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Perturbations of solutions of the Einstein-Weyl equations: An example
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The coupled gravitational and neutrino field perturbations of a type D solution of the Einstein-Weyl equa-
tions are studied, reducing the problem to a system of four first-order ordinary differential equations. It is
explicitly shown that there exist purely gravitational linear perturbations of the background solution considered
here, such that the perturbed fields form an exact solution of the Einstein-Weyl equations.
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I. INTRODUCTION

The behavior of a test massless neutrino field, gover
by the Weyl equation, on the Schwarzschild and the K
solution has been studied by various authors~e.g., Refs.@1–
5#!. Since these two metrics are of type D, the component
the neutrino field along the two principal spinors of the co
formal curvature satisfy decoupled second-order partial
ferential equations, which are solvable by the separation
variables~see also Refs.@6,7#!. As shown in Ref.@8#, the
solution of the Weyl neutrino equation in any algebraica
special space-time that admits a shearfree congruence o
geodesics is given by asinglescalar potential,c, that obeys
a second-order partial differential equation which, in t
Newman-Penrose notation, takes the form

@~D2ḡ1m̄ !~D1«!2~ d̄1b̄2 t̄ !~d1b!#c50, ~1!

assuming that the tetrad vectorD5 l m(]/]xm) is geodetic
and shearfree and is a double principal null direction of
conformal curvature~i.e., k5s5C05C150! ~see also
Ref. @9#!. The components of the neutrino field are th
given by

h̄085~D1«!c, h̄185~d1b!c. ~2!

~This result holds without any explicit restriction on th
Ricci tensor.!

When there is a nonvanishing background neutrino fie
the neutrino field perturbations are coupled to the grav
tional perturbations; therefore, the study of the perturbati
of an exact solution of the Einstein-Weyl~EW! equations
involves simultaneously the gravitational and the neutr
field perturbations~see, however, Sec. III below!. As in the
case of the perturbations of a solution of the Einste
Maxwell equations, where there is a mutual conversion
gravitational and electromagnetic waves, in a solution of
EW equations with a nonvanishing background neutr
field, there is a mutual conversion of gravitational and n
trino waves. Whereas the perturbations of some solution
the Einstein-Maxwell equations~especially the Reissner
Nordström solution! have been studied, so far there are
results on perturbations of solutions of the EW equations

In this paper, we consider an explicit example of the p
turbations of a solution of the EW equations. Since we
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not have an exact solution of the EW equations with a phy
cal significance similar to that possessed by the Ke
Newman or the Reissner-Nordstro¨m solution in the case o
the Einstein-Maxwell equations, we shall consider the p
turbations of a relatively simple type D solution of the E
equations such that the neutrino flux vector is geodetic
shearfree, making use of the fact that the complete pertu
tions of any solution of this class are determined by a se
four first-order partial differential equations for four scal
potentials@10# and taking into account that the type D sol
tions of the Einstein vacuum field equations are known
possess remarkable separability properties. We find that
system of equations admit separable solutions and tha
reduces to a set of four coupled ordinary differential eq
tions.

II. THE COMPLETE PERTURBATIONS

The EW equations are given by

FABA8B852ik~h (A¹B)A8h̄B82h̄ (A8¹B8)AhB!,

¹AB8hA50, ~3!

whereFABC8D8 denotes the spinor components of the tra
free part of the Ricci tensor,k is a real constant,hA denotes
the components of the Weyl neutrino field,h̄A8[hA and the
parentheses denote symmetrization on the indices enclo
As shown in Ref.@10# ~see also Ref.@11#!, the metric and
neutrino field perturbations of a given exact solution of t
EW equations such that the flux vector of the backgrou
neutrino field is tangent to a shearfree congruence of
geodesics, in a frame such thath050 ~which amounts to
assume thatl m is parallel to the flux vector of the neutrin
field!, are given by

hmn52$ l ml n@~d13b1ā2t!M182l̄M08#

1mmmn~D13«2 «̄2r!M082 l (mmn)

3@~D13«1 «̄2r1 r̄ !M18

1~d13b2ā2t2p̄ !M08#%1c.c. ~4!
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and

h̄08
~1!

5
1

4ik
~D1«!cN , h̄18

~1!
5

1

4ik
~d1b!cN , ~5!

respectively, with the complex scalar potentialsM08 , M18 ,
cN being governed by the equations

~ d̄13a1b̄2 t̄ !M182~D13g2ḡ1m̄ !M085h1cG,

~D13«1 «̄13r2 r̄ !M182~d13b2ā13t1p̄ !M08

5h1cN ,

h1@~D1g1m!cN2~d13b1t!cG#

5~3C222F11!M1812F12M082 ikh1h̄18

3@~D13«1 «̄2r1 r̄ !M18

1~d13b2ā2t2p̄ !M08#,

h1@~ d̄1a1p!cN2~D13«1r!cG#

5~3C212F11!M0822ikh1h̄18~D13«2 «̄2r!M08 ,

~6!

wherecG is an auxiliary potential.@Note that Eqs.~5! look
like Eqs.~2!; however the scalar potentialscN andc do not
obey the same differential equations. The neutrino fi
given by Eqs.~1! and ~2! satisfies the Weyl equation an
need not be a test field„see Eq.~13! below…. On the other
hand, Eqs.~5! yield a neutrino field perturbation which, to
gether with the metric perturbation~4!, satisfies thelinear-
izedEW equations.#

The perturbations of the components of the neutrino fi
given by Eqs.~5! correspond to the first-order differenc
between the components of the perturbed neutrino field w
respect to the perturbed tetrad

]AB81]AB8
~1!

5]AB82
1
2 hACB8D8]

CD8 ~7!

and the components of the background neutrino field w
respect to the original tetrad]AB8 ~recall that]0085D, ]018
5d, ]1085 d̄, ]1185D!.

We shall consider the background metric

ds25
Q~y!

y21a2 ~du22axdv !22
y21a2

Q~y!
dy2

2~y21a2!~dx21dv2!, ~8!

wherex,y,u,v are real coordinates,

Q~y!522My1b ~9!

anda, b, andM are real constants. Then, the vector field
04750
d
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D5]y2
y21a2

Q
]u ,

D52
1

2

Q

y21a2 S ]y1
y21a2

Q
]uD ,

d5
1

&

1

y2 ia
„]x1 i ~2ax]u1]v!…,

d̄5
1

&

1

y1 ia
„]x2 i ~2ax]u1]v!…, ~10!

form a null tetrad, and the corresponding nonvanishing s
coefficients are

r52
1

y1 ia
, m52

1

2

Q

y21a2

1

y1 ia
,

g52
1

2

M

y21a2 1m. ~11!

The only nonvanishing components of the curvature
given by

F115
b

2

1

~y21a2!2 , C252
M

~y1 ia !3 1
b

~y21a2!~y1 ia !2

~12!

therefore, ifM andb are not both zero, the metric is of typ
D.

Making use of Eqs.~10!–~12! one finds that the neutrino
field

h050, h15
A

y1 ia
, ~13!

whereA is a complex constant, together with the metric~8!
satisfy the EW equations~3! provided

b54kauAu2. ~14!

@Note that the neutrino field~13! can be expressed in th
form ~2! with c5&Āx.# This solution was found in Ref
@12# and, the case wherea51, in Ref.@13#. Whenb50, the
metric ~8! is a solution of the Einstein vacuum field equ
tions that coincides with one of the Newman-Un
Tamburino metrics@14# and is a special case of the Cart

@B̃(1)# class of solutions@15#. When a50 but AÞ0, the
energy-momentum tensor of the neutrino field vanishes
the metric is a vacuum solution that coincides with one of
solutions found in Ref.@16#.

The metric~8!, with b.0, can also be produced by a
electromagnetic field. It can be readily seen that the me
~8! with the electromagnetic field given byw0505w2 , w1

5 1
2 Abeif(y1 ia)22, wheref is a constant, with respect t

the tetrad~10!, satisfy the Einstein–Maxwell equations. Th
tetrad vectorsl m andnm are principal null directions of this
electromagnetic field.
1-2
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Since h050, the tetrad vectorl m is parallel to the flux
vector of the neutrino field,hAh̄A8 , and from the relations
k505s, it follows that the flux vector is geodetic an
shearfree, therefore, the complete perturbations of the s
tion given by Eqs.~8! and~13! are determined by the syste
of equations~6!. Using the fact thatu and v are ignorable
coordinates, we look for separable solutions to Eqs.~6! of
the form

M0852AS22~x!R1~y!ei ~ lu1mv !,

M185&AS21~x!R2~y!ei ~ lu1mv !,

cG5S22~x!R3~y!ei ~ lu1mv !,

cN5&S21~x!R4~y!ei ~ lu1mv !, ~15!

wherel andm are constants and some constant factors h
been introduced for later convenience. Substituting E
~10!–~13! and ~15! into Eqs. ~6! one obtains the ordinary
differential equations

CfR21f4f̄Q2D †Q21f23R15fR3 ,

Cf̄R11f23f̄Df3f̄21R25fR4 ,

Cff̄R32f4f̄Q3/2D †Q21/2f22R4

52~3C222F11!R222ikuAu2

3~f2Df21f̄R22Cff̄2R1!,

Cf2R42DfR352~3C212F11!R124ikuAu2f2f̄Df21R1
~16!

and

LS215CS22 , L †S2252CS21 ~17!

whereC is another separation constant,f[1/(y1 ia), and

D[]y2
i l ~y21a2!

Q
, D †[]y1

i l ~y21a2!

Q
,

L[]x12alx1m, L †[]x22alx2m. ~18!

Assuming thatal is different from zero, by means of th
change of variablez[(2alx1m)/Au2alu, the operatorsL
andL † take the form

L5Au2alu~e]z1z!, L †5Au2alu~e]z2z!, ~19!

wheree[sgn(al)5(al)/ualu. Therefore, except for a consta
factor,L andL † correspond to the well-known ladder op
erators of the one-dimensional harmonic oscillator in qu
tum mechanics, and from Eqs.~17! one finds that the func
tions Ss satisfy the equations

1

2
~2]z

21z2!S215S C2

4ualu
2

e

2DS21 ,

1

2
~2]z

21z2!S225S C2

4ualu
1

e

2DS22 , ~20!
04750
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whose solutions are the parabolic cylinder functions. T
solutions of Eqs.~20! that are bounded asx→6` are pro-

portional toe2z2/2Hn21(z) ande2z2/2Hn(z), respectively, if

al.0 or to e2z2/2Hn(z) ande2z2/2Hn21(z), respectively, if
al,0, where Hn are the Hermite polynomials andn
[C2/u4alu is an integer greater than or equal to zero@we
take H21[0, as required by Eqs.~17!#. Whenal50, Eqs.
~17! and~18! yield ]x

2Ss5(m22C2)Ss , and the solutions are
linear combinations of exp6Am22C2z.

The system of equations~16! is analogous to the system
of radial equations obtained in the study of the perturbati
of the Reissner-Nordstro¨m solution by means of scalar po
tentials@17# and, in the latter case, the four equations can
transformed into two independent pairs of first-order diffe
ential equations. We have not found such a partial dec
pling for Eqs.~16!; however, in the particular case where th
separation constantC vanishes, Eqs.~16! constitute two de-
coupled pairs of equations, one forR1 and R3 and another
for R2 and R4 . It may be noticed that whenC50 andal
.0 the potentialcN vanishes, as well as the neutrino fie
perturbation. As we shall show in the next section, the so
tion of the EW equations given by Eqs.~8! and ~13! admits
linear perturbations such that only the metric tensor is p
turbed and the resulting fields yield anexactsolution of the
EW equations.

A remarkable feature of the neutrino perturbations is t
hA

(1) depends oncN but not on its complex conjugate@see
Eq. ~5!#, which means that in the case of a separable solu
of Eqs.~6! of the form~15!, the perturbations of the neutrin
componentshA

(1) will contain only a factore2 i ( lu1mv) ~as-
sumingl andm real!, instead of a combination ofei ( lu1mv)

ande2 i ( lu1mv). This behavior contrasts with that of the cu
vature perturbations@since the metric perturbation depen
on M08 , M18 and their conjugates; see Eq.~4!#, for which
the simultaneous presence of the factorsei ( lu1mv) and
e2 i ( lu1mv) means that the polarization of the gravitation
waves changes upon its interaction with the backgrou
fields. ~This effect is clearly seen in the case of the elect
magnetic and gravitational perturbations of the Reissn
Nordström solution@18#.!

III. EXACT SOLUTIONS FROM LINEAR
PERTURBATIONS

As shown in Ref.@19#, given an exact solution (gmn ,hA)
of the EW equations such that the neutrino flux vector
geodetic, if l m is parallel to the neutrino flux vector, th
perturbationhmn52Hl ml n ,hA

(1)50 satisfies the linearized
EW equations if and only if (gmn12Hl ml n ,hA) is an exact
solution of the EW equations. Hence, if there exists a so
tion of the linearized EW equations such that the metric p
turbationhmn is proportional tol ml n , and the neutrino field is
left unchanged, the sum of the background solution and
perturbation is an exact solution of the EW equations. Mo
over, since an analogous result holds for the Einste
Maxwell equations~with l m being a principal null direction
of the background electromagnetic field@19,20#! and, when
1-3
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b.0, the metric ~8! is part of an exact solution of th
Einstein-Maxwell equations, the perturbed metric also co
sponds to anexactsolution of the Einstein-Maxwell equa
tions, with the electromagnetic field unchanged.

In order to find metric perturbations proportional tol ml n ,
instead of Eqs.~4!, it is more convenient to use the expre
sions given in Ref.@19#, which in the present case reduce

1
2 ~D2r1 r̄ !~D1r2 r̄ !H2r2H50

d~D1r2 r̄ !H50

dd̄H2~D1g1ḡ1m!rH2m~D1r!H1HDm50

1
2 ~D1r2 r̄ !~D1r2 r̄ !H22~D2 r̄ !rH1r2H50. ~21!

It is easy to see that all the~real! solutions of these linea
equations are given by

H5c
y

y21a2 , ~22!

wherec is an arbitrary real constant. Taking into account th

l mdxm52
y21a2

Q
dy2~du22axdv !, ~23!

from Eqs.~8!, ~22! and ~23! we obtain the perturbed metri

~gmn12Hl ml n!dxmdxn

5
Q12cy

y21a2 ~du22axdv !22
y21a2

Q2 ~Q22cy!dy2

1
4cy

Q
dy~du22axdv !2~y21a2!~dx21dv2! ~24!

which, together with the neutrino field given by Eqs.~13!
with respect to the perturbed tetrad~7!, is not only an ap-
do

04750
-

t

proximate solution of the EW equations but an exact solut
of the EW equations. In fact, replacing the coordinateu by
u8 defined by

du85du1F 1

Q
2

1

Q12cyG~y21a2!dy, ~25!

one finds that Eq.~24! reads

~gmn12Hl ml n!dxmdxn

5
Q12cy

y21a2 ~du822axdv !2

2
y21a2

Q12cy
dy22~y21a2!~dx21dv2!, ~26!

which is of the form~8!, with Q replaced byQ12cy or,
equivalently, with the parameterM replaced byM2c. Thus,
the metric~24! is not essentially different from the unpe
turbed metric~8!.

IV. CONCLUDING REMARKS

Making use of the general results of Ref.@10#, we have
shown that the coupled gravitational and neutrino field p
turbations of the exact solution of the EW equations given
Eqs.~8! and ~13! are determined by a set of four first-ord
ordinary differential equations@Eqs. ~16!# which, among
other things, determines the conversion factors between
gravitational and neutrino waves. Despite the fact that
background solution considered here is relatively simple,
system of equations~16! looks somewhat complicated; how
ever, this system is the only condition that remains to
solved from the linearized EW equations, which is a set
ten real second-order partial differential equations and
complex first-order partial differential equations for ten re
and two complex unknowns.
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