born-improved amplitud
containing the resummed Higgs boson self-energy~or the
RGI quantity defined in Sec. V C! satisfies the ETindepen-
dentlyof the rest of the~non-resummed! amplitude. This is
explicitly demonstrated by resorting almost exclusively
the fact that, in contrast to their conventional counterpa
the one-loop Higgs-boson vertices defined within the PT
isfy naive, tree-level WI’s.

The formal derivation of the ET is based on the obser
tion @14# that, by virtue of the Becchi-Rouet-Stora~BRS!
invariance of the theory, the connected transition amplitu
between physical states of any numbern of insertions of the
gauge-fixing termFa vanishes, i.e.,

^ f uT:Fa1~x1!Fa2~x2! . . . Fan~xn!:u i &con.50. ~6.1!

In the renormalizableRj gauges,Fa assumes the form

Fa~x!5]mVm
a ~x!1jaMVaGa~x!, ~6.2!

whereVm
a denotes the massive gauge boson, e.g.,W6 or Z,

Ga its corresponding would-be Goldstone boson, e.g.,G6 or
G0, ja its GFP, andMVa its mass. Since for energiesEV

@MV the longitudinal polarization vector«L
m(k) of the gauge

bosonV behaves as

«L
m~k!5

km

MV
1vm~k!, ~6.3!

with vm(k)5O(MV /EV), in the configuration space«L
m(k)

may be represented naively by the derivative]m /MV , which
in turn enables one to use the identities derived from
~6.1!. Beyond the tree level, one has in general to inclu
correction factors@41#, denoted here asKai, which take into
account renormalization effects. Finally, given that, due
the unitarity of the SM, amplitudes involving only would-b
Goldstone bosons cannot grow faster than a constant at
energies, one finally arrives at

T ~VL
a1 . . . VL

an ;X!5)
i 51

n

KaiT ~Ga1 . . . Gan;X!1O~M /E!,

~6.4!

whereVL
a[«L

mVm
a , andX denotes all other fields. The abov

equality represents the ET in its most basic form. Note t
the ET cannot give any interesting information for amp
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tudes which decrease in magnitude as 1/As or faster with
increasing energyE'As. In order to obtain non-trivial in-
formation for the energetically suppressed terms of or
M /As and their higher powers, one has to invoke the
called generalized ET~GET! @14#, whose derivation again
relies on the identities of Eq.~6.1!. In the case of amplitudes
with two longitudinalW1 bosons for example, the GET es
tablishes the following relation:

T @WL
1,m~k1!WL

2,n~k2!;X#

5K1K2T @G1~k1!G2~k2!;X#

1K1T @G1~k1!w2,n~k2!;X#

1K2T @w1,m~k1!G2~k2!;X#

1T @w1,m~k1!w2,n~k2!;X#, ~6.5!

and for two longitudinalZ bosons:

T @ZL
m~k1!ZL

n~k2!;X#5~K0!2T @G0~k1!G0~k2!;X#

1K0T @G0~k1!zn~k2!;X#

1K0T @zm~k1!G0~k2!;X#

1T @zm~k1!zn~k2!;X#, ~6.6!

where w6,m(k6)5«L
m(k6)2k6

m /MZ and zm(k1,2)5«L
m(k1,2)

2k1,2
m /MW are the energetically suppressed parts of the l

gitudinally polarizedW6 andZ bosons, respectively. In ad
dition, K6 and K0 are renormalization correction factor
mentioned above. In the Born approximation, they take
valuesK1521, K251, andK052 i , if the four-momenta
of the gauge bosons are incoming@42#, and reverse their sign
in the opposite case. Formulas analogous to Eqs.~6.5! and
~6.6! can be derived for an arbitrary number of longitudina
polarizedW andZ bosons. In the following, we will restric
ourselves to amplitudes involving two vector bosons only

Let us consider the processn(p1) n̄(p2)→ZL
m(k1)ZL

n(k2)
at the tree level, wheren is a Dirac neutrino with massm and
the four-momenta of theZ boson are defined to enter th
interaction vertices as shown in Fig. 6. The total matrix e
mentT (nn̄→ZLZL) is the sum of two amplitudes:

T ~nn̄→ZLZL!5T s
H~ZLZL!1Tt~ZLZL!, ~6.7!

where

T s
H~ZLZL!5«L

m~k1!«L
n~k2!T smn

H ~ZZ!, ~6.8!

FIG. 6. Resummation of the Higgs-mediated amplitude pe

nent tonn̄→ZZ.
2-17
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Tt~ZLZL!5«L
m~k1!«L

n~k2!Ttmn~ZZ!, ~6.9!

with

T smn
H ~ZZ!52 iG0mn

HZZ DH~k11k2! S gwm

2MW
D v̄~p2!u~p1!,

~6.10!

Ttmn~ZZ!52S gw

2cw
D 2

v̄~p2!S gnPL

1

p” 11k” 12m
gmPL

1gmPL

1

p” 11k” 22m
gnPLDu~p1!. ~6.11!

In Eq. ~6.10!, the tree-levelHZZ coupling is defined as
G0mn

HZZ5 igw MZ
2/MWgmn . The entire amplitude T(nn̄

→ZLZL) satisfies of course the GET~and hence the ET!.
What we wish to investigate here is whether the GET ho
for the Higgs-mediated part of the amplitudeindependently.
The reason we turn directly to the GET instead of the ET
simply that both theT s

H(ZLZL) of Eq. ~6.10! and the ampli-
tudeT s

H(G0G0) given by

T s
H~G0G0!52 iG0

HG0G0
DH~k11k2!S gwm

2MW
D v̄~p2!u~p1!,

~6.12!

whereG0
HG0G0

52 igwMH
2 /(2MW), decrease at very high en

ergies as 1/s, because of the presence of the Higgs-bos
propagator in thes channel. So, the ET in this case will on
furnish trivial information. Instead, according to the GE
@14#, additional amplitudes should be taken into accoun
one wishes to keep track of energetically suppressed term
orderMZ

2/s.
In order to address the question raised above, we

calculate the LHS of Eq.~6.6! explicitly, using full expres-
sions for the longitudinal polarization vectors involved, a
check whether the result so obtained coincides or not w
the sum of the Higgs-boson-dependent parts of the am
tudes appearing on the RHS of Eq.~6.6! ~with X5nn̄!. For
that purpose, we first write the longitudinal polarization ve
tor of the gauge bosonV in the covariant form

«L
m~k!5

1

2bMV
@~11b2!km2~12b2!k̃m#, ~6.13!

wherekm5(EV ,kWV) is the four-momentum of theV boson,
k̃m5km andb5ukWVu/EV is theV-boson velocity. It is conve-
nient to work in the c.m. system of the processnn̄
→ZL

m(k1)ZL
n(k2); in that case the polarization vector«L

m(k1)
of the Zm boson can be expressed in terms of the fo
momentak1

m andk̃1
m5k2

m , andb5(124MZ
2/s)1/2. Likewise,

«L
n(k2) is written in terms ofk2

n and k̃2
n5k1

n . To order
MZ

4/s2, the energetically subleading partzm(k1) of «L
m(k1) is

obtained by
05300
s
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zm~k1!5«L
m~k1!2

k1
m

MZ
52

2MZ

s
k2

m1OS MZ
4

s2 D .

~6.14!

Furthermore, the residual vectorzm(k1) has the following
properties:

zm~k1!k1
m52MZ , zm~k1!zm~k1!50. ~6.15!

Exactly analogous formulas and relations hold for«L
n(k2).

Using the decomposition~6.3! for «L
m,n(k1,2) and the proper-

ties ~6.15! for zm,n(k1,2), we find for the part of the ampli-
tude depending on the Higgs boson

T s
H~ZLZL!52T s

H~G0G0!1DT s
H1T s

H~zz!2T P
H~ZLZL!,

~6.16!

whereT s
H(zz)5zmznT smn

H (ZZ) and

DT s
H52S gwm

2MW
D S gwMZ

2

MW
DDH~k11k2!v̄~p2!u~p1!,

~6.17!

andT P
H(ZLZL) is the expression given in Eq.~3.11!, with mt

replaced bym. It is now straightforward to verify that

DT s
H52 iT s

H~zG0!2 iT s
H~G0z!, ~6.18!

with

T s
H~zG0!1T s

H~G0z!

5zm~k1!T sm
H ~ZG0!1zn~k2!T sn

H ~G0Z!

52 i @zm~k1!G0m
HZG0

1zn~k2!G0n
HG0Z#

3S gwm

2MW
DDH~k11k2!v̄~p2!u~p1!. ~6.19!

The tree-levelH(q)Zm(k1)G0(k2) coupling in Eq.~6.19! is

given byG0m
HZG0

5gw(q2k2)m /(2cw), with all momenta de-
fined as incoming. Clearly, the first three terms on the R
of Eq. ~6.16! are nothing but the sum of the Higgs-boso
dependent parts of the amplitudes

T @G0~k1!G0~k2!;nn̄#,

T @z~k1!G0~k2!;nn̄#1T @G0~k1!z~k2!;nn̄#

and

T @z~k1!z~k2!;nn̄#.

Evidently, the only reason preventingT s
H(ZLZL) from satis-

fying individually the GET is the presence of the ter
T P

H(ZLZL) on the RHS of Eq.~6.16!.
However, according to the PT, the genuine Higgs-bos

dependent part of the amplitude,T̂ s
H(ZLZL), is obtained after

recognizing that the momentak1
m and k2

n coming from the
polarization vectors of the longitudinalZ bosons can extrac
2-18
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a s-channel-like, Higgs-boson-dependent part from the n
resonant amplitudeTtmn , in exactly the same way as happe
in Eq. ~3.11!, namely

k1
m

MZ

k2
n

MZ
Ttmn~ZZ!5T P

H~ZLZL!1¯ , ~6.20!

where, as in Eq.~3.11!, the ellipses denote additional contr

butions not related to the Higgs boson. Thus,T̂ s
H(ZLZL)

5T s
H(ZLZL)1T P

H(ZLZL).

We now want to check ifT̂ s
H(ZLZL) satisfies the GET; for

that to happen one must show that

T̂ s
H~ZLZL!5T̂ s

H~G0G0!1T̂ s
H~G0z!1T̂ s

H~zG0!1T̂ s
H~zz!

52T s
H~G0G0!2 iT s

H~zG0!2 iT s
H~G0z!

1T s
H~zz!2T P

H~G0G0!2 iT P
H~G0z!

2 iT P
H~zG0!1T P

H~zz!, ~6.21!

where the amplitudesT P
H(G0G0), T P

H(G0z), T P
H(zG0), and

T P
H(zz) denote possible Higgs-boson-dependents-channel

pinch parts coming from thet-channel amplitudesTt(G
0G0),

Tt(G
0z), Tt(zG0), andTt(zz), respectively. It is easy to con

vince oneself however that T P
H(G0G0)5T P

H(G0z)
5T P

H(zG0)5T P
H(zz)50; this is so because, according

Eq. ~6.14!, the energetically subleading partszm(k1) and
zn(k2) are proportional to the ‘‘wrong’’ momenta, i.e.k2

m

and k1
n , respectively, instead ofk1

m and k2
n , which are nec-

essary for pinching. Therefore, Eq.~6.21! reduces to

T̂ s
H~ZLZL!52T s

H~G0G0!2 iT s
H~zG0!

2 iT s
H~G0z!1T s

H~zz!. ~6.22!

But this last equation is immediately true, by virtue of E

~6.16! and the definition ofT̂ s
H(ZLZL).

It is important to stress that Eq.~6.22! demonstrates ex
plicitly how the tree-level Higgs-mediated part of the amp
tudeT s

H satisfies the GETindependently, provided the pinch-
ing contributionT P

H residing in the non-resonant amplitud
is taken properly into consideration. This fact reveals an
derlying relation between the PT and the ET at the diagra
matic level, and constitutes a major result of this paper.

We will now show that within the PT framework th
equality ~6.22! remains valid even after the Higgs-boso
propagator has been resummed. As explained in@18,19#, the

effective one-loop PTHZZ vertex Ĝmn
HZZ(q,k1 ,k2) must be

included in the amplitude containing the resummed Hig

boson propagatorD̂H(q); this is so, because the one-loop P
H(q)Zm(k1)Zn(k2) vertex satisfies a number of tree-lev
WI’s which are crucial for ensuring the gauge invariance
the resummed Higgs-mediated part of the amplitude
05300
-

.

-
-

s

f

T̄ smn
H ~ZLZL!52 i @G0mn

HZZ1Ĝmn
HZZ~q,k1 ,k2!#

3S gwm

2MW
D D̂H~q!v̄~p2!u~p1!. ~6.23!

The PT WI’s identities are

k2
nĜmn

HZZ~q,k1 ,k2!1 iM ZĜm
HZG0

~q,k1 ,k2!

52
gw

2cw
P̂m

ZG0
~k1!, ~6.24!

k1
mĜm

HZG0
~q,k1 ,k2!1 iM ZĜHG0G0

~q,k1 ,k2!

52
gw

2cw
@P̂HH~q2!1P̂G0G0

~k2
2!#, ~6.25!

k1
mk2

nĜmn
HZZ~q,k1 ,k2!1MZ

2ĜHG0G0
~q,k1 ,k2!

5
igwMZ

2cw
@P̂HH~q2!1P̂G0G0

~k1
2!1P̂G0G0

~k2
2!#.

~6.26!

As before, we define all momenta to flow into theHZZ
vertex withq1k11k250. The closed form of the effective
one-loop PTHZZ coupling is given in Appendix B. Note
that exactly the same WI’s hold true for the tree-levelHZZ
coupling before quantizing the classical action by introdu
ing gauge-fixing terms and ghost fields. To be specific,
tree-level WI’s derived from the classical action are reco

ered from Eqs.~6.24!–~6.26! if P̂HH(q2) and 2P̂G0G0
(k2)

are replaced with the inverse free propagators of the Hi
boson DH

21(q)5q22MH
2 and the G0 Goldstone boson

DG0
21(k)5k2, respectively, whileP̂m

ZG0
(k) is substituted by

iM Zkm , which represents theG0Z mixing. Of course, in the
Rj gauges there is noG0Z mixing at tree level because
cancels against the corresponding gauge-fixing term.

Within our Born-improved approximation the neutrino
exchange amplitudeTt(ZLZL) retains its tree-level form; its
only function is to provide the PT termT P

H(ZLZL). This
latter term is responsible for the bad high-energy behavio
both the resonant and non-resonant amplitudes, which
late the ET separately. The validity of the ET for the ind
vidual amplitudes can be restored only after the PT te

T P
H(ZLZL) is added to thes-channel amplitudeT̄ s

H(ZLZL),
exactly as happens in the case of the tree-level~non-

resummed! T̂ s
H(ZLZL). Indeed, it is not difficult to show tha

the amplitudesT̄ s
H(ZLZL)1T P

H and Tt(ZLZL)2T P
H satisfy

the GET and hence the ETindividually. For example, by
employing the PT WI’s in Eqs.~6.24!–~6.26!, we have that

T̄ s
H~ZLZL!1T P

H52T̄ s
H~G0G0!2 i T̄ s

H~zG0!

2 i T̄ s
H~G0z!1T̄ s

H~zz!, ~6.27!

where
2-19
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T̄ s
H~G0G0!52 i @G0

HG0G0
1ĜHG0G0

~q,k1 ,k2!#

3D̂H~q!S gwm

2MW
D v̄~p2!u~p1!, ~6.28!

and the sum of the resummed amplitudesT̄ s
H(zG0)

1T̄ s
H(G0z) is defined analogously to Eq.~6.19!, i.e.,

T̄ s
H~zG0!1T̄ s

H~G0z!

5zm~k1!T̄ sm
H ~ZG0!1zn~k2!T̄ sn

H ~G0Z!

52 i $zm~k1!@G0m
HZG0

1Ĝm
HZG0

~q,k1 ,k2!#

1zn~k2!@G0n
HG0Z1Ĝn

HG0Z~q,k1 ,k2!#%

3S gwm

2MW
D D̂H~q!v̄~p2!u~p1!. ~6.29!

Finally, we have defined T̄ s
H(zz)

5zm(k1)zn(k2)T̄ smn
H (ZLZL). In the derivation of Eq.~6.27!,

we have also used the PT WI: P̂m
ZG0

(k)

52 iM ZkmP̂G0G0
(k2)/k2.

The above considerations can be straightforwardly
tended to processes involving theHWW vertex, e.g., the
reactiont t̄→H*→WL

1WL
2 . As has been discussed in Se

III, one has to extract from theb-quark exchange graph th
PT term related to the Higgs-mediated part of the amplitu
@cf. Eq.~3.11!#. Similarly, after adding the PT termT P

H to the

resummed Higgs-exchange amplitudeT̄ s
H(WL

1WL
2), we can

show that

T̄ s
H~WL

1WL
2!1T P

H52T̄ s
H~G1G2!1T̄ s

H~w1G2!

2T̄ s
H~G1w2!1T̄ s

H~w1w2!,

~6.30!

which is in agreement with GET in Eq.~6.5!. Again, the
derivation relies on effective one-loop PT WI’s, which a
the same as those naively deduced from the classical a
in the Born approximation. In this case, the PT WI’s perta
ing to theH(q)W1(k1)W2(k2) vertex are given by

k1
m Ĝ mn

HW1W2

~q,k1 ,k2!1MWĜ n
HG1W2

~q,k1 ,k2!

52
igw

2
P̂n

W2G1

~k2!, ~6.31!

k2
n Ĝ mn

HW1W2

~q,k1 ,k2!2MWĜ m
HW1G2

~q,k1 ,k2!

5
igw

2
P̂m

W1G2

~k1!, ~6.32!
05300
-

.

e

on
-

k6
m Ĝ m

HW6G7

~q,k6 ,k7! 6 MWĜHG1G2
~q,k1 ,k2!

56
igw

2
@P̂HH~q2!1V̂~k7

2 !#, ~6.33!

k1
m k2

n Ĝmn
HW1W2

~q,k1 ,k2!1MW
2 ĜHG1G2

~q,k1 ,k2!

5
igwMW

2
@P̂HH~q2!1V̂~k1

2 !1V̂~k2
2 !#. ~6.34!

The analytic form of the PT vertexĜmn
HW1W2

(q,k1 ,k2) is
given in Appendix A. The one-loop PT vertice

Ĝm
HW6G7

(q,k6 ,k7) and ĜHG1G2
(q,k1 ,k2) may be gained

by using the WI’s in Eqs.~6.31!–~6.34! and known expres-
sions for the PT Higgs- andG1-boson self-energies@26#.

At this point we should note that the GET is still valid fo
the Higgs-mediated part of the amplitude even if we use
RGI expression for the resummed Higgs boson propag

R̂H(s) defined in Sec. V C. Similarly, one can define th
process-dependent RGI combinations involving, e.g.,
HW1W2 vertex:

R̂mn
HW1W2

~q,k1 ,k2!5S MW
2

gw
2 D 1

gwMW
Ḡmn

HW1W2

~q,k1 ,k2!,

R̂m
HW1G2

~q,k1 ,k2!5S MW
2

gw
2 D 1

gw
Ḡm

HW1G2

~q,k1 ,k2!,

R̂HG1G2
~q,k1 ,k2!5S MW

2

gw
2 D MW

gw
ḠHG1G2

~q,k1 ,k2!.

~6.35!

As before, ‘‘barred’’ quantities denote the sum over the tre
level and one-loop PT vertices. The UV finite, RGI quan

ties R̂H, R̂G1
, R̂mn

HW1W2
, R̂m

HW1G2
andR̂HG1G2

satisfy tree-
level-type PT WI’s in direct analogy to those given in Eq
~6.31!–~6.34!. In this formulation, any resummed transitio
amplitude can be written in terms of a product of RGI qua

tities, where the vertices are replaced by the respectivR̂
expressions. As a consequence of this formulation, the
tors K6 andK0 retain their tree-level values after renorma
ization provided the wave-function renormalizations for t
external Goldstone bosons are properly taken into accou

In summary, we have shown how the diagramma
method based on the PT enables the decomposition of
amplitude into a resummed propagator-like amplitude an
non-resonant background which satisfy the GET as wel
the ET individually. This feature provides an additional non
trivial consistency check for the PT resummation approa
and, at the same time, renders the ET conceptually m
intuitive.

VII. DISCUSSION AND CONCLUSIONS

In this paper the formulation of the PT resummation a
proach has been extended to analyze resonant transition
plitudes which involve the SM Higgs boson as an interm
2-20
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diate state. The main results of our study may be summar
as follows:

~i! The PT rearrangement of the amplitude gives rise t
self-energy for the Higgs boson which isindependent
of the GFP in every gauge-fixing scheme. This se
energy isuniversal, in the sense that it isprocess in-
dependent, and may beresummedfollowing the
method presented in Ref.@18#. In addition, it only
displaysphysicalfermionic and bosonic thresholds, i
contrast to the gauge-dependent self-energies obta
by the conventional methods, whereunphysical
bosonic thresholds appear. Furthermore, it satisfiesin-
dividually the OT, both for fermionic as well as
bosonic contributions.

~ii ! When the resummed Higgs boson propagator is m
tiplied by the universal quantitygw

2 /MW
2 , or, equiva-

lently, by the inverse square of the vacuum expec
tion value of the Higgs field, it gives rise to
renormalization-group-invariantquantity, in direct
analogy to theeffective chargeof the photon in QED.
The above construction becomes possible by virtue
the naive, tree-level WI’s satisfied by the GF
independent PT sub-amplitudes.

~iii ! At high energies any amplitude involving longitud
nally polarized gauge bosons satisfies the ET, but
individual s-channel andt-channel contributions o
the amplitude do not. Instead, the PT decomposit
of such an amplitude gives rise to two kinematica
distinct pieces, a genuines-channel and a genuinet-
channel, which satisfy the ETindividually. Most im-

FIG. 7. Graphs contributing to the absorptive part of theHWW
coupling in the BFG.
05300
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portantly, the above propertypersistsevenafter the
s-channel Higgs boson self-energy has been
summed, thus solving a long-standing problem.

At this stage, it may also be worth reviewing briefly th
state of affairs of the PT resummation approach. In parti
lar, we wish to draw the attention of the reader to a num
of significant developments as well as open issues relate
this field, which have been extensively discussed in the
cent literature and are also relevant to our study of the Hig
boson resonance. An important issue which remained un
swered for some time was whether the PT self-ene
obtained by extracting pieces from the vertices and bo
can beresummedin a Dyson series, and whether the r
summed PT propagator exhibits the same gauge-invar
pole as that calculated in the conventional perturbat
framework. Both questions have been addressed in deta
@18#; it has been found that the PT self-energies are ind
resummable, and that the position of the pole remains
changed. The proof presented in@18# was more involved
than the standard arguments leading to the resummabilit
a conventional self-energy, and relied on a detailed diagr
matic analysis to all orders in perturbation theory. The
summability of the PT self-energies is a crucial ingredie
for the construction of the corresponding effective charg
Independent studies have tested the latter property of the
self-energies up to two loops for theW6 andZ bosons in the
SM @20#.

FIG. 8. Diagrams contributing to the absorptive part of theHZZ
coupling in the BFG.
2-21
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Up to date the PT has been appliedonly at the level of
one-loop perturbation theory, and its extension to higher
ders is still an important open issue. It would be interest
for example to establish whether the correspondence
tween PT and BFM atjQ51 persists beyond one loop. Fu
thermore, generalized versions of the PT proposed rece
@30# may shed light on the structure of new background-fi
quantum actions even beyond one loop@43#. In addition, the
diagrammatic understanding achieved by means of the
and its possible extensions provides new insights into a
riety of issues related to gauge independence, unitarity,
the ET, and exposes properties which are not manifest in
correlation functions derived with path-integral variation
methods.

The significance of the analysis presented in this pa
when computing the theoretical predictions for the Higg
boson lineshape is clear. The Born-improved amplitu
constructed with the above formalism are in accordance w
all physical requirements imposed, and reliably capture
underlying dynamics. Most noticeably, the ability to co
struct a universal Higgs-mediated component, in direct a
ogy to the QED effective charge, is rather intriguing. Th
05300
r-
g
e-

tly
d

T
a-
nd
he
l

er
-
s

th
e

l-

universal part is common to every Higgs-boson-media
process, and, even though the process-dependent backg
must be eventually taken into account, it determines
Higgs-boson lineshape comfortably away from the re
nance. It would be of great phenomenological importance
confront the predictions for Higgs-production and decay p
cesses computed within the PT resummation appro
against future data obtained from planned high-energy
liders such as the LHC, the next-lineare1e2 collider with
c.m. energy 500 GeV, and the first muon collider.
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APPENDIX A: ONE-LOOP ABSORPTIVE HWW COUPLING IN THE PT

Based on the established equivalence between the PT and the covariant background field gauge forjQ51, we calculate the
absorptive part of the effective PTHWW vertex at one loop, using the Feynman rules listed in@28#. The analytic results are
expressed in terms of standard loop integrals introduced by ’t Hooft and Veltman@23#. For definiteness, we use the conve
tions of Ref.@24#.

If one assumes that the externalW bosons are contracted with physical polarization vectors or conserved current

one-loop PTHWW coupling Ĝmn
HW1W2

(q,k1 ,k2) may then be decomposed in general as follows:

Ĝ mn
HW1W2

~Q,p,k!5gwMWF „11A~Q2!…gmn1B~Q2!
kmpn

MW
2 1 iC~Q2!

1

MW
2 «mnlrklprG , ~A1!

whereQ1p1k50 andA(Q2), B(Q2) and C(Q2) are general form-factors. OnlyA(Q2) must be renormalized, wherea
B(Q2) andC(Q2) are UV finite. The form-factorC(Q2) occurs inCP-violating scenarios only, i.e.,C(Q2)50.

In the improved Born-level approximation, only the absorptive parts of the form-factorsA(Q2) andB(Q2) are of relevance,

as the dispersive parts participate in the one-loop renormalization. The diagrams contributing to the absorptive form-fĀ

and B̄ are shown in Fig. 7. To a good approximation, the externalW bosons are considered to be stable and theb quark

massless. The analytic results for the absorptive form-factorĀ(Q2) are then given by

iĀ ~a!5
aw

16p

mt
2

MW
2 @8C̄241~Q21k22p214mt

2!C̄01~3Q223k22p2!C̄111~Q215k22p2!C̄12#~mt
2,0,mt

2!, ~A2!

iĀ ~b1!52
aw

p F B̄0~Q2,MW
2 ,MW

2 !12
MW

2

MZ
2 B̄0~Q2,MZ

2 ,MZ
2!G , ~A3!

iĀ ~b2!5 iĀ ~c5!5 iĀ ~c6!50, ~A4!

iĀ ~b3!52
aw

16p F S MH
2

MW
2 12D B̄0~Q2,MW

2 ,MW
2 !1

1

2 S MH
2

MW
2 12

MZ
2

MW
2 D B̄0~Q2,MZ

2 ,MZ
2!1

3

2

MH
2

MW
2 B̄0~Q2,MH

2 ,MH
2 !G ,

~A5!

iĀ ~b4!5
aw

2p
@B̄0~Q2,MW

2 ,MW
2 !1B̄0~Q2,MZ

2 ,MZ
2!#, ~A6!
2-22
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iĀ ~c1!5
aw

p F S 12
MW

2

MZ
2 D „4C̄241~Q22k22p2!C̄0…~MW

2 ,0,MW
2 !1

MW
2

MZ
2 „4C̄241~Q22k22p2!C̄0…~MW

2 ,MZ
2 ,MW

2 !

1
MZ

2

MW
2 „4C̄241~Q22k22p2!C̄0…~MZ

2 ,MW
2 ,MZ

2!G , ~A7!

iĀ ~c2!1 iĀ ~c3!5
aw

2p
Q2F S 2

MW
2

MZ
2 21D C̄0~MW

2 ,MZ
2 ,MW

2 !1S 2
MW

2

MZ
2 21D C̄0~MW

2 ,0,MW
2 !1C̄0~MZ

2 ,MW
2 ,MZ

2!G , ~A8!

iĀ ~c4!52
aw

4p F MZ
4

MW
2 S 2

MW
2

MZ
2 21D 2

C̄0~MZ
2 ,MW

2 ,MZ
2!1MW

2 C̄0~MW
2 ,MZ

2 ,MW
2 !1MW

2 C̄0~MW
2 ,MH

2 ,MW
2 !G , ~A9!

iĀ ~c7!52
aw

8p FMZ
2S MH

2

MW
2 12D S 2

MW
2

MZ
2 21D 2

C̄0~MW
2 ,MZ

2 ,MW
2 !14MW

2 S MH
2

MW
2 12D S 12

MW
2

MZ
2 D C̄0~MW

2 ,0,MW
2 !

1MW
2 S MH

2

MW
2 12

MZ
2

MW
2 D C̄0~MZ

2 ,MW
2 ,MZ

2!13MH
2 C̄0~MH

2 ,MW
2 ,MH

2 !G , ~A10!

iĀ ~c8!52
aw

8p F S MH
2

MW
2 12D „C̄24~MW

2 ,MZ
2 ,MW

2 !1C̄24~MW
2 ,MH

2 ,MW
2 !…1S MH

2

MW
2 12

MZ
2

MW
2 D C̄24~MZ

2 ,MW
2 ,MZ

2!

13
MH

2

MW
2 C̄24~MH

2 ,MW
2 ,MH

2 !G , ~A11!

iĀ ~c9!1 iĀ ~c10!5
2aw

p FMW
2

MZ
2 C̄24~MW

2 ,MZ
2 ,MW

2 !1S 12
MW

2

MZ
2 D C̄24~MW

2 ,0,MW
2 !1C̄24~MZ

2 ,MW
2 ,MZ

2!G . ~A12!

Here and in the following, we do not display the first three arguments of theC functions (p2,k2,Q2), which are common. The
bar on the loop functions symbolizes that only the absorptive part should be considered.

Similarly, the individual contributions to the absorptive form-factorB̄(Q2) are found to give

iB̄ ~a!52
aw

8p
mt

2~4C̄231C̄013C̄111C̄12!~mt
2,0,mt

2!, ~A13!

iB̄ ~b1!5 iB̄ ~b2!5 iB̄ ~b3!5 iB̄ ~b4!5 iB̄ ~c4!5 iB̄ ~c7!50, ~A14!

iB̄ ~c1!5
2aw

p FMW
2 S 12

MW
2

MZ
2 D ~2C̄1112C̄231C̄0!~MW

2 ,0,MW
2 !1

MW
4

MZ
2 ~2C̄1112C̄231C̄0!~MW

2 ,MZ
2 ,MW

2 !

1MW
2 ~2C̄1112C̄231C̄0!~MZ

2 ,MW
2 ,MZ

2!G , ~A15!

iB̄ ~c2!1 iB̄ ~c3!5
aw

2p FMW
2 S 2

MW
2

MZ
2 21D ~C̄01C̄111C̄12!~MW

2 ,MZ
2 ,MW

2 !12MW
2 S 12

MW
2

MZ
2 D

3~C̄01C̄111C̄12!~MW
2 ,0,MW

2 !1MW
2 ~C̄01C̄111C̄12!~MZ

2 ,MW
2 ,MZ

2!G , ~A16!

iB̄ ~c5!1 iB̄ ~c6!5
aw

4p
@~MZ

222MW
2 !~C̄01C̄122C̄11!~MZ

2 ,MW
2 ,MZ

2!2MW
2 ~C̄01C̄122C̄11!~MW

2 ,MZ
2 ,MW

2 !

1MW
2 ~C̄01C̄122C̄11!~MW

2 ,MH
2 ,MW

2 !#, ~A17!
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iB̄ ~c8!5
aw

8p
$~MH

2 12MW
2 !@~C̄111C̄23!~MW

2 ,MZ
2 ,MW

2 !1~C̄111C̄23!~MW
2 ,MH

2 ,MW
2 !#

1~MH
2 12MZ

2!~C̄111C̄23!~MZ
2 ,MW

2 ,MZ
2!13MH

2 ~C̄111C̄23!~MH
2 ,MW

2 ,MH
2 !%, ~A18!

iB̄ ~c9!1 iB̄ ~c10!52
2aw

p FMW
4

MZ
2 ~C̄111C̄23!~MW

2 ,MZ
2 ,MW

2 !1MW
2 S 12

MW
2

MZ
2 D ~C̄111C̄23!~MW

2 ,0,MW
2 !

1MW
2 ~C̄111C̄23!~MZ

2 ,MW
2 ,MZ

2!G . ~A19!

APPENDIX B: ONE-LOOP ABSORPTIVE HZZ COUPLING IN THE PT

Here we present the one-loop results for the absorptive form-factorsĀ andB̄ of theHZZ coupling in terms of standard loo
integrals. We consider the general decomposition of the one-loopHZZ vertex

Ĝmn
HZZ~Q,p,k!5

gw

cw
MZF „11A~Q2!…gmn1B~Q2!

kmpn

MZ
2 G , ~B1!

where the CP-violating form-factorC(Q2) analogous to Eq.~A1! is absent at one-loop in the SM. In particular, we a
interested in the absorptive part of the form-factorsA(Q2) andB(Q2). Calculating the graphs shown in Fig. 8, we obtain

iĀ ~a!5
aw

16p

mt
2

MW
2 $~gL

21gR
2 !@8C̄241~Q21k22p214mt

2!C̄01~3Q223k22p2!C̄111~Q215k22p2!C̄12#

3~mt
2 ,mt

2 ,mt
2!12gLgR@4mt

2C̄01~Q22k21p2!C̄111~Q21k22p2!C̄12#~mt
2 ,mt

2 ,mt
2!%, ~B2!

iĀ ~b1!52
2aw

p

MW
4

MZ
4 B̄0~Q2,MW

2 ,MW
2 !, ~B3!

iĀ ~b2!5 iĀ ~c5!5 iĀ ~c6!50, ~B4!

iĀ ~b3!52
aw

16p F S MH
2

MW
2 12D S 2

MW
2

MZ
2 21D 2

B̄0~Q2,MW
2 ,MW

2 !1
1

2 S MH
2

MW
2 12

MZ
2

MW
2 D B̄0~Q2,MZ

2 ,MZ
2!

1
3

2

MH
2

MW
2 B̄0~Q2,MH

2 ,MH
2 !G , ~B5!

iĀ ~b4!5
aw

p

MW
4

MZ
4 B̄0~Q2,MW

2 ,MW
2 !, ~B6!

iĀ ~c1!5
2aw

p

MW
4

MZ
4 @4C̄241~Q22k22p2!C̄0#~MW

2 ,MW
2 ,MW

2 !, ~B7!

iĀ ~c2!1 iĀ ~c3!52
aw

2p

MW
2

MZ
2 Q2C̄0~MW

2 ,MW
2 ,MW

2 !, ~B8!

iĀ ~c4!52
aw

4p F2MW
2 C̄0~MW

2 ,MW
2 ,MW

2 !1
MZ

4

MW
2 C̄0~MZ

2 ,MH
2 ,MZ

2!G , ~B9!

iĀ ~c7!52
aw

8p F2~MH
2 12MW

2 !C̄0~MW
2 ,MW

2 ,MW
2 !13MZ

2
MH

2

MW
2 C̄0~MH

2 ,MZ
2 ,MH

2 !G , ~B10!
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iĀ ~c8!52
aw

4p F S 2
MW

2

MZ
2 21D 2S MH

2

MW
2 12D C̄24~MW

2 ,MW
2 ,MW

2 !1
1

2 S MH
2

MW
2 12

MZ
2

MW
2 D C̄24~MZ

2 ,MH
2 ,MZ

2!

1
3

2

MH
2

MW
2 C̄24~MH

2 ,MZ
2 ,MH

2 !G , ~B11!

iĀ ~c9!1 iĀ ~c10!5
4aw

p

MW
4

MZ
4 C̄24~MW

2 ,MW
2 ,MW

2 !. ~B12!

In Eq. ~B2!, we have defined asgL5(2MW
2 /MZ

2)21 andgR522(12MW
2 /MZ

2).
Furthermore, the individual contributions to theB form-factor are given by

iB̄ ~a!52
aw

8p
MZ

2
mt

2

MW
2 $~gL

21gR
2 !~4C̄231C̄013C̄111C̄12!~mt

2 ,mt
2 ,mt

2!12gLgR~C̄112C̄12!~mt
2 ,mt

2 ,mt
2!%,

~B13!

iB̄ ~b1!5 iB̄ ~b2!5 iB̄ ~b3!5 iB̄ ~b4!5 iB̄ ~c4!5 iB̄ ~c7!50, ~B14!

iB̄ ~c1!5
4aw

p

MW
4

MZ
2 ~2C̄1112C̄231C̄0!~MW

2 ,MW
2 ,MW

2 !, ~B15!

iB̄ ~c2!1 iB̄ ~c3!52
aw

2p
MW

2 ~C̄01C̄111C̄12!~MW
2 ,MW

2 ,MW
2 !, ~B16!

iB̄ ~c5!1 iB̄ ~c6!5
aw

4p F2~2MW
2 2MZ

2!~C̄01C̄122C̄11!~MW
2 ,MW

2 ,MW
2 !2

MZ
4

MW
2 ~C̄01C̄122C̄11!~MZ

2 ,MH
2 ,MZ

2!G ,
~B17!

iB̄ ~c8!5
aw

4p
MZ

2F S 2
MW

2

MZ
2 21D 2S MH

2

MW
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