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It is widely believed that the pole mass of a quark is infrared finite and gauge independent to all orders in
perturbation theory. This seems not to have been proved in the literature. A proof is provided here.
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[. INTRODUCTION at every order in perturbative QCD. Section IV proves that
the pole mass does not depend on the gauge-fixing function
Long ago Tarract 1] showed that the pole mass of a through every finite order. Some concluding remarks are in

quark is infrared finite and gauge independent through twoSec. V.

loop order in perturbation theory. It is widely believed that

this result holds through any finite order in perturbation Il. NOTATION

theory. There does not seem to be a reference in the literature

containing a progf, howevgr, and this paper aims tp fill thatl\/linkowski space-time. In particular, the momentymnof a

gap. To be specific, | consider QCD with one massive quarl|<,eal particle with mas#/ satisfiesp?= — M2.

andn;—1 massless quarks, but extra massive quarks do not The pole mass is derived by identifying the pole in the

change the argument. assive quark’s full propagat One has
There are a few reasons why one might suspect infrareH1 a propagat&(p).

divergences to arise ir_l the perturbative_-QCD s_eries for the S Yp)=ip+my—3(p), )
pole mass. QCD contains massless self-interacting gluons, so

the infrared behavior is often worse than for QED. In QCDwheremj is the bare mass and the self-enebyis given by
and QED, infrared divergencel® arise in the two-loop self- the sum of one-particle irreducible Feynman diagrams. One
energy. Another worry is that theorperturbative pole mass, can write

if at all defined, is clearly very sensitive to the infrared.

On the other hand, the kinematics of QCD, with the quark 3 (p,mg) =ipA(p?,mg) +meB(p?,my), v
content under consideration, is like that of QED with a mas- . | )
sive muon, some massless scalar bosons,%nd some massfdRibiting the parametric dependence3obn the bare mass
electrons[2]. Here (or with n; large enough to make QCD Mo- In can|der|ng the depgndenzcepﬁ it is convenient to
infrared-freé nonperturbative problems should not arise inUS€ & Slight abuse of notatioB(p ,mog. )
the infrared. For the QED model, one can even pick bound- 1he Propagatos(p) has a pole ap®=—M*, where
ary conditions so that gauge-invariant muon states are in the

This paper uses the metrig,,=diag(-1,1,1,1) in

spectrum' Also, the infrared divergence from the two-loop M=MoZm ©
self-energy is cancelled by a term from evaluating the onezpnq

loop self-energy on the one-loop mass shell and iterating _ 1—B(p%,mp)

[1,4]; one could hope that this mechanism occurs at any or- Zp=lim 1—-A(p%my)’ 4
der. Moreover, in asymptotically free QCD, a remnant of the p?——M? o

anticipated infrared sensitivity appears through renormalon
[5,6]; this implies that perturbation theory can “know
about” the infrared behavior of nonperturbative QCD with-
out having infrared divergences at fixed order.

The above discussion is nothing but a duel of fears an
hopes, and it should be replaced by definitive results. Belo

ﬁrovided the limit is not infrared divergent. In perturbation
theory, one applies E@4) by expanding the right-hand side
through Lth order and settingp? to —M? iteratively. A
auge-invariant ultraviolet regulator, such as dimensional
egularization or a lattice, is assumed, but not made explicit.

o . . . ecause gauge theories are renormalizable, ultraviolet diver-
it is shown that the infrared divergences cancel in the pole gaug

o 1]
mass, as at two loops, to any order. It is then a simpler matte(;iences of the coefﬁueptzm are compensated by the bare
nass and gauge couplifg.

to confirm that the pole mass is independent of the gauge : ) :
. . Perturbative series are written, for example, as
chosen for the calculation. The arguments are straightfor-

ward and can be found in textbooks, although, to the best of o

my knowledge, the specific application is not. Zn=1+> g2zl (5)
This paper is organized as follows: Some notation is in =1

Sec. Il. Section Il proves that the pole mass is infrared finite

For example, in dimensional regularization, one could introduce

The magnetic monopole considered by H8l.is a prototype of  a renormalized mass\(u)=myZy by minimal subtraction. Then
such a state. one could focus on the infrared behavioraf/Z,.
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WheregS is the bare gauge coupling. Below it is convenientfunction has branch points only at normal thresholds, that is,

to use a short-hanict ]I for theIth term in the perturbative when p? is just right to produce a collection of on-shell

series of expressions abbreviated here with . particles. For the massive quark propagator, these branch
The momentunp is reserved for the external momentum points are at

of the quark. Loop momenta are denoted genericallkb
q P J ¥by p2=—[(1+2r)M2, ©

IIl. INFRARED FINITENESS corresponding to creation of the massive quark plusas-

To prove infrared-finiteness, | follow the methods of si_ve pairs. Thes_e branch points are acc_umulations of infi-
Chapter 13 of Ref[7]. First, | recall how, in perturbation nitely many _solutlons to the Landau equations, be(_:ause once
theory, one finds singularities in Green functions. This analy® Solution is found, others are given by adding zero-
sis establishes that the propagator and the self-energy havdnPmentum massless lines. Physically, this is because it costs
branch point ap?= —M?2. Since the pole mass requires the nothlng to create an extra sqft gluon or extra spft péfithe '
self-energy functions to be evaluated here, one must chedlutions accumulate too quickly, an infrared divergence will
whether they diverge at the branch point or not. It turns ouf!€Velop.

that the on-shell self-energy does suffer from infrared diver- ©On the other hand, note that there are no collinear diver-
gences, but | show that they drop out of the pole mass. ~ 9€Nces. As soon as the massive quark radiates nonzero mo-
' mentum, it is off shell, and theun)physical picture disallows

A. Location of singularities a singularity.

Consider an arbitrary Feynman diagrgof any Green B. Infrared divergences
function), with quark propagators rationalized and all de-
nominators combined with Feynman parameters If the
diagram has lines, the resulting denominator is

To examine the infrared properties, one performs a
power-counting analysis. One scales some or all loop mo-
menta by a factok; if the Feynman integral scales &% as
n N—0, one says the degree of infrared divergencg.i$-or

' (6) example, ind dimensions the momentum-space volume ele-
mentd’ has x(d%)=d. If ©>0, an integral is infrared

whereq;=q;(p,k) are the momenta of the internal lines. The cor_lr\;]ergent.l ) derived ab ; bi i
Green function is an analytic function of Lorentz invariants e conclusions derived above for arbitrary diagrams ap-

of the external momenta, up to branch points. Branch point8!y €dually well to the one-particle irreducible ones contrib-
can arise only whei® vanishes, but that is not enough. In uting to the self-energy. It is convenient to route the external

addition, the contour of integratiofover Feynman param- Momentump along the "main line,” the massive quark line
etersa and loop moment&) must be pinchedi7]. This hap- that runs all the way through a self-energy diagram. Off the
pens if and only if on each internal line main line the momenta are independenpofind the degrees

of infrared divergence are straightforward. Soft gluon and
g?+m?=0 or a;=0 (7)  ghost propagators contribuge(A)=—2, and soft massless
qguark propagatorg.(S)= —1. Soft three-gluon and gluon-
and, furthermore, following any closed pathin the diagram  ghost vertices contribute (V) = + 1, and other soft vertices
#(V)=0. In a closed loop, the massive quark propagator
2 @,q;=0 ®) So(k) =1/(ik+my) has degree of infrared divergence O.
< The internal parts of the main line have propag8gip
+Kk). Whenk is soft

D=(E ai(gf+m?)

=1

with the sign ofg; taken in the sense of the path Equa-

tions (7) and (8) are the so-called Landau equations. 1 mo—ip
Solutions of the Landau equations have a physical inter- So(p+k)= i(p+ k)+m0H p’+2p-k+ mg'

pretation[8]. Up to an overall factor the Feynman parameter

«; is the ratio of the time elapsed, from one end of the line toOff shell (away from the branch poinsuch lines have de-

the other, to the energy propagating on the line. Thyg, is  gree of infrared divergence 0. On shell, howeVer,

the space-time separation between the two ends, an(BEq. )

says a loop in the diagram corresponds to a loop in space- Sy(p+K)— mo—ip (11)

time. Furthermore, Eq.7) says that internal lines either are 2p-k ’

on shell @>=—m?) or do not propagatea;=0). For each

diagram, one obtains theduced diagranby shrinking off-

shell lines to a point. Then branch points arise if and only if

the reduced diagram represents a genuine physical process of

on-shell states. 3If one of the other quarks had a makk, the branch points
The physical picture given above is useful, because it igvould be atp?=—[(1+2r)M+2sM,]?, so infinitely many col-

often easier to find solutions to Eqg) and(8) with physical  !apse to the same point a8, 0.

reasoning instead of with algebra. For example, a two-point “with p?=—M?, one treatsn;—M? as higher order im3.

(10

which gives degree-1.
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When all loop momenta are soft apd=—M?2, an arbi-

trary QCD (or QED) self-energy diagran®, with L loops, i

but no massive quark loops, has degree of infrared diver-

gence

FIG. 1. Origin of the infrared divergence at two loops.
u(G)=1+L(d—4) (12
. ) . ) ] _analysis implies, is sketched in Fig. 1. The problem worsens
in d dimensions. This holds at one loop. Higher-loop dia-a¢ higher and higher orders, as more and more two-point
grams can be built by adding gluons, ghost loops{for  \ertices can arise on the main line.
now) massless quark loops. It is enough to insert the loops

into gluon propagators; more gluons can be added later.
Loop insertions giveu(G, 1) = (G ) +d—4. New gluons
give u(G.1)=u(G)+d—2+u;+pu,, whered comes For the pole mass at two loops, the infrared divergence
from the new loop,— 2 from the gluon propagator, and the in S/(—mj,mg) is cancelled by theO(gg) part of

w; are degrees associated with each end. The ends can be 3H!(—M?2,mp). To examine this mechanism in general, it is
a gluon or ghost lineu;=1—2=—1 for vertex and propa- convenient to solve for the bare mass that implies a desired
gator; on a three-gluon vertex;;=—1 from changing the pole mass, namely
three- to a four-gluon vertex; on the main line or a massless

quark: u;=—1 for the propagatct.Thus, these ways all

give u(G_,1)=u(G)+d—4. Replacing an internal with

n-vertex polygon of a massless quark with a massive one

increasegu(G ) by n. Therefore, in four dimensions no in- 1-A(-M2,M/Z,,)

frared divergences can arise from the region with all loop ;1— — 2
momenta soft. 1=-B(=M"M/Zp)

Infrared divergences may come, however, from regiongyqing the iterative nature of the solution. Then coeffi-

with some loop momenta soft and others not. According tocient[Zr;l][L] of the iterated expansion is infrared finite if

the physical picture of the self-energy, the non-soft lines can o only if the coefficienti%'ﬂ 1=L, are infrared finite.

be shrunk to a point, augmenting the foregoing analysis with The coefficients of the iterated expansion involve certain

composite vertices. Far=>3, n-point verticesV, contribute combinations of the coefficients of the self-energy functions
um(V,)=0 to the total. Additional soft gluons attached to gy '

such vertices come with a propagator and a loop integration;

addingd—2 to the total degree. Composite three-point ver- _

tices have the same infrared power counting as their funda- S(p2MZhH=2> g2=(p?,Mm) (15)
mental counterparts. For example, gauge invariance guaran- !

tees the beneficigk(V3) =+ 1 for the(composite vertex of ] N P o
three soft gluons, in the same way it safeguards renormaliZdefine the coefficientst™(p“,M) [and, by implication,
ability. Thus, multi-point composite vertices do not lower the Al'l(p?,M) andB!"(p?,M)]. Iterative expansion yields
degree of infrared divergence in four dimensions.

Internal, hard self-energy diagrams shrink to two-point _ .
vertices. In massless quark loops, the two-point vertex and E[H(DZ’M):E“](F’Z’MH;l 121 j_![(zml_l)J]m
extra propagator yield the harmless fact@r(k)/(ik) . A
=A(K), as required by chiral symmetry. In massive quark J. gl
loops, the additional factd (k)/my— B(Kk) is also harmless. XM Wo_
(These self-energies are off shell and, therefore, well be-
haved) Gauge symmetry provides two powers of soft mo- —
menta at two-point gluon and two-point ghost vertices, canExplicit calculation shows that!*(p?,M) =3 (p? M) is
celling the extra propagator. Thus, these two-point verticedfrared finite and, whep®=—M?, gauge independent. At
do not pose a problem. two loops 3121(—M2,M) is also infrared finite and gauge

What remains are two-point vertices of the massive quarkndependent, even though?/(— M2, M) is not[1,4].
on the main line. The extra factor from inserting such a two-  Since
point vertex is3(p,mg)[my—ip1/2p-k, which lowers the

C. Infrared cancellation

me=MZ,.%, (13

(14)

1-1 i

(16)

me=M

degree of infrared divergences #o<0. For example, at two [z, =Bl - Al (17
loops it is known[1] that the self-energ®?/(—m3,my) is
infrared divergent. The origin of the divergence, as the above [z, =Bl2 - Al2l 4 [z )LIBH (18)

with all self-energy functions evaluated pt=—M? and

SWhen the massive quark is off shell, the degree is increased b§lo=M, one has fil blasis for a proof by ir.1d.uction. Let us
the number of main-line propagator segments—even more conveassume that thez "1, <L, are infrared finite. To show
gent. that[Z 'Y is also infrared finite, it is enough to show that
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The second step follows from Eq(14) and setting
p?——M?2. In Eq. (21) the right-hand side of E¢22) mul-
. tiplies M—ip; the O(1) part of the product vanishes for
_"Q"— = p?=—M?2, leaving a remainder oD(k).® Consequently,
[S(p+k)][~1 has degree of infrared divergeneel, just
like Sy(p+k). Thus, S[H(—M? M) is infrared-finite, as

FIG. 2. Dyson-Schwinger equation for the self-energy. GreyWwas to be proved. .
blobs denote full propagators and white blobs denote one-particle Although the above formulas are a bit clumsy, the mecha-
irreducible functions. nism that cancels the infrared divergences is simple. Equa-

tion (20) says to split the bare mass into the pole mass plus a
2_,[L](—M2,M) is infrared finite. The induction hypothesis counterterm. The counterterm, Iik_e the shrunken self-energy
. ST, a2 o . subdiagram, prpduces a two-point vertex. Infrared diver-
mphes_t?a}E (=M%M), I<L, is infrared finite(other-  gances cancel in thenext order's pole mass, because the
wise[Z,, '] would not bg. o _ . combination of the two does not degrade the infrared power

It would be a nightmare to identify all infrared diver- counting. In QED, this mechanism was identified in a foot-
gences and verify cancellation on the rigﬂt-hand side of Edqote to Ref[9].
(16). Instead, it is more efficient to study!l(p2, M) di-
rectly. The Dyson-Schwinger equation for the self-energy, IV. GAUGE INDEPENDENCE
depicted in Fig. 2, is a useful tool. Power-counting and the
induction hypothesis together say that the only new infrared The gauge invariance of the mass renormalization factor
divergence at. loops can come from diagrams with the ( Z,, is “nearly obvious.” If the ultraviolet regulator respects
—1)th order expansion of the quark propagator and an addgauge symmetry, the bare mass has a gauge-invariant mean-
tional gluon: ing. From a physical point of view, it would be unsettling if
the pole mass were to depend on the gauge. Thus, the ratio
dk @,ﬂ,,—gkl‘kv/k2 (L-1] Z,=M/my ought to be gauge invariant too. Without the
2mn)° K2 Yul S(PHK Ty, (19  infrared-finiteness established above, however, a proof
would require painstaking separation of infrared and ultra-
violet regulators.
Diagrams with a higher-order one particle irreducible vertex With infrared-finiteness, one can study the gauge depen-
function or gluon propagator would have a quark propagatoglence by treating the massive quark like a normal particle, as
with L—2 (or fewe loops; they can be infrared divergent long as one discusses perturbation theory only. ffonear

— _ 2
only if 311, for somel <L, were too—contrary to the induc- — M the propagator takes the form
tion hypothesis.

The key to obtainingﬂ}e] from the right-hand side of Eq.
(19) is to write (q=p+k)

Sl

S(p)= Z,/(ip+M), (23

where Z, is the field renormalization factdrBecause the

pole mass is only defined perturbatively, denotes here the

: 17 _ (20) pole mass through some finite order in perturbation theory.

id+M—-[2(q,MZ,H-M(Z,'-1)]’ The previous section assumed a gauge fixing term
(M2)S(9-A)2d*x. [In Eq. (19), é&=1—\"1.] SupposeM

treatingid + M asO(gQ) and expanding the brackefitera-  depends on. A shift A\ induces a first-order change

tively) in g3. This expansion, fop?= —M? andk soft, pro-

duces a sum of chains AN (9Z, M Z,

S(q)=

s ASP=mm N N g @
—i _
+ [L-11— +
[Sp+] 2p-k 2 H [2(ptkM) Note thatoM/dN multiplies a double pole.
M—ip On the other hand, the propagator is given by
—i
—M(z,;l—l)]l'ﬂﬂ--- . (21 _
P S(p) =FTO| T(x) y(y)|0). (25

In any term of the sum the factors’ superscritadd up to
L—1, and the sum is over all such partitionslof 1. Since
k is soft the quantity in brackets reduces to

From Eg.(25), the change is

— 6 ; i i i i
B 14 2 One might worry whether the remainder is an infrared-divergent
[2(p+k,M)=M(Zn = D)= [IPA(P*,M/Zy) derivative of the self-energy. But becauyse k is off shell byk, the

+ MZ;lB(pz,M/Zm) _ M(ngl_ 1)][|] re7mai_nder i§ proportipnal tkIn. )
Z, is not infrared divergent whepr is close to, but not equal to,

=(ip+M)AN-=MZM)+0O(k). (22 -Mm2
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AN _ is infrared finite, even though the on-shell self-energy is not.
AS(p)=—- FTJ d9Z(0| Ty (x) (y)(9-A(2))%|0).  (26) At higher orders the pole mass requires an iterative expan-
sion and, thus(infrared divergent derivatives of the self-
A double pole would develop if the quark could scatter off€nergy. In the pole mass the total infrared divergence van-
(two) g|u0n5 with scalar p0|arizati0n’ which cannot happeniSheS. The cancellation mechanism and, indeed, the power
because the scalar polarization decouples from the physic&Punting in QCD are the same as in standard QED. Attach-
state space. The mads cannot, therefore, depend on the iNg a virtual photon to an on-shell massive electron line has
gauge parameter, although the residijecertainly can. the same effect as attaching a gluon anywhere in a massive-
(Conversely, one can see immediately that the insertionguark self-energy diagram. | cannot imagine that infrared-
generated by a shift in the bare mass or gauge couplinfiniteness of the electron mass has never been proved, but,
would develop a double pole and, thus, a shift in the poleeXcept for a footnotg9], | have not found a reference with a
mass) proof. _ _ _
For a more general gauge-fixing functiéA(A(z)) (and Because of its physical appeal, the pole mass remains
changeA f2), the argument is similar. Let denote the BRS ~ Valuable theoretically. In addition to matching to effective

— s ; theories, mentioned above, it is similarly useful in relating
operator andy (7) the (anti)-ghost field. The change in the ) ’ ; ’ o
two-point function involveg 10] lattice QCD to continuum renormalization scher&$]. An

example of considerable phenomenological interest is the ap-
- a AN a - plication of (NR)QCD to threshold production of heavy
(S[7a(2)ATAD IO UY)) = 7a( ) AT DS (X) l’lf(y()z]% quarks. There the pole mass is nearly irresistible, but it has
been pointed out recently that infrared sensitivity in the
~<; (2)AFA()° 7p(X) — Wb(Y)]‘ﬂ(X)J(Y)) (28) mass’s definition is conferred on the QCD potential as well
a .

[12-14.
As before, but now because the ghosts decouple, this expres- Note added in proofThe gauge independen@eut not the
sion cannot develop a double pole. infrared finitenessof the pole mass has been proven in QED
[15,19 and QCDJ[16,17; | thank V. Miransky, T. Steele,
V. CONCLUSIONS and G. Kilcup, respectively, for drawing my attention to

these works. A proof of both infrared finiteness and gauge
The pole mass is widely used in the phenomenology oindependence of the electron mass to all orders in QED is
QCD and, when quark momenta are small compared to thgiven in Ref.[18]; | thank A. Schreiber for drawing my
mass, in nonrelativistic QCD and heavy-quark effectiveattention to this text.
theory. In many of these contexts it is natural: it has consid-
erablg intuitive appeal, a.nd it can be_ calculated with any ACKNOWLEDGMENTS
ultraviolet regulator and in any effective theory. In some
circles the pole mass—as an experimental quantity—has | thank Tony Duncan and George Sterman for helpful
rightly fallen into disfavor, because infrared renormalons ob-conversations and Aida El-Khadra, Aneesh Manohar, and
struct an unambiguous determinatifh,6]. Had the pole Scott Willenbrock for comments on the manuscript. | would
mass turned out to be either infrared divergent or gauge dealso be grateful to anyone who would inform me of a prior
pendent, one ought to have abandoned the pole mass f@ublished proof, even in QED. Fermilab is operated by
more basic reasons. Universities Research Association Inc., under contract with
Fortunately, Sec. Il shows that the perturbative pole masthe U.S. Department of Energy.
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