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Gauge- and renormalization-group-invariant formulation of the Higgs-boson resonance

Joannis Papavassiliband Apostolos Pilaftsfs
Theory Division, CERN, CH-1211 Geneva 23, Switzerland
2Max-Planck-Institut fu Physik, Fdringer Ring 6, 80805 Munich, Germany
(Received 16 October 1997; published 16 July 1998

A gauge- and renormalization-group-invariant approach implemented by the pinch technique is formulated
for resonant transitions involving the Higgs boson. The line shape of the Higgs boson is shown to consist of
two distinct and physically meaningful contributions: a process-independent resonant part and a process-
dependent non-resonant background, which are separately gauge independent, invariant under the renormal-
ization group, satisfy naive, tree-level Ward identities, and respect the optical and equivalence theorem indi-
vidually. The former process-independent quantity serves as the natural extension of the concept of the
effective charge to the case of the Higgs scalar, and constitutes a common ingredient of every Born-improved
amplitude. The difference in the phenomenological predictions obtained within our approach and those found
with other methods is briefly discussd&0556-282(198)07215-4

PACS numbg(s): 14.80.Bn, 11.10.Gh, 11.15.Ex, 12.15.Lk

I. INTRODUCTION ciated with the self-consistent treatment of resonant transi-
tion amplitudes are bound to resurface, but with the addi-
The production of the Higgs boson, the only as yet unobtional phenomenological complication that, in contrast to the
served building block of the standard mod&M), and the Z-boson case, bosonic and fermionic channels give numeri-
detailed study of its properties will be of central interest forcally comparable contributions to the Higgs-boson decay
several years to come. The Higgs boson is intimately conrate.
nected to the prevailing field-theoretic mechanism for en- From the theoretical point of view, the self-consistent
dowing gauge bosons, leptons, and quarks with mgddes treatment of the Higgs boson resonance in the context of the
Since understanding the origin of mass constitutes a majopM has attracted significant attention, due to a variety of
challenge for all models aspiring to describe physics beyon@Pen question§l2]. In the vicinity of resonances transition
the SM, accurate experimental information about the Higg@mplitude become singular and must be regulated by a Breit-

sector is indispensable for determining both their theoreticafVigner type of propagator. The most obvious signal that a
relevance and their phenomenological viability. method more sophisticated than a standard resummation of

Within the SM, the masM, of the Higgs boson is a free conventional self-energy graphs is needed in the case of non-

parameter. The experimental lower bound on the SM Higg belian gauge thet_)rles,_co_mes from _the simple calculatlorjal

; act that the bosonic radiative corrections to the self-energies

boson through direct searches at the CERN Large Electron ) .

: X . of vector (y,W,Z) or scalar(Higgs) bosons induce a non-
Positron collider(LEP) is M>65.2 GeV[2], whereas the trivial dependence on the gauge-fixing paramet&Fp)
theoretical upper bound is about 700 GE3/4]. Since the '

. . used to define the tree-level bosonic propagators appearing
SM observables depend logarithmically by, [5], the high i, the quantum loops. This is to be contrasted to the fermi-

precision electroweak data, even though they favor slightly @i radiative corrections, which, even in the context of non-
“light” Higgs boson of about 150 GeV, they can only im- apelian gauge theories behave as in quantum electrodynam-
pose rather loose bounds bh, . In particular, from the LEP  j¢g (QED), i.e., they are GFP independent. In addition,
data on sif 0", the electroweak observable most sensitiveformal field-theoretic considerations as well as direct calcu-
to My, the upper bound ;<550 GeV is obtained at the |ations show that, contrary to the QED case, the non-Abelian
1.640 level [6], whereas a tighter upper bound 8,  Green’s functions do not satisfy their naive, tree-level Ward
<443 GeV at the 1.64 has been advocatdd] after the identities(WI's), after bosonic one-loop corrections are in-
inclusion of two-loop top quark effects in the calculations of cluded. A careful analysis shows that this fundamental dif-
sir? eff?t [8]. ference between Abelian and non-Abelian theories has far-
A Higgs boson with mass of about 100 GeV can be dis+eaching consequences; the naive generalization of the Breit-
covered at LEP29], through the Bjorken process, or Higgs- Wigner method to the latter case gives rise to Born-improved
strahlung,e*e”—ZH [10]. If the Higgs boson turns out to amplitudes, which do not faithfully capture the underlying
be heavier, its discovery will become again possible at thelynamics. Most noticeably, due to violation of the optical
CERN Large Hadron CollidefLHC). In that case, the theorem (OT), unphysical thresholds and artificial reso-
Higgs-boson production will proceed through a variety ofnances appear, which distort the Higgs boson lineshape. In
sub-processes. In all of the above scenarios, depending @udition, the high energy properties of such amplitudes are
the value ofMy and the specific kinematic conditions, the altered, and are in direct contradiction with the equivalence
Higgs-boson production may be resonant. At that point, extheorem(ET) [13,14.
actly as has happened in the case of the resorditson Recently however, a formalism based on the pinch tech-
production[11], the well-known theoretical problems asso- nique (PT) [15—-17 has been developed in a series of papers
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[18,19 which bypasses all the aforementioned difficulties, ¢  w+ ¢ we Gt *
and provides a self-consistent framework for dealing with >b_f {:}@ < >I{ P Y < > PR < >Hf "‘*3]3’ <
unstable particles and resonant transition amplitudes in the Yo’ oy e
context of non-Abelian gauge theories. Ib8] the general ¢ W~ ¢ GF G o
methodology has been presented, whereq&9hthe crucial (a) (b) (<) (d)
physical requirements for a physically meaningful resumma- W e o o
tion have been discussed in detail. In addition, it was showny g H qH v H
that the resummation algorithm based on the PT satisfies al>"ﬁ::£ >J:P]Z >1H1|Z ><~JZ
those requirements; in fact, to the best of our knowledge, it is w- G” w- G”
the only algorithm known to date which can accomplish this. (e) () ) (h)
Several applications of the above formalism may be found in . . .
the literature[20]. In this paper we employ the above for- g i ug " g._ " .Cf\ H
malism in order to develop a systematic approach to resonaan::}"< E|Lt‘1< ZLJJJ< E ,,:>--<
transition amplitudes involving the SM Higgs boson. The W - W- o

i) k) Q)

+
theoretical highlights of our study have been presented in € )

shor? communigatioﬁZl]. In this Ionjger paper we address in (vlv+ (;w (G+ ot
detail the most important calculational aspects of this analy- -->-- -----
sis, and discuss extensively the multitude of physical issues b b{ Ib b{ {b Z[ E
involved. v “emee v —owe
The paper is organized as follows: In Sec. Il, we use the w G W ¢
m) (n) (o) (»)

PT to compute the GFP-independent Higgs-boson self-
energy at the one-loop level, within the context of three dif- £ 1. The Higgs-mediated part of the one-loop amplitude
ferent characteristic gauges, namely the Feynman-t'Hooff;~ .+

gauge, the general renormalizalite gauges, and the cova-

riant background field gaug€BFG’s). Explicit expressions VI, we show with an explicit example that the PT sub-

are reported, and the pathologies associated with gauge dga ity des satisfy the Eifdividually, and that with the help
pendences in the conventional formulation are discussed. 19t the same PT WI's. this fact remains true eadter resum-
Sec. ll, we employ arguments of unitarity and analytiCity mation. 1n Sec. VII, we present our conclusions. Finally,

and show how the effective Higgs-boson self-energy of th"Tengthy analytic expressions pertaining to th&VW and
previous section may be obtained from tree-level amplitudeg, > \artices are relegated to the Appendices
involving the Higgs boson; in fact, it satisfiesdividually '

the OT,bothfor fermionic as well as bosonic contributions.
In addition, we apply our formalism to the proceass—H*

—tt, and discuss how our predictions differ from those ob-
tained by other methods. In Sec. IV, we review the notion of In this section we show how the application of the PT
the effective charge in QED and discuss how this concep@lives rise to an effective self-energy for the Higgs boson,
may be extended to the case of gluon in quantum chromowhich is independent of the GFP, and displays a high-energy
dynamics(QCD), based on properties of the PT gluon self- behavior which is consistent with the ET. For definiteness
energy under the renormalization gro[45]. Furthermore, We focus on the gauge invariant subset of Feynman diagrams
we demonstrate explicitly that in pure scalar theories, e.g.gontaining twoW bosons(and their corresponding would-be
(¢°%)6 in six space-time dimensions, the scalar particle doe§oldstone bosons and ghosts a typical S-matrix element,

not admit the construction of a renormalization-group-e.g.,tt—H* —tt, shown in Fig. 1. We carry out this calcu-
invariant (RGI) quantity which could serve as the analog of lation in three representative gauges, i.e., the renormalizable
the QED effective charge. However, if the scalar theory isFeynman—'t Hooft gauge, the genem} gauges, and the
endowed with a global symmetry, which, in turn, is brokenbackground field method®FM) in the covarianRgQ gauges.
spontaneously, we find that a scalar effective “charge” mayye discuss the relevant technical points and present explicit
still be formed. This latter example provides useful insightintermediate and final results.

and sets up the stage for addressing the more complicated
case of the full SM. The next two sections contain the main
theoretical thrust of our paper: In Sec. V, after discussing
how theprocess-independeRT self-energies for the/ and First we present the calculation for the special GFP choice
Z bosons of the SM can give rise to RGI quantities which{=1 in the renormalizabl&®, gauges. This particular choice
may be identified as effective chard@®], we show that the is known to simplify computations; of course, as we will see
construction of a process-independent and RGI quantity inexplicitly in the next subsection, the same final answer
volving the Higgs-boson propagator is indeed possible. Themerges for any other choice §fafter the PT algorithm has
above construction of a Higgs-boson effective charge bebeen carried out.

comes only possible by virtue of the naive, tree-level WI's We first calculate the diagrams contributing to the con-
satisfied by the GFP-independent PT sub-amplitudes. In Seeentional Higgs boson self-energhFigs. (a)-1(d)]. A

Il. ONE LOOP CALCULATIONS
IN THE PINCH TECHNIQUE

A. The Feynman-"t Hooft gauge
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straightforward calculation yielddwe omit contributions
from tadpole and seagull graphs

4
HHH(QZ):%(_QZ+3M\2N+4M2 Bo(®, My, M%),
(2.1
wherea,,=g2/(4w) and
Bo(p?,m7,mj)
=<2m>4*"f ﬂi (22
im? (k2—m?)[(k+p)2—mZ]

is the Veltman—"t Hooft functiori23] defined ind=4—2¢
dimensions, using the conventions of REZ4]. From the
integrand of Eq(2.2), it is clear thatBy(p2,m2,m3) devel-
ops absorptivéimaginary parts, when/p?=m;+m,. The
mass parametersn;,m, may represent either physical
masses, such as that of tiéand/orZ bosons, or masses of
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Ywet Vew= ~[(2k+q),Sg+(2k+q) ,S]

X Bo(g%,M%,M§)

Z)v(pHu(p)+--- .
(2.7)

We notice that the only propagator-like piece couples to the

externaltt pair exactly as a Higgs boson. In addition, no
term proportional toys has survived; had such a term been
present, it ought to be alloted to the effecti&® one-loop
mixing self-energy, thus breaking the CP invariance of the
underlying theon| 25]. This exercise demonstrates explicitly
how the PT preserves the discrete symmetries of the classical
action after quantization.

Finally, the pinch contributiorVy to the Higgs-boson
self-energy stemming from the vertémirror image graphs
give an extra factor of 2is

Ay
=- gmtBo(qz,M\zN,l\/l

the respective unphysical would-be Goldstone bosons and
ghosts.

According to the PT[15], we must now extract the
propagator-like pieces concealed inside vertex and box digadding the contribution from Eq(2.8) to the conventional
grams. Such pieces emerge every time longitudinal momentgsult of Eq.(2.1), we finally arrive at the following expres-

a
Vow= =7 (0~ M{)Bo(q?. M, M%). (2.9

coming from propagators or vertices trigger elementary WI's
of the form

kP =(k+p—m,)P —Pgr(p—my)+myP . —mPg, (2.3

where Pgy=[1+(—)vs]/2 is the chirality projection op-
erator. The first term in Eq(2.3) pinches out the internal

propagator of thé quark, whereas the second one dies when

contracted with the spinor of the external on-shejuark.

sion for the PT one-loop Higgs boson self-enefgy(q?),

M (@)
4 2 2
ay My w My 2 2
= — — +4— —4 —F —
167 M\Z/v 1 4ME1 4Mﬁ1(2q 3My)

X Bo(q2,M2,,M3)). (2.9

In the Feynman-"t Hooft gauge, the only graphs that can

give rise to propagator-like contributions are the vertex

graphs of Figs. @) and Xg), denoted bygy andVyg, and
their mirror images, Figs. () and k). Settingp’=p—q,
we defineS; andS] as follows:

2
1
W
v 20 mPL—MyPr) ————— ¥"PLu(p),
SR 2 p)( tL p R)k_’_w_mb‘y L(p)
(2.9
: 1
W
S’lLL= 2 U(p )’yMPL k+p_mb (thR_mbPL)u(p)-

(2.9

The action of the longitudinal momenta from the vertices on

these expressions gives

2

v 9w — ’
k,Sk= 5 v(pIMPLU(p)+- -+ ,

2

9w —
(k+a),SC= 5 v(p")mPgru(p) +---, (2.6

where the ellipses mean omission of vertex like pieces, e.g.,

pieces still containing thé quark tree-level propagatork (
+p—my) L. With the help of Eq(2.6), we find

B. R renormalizable gauges

After this introductory calculation, we turn to the general
case, where the GFPis kept arbitrary. In these gauges, the
free W-boson propagator is given by

(gw) q;LQV 1
A,u,, (CI) g,uv_l—(l gw) §WM2 q _MZ
4.9,
=Uuld)— 2 ~=-DE(g?), (2.10
W
where

is the propagator of the would-be Goldstone boson and ghost
fields. A straightforward calculation for the conventional
one-loop Higgs self-energy yields

2\2
(g% = (Eﬁw) q2+3M\2/v) Bo(a?, Miy. My)
W
M¥i—(9%)°
TVY Bo(d% &My EWMG) | (212
W
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where tadpole and seagull terms have again been omittec wi t

v kb +
Some comments are now in order regarding @ql2): M A ﬁ; H(g) W
-—— — M2
(@ The term proportional tod?)? is absent only for the b K @ )
special choicé,, =1, in which caseB, factorizes out.  ; W “V—“ W 7 w-
(b) The term proportional to?)? is ultraviolet (UV) fi-
nite, i.e., it does not depend on the UV regulatar fbr (a) (b)

any value of¢,,. Of course, this is expected, since we FIG. 2. Higgs-like contribution from th&channel graph.
are working within a renormalizable gauge.

(c) Even though terms proportional By(q%,M§,£&sME)  When the second momentuky) acts on the first term on the
appear in intermediate calculations of individual dia- right-hand sideRHS) of Eq. (2.14), by virtue of Eq.(2.6)
grams, they finally cancel in the sum. So, there are ngjives rise to a propagator-like term proportionahtp, as is
terms with mixed poles; we only have thresholds atalso shown in Fig. 2, according to E®.6). As for the sec-
q2—4MW and q2—4§WMW This result can be traced ond term on the RHS of Eq2.14), after it gets contracted
back to the fact that the tree- Ie\AdW+W couplingis  with the second momentuky, , it will be judiciously alloted
proportional tag,,, and hence, any contract|on betweento the various remaining effective self-energies, such as
the longitudinal and transverse parts of the twé  v¥,ZZ,¥Z,Zy, etc, according to the rules established in
boson propagators in the loop will vanish. The trans-[26]. These latter terms are not displayed in Fig. 2.
verse part of th&\-boson propagator is associated with We_ now gather all relevant pinch contributions from the
the physical pole ag?=M3,, whereas the Iongitudinal box diagrams:
one possesses an unphysical singularity’t gMW

Since only terms arising from the contraction between (%) = —2_ [Bo(q?, M2 Mw)
transverse-transverse and longitudinal-longitudinal 16m
parts of theW-boson propagators can survive, the ab- —2By(g2 M2, &, w)
sence of mixed poles is expected. However, this last
feature may change in higher orders, since new +Bo(g% M, E,MEN1(G2—MZ)2, (2.15
momentum-dependent form-factors for the vertex
HWZW; are radiatively induced, which could give
rise to mixed poles. Bew(qz)— [Bo(q MG, EME)
(d) Settingé,=1 in the expression of Eq2.12), we re-
cover the result of Eq(2.1). —Bo(q% &WMZ,, EWMZ) (G2 —M2)2.  (2.16

Next we collect the pinch contributions which are kine- The net pinch contribution to the effective Higgs boson self-

matically akin to a Higgs boson self-energy. Due to the ad- energy originating from the box graphs may be summarized
ditional longitudinal momenta proportional to-%,,, we re- |

ceive extra pinch contributions, from the vertex- as well as

the box-diagrams. The only technically subtle point in this o Oy 9 2 h.2

context is that the propagator-like parts related to the Higgs (9= WMV_V [Bo(a" My, My)

boson arise fromwo successive contractions of the longitu-

dinal momenta on the elementary vertex: the first momentum —Bo(0%,E4ME, ELMA (@2 —ME)2.  (2.17)
pinches, giving rise to propagator-like terms whose coupling

to the external quarks is proportional 4g,P; clearly this  Again, the terms proportional IBo(qz,M\%\/,éwM \3\,) cancel.
coupling is not Higgs-boson-like. In addition, a vertex-like |n addition, for &, =1, the above expression vanishes as it
term proportional tan; survives. After the second longitudi- should, since in the Feynman gauge there are no pinch con-
nal momentum is contracted with that latter vertex-like termtributions coming from boxes.

it removes the internal fermion propagator and gives rise to a Similarly, the individual pinch contributions from vertex
propagator-like contribution, which couples to the externalgraphs are listed below:

fermions proportionally tom;. To see that mechanism in

detail, consider the typical quantity}*”, appearing in the ay 2
graphs in question, defined as Vaww(d%) =~ yp (1+ M2 )Bo(qva\ZN,Msv)
2
TMV—gW_ AT ) ! vp 2.1
t =% v(P)y BT — Lu(p). (2.13 1- gw+— Bo(9%, M3, £uM3)
The action of the first longitudinal momentuky gives q?
+ Mz Ew|Bo(0% EuM{,, EuME)
2
Ow —
kVV’“’Z?W v(p’)y“PLu(p)+S*. (2.14 X (2~ M2), (2.19
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2
o q (b)
vGMq2)=—ﬁ{ L= &ut yz |Bo(0. Miy £uMiy)
L PP
+ §W_M_2 Bo(q rgwaagwMW)
W
X (g2—M32), (2.19
which gives in the sum
W)=~ 2 1+—2 Bo(a%, MG, M)
q an 2M\2N old™, My, My
2
TV Bo(qz,stév,gwM@)}(qz—Mﬁ>. (2.20
W
Again, the terms proportional tBo(q% M,,£,M3) cancel
in the final result, and the analytic expression of E28)
emerges fog,,=1.
Adding Eq. (2.17 and Eq.(2.20, we find that in the (0

linear renormalizable gauges the total pinch contribution to
effective Higgs boson self-energy is given by

o+ M}
TTHHP(g?)= — = <1+— Bo(q% M3, M)
47 ZIVEV
o+ M§
ETYE Bo(0, £uM iy, £uM )
w
X (g?=M7). (2.21)
Adding Eg. (2.21) to the conventional result given in Eg.
(2.12, we see that all terms proportional to
Bo(9%,£wM3,,£4M3), which are the only terms depending
oné,,

(2.9.

C. The covariant background field gauge

We shall consider the BFM applied to the covariant
gauges[27-29; a detailed discussion of the BFM in the
non-covariant gauges may be found[80]. The calculation
here is particularly illuminating, because it shows that the
results are plagued with pathologies away frég=1 [19].

Using the Feynman rules of the covariant background
field gauge[28], we obtain for the Higgs-boson self-energy
in an arbitraryé, gauge

a2 @w ] ((d
™) = 477((4M\2N

2)2

—q2+smsv) Bo(G2 M2, M2)

M4 _(q2)2
{:Tsv—&g(qz—wlﬁ)}

><Bo<q2,§QM5v,fQM$v>]. (2.22

Some important comments must be made:

(@ Settingéo=1 in the expression of E¢2.22, we re-
cover the full PT answer of Eq2.9), in accordance

with earlier observationg28,29|.
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We see that fogq#1 the @?)? term survives and is
proportional to the difference By(q%,M3,,M3)
—Bo(0?,EqM Gy, EQMG). For any finite value ofgg
this term vanishes for sufficiently large?, i.e., q
>M§, andg?> £oM§, . Therefore, the quantity in Eq.
(2.22 displays good high energy behavior in compli-
ance with unitarity. Notice however that the onset of
this good behavior depends crucially on the choice of
&q. Sinceég is a free parameter and may be chosen to
be arbitrarily large, but finite, the restoration of unitar-
ity may be arbitrarily delayed as well. This fact poses
no problem as long as one is restricted to the compu-
tation of physical amplitudes at a finite order in pertur-
bation theory. However, if the above self-energy was to
be resummed in order to regulate resonant transition
amplitudes, it would lead to an artificial delay of uni-
tarity restoration. Specific quantitative examples of
such artifacts will be presented in Sec. VII.

In addition to the problem described above, which be-
comes significant for large values &f, a serious pa-
thology occurs for any value @y # 1, namely the ap-
pearance of unphysical threshold48,19. Such
thresholds may be particularly misleadingg§ is cho-
sen in the vicinity of unity, giving rise to distortions in
the lineshape of the unstable particle.

We then proceed to isolate the propagator-like pinch parts
from the BFG boxes and vertices, for geneggl. Clearly,
the box contributions are the same as in the linear renormal-
izable gauges; they can be recovered from @dlL7) by the
simple replacement,,— o . The same is true for the pinch
contributions involving theN'W virtual states, i.e. Wy in

Eqg. (2.18. In this way, the total pinch box contributioi,
cancel, and we find again the PT result given in Eq'ar?dgiwv\?)may be sep)grately writt%n down

Qy

2 —
Bla9= 167mz,

—Bo(% £oM Gy, EQMG) ]
X(92—Mj)?,

[BO(qva\ZN!M\ZN)

(2.23

a q?
Vol 0%) = = ﬁ{(u W) Bo(q?, My, M)
w

2

q
—(1—§Q+ Wv) Bo(q*, My, £My)

2

- %f—gq)som%fng.quv)}
w

X (2= M7). (2.29

However, the vertex grapbgyy is different, since the cou-
pling betweerHG*W~ in the BFG differs from the respec-

1A noticeable exception is the unitary gaugg, =), in which
such a term survives and, in fact, gives rise to a divergent, non-
renormalizable contribution.
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tive HG*W™ coupling in theR, gaugeg 2q,, as opposed to  IIl. THE RESONANT HIGGS BOSON AND UNITARITY

(2k+0),. respectively. Specifically, we have In this section we show how one can obtain the results of

the previous section by resorting to the fundamental proper-

2
q ties of unitarity and analyticity o&matrix elements.
2y = + — y yucity
Vel d') = (1 fo )BO(q My €M) As explained in detail if19], a close connection exists
’ between gauge invariance and unitarity, which is best estab-
a 2 lished by looking at the two sides of the equation for the OT.
B M —My).
M2, o(0%,EQM{y, £qM w)}( H) The OT for a given procesd|T|a) is
(2.29 '
(bl(T=Thla)=i2 (2m)*5*(Py=Pa)(m|T|b)*(m|T|a),

Adding both pinch terms in Eq$2.24) and(2.25, we easily m (3.2)
obtain .

where the sunk,, should be understood to be over the entire
oy q 22 a2 phase space and spins of all possible on-shell intermediate
VG =—7—|| 1+ 2M2, Bo(a, My, M) particlesm. The RHS of Eq(3.1) consists of the product of
GFP-independent on shell amplitudes, thus enforcing the
gauge-invariance of the imaginary part of the amplitude on
Bo(q? gQwaQ W)}(q N H) the LHS. In particular, even though the LHS contains un-
physical particles, such as ghosts and would-be Goldstone
(2.26  posons, which could give rise to unphysical thresholds, Eq.
(3.1) guarantees that all such contributions will vanish. In
Finally, the total pinch contribution to the Higgs boson self-general, the aforementioned cancellation takes place after
energy, which is obtained by forming the sum of E@23  contributions from the propagator-, vertex-, and box-
and(2.26), is given by diagrams have been combined. There are field theories how-
ever, such as scalar theories, or QED, which allow for a
q M2 stronger version of the equality given in E.1): The opti-
R TYIRIVTYYS Bo(aZ MG, M) cal relationship holdsindividually for the propagator-,
w w vertex-, and box-diagrams.

In non-Abelian gauge theories however, the afore-
mentioned stronger version of the OT daex hold in gen-
eral. The reason is that unlike their scalar or Abelian coun-
terparts, the conventional self-energies, vertex and boxes are

(@?=M3). (227  gauge dependenioticeable exceptions of gauges in non-
Abelian theories where the OT holds graph by graph are the

) ] ] axial gauges in the case of QCD, and the “unitary” gauge in
Adding Eq.(2.27) to Eq.(2.22, we arrive again at the ex- theories with massive gauge bosons. Nevertheless, it is
pression of Eq(2.9). o known that in both cases the Green'’s functions obtained have
In a similar way, we may compute the contributions of thepag renormalization properties. In the case of QCD, the
other virtual channelst{, ZZ, and HH) to the effective gluon self-energy computed within the axial gauges is not

2

<2|v|2 o

2 M2

AAP 2y _ Fw
I"""(q%) yp

(e
+é
amz, " amz, e

X Bo(0?,EqM Yy, EQME)

Higgs boson self-energy. They are given by multiplicatively renormalizabld16]. Furthermore, spurious
infrared divergences appear in the Feynman parameter inte-
WHo o B 2 grations, which are artifacts and cancel out only when physi-
w(d9)=5~ M—(q —4m?)Bo(g?,m¢,m?), cal quantities are comput¢dl]. As for the unitary gauges, it

(2.29 is well-known that the two-, three-, and four-point functions
' computed in this scheme are non-renormalizable. As has
4 ) 5 been demonstrated in a series of pap&B19,23 however,
14422 Mz &(Zqz— 3M2) a strong version of the OT very analogous to E31) can be
|\/|2 M,‘f‘ z realized in the context of non-Abelian gauge theories at one
loop, if the amplitudes are rearranged according to the PT
XBo(9%,M7,M3), (229 algorithm.
Specifically, let us apply the PT on both sides of E311):
M The PT rearrangement of the tree-level cross sections appear-
(HH)(qZ)— 327 M2 Bo(q M? ,M ). (2.30 ing in the RHS gives rise to new process-independseif-
energy-like parts, which are equal to the imaginary part of
R ) the effective self-energies obtained by the application of the
Note thatl'l(tt)(qz) andl‘[(HH)(qz) are identical to their con- PT on the one-loop expression for the amplitgd€T|b) on
ventionally defined counterparts, i.e., they receive no pinclthe LHS. The same result is true for the vertex- and box-like
contributions. parts, defined by the PT on either side of E&1). In other

2\ —
22" = 5 MW
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;) Wik ) t Wt t wh 5\, o
4.2 H ’ T8,,= % Mo (P)U(P)AK(D)G,s (3.6
(9) .
tr) W7 (k) J W ¢ W 02 _ 1
TH'=—— "PL ——————y*P_ u(py),
() (b) © t 2 v(p2)y'PL pl_k+_mb7 L u(py)
_ (3.7
FIG. 3. Feynman diagrams pertaining to the proceéss
—SWrWL with Ay(q)=(g>—M2Z)"%, gY=4sirf4,/3, gl=0, g¢°
=1/2—g?, gi=—1/2, and
words, effective sub-amplitudes obtained after the applica-
tion of the PT satisfy the OThdividually, e.g., Iy u(d. Ky Ko =(K-—K)\9,,— (g+K_) ,0x,

) 1 )
m(alTla)bn =5 3 [ ((fITla)(tTlaybr, (8.2
! In Eq. (3.5, U5*(q) denotes the propagator of tAdoson in
where the subscript “PT” indicates that the PT rearrange-the unitary gauge, and’’(q) is the photon propagator in an
ment has been carried out, and the indexS,V,B, distin-  arbitrary gauge. The gauge dependence of the photon is trivi-
guishes between effective self-energy, vertex, and boxes, rélly canceled, as soon &/, is contracted with the polar-
spectively. ization vectors of thaV bosons. With the definitions given

Turning to a specific example involving the Higgs boson,above, the RHS of Eq3.3) becomes
let us apply the previous arguments to the case of the process o
tt—tt. At the tree-level this process can be mediated by a Im M=T7,,Q""(k.)Q"(k-)T},
hoton, aZ boson, and a possibly resonadtscalar. We —r 7V up vo
ll‘oocus on the sub-amplitudepwhich )éontains two intermediate [ Tt T Q7 () Q7 ()

W bosons. In that case the OT yields X[Tepot Topet Tipol*, (3.9
— = 1 A A e where
Im(tt|T|tt)=§ dXp(tt| TIWF W™ (W W[ T|tt)*,
Kl V
39 Q (k)= gr+ (310

where the Lorentz-invariant phase-spdt&PS) measure is
defined as

1
f dXips= 5 52 f d*ky f d*k, 8, (K3~ M%)

X8, (kg—M{sW(a—ki—ky), (34
and 6., (k*—m?)= (k% 6(k?—m?). We now introduce the
abbreviations M= {t(p)t(py)|T|t(p)t(py)) and 7T
=(t(py)t(po)| TIW* (k)W (k_)), and focus on the RHS
of Eq. (3.3). Diagrammatically, the amplitud& consists of
two distinct parts: ars-channel amplitude7,,, which is
given in Figs. 8a) and 3b), and at-channel amplitude7; ,,,
which depends on thk quark propagator, as shown In Fig.
3(c). The subscript $" and “t” refers to the corresponding
Mandelstam variables, i.es=q?=(p;+ p,)?= (k. +k_)2,
andt=(p;—k.)?=(p,—k_)% 7Tg,, can be further decom-
posed into two differens-exchange amplitudes: one medi-
ated by a Higgs boson, denoted ﬁQM, and one mediated
by the two neutral gauge bosowsandZ, denoted byT;’lw,
with V=1v,Z. The explicit form of the above amplitudes
reads:

(P2)7,(9y + 93 ys)u(py)

XUG}\(q)F)\MV(q!kJr ka)r (35)

My

is theW polarization tensor. Obviouslk*Q,,,(k) =0, when
k?= M\ZN. Furthermore, in Eq(3.9), we omit the integration
measure 1/2dX| ps.

Since our main interest lies in the Higgs-boson-mediated
interaction contained in the transitian—tt, we wish to
isolate the part which depends on the Higgs boson. In doing
so particular care is needed, because, despite appearances,
thet-channel amplitud€?*” contains contributions which are
related to the Higgs-boson interaction. These contributions
emerge by virtue of the following WI:

k“K”
2
gw mt -
Th=———> v(py)u(py),
P 4 MW 2 1

(3.11

shown schematically in Fig. 2. The above WI is triggered by
the longitudinal moment&y andk?” , originating from the
polarization tensorQ#?(k,) and Q"’(k_), respectively.
The ellipses in Eq.{3.11) denote additional contributions
which are not related to the Higgs boson, i.e., their coupling
to the external fermions isot proportional tom;. Notice
that the combined action dfoth kK andk” is necessary, in
order for the piece related to the Higgs boson to appear.
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We then proceed to carry out the multiplication on the 1 kM K"
RHS of Eg.(3.9 (we suppress Lorentz indigesTo begin ( 50"+ Vg—) T;'WTH*+C C.
with, the term7YQ(k,)Q(k_)TY* has no dependence on
the Higgs boson, and we can discard it. In addition, the terms gm \%— 9° M2
THQ(k,)Q(k_)TY* and TYQ(k,)Q(k_)7; give Higgs- :_(W) v(p2)u(p1)Ay (q)( )(q —Mg)
boson related pieces, which are however antisymmetric un- W
der the exchang&,—k_, and therefore vanish upon the ><(q2+2M\2N)AH(q)U(p1)u(p2), (3.18

symmetric phase-space integration. This may be readily veri-
fied, if one employs the following two identities:

gm \2— g’
TRTp* = W) v<p2>u<p1>AH<q>(z)
|:(q2)2 } W
T, (a,ky ko)Q#P(k k_ 3|(ky—k_)y, —
I C i A X(@-MP(pu(p), (319
(3.12

where the abbreviation c.c. stands for complex conjugation.
q® After adding the above propagator-like contributions and
KEKED ) wu(G K ko) =5 (kg =Ky carrying out the twoW-boson phase-space integration, we

(3.13 define the imaginary part of the effective PT self-energy for
' the Higgs boson in the conventional way, i.e., as the part of
the above amplitude which is sandwiched between the two

This last result is in agreement with earlier observati@4s, bare Higgs boson propagatag(q). In this way we obtain

that any non-vanishingH transition would lead t&P vio-
lation, and therefore, it should be absent ilCB-invariant

4 2\ 1/2
theory, such as the bosonic part of the bare Lagrangian of the |, {THH (g?)= aW MT _ 4MW)
SM. Finally, the part of Eq(3.9) related to the Higgs boson (WW) 6 My q
reads: M2 )
- X 1+4M—§V—4M—ZV(2q2—3M$V
IM Myiggs= Q(K1)Q(K) T 7 * +[Q(k4)Q(k-) H H

3.2
X(THTE + BT + TT7) lgge: (314 (3.20

Notice the crucial cancellation of thg)? terms; had such
This last expression will be now separated into two distincterms survived, they would have given rise to a running

pieces as follows: width which would grossly contradict the E(Bee also dis-
cussion in Sec. VI Equation(3.20 is in agreement with the
IM Myjiggs=Im ML+ Im M (3.15  result reported irf25].

We can now easily establish contact with the results of the
~ previous section. Starting from E.9), we can arrive at
i.e., a universal, self-energy-like piece, Jm"., which does Eq. (3.20 by using the following relation:
not depend on the propagator of thequark, and a vertex-

like piece Im/\A/ern, which explicitly contains thé quark

2 2 2
propagator. The propagator-like contribution may be written 16,2 '™ Bo(q®,mg,m3)
as
1 ! 2 2
KEK? =~ 1.2 Im fodx In[mIx+m5(1—x)
Im M= 75, Q" (K )Q (K )THx + 794+ Vr)
W
- 2X(l—X)]}
X(Tg, T +TpTor)+TpTp* . (3.16 q
1
The closed expressions for the terms on the RHS of Eqg. =60[g%—(my+m,)?2 1 {6002 A4 g2,m3,m3)
(3.16 are as follows: kCH
1
Th,, Q™ (K, )Q””(k T, ~2 f dXups, .29
m | °— g . o2
= U(pz)U(Pl)AH(Q) T with A (X,y,2) = (x—y—2z)“—4yz. Of course, for the case at
2Mw hand, we haven;=m,=M,,. Conversely, we can recover
22 a2np2 4 — from Eq. (3.20 the on-shell renormalized result of E@.9)
X[(@9)7=49"Miy+ 1My JAn(a)u(py)v(p2), by means of a twice-subtractédn shel) dispersion relation
(317 [19,23.
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5 10° T S & energiesys>M,, Im II"M(s) has the following asymptotic
S f-ee fermions ’ ] behavior:
§ o102 b_._ W g -
& 3 T HH AwS 2 2 2
& ] Im IT7""(s)~ M2 (Bmf—4My—2M3).  (3.22
] w
10 E The fact that the bosonic contributions to the absorptive part
E of the Higgs-boson self-energy is negative at laggeremi-
. niscent of the PT gauge-boson self-energies in theories with
1 = 300 GeV'3 asymptotic freedom, whose absorptive parts are also nega-
3 tive. For instance, the absorptive part of the @F BFM)
4 ] gluon self-energy in quark-less QCD has the exact same fea-
10 L1 ture, and, as a result, it does not admit the usudleiia
10 1 10 Lehmann spectral representation. By analogy, far above the
(a) \s [TeV] resonant point, the resummed Higgs-boson propagator loses
102 its meaning as a description of the BW dynamics of the
u: . all channels ) R unstable Higgs particle, but it rather serves as the “effective
= e Jfermions ] charge” of the universal Higgs-mediated part of the elec-
Et o LT %ZZ trow_eal_< interaction. In Sec. V C, we will take a closer look
fs T 2z at this issue.

3

In the following, we study the resonant behavior of the
resummed Higgs-boson propagator

i /
1 BT :." /' E
wod E AM(s)=[s=ME+II""(s)] 7%, (3.23
-1 ‘.‘ I. 1 R
10 i My =700 GeV'3 within different approaches. For example!!(s) may occur
4 in the processt—H* —tt. In Fig. 5, we display the depen-
07 ; L dence of the modulus of the resummed Higgs-boson propa-
107! 1 10 gator as a function of the c.m. energfs. The solid line
®) \s [TeV] refers to the result obtained in the PT resummation approach,

FIG. 4. Dependence of IfI"H(s)/MyI} on s for individual

intermediate states.

whereas the dashed, dotted and dash-dotted lines correspond
to resumming Higgs self-energies in the BFG wifly
=100, 1000, and in the unitary gauge, respectively. Notice
the characteristic presence of unphysical thresholds in the
BFG, which manifest themselves as artificial resonances. As

The contributipn to th_e PT Higgs self—energy,_ whi_ch can also be seen from Figs@sand 5b) (for M =300 and
comes from two intermediaté bosons, may be obtained in ;qq GeV, respectively in the unitary gauge the width in-

an analogous way. For definiteness, in Fig. 4 we plot sepasreases as? and distorts the Higgs-boson lineshape. As a
rately Ehe dependence of all the kinematic channels involveg, 5 remark, we point out that the usual description of un-
in Im I1MH(s) as a function of the center-of-magsm) en-  stable particles by means of a constant width approach,
ergy \Js. The solid line corresponds to the total effect of all WhereMﬁ—ﬁHH(s) is replaced by the complex pOMEi
intermediate states. In Fig(a, we have displayed the re- —iM Ty in AH(S) for any value ofs, leads in the limits

sults of a light Higgs scenario with a mak,=300 GeV, . 4 .
whereas predictions obtained for a heavy Higgs vk ap[tl%]a non-vanishing IM"™(s), and therefore violates the

=700 GeV are presented in Fighb4. Notice that the absorp-

tive part of the bosonic channels Iﬁfv'ﬂ,)(s)=lm H(F\',C'W(s)

+Im fI(HZ%(s), represented by a dash-dotted line in both plots, . _ _ .

turns negative far above the resonant psintM2 , as canbe _The ultimate goal of this program is to provide a system-

readily deduced from the closed expressions given in Eqs"’.‘t'c framework for constructing physically meaningful Born-

(2.9 and (2.29. Specifically Imﬁ(H*\',)(s) turns negative improved approximations for resonant transition amplitudes.
) .29. , v

In doing so, we have mainly focused on gauge-invariance
when /s>430 GeV forM =300 GeV, a9¢/5>2 TeVfor  and unitarity, and shown how one can manifestly maintain
My =700 GeV. The dependence eflm IIix)(s) on Vs is

IV. RENORMALIZATION GROUP ANALYSIS

such crucial properties even when resonant bosonic contri-
indicated by a long-dash-dotted line. However, we must rebutions are considered. In the next two sections we turn to
mark that the total absorptive part of the Higgs boson selfanother important property, namely the invariance of the
energy stays always positive due to the large positive contriBorn amplitudes under the renormalization group. In particu-
bution of the heavy top quarkii=170 GeV). Thus, at c.m. lar, we will show explicitly that the amplitudes obtained by
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sible after adding, and subsequently breaking spontaneously,
a global symmetry, as we will show at the end of this sec-
tion.

A. Effective charge in QED

We start our discussion with the case of QED. The Abe-
lian gauge symmetry of the theory gives rise to the funda-
mental  WI: g, I*%p,p+q)=S""(p+0q)—S""*(p),
whereI'*? is the bare photon-electron vertex a8¥k) the

) e dressed electron propagator. The above identity is valid both
unizary gauge RN perturbatively to all orders, as well as non-perturbatively.
The requirement that the renormalized verigk=Z,I'*°
and the renormalized self-ener§yZ; 180 satisfy the same
identity imposes the equality between the vertex renormal-
ization constanZ; and the electron wave-function renormal-
ization constanZ;, namelyZ,=7;. As a result, the photon

—_— PT
BFG E_,Q =100
rosesaserse BFG ég = 1000

(a) s [TeV]

=1 ——Trry
3_3 M, =700 GeV 3 wave-function renormalization constadh and the charge
=107 N renormalization constart,=Z,Z, 175 ¥ are related by the
[ E . .
= ] following fundamental equation:
2 b
1 _
0 T Zo=2;12, (4.1
10 s -a
PT \-;-"' , The unrenormalized photon self-energy wa(q)
10 i I BFG E_‘Q=]00 "'x. .; _:(_ngMV+Q#qv)_Ho(q2)1 Where_ HO(qZ) IS a GFP-
o BFG £ = 1000 Rt independent function to all orders in perturbation theory. Af-
N it Qau . ] ter performing the standard Dyson summation, we obtain the
™ g k dressed propagator between conserved external currents
10 -6 .1 L L L Il L0 1 1 I L Il L L L1 1 I- g
10 1 10 0 ~Ouv
A = 5. 4.2
b) s [TeV] ,uv(q) q2[1+H0(q2)] ( )

FIG. 5. MuI'y|A"(s)| versus s in different resummation The apove quantity is universal, in the sense that is process
schemes. independent. We can now form the following RGI combina-

. . ... tion:
our resummation method are built out of renormalization-

group-invariant structures. Furthermore, we will demonstrate .
how one can generalize the effective charge, a familiar con- e (n2y— 2y _ Jpv
cept in the context of gauge bosons such as\Whand Z R..(%)=aer(q%) T 4.9
bosons, to the case of the scalar Higgs boson. This scalar
“effective charge” constitutes a common component in ev-where
ery Higgs-boson mediated process, regardless of the nature
of incoming and outgoing states, and can thus be viewed as a , (€92 1 e? 1
Egg/;:tsal, process-independent entity, intrinsic to the Higgs aei(g9) = Am 14T9(q0) 4n 14T

This section is organized as follows: We first review the o . ) )
concept of the effective charge in the context of QED; thenhe last equality in Eq(4.4) can be readily obtained if one
we discuss its generalization to the case of a non-Abeliak'S€s the relations between renormalized and unrenormal-
gauge theory, such as QCD. The crux of this analysis is thdged parameterse?=(Z{Z,/Z3)(e%)?, 1+I1(q%)=Z[1
by virtue of the WI's present in gauge theories the effective+ 11°(g%)], and Z,=Z;. For g*> m2, aes(qP) coincides
charge is both invariant under the renormalization group anavith the one-loop running coupling of the theory. We must
process-independent. At the end of this section we discussremark that the effective charge has a non-trivial dependence
counter-example, i.e., the case of an asymptotically free scan the masses of the particles appearing in the quantum
lar model in six space-time dimensions, and analyze the redeops, which allows its reconstruction from physical ampli-
sons which make the construction of an effective charge ndudes[22]. In general, the transition amplitude of a QED
possible. In particular, we explain why in this theory oneprocess, such as"e”—e"e™, consists of two RGI combi-
cannot reconcile invariance under renormalization group andations: a process-independent one, namely the effective
process independence. Interestingly enough, the constructiépED charge defined above, and a process-dependent one,
of an effective charge in a scalar context becomes again posamely the sum of vertex and box diagrams.

4.4

053002-10



GAUGE- AND RENORMALIZATION-GROUP-INVARIANT . .. PHYSICAL REVIEW D 58 053002

B. Effective charge in QCD ance is of course not an issue, and just as in QED, the OT

In non-Abelian gauge theories the crucial equality holds for individual Feynman diagrams, and the_self—energy
—Z, does not hold in general. Furthermore, in contrast to th&@n be formally Dyson-resummed. However, unlike QED, if

photon case, the gluon vacuum polarization depends on tH¥1€ Was to use this formally resummed self-energy inside a
GFP, already at one loop order. These facts make the nofre€-1evel amplitude, the resulting expression would not be
Abelian generalization of the QED concept of the effectiverenorma“_Zatlon group Invariant. The_ reason is that there is
charge non-trivial. The possibility of defining an effective "© QED-like W1 enforcing the equality between vertex and

charge for QCD in the framework of the PT was discussedtvave—function renormalization. As a result of that, it is only
first by Cornwall[15], and was further investigated in a se- after the vertex correction have been included that the result-

fies of recent paperd 8,32,33. ing combination becomes a RGI combination. The drawback

The PT rearrangement of physical amplitudes gives rise +9f this is that the inclusion of the vertices introduces process-

. 3 . .
a GFP-independent effective gluon self-energy, and restordiéPendence. In other words, in thé*) case it is not pos-
at the same time the equalities sible to construct a RGI quantity which is, at the same time,

process independent, i.e., one cannot reconcile process inde-
7,=7;, 2922;1/2, (4.5 pendence and renormalization group invariaf@s.

To see this in detail, let us study the Veltman mods4]
where the carets denote the corresponding renormalizatiotf d=6 instead ofd=4. This theory contains a light scalar,
constants in the PT, and is the QCD coupling. Having ¢, and a heavy scala®, with a massM4>2M,. The
restored QED-like WI's and GFP independence, and usingleavy scalar decays into twgis, via the interaction term in
the additional fact that the one-loop PT self-energy isthe Lagrangian
process-independef®4] and can be Dyson-resummed to all
orders[18,33, the construction of the universal RGI combi- r :ﬁ H2D 4.9
nation and the corresponding QCD effective charge is imme- 2 ’ '

diate. We have . . .
where\ is a non-zero coupling constant. The wave-function

~ U renormalization constan%, andZy, corresponding to the

RY(09)=ase(0) . (4.6 fields ¢ and®, respectively, and the vertex renormalization
Z 429 have been calculated in the minimal subtraction
where schemd 37]. They are
1) ¢ g°
CR g 1 —Z =142 = -
as,eﬁ(qz): 4.7 Zy=Zp=1+ 6/ 64m3¢’ VAN l+647736' (4.9

4T 1+11%q?) 47 1+11(g?)
Clearly, one haZq# Z, . Of course, since the pole terms of
It is interesting to note that in the BFM formulation of QCD Z,, andZz, are different, the above inequality will be true in
the Green’s functions satisfy by construction QED WI's, toany other renormalization scheme. Consequently, for the
all orders in perturbation theory. On the other hand, the BFMcharge renormalizatiorz, , defined by the equation’®
Green's functions still depend on the GEg. Inthe case of =z,\, we have that Z,=Z,24Z,'Z3"?=27 225>
the gluon vacuum polarization this dependence éonis 7.1 As a result, for the combination\f)?A°(s), which
trivial, since it does not affect the prefactor of the leadingjs the direct analog of the QED effective charge, we have
logarithm, and is just an additive constant. This constant mayhat (\%)2A°(s) #\2A(s). Therefore, in order to arrive at a
be considered as an arbitrariness in the renormalizatioRrg| expression, the vertex correction must be supplemented.
scheme, and will hence disappear when forming the schemeg the combination
independent RGI quantity given in E@L.6). This is however

not true in the case of massive gauge bosons; there, the de- PP PTOATO 0 0= ppI' AT pp (4.10
pendence on the GFP cannot be removed by means of an ) ) )
appropriate choice of renormalization scheme. is a RGI quantity, but unlike the QED case,cannotbe

written as the product of a process-independent and a

process-dependent part, which are individually RGI.
To explore further how the process-dependence enters, it
The ability to define grocess-independeGI quantity s instructive to add yet another set of scalar fieldssuch

is not a common characteristic of all field theories; for ex-that Mg>2M,>2M 4, and an extra interaction term

ample this is not what happens in the case of pure scalar

theories. However, if the scalar theory is spontaneously bro- , 9 5

ken, then a RGI effective charge may be defined for the ﬁim_EX P, (4.1

Higgs boson, which is inversely proportional to its vacuum

expectation valué¢vVEV). In the following, we shall examine whereg is another non-zero coupling constant, wit# \ in

both situations. general. We will ignore for simplicity additional interaction
Let us first study 6°)¢, i.e., scalaré® in six space-time terms such ag®, x%, ¢°x, x’¢. Several of them may be

dimensions. The theory is asymptotically free, gauge invarieliminated by imposing an extra mirror symmetry of the type

C. The scalar case
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¢— — ¢ andy— — x; in any case the presence of such termscouples universally to matter with a “charge” inversely pro-
does not alter our conclusions qualitativé8g]. portional to its VEV in the symmetric (1) limit. If one now

In order to mimic gauge theories, we next get\. Let  wishes to embed this scalar SSB model into a gauge theory,
us consider two different processes$¢— ¢¢ and yy  the situation becomes more involved. In fact, within conven-
—xx, both mediated by ans-channel resonant®. tional gauge-fixing schemes suchRsgaugesgv is not UV
The RGI quantites for the two processes finite and hence, Eq4.14 does no longer hold. In the next
are ¢¢F¢2¢(S,Mq> ,M¢)A(S)F¢2¢(S,M(D My bé and section, we shall discuss the possibility of identifying RGI
XXFqu)(S,Mcp ,MX)A(S)FXZ(D(S,M(D M )xx. where we effective charges for the gauge and Higgs bosons in the elec-

have explicitly displayed the dependence of the vertice.ézroweak sector of the SM.
(/52(1) XZ‘D .
r andI'* ® on the masses. It is now easy to see that the V. EFFECTIVE CHARGES IN THE ELECTROWEAK

process dependence enters through the simple fack that SECTOR OF THE SM
depends oM , but not onM , whereas the reverse is true

for TX°® 2 Evidently, there is no RGI quantity common in
these two amplitudes.

Let us now consider a four-dimensiorif* scalar theory
which has a 1) global invariance and includes a fermitin
The fermionf is introduced in order to prevent the scalar
theory from being super-renormalizable, so that one is abl
to study non-trivial renormalization effects. The part of the
Lagrangian related to the Higgs potential of the model ha
the form

In the previous section we established in detail the condi-
tions which enable the construction pfocess-independent
RGI combinations for the gauge bosons of both Abelian and
non-Abelian theorie$QED and QCD, respectivelyIn this
section we extend this analysis to the electroweak sector of
the SM. First, we review how the construction of effective
charges associated to the gauge bosons of the theory is pos-

ible by virtue of the WI's relating the PT effectivepoint
unctions [22]. Furthermore, we discuss for the first time
various subtleties related to the definition of Aéand Z
Ly=p’D* P+ (P* D)2, (4.12 effective charges, which originate from the fact that the cor-
responding gauge bosons are unstable. We then turn to the
The interaction of the scalab to the fermionf is given by  case of the Higgs boson and examine the possibility of con-
_ structing aprocess-independeRGI quantity for the case of
Lin=9Pf fr+H.c. (4.13 the Higgs boson. The answer to this question is by no means
obvious, since the Higgs boson results from the SSB of the
The global ul) Symmetry Of[,V in Eq (412 breaks down gauge group SU(Z_)@ U(l)y, and gauge_ﬁxing and ghost
spontaneously and the resulting theory resembles the Uferms spoil in general the equalit¢.14). However, it turns
gauged SM, where the fermidmmay represent for example out that because of the PT WI's, it is possible to construct a

the top quark. Specifically, the fiel® must be expanded Higgs-boson “effective charge,” in direct analogy to the
around its VEV, i.e.® = (v+H+iJ)/v2, where the fielH  gauge boson case.

is aCP-even Higgs boson with ma$d,=v2u andJ is the

massl_essC P-odd G_oldstone boson associated with the A. The PT Ward identities of the SM
breaking of the continuous(ll) symmetry. After the SSB of ) _ ) ) )
the U1) symmetry, the fermionf acquires a massn It is well-known that in the PT effectiva-point functions

_ . satisfy (at least at one logpnaive, tree-level like WI's, as
gu/vZ. If My>2m;, then the decay proceds—ff is happens in QED. This is to be contrasted to the conventional

kinematically allowed and the Higgs boson becomes an un-"""" . o .
stable particle. n-point functions, which in general satisfy Slavnov-Taylor

o . identities, which involve the Green’s functions of the un-
Beyond the Born approximation, the wave-function renor- S , .
maliz;/tion of the Hi pi fieldzY? renders the VEV(®0) physical ghosts of the theory. The PT WI's are a direct con-
0 UV finite. viz (9921,2( +‘1’5 ). with vanishing diver sequence of the requirement that the S-matrix be GFP inde-
=y y 2w U =L U v), -

div . pendent. The PT WI's for the electroweak sector of the SM
g%nt pagt 26’_)) =0. As a consequence, the expressionhaye heen derived if26,18. In fact, based on these WI's, it
A%(s)/(v7)*, involving the resummed Higgs-boson propaga-is nossible to prove a stronger version of this GFP indepen-
toris RGl, i.e., dence of the S-matrix: The S-matrix satisfies the “dual
1 1 gauge-fixing property,” which states that one is free to
—— _A%s)= 5 A(S). 4.1 choose different GFP’s for the gauge bosons inside and out-
oz A7(s)=— A(s) (4.14 : Se ant
(v°) v side the quantum lood89]. The above property is intrinsic
, , N to the S-matrix, and is not linked to any special gauge-fixing
Itis then obvious that the VEV of the fiellt in a SSB scalar  qcequre. Its derivation is based on the observation that the
theory plays an instrumental role in defining a RGI effectivept rearrangement gives rise to one-losoint functions
charge for the Higgs interactions, very much in analogy 0 \hich all dependence on the GFP stemming from the
the QED and QCD cases discussed earlier. The Higgs f'elgauge bosons inside the quantum loops has disappeared,

gardlessof the choice of the GFP for the gauge bosons out-
side the loops. For the final cancellation of this latter gauge
2t is elementary to verify that the functional dependence of thedependence to go through, thepoint functions constructed
vertex functions on the respective masses is non-trivial. via the PT must satisfy tree-level WI's. Explicit calculations
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have demonstrated that this is indeed the case. The above ) R R
“dual gauge-fixing property” holds for the unrenormalized Zgo=Zg==2y
S-matrix. If one imposes the requirement that the renormal-

ized PTn-point functions satisfy exactly the same set of WI N
as their unrenormalized counterparts, one then concludes that Z,=24. (5.9
the “dual gauge-fixing property” holds also after renormal- . . )

ization. After enforcing this last requirement one finally ar- N deriving the above expressions, the followiexactalge-
rives at a set of conditions relating the various wave-Praic identity may be used

function- and coupling- renormalization constants of the

M3,
I+ == (5.8
Iv'W

2 2
theory. 1+ 5M2W) ( 1- 5'\ng) =1. (5.10
To see this in detail, we start by listing the relations be- My (My)
tween the bare and renormalized parameters for the elec- ) ] .
troweak sector of the SM. We indicate aﬂare unrenormal- Itis Important to notice that the relations listed above are
ized quantities with the superscript “0”. For the masses weexact toall orders in perturbation theory. Instead, in the
have usual perturbative treatment, one séfézz 1+ 167, fori
0.2 ) ) 012 ) ) =W,Z,H,f, and neglects higher order terms. For example,
(M) =M+ oMy, (Mz)*=Mz+oMz, at one loop order, i.e., if we neglect terms of orgérand
higher, the relation Eq5.8) becomes
(MPZ=M{+ oMy, mP=mi+ome.  (5.1)
2
- B - w
In addition, the wave-function renormalizations are given by 0260= 0Zg== 62w+ 7 (5.1
w
+,0_ 5120+ 0_ 512 o . : .
W, O=Z3Aws, Z0=25"Z,,, It is instructive to show with an explicit example how the
A A relations in Eq.(5.8) may be derived. To this end, we first
G*0= Zé’iGi, G20= ZggGO, define the proper unrenormalized one-loop vertices:
N - TWHUAO g h— Y W Ud0, PWUd0 y
HO=ZY2H, f0 g =2vRY2 g, ) *%a,py,pa)=Tg,, ““*+ T “*%a,py,pa),
N “ =t o + At .
04=24 Gu, CO=Z¢ Cu, (5.2 e v0q,py,pg) =T "0+ T g, py,py),
v w (5.12
with WHud,0 o FWHUd,0
wherel'y, " andT',] “*” are the tree-level and one-loop
5 _[1a 5M\2N) 1’2( 5M§)1’2 5.3 PT W*ud vertices, respectively. CorrespondinglyS  *°
w My M3 ' ' andT"® U490 are the Born-level and one-loop R ud ver-
R tices. Furthermore, if one neglects quark mixing, the bare
If we expandZCW perturbatively, we have dressedu- andd-type quark propagators are given by
A 1 8¢ 8P =[py—md+S "% p)] Y,
Ze =1+ —t0n, (5.4 T ’
w 2 ¢y, A L
| Sa(Pa) =[ba—ma+ 2% pg)] . (5.13
with
Because of the fact that the bare effective PT vertices and
5c2, B M3,  6M2 59 self-energies satisfy tree-level WI's, one then has
o M Mz | TWhud,o 0 G uc
g“T} "“%a,py.pa) + ML 4%, py,pa)
which is the usual one-loop result. The carets in the above o
formulas indicate as usual that both the calculations as well 19w sgoq, 20-1
as the renormalization procedure are carried out in the PT T2 [Su " (PWPL=PrSs (Po)].  (5.14

framework.

Imposing the requirement that the PT Green's functionsrhe renormalized quantities are defined as follows:
should respect the same WI's before and after renormaliza-

tion we arrive at the following relations: 1 — — . 1 — —
FW Ud: A FW ud,0
A ~ " W+ud gO " y
Zw=2,7, (5.6 " w
1 iy A 1 At
A A A FG ud:Z — FG ud,0 1
ZZ=ZW22W, (5.7 w G'ud gWD ' (5.19
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8(pa)=2%4(pa) 24, where

SUP) =252 99y A,9,

Sg(pu)zztlzsu(pu)Zﬁ/ZT. (5.19 t,ul/(q):_gﬂy—’_ 32 ) ,uv(q)_ g
where ZM2=24%p + 7R, and  Zgipg=25.oPL

As was shown in detail if18], if we decompose the bare
Pr. Then the vertex renormalization constants

+ 27
G*ud ne-loop PTW-boson self- energYI %(q) in the form
Zw+ua and Z —d are related to the renormalization con-

stants mtroduced in Ed5.2) as follows: A A A
52 YA q) =11 %), + I Ae),,,  (5.22

5 — _ 5 51/25L1/25L1/2
Lwrua= Lo, L0 ld " Lu (.19 then in the PT resummation formalism the quantities
. . AWO(g?) andAM°(g?) are given b
ZcL;+Ud:Z ZéliszZZRl/Z T(9%) L (a%) g y
R s sizaium AT =[0?- (MR*+ITFAe)] Y, (5.23
Za o= 2o Los 25128 2. (5.18
AW, 012y 012 __ 1yW.0, 4211
After replacing the bare by the renormalized quantities in Eq. AC(@)=[(My) "= (q7)]" " (5.29

(5.14 by means of Eqs(5.16), (5.17), (5.18, and(5.1) for

the mass renorma||zat|on we requ”'e that the renorma“zea—he standard renormalization procedure is to define the wave
WI retains its original form, i.e., function renormalizationZ,y, by means of the transverse

— _ part of the resummell-boson propagator:
— -+
q“T} “(a,pg,pa) +MwI'® *%a,py,pg) ) ) )
Zy 07— (My)*+11T%?) ] =0*~ M§+T17(0?),
ig B Al 5.2
== ISP PRS (pe)]. (519 (629

where the explicit form oTZW depends on the renormaliza-
The above requirement leads to relations among the renotion scheme. Similarly, the propagator of the associated
malization constants within the framework of perturbationwould-be Goldstone bosd&™ is renormalized as usual, i.e.,
theory. From the WI involving the chirality structure

P FW+”d’°F‘L in Eq. (5.14, we thus obtain thai =2\7V1’2 DG" O(q?) =[P~ ( 2] 1= 70 [q? Q(qz)] .
and Z;=Zg, which are Eqs(5.6) and (5.9), respectwely (5.26
Furthermore, imposing that the form of WI fﬁ’rLFW ud.Op,

or P F)’L" udOp . remains the same after renormalization

yields Zos=Z{(1+ sM2/M2) Y2, which is the last equal- G*0=7,.G". (5.27

ity of Eq. (5.8).
Following an exactly similar procedure we can derive theNote that we only need to carry out a wave-function renor-
rest of the relations listed in Eqé5.7) and(5.8). malization for the Goldstone boson self-enefd(g?) (with

tadpole and seagull graphs includedince 0°(0)=0, in

agreement with the Goldstone theorem, which states that
In this sub-section we show how the relations among théoldstone bosons are massless to all orders in perturbation

renormalization constants derived above enable one to comhkeory. The latter is a result of the gauge invariance of the

struct a process-independerRGl quantity for the gauge diagrammatic PT method.

bosons of the theory. For definiteness, we concentrate on the From the PT WI's involving the self-energies, we have

W boson, but similar arguments apply for the photon and the

with

B. Effective charges for the gauge bosons

Z boson. ~ o ( svz o
First, we shall show that the bare and renormalized PT "%q?) = 0%q?), (5.28
resummed Woson propagatorsy%(q) and A (9),
spectively, satisfy the following relatlon which implies that
AW =2y A,“,(Q) (5.20 . 2,
AMg?) = —57 D Ug?). (5.29
(My)

We start with the most general form &fﬁ’;o(q) given by

wo wo Wo, 2 This last identity allows us to write the resumm@dboson
AMOa) =AY, + AV, (5.2D) propagator in the form
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channels. Similar considerations apply to the case ofzthe
boson, or other possible gauge bosons appearing in exten-
sions of the SM.

AYO(q) = ZW AV (@)t + Z A1, ]

sl aw o &_qa Mg Apart from identifying the process-independent RGI
— L\ AT(q )t,uv+ZW ZG+ 1+ 2 ) VY )
My quantity for theW bosonR,,(q) in Eq. (5.32, one can also
o introduce process-dependent RGI quantities. For instance, to
. b . )
% Ve DG+(q2)|W (5.30 one-loop, theyW~ W™ vertex may be written in the form
w
YW W (471 W wt
Imposing that Eq(5.28), or equivalently Eq(5.29, holds R Y (ke k)= 2 e ST (ak- ki),
for the renormalized quantities as well, we find W (5.34)
A_qa with
AWAQ)=2w AT(O)t+ 20 2o
M2\ L DI W (ko k) =T W+ T (g k ky).
1+ — ) AYedl,,|. (53D (5.39
w

Here, FVXV_W+ and FVW W (q,k_,k.) are the tree-level
and one-loop PTyW W+ couplings, respectively. The

quantltyRZ"V\’A w* (g,k_ ,k,) is UV finite and invariant under
the renormalization group. This can easily be shown by

means of the one-loop PT WI, which can also be written in a

Finally, using the last equality of E¢5.8) we arrive at Eq.
(5.20.

It is now straightforward to see that thprocess-
independenRGlI quantity for thew boson is given by

(9 0)2 (g )2 RGI form, viz.,
Ry =—— A=, All(a)=R}\(a). o ) )
(5.32 g R W g,k k) =R (ko) — R (k).

(5.3
At this point one might be tempted to separate the above

guantity into the product of a dimension-full kinematic factor This last equation shows how the actiongsf on R7
and a dimensionless quantity, which could be identified withprojects out the process-independent part of Wﬂ! W+
an effective charge, in direct analogy to the QED and QCDvertex, which is related to th&/-boson effective charge.
cases. This kind of factorization may however introduce arSimilarly, one can construct RGI combinations for all the PT
tifacts into both components, which are absent from thevertices related to couplings, e.gyW G*, ZW W,
original RGI expression. For example, take the simple cas@ G~ G™, etc In particular, at LEP2, it is very advantageous
whereRYY, is sandwiched between conserved external curto use the RGI expressior?". V" and ﬁi‘l’,‘fw+, which

" WU\
rents(massless external fermionand let us decompoﬁ)’)’v
in the form

g/.w
9%2-s(g?)

RI(Q) = aw (9% , (5.33

lead to UV finite form-factors for theW W" andZwW W™
vertices.

C. The effective charge of the Higgs boson
We now proceed to extend the notion of the effective

- charge to the case of the Higgs boson. For this purpose, we
where s(gq?) denotes the position of the physical complexfirst express the unrenormalized Higgs-boson propagator in
pole of theW boson which appears on the second Riemanrierms of the renormalized one as follows:
sheet. Two possible parametrizations of the pole are T )
M2 i T <(a2) — M2 A" =[g°—(M
=My, —iM Iy (constant imaginary partor s(q°) =My,

2 2. ; ; ; R R A A
ig°T'w/My (g--dependent imaginary paytwherel'y, is =ZH[q2—ME|+HHH(q2)] 1-7,AM(q?),
(5.37

a)2+ﬁHH,O(q2)]—l

the constant width of th&V boson on the pole. In the first
case, we see that gt=0 for example, the kinematic factor
is complex, whereas the RGI quantity is real, i.e.,
Im RW /(0)=0, since, by construction, it only develops an whereMy may be defined to be the real part of the complex

|mag|nary part at the lowest physical thresh@16|>m pole position ofAH(qz) Following a procedure rather simi-
Consequently a,, (0) is also imaginary, i.e., it contains lar to that given in Sec. V A, we should exploit the gauge
thresholds which are artifacts of the decomposition. The secsymmetry of the SM, in order to deduce relations between
ond parametrization a(g?) does not have the above prob- Z,, and the other renormalization constants.

lems, but still, the effective charge so defined contains erro- We start again with the PT WI relating the one-loop ver-
neous information about the position of the various decayicesHZG® andHGG?, i.e.,
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~HzG00 :n 1 01~HGOGO, . 042
KiT) (9,Kq,kp) +iMITHE S 0(q Kk ,ky) RH(2) = ((I\?IW))Z AHOg?)
0 W
gw N _ ~ =0 _
=5 (A" =B A1, (539 % e | 525 (10 M) a
v MA(Q) ZH1+M2 =R"(q")
w w
where (5.49

. . oo is a process-independeRGI quantity, in close analogy to
D O(k?)=[k*—T1°"¢"k?)]* the RGI quantity of thaV/ bosonRY),(q). As a byproduct of
this, we also find thatR® (k?)=(g2/M32)D% (k3 and

RS (k?)=(g2/M2)DC"(k?) are invariant under the renor-
malization group. Hence, we conclude that the quantity

R"(g?) provides a natural generalization of the concept of
the effective charge in the case of the Higgs boson. It is
FHZGO,OEFHZGO,O +f~HZGO,O interesting to notice the.exact analogy between thel form of
s Ou m ’ the Higgs boson effective charge of E¢p.44) obtained
within a theory with a non-Abelian gauge symmetry such as
HGG00_ 1HEYG%0 | [HGYG00 (5.39 the SM, and that of Eq(4.14) derived in the context of a
0 much simpler model with Abelian glob&lin-gaugedl sym-
metry.
As before, in Eq(5.39, the subscript “0” denotes tree level Finally, a direct derivation of the above general result
couplings, while the caret indicates one-loop vertices obmay be obtained if one adopts the symmetric formulation of
tained in the PT. the classical action in the BFJ40]. Within this formulation
As usual, we write the unrenormalizedlZG® and one is led to the minimal on-shell scheme, with the relevant
HGOGP vertices as a product of the renormalized ones and &normalization constants satisfying
vertex renormalization constant,

= Zeo[K2—T1%"°(k?)]

and

d0=7%b, 0=z +60). (5.45
2CW FHZGO—Z . 20% FHZG% Using the above relations, and the additional fact that, due to
Ow HzG E‘J " ' the background symmetry, in this formulatieiv =0, one
can immediately show that
0 -~ - ~ ~ A A
2Cw THES0_ 5 o ZQZW [HE00 540 (@977 <0|T:c1>°(x)q>°(y):|o>=v*2<0|T:<I>(x)c1>(y):(|5021,6)
w W .

which is Eq.(5.44). Even though the analysis of this subsec-
Making use of the fact that the effectivtZG® andHG®G®  tion which led to Eq(5.44) is more general since it does not
vertices are completely renormalized by a redefinition of therely on any particular gauge-fixing procedure or renormaliza-
fields and the couplings given in E¢.2), we find tion scheme, this latter derivation within the symmetric BFM

framework has the advantage of directly generalizing the

15125125102 51/251/2 construction of the scalar effective charge given for the toy
Znzco=2y Z w22 ZiZeo =225, (540 model of Sec. IV C to the realistic case of the SM.
SM2\ 12 VI. DIAGRAMMATIC ANALYSIS
Znc0c0=2y 25 7H?2 o= 21212 1 z 5.4 OF THE EQUIVALENCE THEOREM
HGOGO= £g, Lc "LH £G0= LH £go +VT . (542

Cornwall, Levin and Tiktopoulos, and shortly afterwards
Vayonakis, showed that at very high energies the amplitude
for emission or absorption of a longitudinally polarized
gauge boson becomes equal to the amplitude in which the
gauge boson is replaced by the corresponding would-be
Goldstone bosofl3]. The above statement is a consequence
of the underlying local gauge invariance of the SM, and is

5 -5 (5.43 known as the equivalence theordEir); it has been proven
H™=C ' to hold to all orders in perturbation theory for multiple ab-
sorptions and emissions of massive vector bo$bds Com-
Employing Egs.(5.6), (5.8), and(5.43), it is easy to show pliance with this theorem is a necessary requirement for any
that resummation algorithm, since any Born-improved amplitude

In the last step of Eqg5.41) and (5.42), we have used the
relations given in Eqs5.6)—(5.8).

In order that the PT WI in Eq(5.38 maintains the same
form after renormalization, it is necessary to have
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which fails to satisfy it is bound to be missing important () Z, (k1)

physical information. The reason why most resummation HA”(‘I)H 5 ) VY3 L
methods are at odds with the ET is that in the usual diagram- >Q’ g2 + TR v(p1 + k) v{p1 + k)
matic analysis the underlying symmetry of the amplitudes is x TV TV
not manifest; just as happens in the case of the OT, the’»?) Zu(kz)

conventional sub-amplitudes defined in terms of Feynman (@) (b) (e)

d_lagrams danot satisfy thg ET md_wu;iually. The resumma- FIG. 6. Resummation of the Higgs-mediated amplitude perti-
tion of such a sub-amplitude will in turn distort several nent tovym 27
. vrv— .

subtle cancellations, thus giving rise to artifacts and unphysi-
cal effects. Instead, as we will show in detail in this section, _ . . .
the PT sub-amplitudes satisfy the Hmdividually. As is f[udes Wh'Ch decrease in magnitude as/gflbr fast(_ar_wr_[h
common in the PT framework, the only non-trivial step for 'Ncreasing energf~ \s. In order to obtain non-trivial in-
accomplishing this is the proper exploitation of elementanyformation for the energetically suppressed terms of order
WI's. In addition, the part of the Born-improved amplitude M/+/s and their higher powers, one has to invoke the so-
containing the resummed Higgs boson self-enefgy the caI_Ied generahzeq.ETGET) [14], whose derivation again
RGI quantity defined in Sec. V)Gsatisfies the ETndepen- re_hes on the |_den_t|t|es of E¢6.1). In the case of amplitudes
dently of the rest of thenon-resummedamplitude. This is  With two longitudinalW* bosons for example, the GET es-
explicitly demonstrated by resorting almost exclusively totablishes the following relation:

the fact that, in contrast to their conventional counterparts,

the one-loop Higgs-boson vertices defined within the PT sat- TIW (k)W (k)5 X]
isfy naive, tree-level WI's. - n _ .
The formal derivation of the ET is based on the observa- KIKTTIG (k)G (k- )iX]
tion [14] that, by virtue of the Becchi-Rouet-Sto(8RS +KTT[GT (ky)w™*(k_);X]
invariance of the theory, the connected transition amplitude B N _
between physical states of any numbeof insertions of the +KTTIw (k4 )G (k-);X]
gauge-fixing ternF2 vanishes, i.e., FTIWH (k)W (k)i X], (6.5

Ea a an -i —
(FIT:FH(x0)F22(xp) . .. Fo(Xn):[i)eon=0. (6.1 and for two longitudinalZ bosons:

In the renormalizabld®R; gaugesF? assumes the form Y
¢ gaugesr TZ{(ke)Z} (ko)1 X] = (KO)2T[GO(ky) GO(Kp); X]

Fa(X)I(9’"’V2(X)+§aMVaGa(X), (62) +KOT[GO(k1)ZV(k2);X]

whereV?, denotes the massive gauge boson, &\, or Z, +KOT [2#(ky) GOky); X]
G? its corresponding would-be Goldstone boson, &4-,or Y )

G°, &, its GFP, andMy. its mass. Since for energids, +T[2(ky)Z"(ka):X], 6.6
> My, the longitudinal polarization vectes‘(k) of the gauge

*u — oM — k™ 12 — oM
bosonV behaves as wherew=#(K.)=e{'(k+)—k&/M; and z“(k, o) = &' (Ky 2

—ki' /My are the energetically suppressed parts of the lon-

K gitudinally polarizedw* andZ bosons, respectively. In ad-
s’L‘(k):M—+v”(k), (6.3 dition, K* and K® are renormalization correction factors
v mentioned above. In the Born approximation, they take the

. _ . ' . valuesk*=—1, K~ =1, andK®= —i, if the four-momenta
with Uﬂ(k)_O(MV/EV)! in the conﬂgu_ratl_on spacef(_k) of the gauge bosons are incomi], and reverse their sign
may be represented naively by the derivatlygMy, which in the opposite case. Formulas analogous to E§$) and

in turn enables one to use the identities derived from Eq . : 7
(6.1). Beyond the tree level, one has in general to include(6.6) can be derived for an arbitrary number of longitudinally

. a . . polarizedW andZ bosons. In the following, we will restrict
correction factor@fl],_denoted here_ as s, W.h'Ch take into ourselves to amplitudes involving two vector bosons only.
account renormalization effects. Finally, given that, due to ) — u )
the unitarity of the SM, amplitudes involving only would-be L€t us consider the procesgp;)»(pz)—Z( (k1) Z((k2)

Goldstone bosons cannot grow faster than a constant at hig the tree level, whereis a Dirac neutrino with mass and
energies, one finally arrives at he four-momenta of th& boson are defined to enter the

interaction vertices as shown in Fig. 6. The total matrix ele-

n mentT(v7—>ZLZL) is the sum of two amplitudes:

TV Vi) =[] K&T(G2. .. G#;X) + O(M/E),
i=1 _
6.4 T(vw—22)=THZZ)+T(Z.2Z), (6.7

whereV{'=s{'V;, andX denotes all other fields. The above where
equality represents the ET in its most basic form. Note that H i , H
the ET cannot give any interesting information for ampli- T(Z.Z))=¢el(ky)e((ko)Tg,,(22), (6.9
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T(Z.Z)=el(Ky) el (Kp) Ty, (ZZ), 6.9 ké  2M ;
(Ziz)=st (k) el (k) Ty (22) 6.9 e =siy - o zkgm(_; |
M s S
with (6.19
gym | — Furthermore, the residual vectaf(k;) has the following
T8,(22)=—iT5s7 Ap(kytky) (m) v(P2)U(pPy), properties:
(6.10 2, (k)KE= =Mz, 2,(k)2*(k)=0.  (6.19
T (77)=— Ow | — P 1 P Exactly analogous formulas and relations hold #gi(k,).
wl£2)= 2c, v(p2)| 7,PL Pt k,—m Tt Using the decompositio(6.3) for e{"(k; ») and the proper-

ties (6.19 for z**(ky ), we find for the part of the ampli-
+y,PL K %PL)U(Pl)- (6.11) tude depending on the Higgs boson
THZ2,2)=-TH GG +ATH+ T (z9-TH(Z,2),
In Eq. (6.10, the tree-level[HZZ coupling is defined as (6.16

I§7Z=igy M2/Myg,,. The entire amplitude T(vv whereTH(22)=22"TH. (22) and
—Z,Z,) satisfies of course the GE{®nd hence the BT *

What we wish to investigate here is whether the GET holds 9y gyM QWN@ _
for the Higgs-mediated part of the amplituhelependently AT = _(ZM ) Mo | An(kitka)v(pa)u(py),
The reason we turn directly to the GET instead of the ET, is w w 6.17)
simply that both theZ(Z, Z,) of Eq. (6.10 and the ampli- '
tude 7H(G°GP) given by and75(Z,Z,) is the expression given in E3.11), with m,
replaced bym. It is now straightforward to verify that
m\—
TH(GOG) = —iTHE S A, (ky + ko) %)v(pz)u(pl), ATH=—iTH(zC®) —iTH(G ), (6.18
W
612 \ith
wherel'He’¢°= —ig MZ2/(2M,,), decrease at very high en- TH(zG)+TH(G%)

ergies as ¥, because of the presence of the Higgs-boson
propagator in the channel. So, the ET in this case will only
furnish trivial information. Instead, according to the GET

=27"(Ky) T4, (ZG%) +2"(kp) T4,(GZ)

= —i[2(k)THZ% 4 2(k,)THEZ)

[14], additional amplitudes should be taken into account if Ou
one wishes to keep track of energetically suppressed terms to gyM o
orderM2/s. x(m)AH(kl+ ky)v(po)u(py). (6.19

In order to address the question raised above, we will
calculate the LHS of Eq(6.6) explicitly, using full expres- The tree-leveH(q)Z ,(k;)G%(k,) coupling in Eq.(6.19) is
sions for the longitudinal polarization vectors involved, and . HzGO * .

iven byT'57” =gu(q—ky),./(2¢c,), with all momenta de-

check whether the result so obtained coincides or not witly . . v
the sum of the Higgs-boson-dependent parts of the ampli_|ned as incoming. Clearly, the first three terms on the RHS

) ! of Eq. (6.16 are nothing but the sum of the Higgs-boson-
tudes appearing on the RHS of H§.6) (with X=vv). For depgndent parts of the gmplitudes g
that purpose, we first write the longitudinal polarization vec-

tor of the gauge boso¥ in the covariant form T[Go(kl)GO(kz);vﬁ,
ef(k)= ZB;M [(1+BHk*—(1-BHk*], (6.13 T[2(ky)GOkp); vw]+ T[GOky)2(kp); v ]
\%
and

wherek*=(Ey ,ky) is the four-momentum of th¥ boson,
kr= K, and 8= ky|/Ey is theV-boson velocity. It is conve-
nient to work in the c.m. system of the process  Evidently, the only reason preventing(Z, Z,) from satis-

—Z{'(k)Z[(kz); in that case the polarization vectef(k,)  fying individually the GET is the presence of the term
of the Z* boson can be expressed in terms of the four-7H(z z,) on the RHS of Eq(6.16.

momentak{ and~k’1‘=k§, andﬁ=(1—4M§/s)1’2. Likewise, However, according to the PT, the genuine Higgs-boson-
el(ky) is written in terms ofk, and ki=k!. To order dependent part of the amplitudEt (Z, Z,), is obtained after

M‘Z‘/sz, the energetically subleading patt(k,) of e{/(k;) is  recognizing that the momentd’ andk; coming from the
obtained by polarization vectors of the longitudindl bosons can extract

Tlz(ky)z(kp); vv].
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a s-channel-like, Higgs-boson-dependent part from the non-
in exactly the same way as happens

resonant amplitudg,,, ,
in Eg. (3.11, namely

m v
kl 2

M, M, Tw(ZD=Tp(ZZ)+. (620

where, as in Eq(3.11), the ellipses denote additional contri-
butions not related to the Higgs boson. Thﬁ'i'(ZLZL)
=TN(ZZ)+Tp(Z.Z)). A

We now want to check iﬂ'(ZLZL) satisfies the GET; for
that to happen one must show that

TH(Z,2,)=TH(G°G% + TH(G%) + TH(zG%) + TH(z2)
=-THG'GY-iT(zG-iTH(G %)
+TH(22-TH(G°G%) —iTH(G )

—iTH(zG +TH(z2), (6.20)

where the amplitude® 5 (G°G?), Th(G), TH(zG"), and
T',;'(ZZ) denote possible Higgs-boson-dependsitthannel
pinch parts coming from thiechannel amplitude(G°G°),
T(G%2), T(zGP), and7(z2), respectively. It is easy to con-
vince oneself however that 75(G°G%)=75(G%)
=TH(zG%)=TH(z2=0; this is so because, according to
Eqg. (6.14, the energetically subleading parts(k,) and
z"(k,) are proportional to the “wrong” momenta, i.d&%
andkj, respectively, instead df{ andk;, which are nec-
essary for pinching. Therefore, E@.21) reduces to

TH(2,2,)=—THG G -iTH(zG")

—iTY(G%)+ T (z2. (6.22

But this last equation is immediately true, by virtue of Eq.
(6.16 and the definition of (Z, Z,).

It is important to stress that E¢6.22 demonstrates ex-
plicitly how the tree-level Higgs-mediated part of the ampli-
tudeTsH satisfies the GEThdependentlyprovided the pinch-
ing contributionT'; residing in the non-resonant amplitude
is taken properly into consideration. This fact reveals an un
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HZZ
Ouv

Y4
v

TH (Z,20)=—i[TH2Z+TH2%(q,ky k)]

gwMm

X
2Myy

AM(qu(ppu(py). (6.23

The PT WI's identities are

~ . ~ 0
ksTH22(q,kq ko) +iM 126 (g ,ky ko)

Ow ~ -0
== 5o % (ko). (6.24
"
~ 0 . ~
KETH27(g, kg ko) +1M 1HE"(gky k)
g ~ ~ ~0n0
=— 5o (M@ +1°D)],  (6.29
W

KiksH22(q,ky ko) + M2IHES(q kg ky)

_ igwMZ

= e M) + ISk + 1111,
4

(6.26

As before, we define all momenta to flow into th&ZZ
vertex withg+Kk;+k,=0. The closed form of the effective
one-loop PTHZZ coupling is given in Appendix B. Note
that exactly the same WI's hold true for the tree-lekiel Z
coupling before quantizing the classical action by introduc-
ing gauge-fixing terms and ghost fields. To be specific, the
tree-level WI's derived from the classical action are recov-
ered from Eqs(6.24—(6.26 if [17H(qg?) and —116°¢°(k?)
are replaced with the inverse free propagators of the Higgs
boson A, Y(q)=g?—~M% and the G° Goldstone boson
Ago(k)=k?, respectively, whiId]iGo(k) is substituted by
iMzk,, , which represents th&°Z mixing. Of course, in the
R; gauges there is nG&°Z mixing at tree level because it
cancels against the corresponding gauge-fixing term.
Within our Born-improved approximation the neutrino-
exchange amplitud&(Z, Z,) retains its tree-level form; its
only function is to provide the PT terrﬂ"S(ZLZL). This
latter term is responsible for the bad high-energy behavior of
both the resonant and non-resonant amplitudes, which vio-
late the ET separately. The validity of the ET for the indi-
vidual amplitudes can be restored only after the PT term

7H(2,2,) is added to theschannel amplitude H(z, Z,),

derlying relation between the PT and the ET at the diagrameXactly as happens in the case of the tree-lefrein-

matic level, and constitutes a major result of this paper.
We will now show that within the PT framework the

equality (6.22 remains valid even after the Higgs-boson

propagator has been resummed. As explaindd 8,19, the

effective one-loop PTHZZ vertex f,”jz(q,kl,kz) must be

included in the amplitude containing the resummed Higgs

boson propagatak(q); this is so, because the one-loop PT
H(q)Z*(k,)Z"(k,) vertex satisfies a number of tree-level
WI's which are crucial for ensuring the gauge invariance of
the resummed Higgs-mediated part of the amplitude

resummeaﬁ’sH(ZLZL). Indeed, it is not difficult to show that
the amplitudes7TH(z,2,)+ 75 and 7,(2,Z,)— 7} satisfy
the GET and hence the EiRdividually. For example, by
employing the PT WI's in Eq96.24—(6.26), we have that
Tz z)+TH=-TH(G°GY) —iTH(zGY)

—-iTH(G %)+ Tz,  (6.27)

where
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TH(GOG) = —i[[HC°C°+ 'S’ (g ky k)] kD W™ (g k. ks) = MylHC 7 (gk, ko)
- gwm\|— iOw -~ N
xA”(q)(Z,(”AW)wpz)u(pl), (6.28 == [IM(g%) + Q(KE)], (6.33

_ wv THW W™ 2 PHGTG™
and the sum of the resummed amplitudds'(zGP) Kkl ™ Ak k)Ml (@ ko)

+7TH(G%) is defined analogously to E¢6.19, i.e., igwMw _~ - -
+(672) gously to E-19 =SSR + Q)+ 0(3) ). (634
TH 0y 7H/ 0 “ _
75(zG)+7T5(G"2) The analytic form of the PT verteRlHL‘V"ﬁW (q.k; k_) is
=z”(kl)?g'ﬂ(ZGO)+z”(k2)?§'V(G°Z) giveg Iin Appendix :A +Trje one-loop PT vertices
oo MW" (q,k. ks) andT'He "¢ (qg,k, k) may be gained
= —i{z(k)[T o % +T57%(a,ks ko)1 by using the WI's in Eqs(6.31)—(6.34 and known expres-
00~ o sions for the PT Higgs- an@ " -boson self-energidL6].
+2"(ky)[THE 24+ THC 2(q,kq ko) 1} At this point we should note that the GET is still valid for
the Higgs-mediated part of the amplitude even if we use the
gwm) - — : .
% ZKVA )AH(q)v(pz)u(pl). (6.29 I?SI exprej\ssmn_ for the resum.me.zd Higgs boson pr9pagator
w R"(s) defined in Sec. V C. Similarly, one can define the
process-dependent RGI combinations involving, e.g., the
_ +\A/— .
Finally, we have defined Tg'(zz) HW™W™ vertex:
=z"(ky)z"(k )TH (Z.Z)). In the derivation of Eq(6.27), . _ 1 — .
o ({260 RHWIW™ (g k., k)= THWW (q.k, ko),
we have also used the PT WIII,” (k) wy guMw  ~”
= —iM 2k, [18°%°(k?)/K?.

The above considerations can be straightforwardly ex- ~ ,+g- B
tended to processes involving théWW vertex, e.g., the Ry (q.k+ k-)=

reactiontt—H* —W, W, . As has been discussed in Sec.

[ll, one has to extract from thb-quark exchange graph the . . _ Mw = et e

PT term related to the Higgs-mediated part of the amplitude R"® ¢ (a.k ,k)=( ) . e G (q,k, ko).

[cf. Eq.(3.11)]. Similarly, after adding the PT terf{ to the v 6.39
resummed Higgs-exchange amplithé(WﬁW[), we can -

show that As before, “barred” quantities denote the sum over the tree-
level and one-loop PT vertices. The UV finite, RGI quanti-
tiesRH, RG", ﬁg\vxv*w*, RUW'G™ andRHCC satisfy tree-
level-type PT WI's in direct analogy to those given in Egs.
(6.3D)—(6.34). In this formulation, any resummed transition
amplitude can be written in terms of a product of RGI quan-

(6.30 tities, where the vertices are replaced by the respect?tive

expressions. As a consequence of this formulation, the fac-
which is in agreement with GET in Ed6.5). Again, the tOrs K* andK? retain their tree-level values after renormal-
derivation relies on effective one-loop PT WI's, which are ization provided the wave-function renormalizations for the
the same as those naively deduced from the classical actidikternal Goldstone bosons are properly taken into account.
in the Born approximation. In this case, the PT WI's pertain- [N summary, we have shown how the diagrammatic
ing to theH (q)W* (k. )W~ (k_) vertex are given by method based on the PT enables the decomposition of the

amplitude into a resummed propagator-like amplitude and a

non-resonant background which satisfy the GET as well as

1 — _
)g— WIS gk, ko),
w

a5 8 8l&

THWI W) +THE=—-THG*G )+ THW'G")

—THG W)+ THwtw),

kAT IHL‘V"’+W_(q,k+ KO +MWEHE W gk, ko) the ETindividually. This feature provides an additional non-
. trivial consistency check for the PT resummation approach,
__ 9w rwet and, at the same time, renders the ET conceptually more
I, = (ko), (6.3)  and.
2 intuitive.

ALt A Lwta— VIl. DISCUSSION AND CONCLUSIONS
KD (ake ko) =MWl B¢ gk ko)

) In this paper the formulation of the PT resummation ap-
_ 9w ﬁwmf(k ) 6.32 proach has been extended to analyze resonant transition am-
2 o ' plitudes which involve the SM Higgs boson as an interme-
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A . Wi Wtz wt, 7 £ Z,p) w+ wi
H(Q_),<E: "{i}[: "5'“77[: QT _.%V;S{ -
t ’ G;Y’G,o H A Y ’
-

. wHwt, z
() et Sz &g 8 2 W
. s, ",' ’ - ~ \ .".' ~..‘-
GG H et ez Wo, W, Z -4 ) =i - w#
A} k% rd

i f ~
(=) (b1) (b2)
ez

E

(b3) (be) (c1) .00 H - we

wH W+, zZ G+,G, G0 wHwt, Z
e ! (b3) (b4) (c1)
S AN - Zy,W- -~ Y6, H,G6-
. 1 + + Wi 7
G-, G-, G° w-,W-,Z w-,W-, 2 w Ci, I
(c2) (c3) (c4) - . wt - wt - YGi’H

GG+ G° ann W+ W+, 2 GG GO B GF w= WF,Z
"“ﬁfj“‘ el Jonme ] %}W W (c2) (c3) (c8)
R A — im0 1
w-,w-,Z G=,G, G G-,G-,G%H Gi,GOW Wi,Z Gi,H
5 6 7 “ 1 <
(5) (6) 1) e e >J~JJJ—:\;\:H et %}Z
G+’G+vG0*fIA/\/\ °+,0+»°%_,W c‘,c‘,cz’“w ‘L"\-\;VV\ Al -~
e ;GO H,G~,G~ ->-:""' ;cz Coyy € ->-""‘ icz Cyyct W%z G:F’GOW G¥. 0
N R y 41y 5 .._‘\E 1 Ey “..\\E 16y
6,676, VY ctetieg V' reyer YV (c5) (c6) (c7)
(c8) (c9) (c10) G%,G0 Happ E anp ¢t ann
v o AT
FIG. 7. Graphs contributing to the absorptive part of thé&/W -’-{\ YG* H,G ->-=II,‘ Vet e T
coupling in the BFG. G*,GO,}JW Ciw c*w
diate state. The main results of our study may be summarizeu (c8) (e9) (c10)
as follows: FIG. 8. Diagrams contributing to the absorptive part of tH&Z
()  The PT rearrangement of the amplitude gives rise to £°UPIing in the BFG.
self-energy for the Higgs boson whichirslependent portantly, the above propertyersistseven after the
of the GFP in every gauge-fixing scheme. This self- schannel Higgs boson self-energy has been re-
energy isuniversal in the sense that it iprocess in- summed, thus solving a long-standing problem.
dependent and may beresummedfollowing the
method presented in Refl8]. In addition, it only At this stage, it may also be worth reviewing briefly the
displaysphysicalfermionic and bosonic thresholds, in state of affairs of the PT resummation approach. In particu-
contrast to the gauge-dependent self-energies obtainddr, we wish to draw the attention of the reader to a number
by the conventional methods, wherenphysical Of significant developments as well as open issues related to
bosonic thresholds appear. Furthermore, it satigfies this field, which have been extensively discussed in the re-
dividually the OT, both for fermionic as well as Centliterature and are also relevant to our study of the Higgs-
bosonic contributions. boson resonance. An important issue which remained unan-
(i)  When the resummed Higgs boson propagator is muiSWered for some time was whether the PT self-energy
tiplied by the universal quantitgle\z}\, or, equiva- obtained by extracting pieces from the vertices and boxes
w ’ 1 .
ey, byt inirse sqareof e Vacuim expecial2h PEISEUTIE 8 Dheon sees a0 whener e fe
tion value of the Higgs field, it gives rise to a propag ; ne gaug .
renormalization-group-invariantquantity, in direct pole as that calculated in the conventional pe.rturban'vg
| to thesffecti h f the ph t, i1 OED framework. Both questions have been addressed in detail in
_?_Ea o%y o theetiective cbargaa) ep O'k?ln 'S Q_ ' E18]; it has been found that the PT self-energies are indeed
e above construction becomes possible by Virtue ofeg,mmable, and that the position of the pole remains un-
the naive, tree-level WI's satisfied by the GFP-cpanged. The proof presented [in8] was more involved
_ independent PT sub-amplitudes. _ _ than the standard arguments leading to the resummability of
(i) At high energies any amplitude involving longitudi- 5 conventional self-energy, and relied on a detailed diagram-

nally polarized gauge bosons satisfies the ET, but thenatic analysis to all orders in perturbation theory. The re-
individual s-channel andt-channel contributions of summability of the PT self-energies is a crucial ingredient
the amplitude do not. Instead, the PT decompositiorfor the construction of the corresponding effective charges.
of such an amplitude gives rise to two kinematically Independent studies have tested the latter property of the PT
distinct pieces, a genuinechannel and a genuirte  self-energies up to two loops for thé* andZ bosons in the
channel, which satisfy the Eihdividually. Most im-  SM [20].
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Up to date the PT has been appliedly at the level of universal part is common to every Higgs-boson-mediated
one-loop perturbation theory, and its extension to higher orprocess, and, even though the process-dependent background
ders is still an important open issue. It would be interestingnust be eventually taken into account, it determines the
for example to establish whether the correspondence bddiggs-boson lineshape comfortably away from the reso-
tween PT and BFM af,=1 persists beyond one loop. Fur- nance. It would be of great phenomenological importance to
thermore, generalized versions of the PT proposed recentigonfront the predictions for Higgs-production and decay pro-
[30] may shed light on the structure of new background-fieldcesses computed within the PT resummation approach
guantum actions even beyond one Iddf]. In addition, the against future data obtained from planned high-energy col-
diagrammatic understanding achieved by means of the Pliders such as the LHC, the next-lineafe™ collider with
and its possible extensions provides new insights into a vae.m. energy 500 GeV, and the first muon collider.
riety of issues related to gauge independence, unitarity, and

the ET, and exposes properties which are not manifest in the ACKNOWLEDGMENTS
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APPENDIX A: ONE-LOOP ABSORPTIVE HWW COUPLING IN THE PT

Based on the established equivalence between the PT and the covariant background field ggy:gé,fare calculate the
absorptive part of the effective PAWW vertex at one loop, using the Feynman rules listefR®]. The analytic results are
expressed in terms of standard loop integrals introduced by 't Hooft and Vel[t&3nFor definiteness, we use the conven-
tions of Ref.[24].

If one assumes that the extern& bosons are contracted with physical polarization vectors or conserved currents, the

one-loop PTHWW couplinglA“lHL‘,f‘m’"f(q,kJr ,k_) may then be decomposed in general as follows:

MPV

[ HWW(Q,p,K) = gwMul (1+A(Q%)g,,, + B(Q?) Wz (@) —zempk p? (A1)

whereQ+p+k=0 andA(Q?), B(Q? andC(Q?) are general form-factors. Onlx(Q?) must be renormalized, whereas
B(Q?) andC(Q?) are UV finite. The form-facto€(Q?) occurs inCP-violating scenarios only, i.eG(Q?)=0.
In the improved Born-level approximation, only the absorptive parts of the form-fa&{@$) andB(Q?) are of relevance,

as the dispersive parts participate in the one-loop renormalization. The diagrams contributing to the absorptive forf-factors
and B are shown in Fig. 7. To a good approximation, the extekiVdbosons are considered to be stable andhtlwgiark
massless. The analytic results for the absorptive form-fa&(@?) are then given by

2

_ m; _ _ _
A= 167 WiZ, [8Co4t (Q%+ K2~ p?+4m?) Co+ (3Q?~3K? ~ p?) Cyyt (Q?+ 5k~ p*)Ciol (MF,0mP),  (A2)
™ Wl A2 M2 M2 M — 2 M 2 M2
|A(b1):_? Bo(Q vMW’MW)+2W Bo(Q*,MZ,M2) |, (A3)
z

iK(bz):iA_\(cs):iX(ce)zol (A4)
— M3 1[ME M3\ — 3MZ —
. w H z H
A®3)=~ T67 (M\Z/\/+2 o(Q% MG, M W)+2 MW+2W\/ BO(QZ,Mi,Mi)JrEWVBO(QZ,MZ,Mﬁ),

(A5)
- a _ —
IA ba)= 5 [Bo(Q* M, M{) + Bo(Q*,MZ M2)], (A6)
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Mz, _
(4Cpt (Q?— kz—pz)Co)(l\/IW.OI\/IW)+—z(4CZ4+(Q2 k?—p?)Co)(ME , M3, M3)

Ay
|A(Cl)—

M2
(1 MZ

MZ —
+M_zz(4cz4+(Q2_k2_p2)Co)(M§1M\Z/VaM§)}: (A7)
w

2

_ _ @ M3 — ~ C.
iA(c2>+iA(c3):ﬁQz[(ZW\;—V—l)Co(MZ M2 M)+ ZVV\%'/—l Co(M\ZNvaM\ZN)+C0(M§’M\2N'M§)} (A8)
_ a M; M\ZN 2_ = ~
iAcn==7_ M_z(ZW_l) Co(MZ, My, M2)+MG,Co(Miyy M2, M)+ MGCo( My, M M) |, (A9)
w z
2 2 2 2 2
— ay | o My M =2 M2 a2 2 [ M M| = 2 2
iAen=— g | M2 vz 2 2|v|§ 1) Co(My, M7, My) +4My, M2, 2|1 M2 Co(Mw,0M{y)
MZ M2\ —
+M2, WVHWV)co(Mg,Mﬁ,,Mg)wMﬁco(Mﬁ,M@,.Mﬁ) : (A10)
o [[M2 2 2
A w
|A(C8):_§ (M2 +2 (C24(Mw.Mz,MW)+C24(MW:MH1MW))+ M\2N+2MW)C24(MZ’MW’ é)
2
Mi— 2 12
+3WC24(M M, ME) |, (ALD)
2 2
— — 20y My — 5 5 ) M3
Aoy T1Ac10= —— M_§(324(M\/\/,Mz,|\/|w)7L M2 7| C2dM3,0M3)+Cai M3 M3, M2) . (AL2)

Here and in the following, we do not display the first three arguments oE thmctions ©2,k2,Q?), which are common. The
bar on the loop functions symbolizes that only the absorptive part should be considered.

Similarly, the individual contributions to the absorptive form-fad&{Q?) are found to give

iBy= — ™ m2(4C 5+ Cot 3C 11+ Cip) (ME.0MP) (A13)
@~ gt 23T -0 117 L1 VM),
iB(01)=1B(02)=1B(b3=1B(0a)=1B(ca=iB c7)=0, (A14)
My M
e w ~ ~ ~ ~ ~ ~
iBeyy=— Msv(l—W (2C15+2Co5+ Co)(MEOM) + 17 (2C13+2Co5+ Co) (M, M3, M)
pA VA
M6v<2€11+2523+€o><M§,MSV,M%}, (A15)
- a T y
. . w
iB(c2) +iB (e =5 M\ZN(ZM—%—l (c0+c11+c12)(|v|5v,|v|§,M@,)+2M\2N(1—M—%)
X(60+611+612)(M\2/v,0,'\/|\2/v)+M\Z/v(Eo+Ell+Elz)(M§,M\Z/V,Mg)} (A16)
[ P (¢4 ~ ~ ~ ~ ~ ~
iB(cs) B ce)= 7~ [(MZ=2M{)(Co+ Cro— C1) (M3 My, M3) ~ M{(Co+ Co— C1) (MG, M3 M)
M{(Co+ C1— C1)(M§,, ME M), (A17)
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o a ~ ~ ~ ~
IB(eg) =g {(ME+2M{)[(Crat Caa) (M, M3, M{) + (Car+ Cog) (M, ME . MG)]

+(M3+2M2)(Cyy+Cpg)(M2,M3,,M2) + 3MA(Cyy+ Con)(ME M, , M3, (A18)
YRURT-} 2ay M 2 2 2 My 2
iB(co) TiB(ci9=— ﬂ_ W (C11+Co9) (M3, M2, M) +MZ| 1— —2‘ (C11+C2)(ME,0M3)

+M\2/v(611+623)(M2,M\2N,M§)}- (A19)

APPENDIX B: ONE-LOOP ABSORPTIVE HZZ COUPLING IN THE PT

Here we present the one-loop results for the absorptive form-faatarslB of theHZZ coupling in terms of standard loop
integrals. We consider the general decomposition of the oneHiop vertex

K.p,

(el k)——M
MZ

(B1)

(1+A(Q%)g,.,+B(Q%

where the CP-violating form-factoE(Q?) analogous to Eq(Al) is absent at one-loop in the SM. In particular, we are
interested in the absorptive part of the form-factaf€?) andB(Q?). Calculating the graphs shown in Fig. 8, we obtain

2
— o m — i _ _
A@= Tm ﬁv {(98+gR)[8C,4+ (Q*+k?—p?+4mf) Co+ (3Q%— 3k?—p?)Cyy+ Q%+ 5k*~p?)Cyy

X (m¢,mZ,m?) + 29, ggl 4m; 2Co+(Q2—k?+p?)Cyy+ (Q2+k2—p?)Cyyl( (mZ,mZ,md)}, (B2
— 20 My —
|A(b1):_T M4 Bo(Q%,MZ,,M3), (B3)
iAb2)=1A(c5)=1A(c6)=0, (B4)
2 2 2 2 2
'A”@:_Ié?(M@+2 2Wg—1)BdQ%MWAMQ+2 M®+2MWBdQ2MLMﬂ
3MZ —
+5 3z Bo(QAME M) |, (B5)
w
ay M4 )
iApy=— eVES Bo(Q%M§, M%), (B6)
2ay, Miy 22 = 2 a2 a2
'A(cl)— 4[4C24+(Q k?—=p?)Col(M, MG, M), (B7)
M P aW \2/\/ 2_ 2 2 2
|A(02)+|A(c3):_ﬂWQ Co(My, My, M), (B8)
z
vy Xw 25 (M2 M7 — 2
'A(c4):_ﬂ 2MGCo(MG MG, M w)+M2 Co(M2,M3 ,M2) |, (B9)
2
A M2 zMH_ 2 2 2
IA(C7)__% 2(|V| +2MW)C0(MW,MW, W)+3MZM—2CO(MH,MZ,MH) , (B10)
w
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a MG )3 M 1(ME M3
N w ~ 2 2 2 2
IA(CS)__E W_l W\/%—Z 024(M ’MW’MW)_I_E W/—V+2MW)C24(MZ,MH, Z)
2
3 My — 2 2 2
+§M—\2ch4(MH,Mz,MH) , (B11)
4 MW
iAco)+iAc10= ER Cai MG, MG, ,MG). (B12)

In Eq. (B2), we have defined ag =(2M3/M3)—1 andgg=—2(1—M3/M3).
Furthermore, the individual contributions to tBeform-factor are given by

2

= aw M o T am L 2 2 2 N A 2 2 2
IBa@ay=— 87 MZW\I {(gf +9R)(4C5+ Cy+3Cqy+ Crp) (Mg ,mg,mf) + 29, gr(C11— Crp) (Mg ,mg,me)},
(B13)
IB(bl): | B(bZ): | B(b3): IB(b4): | B(C4): IB(C7): 0, (814)
—  day,My,
IB(c)= —— 112 (2C11+2Ca5t Co) (M, My M), (B15)
z
YTy W2 E L e 2 g2 ap2
1B(c2)+1B(cg)= = 5 Mu(Cot+ Cart C1)(My, My, My, (B16)
o 4
= = w = = = Z = = =
1B (cs)TiBco)= 5 - {2<2M$v—M%)(co+<:12—c11><M$v,M6v,M5V>— wmz (CotCiz=Cu)(M3 M M%)}
(B17)
M2 2 2
R Ay W - - 2 2 2 1 Iv'H MZ
iBcgy=7-M [( 25— ) +2](Cp+Co (MG MG, MG + 5| =7 +2—7|(C11+Cp)
" am M3 2\ Mg “M3,
3 Mﬁ
X(MZ,M% ,M3)+ EM_\zN(Cu"‘Cza)(MH,Mz,M i) | (B19)
— = day, M\‘}V - | =
iBcoyTi1Bcig=— —— M2 (C11+ C9) (MG, M%,,MZ). (B19)
z
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