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Perturbative pole mass in QCD
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It is widely believed that the pole mass of a quark is infrared finite and gauge independent to all orders in
perturbation theory. This seems not to have been proved in the literature. A proof is provided here.
@S0556-2821~98!50515-2#

PACS number~s!: 12.38.Bx, 11.15.Bt, 12.15.Ff
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I. INTRODUCTION

Long ago Tarrach@1# showed that the pole mass of
quark is infrared finite and gauge independent through t
loop order in perturbation theory. It is widely believed th
this result holds through any finite order in perturbati
theory. There does not seem to be a reference in the litera
containing a proof, however, and this paper aims to fill t
gap. To be specific, I consider QCD with one massive qu
andnf21 massless quarks, but extra massive quarks do
change the argument.

There are a few reasons why one might suspect infra
divergences to arise in the perturbative-QCD series for
pole mass. QCD contains massless self-interacting gluon
the infrared behavior is often worse than for QED. In QC
and QED, infrared divergencesdo arise in the two-loop self-
energy. Another worry is that thenonperturbative pole mass
if at all defined, is clearly very sensitive to the infrared.

On the other hand, the kinematics of QCD, with the qu
content under consideration, is like that of QED with a m
sive muon, some massless scalar bosons, and some ma
electrons@2#. Here ~or with nf large enough to make QCD
infrared-free! nonperturbative problems should not arise
the infrared. For the QED model, one can even pick bou
ary conditions so that gauge-invariant muon states are in
spectrum.1 Also, the infrared divergence from the two-loo
self-energy is cancelled by a term from evaluating the o
loop self-energy on the one-loop mass shell and itera
@1,4#; one could hope that this mechanism occurs at any
der. Moreover, in asymptotically free QCD, a remnant of t
anticipated infrared sensitivity appears through renormal
@5,6#; this implies that perturbation theory can ‘‘kno
about’’ the infrared behavior of nonperturbative QCD wit
out having infrared divergences at fixed order.

The above discussion is nothing but a duel of fears
hopes, and it should be replaced by definitive results. Be
it is shown that the infrared divergences cancel in the p
mass, as at two loops, to any order. It is then a simpler ma
to confirm that the pole mass is independent of the ga
chosen for the calculation. The arguments are straight
ward and can be found in textbooks, although, to the bes
my knowledge, the specific application is not.

This paper is organized as follows: Some notation is
Sec. II. Section III proves that the pole mass is infrared fin

1The magnetic monopole considered by Ref.@3# is a prototype of
such a state.
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at every order in perturbative QCD. Section IV proves th
the pole mass does not depend on the gauge-fixing func
through every finite order. Some concluding remarks are
Sec. V.

II. NOTATION

This paper uses the metricgmn5diag(21,1,1,1) in
Minkowski space-time. In particular, the momentump of a
real particle with massM satisfiesp252M2.

The pole mass is derived by identifying the pole in t
massive quark’s full propagatorS(p). One has

S21~p!5 ip”1m02S~p!, ~1!

wherem0 is the bare mass and the self-energyS is given by
the sum of one-particle irreducible Feynman diagrams. O
can write

S~p,m0!5 ip”A~p2,m0!1m0B~p2,m0!, ~2!

exhibiting the parametric dependence ofS on the bare mass
m0 . In considering the dependence onp2, it is convenient to
use a slight abuse of notation,S(p2,m0).

The propagatorS(p) has a pole atp252M2, where

M5m0Zm ~3!

and

Zm5 lim
p2→2M2

12B~p2,m0!

12A~p2,m0!
, ~4!

provided the limit is not infrared divergent. In perturbatio
theory, one applies Eq.~4! by expanding the right-hand sid
through Lth order and settingp2 to 2M2 iteratively. A
gauge-invariant ultraviolet regulator, such as dimensio
regularization or a lattice, is assumed, but not made expl
Because gauge theories are renormalizable, ultraviolet di
gences of the coefficientsZm

[ l ] are compensated by the ba
mass and gauge coupling.2

Perturbative series are written, for example, as

Zm511(
l 51

`

g0
2lZm

[ l ] , ~5!

2For example, in dimensional regularization, one could introdu

a renormalized massm̄(m)5m0Zm̄ by minimal subtraction. Then
one could focus on the infrared behavior ofZm /Zm̄ .
© 1998 The American Physical Society01-1
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whereg0
2 is the bare gauge coupling. Below it is convenie

to use a short-hand@•# [ l ] for the l th term in the perturbative
series of expressions abbreviated here with •.

The momentump is reserved for the external momentu
of the quark. Loop momenta are denoted generically byk.

III. INFRARED FINITENESS

To prove infrared-finiteness, I follow the methods
Chapter 13 of Ref.@7#. First, I recall how, in perturbation
theory, one finds singularities in Green functions. This ana
sis establishes that the propagator and the self-energy ha
branch point atp252M2. Since the pole mass requires th
self-energy functions to be evaluated here, one must ch
whether they diverge at the branch point or not. It turns
that the on-shell self-energy does suffer from infrared div
gences, but I show that they drop out of the pole mass.

A. Location of singularities

Consider an arbitrary Feynman diagram~of any Green
function!, with quark propagators rationalized and all d
nominators combined with Feynman parametersa i . If the
diagram hasn lines, the resulting denominator is

D5S (
i 51

n

a i~qi
21mi

2!D n

, ~6!

whereqi5qi(p,k) are the momenta of the internal lines. Th
Green function is an analytic function of Lorentz invarian
of the external momenta, up to branch points. Branch po
can arise only whenD vanishes, but that is not enough.
addition, the contour of integration~over Feynman param
etersa and loop momentak! must be pinched@7#. This hap-
pens if and only if on each internal line

qi
21mi

250 or a i50 ~7!

and, furthermore, following any closed pathl in the diagram

(
i Pl

a iqi50, ~8!

with the sign ofqi taken in the sense of the pathl . Equa-
tions ~7! and ~8! are the so-called Landau equations.

Solutions of the Landau equations have a physical in
pretation@8#. Up to an overall factor the Feynman parame
a i is the ratio of the time elapsed, from one end of the line
the other, to the energy propagating on the line. Thus,a iqi is
the space-time separation between the two ends, and Eq~8!
says a loop in the diagram corresponds to a loop in sp
time. Furthermore, Eq.~7! says that internal lines either ar
on shell (qi

252mi
2) or do not propagate (a i50). For each

diagram, one obtains thereduced diagramby shrinking off-
shell lines to a point. Then branch points arise if and only
the reduced diagram represents a genuine physical proce
on-shell states.

The physical picture given above is useful, because
often easier to find solutions to Eqs.~7! and~8! with physical
reasoning instead of with algebra. For example, a two-p
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function has branch points only at normal thresholds, tha
when p2 is just right to produce a collection of on-she
particles. For the massive quark propagator, these bra
points are at

p252@~112r !M #2, ~9!

corresponding to creation of the massive quark plusr mas-
sive pairs. These branch points are accumulations of i
nitely many solutions to the Landau equations, because o
a solution is found, others are given by adding ze
momentum massless lines. Physically, this is because it c
nothing to create an extra soft gluon or extra soft pair.3 If the
solutions accumulate too quickly, an infrared divergence w
develop.

On the other hand, note that there are no collinear div
gences. As soon as the massive quark radiates nonzero
mentum, it is off shell, and the~un!physical picture disallows
a singularity.

B. Infrared divergences

To examine the infrared properties, one performs
power-counting analysis. One scales some or all loop m
menta by a factorl; if the Feynman integral scales aslm as
l→0, one says the degree of infrared divergence ism. For
example, ind dimensions the momentum-space volume e
ment ddk has m(ddk)5d. If m.0, an integral is infrared
convergent.

The conclusions derived above for arbitrary diagrams
ply equally well to the one-particle irreducible ones contr
uting to the self-energy. It is convenient to route the exter
momentump along the ‘‘main line,’’ the massive quark line
that runs all the way through a self-energy diagram. Off
main line the momenta are independent ofp, and the degrees
of infrared divergence are straightforward. Soft gluon a
ghost propagators contributem(D)522, and soft massles
quark propagatorsm(S)521. Soft three-gluon and gluon
ghost vertices contributem(V3)511, and other soft vertices
m(V)50. In a closed loop, the massive quark propaga
S0(k)51/(ik”1m0) has degree of infrared divergence 0.

The internal parts of the main line have propagatorS0(p
1k). Whenk is soft

S0~p1k!5
1

i ~p”1k” !1m0
→

m02 ip”

p212p•k1m0
2 . ~10!

Off shell ~away from the branch point! such lines have de
gree of infrared divergence 0. On shell, however,4

S0~p1k!→
m02 ip”

2p•k
, ~11!

which gives degree21.

3If one of the other quarks had a massMl , the branch points
would be atp252@(112r )M12sMl #

2, so infinitely many col-
lapse to the same point asMl→0.

4With p252M2, one treatsm0
22M2 as higher order ing0

2.
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When all loop momenta are soft andp252M2, an arbi-
trary QCD ~or QED! self-energy diagramGL with L loops,
but no massive quark loops, has degree of infrared div
gence

m~GL!511L~d24! ~12!

in d dimensions. This holds at one loop. Higher-loop d
grams can be built by adding gluons, ghost loops, or~for
now! massless quark loops. It is enough to insert the lo
into gluon propagators; more gluons can be added la
Loop insertions givem(GL11)5m(GL)1d24. New gluons
give m(GL11)5m(GL)1d221m11m2 , where d comes
from the new loop,22 from the gluon propagator, and th
m i are degrees associated with each end. The ends can
a gluon or ghost line:m i5122521 for vertex and propa-
gator; on a three-gluon vertex:m i521 from changing the
three- to a four-gluon vertex; on the main line or a massl
quark: m i521 for the propagator.5 Thus, these ways al
give m(GL11)5m(GL)1d24. Replacing an interna
n-vertex polygon of a massless quark with a massive
increasesm(GL) by n. Therefore, in four dimensions no in
frared divergences can arise from the region with all lo
momenta soft.

Infrared divergences may come, however, from regio
with some loop momenta soft and others not. According
the physical picture of the self-energy, the non-soft lines
be shrunk to a point, augmenting the foregoing analysis w
composite vertices. Forn.3, n-point verticesVn contribute
m(Vn)50 to the total. Additional soft gluons attached
such vertices come with a propagator and a loop integrat
addingd22 to the total degree. Composite three-point v
tices have the same infrared power counting as their fun
mental counterparts. For example, gauge invariance gua
tees the beneficialm(V3)511 for the~composite! vertex of
three soft gluons, in the same way it safeguards renorma
ability. Thus, multi-point composite vertices do not lower t
degree of infrared divergence in four dimensions.

Internal, hard self-energy diagrams shrink to two-po
vertices. In massless quark loops, the two-point vertex
extra propagator yield the harmless factorS(k)/( ik” )
5A(k), as required by chiral symmetry. In massive qua
loops, the additional factorS(k)/m0→B(k) is also harmless
~These self-energies are off shell and, therefore, well
haved.! Gauge symmetry provides two powers of soft m
menta at two-point gluon and two-point ghost vertices, c
celling the extra propagator. Thus, these two-point verti
do not pose a problem.

What remains are two-point vertices of the massive qu
on the main line. The extra factor from inserting such a tw
point vertex isS(p,m0)@m02 ip” #/2p•k, which lowers the
degree of infrared divergences tom<0. For example, at two
loops it is known@1# that the self-energyS [2] (2m0

2 ,m0) is
infrared divergent. The origin of the divergence, as the ab

5When the massive quark is off shell, the degree is increase
the number of main-line propagator segments—even more con
gent.
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analysis implies, is sketched in Fig. 1. The problem wors
at higher and higher orders, as more and more two-p
vertices can arise on the main line.

C. Infrared cancellation

For the pole mass at two loops, the infrared divergen
in S [2] (2m0

2 ,m0) is cancelled by theO(g0
4) part of

S [1] (2M2,m0). To examine this mechanism in general, it
convenient to solve for the bare mass that implies a des
pole mass, namely

m05MZm
21 , ~13!

with

Zm
215

12A~2M2,M /Zm!

12B~2M2,M /Zm!
~14!

showing the iterative nature of the solution. TheLth coeffi-
cient @Zm

21# [L] of the iterated expansion is infrared finite
and only if the coefficientsZm

[ l ] , l<L, are infrared finite.
The coefficients of the iterated expansion involve cert

combinations of the coefficients of the self-energy functio
Let

S~p2,MZm
21!5(

l
g0

2lS̄ [ l ]~p2,M ! ~15!

define the coefficientsS̄ [ l ] (p2,M ) @and, by implication,
Ā[ l ] (p2,M ) and B̄[ l ] (p2,M )#. Iterative expansion yields

S̄ [ l ]~p2,M !5S [ l ]~p2,M !1(
i 51

l 21

(
j 51

i
1

j !
@~Zm

2121! j # [ i ]

3M j
] jS [ l 2 i ]

]m0
j U

m05M

. ~16!

Explicit calculation shows thatS̄ [1] (p2,M )5S [1] (p2,M ) is
infrared finite and, whenp252M2, gauge independent. A

two loops S̄ [2] (2M2,M ) is also infrared finite and gaug
independent, even thoughS [2] (2M2,M ) is not @1,4#.

Since

@Zm
21# [1]5B̄[1]2Ā[1] , ~17!

@Zm
21# [2]5B̄[2]2Ā[2]1@Zm

21# [1]B̄[1] , ~18!

with all self-energy functions evaluated atp252M2 and
m05M , one has a basis for a proof by induction. Let
assume that the@Zm

21# [ l ] , l ,L, are infrared finite. To show
that @Zm

21# [L] is also infrared finite, it is enough to show th

by
r-

FIG. 1. Origin of the infrared divergence at two loops.
1-3
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S̄ [L] (2M2,M ) is infrared finite. The induction hypothes

implies thatS̄ [ l ] (2M2,M ), l ,L, is infrared finite~other-
wise @Zm

21# [ l ] would not be!.
It would be a nightmare to identify all infrared dive

gences and verify cancellation on the right-hand side of

~16!. Instead, it is more efficient to studyS̄ [L] (p2,M ) di-
rectly. The Dyson-Schwinger equation for the self-ener
depicted in Fig. 2, is a useful tool. Power-counting and
induction hypothesis together say that the only new infra
divergence atL loops can come from diagrams with the (L
21)th order expansion of the quark propagator and an a
tional gluon:

S̄ IR
[L]5E ddk

~2p!4

dmn2jkmkn /k2

k2 gm@S~p1k!# [L21]gn .
~19!

Diagrams with a higher-order one particle irreducible ver
function or gluon propagator would have a quark propaga
with L22 ~or fewer! loops; they can be infrared diverge

only if S̄ [ l ] , for somel ,L, were too—contrary to the induc
tion hypothesis.

The key to obtainingS̄ IR
[L] from the right-hand side of Eq

~19! is to write (q5p1k)

S~q!5
1

iq”1M2@S~q,MZm
21!2M ~Zm

2121!#
, ~20!

treatingiq”1M asO(g0
0) and expanding the brackets~itera-

tively! in g0
2. This expansion, forp252M2 andk soft, pro-

duces a sum of chains

@S~p1k!#@L21#5
M2 ip”

2p•k ( )
j

¯@S̄~p1k,M !

2M ~Zm
2121!# [ l j ]

M2 ip”

2p•k
¯ . ~21!

In any term of the sum the factors’ superscriptsl j add up to
L21, and the sum is over all such partitions ofL21. Since
k is soft the quantity in brackets reduces to

@S̄~p1k,M !2M ~Zm
2121!# [ l ]→@ ip”A~p2,M /Zm!

1MZm
21B~p2,M /Zm!2M ~Zm

2121!#@ l #

5~ ip”1M !Ā@ l #~2M2,M !1O~k!. ~22!

FIG. 2. Dyson-Schwinger equation for the self-energy. G
blobs denote full propagators and white blobs denote one-par
irreducible functions.
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The second step follows from Eq.~14! and setting
p2→2M2. In Eq. ~21! the right-hand side of Eq.~22! mul-
tiplies M2 ip” ; the O(1) part of the product vanishes fo
p252M2, leaving a remainder ofO(k).6 Consequently,
@S(p1k)# [L21] has degree of infrared divergence21, just

like S0(p1k). Thus, S̄ [L] (2M2,M ) is infrared-finite, as
was to be proved.

Although the above formulas are a bit clumsy, the mec
nism that cancels the infrared divergences is simple. Eq
tion ~20! says to split the bare mass into the pole mass plu
counterterm. The counterterm, like the shrunken self-ene
subdiagram, produces a two-point vertex. Infrared div
gences cancel in the~next order’s! pole mass, because th
combination of the two does not degrade the infrared po
counting. In QED, this mechanism was identified in a fo
note to Ref.@9#.

IV. GAUGE INDEPENDENCE

The gauge invariance of the mass renormalization fac
Zm is ‘‘nearly obvious.’’ If the ultraviolet regulator respect
gauge symmetry, the bare mass has a gauge-invariant m
ing. From a physical point of view, it would be unsettling
the pole mass were to depend on the gauge. Thus, the
Zm5M /m0 ought to be gauge invariant too. Without th
infrared-finiteness established above, however, a pr
would require painstaking separation of infrared and ult
violet regulators.

With infrared-finiteness, one can study the gauge dep
dence by treating the massive quark like a normal particle
long as one discusses perturbation theory only. Forp2 near
2M2 the propagator takes the form

S~p!5 Z2/~ ip”1M ! , ~23!

where Z2 is the field renormalization factor.7 Because the
pole mass is only defined perturbatively,M denotes here the
pole mass through some finite order in perturbation theo

The previous section assumed a gauge fixing te
(l/2)*(]•A)2d4x. @In Eq. ~19!, j512l21.# SupposeM
depends onl. A shift Dl induces a first-order change

DS~p!5
Dl

ip”1M S ]Z2

]l
2

]M

]l

Z2

ip”1M D . ~24!

Note that]M /]l multiplies a double pole.
On the other hand, the propagator is given by

S~p!5FT^0uTc~x!c̄~y!u0&. ~25!

From Eq.~25!, the change is

6One might worry whether the remainder is an infrared-diverg
derivative of the self-energy. But becausep1k is off shell byk, the
remainder is proportional tok ln .

7Z2 is not infrared divergent whenp2 is close to, but not equal to
2M2.

y
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DS~p!5
Dl

2
FTE ddz^0uTc~x!c̄~y!„]•A~z!…2u0&. ~26!

A double pole would develop if the quark could scatter
~two! gluons with scalar polarization, which cannot happ
because the scalar polarization decouples from the phy
state space. The massM cannot, therefore, depend on th
gauge parameter, although the residueZ2 certainly can.

~Conversely, one can see immediately that the inserti
generated by a shift in the bare mass or gauge coup
would develop a double pole and, thus, a shift in the p
mass.!

For a more general gauge-fixing functionf a
„A(z)… ~and

changeD f a!, the argument is similar. Lets denote the BRS
operator andh (h̄) the ~anti!-ghost field. The change in th
two-point function involves@10#

^s@h̄a~z!D f a~z!#c~x!c̄~y!&;^h̄a~z!D f a~z!s@c~x!c̄~y!#&
~27!

;^h̄a~z!D f a~z!tb@hb~x!2hb~y!#c~x!c̄~y!&. ~28!

As before, but now because the ghosts decouple, this exp
sion cannot develop a double pole.

V. CONCLUSIONS

The pole mass is widely used in the phenomenology
QCD and, when quark momenta are small compared to
mass, in nonrelativistic QCD and heavy-quark effect
theory. In many of these contexts it is natural: it has cons
erable intuitive appeal, and it can be calculated with a
ultraviolet regulator and in any effective theory. In som
circles the pole mass—as an experimental quantity—
rightly fallen into disfavor, because infrared renormalons o
struct an unambiguous determination@5,6#. Had the pole
mass turned out to be either infrared divergent or gauge
pendent, one ought to have abandoned the pole mas
more basic reasons.

Fortunately, Sec. III shows that the perturbative pole m
th
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is infrared finite, even though the on-shell self-energy is n
At higher orders the pole mass requires an iterative exp
sion and, thus,~infrared divergent! derivatives of the self-
energy. In the pole mass the total infrared divergence v
ishes. The cancellation mechanism and, indeed, the po
counting in QCD are the same as in standard QED. Atta
ing a virtual photon to an on-shell massive electron line h
the same effect as attaching a gluon anywhere in a mass
quark self-energy diagram. I cannot imagine that infrare
finiteness of the electron mass has never been proved,
except for a footnote@9#, I have not found a reference with
proof.

Because of its physical appeal, the pole mass rem
valuable theoretically. In addition to matching to effectiv
theories, mentioned above, it is similarly useful in relati
lattice QCD to continuum renormalization schemes@11#. An
example of considerable phenomenological interest is the
plication of ~NR!QCD to threshold production of heav
quarks. There the pole mass is nearly irresistible, but it
been pointed out recently that infrared sensitivity in t
mass’s definition is conferred on the QCD potential as w
@12–14#.

Note added in proof.The gauge independence~but not the
infrared finiteness! of the pole mass has been proven in QE
@15,16# and QCD@16,17#; I thank V. Miransky, T. Steele,
and G. Kilcup, respectively, for drawing my attention
these works. A proof of both infrared finiteness and gau
independence of the electron mass to all orders in QED
given in Ref. @18#; I thank A. Schreiber for drawing my
attention to this text.
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