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Perturbations of solutions of the Einstein-Weyl equations: An example
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The coupled gravitational and neutrino field perturbations of a type D solution of the Einstein-Weyl equa-
tions are studied, reducing the problem to a system of four first-order ordinary differential equations. It is
explicitly shown that there exist purely gravitational linear perturbations of the background solution considered
here, such that the perturbed fields form an exact solution of the Einstein-Weyl equations.
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I. INTRODUCTION not have an exact solution of the EW equations with a physi-

al significance similar to that possessed by the Kerr-

The behavior of a test massless neutrino field, governeﬁlewmm or the Reissner-Nordatnasolution in the case of
by the Weyl equation, on the Schwarzschild and the Ker : . . .
the Einstein-Maxwell equations, we shall consider the per-

solution has been studied by various auth@rg., Refs[1— . . . .
5]). Since these two metrics are of type D, the components dirations of a relatively simple type D solution of the EW
equations such that the neutrino flux vector is geodetic and

the neutrino field along the two principal spinors of the con- hearf Ki f the f hat th | b
formal curvature satisfy decoupled second-order partial difSh€ariree, making use of the fact that the complete perturba-

ferential equations, which are solvable by the separation O?onsfof anydsolutior_1 ?f d@?fis clafssl are de.termine(: by a selt of
variables(see also Refs[6,7]). As shown in Ref[8], the OUr irst-order partial differential equations for four scalar

solution of the Weyl neutrino equation in any algebraicallypOtentials[lo] and taking into account that the type D solu-

special space-time that admits a shearfree congruence of n{pns ©f the Einstein vacuum field equations are known to

geodesics is given by singlescalar potentialy, that obeys possess remarkable separability properties. We find that this

a second-order partial differential equation which, in theSyStem of equations admit separable solutions and that it
Newman-Penrose notation. takes the form reduces to a set of four coupled ordinary differential equa-

o - tions.
[(A—y+u)(D+e)—(5+B—17)(5+B)]yp=0, (1)

assuming that the tetrad vect@r=1#(d/dx*) is geodetic
and shearfree and is a double principal null direction of the The EW equations are given by
conformal curvature(i.e., k=0=¥,=V¥,=0) (see also

Il. THE COMPLETE PERTURBATIONS

Ref. [9]). The components of the neutrino field are then (I)ABA’B’:2ik(n(AVB)A’;B’_;(A’VB’)AWB)-
given by

_ _ AB' __ _

70 =(D+e)d, m=(5+B). ) Ve ma=0, &
(This result holds without any explicit restriction on the where® sgcp: denotes the spinor components of the trace-
Ricci tensor). free part of the Ricci tensok is a real constanty, denotes

When there is a nonvanishing background neutrino fieldthe components of the Weyl neutrino ﬁem,zﬂ_A and the
the neutrino field perturbations are coupled to the gravitaparentheses denote symmetrization on the indices enclosed.
tional perturbations; therefore, the study of the perturbationg\s shown in Ref[10] (see also Ref[11]), the metric and
of an exact solution of the Einstein-WeyEW) equations  neutrino field perturbations of a given exact solution of the
involves simultaneously the gravitational and the neutrinoEw equations such that the flux vector of the background
field perturbationgsee, however, Sec. Il belowAs in the  neutrino field is tangent to a shearfree congruence of null
case of the perturbations of a solution of the Einsteingeodesics, in a frame such thay=0 (which amounts to
Maxwell equations, where there is a mutual conversion ohssume that* is parallel to the flux vector of the neutrino
gravitational and electromagnetic waves, in a solution of théield), are given by
EW equations with a nonvanishing background neutrino

field, there is a mutual conversion of gravitational and neu- h,,=2{l |, [(6+3B+a— 1My —AMg/]
trino waves. Whereas the perturbations of some solutions of promRY
the Eir).stein-MaxweII equationgespecially the Reissner- +m,m,(D+3¢ —e— p)Mq —1(,m,
Nordstran solution) have been studied, so far there are no . .
results on perturbations of solutions of the EW equations. X[(D+3e+e—p+p)My,
In this paper, we consider an explicit example of the per- _ _
turbations of a solution of the EW equations. Since we do +(6+3B—a—1—m)Mq ]} +c.C. 4
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and

y_ 1

1
70 =g (D e)dn, A =g 0+ B, ()

respectively, with the complex scalar potentitddg, , M4/,
Yy being governed by the equations

(E+3a+ﬁ—?)M1r—(A+3y—;+;)MO,= 7]11#6,
(D+3e+e+3p—p)My —(5+3B—a+37+m)My
= 11N,

7l (A+y+p)y—(6+3B+7)ic]
:(3’\1,2_Z(Dll)Ml’_FZCDlZMO’_iknl;l'
X[(D+3e+e—p+p)My,

+(6+3B—a—71—m)Mg],

ml(6+ a+m)yy—(D+3e+p) i)
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y2-|—a2
DZﬁV—T&w
1 Q y2+a2
“ T2yt vT T M)
1 1 .
5:5y—ia(&x+'(2am”+&”»'
1 ,
0= y¥ia x1(2ax3,+4,)). (10

form a null tetrad, and the corresponding nonvanishing spin
coefficients are

1 1 Q 1
P="yv¥ia® *7 T 2y*raly+ia’

= 1 M + 11
Y= aymar e a1

The only nonvanishing components of the curvature are
given by

=(3W,+2d1;)Mq — 2ik 7,71 (D+3e—&—p)My b1 M b

(6) q)11=§(y2+—az)21 Ya=- yria)®  (Yrad)(y+ria)
12

where ¢ is an auxiliary potential[Note that Eqs(5) look
like Egs.(2); however the scalar potentiajg, and s do not  therefore, ifM andb are not both zero, the metric is of type
obey the same differential equations. The neutrino fieldD.
given by Egs.(1) and (2) satisfies the Weyl equation and  Making use of Eqs(10)—(12) one finds that the neutrino
need not be a test fielsee Eq.(13) below). On the other field
hand, Eqs(5) yield a neutrino field perturbation which, to-
gether with the metric perturbatiod), satisfies thdinear- ~0 A (13)
ized EW equationd. 0= MTY g
The perturbations of the components of the neutrino field
given by Egs.(5) correspond to the first-order difference WhereA is a complex constant, together with the met8g
between the components of the perturbed neutrino field witisatisfy the EW equation) provided
respect to the perturbed tetrad
b=4kalA|2. (14)

1 _ co’ o .
Iner + Ipp = ap — 2Nacern’d (7)  [Note that the neutrino field13) can be expressed in the

o _form (2) with =v2Ax.] This solution was found in Ref.
and the components of the background neutrino field W|tr[12] and, the case where=1, in Ref.[13]. Whenb=0, the
respect to the original tetradhp (recall thatdoy =D, dorr  metric (8) is a solution of the Einstein vacuum field equa-
=96, d1g =06, dp=A4). tions that coincides with one of the Newman-Unti-

We shall consider the background metric Tamburino metric§14] and is a special case of the Carter

[B(+)] class of solutiong15]. Whena=0 but A#0, the

42— Q(y) (du—2axdy)?— y>+ a2d 2 energy-momentum tensor of the neutrino field vanishes and
y?+a? Q(y) y the metric is a vacuum solution that coincides with one of the
_ ) ) solutions found in Ref[16].

—(y*+a%)(dx*+dv”), tS) The metric(8), with b>0, can also be produced by an

electromagnetic field. It can be readily seen that the metric
wherex,y,u,v are real coordinates, (8) with the electromagnetic field given by,=0=¢,, ¢;
=1be?(y+ia) 2, where¢ is a constant, with respect to
Q(y)=—-2My+b (9)  the tetrad(10), satisfy the Einstein—Maxwell equations. The

tetrad vectors# andn* are principal null directions of this
anda, b, andM are real constants. Then, the vector fields electromagnetic field.
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Since 7,=0, the tetrad vectot* is parallel to the flux whose solutions are the parabolic cylinder functions. The
vector of the neutrino fieldya7, , and from the relations solutions of Eq25(20) that are bOUanEd as— + o are pro-
k=0=o, it follows that the flux vector is geodetic and portional toe ?"?H,_,(z) ande™%"?H,(z), respectively, if
ghearfree, therefore, the complete pertL_eratlons of the soly >0 or to e‘ZZ’ZHn(z) ande‘zzlen,l(z), respectively, if
tion given by Eqs(8} and(13) are determined by _the system al<0, where H,, are the Hermite polynomials and
of e%gatkons(@. llJS|r|1(gfthe fact tT)?U ar;dtz_; aret |gnorab]le =C?/|4al| is an integer greater than or equal to z¢ne
coordinates, we look for separable solutions to Hs.o takeH_,=0, as required by Eq¢17)]. Whenal=0, Egs.

the form (17) and(18) yield #2S,= (m?— C?)S;, and the solutions are
Mg =2AS_,(X)Ry(y)e'luV+tm) linear combinations of exp\m?—C?z.
. The system of equationd6) is analogous to the system
M =v2AS_(X)R,(y)e'luTm), of radial equations obtained in the study of the perturbations
_ of the Reissner-Nordstno solution by means of scalar po-
e=S_2(X)Ry(y)e' "™, tentials[17] and, in the latter case, the four equations can be
_ (1u+mo) transformed into two independent pairs of first-order differ-
Un=V2S_1(X)R4(y)€ , (19 ential equations. We have not found such a partial decou-

wherel andm are constants and some constant factors havBling for Eqs.(16); however, in the particular case where the
been introduced for later convenience. Substituting EqsSeParation constai@ vanishes, Eqs16) constitute two de-

(10)~(13) and (15) into Egs. (6) one obtains the ordinary CcouPled pairs of equations, one f& and R; and another
differential equations for R, andR,. It may be noticed that whe@=0 andal

>0 the potentialyy vanishes, as well as the neutrino field

CoR,+ ¢4$Q27) "Q 1¢ 3R;=¢Rs, perturbation. As we shall show in the next section, the solu-
tion of the EW equations given by Eg®8) and (13) admits
CoR,+ ¢ 3¢Dd%d 'R,= ¢R,, linear perturbations such that only the metric tensor is per-
turbed and the resulting fields yield axactsolution of the
ChpdpRy— ¢*pQ3¥2DTQ 129 2R, EW equations.
_ A remarkable feature of the neutrino perturbations is that
=2(3W,— 20 1) R,— 2ik|A]? 7 depends onyy but not on its complex conjugafsee
1T — Eg. (5)], which means that in the case of a separable solution
X(¢*Dep™ ' $R,~ Chp*Ry), of Egs.(6) of the form(15), the perturbations of the neutrino

(1) a0 : —i(lu+mv)
s _ ETUNCIT: 1 componentsy,” will contain only a factore ™) (as-
C¢*Ra=DPRy=2(3W+2P19) Ry~ 4ik|A[*$¢ Db (E;l) sumingl andm real), instead of a combination af (V*™)

ande'(U"™) This behavior contrasts with that of the cur-
and vature perturbationgsince the metric perturbation depends
on My,, My, and their conjugates; see E@)], for which
— tg = M .
£S.1=CS.z, LS ,=-CS, 17 the simultaneous presence of the fact@§'"™) and

whereC is another separation constagt=1/(y+ia), and € "™ means that the polarization of the gravitational
waves changes upon its interaction with the background

o ily?+a?) f o il(y?+ad) fields. (This effect is clearly seen in the case of the electro-
D=(9y_T' D =(9V+T' magnetic and gravitational perturbations of the Reissner-
Nordstran solution[18].)
L=0d+2alx+m, LT=g,—2alx—m. (18

Assuming thatl is different from zero, by means of the
change of variable=(2alx+m)/+/|2al|, the operatorsC
and £ take the form

Ill. EXACT SOLUTIONS FROM LINEAR
PERTURBATIONS

As shown in Ref[19], given an exact solutiong(,,, , 7,)
— oAl t— 2all( e — . ; v .
L=\|2al|(ed;+2), L'=\|2all(ed,~2), (19  of the EW equations such that the neutrino flux vector is

where e=sgn@l)=(al)/|al|. Therefore, except for a constant 9€0detic, ifl,, is parallel tcgl)the neutrino flux vector, the
factor, £ and £ correspond to the well-known ladder op- Perturbationh,,=2HI_I,,7,’=0 satisfies the linearized
erators of the one-dimensional harmonic oscillator in quanEW equations if and only ifg,,+2HI I, ,7,) is an exact

tum mechanics, and from Eq&l7) one finds that the func- Solution of the EW equations. Hence, if there exists a solu-
tions S; satisfy the equations tion of the linearized EW equations such that the metric per-

turbationh ,, is proportional td ,|,,, and the neutrino field is

2 v p p M

l(—<92+22)8 [ € € s left unchanged, the sum of the background solution and the
2" 7 "1 \4lall 2/ perturbation is an exact solution of the EW equations. More-
) over, since an analogous result holds for the Einstein-

Maxwell equationgwith |, being a principal null direction

P princip

of the background electromagnetic figtt9,20) and, when

L€
4lal] " 2

1 2 2
E(_(92+Z )872: 872, (20)
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b>0, the metric(8) is part of an exact solution of the proximate solution of the EW equations but an exact solution
Einstein-Maxwell equations, the perturbed metric also correof the EW equations. In fact, replacing the coordinatby
sponds to arexactsolution of the Einstein-Maxwell equa- u’ defined by

tions, with the electromagnetic field unchanged. )
In order to find metric perturbations proportionalltg,, du’=du+ 0 Or 20y (y=+a“)dy, (29
instead of Egs(4), it is more convenient to use the expres-
sions given in Ref[19], which in the present case reduce to one finds that Eq(24) reads
— — + 973 v
2(D=p+p)(D+p—p)H—p?H=0 (9 2H1, 1) dxdx
. B Q+2cy | )
8(D+p—p)H=0 VY (du’ —2axdv)
86H—(A+y+y+u)pH—u(D+p)H+HDp=0 y+a? o,
- Q+20ydy —(y*+a’)(dx*+dv?), (26)

1 N _\H— — ) 2H = 21
2(D+p=p)(D+p=p)H-2(D—p)pH+p*H=0. (2] which is of the form(8), with Q replaced byQ+2cy or,

equivalently, Wi_th the parametét re_placed by —c. Thus,
It is easy to see that all th@ea) solutions of these linear the metric(24) is not essentially different from the unper-
equations are given by turbed metric(8).

H=c 24y—a2’ (22) IV. CONCLUDING REMARKS
y Making use of the general results of Rgt0], we have
wherec is an arbitrary real constant. Taking into account thatshown that the coupled gravitational and neutrino field per-
turbations of the exact solution of the EW equations given by
y2+a? Egs.(8) and(13) are determined by a set of four first-order
dy—(du—2axdv), (23 ordinary differential equation§Eqs. (16)] which, among
other things, determines the conversion factors between the
from Egs.(8), (22) and(23) we obtain the perturbed metric gravitational and neutrino waves. Despite the fact that the
background solution considered here is relatively simple, the

-
I#dx

(9, 2H1 1 ) dx#dx” system of equation&l6) looks somewhat complicated; how-
Q+2cy 2, 2 ever, this system is the only condition that remains to be
=—>——(du—2axdv)?— —(Q—2cy)dy? solved from the linearized EW equations, which is a set of
y*t+a Q ten real second-order partial differential equations and two
4cy complex first-order partial differential equations for ten real
+ de(du—Zaxdv)—(y2+a2)(dx2+ dv?) (24) and two complex unknowns.
which, together with the neutrino field given by Ed43) ACKNOWLEDGMENT
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